WO2009107209A1 - Heater device, measuring device, and method of estimating heat conductivity - Google Patents

Heater device, measuring device, and method of estimating heat conductivity Download PDF

Info

Publication number
WO2009107209A1
WO2009107209A1 PCT/JP2008/053447 JP2008053447W WO2009107209A1 WO 2009107209 A1 WO2009107209 A1 WO 2009107209A1 JP 2008053447 W JP2008053447 W JP 2008053447W WO 2009107209 A1 WO2009107209 A1 WO 2009107209A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heater
temperature
thin film
heat source
Prior art date
Application number
PCT/JP2008/053447
Other languages
French (fr)
Japanese (ja)
Inventor
享 上田
健治 大沢
克也 鶴田
俊明 小谷
敬 水田
Original Assignee
株式会社渕上ミクロ
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社渕上ミクロ, 国立大学法人 鹿児島大学 filed Critical 株式会社渕上ミクロ
Priority to CN200880128982.5A priority Critical patent/CN102217414B/en
Priority to JP2008511499A priority patent/JP5509443B2/en
Priority to PCT/JP2008/053447 priority patent/WO2009107209A1/en
Priority to TW097106971A priority patent/TWI434381B/en
Publication of WO2009107209A1 publication Critical patent/WO2009107209A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/24Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to a heater device and a measuring device used for performance evaluation of heat transfer equipment.
  • a heat pipe is a device that absorbs heat at one end of a container filled with hydraulic fluid, evaporates the hydraulic fluid, condenses the hydraulic fluid at the other end of the container, and dissipates heat, and is used for cooling electronic equipment.
  • Patent Documents 1 and 2 in order to thermally connect an electronic component such as an IC chip and a heat pipe, and transport the heat generated in the electronic component to the heat sink by the heat pipe, the heat pipe and the heat sink Has been proposed (in this specification, this will be referred to as a cooler with a heat pipe).
  • T 2 is the temperature of the ambient environment of the cooler with heat pipe It is.
  • the workpiece thermal resistance Rw may be used in place of the total thermal resistance RT .
  • the work thermal resistance Rw is expressed by the following equation.
  • T '2 is the temperature of the heat radiating portion with a heat pipe cooler.
  • a manufacturer of a cooler with a heat pipe measures the total thermal resistance RT of the cooler with a heat pipe one by one by the following method, and confirms that a predetermined standard is satisfied. .
  • T 1 of the heat absorption part of the cooler with a heat pipe heating is performed with an electric heater.
  • T 1 is increased slowly, over time the amount of heat generated by the balance between the heat radiation amount, T 1 is constant (steady state).
  • T 2 of the surrounding environment when T 1 becomes constant and the power consumption of the electric heater are measured, and the total thermal resistance RT of the cooler with the heat pipe is calculated (in a steady state)
  • the heat transport amount W of the cooler with heat pipe is equal to the heat generation amount of the electric heater, and the heat generation amount of the electric heater can be calculated from the power consumption).
  • the heat generating part may be unevenly distributed. In other words, this is a case where a specific part of the IC chip becomes hot. It is required to reproduce such a phenomenon and evaluate the performance of the cooler with a heat pipe. In such a case, it is necessary to prepare a dedicated electric heater.
  • the present invention has been made to solve these problems, and provides a heater device suitable for measuring the thermal resistance of a cooler with a heat pipe. Moreover, the measuring apparatus suitable for the measurement of the thermal resistance of the cooler with a heat pipe is provided. Moreover, the method of estimating the effective thermal conductivity of the cooler with a heat pipe easily is provided.
  • a heater device includes a substrate and a heater device that generates heat by energizing a heater thin film formed on an upper surface of the substrate, each of a plurality of heater thin films and the plurality of heater thin films. And a power supply terminal for supplying power independently.
  • the power supply terminal may be formed on the lower surface of the substrate, and a through hole may be provided to electrically connect the power supply terminal and the heater thin film.
  • a plurality of sensor thin films may be formed on the lower surface of the substrate.
  • a mounting substrate may be provided in which the substrate is placed and held and a wiring pattern for electrically connecting the heater thin film and the sensor thin film to an external device is formed on the upper surface.
  • the wiring pattern includes a plurality of power supply paths for each of the power supply terminals that connect a start end in contact with the power supply terminal and an end of the mounting board connected to the external device.
  • the lengths of the individual power supply paths may all be equal.
  • the measuring device includes the heater device and the control device, and the control device includes power control means for supplying predetermined power to the heater thin film, the sensor thin film, and the heater thin film.
  • Sensor control means for measuring the temperature of the substrate, and calculation means for calculating the amount of heat flowing out from the lower surface of the substrate based on the temperature of the sensor thin film and the heater thin film measured by the sensor control means.
  • the calculation means may calculate a temperature distribution on the lower surface of the substrate based on the temperature of the sensor thin film measured by the sensor control means.
  • the calculation means may calculate the amount of heat generated from the heater thin film based on the power supplied from the power control means to the heater thin film.
  • the calculation means may calculate the amount of heat released from the top surface of the heater thin film by subtracting the amount of heat flowing out from the bottom surface of the substrate from the amount of heat generated from the heater thin film.
  • an environmental temperature measurement unit that measures the temperature of the environment around the measuring device is provided, and the calculation unit detects a temperature detected by the environmental temperature measurement unit, a temperature of the heater thin film measured by the sensor control unit, Further, the thermal resistance of the specimen placed on the heater thin film may be calculated based on the amount of heat released from the upper surface of the heater thin film.
  • the apparatus includes a heat radiating portion temperature measuring means for measuring the surface temperature of the heat radiating portion of the specimen placed on the heater thin film, and the calculating means detects the temperature detected by the heat radiating portion degree measuring means, the sensor The thermal resistance of the specimen may be calculated based on the temperature of the heater thin film measured by the control means and the amount of heat released from the upper surface of the heater thin film.
  • the sensor control means includes a temperature monitoring means for monitoring a time change in the temperature of the heater thin film, and the calculation means is configured such that when the time change in the temperature of the heater thin film ceases, The thermal resistance may be calculated.
  • a heat dissipating object whose heat conductivity is known is placed on a heat source, and the heat generation amount and the heat dissipation amount of the heat source are balanced and the temperature of the heat source becomes constant.
  • Preliminary measurement stage for measuring the temperature distribution of the heat dissipating object in a steady state solving the heat conduction equation for the heat dissipating object and the heat source, the heat generation amount of the heat source and the heat dissipation amount are balanced, and the temperature of the heat source is constant
  • the calculation stage for calculating the temperature distribution of the heat dissipating object in the steady state is compared with the temperature distribution obtained in the preliminary measurement stage and the temperature distribution obtained in the calculation stage, so that they match.
  • a boundary condition determining step for determining a boundary condition of the heat conduction equation, and solving the heat conduction equation using the boundary condition determined in the boundary condition determining step by changing the thermal conductivity of the heat dissipating object, Heat source heat generation and heat dissipation Is a steady temperature estimation stage for estimating the temperature of the heat source in a steady state where the temperature of the heat source is constant, and the thermal conductivity of the heat dissipating object and the temperature of the heat source obtained in the steady temperature estimation stage.
  • the heater may be a heater device according to any one of the above-described configurations.
  • the heater device of the present invention can independently control a plurality of heater thin films, a heat source in which heat generation is biased to a specific part can be simulated. Further, since the heater device of the present invention can detect the temperatures of the upper surface and the lower surface of the substrate, the amount of heat flowing out to the lower surface of the substrate can be calculated.
  • the measuring apparatus of the present invention can calculate the net amount of heat transferred from the specimen by subtracting the amount of heat flowing out to the lower surface of the substrate from the amount of heat generated in the heater thin film. Moreover, the thermal resistance of the specimen can be automatically measured.
  • the thermal conductivity of the specimen is known simply by placing the specimen on the heat source and measuring the temperature when the temperature of the heat source reaches a steady state. be able to.
  • FIG. 1 is a side view showing a conceptual configuration of a heater device according to the present invention.
  • the heater device 1 is a device that heats a cooler 2 with a heat pipe, and includes a heater substrate 3 and a mounting substrate 4.
  • the cooler 2 with a heat pipe includes a heat pipe 5 and a heat sink 6, and is brought into contact with an IC chip (not shown), and heat generated from the IC chip is transported to the heat sink 6 by the heat pipe 5 to dissipate heat. It is.
  • the heater substrate 3 is made of ceramic having heat resistance, and a plurality of heater thin films 7 are formed on the upper surface thereof.
  • a through hole (not shown) is provided in the heater substrate 3, and the power supply terminal 8 protrudes from the lower surface of the heater substrate 3 through the through hole.
  • the power supply terminal 8 is a terminal that supplies power to the heater thin film 7, and the heater thin film 7 is supplied with power from the power supply terminal 8 and generates heat. Further, the temperature of the heater thin film 7 can be known by measuring the electrical resistance between the power supply terminals 8.
  • a plurality of sensor thin films 9 are provided on the lower surface of the heater substrate 3. By measuring the electric resistance of the sensor thin film 9, the temperature of the lower surface of the heater substrate 3 can be known.
  • the mounting substrate 4 is a quartz substrate on which the heater substrate 3 is placed and fixed, and the heater substrate 3 is fixed at a predetermined position on the mounting substrate 4 by a fastener (not shown).
  • a power supply wiring thin film 10 and a sensor wiring thin film 11 are formed on the upper surface of the mounting substrate 4.
  • the power supply wiring thin film 10 is a wiring pattern for supplying power to the heater thin film 7 from an external device (not shown)
  • the sensor wiring thin film 11 is a wiring pattern for electrically connecting the external device and the sensor thin film 9.
  • FIG. 2A and 2B are external views of the heater substrate 3, wherein FIG. 2A is a plan view of the upper surface, FIG. 2B is an enlarged view of a portion including the heater thin film 7, and FIG.
  • the heater substrate 3 is a square having a side length of 50 mm, and a square heater surface 12 having a side of 10 mm is formed at the center.
  • the heater surface 12 is a portion that simulates an IC chip to be cooled by the cooler 2 with a heat pipe, and includes five heater thin films 7.
  • FIG. 2B on the heater surface 12, four L-shaped heater thin films 7 are arranged around a square heater thin film 7 arranged in the center thereof.
  • Two heater terminals 8 are provided at the end of the heater thin film 7, and the feeder terminals 8 protrude from the upper surface of the heater substrate 3 to the lower surface of the heater substrate 3 through the through holes 13 penetrating from the upper surface to the lower surface. (See FIG. 2 (c)). Note that the thickness of the heater substrate 3 is about 1 mm.
  • each of the five heater thin films 7 is provided with the power supply terminal 8
  • each of the five heater thin films 7 can be controlled independently. That is, it is possible to energize a part of the five heater thin films 7 and to adjust the amount of heat generated by the specific heater thin film 7, thereby simulating an IC chip in which the heat generating portions are unevenly distributed.
  • the material of the heater thin film 7 may be selected from materials that generate heat when energized and the electric resistance changes with temperature change, but platinum is used in this embodiment.
  • FIG. 3A and 3B are plan views showing the lower surface of the heater substrate 3, wherein FIG. 3A is an overall view and FIG. 3B is an enlarged view of the sensor thin film 9.
  • FIG. 3A is an overall view
  • FIG. 3B is an enlarged view of the sensor thin film 9.
  • nine sensor thin films 9 are arranged in the horizontal direction and the diagonal (diagonal) direction. As will be described later, such an arrangement is selected in order to estimate the temperature distribution of the entire lower surface of the heater substrate 3 based on the temperature data obtained from the nine sensor thin films 9.
  • the sensor thin film 9 is arranged at a position where it does not interfere (overlap) with the power supply terminal 8 of the heater thin film 7.
  • the sensor thin film 9 is a square having a side length of about 2.4 mm, and has a pattern as shown in FIG. Further, sensor terminals 14 are provided at both ends of the pattern of the sensor thin film 9, and the temperature of the sensor thin film 9 can be known by measuring the electrical resistance between the sensor terminals 14.
  • an appropriate material may be selected from substances whose electric resistance changes with a change in temperature.
  • platinum is used as the material of the sensor thin film 9.
  • FIG. 4A and 4B are plan views showing the top surface of the mounting substrate 4, where FIG. 4A shows the mounting substrate 4 alone, and FIG. 4B shows a state where the heater substrate 3 is mounted on the mounting substrate 4.
  • the mounting substrate 4 is a square quartz substrate having a side length of 150 mm, and has 10 power supply wiring thin films 10 and 18 sensor wiring thin films 11 formed on the upper surface. Yes.
  • the power supply wiring thin film 10 is a thin film of a conductor that connects the electrode pad 15 disposed at the edge of the mounting substrate 4 and the connection pad 16 disposed at the center of the mounting substrate 4.
  • the electrode pad 15 is a connection part that is electrically connected to an external device (not shown), and the connection pad 16 is a connection part that contacts the power supply terminal 8 protruding from the lower surface of the heater substrate 3. That is, the power supply wiring thin film 10 functions as a wiring for electrically connecting the external device and the heater thin film 7.
  • the path is bent according to the relative positional relationship between the electrode pad 15 and the connection pad 16.
  • the length of the path from the electrode pad 15 to the connection pad 16 is made equal for all the power supply wiring thin films 10. This is to eliminate measurement errors in the amount of heat generation and temperature caused by the difference in wiring resistance of the power supply wiring thin film 10.
  • the sensor wiring thin film 11 is a conductive thin film that connects the electrode pad 17 disposed at the edge of the mounting substrate 4 and the connection pad 18 disposed at the center of the mounting substrate 4.
  • the electrode pad 17 is a connection portion that is electrically connected to an external device (not shown)
  • the connection pad 18 is a connection portion that contacts the sensor terminal 14 of the sensor thin film 9 disposed on the lower surface of the heater substrate 3. That is, the sensor wiring thin film 11 functions as a wiring for electrically connecting the external device and the sensor thin film 7.
  • the sensor wiring thin film 11 is also bent so that the length of the path from the electrode pad 17 to the connection pad 18 is the same for all the sensor wiring thin films 11. It is trying to become.
  • FIG. 5 is a schematic diagram for explaining the principle of measuring the total thermal resistance RT of the cooler 2 with a heat pipe using the heater device 1.
  • W P is a quantity of heat generated by the heater film 7 in a unit time
  • W F is the amount of heat with heat pipe unit time cooler 2 is discharged to the outside environment by absorbing from the heater film 7, i.e. a heat pipe This is the amount of heat transport per unit time of the attached cooler 2.
  • W B is the quantity of heat discharged to the external environment through the heater substrate 3 from the back surface of the heater film 7 in a unit time.
  • T 1 is the temperature of the heater thin film 7
  • T 2 is the temperature of the external environment
  • T 3 is the temperature of the lower surface of the heater substrate 3.
  • the total thermal resistance RT of the cooler 2 with a heat pipe is given by the following equation.
  • T 1 is the temperature of the heater thin film 7, it can be calculated from the electric resistance value of the heater thin film 7. Further, since T 2 is the temperature of the external environment, it can be measured by various known temperature measuring means. Therefore, if it is possible to know the W F, it can be calculated the total thermal resistance R T.
  • W P is because it is the amount of heat generated by the heater film 7 in a unit time, it can be determined by multiplying the thermoelectric conversion efficiency on the power consumption of the heater film 7.
  • W B is calculated by the following procedure.
  • t is smaller than A, so that the heat flowing from the back surface of the heater thin film 7 to the lower surface of the heater substrate 3 is applied to the heater substrate 3.
  • k is the thermal conductivity of the heater substrate 3.
  • T 1 can be calculated from the value of the electrical resistance of the heater thin film 7.
  • T 3 cannot use the measured value of the sensor thin film 9 as it is. This is because the sensor thin film 9 is not directly below the heater thin film 7 (in order to avoid interference between the power supply terminal 8 of the heater thin film 7 and the sensor thin film 9).
  • the temperature distribution of the lower surface of the heater substrate 3 is estimated based on the measured values of the nine sensor thin films 9 arranged on the lower surface of the heater substrate 3, and the temperature of the lower surface of the heater substrate 3 immediately below the heater thin film 7, that is, determine the T 3.
  • the temperature at a point between the adjacent sensor thin films 9 changes linearly with respect to the distance from one sensor thin film 9. Good.
  • the sensor thin film 9 is not evenly distributed with respect to the heater substrate 3, the accuracy in estimating the temperature at a part away from the sensor thin film 9 becomes a problem. Therefore, it can be considered that the temperature of the lower surface of the heater substrate 3 is distributed symmetrically with respect to the center of the heater substrate 3. Accordingly, as shown in FIG. 6, it is possible to create an isotherm diagram on the assumption that the temperatures of the parts A to D are equal to the measured values by the sensor thin film 9 disposed in the parts A ′ to D ′.
  • FIG. 7 is a configuration diagram showing a conceptual configuration of the measuring device 21.
  • the measuring device 21 includes a heater device 1, a control device 22, a power control device 23, a sensor control device 24, and temperature sensors 25 and 26.
  • the control device 22 is a computer that dominates all of the measurement device 21, and the power control device 23 and the sensor control device 24 function in response to a command from the control device 22.
  • the power control device 23 is a device that supplies predetermined power to the heater thin film 7 of the heater device 1 in accordance with a command from the control device 22.
  • the sensor control device 24 is a device that calculates the temperature of the sensor thin film 9 by measuring the electrical resistance between the sensor terminals 14 of the sensor thin film 9 in accordance with a command from the control device 22. Further, the sensor control device 24 calculates the temperature of the heater thin film 7 by measuring the electrical resistance between the power supply terminals 8 of the heater thin film 7 in accordance with a command from the control device 22.
  • the temperature sensor 25 is a sensor that detects the temperature of the external environment (the space where the cooler 2 with a heat pipe dissipates heat). Moreover, the temperature sensor 26 is a sensor which detects the surface temperature of the thermal radiation part (heat sink 6) of the cooler 2 with a heat pipe.
  • Control program A control program is installed in the control device 22, and the control device 22 operates the power control device 23 and the like according to the control program to perform automatic measurement.
  • FIG. 8 is a flowchart illustrating an example of a control program executed by the control device 22. Hereinafter, this control program will be described with reference to the step numbers attached to the figure.
  • Step 1 The power control device 23 supplies predetermined power to the heater thin film 7 to start heating. As described above, for example, it is also possible to simulate an IC chip in which heat generation portions are unevenly distributed by supplying power to a part of the five heater thin films 7.
  • Step 2 After starting heating, the sensor control unit 24 monitors the change in temperature T 1 of the heater film 7 by measuring the electrical resistance between the power supply terminal 8 of the heater film 7, until the change disappears (steady state Wait until it reaches). If there is no change, go to Step 3.
  • Step 3 The sensor control device 24 calculates the temperature of the sensor thin film 9, estimates the temperature distribution of the lower surface of the heater substrate 3 based on the result, and lowers the temperature T 3 of the heater substrate 3 immediately below the heater thin film 7. Ask for. (Step 4) The amount of heat W B flowing out from the lower surface of the heater substrate 3 per unit time is obtained based on T 1 and T 3 .
  • Step 5 The power unit 23 based on the power supplied to the heater film 7, determine the amount of heat W P generated by the heater film 7 in a unit time. (Step 6) on the basis of W B and W P, determining the amount of heat W F of condenser 2 with heat pipe unit time transport (heat radiation).
  • Step 7 based on the temperature T 2 and T 1, W F of the external environment the temperature sensor 25 detects, determine the total thermal R T resistor with heat pipe cooler 2.
  • step 7 in place of T 2, Using the surface temperature T '2 of the heat radiating portion of the heat pipe condenser with 2 (sink 6) the temperature sensor 26 detects, of the cooler 2 with heat pipes work
  • the thermal resistance Rw can be calculated.
  • the inventors have considered estimating the effective heat conductivity of the heat transfer device using the measuring device 21 and evaluating the heat transfer performance of the heat transfer device alone using the effective heat conductivity.
  • the heat transfer device is placed on the heat source, and the effective heat conduction of the heat transfer device is calculated from the temperature of the heat source when the heat source heat output and the heat transfer amount by the heat transfer device are balanced and the temperature of the heat source becomes steady.
  • the method for estimating the rate and that the effective thermal conductivity is excellent as an evaluation index using the heat transfer performance of the cooler 2 with a heat pipe alone.
  • a heat dissipating object for example, a copper plate
  • the temperature distribution of the heat dissipating object when the temperature of the heat source becomes steady for example, using an infrared thermography. Measure).
  • (2) Establish a three-dimensional heat conduction equation for the heat dissipating object and the heat source and solve it using a finite volume method.
  • (3) The measured value of (1) and the calculated value of (2) are compared, and the boundary condition of the three-dimensional heat conduction equation (the thickness of the thermogrease between the heat dissipating object and the heat source) is the same.
  • the heat transfer coefficient of the upper surface of the heat dissipating object is determined.
  • the inventors determine the boundary condition of the heat conduction equation for the heat source 1 and the heat source 2 by the method described above, calculate the relationship between the heat conductivity and the steady temperature, and calculate the heat conductivity of the heat dissipating object. Taking the horizontal axis and plotting the steady temperature of the heat source 1 and the heat source 2 on the vertical axis, a result as shown in FIG. 9 was obtained.
  • the curve shown in FIG. 9 is a curve obtained by substituting the value shown in Equation 8 or Equation 9 into Equation 7. [Estimation of effective thermal conductivity of heat transfer equipment] Now, from Equation 7, the following equation is obtained.
  • the effective thermal conductivity X is an index of heat transfer performance inherent to the cooler 2 with a heat pipe that is not affected by the size and dimensions of the heat source.
  • the present invention is useful as an apparatus and method used for measuring heat transfer characteristics of various heat transfer devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

A heater device (1) comprises a heater substrate (3), heater thin-films (7) formed on the upper surface of the heater substrate (3) and power supply terminals (8) for supplying electric power to respective heater thin-films (7) independently from each other, and generates heat by electrifying the heater substrate (3) and heater thin-films (7). Sensor thin-films (9) are formed on the lower surface of the heater substrate (3). The heater device further includes a mounting substrate (4) on which the heater substrate (3) is placed and held, and on the upper surface of which a power supply wiring thin-film (10) for electrically connecting the heater thin-films (7) and an external device to each other and sensor wiring thin-films (11) are provided.

Description

ヒータ装置及び測定装置並びに熱伝導率推定方法HEATER DEVICE, MEASUREMENT DEVICE, AND HEAT CONDUCTIVITY ESTIMATION METHOD
 本発明は、伝熱機器の性能評価に使用するヒータ装置及び測定装置に関する。 The present invention relates to a heater device and a measuring device used for performance evaluation of heat transfer equipment.
 ヒートパイプは、作動液を封入した容器の一端で吸熱して、前記作動液を蒸発させ、前記容器の他端で前記作動液を凝結させて、放熱する装置であり、電子機器の冷却に利用されている。例えば、特許文献1および2では、ICチップのような電子部品とヒートパイプを熱的に接続し、電子部品で発生する熱をヒートパイプでヒートシンクに輸送して放熱するために、ヒートパイプとヒートシンクを組み合わせた冷却器(本明細書では、これをヒートパイプ付き冷却器と呼ぶことにする)が提案されている。 A heat pipe is a device that absorbs heat at one end of a container filled with hydraulic fluid, evaporates the hydraulic fluid, condenses the hydraulic fluid at the other end of the container, and dissipates heat, and is used for cooling electronic equipment. Has been. For example, in Patent Documents 1 and 2, in order to thermally connect an electronic component such as an IC chip and a heat pipe, and transport the heat generated in the electronic component to the heat sink by the heat pipe, the heat pipe and the heat sink Has been proposed (in this specification, this will be referred to as a cooler with a heat pipe).
 さて、ヒートパイプ付き冷却器の性能は下式で表される総熱抵抗Rで評価される。 Now, the performance of the cooler with a heat pipe is evaluated by the total thermal resistance RT expressed by the following equation.
    R=(T-T)/W    (式1) R T = (T 1 −T 2 ) / W (Formula 1)
 ただし、Wはヒートパイプの単位時間あたりの熱輸送量、Tはヒートパイプ付き冷却器の吸熱部の温度(=冷却対象物の表面温度)Tはヒートパイプ付き冷却器の周囲環境の温度である。 Where W is the amount of heat transported per unit time of the heat pipe, T 1 is the temperature of the heat absorbing part of the cooler with heat pipe (= surface temperature of the object to be cooled) T 2 is the temperature of the ambient environment of the cooler with heat pipe It is.
 あるいは、総熱抵抗Rに代えて、ワーク熱抵抗Rを使用する場合もある。ワーク熱抵抗Rは下式で表される。 Alternatively, the workpiece thermal resistance Rw may be used in place of the total thermal resistance RT . The work thermal resistance Rw is expressed by the following equation.
    R=(T-T )/W    (式2) R w = (T 1 −T 2 ) / W (Formula 2)
 ただし、T はヒートパイプ付き冷却器の放熱部の温度である。 However, T '2 is the temperature of the heat radiating portion with a heat pipe cooler.
 また、ヒートパイプ付き冷却器のメーカでは、次のような方法で、ヒートパイプ付き冷却器の総熱抵抗Rを一品ずつ計測して、所定の基準を満足していることを確認している。 In addition, a manufacturer of a cooler with a heat pipe measures the total thermal resistance RT of the cooler with a heat pipe one by one by the following method, and confirms that a predetermined standard is satisfied. .
(1)ヒートパイプ付き冷却器の吸熱部の温度(=冷却対象物の表面温度)Tを測定しながら、電熱ヒータで加熱する。
(2)時間の経過にしたがって、Tはゆっくり上昇するが、やがて放熱量と発熱量がバランスして、Tは一定(定常状態)になる。
(3)Tが一定になった時の、周囲環境の温度T、及び電熱ヒータの消費電力を測定して、ヒートパイプ付き冷却器の総熱抵抗Rを算出する(定常状態になったときのヒートパイプ付き冷却器の熱輸送量Wは、電熱ヒータの発熱量に等しく、電熱ヒータの発熱量は消費電力から算出できる)。
(1) While measuring the temperature (= surface temperature of the object to be cooled) T 1 of the heat absorption part of the cooler with a heat pipe, heating is performed with an electric heater.
(2) with the lapse of time, T 1 is increased slowly, over time the amount of heat generated by the balance between the heat radiation amount, T 1 is constant (steady state).
(3) The temperature T 2 of the surrounding environment when T 1 becomes constant and the power consumption of the electric heater are measured, and the total thermal resistance RT of the cooler with the heat pipe is calculated (in a steady state) The heat transport amount W of the cooler with heat pipe is equal to the heat generation amount of the electric heater, and the heat generation amount of the electric heater can be calculated from the power consumption).
特開2007-208262号公報JP 2007-208262 A 特開2005-136117号公報JP 2005-136117 A
 しかしながら、上記の方法による総熱抵抗Rの測定には次のような問題があった。 However, the measurement of the total thermal resistance RT by the above method has the following problems.
 電熱ヒータの発熱量をヒートパイプ付き冷却器の熱輸送量(=放熱量)に等しくするためには、電熱ヒータの熱がヒートパイプ付き冷却器以外から逃げないように断熱する必要がある。そのために、電熱ヒータの寸法や重量が大きくなるという問題があった。 In order to make the heat generation amount of the electric heater equal to the heat transport amount (= heat dissipation amount) of the cooler with the heat pipe, it is necessary to insulate so that the heat of the electric heater does not escape from other than the cooler with the heat pipe. For this reason, there is a problem that the size and weight of the electric heater are increased.
 また、電熱ヒータを完全に断熱することは困難であり、外部に逃げ出す熱量を測定・補正する手段がないので、正確な測定ができないという問題があった。 Also, it is difficult to completely insulate the electric heater, and there is no means for measuring and correcting the amount of heat that escapes to the outside, so there is a problem that accurate measurement cannot be performed.
 また、ICチップなどでは、発熱部位が偏在する場合がある。つまり、ICチップの特定の部位が高温になる場合である。このような現象を再現して、ヒートパイプ付き冷却器の性能評価をすることが求められているが、このような場合には、専用の電熱ヒータを用意する必要があった。 Also, in an IC chip or the like, the heat generating part may be unevenly distributed. In other words, this is a case where a specific part of the IC chip becomes hot. It is required to reproduce such a phenomenon and evaluate the performance of the cooler with a heat pipe. In such a case, it is necessary to prepare a dedicated electric heater.
 本発明はこれらの課題を解決するためになされたものであり、ヒートパイプ付き冷却器の熱抵抗の測定に適したヒータ装置を提供するものである。また、ヒートパイプ付き冷却器の熱抵抗の測定に適した測定装置を提供するものである。また、ヒートパイプ付き冷却器の有効熱伝導率を簡易に推定する方法を提供するものである。 The present invention has been made to solve these problems, and provides a heater device suitable for measuring the thermal resistance of a cooler with a heat pipe. Moreover, the measuring apparatus suitable for the measurement of the thermal resistance of the cooler with a heat pipe is provided. Moreover, the method of estimating the effective thermal conductivity of the cooler with a heat pipe easily is provided.
 上記目的を達成するため、本発明に係るヒータ装置は、基板と、前記基板の上面に形成されたヒータ薄膜に通電して発熱するヒータ装置において、複数のヒータ薄膜と前記複数のヒータ薄膜のそれぞれに独立して給電する給電端子を有することを特徴とする。 In order to achieve the above object, a heater device according to the present invention includes a substrate and a heater device that generates heat by energizing a heater thin film formed on an upper surface of the substrate, each of a plurality of heater thin films and the plurality of heater thin films. And a power supply terminal for supplying power independently.
 また、前記給電端子を前記基板の下面に形成するとともに、前記給電端子と前記ヒータ薄膜を電気的に連絡するスルーホールを備えるようにしてもよい。 Further, the power supply terminal may be formed on the lower surface of the substrate, and a through hole may be provided to electrically connect the power supply terminal and the heater thin film.
 また、前記基板の下面に複数のセンサ薄膜を形成してもよい。 Moreover, a plurality of sensor thin films may be formed on the lower surface of the substrate.
 また、前記基板を載置保持するとともに、前記ヒータ薄膜及び前記センサ薄膜と外部機器を電気的に接続する配線パターンを上面に形成した実装基板を備えてもよい。 Further, a mounting substrate may be provided in which the substrate is placed and held and a wiring pattern for electrically connecting the heater thin film and the sensor thin film to an external device is formed on the upper surface.
 また、前記配線パターンは、前記給電端子に接触する始端と前記実装基板の縁部にあって前記外部機器に接続される終端を結ぶ給電路を、前記給電端子毎に複数個備えるともに、前記複数個の給電路の長さが全て等しくなるようにしてもよい。 In addition, the wiring pattern includes a plurality of power supply paths for each of the power supply terminals that connect a start end in contact with the power supply terminal and an end of the mounting board connected to the external device. The lengths of the individual power supply paths may all be equal.
 また、本発明に係る測定装置は、前記ヒータ装置と前記制御装置から構成されるとともに、前記制御装置は、前記ヒータ薄膜に所定の電力を供給する電力制御手段と、前記センサ薄膜と前記ヒータ薄膜の温度を計測するセンサ制御手段と、前記センサ制御手段が計測する前記センサ薄膜と前記ヒータ薄膜の温度に基づいて、前記基板の下面から流出する流出熱量を算出する演算手段を備えることを特徴とする。 The measuring device according to the present invention includes the heater device and the control device, and the control device includes power control means for supplying predetermined power to the heater thin film, the sensor thin film, and the heater thin film. Sensor control means for measuring the temperature of the substrate, and calculation means for calculating the amount of heat flowing out from the lower surface of the substrate based on the temperature of the sensor thin film and the heater thin film measured by the sensor control means. To do.
 また、前記演算手段は、前記センサ制御手段が計測する前記センサ薄膜の温度に基づいて、前記基板の下面の温度分布を算出してもよい。 Further, the calculation means may calculate a temperature distribution on the lower surface of the substrate based on the temperature of the sensor thin film measured by the sensor control means.
 また、前記演算手段は、前記電力制御手段が前記ヒータ薄膜に供給する電力に基づいて、前記ヒータ薄膜から発生する発生熱量を算出してもよい。 Further, the calculation means may calculate the amount of heat generated from the heater thin film based on the power supplied from the power control means to the heater thin film.
 また、前記演算手段は、前記ヒータ薄膜から発生する発生熱量から前記基板の下面から流出する流出熱量を減じて、前記ヒータ薄膜の上面から放出される放出熱量を算出してもよい。 The calculation means may calculate the amount of heat released from the top surface of the heater thin film by subtracting the amount of heat flowing out from the bottom surface of the substrate from the amount of heat generated from the heater thin film.
 また、前記測定装置の周囲の環境の温度を測定する環境温度測定手段を備えるとともに、前記演算手段は、前記環境温度測定手段が検出する温度、前記センサ制御手段が計測する前記ヒータ薄膜の温度、及び前記ヒータ薄膜の上面から放出される放出熱量に基づいて、前記ヒータ薄膜の上に載置される供試体の熱抵抗を算出してもよい。 In addition, an environmental temperature measurement unit that measures the temperature of the environment around the measuring device is provided, and the calculation unit detects a temperature detected by the environmental temperature measurement unit, a temperature of the heater thin film measured by the sensor control unit, Further, the thermal resistance of the specimen placed on the heater thin film may be calculated based on the amount of heat released from the upper surface of the heater thin film.
 また、前記ヒータ薄膜の上に載置される供試体の放熱部の表面温度を測定する放熱部温度測定手段を備えるとともに、前記演算手段は、前記放熱部度測定手段が検出する温度、前記センサ制御手段が計測する前記ヒータ薄膜の温度、及び前記ヒータ薄膜の上面から放出される放出熱量に基づいて、前記供試体の熱抵抗を算出してもよい。 Further, the apparatus includes a heat radiating portion temperature measuring means for measuring the surface temperature of the heat radiating portion of the specimen placed on the heater thin film, and the calculating means detects the temperature detected by the heat radiating portion degree measuring means, the sensor The thermal resistance of the specimen may be calculated based on the temperature of the heater thin film measured by the control means and the amount of heat released from the upper surface of the heater thin film.
 また、前記センサ制御手段が計測する前記ヒータ薄膜の温度の時間変化を監視する温度監視手段を備えるとともに、前記演算手段は、前記ヒータ薄膜の温度の時間変化がなくなったときに、前記供試体の熱抵抗を算出するようにしてもよい。 The sensor control means includes a temperature monitoring means for monitoring a time change in the temperature of the heater thin film, and the calculation means is configured such that when the time change in the temperature of the heater thin film ceases, The thermal resistance may be calculated.
 本発明の熱伝導率推定方法は、熱伝導率が分かっている放熱物体を熱源の上に載置して、前記熱源の発熱量と放熱量が均衡して前記熱源の温度が一定になった定常状態における前記放熱物体の温度分布を計測する予備計測段階と、前記放熱物体と前記熱源についての熱伝導方程式を解いて、前記熱源の発熱量と放熱量が均衡して前記熱源の温度が一定になった定常状態における前記放熱物体の温度分布を計算する計算段階と、前記予備計測段階で得られた温度分布と前記計算段階で得られた温度分布とを比較して、両者が一致するような前記熱伝導方程式の境界条件を決定する境界条件決定段階と、前記境界条件決定段階で決定された境界条件を用いた前記熱伝導方程式を前記放熱物体の熱伝導率を変えて解いて、前記熱源の発熱量と放熱量が均衡して前記熱源の温度が一定になった定常状態における前記熱源の温度を推定する定常温度推定段階と、前記定常温度推定段階で得られた前記放熱物体の熱伝導率と前記熱源の温度の関係に基づいて両者の関係を示す近似式を決定する近似式決定段階と、供試体を前記熱源の上に載置して、前記熱源の発熱量と放熱量が均衡して前記熱源の温度が一定になったときの前記熱源の温度を計測する供試体計測段階と、前記供試体計測段階で得られた前記熱源の温度と前記近似式決定段階で得られた近似式に基づいて、前記供試体の熱伝導率を求める熱伝導率推定段階を有することを特徴とする。 According to the thermal conductivity estimation method of the present invention, a heat dissipating object whose heat conductivity is known is placed on a heat source, and the heat generation amount and the heat dissipation amount of the heat source are balanced and the temperature of the heat source becomes constant. Preliminary measurement stage for measuring the temperature distribution of the heat dissipating object in a steady state, solving the heat conduction equation for the heat dissipating object and the heat source, the heat generation amount of the heat source and the heat dissipation amount are balanced, and the temperature of the heat source is constant The calculation stage for calculating the temperature distribution of the heat dissipating object in the steady state is compared with the temperature distribution obtained in the preliminary measurement stage and the temperature distribution obtained in the calculation stage, so that they match. A boundary condition determining step for determining a boundary condition of the heat conduction equation, and solving the heat conduction equation using the boundary condition determined in the boundary condition determining step by changing the thermal conductivity of the heat dissipating object, Heat source heat generation and heat dissipation Is a steady temperature estimation stage for estimating the temperature of the heat source in a steady state where the temperature of the heat source is constant, and the thermal conductivity of the heat dissipating object and the temperature of the heat source obtained in the steady temperature estimation stage. An approximate expression determining step for determining an approximate expression indicating the relationship between the two based on the relationship of the above, and placing the specimen on the heat source, the heat generation amount and the heat radiation amount of the heat source are balanced and the temperature of the heat source Based on the specimen measurement stage that measures the temperature of the heat source when the temperature becomes constant, the temperature of the heat source obtained in the specimen measurement stage and the approximate expression obtained in the approximate expression determination stage, It has the thermal conductivity estimation stage which calculates | requires the thermal conductivity of a specimen.
 前記熱源は前述のいずれかの構成に係るヒータ装置であってもよい。 The heater may be a heater device according to any one of the above-described configurations.
 本発明のヒータ装置は複数のヒータ薄膜を独立制御できるので、発熱が特定の部位に偏る熱源をシミュレートすることができる。また、本発明のヒータ装置は基板の上面及び下面の温度を検出できるので、基板の下面に流出する熱量を算出することができる。 Since the heater device of the present invention can independently control a plurality of heater thin films, a heat source in which heat generation is biased to a specific part can be simulated. Further, since the heater device of the present invention can detect the temperatures of the upper surface and the lower surface of the substrate, the amount of heat flowing out to the lower surface of the substrate can be calculated.
 本発明の測定装置は、ヒータ薄膜で発生する熱量から、基板の下面に流出する熱量を減じて、供試体が伝熱する正味の熱量を算出することができる。また、供試体の熱抵抗を自動計測することができる。 The measuring apparatus of the present invention can calculate the net amount of heat transferred from the specimen by subtracting the amount of heat flowing out to the lower surface of the substrate from the amount of heat generated in the heater thin film. Moreover, the thermal resistance of the specimen can be automatically measured.
 本発明の熱伝導率推定方法によれば、供試体を熱源の上に載置して、熱源の温度が定常状態になったときの温度を計測するだけで、供試体の熱伝導率を知ることができる。 According to the thermal conductivity estimation method of the present invention, the thermal conductivity of the specimen is known simply by placing the specimen on the heat source and measuring the temperature when the temperature of the heat source reaches a steady state. be able to.
本発明に係るヒータ装置の概念的な構成を示す側面図である。It is a side view which shows the notional structure of the heater apparatus which concerns on this invention. 前記ヒータ装置のヒータ基板の外形図であり、(a)は上面の平面図、(b)はヒータ薄膜を備えた部位の拡大図、(c)は部分断面図である。It is an external view of the heater board | substrate of the said heater apparatus, (a) is a top view of an upper surface, (b) is an enlarged view of the site | part provided with the heater thin film, (c) is a fragmentary sectional view. 前記ヒータ装置のヒータ基板の下面を示す平面図であり、(a)は全体図、(b)はセンサ薄膜の拡大図である。It is a top view which shows the lower surface of the heater board | substrate of the said heater apparatus, (a) is a general view, (b) is an enlarged view of a sensor thin film. 前記ヒータ装置の実装基板の上面を示す平面図であり、(a)は単体図、(b)はヒータ基板を搭載置した状態を示す図である。It is a top view which shows the upper surface of the mounting substrate of the said heater apparatus, (a) is a single figure, (b) is a figure which shows the state which mounted the heater board | substrate. ヒータ装置を使って、ヒートパイプ付き冷却器の総熱抵抗を測定する原理を説明する模式図である。It is a schematic diagram explaining the principle which measures the total thermal resistance of the cooler with a heat pipe using a heater apparatus. ヒータ基板の下面の等温度線図の例である。It is an example of the isothermal diagram of the lower surface of a heater board | substrate. 本発明に係る計測装置の概念的な構成を示す構成図である。It is a block diagram which shows the notional structure of the measuring device which concerns on this invention. 前記検査装置で実行されるプログラムの例を示すフローチャートである。It is a flowchart which shows the example of the program performed with the said test | inspection apparatus. 放熱物体の熱伝導率と熱源の定常温度の関係を示す図である。It is a figure which shows the relationship between the thermal conductivity of a thermal radiation object, and the steady temperature of a heat source.
符号の説明Explanation of symbols
 1 ヒータ装置
 2 ヒートパイプ付き冷却器
 3 ヒータ基板
 4 実装基板
 5 ヒートパイプ
 6 ヒートシンク
 7 ヒータ薄膜
 8 給電端子
 9 センサ薄膜
10 給電用配線薄膜
11 センサ用配線薄膜
12 ヒータ面
13 スルーホール
14 センサ端子
15 電極パッド
16 接続パッド
17 電極パッド
18 接続パッド
21 計測装置
22 制御装置
23 電力制御装置
24 センサ制御装置
25 温度センサ
26 温度センサ
DESCRIPTION OF SYMBOLS 1 Heater apparatus 2 Cooler with heat pipe 3 Heater board 4 Mounting board 5 Heat pipe 6 Heat sink 7 Heater thin film 8 Feeding terminal 9 Sensor thin film 10 Feeding wiring thin film 11 Sensor wiring thin film 12 Heater surface 13 Through hole 14 Sensor terminal 15 Electrode Pad 16 Connection pad 17 Electrode pad 18 Connection pad 21 Measuring device 22 Control device 23 Power control device 24 Sensor control device 25 Temperature sensor 26 Temperature sensor
 以下、本発明を実施するための最良の形態について、説明する。 Hereinafter, the best mode for carrying out the present invention will be described.
[ヒータ装置の全体構成]
 図1は、本発明に係るヒータ装置の概念的な構成を示す側面図である。図1に示すように、ヒータ装置1は、ヒートパイプ付き冷却器2を加熱する装置であり、ヒータ基板3と実装基板4から構成される。
[Overall configuration of heater device]
FIG. 1 is a side view showing a conceptual configuration of a heater device according to the present invention. As shown in FIG. 1, the heater device 1 is a device that heats a cooler 2 with a heat pipe, and includes a heater substrate 3 and a mounting substrate 4.
 なお、ヒートパイプ付き冷却器2は、ヒートパイプ5とヒートシンク6を備え、図示しないICチップに接触させて、ICチップから発生する熱をヒートパイプ5でヒートシンク6に輸送して、放熱する冷却器である。 The cooler 2 with a heat pipe includes a heat pipe 5 and a heat sink 6, and is brought into contact with an IC chip (not shown), and heat generated from the IC chip is transported to the heat sink 6 by the heat pipe 5 to dissipate heat. It is.
 ヒータ基板3は耐熱性を備えたセラミックで構成され、その上面に複数のヒータ薄膜7を形成している。また、ヒータ基板3には図示しないスルーホールが設けられ、給電端子8が前記スルーホールを貫通してヒータ基板3の下面に突出している。給電端子8はヒータ薄膜7に電力を供給する端子であり、ヒータ薄膜7は給電端子8から給電されて発熱する。また、給電端子8間の電気抵抗を測定すればヒータ薄膜7の温度を知ることができる。 The heater substrate 3 is made of ceramic having heat resistance, and a plurality of heater thin films 7 are formed on the upper surface thereof. In addition, a through hole (not shown) is provided in the heater substrate 3, and the power supply terminal 8 protrudes from the lower surface of the heater substrate 3 through the through hole. The power supply terminal 8 is a terminal that supplies power to the heater thin film 7, and the heater thin film 7 is supplied with power from the power supply terminal 8 and generates heat. Further, the temperature of the heater thin film 7 can be known by measuring the electrical resistance between the power supply terminals 8.
 また、ヒータ基板3の下面には、複数のセンサ薄膜9を備えている。センサ薄膜9の電気抵抗を測定すればヒータ基板3の下面の温度を知ることができる。 Further, a plurality of sensor thin films 9 are provided on the lower surface of the heater substrate 3. By measuring the electric resistance of the sensor thin film 9, the temperature of the lower surface of the heater substrate 3 can be known.
 実装基板4はヒータ基板3を載置・固定する石英基板であり、ヒータ基板3は図示しないファスナで実装基板4上の所定の位置に固定される。また、実装基板4の上面には、給電用配線薄膜10及びセンサ用配線薄膜11が形成される。給電用配線薄膜10は図示しない外部機器からヒータ薄膜7に給電するための配線パターンであり、センサ用配線薄膜11は外部機器とセンサ薄膜9を電気的に接続する配線パターンである。 The mounting substrate 4 is a quartz substrate on which the heater substrate 3 is placed and fixed, and the heater substrate 3 is fixed at a predetermined position on the mounting substrate 4 by a fastener (not shown). In addition, a power supply wiring thin film 10 and a sensor wiring thin film 11 are formed on the upper surface of the mounting substrate 4. The power supply wiring thin film 10 is a wiring pattern for supplying power to the heater thin film 7 from an external device (not shown), and the sensor wiring thin film 11 is a wiring pattern for electrically connecting the external device and the sensor thin film 9.
[ヒータ基板の上面]
 図2は、ヒータ基板3の外形図であり、(a)は上面の平面図、(b)はヒータ薄膜7を備えた部位の拡大図、(c)は部分断面図である。
[Upper surface of heater substrate]
2A and 2B are external views of the heater substrate 3, wherein FIG. 2A is a plan view of the upper surface, FIG. 2B is an enlarged view of a portion including the heater thin film 7, and FIG.
 図2(a)に示すように、ヒータ基板3は一辺の長さが50mmの正方形をなし、中央に一辺10mmの正方形のヒータ面12を形成している。ヒータ面12はヒートパイプ付き冷却器2の冷却対象のICチップを模擬する部分であり、5面のヒータ薄膜7を備えている。 As shown in FIG. 2A, the heater substrate 3 is a square having a side length of 50 mm, and a square heater surface 12 having a side of 10 mm is formed at the center. The heater surface 12 is a portion that simulates an IC chip to be cooled by the cooler 2 with a heat pipe, and includes five heater thin films 7.
 また、図2(b)に示すように、ヒータ面12には、その中央に配置された正方形のヒータ薄膜7の周囲に、L字形のヒータ薄膜7が4面配置されている。また、ヒータ薄膜7の端部には給電端子8が2個ずつ備えられ、給電端子8はヒータ基板3の上面から下面に貫通するスルーホール13を通って、ヒータ基板3の下面に突出している(図2(c)参照)。なお、ヒータ基板3の厚さは約1mm程度である。 Further, as shown in FIG. 2B, on the heater surface 12, four L-shaped heater thin films 7 are arranged around a square heater thin film 7 arranged in the center thereof. Two heater terminals 8 are provided at the end of the heater thin film 7, and the feeder terminals 8 protrude from the upper surface of the heater substrate 3 to the lower surface of the heater substrate 3 through the through holes 13 penetrating from the upper surface to the lower surface. (See FIG. 2 (c)). Note that the thickness of the heater substrate 3 is about 1 mm.
 このように、5面のヒータ薄膜7のそれぞれに給電端子8を備えているので、5面のヒータ薄膜7をそれぞれ独立して制御することができる。つまり、5面のヒータ薄膜7の一部に通電することや、特定のヒータ薄膜7の発熱量を加減することができるので、発熱部位が偏在するICチップを模擬することができる。 Thus, since each of the five heater thin films 7 is provided with the power supply terminal 8, each of the five heater thin films 7 can be controlled independently. That is, it is possible to energize a part of the five heater thin films 7 and to adjust the amount of heat generated by the specific heater thin film 7, thereby simulating an IC chip in which the heat generating portions are unevenly distributed.
 なお、ヒータ薄膜7の材料は通電によって発熱し、温度変化に伴って電気抵抗が変化する物質の中から適当なものを選択すればよいが、本実施形態では白金を使用している。 The material of the heater thin film 7 may be selected from materials that generate heat when energized and the electric resistance changes with temperature change, but platinum is used in this embodiment.
[ヒータ基板の下面]
 図3は、ヒータ基板3の下面を示す平面図であり、(a)は全体図、(b)はセンサ薄膜9の拡大図である。
[Lower surface of heater substrate]
3A and 3B are plan views showing the lower surface of the heater substrate 3, wherein FIG. 3A is an overall view and FIG. 3B is an enlarged view of the sensor thin film 9. FIG.
 図3(a)に示すように、ヒータ基板3の下面には、9面のセンサ薄膜9を横方向および斜め(対角線)方向に配列している。後述するように、9面のセンサ薄膜9から得られる温度データに基づいてヒータ基板3の下面全体の温度分布を推定するために、このような配列を選んでいる。また、センサ薄膜9の配置はヒータ薄膜7の給電端子8と干渉しない(重ならない)位置を選んでいる。 As shown in FIG. 3A, on the lower surface of the heater substrate 3, nine sensor thin films 9 are arranged in the horizontal direction and the diagonal (diagonal) direction. As will be described later, such an arrangement is selected in order to estimate the temperature distribution of the entire lower surface of the heater substrate 3 based on the temperature data obtained from the nine sensor thin films 9. The sensor thin film 9 is arranged at a position where it does not interfere (overlap) with the power supply terminal 8 of the heater thin film 7.
 また、センサ薄膜9は一辺の長さが約2.4mmの正方形をなし、図3(b)に示すようなパターンを描いている。また、センサ薄膜9のパターンの両端にはセンサ端子14が設けられ、センサ端子14間の電気抵抗を計測すればセンサ薄膜9の温度を知ることができる。 The sensor thin film 9 is a square having a side length of about 2.4 mm, and has a pattern as shown in FIG. Further, sensor terminals 14 are provided at both ends of the pattern of the sensor thin film 9, and the temperature of the sensor thin film 9 can be known by measuring the electrical resistance between the sensor terminals 14.
 なお、センサ薄膜9の材料は温度変化に伴って電気抵抗が変化する物質の中から適当なものを選択すればよいが、本実施形態では白金を使用している。 Note that, as the material of the sensor thin film 9, an appropriate material may be selected from substances whose electric resistance changes with a change in temperature. In this embodiment, platinum is used.
[実装基板]
 図4は、実装基板4の上面を示す平面図であり、(a)は実装基板4単体、(b)は実装基板4上にヒータ基板3を搭載した状態を示している。
[Mounting board]
4A and 4B are plan views showing the top surface of the mounting substrate 4, where FIG. 4A shows the mounting substrate 4 alone, and FIG. 4B shows a state where the heater substrate 3 is mounted on the mounting substrate 4.
 図4に示すように、実装基板4は一辺の長さが150mmの正方形をなす石英基板であり、上面に10本の給電用配線薄膜10と、18本のセンサ用配線薄膜11を形成している。 As shown in FIG. 4, the mounting substrate 4 is a square quartz substrate having a side length of 150 mm, and has 10 power supply wiring thin films 10 and 18 sensor wiring thin films 11 formed on the upper surface. Yes.
 給電用配線薄膜10は、実装基板4の縁部に配置された電極パッド15と、実装基板4の中央部に配置された接続パッド16を結ぶ導電体の薄膜である。電極パッド15は図示しない外部機器と電気的に接続される接続部であり、接続パッド16はヒータ基板3の下面に突出する給電端子8に接触する接続部である。つまり、給電用配線薄膜10は前記外部機器とヒータ薄膜7を電気的に連絡する配線として機能する。 The power supply wiring thin film 10 is a thin film of a conductor that connects the electrode pad 15 disposed at the edge of the mounting substrate 4 and the connection pad 16 disposed at the center of the mounting substrate 4. The electrode pad 15 is a connection part that is electrically connected to an external device (not shown), and the connection pad 16 is a connection part that contacts the power supply terminal 8 protruding from the lower surface of the heater substrate 3. That is, the power supply wiring thin film 10 functions as a wiring for electrically connecting the external device and the heater thin film 7.
 なお、10本の給電用配線薄膜10の電極パッド15と接続パッド16の相対的な位置関係は、それぞれ異なるが、電極パッド15と接続パッド16の相対的な位置関係に応じて経路を屈曲させることによって、電極パッド15から接続パッド16に至る経路の長さが、全ての給電用配線薄膜10について等しくなるようにしている。これは、給電用配線薄膜10の配線抵抗の違いに起因する発熱量や温度の計測誤差を解消するためである。 Although the relative positional relationship between the electrode pad 15 and the connection pad 16 of the ten power supply wiring thin films 10 is different, the path is bent according to the relative positional relationship between the electrode pad 15 and the connection pad 16. Thus, the length of the path from the electrode pad 15 to the connection pad 16 is made equal for all the power supply wiring thin films 10. This is to eliminate measurement errors in the amount of heat generation and temperature caused by the difference in wiring resistance of the power supply wiring thin film 10.
 センサ用配線薄膜11は、実装基板4の縁部に配置された電極パッド17と、実装基板4の中央部に配置された接続パッド18を結ぶ導電体の薄膜である。電極パッド17は図示しない外部機器と電気的に接続される接続部であり、接続パッド18はヒータ基板3の下面に配置されたセンサ薄膜9のセンサ端子14に接触する接続部である。つまり、センサ用配線薄膜11は前記外部機器とセンサ薄膜7を電気的に連絡する配線として機能する。 The sensor wiring thin film 11 is a conductive thin film that connects the electrode pad 17 disposed at the edge of the mounting substrate 4 and the connection pad 18 disposed at the center of the mounting substrate 4. The electrode pad 17 is a connection portion that is electrically connected to an external device (not shown), and the connection pad 18 is a connection portion that contacts the sensor terminal 14 of the sensor thin film 9 disposed on the lower surface of the heater substrate 3. That is, the sensor wiring thin film 11 functions as a wiring for electrically connecting the external device and the sensor thin film 7.
 なお、給電用配線薄膜10と同様の理由で、センサ用配線薄膜11も経路を屈曲させることによって、電極パッド17から接続パッド18に至る経路の長さが、全てのセンサ用配線薄膜11について等しくなるようにしている。 For the same reason as the power supply wiring thin film 10, the sensor wiring thin film 11 is also bent so that the length of the path from the electrode pad 17 to the connection pad 18 is the same for all the sensor wiring thin films 11. It is trying to become.
[熱抵抗の測定方法]
 図5は、ヒータ装置1を使って、ヒートパイプ付き冷却器2の総熱抵抗Rを測定する原理を説明する模式図である。
[Measurement method of thermal resistance]
FIG. 5 is a schematic diagram for explaining the principle of measuring the total thermal resistance RT of the cooler 2 with a heat pipe using the heater device 1.
 図5において、Wは単位時間にヒータ薄膜7で発生する熱量であり、Wは単位時間にヒートパイプ付き冷却器2がヒータ薄膜7から吸収して外部環境に排出する熱量、つまりヒートパイプ付き冷却器2の単位時間あたりの熱輸送量である。また、Wは単位時間にヒータ薄膜7の裏面からヒータ基板3を通って外部環境に排出される熱量である。 In FIG. 5, W P is a quantity of heat generated by the heater film 7 in a unit time, W F is the amount of heat with heat pipe unit time cooler 2 is discharged to the outside environment by absorbing from the heater film 7, i.e. a heat pipe This is the amount of heat transport per unit time of the attached cooler 2. Further, W B is the quantity of heat discharged to the external environment through the heater substrate 3 from the back surface of the heater film 7 in a unit time.
 また、Tはヒータ薄膜7の温度、Tは外部環境の温度、Tはヒータ基板3の下面の温度である。 T 1 is the temperature of the heater thin film 7, T 2 is the temperature of the external environment, and T 3 is the temperature of the lower surface of the heater substrate 3.
 ヒートパイプ付き冷却器2の総熱抵抗Rは、次式で与えられる。 The total thermal resistance RT of the cooler 2 with a heat pipe is given by the following equation.
    R=(T-T)/W    (式3) R T = (T 1 −T 2 ) / W F (Formula 3)
 Tはヒータ薄膜7の温度であるから、ヒータ薄膜7の電気抵抗の値から算出できる。また、Tは外部環境の温度であるから、公知の各種温度計測手段で計測することができる。したがって、Wを知ることができれば、総熱抵抗Rを求めることができる。 Since T 1 is the temperature of the heater thin film 7, it can be calculated from the electric resistance value of the heater thin film 7. Further, since T 2 is the temperature of the external environment, it can be measured by various known temperature measuring means. Therefore, if it is possible to know the W F, it can be calculated the total thermal resistance R T.
 ここで、Tの時間変化がなくなった状態、つまり定常状態になった場合を考える。定常状態では、ヒータ薄膜7で発生する熱量はすべて外部に排出されるから、次式が成り立つ。 Here, let us consider a state in which the time change of T 1 is eliminated, that is, a steady state. In the steady state, since all the heat generated in the heater thin film 7 is discharged to the outside, the following equation is established.
    W=W+W    (式4)
  ∴ W=W-W    (式5)
W P = W F + W B ( Equation 4)
∴ W F = W P -W B (Formula 5)
 Wは単位時間にヒータ薄膜7で発生する熱量であるから、ヒータ薄膜7の消費電力に熱電変換効率を乗じて求めることができる。一方、Wは以下の手順で算出する。 W P is because it is the amount of heat generated by the heater film 7 in a unit time, it can be determined by multiplying the thermoelectric conversion efficiency on the power consumption of the heater film 7. On the other hand, W B is calculated by the following procedure.
 さて、ヒータ薄膜7の面積をA、ヒータ基板3の板厚をtとすると、Aに比べてtは小さいから、ヒータ薄膜7の裏面からヒータ基板3の下面に流れる熱は、ヒータ基板3に垂直に流れると考えてよい。したがって、次式が成り立つ。ただしkはヒータ基板3の熱伝導率である。 Now, assuming that the area of the heater thin film 7 is A and the thickness of the heater substrate 3 is t, t is smaller than A, so that the heat flowing from the back surface of the heater thin film 7 to the lower surface of the heater substrate 3 is applied to the heater substrate 3. You can think of it flowing vertically. Therefore, the following equation holds. Here, k is the thermal conductivity of the heater substrate 3.
    W=A・k・(T-T)/t    (式6) W B = A · k · (T 1 −T 3 ) / t (Formula 6)
 前述したように、Tはヒータ薄膜7の電気抵抗の値から算出できる。しかしながら、Tは、センサ薄膜9による測定値をそのまま使用することができない。センサ薄膜9はヒータ薄膜7の直下にないからである(ヒータ薄膜7の給電端子8とセンサ薄膜9の干渉を避けるために、このように配置している)。 As described above, T 1 can be calculated from the value of the electrical resistance of the heater thin film 7. However, T 3 cannot use the measured value of the sensor thin film 9 as it is. This is because the sensor thin film 9 is not directly below the heater thin film 7 (in order to avoid interference between the power supply terminal 8 of the heater thin film 7 and the sensor thin film 9).
 そこで、ヒータ基板3の下面に配置した9面のセンサ薄膜9の測定値に基づいて、ヒータ基板3の下面の温度分布を推定し、ヒータ薄膜7の直下のヒータ基板3の下面の温度、すなわちTを求める。 Therefore, the temperature distribution of the lower surface of the heater substrate 3 is estimated based on the measured values of the nine sensor thin films 9 arranged on the lower surface of the heater substrate 3, and the temperature of the lower surface of the heater substrate 3 immediately below the heater thin film 7, that is, determine the T 3.
 さて、予想される温度分布に対して、ヒータ薄膜7を適切に配置すれば、隣接するセンサ薄膜9の間の点の温度は、一方のセンサ薄膜9から距離に対して線形に変化すると考えてよい。また、本実施形態では、ヒータ基板3に対してセンサ薄膜9が均等に分布していないので、センサ薄膜9から離れた部位の温度の推定精度が問題になるが、ヒータ薄膜7はヒータ基板3の中央付近に配置されているので、ヒータ基板3の下面の温度は、ヒータ基板3の中心に対して対称に分布すると考えてよい。したがって、図6に示すように、部位A~Dの温度は部位A’~D’に配置されたセンサ薄膜9による測定値に等しいと考えて、等温度線図を作成することができる。 Now, if the heater thin film 7 is appropriately arranged with respect to the expected temperature distribution, the temperature at a point between the adjacent sensor thin films 9 changes linearly with respect to the distance from one sensor thin film 9. Good. In this embodiment, since the sensor thin film 9 is not evenly distributed with respect to the heater substrate 3, the accuracy in estimating the temperature at a part away from the sensor thin film 9 becomes a problem. Therefore, it can be considered that the temperature of the lower surface of the heater substrate 3 is distributed symmetrically with respect to the center of the heater substrate 3. Accordingly, as shown in FIG. 6, it is possible to create an isotherm diagram on the assumption that the temperatures of the parts A to D are equal to the measured values by the sensor thin film 9 disposed in the parts A ′ to D ′.
 このようにして得られたヒータ基板3の下面の温度分布に基づいて、ヒータ薄膜7直下のヒータ基板3の下面の温度をTとすれば、式6からWが得られる。 On the basis of the temperature distribution of the lower surface of the heater substrate 3 obtained, if the temperature of the lower surface of the heater substrate 3 immediately below the heater film 7 and T 3, the W B from Equation 6.
[計測装置]
 次に、ヒータ装置1を使って、ヒートパイプ付き冷却器2の総熱抵抗Rあるいはワーク熱抵抗Rを自動計測する計測装置21について説明する。
[Measurement equipment]
Then use the heater device 1, the measuring device 21 for automatically measuring describing the total heat R T resistor or a work thermal resistance R w of the heat pipe condenser with 2.
 図7は、計測装置21の概念的な構成を示す構成図である。図7に示すように、計測装置21は、ヒータ装置1、制御装置22、電力制御装置23、センサ制御装置24及び温度センサ25,26から構成される。 FIG. 7 is a configuration diagram showing a conceptual configuration of the measuring device 21. As shown in FIG. 7, the measuring device 21 includes a heater device 1, a control device 22, a power control device 23, a sensor control device 24, and temperature sensors 25 and 26.
 制御装置22は、計測装置21の全てを支配するコンピュータであり、電力制御装置23及びセンサ制御装置24は制御装置22の指令を受けて機能する。 The control device 22 is a computer that dominates all of the measurement device 21, and the power control device 23 and the sensor control device 24 function in response to a command from the control device 22.
 電力制御装置23は、制御装置22の指令に従って所定の電力を、ヒータ装置1のヒータ薄膜7に供給する装置である。 The power control device 23 is a device that supplies predetermined power to the heater thin film 7 of the heater device 1 in accordance with a command from the control device 22.
 センサ制御装置24は、制御装置22の指令に従って、センサ薄膜9のセンサ端子14間の電気抵抗を測定してセンサ薄膜9の温度を算出する装置である。また、センサ制御装置24は、制御装置22の指令に従って、ヒータ薄膜7の給電端子8間の電気抵抗を測定してヒータ薄膜7の温度を算出する。 The sensor control device 24 is a device that calculates the temperature of the sensor thin film 9 by measuring the electrical resistance between the sensor terminals 14 of the sensor thin film 9 in accordance with a command from the control device 22. Further, the sensor control device 24 calculates the temperature of the heater thin film 7 by measuring the electrical resistance between the power supply terminals 8 of the heater thin film 7 in accordance with a command from the control device 22.
 温度センサ25は、外部環境(ヒートパイプ付き冷却器2が放熱する空間)の温度を検出するセンサである。また、温度センサ26は、ヒートパイプ付き冷却器2の放熱部(ヒートシンク6)の表面温度を検出するセンサである。 The temperature sensor 25 is a sensor that detects the temperature of the external environment (the space where the cooler 2 with a heat pipe dissipates heat). Moreover, the temperature sensor 26 is a sensor which detects the surface temperature of the thermal radiation part (heat sink 6) of the cooler 2 with a heat pipe.
[制御プログラム]
 制御装置22には、制御プログラムがインストールされ、制御装置22は制御プログラムに従って、電力制御装置23等を運転して、自動計測を行う。図8は、制御装置22で実行される制御プログラムの例を示すフローチャートである。以下、この制御プログラムを図に付したステップ番号を追いながら説明する。
[Control program]
A control program is installed in the control device 22, and the control device 22 operates the power control device 23 and the like according to the control program to perform automatic measurement. FIG. 8 is a flowchart illustrating an example of a control program executed by the control device 22. Hereinafter, this control program will be described with reference to the step numbers attached to the figure.
(ステップ1)電力制御装置23がヒータ薄膜7に所定の電力を供給して加熱を開始する。前述したように、例えば、5面のヒータ薄膜7の一部に給電して、発熱部位が偏在するICチップを模擬することもできる。
(ステップ2)加熱を開始したら、センサ制御装置24は、ヒータ薄膜7の給電端子8間の電気抵抗を測定してヒータ薄膜7の温度Tの変化を監視し、変化がなくなるまで(定常状態に達するまで)待つ。変化がなくなったらステップ3に進む。
(Step 1) The power control device 23 supplies predetermined power to the heater thin film 7 to start heating. As described above, for example, it is also possible to simulate an IC chip in which heat generation portions are unevenly distributed by supplying power to a part of the five heater thin films 7.
(Step 2) After starting heating, the sensor control unit 24 monitors the change in temperature T 1 of the heater film 7 by measuring the electrical resistance between the power supply terminal 8 of the heater film 7, until the change disappears (steady state Wait until it reaches). If there is no change, go to Step 3.
(ステップ3)センサ制御装置24にセンサ薄膜9の温度を算出させて、その結果に基づいてヒータ基板3の下面の温度分布を推定し、ヒータ薄膜7の直下のヒータ基板3の下面温度Tを求める。
(ステップ4)T及びTに基づいて単位時間にヒータ基板3の下面から流出する熱量Wを求める。
(Step 3) The sensor control device 24 calculates the temperature of the sensor thin film 9, estimates the temperature distribution of the lower surface of the heater substrate 3 based on the result, and lowers the temperature T 3 of the heater substrate 3 immediately below the heater thin film 7. Ask for.
(Step 4) The amount of heat W B flowing out from the lower surface of the heater substrate 3 per unit time is obtained based on T 1 and T 3 .
(ステップ5)電力制御装置23がヒータ薄膜7に供給する電力に基づいて、単位時間にヒータ薄膜7で発生する熱量Wを求める。
(ステップ6)W及びWに基づいて、単位時間にヒートパイプ付き冷却器2が輸送(放熱)する熱量Wを求める。
(Step 5) The power unit 23 based on the power supplied to the heater film 7, determine the amount of heat W P generated by the heater film 7 in a unit time.
(Step 6) on the basis of W B and W P, determining the amount of heat W F of condenser 2 with heat pipe unit time transport (heat radiation).
(ステップ7)温度センサ25が検出する外部環境の温度T及びT、Wに基づいて、ヒートパイプ付き冷却器2の総熱抵抗Rを求める。 (Step 7) based on the temperature T 2 and T 1, W F of the external environment the temperature sensor 25 detects, determine the total thermal R T resistor with heat pipe cooler 2.
 なお、ステップ7において、Tに代えて、温度センサ26が検出するヒートパイプ付き冷却器2の放熱部(ヒートシンク6)の表面温度T を使用すれば、ヒートパイプ付き冷却器2のワーク熱抵抗Rを算出することができる。 Note that, in step 7, in place of T 2, Using the surface temperature T '2 of the heat radiating portion of the heat pipe condenser with 2 (sink 6) the temperature sensor 26 detects, of the cooler 2 with heat pipes work The thermal resistance Rw can be calculated.
[伝熱機器単体の性能評価]
 以上、ヒータ装置1を備えた計測装置21を使って、ヒートパイプ付き冷却器2の熱抵抗を計測する手順を説明した。熱抵抗は伝熱機器を特定の熱源に実装したときの伝熱性能を評価する指標として有効である。
[Performance evaluation of single heat transfer device]
The procedure for measuring the thermal resistance of the cooler 2 with the heat pipe using the measuring device 21 including the heater device 1 has been described above. Thermal resistance is effective as an index for evaluating heat transfer performance when a heat transfer device is mounted on a specific heat source.
 しかしながら、発明者らによる実験によれば、2x7mmサイズの平面ヒータ(熱源1)とヒートパイプ付き冷却器2を組み合わせたときのワーク熱抵抗Rが0.35(K/W)であったのに対し、3x5mmサイズの平面ヒータ(熱源2)とヒートパイプ付き冷却器2を組み合わせたときのワーク熱抵抗Rは0.80(K/W)となった。このように、熱抵抗は熱源のサイズや形状によって変化するので、伝熱機器単体の伝熱性能を評価する指標としては使いづらいという問題がある。 However, according to experiments by the inventors, the workpiece thermal resistance R w when a combination of plane heater (heat source 1) and with a heat pipe type heat exchanger 2 of 2x7mm size was 0.35 (K / W) to, work thermal resistance R w when combined planar heater 3x5mm size and (heat source 2) a heat pipe condenser with 2 became 0.80 (K / W). As described above, since the thermal resistance changes depending on the size and shape of the heat source, there is a problem that it is difficult to use as an index for evaluating the heat transfer performance of a single heat transfer device.
 そこで、発明者らは、計測装置21を使って伝熱機器の有効熱伝導率を推定するとともに、有効熱伝導率を使って伝熱機器単体の伝熱性能を評価することを考えた。以下に、熱源の上に伝熱機器を置いて、熱源の発熱量と伝熱機器による伝熱量がバランスして熱源の温度が定常になった時の熱源の温度から伝熱機器の有効熱伝導率を推定する方法と、有効熱伝導率がヒートパイプ付き冷却器2単体の伝熱性能を評価指標として優れていることを説明する。 Therefore, the inventors have considered estimating the effective heat conductivity of the heat transfer device using the measuring device 21 and evaluating the heat transfer performance of the heat transfer device alone using the effective heat conductivity. Below, the heat transfer device is placed on the heat source, and the effective heat conduction of the heat transfer device is calculated from the temperature of the heat source when the heat source heat output and the heat transfer amount by the heat transfer device are balanced and the temperature of the heat source becomes steady. The method for estimating the rate and that the effective thermal conductivity is excellent as an evaluation index using the heat transfer performance of the cooler 2 with a heat pipe alone.
[熱伝導方程式の境界条件の決定]
 熱伝導率が分かっている物体を熱源の上に伝熱機器を置いて、熱源の発熱量と伝熱機器による伝熱量がバランスするときの温度(定常温度)を計算するために、次のような手順で熱伝導方程式の境界条件を決定する。
[Determination of boundary condition of heat conduction equation]
In order to calculate the temperature (steady temperature) when a heat transfer device is placed on a heat source with a known heat conductivity and the heat generation amount of the heat source and the heat transfer amount by the heat transfer device are balanced, The boundary condition of the heat conduction equation is determined by a simple procedure.
(1)熱伝導率が分かっている放熱物体(例えば銅板)を熱源の上に置いて、前記熱源の温度が定常になった時の前記放熱物体の温度分布を(例えば、赤外線サーモグラフィを使用して)計測する。
(2)前記放熱物体と前記熱源について3次元熱伝導方程式を立てて、有限体積法を用いてこれを解く。
(3)(1)の計測値と(2)の計算値を比較して、両者が一致するような3次元熱伝導方程式の境界条件(前記放熱物体と前記熱源の間のサーモグリスの厚さ、前記放熱物体の上面の熱伝達係数)を決定する。
(1) A heat dissipating object (for example, a copper plate) whose thermal conductivity is known is placed on a heat source, and the temperature distribution of the heat dissipating object when the temperature of the heat source becomes steady (for example, using an infrared thermography). Measure).
(2) Establish a three-dimensional heat conduction equation for the heat dissipating object and the heat source and solve it using a finite volume method.
(3) The measured value of (1) and the calculated value of (2) are compared, and the boundary condition of the three-dimensional heat conduction equation (the thickness of the thermogrease between the heat dissipating object and the heat source) is the same. The heat transfer coefficient of the upper surface of the heat dissipating object is determined.
[熱伝導率と熱源の定常温度の関係式の決定]
 前述の方法で決定した境界条件を用いるとともに、前記放熱物体の熱伝導率を様々に変えて、前記3次元熱伝導方程式を解いて、前記放熱物体の熱伝導率に対する前記熱源の定常温度を計算する。
[Determination of relational equation between thermal conductivity and steady temperature of heat source]
Using the boundary conditions determined by the above method, changing the thermal conductivity of the heat dissipating object in various ways, solving the three-dimensional heat conduction equation, and calculating the steady temperature of the heat source relative to the heat conductivity of the heat dissipating object To do.
 発明者らが、前記熱源1及び前記熱源2について、前述の方法によって、熱伝導方程式の境界条件を決定し、熱伝導率と定常温度の関係を計算して、前記放熱物体の熱伝導率を横軸に取り、前記熱源1及び前記熱源2の定常温度を縦軸にとったグラフにプロットすると、図9に示すような結果が得られた。 The inventors determine the boundary condition of the heat conduction equation for the heat source 1 and the heat source 2 by the method described above, calculate the relationship between the heat conductivity and the steady temperature, and calculate the heat conductivity of the heat dissipating object. Taking the horizontal axis and plotting the steady temperature of the heat source 1 and the heat source 2 on the vertical axis, a result as shown in FIG. 9 was obtained.
 ここで、前記熱源1又は前記熱源2の定常温度をY、前記放熱物体の熱伝導率をXとして、両者の関係を次式で近似することにする。 Here, assuming that the steady temperature of the heat source 1 or the heat source 2 is Y and the thermal conductivity of the heat dissipating object is X, the relationship between them is approximated by the following equation.
    Y=Y+P・exp(-X/Q)    (式7) Y = Y 0 + P · exp (−X / Q) (Formula 7)
 熱伝導率Xと定常温度Yの相関係数が最大になるように、式7の定数を選ぶと、次の結果が得られる。 When the constant of Equation 7 is selected so that the correlation coefficient between the thermal conductivity X and the steady temperature Y is maximized, the following result is obtained.
 すなわち、前記熱源1については、
    Y=345.8,P=32.51,Q=580.4    (式8)
前記熱源2については、
    Y=347.2,P=26.18,Q=580.6    (式9)
の値が得られる。
That is, for the heat source 1,
Y 0 = 345.8, P = 32.51, Q = 580.4 (Formula 8)
For the heat source 2,
Y 0 = 347.2, P = 26.18, Q = 580.6 (formula 9)
The value of is obtained.
 なお、図9に示した曲線は、式7に式8あるいは式9に示した値を代入して得られた曲線である。
[伝熱機器の有効熱伝導率の推定]
 さて、式7から次式が得られる。
The curve shown in FIG. 9 is a curve obtained by substituting the value shown in Equation 8 or Equation 9 into Equation 7.
[Estimation of effective thermal conductivity of heat transfer equipment]
Now, from Equation 7, the following equation is obtained.
    X=Q・Ln{P/(Y-Y)}    (式10) X = Q · Ln {P / (Y−Y 0 )} (Formula 10)
 ヒートパイプ付き冷却器2を前記熱源1及び前記熱源2の上において、前記熱源1及び前記熱源2の定常温度を求めたところ、349.4(K)および350.6(K)が得られた。これらの値と式8および式9を式10に代入して、ヒートパイプ付き冷却器2の有効熱伝導率Xを求めると次のような結果が得られる。 When the steady state temperature of the heat source 1 and the heat source 2 was determined on the heat source 1 and the heat source 2 of the cooler 2 with a heat pipe, 349.4 (K) and 350.6 (K) were obtained. . By substituting these values and Equations 8 and 9 into Equation 10 to obtain the effective thermal conductivity X of the cooler 2 with a heat pipe, the following results are obtained.
 すなわち、前記熱源1については、
    X=1270(W・m-1・K-1)    (式11)
前記熱源2については、
    X=1177(W・m-1・K-1)    (式12)
の値が得られる。
That is, for the heat source 1,
X = 1270 (W · m −1 · K −1 ) (Formula 11)
For the heat source 2,
X = 1177 (W · m −1 · K −1 ) (Formula 12)
The value of is obtained.
 このように、ヒートパイプ付き冷却器2の有効熱伝導率は前記熱源1で計測しても、前記熱源2で計測しても、結果にほとんど差がでない。つまり、有効熱伝導率Xは熱源のサイズや寸法の影響を受けないヒートパイプ付き冷却器2に固有の伝熱性能の指標であることが分かる。 Thus, even if the effective heat conductivity of the cooler 2 with a heat pipe is measured by the heat source 1 or the heat source 2, there is almost no difference in the results. That is, it can be seen that the effective thermal conductivity X is an index of heat transfer performance inherent to the cooler 2 with a heat pipe that is not affected by the size and dimensions of the heat source.
 したがって、ヒータ装置1の上に熱伝導率が分かっている放熱物体を置いて、ヒータ装置1が定常温度に達した時の、前記放熱物体の温度分布を計測すれば、ヒータ装置1の定常温度とヒータ装置1の上に載置される物体の熱伝導率の関係式を決定することができる。また、ヒータ装置1について前記関係式を決定できれば、ヒータ装置1の定常温度を計測するだけで前記物体の有効熱伝導率を推定することができる。 Accordingly, if a heat dissipating object having a known thermal conductivity is placed on the heater device 1 and the temperature distribution of the heat dissipating object is measured when the heater device 1 reaches a steady temperature, the steady temperature of the heater device 1 is obtained. And the thermal conductivity of the object placed on the heater device 1 can be determined. Moreover, if the said relational expression can be determined about the heater apparatus 1, the effective thermal conductivity of the said object can be estimated only by measuring the steady temperature of the heater apparatus 1. FIG.
 以上、本発明をヒートパイプ付き冷却器の伝熱特性の測定に適用する例を説明してきたが、本発明の適用範囲はこれに限られるものではない。本発明は広く各種伝熱機器の伝熱特性の測定に適用できる。 As mentioned above, although the example which applies this invention to the measurement of the heat transfer characteristic of the cooler with a heat pipe has been demonstrated, the application range of this invention is not restricted to this. The present invention can be widely applied to the measurement of heat transfer characteristics of various heat transfer devices.
 本発明は、各種伝熱機器の伝熱特性の測定に用いる装置及び方法として有用である。 The present invention is useful as an apparatus and method used for measuring heat transfer characteristics of various heat transfer devices.

Claims (14)

  1.  基板と、
     前記基板の上面に形成されたヒータ薄膜に通電して発熱するヒータ装置において、
     複数のヒータ薄膜と、
     前記複数のヒータ薄膜のそれぞれに独立して給電する給電端子を有することを特徴とするヒータ装置。
    A substrate,
    In the heater device that generates heat by energizing the heater thin film formed on the upper surface of the substrate,
    A plurality of heater thin films;
    A heater device comprising a power supply terminal for supplying power independently to each of the plurality of heater thin films.
  2.  前記給電端子を前記基板の下面に形成するとともに、
     前記給電端子と前記ヒータ薄膜を電気的に連絡するスルーホールを備える
     ことを特徴とする請求項1に記載のヒータ装置。
    While forming the power supply terminal on the lower surface of the substrate,
    The heater device according to claim 1, further comprising a through hole that electrically connects the power supply terminal and the heater thin film.
  3.  前記基板の下面に形成された複数のセンサ薄膜を有する
    ことを特徴する請求項2に記載のヒータ装置。
    The heater device according to claim 2, comprising a plurality of sensor thin films formed on a lower surface of the substrate.
  4.  前記基板を載置保持するとともに、
     前記ヒータ薄膜及び前記センサ薄膜と外部機器を電気的に接続する配線パターンを上面に形成した実装基板を有する
    ことを特徴とする請求項3に記載のヒータ装置。
    While placing and holding the substrate,
    The heater device according to claim 3, further comprising: a mounting substrate on which a wiring pattern for electrically connecting the heater thin film and the sensor thin film to an external device is formed.
  5.  前記配線パターンは、
     前記給電端子に接触する始端と前記実装基板の縁部にあって前記外部機器に接続される終端を結ぶ給電路を、前記給電端子毎に複数個備えるともに、
     前記複数個の給電路の長さが全て等しい
     ことを特徴とする請求項4に記載のヒータ装置。
    The wiring pattern is
    While providing a plurality of power supply paths for each of the power supply terminals, connecting the power supply terminal to the end connected to the external device at the edge of the mounting board and contacting the power supply terminal,
    The heater device according to claim 4, wherein the lengths of the plurality of power supply paths are all equal.
  6.  請求項3に記載のヒータ装置と、
     制御装置から構成されるとともに、
     前記制御装置は、
     前記ヒータ薄膜に所定の電力を供給する電力制御手段と、
     前記センサ薄膜と前記ヒータ薄膜の温度を計測するセンサ制御手段と、
     前記センサ制御手段が計測する、前記センサ薄膜と前記ヒータ薄膜の温度に基づいて、前記基板の下面から流出する流出熱量を算出する演算手段を備える
     ことを特徴とする測定装置。
    A heater device according to claim 3,
    Consists of a control device,
    The controller is
    Power control means for supplying predetermined power to the heater thin film;
    Sensor control means for measuring temperatures of the sensor thin film and the heater thin film;
    A measuring apparatus comprising: calculating means for calculating the amount of heat flowing out from the lower surface of the substrate based on the temperature of the sensor thin film and the heater thin film measured by the sensor control means.
  7.  前記演算手段は、
     前記センサ制御手段が計測する前記センサ薄膜の温度に基づいて、前記基板の下面の温度分布を算出する
     ことを特徴とする請求項6に記載の測定装置。
    The computing means is
    The measurement apparatus according to claim 6, wherein the temperature distribution of the lower surface of the substrate is calculated based on the temperature of the sensor thin film measured by the sensor control unit.
  8.  前記演算手段は、
     前記電力制御手段が前記ヒータ薄膜に供給する電力に基づいて、前記ヒータ薄膜から発生する発生熱量を算出する
     ことを特徴とする請求項6に記載の測定装置。
    The computing means is
    The measuring apparatus according to claim 6, wherein the amount of heat generated from the heater thin film is calculated based on electric power supplied to the heater thin film by the power control unit.
  9.  前記演算手段は、
     前記ヒータ薄膜から発生する発生熱量から前記基板の下面から流出する流出熱量を減じて、前記ヒータ薄膜の上面から放出される放出熱量を算出する
     ことを特徴とする請求項8に記載の測定装置。
    The computing means is
    The measurement apparatus according to claim 8, wherein the amount of heat released from the lower surface of the substrate is subtracted from the amount of heat generated from the heater thin film to calculate the amount of heat released from the upper surface of the heater thin film.
  10.  前記測定装置の周囲の環境の温度を測定する環境温度測定手段を備えるとともに、
     前記演算手段は、
     前記環境温度測定手段が検出する温度、前記センサ制御手段が計測する前記ヒータ薄膜の温度、及び前記ヒータ薄膜の上面から放出される放出熱量に基づいて、前記ヒータ薄膜の上に載置される供試体の熱抵抗を算出する
     ことを特徴とする請求項9に記載の測定装置。
    With environmental temperature measuring means for measuring the temperature of the environment around the measuring device,
    The computing means is
    Based on the temperature detected by the environmental temperature measuring means, the temperature of the heater thin film measured by the sensor control means, and the amount of heat released from the upper surface of the heater thin film, the heater is placed on the heater thin film. The measuring apparatus according to claim 9, wherein the thermal resistance of the specimen is calculated.
  11.  前記ヒータ薄膜の上に載置される供試体の放熱部の表面温度を測定する放熱部温度測定手段を備えるとともに、
     前記演算手段は、
     前記放熱部度測定手段が検出する温度、前記センサ制御手段が計測する前記ヒータ薄膜の温度、及び前記ヒータ薄膜の上面から放出される放出熱量に基づいて、前記供試体の熱抵抗を算出する
     ことを特徴とする請求項9に記載の測定装置。
    While comprising a heat radiating portion temperature measuring means for measuring the surface temperature of the heat radiating portion of the specimen placed on the heater thin film,
    The computing means is
    Calculating the thermal resistance of the specimen based on the temperature detected by the heat radiation part degree measuring means, the temperature of the heater thin film measured by the sensor control means, and the amount of heat released from the upper surface of the heater thin film. The measuring apparatus according to claim 9.
  12.  前記センサ制御手段が計測する前記ヒータ薄膜の温度の時間変化を監視する温度監視手段を備えるとともに、
     前記演算手段は、
     前記ヒータ薄膜の温度の時間変化がなくなったときに、前記供試体の熱抵抗を算出する
     ことを特徴とする請求項10又は請求項11に記載の測定装置。
    The temperature control means for monitoring the time change of the temperature of the heater thin film measured by the sensor control means,
    The computing means is
    The measuring apparatus according to claim 10 or 11, wherein a thermal resistance of the specimen is calculated when a time change in temperature of the heater thin film disappears.
  13.  熱伝導率が分かっている放熱物体を熱源の上に載置して、前記熱源の発熱量と放熱量が均衡して前記熱源の温度が一定になった定常状態における前記放熱物体の温度分布を計測する予備計測段階と、
     前記放熱物体と前記熱源についての熱伝導方程式を解いて、前記熱源の発熱量と放熱量が均衡して前記熱源の温度が一定になった定常状態における前記放熱物体の温度分布を計算する計算段階と、
     前記予備計測段階で得られた温度分布と前記計算段階で得られた温度分布を比較して、両者が一致するような前記熱伝導方程式の境界条件を決定する境界条件決定段階と、
     前記境界条件決定段階で決定された境界条件を用いた前記熱伝導方程式を前記放熱物体の熱伝導率を変えて解いて、前記熱源の発熱量と放熱量が均衡して前記熱源の温度が一定になった定常状態における前記熱源の温度を推定する定常温度推定段階と、
     前記定常温度推定段階で得られた前記放熱物体の熱伝導率と前記熱源の温度の関係に基づいて両者の関係を示す近似式を決定する近似式決定段階と、
     供試体を前記熱源の上に載置して、前記熱源の発熱量と放熱量が均衡して前記熱源の温度が一定になったときの前記熱源の温度を計測する供試体計測段階と、
     前記供試体計測段階で得られた前記熱源の温度と前記近似式決定段階で得られた近似式に基づいて、前記供試体の熱伝導率を求める熱伝導率推定段階を有する
     ことを特徴とする熱伝導率推定方法。
    The temperature distribution of the heat dissipating object in a steady state in which the heat source having a known heat conductivity is placed on the heat source and the heat generation amount and the heat dissipating amount of the heat source are balanced and the temperature of the heat source is constant. A preliminary measurement stage to measure,
    A calculation step of solving a heat conduction equation for the heat radiating object and the heat source, and calculating a temperature distribution of the heat radiating object in a steady state in which the heat generation amount and the heat radiation amount of the heat source are balanced and the temperature of the heat source is constant. When,
    Comparing the temperature distribution obtained in the preliminary measurement step with the temperature distribution obtained in the calculation step, and determining the boundary condition of the heat conduction equation so that they match,
    Solving the heat conduction equation using the boundary condition determined in the boundary condition determination step by changing the thermal conductivity of the heat dissipating object, the heat generation amount of the heat source and the heat dissipation amount are balanced and the temperature of the heat source is constant. A steady temperature estimation step for estimating the temperature of the heat source in a steady state
    An approximate expression determining step for determining an approximate expression indicating the relationship between the thermal conductivity of the heat dissipating object and the temperature of the heat source obtained in the steady temperature estimating step;
    Specimen measurement step of placing the specimen on the heat source and measuring the temperature of the heat source when the heat generation amount and the heat dissipation amount of the heat source are balanced and the temperature of the heat source becomes constant,
    A thermal conductivity estimation step of obtaining a thermal conductivity of the specimen based on the temperature of the heat source obtained in the specimen measurement stage and the approximate expression obtained in the approximate expression determination stage. Thermal conductivity estimation method.
  14.  前記熱源は請求項1ないし請求項5のいずれか1項に記載のヒータ装置であることを特徴とする請求項13に記載の熱伝導率推定方法。 The thermal conductivity estimation method according to claim 13, wherein the heat source is the heater device according to any one of claims 1 to 5.
PCT/JP2008/053447 2008-02-27 2008-02-27 Heater device, measuring device, and method of estimating heat conductivity WO2009107209A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880128982.5A CN102217414B (en) 2008-02-27 2008-02-27 Heater device, measuring device, and thermal conductivity estimating method
JP2008511499A JP5509443B2 (en) 2008-02-27 2008-02-27 Measuring apparatus and thermal conductivity estimation method
PCT/JP2008/053447 WO2009107209A1 (en) 2008-02-27 2008-02-27 Heater device, measuring device, and method of estimating heat conductivity
TW097106971A TWI434381B (en) 2008-02-27 2008-02-29 Measurement device and thermal conductivity estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053447 WO2009107209A1 (en) 2008-02-27 2008-02-27 Heater device, measuring device, and method of estimating heat conductivity

Publications (1)

Publication Number Publication Date
WO2009107209A1 true WO2009107209A1 (en) 2009-09-03

Family

ID=41015623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053447 WO2009107209A1 (en) 2008-02-27 2008-02-27 Heater device, measuring device, and method of estimating heat conductivity

Country Status (4)

Country Link
JP (1) JP5509443B2 (en)
CN (1) CN102217414B (en)
TW (1) TWI434381B (en)
WO (1) WO2009107209A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083206A (en) * 2010-10-12 2012-04-26 Espec Corp Dew point meter, hygrometer, dew point derivation apparatus, humidity derivation apparatus, dew point measuring method and humidity measuring method
CN103454568A (en) * 2013-09-03 2013-12-18 南京华鼎电子有限公司 Method for monitoring running state of LED illuminating lamp through temperature measurement
CN103913483A (en) * 2014-04-23 2014-07-09 广东正业科技股份有限公司 High-precision thermal resistance testing device and testing method thereof
WO2015174698A1 (en) * 2014-05-14 2015-11-19 서울대학교 산학협력단 Heating value measurement apparatus and heating value measurement method
CN107300479A (en) * 2017-08-16 2017-10-27 国网湖南省电力公司 A kind of test platform and its application process of SVG heat-pipe radiators characteristic
CN111239181A (en) * 2020-01-20 2020-06-05 中国计量大学 Method for testing heat conductivity of irregular sample
WO2021116431A1 (en) * 2019-12-13 2021-06-17 Phoenix Contact Gmbh & Co. Kg Device for thermal loading
CN113225858A (en) * 2021-02-02 2021-08-06 深圳兴奇宏科技有限公司 Heat source simulation structure
CN114720017A (en) * 2022-03-29 2022-07-08 孚泽(成都)科技有限公司 Temperature measuring method, device and system based on heat conduction and terminal

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349713B2 (en) 2013-12-13 2018-07-04 オムロン株式会社 Internal temperature sensor
CN104534678B (en) * 2014-12-09 2017-07-04 芜湖恒美电热器具有限公司 The analog position detection means of water heater liner heating tube
JP6661311B2 (en) * 2015-09-11 2020-03-11 キヤノン株式会社 Image heating device and heater used in image heating device
CN105241288A (en) * 2015-10-26 2016-01-13 楹联新能源科技南通有限公司 Novel efficient constant temperature module
DE102015225284A1 (en) * 2015-12-15 2017-06-22 Linseis Meßgeräte GmbH Messchip and method for determining the thermal conductivity of a thin layer
CN105606647B (en) * 2016-03-23 2018-06-22 华南理工大学 A kind of apparatus and method for detecting interconnection solder joint thermal mobility energy
CN107121450B (en) * 2017-05-02 2021-05-04 北京小米移动软件有限公司 Air purification equipment and detection method and device of filter element
CN108322948B (en) * 2017-12-29 2020-08-21 中核四0四有限公司 Heating barrel connecting structure of dynamic K value calorimeter
CN109490361A (en) * 2019-01-09 2019-03-19 广东工业大学 A kind of flat-plate heat pipe test device
EP4102933B1 (en) * 2021-06-07 2023-12-13 Calefact Limited Flexible heating device and methods of manufacture and use of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271121A (en) * 1987-04-28 1988-11-09 Hitachi Metals Ltd Flow rate measuring instrument
JPH02226954A (en) * 1989-02-28 1990-09-10 Canon Inc Photoelectric converter
JPH05223762A (en) * 1991-11-01 1993-08-31 Mitsui Toatsu Chem Inc Thermal analysis method and device using temperature wave
JPH05259419A (en) * 1992-03-13 1993-10-08 Nippon Steel Corp Bonding method for high density substrate and high density packaging device
JPH09139569A (en) * 1995-11-16 1997-05-27 Hitachi Ltd Wiring board and mounting of electronic component using the board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348256B2 (en) * 1993-02-22 2002-11-20 エヌイーシートーキン株式会社 Heat removal atmosphere detector
CN1206528C (en) * 2003-05-01 2005-06-15 东南大学 Device for measuring thermal conductivity of conductor thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271121A (en) * 1987-04-28 1988-11-09 Hitachi Metals Ltd Flow rate measuring instrument
JPH02226954A (en) * 1989-02-28 1990-09-10 Canon Inc Photoelectric converter
JPH05223762A (en) * 1991-11-01 1993-08-31 Mitsui Toatsu Chem Inc Thermal analysis method and device using temperature wave
JPH05259419A (en) * 1992-03-13 1993-10-08 Nippon Steel Corp Bonding method for high density substrate and high density packaging device
JPH09139569A (en) * 1995-11-16 1997-05-27 Hitachi Ltd Wiring board and mounting of electronic component using the board

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083206A (en) * 2010-10-12 2012-04-26 Espec Corp Dew point meter, hygrometer, dew point derivation apparatus, humidity derivation apparatus, dew point measuring method and humidity measuring method
CN103454568A (en) * 2013-09-03 2013-12-18 南京华鼎电子有限公司 Method for monitoring running state of LED illuminating lamp through temperature measurement
CN103913483A (en) * 2014-04-23 2014-07-09 广东正业科技股份有限公司 High-precision thermal resistance testing device and testing method thereof
WO2015174698A1 (en) * 2014-05-14 2015-11-19 서울대학교 산학협력단 Heating value measurement apparatus and heating value measurement method
KR20150130782A (en) * 2014-05-14 2015-11-24 서울대학교산학협력단 Apparatus for measuring heating value and method of measuring heating value
KR101596794B1 (en) 2014-05-14 2016-03-07 서울대학교 산학협력단 Apparatus for measuring heating value and method of measuring heating value
CN107300479A (en) * 2017-08-16 2017-10-27 国网湖南省电力公司 A kind of test platform and its application process of SVG heat-pipe radiators characteristic
CN107300479B (en) * 2017-08-16 2023-11-14 国网湖南省电力公司 Test platform for SVG heat pipe radiator characteristics and application method thereof
WO2021116431A1 (en) * 2019-12-13 2021-06-17 Phoenix Contact Gmbh & Co. Kg Device for thermal loading
BE1027857B1 (en) * 2019-12-13 2021-07-14 Phoenix Contact Gmbh & Co DEVICE FOR THERMAL LOAD
CN111239181A (en) * 2020-01-20 2020-06-05 中国计量大学 Method for testing heat conductivity of irregular sample
CN113225858A (en) * 2021-02-02 2021-08-06 深圳兴奇宏科技有限公司 Heat source simulation structure
CN114720017A (en) * 2022-03-29 2022-07-08 孚泽(成都)科技有限公司 Temperature measuring method, device and system based on heat conduction and terminal
CN114720017B (en) * 2022-03-29 2024-10-08 孚泽(成都)科技有限公司 Temperature measurement method, device, system and terminal based on heat conduction

Also Published As

Publication number Publication date
CN102217414A (en) 2011-10-12
TW200937595A (en) 2009-09-01
JPWO2009107209A1 (en) 2011-06-30
CN102217414B (en) 2014-04-30
TWI434381B (en) 2014-04-11
JP5509443B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5509443B2 (en) Measuring apparatus and thermal conductivity estimation method
US6039471A (en) Device for simulating dissipation of thermal power by a board supporting an electronic component
US7394271B2 (en) Temperature sensing and prediction in IC sockets
KR20070114310A (en) Temperature sensing and prediction in ic sockets
JP2024102852A (en) Apparatus, systems, and methods for non-invasive thermal interrogation
JP2016523356A5 (en)
JP2020505584A (en) Socket side surface heat system
CN109490355A (en) A kind of method of test device of thermal conductivity coefficient and heat conducting coefficient measuring
JP2007093509A (en) Thermal physical property measurement method and device
CN107085009B (en) Performance test device for heat pipe exchanger
Whitehead et al. Determination of thermal cross-coupling effects in multi-device power electronic modules
JP7217401B2 (en) Calorific value measuring method and calorific value measuring device
KR20140054777A (en) Test module of heat spreading sheets
KR20200136553A (en) Thermal conductivity measurement system and thermal conductivity measurement method thereof
JP2002014065A (en) Method and apparatus for measuring heating amount of electronic component
Gektin et al. Characterizing bulk thermal conductivity and interface contact resistance effects of thermal interface materials in electronic cooling applications
CN103278529B (en) Magnetic levitation heat insulation device
Sikka Advanced thermal tester for accurate measurement of internal thermal resistance of high power electronic modules
Ouyang et al. Transient thermal characterization of a fcBGA-H device
US8814425B1 (en) Power measurement transducer
US9069039B1 (en) Power measurement transducer
US8814424B1 (en) Power measurement transducer
Marin et al. Characterization of Gap Pad Thermal Interface Material by Enabling Pressure and Thermal Mapping Capabilities
Strehlow Measuring the Thermal Resistance of a Vapor Envelope
US20050139586A1 (en) Heat generator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008511499

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200880128982.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08712069

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08712069

Country of ref document: EP

Kind code of ref document: A1