WO2017199956A1 - 恒温槽型電子機器 - Google Patents

恒温槽型電子機器 Download PDF

Info

Publication number
WO2017199956A1
WO2017199956A1 PCT/JP2017/018372 JP2017018372W WO2017199956A1 WO 2017199956 A1 WO2017199956 A1 WO 2017199956A1 JP 2017018372 W JP2017018372 W JP 2017018372W WO 2017199956 A1 WO2017199956 A1 WO 2017199956A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
feedback
tic
signal
tout
Prior art date
Application number
PCT/JP2017/018372
Other languages
English (en)
French (fr)
Inventor
昌明 神谷
竜司 有吉
Original Assignee
インターチップ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターチップ株式会社 filed Critical インターチップ株式会社
Priority to US16/301,902 priority Critical patent/US11165388B2/en
Publication of WO2017199956A1 publication Critical patent/WO2017199956A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/364Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device the amplifier comprising field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude

Definitions

  • the present invention relates to a thermostatic chamber type electronic device and is useful when applied to a thermostatic chamber crystal oscillator.
  • Crystal oscillators applied to crystal oscillators have the property that the characteristics of oscillation frequency with respect to temperature fluctuate greatly, and various techniques are used to compensate for this and ensure high-accuracy and stable frequency characteristics.
  • OCXO thermostatic chamber type crystal oscillation device
  • This type of OCXO is stored in a thermostatic chamber that is a housing by comparing the measured temperature related to the outside temperature measured by the temperature sensor with the set temperature and controlling the heat source so that the difference between the two is reduced.
  • the temperature of the quartz crystal resonator is held at a predetermined target temperature. More specifically, normally, a temperature sensor, a temperature setting unit where a predetermined target temperature is set, a comparator, a control means such as a transistor, a heater as a heat source, and the like are integrated together with an oscillation circuit that drives a crystal resonator. It is modularized, and the module is housed in a thermostat together with a crystal resonator.
  • the temperature in the module is mainly measured by a heater or the like based on the temperature detected by the temperature sensor due to the distance between the temperature sensor that detects the temperature in the module and the crystal oscillator. Even when the target temperature is controlled to a predetermined set temperature, a divergence occurs between the set temperature and the temperature of the crystal resonator that defines the oscillation frequency. This is because the temperature of the crystal resonator depends on various factors such as heat leakage from the thermostat.
  • a temperature signal output from a temperature sensor that detects the temperature in the module is taken into the arithmetic processing unit in order to control the amount of heat generated by the heater. Then, a predetermined calculation is performed on the basis of the internal temperature signal by the calculation processing unit using a correction function for each OCXO obtained in advance, and a correction signal representing the correction amount of the oscillation frequency is obtained. Based on this correction signal, for example, the control voltage of the voltage controlled crystal oscillator (VCXO) is controlled to correct the oscillation frequency.
  • VCXO voltage controlled crystal oscillator
  • Patent Document 1 employs OCXO as a basic structure and applies the concept of temperature compensation (TC) to obtain a stable and highly accurate oscillation frequency over a wide temperature range even when the ambient temperature changes. Devised to be able to.
  • Conventional technology that uses OCXO as the basic structure and devised to obtain a stable and accurate oscillation frequency over a wide temperature range even if the ambient temperature changes by applying the concept of temperature compensation (TC)
  • Patent Document 2 and Patent Document 3 there are Patent Document 3.
  • the OCXOs described in Patent Documents 1 to 3 apply the concept of temperature compensation (TC) on the premise that it is impossible to keep the temperature change of the crystal resonators included in these OCXOs constant. That is, by combining the concept of TC with OCXO, a stable and highly accurate oscillation frequency can be obtained over a wide temperature range even if the ambient temperature changes. For this reason, the new subject that the structure for compensation becomes complicated arises.
  • TC temperature compensation
  • Patent Document 2 and Patent Document 3 Such a problem also exists in Patent Document 2 and Patent Document 3 in which TC is performed under the assumption that it is impossible to make the temperature change of the crystal resonator constant. This is because it is necessary to generate a correction function for performing temperature correction of the oscillation frequency of the crystal resonator whose temperature characteristics are nonlinear.
  • the present invention greatly varies in characteristics with respect to temperature, such as a crystal resonator housed in a thermostat, even when heat leaks from the thermostat to the outside air.
  • An object of the present invention is to provide a thermostatic bath type electronic apparatus that can maintain a constant temperature of a device and guarantee a stable operation of the device.
  • the present invention is based on new knowledge obtained by analyzing the relationship between the flow of thermal energy and the temperature of each part in the conventional OCXO.
  • First, the analysis result and new knowledge based on the analysis result will be described.
  • the contents of symbols used in the following description are defined.
  • Tr Heat source (heater) temperature Tht Measured temperature by temperature sensor (circuit temperature in IC based on outside air temperature): Tic Temperature of the crystal unit in the thermostatic chamber: Tx External temperature of the temperature chamber (outside temperature): Tout Quartz crystal target temperature (target): Ttarg Circuit gain: B
  • P Thermal resistance between the heat source and the outside of the temperature chamber ⁇ ho Thermal resistance between heat source and temperature sensor: ⁇ hc Thermal resistance between the heat source and the crystal unit: ⁇ hx Thermal resistance between the temperature sensor and the outside of the temperature chamber: ⁇ co Thermal resistance between the crystal unit and the outside of the thermostatic chamber: ⁇ xo Module coefficient (constant) determined by thermal resistance between components when mounting components: M (Mht, Mic, Mx)
  • FIG. 3 is a schematic diagram illustrating the relationship between the flow of thermal energy and the temperature of each part in OCXO.
  • the heat generated by the heat source 1 usually formed by a heater is transmitted to the temperature sensor 2 based on the thermal resistance ⁇ hc, to the crystal resonator 3 based on the thermal resistance ⁇ hx, and further to the thermal resistance ⁇ ho.
  • Each part leaks to the outside air 4 outside the thermostat 100, and each part is heated.
  • the outside air 4 is heated by heat leaking from the temperature sensor 2 based on the thermal resistance ⁇ co, and from the quartz oscillator 3 by heat leaking from the thermostat 100 based on the thermal resistance ⁇ xo.
  • Tic Tout + P ⁇ ⁇ ho ⁇ ⁇ co / ( ⁇ hc + ⁇ co)
  • Tx Tout + P ⁇ ⁇ ho ⁇ ⁇ xo / ( ⁇ hx + ⁇ xo)
  • Tx P ⁇ Mx + Tout (4)
  • Fig. 4 shows the relationship between the module coefficient M and the temperatures Tht, Tic and Tx as described above.
  • the magnitude relationship of the module coefficient M is depicted as Mx ⁇ Mic ⁇ Mht in FIG. 4, but the magnitude relationship depends on the arrangement of component parts of the OCXO. change. However, there is no difference in that everything is basically expressed by a linear function relationship.
  • OCXO detects a temperature difference between the set temperature Tr and the actually measured temperature Tic detected by the temperature sensor 2 and supplies a current that reduces the temperature difference to the heat source (heater) 1, so that the inside of the thermostatic chamber 100.
  • the temperature is kept constant.
  • Tr-Tic -B ⁇ Mic ⁇ (Tr-Tic) + Tr-Tout
  • Tr-Tic Tr-Tic
  • the difference between the set temperature Tr and the measured temperature Tic of the temperature sensor 2 is proportional via a proportional constant ⁇ 1 / (1 ⁇ Mic ⁇ B) ⁇ .
  • the measured temperature Tic represented by the equation (7) is Tr having an inclination ⁇ ⁇ 1 / (1 + Mic ⁇ B) ⁇ with the set value Tr being a constant as an intercept. -Linear function for Tout.
  • Tic ⁇ Tx P ⁇ (Mic-Mx)
  • Tic-Tx P ⁇ (Mic-Mx)
  • Tx Tic-B ⁇ (Mic-Mx) ⁇ (Tr-Tic)
  • Tr-Tx ⁇ 1 + B ⁇ (Mic-Mx) ⁇ ⁇ (Tr-Tic)
  • the above equation (9) indicates that the temperature difference between the set temperature Tr and the temperature Tx of the crystal unit 3 is also a proportional constant of ⁇ 1 + B ⁇ (Mic-Mx) ⁇ ⁇ ⁇ 1 / (1 + Mic ⁇ B) ⁇ . It is shown that the temperature difference (Tr-Tout) between the set temperature Tr and the outside air temperature Tout is proportional to ⁇ .
  • the temperature Tx of the crystal unit 2 represented by the equation (9) has an inclination ⁇ ⁇ 1 + B ⁇ (Mic ⁇ Mx) ⁇ ⁇ It is a linear function for Tr-Tout with ⁇ 1 / (1 + Mic ⁇ B) ⁇ .
  • the inclination of the temperature Tx of the crystal unit 3 is drawn so as to be larger than the actually measured temperature Tic of the temperature sensor 2, but these magnitude relationships are related to the component layout design of the OCXO module. It depends on how it depends. However, there is no difference that the above relationship is expressed by a linear function relationship.
  • the above-mentioned module coefficient M and circuit gain B actually take only a certain finite value. Therefore, as is apparent from FIG. 5, the temperature Tx of the crystal unit 3 cannot be set to a constant value as long as the set temperature Tr is set to a certain fixed value as in the prior art.
  • the difference (Tr-Tout) in the outside air temperature Tout is large, that is, when the outside air temperature Tout is low, the temperature of the crystal unit 3 is always lowered. This is an essential problem that the temperature of the crystal unit 3 cannot be made constant in the conventional OCXO.
  • the temperature difference (Tr ⁇ Tic) between the set temperature Tr and the measured temperature Tic of the temperature sensor 2 is monitored, and the temperature difference (Tr ⁇ Tic) is multiplied by a predetermined feedback coefficient.
  • the feedback amount ⁇ T is fed back and added to the target temperature Ttarg which is the final temperature of the crystal resonator 3 to construct a feedback system for generating a new set value Tr.
  • the temperature Tx of the crystal unit 3 can be converged to the target temperature Ttarg, which is a fixed value set as an initial set value. That is, by changing the set temperature Tr as described above, as shown in FIG.
  • the temperature Tx of the crystal unit 3 has a slope of zero.
  • the characteristics can be That is, even if the temperature difference (Tr ⁇ Tout) between the set temperature Tr and the outside air temperature Tout changes, the temperature Tx of the crystal unit 3 can be held at the target value Ttarg that is a constant value. Therefore, even if the temperature difference (Tr-Tout) between the set temperature Tr and the outside air temperature Tout changes, the temperature of the crystal unit 3 can be set as the target temperature Ttarg, and the oscillation frequency can be kept constant with high accuracy. Can do.
  • the present invention based on the above principle is characterized by the following points. 1) The measured temperature based on the outside temperature measured by the temperature sensor is compared with the set temperature. The temperature is stored in a thermostatic chamber that is controlled so that the difference between the two is reduced. Is a thermostatic bath electronic device having a control system for controlling the temperature of the device that changes to a target temperature that is a predetermined fixed value, The control system is configured such that the target temperature is a fixed value so that the set temperature increases when the measured temperature decreases, and the set temperature decreases when the measured temperature increases. Adding a predetermined feedback amount ( ⁇ T) to the temperature (Ttarg) to generate a new set temperature for comparison with the measured temperature.
  • ⁇ T predetermined feedback amount
  • the control system is A comparator that compares the measured temperature signal V_Tic representing the measured temperature with the set temperature signal V_Tr representing the set temperature and sends a temperature difference signal representing the temperature difference between the two; Control means for controlling the calorific value of the heat source housed in the thermostatic chamber based on the temperature difference signal;
  • a feedback system having a feedback constant setting unit that generates a feedback amount signal representing the feedback amount based on the temperature difference signal;
  • An adder that adds the target temperature signal V_Ttarg representing the target temperature set in the temperature setting unit and the feedback amount signal V_ ⁇ T to generate the set temperature signal V_Tr and that serves as one input of the comparator;
  • a temperature sensor that measures the temperature based on the outside air temperature, generates the measured temperature signal V_Tic, and inputs the other input of the comparator;
  • the thermal resistance between the heat source and the outside of the thermostat is ⁇ ho
  • the thermal resistance between the temperature sensor and the outside of the thermostat is ⁇ co
  • the heat source and the temperature The thermal resistance between the sensor and ⁇ hc is defined as ( ⁇ ho ⁇ ⁇ co) / ( ⁇ hc + ⁇ co) as a module coefficient Mic
  • B a gain of heat with respect to the temperature difference
  • 1 / (1 + Mic ⁇ B)
  • Fb When the gain of the feedback system is used, the relation ⁇ − 1 ⁇ (B ⁇ ⁇ ⁇ Fb) ⁇ 1 ⁇ is satisfied.
  • the heat source is formed by a heater, and the control means controls a current supplied to the heater.
  • the amount of feedback is generated based on the current supplied to the heater or the power consumed by the heater.
  • the feedback amount is generated based on the output of the comparator that is directly fed back to the feedback system.
  • clamping means is provided in the feedback system so that the feedback amount ( ⁇ T) ⁇ 0.
  • the device is a crystal resonator.
  • a new set value is generated by adding a predetermined feedback amount to a target temperature that is a fixed value, and the new set value is compared with the actually measured temperature so that the temperature difference between the two becomes small. Since the temperature inside is controlled, the temperature difference of the device stored in the thermostat can be kept constant with the temperature difference being zero. As a result, the temperature characteristics of the device can be easily made constant even when the outside air temperature fluctuates, and stable operation over a long period of time can be ensured. In particular, when the device is a crystal resonator, an oscillation signal with a high-accuracy frequency can be continuously generated stably.
  • FIG. 6 is a characteristic diagram showing a relationship between a module coefficient M and a temperature T. It is a characteristic view which shows the relationship of each part temperature with respect to the difference of preset temperature and external temperature in OCXO which concerns on a prior art. It is a characteristic view which shows the relationship of each part temperature with respect to the difference of preset temperature and external temperature in OCXO which concerns on this invention.
  • FIG. 1 is a block diagram showing a thermostatic chamber type crystal oscillator (OCXO) according to a first embodiment of the present invention.
  • the thermostat 100 houses a crystal resonator 3 driven by an oscillation circuit 12 together with a control system 101 for controlling the internal temperature of the thermostat 100 at a constant level.
  • the crystal unit 3 is a device affected by the outside air temperature (environment temperature) Tout.
  • the control system 101 compares the measured temperature signal V_Tic representing the measured temperature Tic based on the outside air temperature Tout detected by the temperature sensor 2 with the set temperature signal V_Tr representing the set temperature Tr by the comparator 8, and the temperature difference (Tr The amount of heat generated by the heater (heat source) 1 is controlled via the transistor (control means) 10 so that the temperature difference signal V_ (Tr-Tic) representing -Tic) becomes small.
  • the control system 101 according to the present embodiment is configured such that when the measured temperature Tic is lowered, that is, when the outside air temperature Tout is lowered, the target temperature signal V_Ttarg representing the target temperature Ttarg so that the set temperature Tr becomes higher. Is added with a feedback amount signal V_ ⁇ T representing a predetermined feedback amount ⁇ T by the adder 6 to generate a new set temperature signal V_Tr to be compared with the actually measured temperature signal V_Tic.
  • the adder 6 adds a predetermined feedback amount signal V_ ⁇ T to the target temperature signal V_Ttarg so that the set temperature Tr becomes low. Then, a new set temperature signal V_Tr to be compared with the actually measured temperature signal V_Tic is generated.
  • the target temperature Ttarg is a target temperature in the thermostat 100, that is, a target temperature of the crystal unit 3, and is set in the temperature setting unit 5 as a fixed value.
  • the new set temperature signal V_Tr generated by adding the feedback amount signal V_ ⁇ T to the target temperature signal V_Ttarg is one input of the comparator 8.
  • a measured temperature signal V_Tic is supplied to the other input of the comparator 8.
  • the comparator 8 outputs the temperature difference signal V_ (TR ⁇ Tic) generated by comparing the new set temperature signal V_Tr and the actually measured temperature signal V_Tic.
  • the temperature difference signal V_ (TR ⁇ Tic) is multiplied by a predetermined circuit gain in the circuit gain setting unit 9 and supplied to the gate of the transistor (control means) 10.
  • the circuit gain set in the circuit gain setting unit 9 is the gain B of the circuit system formed by the comparator 8, the circuit gain setting unit 9, the transistor 10, and the heater 1. 1 for converting the electric power to be consumed by the electric power.
  • a current corresponding to the temperature difference signal V_ (TR-Tic) flows through the heater (heat source) 1 to generate a predetermined amount of heat to heat the interior of the thermostatic chamber 100.
  • the feedback system 102 in this embodiment includes a temperature difference detection unit 11, a phase compensation unit 13, and a feedback constant setting unit 7.
  • the temperature difference detection unit 11 can consider that the electric power consumed by the heater 1 is the amount of heat leaked by the heat leak 200 from the thermostat 100 to the outside air 4, so the temperature difference (Tr-Tic)
  • the temperature difference signal V_ (Tr-Tic) representing the temperature difference (Tr-Tic) is generated by detecting the amount of electric power or current consumed to reduce the voltage and fed back.
  • the temperature difference signal V_ (Tr ⁇ Tic) of the feedback system 102 is subjected to a predetermined phase compensation (delay processing) by the phase compensation unit 13 and then multiplied by a predetermined feedback constant by the feedback constant setting unit 7.
  • V_ ⁇ T is supplied to the adder 6.
  • the feedback coefficient set in the feedback constant setting unit 7 is for adjusting the feedback constant Fb of the feedback system 102 to be a predetermined value.
  • the phase compensation unit 13 ensures the realization of predetermined feedback control in the feedback system 102 by the following function. That is, the change of the feedback signal V_ ⁇ T in the feedback system 102 which is an electrical feedback path is generally faster than the change of the actually measured temperature signal V_Tic based on the temperature feedback path 201 from the heater (heat source) 1 to the temperature sensor 2. Therefore, in this state, there is a possibility that the output of the comparator 8 that compares the two and outputs the temperature difference oscillates. Therefore, in order to avoid such an oscillation phenomenon with certainty, in this embodiment, the electrical change of the feedback signal V_ ⁇ T in the feedback system 102 follows the change of the measured temperature signal V_Tic based on the temperature feedback path 201 with a delay. Thus, the phase compensation unit 13 is provided. Oscillation phenomenon at the output of the comparator 8 can be reliably avoided by the predetermined phase compensation in the phase compensation unit 13.
  • Ordinary OCXO includes a heater 1 for heating, and the temperature of the thermostatic bath 100 is controlled by a balance between heating by the heater 1 and natural cooling due to leakage from the thermostatic bath 100 to the outside air 4. That is, it is normal that no positive cooling means such as a cooler is provided. Therefore, when the outside air temperature Tout becomes very high and the actually measured temperature Tic by the temperature sensor 2 becomes larger than the set temperature Tr, in this embodiment, the current of the heater 1 becomes zero and the heating is stopped. From there, there is no cooler function even if the outside temperature Tout further rises, so that the measured temperature Tic also rises almost following the outside temperature Tout.
  • the set value Tr which is one input of the comparator 8 is made variable based on the feedback amount ⁇ T obtained by the feedback system 102. That is, a predetermined feedback amount ⁇ T is added to the target temperature Ttarg which is a fixed value by the adder 6 to generate a new set value Tr, and the new set value Tr and the measured temperature Tic are compared by the comparator 8.
  • the temperature in the thermostatic bath 100 is controlled so that the temperature difference (Tr-Tic) is small.
  • the temperature of the crystal unit 3 housed in the thermostat 100 can be kept constant with the temperature difference (Tr-Tic) being zero.
  • the temperature characteristics of the crystal unit 3 can be easily made constant, and the oscillation operation of the crystal unit 1 at a stable constant frequency over a long period can be ensured. .
  • the feedback amount ⁇ T of the feedback system 102 needs to converge to a constant value without diverging in order to constantly exhibit the operation and effect of the present embodiment.
  • the convergence condition is that a relationship including the expression ⁇ − 1 ⁇ (B ⁇ ⁇ ⁇ Fb) ⁇ 1 ⁇ is established in a circuit including the feedback system 102.
  • the thermal resistance between the heater (heat source) 1 and the outside of the thermostat 100 (outside air 4) is ⁇ ho
  • the thermal resistance between the temperature sensor 2 and the outside of the thermostat 100 (outside air 4) is ⁇ co, the heater.
  • the convergence condition was derived from the following considerations.
  • a temperature difference (Tr ⁇ Tic) between the set temperature Tr and the actually measured temperature Tic measured by the temperature sensor 2 is detected by the comparator 8 and the temperature difference (Tr ⁇ Tic).
  • the feedback constant setting unit 7 multiplies the signal by a predetermined feedback coefficient to generate a feedback amount ⁇ T.
  • Tr-Tic ⁇ ⁇ (Tr-Tout)
  • 1 / (1 + Mic ⁇ B)
  • the amount of heat generated by the heat source 1 is calculated from the equation (5).
  • P B ⁇ (Tr-Tic) Therefore, the temperature difference between the set temperature Tr and the actually measured temperature Tic can be actually detected by the measured value of the power of the heat source 1 or the like.
  • the conditions for preventing the set temperature Tr from divergence will be described in terms of a series with an initial value when there is no feedback operation.
  • the amount of heat generated when there is no feedback operation is P (0)
  • a constant feedback coefficient is multiplied from the initial value to update the set value Tr every time n times. Let us first consider the repetition, and then find the limit where n is infinite.
  • the target temperature Ttarg is a certain fixed value.
  • P (0) B ⁇ ⁇ ⁇ (Ttarg-Tout)
  • Tr (1) Ttarg + Fb ⁇ P (0)
  • the heat quantity P (n) after repeating the feedback operation n times is a geometric series multiple of the initial value P (0) with the above (B ⁇ ⁇ ⁇ Fb) as a common ratio.
  • P ( ⁇ ) and Tr ( ⁇ ) represented by an infinite series converge to the following values.
  • P ( ⁇ ) ⁇ 1 / (1-B ⁇ ⁇ ⁇ Fb) ⁇ ⁇ P (0)
  • Tr ( ⁇ ) Ttarg + ⁇ Fb / (1-B ⁇ ⁇ ⁇ Fb) ⁇ ⁇ P (0)
  • 1 / (1 + Mic ⁇ B)
  • P (0) B ⁇ ⁇ ⁇ (Ttarg-Tout)
  • ⁇ Fb / (1-B ⁇ ⁇ ⁇ Fb) ⁇ ⁇ P (0 ) Is the feedback amount ⁇ T.
  • FIG. 2 is a block diagram showing a thermostatic chamber type crystal oscillator according to a second embodiment of the present invention.
  • the feedback system 104 in this embodiment is configured to directly feed back the temperature difference signal V_ (Tr ⁇ Tic) that is the output of the comparator 8. That is, the feedback amount signal V_ ⁇ T is generated based on the output of the comparator 8 fed back to the feedback system 104 directly.
  • the feedback system 104 in the present embodiment is provided with a clamp circuit 14 together with the phase compensator 13 having the same function as in the first embodiment.
  • the clamp circuit 14 is configured to clamp the value to zero or more so that the feedback amount ( ⁇ T) ⁇ 0 so that the temperature difference signal V_ (Tr ⁇ Tic) does not become negative.
  • the temperature of the crystal unit 3 housed in the thermostat 100 can be kept constant with the temperature difference (Tr-Tic) being zero (see FIG. 6).
  • the clamp circuit 14 is necessary for the following reason.
  • the set value Tr is not fixed at the target temperature Ttarg and is set to a very low value. Will be.
  • Tr Ttarg + ⁇ T (Ttarg is a fixed initial set value and ⁇ T is the feedback amount), when controlling the set temperature Tr, it is normal to have a heater function but not a positive cooling function.
  • the circuit should be configured so that the feedback amount ⁇ T ⁇ 0.
  • the case where the device influenced by the outside air temperature (environment temperature) Tout is taken as an example of the crystal unit 3 and OCXO is used as the thermostatic bath electronic device has been described, but of course it is not limited to OCXO.
  • the present invention can be applied without any special restriction when it is desired to keep the temperature of a device stored in the thermostat 100 constant, that is, when a device whose characteristics change depending on the outside air temperature Tout is stored. In this case, the characteristics of the housed device can be stabilized.
  • this type of device is a piezoelectric sensor. This is because the detection accuracy of the piezoelectric sensor also depends on the outside air temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

【課題】 恒温槽内に収納される水晶振動子の温度を一定に保持して、水晶振動子の安定的な動作を保証し得る恒温槽型水晶発振装置を提供する。 【解決手段】 温度センサ2で計測した外気温4に基づく実測温度Ticと、設定温度Trとを比較し、両者の差が小さくなるように制御された恒温槽100内に収納されており、特性が環境温度により影響を受ける水晶振動子3の温度が所定の固定値である目標温度Ttargになるように制御する制御系101を有する恒温槽型水晶発振装置であって、制御系101は、実測温度Ticが低下しているときには、設定温度Trが高くなるように、また実測温度Ticが上昇しているときには、設定温度Trが低くなるように、固定値である目標温度Ttargに所定の帰還量δTを加算して実測温度Ticと比較する新たな設定温度Trを生成する。

Description

恒温槽型電子機器
 本発明は恒温槽型電子機器に関し、恒温槽型水晶発振装置に適用して有用なものである。
  水晶発振装置に適用される水晶振動子は温度に対する発振周波数の特性が大きく変動するという性質を有しており、これを補償して高精度で安定的な周波数特性を担保するため、種々の技術が提案されている。従来より知られている恒温槽型水晶発振装置(以下、OCXOと称す)もその一種である(例えば特許文献1参照)。
 この種のOCXOは、温度センサで計測した外気温に関連する実測温度と、設定温度とを比較し、両者の差が小さくなるように熱源を制御して筐体である恒温槽内に収納されている水晶振動子の温度を所定の目標温度に保持するものである。さらに詳言すると、通常、温度センサ、所定の目標温度が設定されている温度設定部、コンパレータ、トランジスタ等の制御手段、熱源であるヒータ等を、水晶振動子を駆動する発振回路とともに集積してモジュール化し、当該モジュールを水晶振動子とともに恒温槽内に収納して構成している。
 かかるOCXOでは、主にモジュール内の温度を検出する温度センサと水晶振動子の距離が離間していることに起因して温度センサで検出した温度に基づきモジュール内の温度をヒータ等により水晶振動子の目標温度である所定の設定温度に制御しても、この設定温度と、発振周波数を規定する水晶振動子の温度との間には乖離が生起される。水晶振動子の温度は、恒温槽からの熱の漏洩等、種々の要因に左右されるからである。
 このように従来技術に係るOCXOでは、不可避的に恒温槽からの熱の漏洩を生起しているので、水晶振動子を一定温度に保持し続けることは困難である。このため、発振周波数の変動の原因となる。
 そこで、特許文献1に係るOCXOでは、ヒータの発熱量を制御すべくモジュール内の温度を検出する温度センサが出力する温度信号を演算処理部にも取り込んでいる。そして、予め求めておいた各OCXO毎の補正関数を利用して前記演算処理部で前記内部温度信号に基づき所定の演算を行い、発振周波数の補正量を表す補正信号を得る。この補正信号に基づき、例えば電圧制御型水晶発振器(VCXO)の制御電圧を制御して発振周波数の補正を行っている。すなわち、特許文献1に開示するOCXOは、OCXOを基本構造として採用するとともに温度補償(TC)の考え方を適用して周囲温度が変化しても広い温度範囲で安定した高精度の発振周波数を得ることができるように工夫している。OCXOを基本構造として採用するとともに温度補償(TC)の考え方を適用して周囲温度が変化しても広い温度範囲で安定した高精度の発振周波数を得ることができるように工夫している従来技術として他にも特許文献2、特許文献3が存在する。
米国特許第7,573,345号明細書 米国特許公開2003/0197567号公報 特開2010-213102号公報
 特許文献1~3に記載するOCXOは、これらが有する水晶振動子の温度変化を一定にすることが不可能であるという前提で、温度補償(TC)の考え方を適用している。すなわち、OCXOにTCの考え方を組み合わせることで、周囲温度が変化しても広い温度範囲で安定した高精度の発振周波数を得ることができるようにしている。このため、補償のための構成が複雑になるという新たな課題を生起する。
 例えば、特許文献1に開示されたOCXOでは、水晶振動子の発振周波数の温度特性が非線形となることと相俟って、温度補償のための補正関数を作成するのに周囲温度の複数の計測点における各OCXO毎の発振周波数をそれぞれ検出する必要がある。したがって、この補正関数の作成が面倒である。
 かかる問題は、水晶振動子の温度変化を一定にすることが不可能であるという前提の下で、TCを実施する特許文献2および特許文献3においても同様に存在する。温度特性が非線形となる水晶振動子の発振周波数の温度補正を行うための補正関数を生成する必要があるからである。
  本発明は、上記従来技術の課題に鑑み、恒温槽から外気への熱の漏洩を生起している場合でも、恒温槽内に収納される水晶振動子等、温度に対して特性が大きく変動するデバイスの温度を一定に保持して、前記デバイスの安定的な動作を保証し得る恒温槽型電子機器を提供することを目的とする。
 本発明は、従来のOCXOにおける熱エネルギの流れと各部の温度との関係を分析することにより得た新たな知見に基づくものである。そこで、まず前記分析結果およびこれに基づく新たな知見に関して説明する。ここで、まず以下の説明で用いる記号の内容を定義しておく。
 <記号の定義>
 ここで、まず以下の説明で用いる記号の内容を定義しておく。
設定温度:Tr
熱源(ヒータ)の温度:Tht
温度センサによる実測温度(外気温に基づくIC内の回路温度):Tic
恒温槽内の水晶振動子の温度:Tx
恒温槽の外部温度(外気温):Tout
水晶振動子の目標温度(ターゲット):Ttarg
回路ケ゛イン:B
熱源が発生する熱量(消費電力):P
熱源と恒温槽の外部との間の熱抵抗:Θho
熱源と温度センサとの間の熱抵抗:Θhc
熱源と水晶振動子との間の熱抵抗:Θhx
温度センサと恒温槽の外部との間の熱抵抗:Θco
水晶振動子と恒温槽の外部との間の熱抵抗:Θxo
部品実装時の各部品間熱抵抗で決まるモジュール係数(定数):M(Mht, Mic, Mx)
 <OCXOにおける熱エネルギの流れ>
 図3は、OCXOにおける熱エネルギーの流れと各部の温度との関係を説明する示す模式図である。同図に示すように、通常、ヒータで形成される熱源1で発生する熱は、熱抵抗Θhcに基づき温度センサ2に、熱抵抗Θhxに基づき水晶振動子3に、さらに熱抵抗Θhoを介して恒温槽100の外部の外気4にそれぞれ漏出し、各部を加熱する。同時に、温度センサ2からは熱抵抗Θcoに基づき漏出する熱で、また水晶振動子3からは熱抵抗Θxoに基づき恒温槽100から漏出する熱で外気4を加熱する。
 <外気温が一定の時の温度の関係>
 まず、外気温4が一定となり平衡状態となった時の各部の温度の関係について考察する。
 この時、熱源1(温度Tht)が発生する熱量と、熱源1から外気4に漏洩する総熱量は釣りあっているので、下式の関係が成立する。
P = (Tht - Tout) / Θho
 上式をThtについて解いて下式を得る。
Tht = P・Θho + Tout・・・(1)
 ここで、熱抵抗Θhoを熱源1に関する定数をモジュール係数Mhtと定義すると、上式(1)は下式(2)で表わされる。
Tht = P・Mht + Tout・・・(2)
 この場合は外気温Toutが一定となった平衡状態であるから、外気温Toutは定数、発生する熱量Pも、ここでは定数である。すなわち、熱源(ヒータ)1の温度Thtは、定数である熱量Pを傾きとし、定数である外気温Toutをy切片とした、モジュール係数Mについての一次関数となっている(M=Mht)。
 次に、熱源1から回路が受け取る熱量、すなわち温度センサ2が受け取る熱量と、温度センサ2から外気4に流れ出る熱量が釣り合っていることから下式の関係が成立する。
(Tht - Tic) / Θhc = (Tic - Tout) / Θco
 ここで、式(1)の熱源1の温度Thtを代入して実測温度Ticについて解くと下式を得る。
Tic = Tout + P・Θho・Θco / (Θhc + Θco)
 ここで、モジュール係数Mic = Θho・Θco / (Θhc + Θco) と定義すると、次式を得る。
Tic = P・Mic + Tout・・・(3)
 式(3)は、実測温度Ticが、式(2)の場合と同様に、定数である熱量Pを傾きとし、定数である外気温Toutをy切片とした、モジュール係数M(=Mic)についての一次関数となることを示している。
 水晶振動子3の部分の温度Txも全く同様にして、次式で表すことができる。
Tx =Tout+ P・Θho・Θxo / (Θhx + Θxo)
 ここで、Mx = Θho・Θxo / (Θhx + Θxo) と定義すると、水晶振動子3の温度Txは次式(4)で表される。
Tx = P・Mx + Tout・・・(4)
 上式(4)によれば、水晶振動子3の温度Txも、定数である熱量Pを傾きとし、定数である外気温Toutをy切片とした、モジュール係数M(=Mx)についての一次関数となっている。
 上述の如きモジュール係数Mと温度Tht、Tic、Txとの関係を図4に示す。なお、同図に示す場合のモジュール係数Mの大小関係は、図4では、Mx<Mic<Mhtとなるように描いているが、これらの大小関係は、OCXOの構成部品配置等に依存して変わる。ただ、基本的に全てが一次関数関係で表わされることには相違はない。
 <外気温が変動した時の温度の関係>
 次に、外気温Toutが変動した場合の、一般的なOCXOの回路動作を考察する。OCXOは、設定温度Trと温度センサ2により検出された実測温度Ticとの温度差を検知し、この温度差が小さくなるような電流を熱源(ヒータ)1に供給することで、恒温槽100内の温度を一定に保持するように構成してある。
 ここで、一定の電源電圧の下での動作を仮定すると、熱エネルギとなる電力はV・Iで表されるので、恒温槽100内の温度を一定に保持することは、設定温度Trと実測温度Ticの温度差(Tr-Tic)に比例した電力を発生するようにしていることと同義である。すなわち、所定の電力を消費して次式(5)で示す熱量Pを発生する。
P=B・(Tr - Tic)・・・(5)
 式(5)の関係を式(3)に代入することで下式を得る。
Tic = B・Mic・(Tr - Tic) + Tout
 上式の辺々を設定温度Trから引くことで下式を得る。
Tr - Tic = -B・Mic・(Tr - Tic) + Tr - Tout
 上式をTr - Tic について解いて下式(6)を得る。
Tr - Tic = {1/(1 + Mic・B)}・(Tr - Tout)・・・(6)
 上式(6)を変形して次式(7)を得る。                
Tic = -{1/(1 + Mic・B)}・(Tr - Tout) + Tr・・・(7)
 上式(7)を参照すれば、設定温度Trと温度センサ2の実測温度Ticとの差は、{1/(1 - Mic・B)} なる比例定数を介して比例している。
 すなわち、式(7)で表される実測温度Ticは、図5に示すように、定数である設定値Trを切片として、傾き -{1/(1 + Mic・B)}を持った、Tr-Toutに対する一次関数となる。
 一方、温度センサ2の実測温度Ticと水晶振動子3の温度Txとの差(Tic-Tx)は、式(3)と式(4)から下式のように表すことができる。
Tic - Tx = P・(Mic - Mx)
 上式に式(5)を代入して温度Txについて解くと下式を得る。
Tx = Tic - B・(Mic - Mx)・(Tr - Tic)
 さらに、上式を設定温度Trから辺々引いて整理することで下式を得る。
Tr - Tx = {1 + B・(Mic - Mx)}・(Tr - Tic)
 さらに、上式に式(6)を代入することで下式(8)を得る。
Tr - Tx = {1 + B・(Mic - Mx)}・{1/(1 + Mic・B)}・(Tr &#8211; Tout)・・・(8)
 上式(8)を変形することで、最終的に次式(9)を得る。
Tx = -{1 + B・(Mic - Mx)}・{1/(1 + Mic・B)}・(Tr - Tout) + Tr・・・(9)
 上式(9)は、設定温度Trと水晶振動子3の温度Txとの温度差も、{1 + B・(Mic - Mx)}・{1/(1 + Mic・B)}なる比例定数を介して設定温度Trと外気温Tout、の温度差( Tr-Tout) に比例していることを示している。
 すなわち、式(9)で表される水晶振動子2の温度Txは、図5に示すように、定数である設定値Trを切片として、傾き -{1 + B・(Mic - Mx)}・{1/(1 + Mic・B)}を持った、Tr-Toutに対する一次関数となる。
 なお、図5に示す場合、水晶振動子3の温度Txの傾きの方が温度センサ2の実測温度Ticよりも大きいように描いているが、これらの大小関係はOCXOモジュールの部品配置設計などに依存して様々に変わる。ただ、上述の関係が一次関数関係で表わされることには相違ない。
 上述のモジュール係数Mや、回路ゲインBは、現実には或る有限の値しかとらない。したがって、図5を参照すれば明らかな通り、従来技術のように、設定温度Trを或る固定値に定めている以上、水晶振動子3の温度Txは一定値にできず、設定温度Trと外気温Toutの差(Tr-Tout)が大きい時、すなわち外気温Toutが低い時は、必ず水晶振動子3の温度が下がってしまう。これが、従来のOCXOにおいて水晶振動子3の温度を一定にすることができないという本質的な課題となっている。
 <本発明の原理>
 上述の如き従来技術に関する考察の結果、設定温度Trを或る固定値に定めている以上、水晶振動子3の温度Txは一定値にできないという結論を得、熱源1に供給する熱エネルギが熱源1から漏洩する熱量に等しいという知見に鑑み、設定温度Trと外気温Toutとの温度差(Tr-Tout)が大きい時、すなわち外気温Toutが低い時は、水晶振動子1の目標温度である設定温度Tr自体を、外気温Toutによって可変とすることに思い至った。
 すなわち、或る外気温Toutの時に、設定温度Trと温度センサ2の実測温度Ticとの温度差(Tr-Tic)を監視し、当該温度差(Tr-Tic)に所定の帰還係数を掛けた帰還量δTを帰還するとともに、最終的な水晶振動子3の温度である目標温度Ttargに加算して新たな設定値Trを生成する帰還系を構築する。かかる帰還系により、初期設定値として設定される固定値である目標温度Ttargに水晶振動子3の温度Txを収束させることができる。すなわち、上述の如く設定温度Trを変化させることにより、図6に示すように、外気温に基づくモジュールの回路温度である実測温度Ticが変化しても、水晶振動子3の温度Txを傾きゼロの特性にすることができる。すなわち、設定温度Trと外気温Toutとの温度差(Tr-Tout)が変化しても水晶振動子3の温度Txを一定値である目標値Ttargに保持することができる。したがって、設定温度Trと外気温Toutとの温度差(Tr-Tout)が変化しても水晶振動子3の温度を目標温度Ttargとすることができ、発振周波数を高精度に一定に保持することができる。
 上記原理に基づく本発明は、次の点を特徴とする。
1) 温度センサで計測した外気温に基づく実測温度と、設定温度とを比較し、両者の差が小さくなるように制御された筐体である恒温槽内に収納されており、環境温度により特性が変化するデバイスの温度が所定の固定値である目標温度になるように制御する制御系を有する恒温槽型電子機器であって、
 前記制御系は、前記実測温度が低下しているときには、前記設定温度が高くなるように、また前記実測温度が上昇しているときには、前記設定温度が低くなるように、固定値である前記目標温度(Ttarg)に所定の帰還量(δT)を加算して前記実測温度と比較する新たな設定温度を生成すること。
2) 上記1)において、前記制御系は、
 前記実測温度を表す実測温度信号V_Ticと、前記設定温度を表す設定温度信号V_Trとを比較して両者の温度差を表す温度差信号を送出するコンパレータと、
 前記温度差信号に基づき前記恒温槽内に収納された熱源の発熱量を制御する制御手段と、
 前記温度差信号に基づき前記帰還量を表わす帰還量信号を生成する帰還定数設定部を有する帰還系と、
 温度設定部に設定した目標温度を表わす目標温度信号V_Ttargと前記帰還量信号V_δTとを加算して前記設定温度信号V_Trを生成して前記コンパレータの一方の入力とする加算器と、
 外気温に基づく温度を実測するとともに、前記実測温度信号V_Ticを生成して前記コンパレータの他方の入力とする温度センサと、
を有すること。
3) 上記2)において、前記熱源から前記温度センサへの温度帰還の経路に基づく前記実測温度信号V_Ticの変化に、電気的帰還の経路である前記帰還系における前記帰還信号V_δTの変化が遅れて追従するよう前記帰還系に位相補償手段を設けたこと。
4) 上記2)または3)において、前記熱源と前記恒温槽の外部との間の熱抵抗をΘho、前記温度センサと前記恒温槽の外部との間の熱抵抗をΘco、前記熱源と前記温度センサとの間の熱抵抗をΘhcとして(Θho・Θco)/(Θhc+Θco)をモジュール係数Micと定義するとともに、B=前記温度差に対する熱量のゲイン、α=1/(1+Mic・B)、Fb=前記帰還系のゲインとするとき、{&#8722;1<(B・α・Fb)<1}の関係となっていること。
5) 上記2)~4)のいずれかにおいて、前記熱源は、ヒータで形成するとともに、前記制御手段は前記ヒータに供給する電流を制御するものとし、
 前記帰還量は、前記ヒータに供給される電流または前記ヒータで消費される電力に基づき生成すること。
6) 上記2)~4)のいずれかにおいて、前記帰還量は、前記帰還系に直接帰還した前記コンパレータの出力に基づき生成すること。
7) 上記6)において、前記帰還量(δT)≧0となるように、前記帰還系にクランプ手段を設けたこと。
8) 上記1)~7)のいずれかにおいて、前記デバイスは、水晶振動子であること。
 本発明では、固定値である目標温度に所定の帰還量を加算して新たな設定値を生成し、新たな設定値と実測温度とを比較して両者の温度差が小さくなるように恒温槽内の温度を制御しているので、前記温度差をゼロとして当該恒温槽内に収納するデバイスの温度を一定に保持することができる。この結果、外気温が変動してもデバイスの温度特性を簡単に一定にすることができ、当該デバイスの長期に亘る安定的な動作を保証することができる。特にデバイスが、水晶振動子の場合には、高精度の周波数の発振信号を継続して安定的に発生し得る。
本発明の第1実施形態に係る恒温槽型水晶発振装置を示すブロック図である。 本発明の第2実施形態に係る恒温槽型水晶発振装置を示すブロック図である。 OCXOにおける熱エネルギーの流れと各部の温度との関係を説明する示す模式図である。 モジュール係数Mと温度Tとの関係を示す特性図である。 従来技術に係るOCXOにおける設定温度と外気温との差に対する各部温度の関係を示す特性図である。 本発明に係るOCXOにおける設定温度と外気温との差に対する各部温度の関係を示す特性図である。
 以下、本発明の実施の形態を図面に基づき詳細に説明する。ここで、各実施形態において同一部分には同一番号を付し、重複する説明は省略する。
 なお、以下に示す各実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
 <第1実施形態>
 図1は本発明の第1実施形態に係る恒温槽型水晶発振装置(OCXO)を示すブロック図である。同図に示すように、恒温槽100内には、その内部温度を一定に制御するための制御系101とともに、発振回路12で駆動される水晶振動子3が収納してある。ここで、水晶振動子3が外気温(環境温度)Toutにより影響を受けるデバイスである。
 制御系101は、温度センサ2で検出した外気温Toutに基づく実測温度Ticを表す実測温度信号V_Ticと、設定温度Trを表す設定温度信号V_Trとをコンパレータ8で比較し、両者の温度差(Tr-Tic)を表す温度差信号V_(Tr-Tic)が小さくなるようにトランジスタ(制御手段)10を介してヒータ(熱源)1の発熱量を制御する。ここで、本実施形態における制御系101は、実測温度Ticが低下しているとき、すなわち外気温Toutが低下しているときには、設定温度Trが高くなるように目標温度Ttargを表す目標温度信号V_Ttargに所定の帰還量δTを表す帰還量信号V_δTを加算器6で加算して実測温度信号V_Ticと比較する新たな設定温度信号V_Trを生成する。
 一方、実測温度Ticが上昇しているとき、すなわち外気温Toutが上昇しているときには、設定温度Trが低くなるように、目標温度信号V_Ttargに所定の帰還量信号V_δTを加算器6で加算して実測温度信号V_Ticと比較する新たな設定温度信号V_Trを生成する。
 ここで、目標温度Ttargは、恒温槽100内の目標とする温度、すなわち水晶振動子3の目標とする温度であり、固定値として温度設定部5に設定されている。
 目標温度信号V_Ttargに帰還量信号V_δTを加算して生成する新たな設定温度信号V_Trは、コンパレータ8の一方の入力となる。コンパレータ8の他方の入力には実測温度信号V_Ticが供給されている。かくしてコンパレータ8は、新たな設定温度信号V_Trと実測温度信号V_Ticとの比較により生成される温度差信号V_(TR-Tic)を出力する。
 温度差信号V_(TR-Tic)は回路ゲイン設定部9で所定の回路ゲインを乗じてトランジスタ(制御手段)10のゲートに供給される。ここで、回路ゲイン設定部9に設定される回路ゲインは、コンパレータ8、回路ゲイン設定部9、トランジスタ10およびヒータ1で形成される回路系のゲインBにおいて、コンパレータ8の出力である温度をヒータ1で消費する電力に変換するためのものである。
 かくして、ヒータ(熱源)1には温度差信号V_(TR-Tic)に応じた電流が流れ、所定の熱量を発生して恒温槽100の内部を加熱する。
 本実施形態における帰還系102は温度差検出部11、位相補償部13および帰還定数設定部7からなる。ここで、温度差検出部11は、ヒータ1で消費される電力が、恒温槽100から外気4への熱漏洩200で漏出した熱量であると考えることができるので、温度差(Tr-Tic)を低減するために消費した電力量または電流を検出することで温度差(Tr-Tic)表す温度差信号V_(Tr-Tic)を生成して帰還している。帰還系102の温度差信号V_(Tr-Tic)は、位相補償部13で所定の位相補償(遅延処理)が行なわれた後、帰還定数設定部7で所定の帰還定数を乗じることで帰還信号V_δTとして加算器6に供給される。ここで、帰還定数設定部7に設定される帰還係数は、帰還系102の帰還定数Fbが所定値となるように調整するためのものである。
 ここで、位相補償部13は次の機能により帰還系102における所定の帰還制御の実現を担保している。すなわち、電気的な帰還の経路である帰還系102における帰還信号V_δTの変化は、ヒータ(熱源)1から温度センサ2への温度帰還の経路201に基づく実測温度信号V_Ticの変化よりも一般に速い。そこで、このままでは、両者を比較して温度差を出力するコンパレータ8の出力が発振してしまう可能性がある。そこで、かかる発振現象を確実に回避するため、本実施形態においては、帰還系102における帰還信号V_δTの電気的な変化が、温度帰還の経路201に基づく実測温度信号V_Ticの変化に遅れて追従するように位相補償部13を設けた。位相補償部13における所定の位相補償により確実にコンパレータ8の出力における発振現象を回避することができる。
 通常のOCXOは、加熱用のヒータ1を備えており、ヒータ1による加熱と、恒温槽100から外気4への漏洩による自然冷却との釣りあいで、恒温槽100の温度が制御されている。すなわち、クーラーなどの積極的な冷却手段は備えていないのが普通である。そこで、外気温Toutが非常に高くなり、温度センサ2による実測温度Ticが、設定温度Trよりも大きくなっていく場合、本実施形態ではヒータ1の電流がゼロになり加熱は停止される。そこから、さらに外気温Toutが上昇してもクーラー機能はないので、その先は、ほぼ外気温Toutに追従して実測温度Ticも上昇していくことになる。
 外気温Toutの感知を、ヒータ1に供給される電流、またはヒータ1で消費する電力でモニタしている本実施形態においては、Tic>Trとなった時点でヒータ1へ供給される電流(電力)がゼロに固定されるので、必然的にTr=Ttargに固定される。すなわち、冷却機能は持たないことに起因して制御系101全体の温度が制御できずに外気温Toutと同時に上昇してしまうことは回避できない。しかしながら、本実施形態においては、外気温Toutが目標温度Ttarg以下に低下すれば、直ぐに所定の恒温槽100に関する温度制御が開始され、一定温度を維持する機能が回復する。
 上述の如き本実施形態に係るOCXOにおいては、帰還系102により得られた帰還量δTに基づきコンパレータ8の一方の入力である設定値Trを可変とした。すなわち、固定値である目標温度Ttargに所定の帰還量δTを加算器6で加算して新たな設定値Trを生成し、新たな設定値Trと実測温度Ticとをコンパレータ8で比較して両者の温度差(Tr-Tic)が小さくなるように恒温槽100内の温度を制御している。この結果、図6に示すように、温度差(Tr-Tic)をゼロとして恒温槽100内に収納する水晶振動子3の温度を一定に保持することができる。かくして、外気温4が変動しても水晶振動子3の温度特性を簡単に一定にすることができ、水晶振動子1の長期に亘る安定的な一定周波数での発振動作を担保することができる。
 上述の如く本実施形態の作用・効果を常に発揮させるためには、帰還系102の帰還量δTが発散することなく一定値に収束することが必要である。かかる収束条件は、帰還系102を含む回路で、式{&#8722;1<(B・α・Fb)<1}の関係が成立していることである。
 ここで、ヒータ(熱源)1と恒温槽100の外部(外気4)との間の熱抵抗をΘho、温度センサ2と恒温槽100の外部(外気4)との間の熱抵抗をΘco、ヒータ(熱源)1と温度センサ2との間の熱抵抗をΘhcとして(Θho・Θco)/(Θhc+Θco)をモジュール係数Micと定義するとともに、B=回路ゲイン、α=1/(1+Mic・B)とする。  
 <収束条件の検討>
 上記収束条件は、以下の考察により導出した。
 本実施形態においては、ある外気温Toutの時に、設定温度Trと温度センサ2で計測する実測温度Ticとの温度差(Tr-Tic)をコンパレータ8で検出するとともに該温度差(Tr-Tic)に帰還定数設定部7で所定の帰還係数を掛けて帰還量δTを生成している。このとき、式(6)より下式の比例関係が成立している。
Tr - Tic = α・(Tr - Tout)
 但し、α= 1/(1 + Mic・B)
 このとき、熱源1が発生する熱量は、式(5)より、
P = B・(Tr - Tic)
であるから、設定温度Trと実測温度Ticとの温度差は、熱源1の電力の測定値などにより、実際に検出可能である。
 そこで、式(5)に式(6)を代入して下記のように式を変形する。
P = B・α・(Tr - Tout)
 次に、或る初期値、P(0), Ttarg の値に対し、一定の帰還係数を乗じて、設定温度Trを都度更新する帰還系102をn回繰り返すことを考える。
 このような帰還動作を加えた場合において、設定温度Trが発散しないための条件を、帰還動作がない場合を初期値とした級数にて説明する。ここで、帰還動作がない場合の発生熱量をP(0)、その時の設定温度Tr=Ttargとして、その初期値から一定の帰還係数を乗じて、設定値Trを都度更新する帰還動作をn回繰り返すことをまず考察し、次にnが無限大となる極限を求めることにする。
 ここで目標温度Ttargは或る一定の固定値である。
P(0) =  B・α・(Ttarg - Tout)
Tr(1)= Ttarg + Fb・P(0)
P(1) = B・α・(Tr(1) - Tout)
     = B・α・(Ttarg + Fb・P(0) - Tout)
     = B・α・(Ttarg - Tout)+ B・α・Fb・P(0)
   = (1 + B・α・Fb)・P(0)
Tr(2)= Ttarg + Fb・P(1)
     = Ttarg + Fb・(1 + B・α・Fb)・P(0)
P(2) = B・α・(Tr(2) - Tout)
     = B・α・(Ttarg + Fb・(1 + B・α・Fb)・P(0) - Tout)
     = B・α・(Ttarg - Tout) + B・α・Fb・(1 + B・α・Fb)・P(0)
     ={ 1 + B・α・Fb + (B・α・Fb)}・P(0)
Tr(3)= Ttarg + Fb・P(2)
     = Ttarg + Fb・{ 1 + B・α・Fb + (B・α・Fb)}・P(0)
P(3) = B・α・(Tr(3) - Tout)
     = B・α・[Ttarg + Fb・{ 1 + B・α・Fb + (B・α・Fb)}・P(0) - Tout]
     = B・α・(Ttarg - Tout) + B・α・Fb・{ 1 + B・α・Fb + (B・α・Fb)}
   ・P(0)
     = { 1 + B・α・Fb + (B・α・Fb) + (B・α・Fb)}・P(0)
・・・
P(n) = { 1 + B・α・Fb + (B・α・Fb) + (B・α・Fb) + ・・・ +(B・α・Fb)}・P(0)
 すなわち、帰還動作をn回繰り返した後の熱量P(n)は、初期値P(0)の、上記(B・α・Fb)を公比とした等比級数倍となっている。
 したがって、無限回の帰還を繰り返した後の収束条件は、
|(B・α・Fb)| < 1
但し、α= 1/(1 + Mic・B)
である。 
 上記収束条件の時、無限級数で表わされるP(∞)およびTr(∞)は下記値に収束する。
P(∞) = {1 / (1 - B・α・Fb)}・P(0)                                    
Tr(∞) = Ttarg + {Fb / (1 - B・α・Fb)}・P(0)                          
  ここで、α= 1/(1 + Mic・B), P(0) = B・α・(Ttarg - Tout)であり、また
 {Fb / (1 - B・α・Fb)}・P(0)が帰還量δTとなる。
 さらに、式(9)より、水晶振動子3の温度Txは次式で与えられる。
Tx(∞) = -{1 + B・(Mic - Mx)}・{1/(1 + Mic・B)}・(Tr(∞) - Tout) + Tr(∞)         = {1 + B・(Mic - Mx)}・{1/(1 + Mic・B)}・Tout + B・(Mic - Mx)・{1/(1 +
          Mic・B)}・Tr(∞)
       = {1 + B・(Mic - Mx)}・{1/(1 + Mic・B)}・Tout + B・(Mic - Mx)・{1/(1 +
         Mic・B)}・[Ttarg + {Fb / (1 - B・α・Fb)}・P(0)]       
       = {1 + B・(Mic - Mx)}・{1/(1 + Mic・B)}・Tout + B・(Mic - Mx)・{1/(1 +
         Mic・B)}・[Ttarg + {Fb / (1 - B・α・Fb)}・B・α・(Ttarg - Tout)]
       = [{1 + B・(Mic - Mx)}・{1/(1 + Mic・B)} - B・(Mic - Mx)・{1/(1 + Mic
         ・B)}・{Fb / (1 - B・α・Fb)}・B・α]・Tout  +  B・(Mic - Mx)・{1/(1
         + Mic・B)}・{1 + Fb / (1 - B・α・Fb)}・B・α・Ttarg・・・(10)
となる。
 外気温Toutによらず水晶振動子3の温度Txが一定となる条件は、上式(10)における外気温Toutに関する微分係数が0となることである。
 すなわち、下式の関係が成立するよう、回路ゲインBおよび帰還係数Fbを調整すれば、水晶振動子3の温度Txは外気温Toutによらず一定となる。
[{1 + B・(Mic - Mx)}・{1/(1 + Mic・B)} - B・(Mic - Mx)・{1/(1 + Mic・B)}・{Fb / (1 - B・α・Fb)}・B・α] = 0                              
 <第2実施形態>
 図2は本発明の第2実施形態に係る恒温槽型水晶発振装置を示すブロック図である。同図に示すように、本実施形態における帰還系104はコンパレータ8の出力である温度差信号V_(Tr-Tic)を直接帰還させるように構成してある。すなわち、帰還量信号V_δTは、直接帰還系104に帰還したコンパレータ8の出力に基づき生成している。
 また、本実施形態における帰還系104には、第1実施形態と同様の機能を有する位相補償部13とともにクランプ回路14が設けてある。クランプ回路14は、温度差信号V_(Tr-Tic)が負にならないように、その値をゼロ以上にクランプして帰還量(δT)≧0となるようにするものである。
 かかる本実施形態においても第1実施形態と同様に、温度差(Tr-Tic)をゼロとして恒温槽100内に収納する水晶振動子3の温度を一定に保持することができる(図6参照)。ただ、本実施形態においては、クランプ回路14が次の理由により必要になる。
 第1実施形態においては、クーラを有しない場合でも、Tic>Trとなった時点でヒータ1へ供給される電流(電力)がゼロに固定されるので、最終的には必然的にTr=Ttargに固定される。一方、本実施形態の如く、外気温Toutの検出を、温度センサ2による実測温度Ticと設定温度Trのコンパレータ8の出力で行う制御系104においては、外気温Toutが上昇して、Tic>Trとなった場合でも、コンパレータ8は温度差(Tr-Tic)に応じた負の値の温度差信号V_(Tr-Tic)を継続して出力するので、クランプ回路14がない場合には、設定値Trが目標温度Ttargよりも低い値に制御され続けることになる。
 しかしながら、OCXOはクーラ機能を有しないので、実測温度Ticは外気温Toutに追従して上昇するので、本実施形態の場合は設定値Trが目標温度Ttargでは固定されずに非常に低い値に設定されることになる。
 そこで、一旦、設定温度Trが非常に低い値に設定されると、外気温が下がってきても、その一旦設定された非常に低い設定温度Trに達するまでヒータ1による加熱は始まらないので、ヒータ1に供給される電流(電力)を外気温Toutの感知に使う場合よりも、系全体の温度のアンダーシュート量が非常に大きくなってしまうという問題が生じる。
 そこで、Tr=Ttarg+δT (Ttargは固定の初期設定値、δTは帰還量)として、設定温度Trを制御する場合、ヒータ機能は持っているが積極的な冷却機能を持たないような通常のOCXOでは、帰還量δT≧0となるように回路を構成するべきである。
 <他の実施形態>
 上記実施形態では外気温(環境温度)Toutにより影響を受けるデバイスを水晶振動子3を例に採り、恒温槽型電子機器としてOCXOの場合について説明したが、勿論OCXOに限定するものではない。本発明は恒温槽100内に収納するデバイスの温度を一定に保持したい場合、すなわち外気温Toutにより特性が変化するデバイスを収納する場合には、特別な制限を設けることなく適用し得る。この場合、収納したデバイスの特性の安定化を図り得る。
 例えば、この種のデバイスの他の一例として圧電センサを挙げることができる。圧電センサもその検出精度が外気温に依存するからである。
1 熱源
2 温度センサ
3 水晶振動子
4 外気
5 温度設定部
6 加算器
7 帰還定数設定部
8 コンパレータ 
10 トランジスタ
11 温度差検出部
12 発振回路
13 位相補償部
14 クランプ回路
100 恒温槽
101、103 制御系
102,104 帰還系
 

Claims (8)

  1.   温度センサで計測した外気温に基づく実測温度と、設定温度とを比較し、両者の差が小さくなるように制御された筐体である恒温槽内に収納されており、環境温度により特性が変化するデバイスの温度が所定の固定値である目標温度になるように制御する制御系を有する恒温槽型電子機器であって、
     前記制御系は、前記実測温度が低下しているときには、前記設定温度が高くなるように、また前記実測温度が上昇しているときには、前記設定温度が低くなるように、固定値である前記目標温度に所定の帰還量を加算して前記実測温度と比較する新たな設定温度を生成することを特徴とする恒温槽型電子機器。
  2.  前記制御系は、
     前記実測温度を表す実測温度信号と、前記設定温度を表す設定温度信号とを比較して両者の温度差を表す温度差信号を送出するコンパレータと、
     前記温度差信号に基づき前記恒温槽内に収納された熱源の発熱量を制御する制御手段と、
     前記温度差信号に基づき前記帰還量を表わす帰還量信号を生成する帰還定数設定部を有する帰還系と、
     温度設定部に設定した目標温度を表わす目標温度信号と前記帰還量信号とを加算して前記設定温度信号を生成して前記コンパレータの一方の入力とする加算器と、
     外気温に基づく温度を実測するとともに、前記実測温度信号を生成して前記コンパレータの他方の入力とする温度センサと、
    を有することを特徴とする請求項1に記載する恒温槽型電子機器。
  3.  前記熱源から前記温度センサへの温度帰還の経路に基づく前記実測温度信号の変化に対し、電気的帰還の経路である前記帰還系における前記帰還信号の変化が遅れて追従するよう前記帰還系に位相補償手段を設けたことを特徴とする請求項2に記載する恒温槽型電子機器。
  4.  前記熱源と前記恒温槽の外部との間の熱抵抗をΘho、前記温度センサと前記恒温槽の外部との間の熱抵抗をΘco、前記熱源と前記温度センサとの間の熱抵抗をΘhcとして(Θho・Θco)/(Θhc+Θco)をモジュール係数Micと定義するとともに、B=前記温度差に対する熱量のゲイン、α=1/(1+Mic・B)、Fb=前記帰還系のゲインとするとき、{&#8722;1<(B・α・Fb)<1}の関係となっていることを特徴とする請求項2または請求項3に記載する恒温槽型電子機器。  
  5.  前記熱源は、ヒータで形成するとともに、前記制御手段は前記ヒータに供給する電流を制御するものとし、
     前記帰還量は、前記ヒータに供給される電流または前記ヒータで消費される電力に基づき生成することを特徴とする請求項2~請求項4のいずれか一項に記載する恒温槽型電子機器。
  6.  前記帰還量は、前記帰還系に直接帰還した前記コンパレータの出力に基づき生成することを特徴とする請求項2~請求項4のいずれか一項に記載する恒温槽型電子機器。
  7.  前記帰還量(δT)≧0となるように、前記帰還系にクランプ手段を設けたことを特徴とする請求項6に記載する恒温槽型電子機器。
  8.  前記デバイスは、水晶振動子であることを特徴とする請求項1~請求項7のいずれか一項に記載する恒温槽型電子機器。
     
     
     
PCT/JP2017/018372 2016-05-17 2017-05-16 恒温槽型電子機器 WO2017199956A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/301,902 US11165388B2 (en) 2016-05-17 2017-05-16 Thermostatic oven type electronic instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016098615A JP6088722B1 (ja) 2016-05-17 2016-05-17 恒温槽型電子機器
JP2016-098615 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199956A1 true WO2017199956A1 (ja) 2017-11-23

Family

ID=58186049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018372 WO2017199956A1 (ja) 2016-05-17 2017-05-16 恒温槽型電子機器

Country Status (3)

Country Link
US (1) US11165388B2 (ja)
JP (1) JP6088722B1 (ja)
WO (1) WO2017199956A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6736229B2 (ja) * 2017-10-27 2020-08-05 株式会社大一商会 遊技機
JP6736232B2 (ja) * 2017-10-27 2020-08-05 株式会社大一商会 遊技機
JP6736230B2 (ja) * 2017-10-27 2020-08-05 株式会社大一商会 遊技機
JP6736231B2 (ja) * 2017-10-27 2020-08-05 株式会社大一商会 遊技機
JP7040050B2 (ja) * 2018-01-26 2022-03-23 セイコーエプソン株式会社 集積回路装置、発振器、電子機器及び移動体
CN112034899B (zh) * 2019-06-04 2021-07-23 湖南中烟工业有限责任公司 一种超声波雾化片振荡控制方法及控制系统
CN112155406B (zh) * 2020-09-10 2021-11-09 九阳股份有限公司 烹饪设备及其温度控制方法
CN114489187B (zh) * 2021-12-30 2023-06-16 中航华东光电有限公司 快速温变试验箱温度控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165630A (ja) * 2003-12-02 2005-06-23 Toyo Commun Equip Co Ltd 温度制御回路とそれを用いた恒温槽型圧電発振器
JP2007251366A (ja) * 2006-03-14 2007-09-27 Nippon Dempa Kogyo Co Ltd 水晶発振器
JP2010213102A (ja) * 2009-03-11 2010-09-24 Daishinku Corp 圧電発振器及びこの圧電発振器の周囲温度測定方法
JP2014191808A (ja) * 2013-03-28 2014-10-06 Nippon Dempa Kogyo Co Ltd 温度制御装置
JP2015070301A (ja) * 2013-09-26 2015-04-13 日本電波工業株式会社 温度制御回路及び恒温槽付水晶発振器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634228B2 (ja) * 2000-03-02 2005-03-30 日本電波工業株式会社 恒温槽を用いた発振器
US6784756B2 (en) 2001-12-21 2004-08-31 Corning Incorporated On-board processor compensated oven controlled crystal oscillator
US7253694B2 (en) 2004-07-15 2007-08-07 C-Mac Quartz Crystals, Limited Temperature compensated oven controlled crystal oscillator
JP5809851B2 (ja) * 2011-06-06 2015-11-11 日本電波工業株式会社 恒温槽付水晶発振器
JP6286884B2 (ja) * 2013-06-13 2018-03-07 セイコーエプソン株式会社 電子デバイス、電子機器、および移動体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165630A (ja) * 2003-12-02 2005-06-23 Toyo Commun Equip Co Ltd 温度制御回路とそれを用いた恒温槽型圧電発振器
JP2007251366A (ja) * 2006-03-14 2007-09-27 Nippon Dempa Kogyo Co Ltd 水晶発振器
JP2010213102A (ja) * 2009-03-11 2010-09-24 Daishinku Corp 圧電発振器及びこの圧電発振器の周囲温度測定方法
JP2014191808A (ja) * 2013-03-28 2014-10-06 Nippon Dempa Kogyo Co Ltd 温度制御装置
JP2015070301A (ja) * 2013-09-26 2015-04-13 日本電波工業株式会社 温度制御回路及び恒温槽付水晶発振器

Also Published As

Publication number Publication date
JP6088722B1 (ja) 2017-03-01
US11165388B2 (en) 2021-11-02
JP2017208637A (ja) 2017-11-24
US20190222173A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6088722B1 (ja) 恒温槽型電子機器
US6784756B2 (en) On-board processor compensated oven controlled crystal oscillator
US8749314B2 (en) Oven-controlled crystal oscillator
CA1139380A (en) Crystal oscillator temperature compensating circuit
JP6190664B2 (ja) 水晶発振器
JP2009027495A (ja) 恒温槽付水晶発振器における恒温槽の制御回路
CN106664060B (zh) 振荡装置
TW201431297A (zh) 晶體振盪器及振盪裝置
JP5205827B2 (ja) 発振周波数制御方法及び発振器
JP5800171B1 (ja) 恒温槽型水晶発振器
JP6060011B2 (ja) 発振器
JP3272633B2 (ja) 恒温槽型圧電発振器
JP2018163621A (ja) 温度制御装置および発振装置
JP5640418B2 (ja) 温度制御回路及び恒温型圧電発振器
RU2331856C1 (ru) Способ компенсации температурной погрешности датчика с вибрирующим элементом
US20230231519A1 (en) Oscillator circuit and temperature compensation method for oscillator circuit
JP2015065511A (ja) 恒温槽付水晶発振器
TW201308908A (zh) 溫度控制系統與方法
JP2018157369A (ja) 恒温槽付水晶発振器
JP2014072610A (ja) 恒温槽付水晶発振器の温度制御回路
JP5213845B2 (ja) 温度補償水晶発振器
JP2022170106A (ja) 恒温槽付水晶発振器の温度制御回路
JP2022100204A (ja) 温度制御型及び温度補償型発振装置並びにその方法
JP2019176217A (ja) 恒温槽付き水晶発振器
JPS62188292A (ja) 半導体レ−ザ−の温度安定化装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799380

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP