WO2017199613A1 - リレー光学系及びそれを備えた硬性鏡 - Google Patents

リレー光学系及びそれを備えた硬性鏡 Download PDF

Info

Publication number
WO2017199613A1
WO2017199613A1 PCT/JP2017/014121 JP2017014121W WO2017199613A1 WO 2017199613 A1 WO2017199613 A1 WO 2017199613A1 JP 2017014121 W JP2017014121 W JP 2017014121W WO 2017199613 A1 WO2017199613 A1 WO 2017199613A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
cemented lens
relay optical
cemented
Prior art date
Application number
PCT/JP2017/014121
Other languages
English (en)
French (fr)
Inventor
牛尾恭章
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017554918A priority Critical patent/JP6279178B1/ja
Priority to DE112017002595.8T priority patent/DE112017002595T5/de
Priority to CN201780018913.8A priority patent/CN108780211B/zh
Publication of WO2017199613A1 publication Critical patent/WO2017199613A1/ja
Priority to US16/125,635 priority patent/US10859811B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/00078Insertion part of the endoscope body with stiffening means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00195Optical arrangements with eyepieces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/002Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor having rod-lens arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2446Optical details of the image relay
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to a relay optical system and a rigid mirror including the relay optical system.
  • Observation of an object and acquisition of an image of the object are performed through an observation optical system arranged in a rigid endoscope.
  • a camera head is connected to the observation optical system.
  • the camera head for example, a CCD (Charge Coupled Devices) or a C-MOS (Complementary Metal Oxide Semiconductor) is used as an imaging device.
  • CCD Charge Coupled Devices
  • C-MOS Complementary Metal Oxide Semiconductor
  • the observation optical system has an objective lens, an eyepiece lens, and a plurality of relay optical systems.
  • the plurality of relay optical systems are disposed between the objective lens and the eyepiece lens.
  • An object image (hereinafter referred to as “primary image”) is formed by the objective lens.
  • the primary image is an inverted image, that is, an image in which an object is inverted in the vertical direction.
  • the relay optical system the primary image is relayed.
  • An image formed by the relay optical system is also an inverted image.
  • the primary image is an inverted image, and the relayed image is also an inverted image. Therefore, the image after the relay is performed once becomes an erect image.
  • an erect image is usually observed or captured. Since the primary image is an inverted image, the number of relay optical systems is an odd number.
  • Patent Document 1 Patent Document 2 and Patent Document 3 disclose relay optical systems.
  • the pixel pitch of the image sensor is decreasing year by year as the number of pixels of the image sensor is increased and the size is reduced. As the pixel pitch decreases, the area of the pixel decreases.
  • the numerical aperture of the optical system may be increased.
  • the amount of aberration generated generally increases.
  • the number of lenses must be increased. If it does so, an optical system will enlarge.
  • a plurality of relay optical systems are arranged in the observation optical system of the rigid endoscope. In this case, most of the observation optical system is occupied by the relay optical system. Therefore, the imaging performance of the relay optical system has a great influence on the imaging performance of the observation optical system. For this reason, it is important that various aberrations are corrected well in the relay optical system.
  • the relay optical system usually has a large positive refractive power.
  • the amount of field curvature also increases. Therefore, when an image is relayed by a plurality of relay optical systems, the amount of field curvature that finally occurs is an amount obtained by multiplying the amount of field curvature in one relay optical system by the number of relays. As a result, a very large curvature of field occurs in the finally formed image. Therefore, in the relay optical system, it is important that the field curvature is corrected well.
  • the loss of light amount in one relay optical system is large, when an image is relayed by a plurality of relay optical systems, the image finally formed becomes dark.
  • the numerical aperture may be increased.
  • increasing the numerical aperture increases the spherical aberration. Therefore, in the relay optical system, it is also important that the spherical aberration is corrected well.
  • the curvature of field is corrected by disposing a negative lens between two positive lenses.
  • the degree of correction of spherical aberration and chromatic aberration is unknown.
  • the relay optical system of Patent Document 3 is an optical system in which various aberrations are corrected and the effective aperture is small. However, it is difficult to say that the numerical aperture is large.
  • the present invention has been made in view of such problems, and an object thereof is to provide a relay optical system in which curvature of field, spherical aberration, and chromatic aberration are well corrected, and a rigid mirror including the relay optical system. Is.
  • a relay optical system includes: From the object side, A first cemented lens; A second cemented lens having a positive refractive power; A third cemented lens that is plane-symmetric with the second cemented lens; A first cemented lens and a plane cemented fourth cemented lens,
  • the first cemented lens includes a first lens having a positive refractive power and a second lens having a negative refractive power
  • the second cemented lens has a third lens and a fourth lens
  • the shape of the first lens is a biconvex shape
  • the shape of the second lens is a biconcave shape
  • the following conditional expression (1) is satisfied. -0.4 ⁇ f2 / fCL12 ⁇ -0.1 (1) here, f2 is the focal length of the second lens, fCL12 is a composite focal length of the first cemented lens and the second cemented lens, It is.
  • the rigid endoscope of the present invention is It has the above-mentioned relay optical system.
  • the present invention it is possible to provide a relay optical system in which curvature of field, spherical aberration, and chromatic aberration are well corrected, and a rigid mirror including the relay optical system.
  • FIG. 2 is a lens cross-sectional view and aberration diagram of the relay optical system of Example 1.
  • FIG. FIG. 6 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 2.
  • FIG. 6 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 3.
  • FIG. 6 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 4.
  • FIG. 10 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 5.
  • FIG. 10 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 6.
  • FIG. 10 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 7.
  • FIG. 10 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 8.
  • FIG. 10 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 9.
  • FIG. 10 is a lens cross-sectional view and aberration diagrams of the relay optical system of Example 10. It is a figure which shows a rigid endoscope.
  • the relay optical system is used to relay an image.
  • the image relayed by the relay optical system is formed by an objective lens, for example.
  • the objective lens is disposed between the object and the relay optical system.
  • a primary image is formed by the objective lens.
  • the relay optical system relays this primary image to form an image.
  • the object side means the primary image side.
  • the relay optical system of this embodiment includes, in order from the object side, a first cemented lens, a second cemented lens having positive refractive power, a third cemented lens that is plane-symmetric with the second cemented lens, A first cemented lens and a fourth cemented lens that is plane-symmetric.
  • the first cemented lens includes a first lens having a positive refractive power and a second lens having a negative refractive power.
  • the second cemented lens has a third lens and a fourth lens, the shape of the first lens is a biconvex shape, and the shape of the second lens is It is a biconcave shape and satisfies the following conditional expression (1). -0.4 ⁇ f2 / fCL12 ⁇ -0.1 (1) here, f2 is the focal length of the second lens, fCL12 is a composite focal length of the first cemented lens and the second cemented lens, It is.
  • FIG. 1 shows a basic configuration of the relay optical system of the present embodiment.
  • FIG. 1A is a lens cross-sectional view in Configuration Example 1
  • FIG. 1B is a lens cross-sectional view in Configuration Example 2.
  • Configuration example 1 and configuration example 2 are common in many respects. Therefore, hereinafter, the configuration example 1 will be described, and the configuration example 2 will be described while referring to differences from the configuration example 1.
  • the relay optical system RL1 includes a first cemented lens CL1, a second cemented lens CL2, a third cemented lens CL3, and a fourth cemented lens CL4.
  • An aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the left direction in the drawing is the object side and the right direction is the image side.
  • An objective lens (not shown) is disposed on the object side of the relay optical system RL1.
  • a primary image Io is formed by the objective lens.
  • the primary image Io is relayed.
  • a relayed image I is formed on the image side of the relay optical system RL1.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system RL1, a symmetry plane exists at the position of the aperture stop S.
  • the relay optical system RL1 includes a plurality of a pair of cemented lenses having a plane symmetry in the optical system. Therefore, coma and lateral chromatic aberration can be corrected well.
  • the first cemented lens CL1 has a first lens L1 and a second lens L2.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a negative refractive power.
  • the first cemented lens can mainly correct field curvature well.
  • the second cemented lens CL2 has a third lens L3 and a fourth lens L4.
  • the third lens L3 has a positive refractive power
  • the fourth lens L4 has a negative refractive power
  • the third lens L3 has a negative refractive power
  • the fourth lens L4 has a positive refractive power.
  • the height of the axial ray is higher at the position of the second cemented lens CL2 than at the position of the first cemented lens CL1.
  • the shape of the first lens L1 is a biconvex shape. Therefore, the light beam incident on the first lens L1 is refracted in the optical axis direction. Thereby, the diameter of an incident light beam line can be reduced. As a result, the effective aperture of the lens can be reduced.
  • the shape of the second lens L2 is a biconcave shape. By doing so, curvature of field and spherical aberration can be favorably corrected.
  • the second lens L2 When the shape of the second lens L2 is a biconcave shape, the second lens L2 can easily have a large negative refractive power. If the negative refractive power of the second lens L2 can be increased, the Petzval sum in the entire relay optical system can be reduced. As a result, the field curvature can be corrected particularly well.
  • the aperture stop S is disposed in the relay optical system.
  • the aperture stop S for example, a metal plate provided with an opening is used.
  • the diameter of the light beam is determined by the size of the aperture. If the beam diameter can be determined without using the aperture stop S, it is not necessary to arrange the aperture stop S in the relay optical system.
  • the relay optical system of the present embodiment includes the configuration example 1 or the configuration example 2 and satisfies the above-described conditional expression (1).
  • the second lens can have an appropriate amount of negative refractive power. As a result, it is possible to satisfactorily correct chromatic aberrations and spherical aberrations while favorably correcting curvature of field.
  • conditional expression (1) When the lower limit of conditional expression (1) is not reached, the negative refractive power of the second lens becomes small. In this case, since the field curvature increases, the imaging performance around the image deteriorates. If the upper limit value of conditional expression (1) is exceeded, the negative refractive power of the second lens becomes large. In this case, since chromatic aberration and spherical aberration increase, good imaging performance cannot be obtained over a wide range from the center to the periphery of the image.
  • the relay optical system of the present embodiment is an optical system having a high ability to correct various aberrations. Therefore, in the relay optical system of this embodiment, even if the numerical aperture is increased, it is possible to suppress an increase in field curvature, an increase in spherical aberration, and an increase in chromatic aberration. Thus, according to the relay optical system of the present embodiment, a relay optical system having a large numerical aperture and high imaging performance can be realized.
  • conditional expression (1 ′) or (1 ′′) is satisfied instead of conditional expression (1).
  • conditional expression (1) -0.4 ⁇ f2 / fCL12 ⁇ -0.13 (1 ') -0.38 ⁇ f2 / fCL12 ⁇ -0.15 (1 ")
  • the third lens has a positive refractive power
  • the fourth lens has a negative refractive power
  • the third lens has a negative refractive power
  • the fourth lens preferably has a positive refractive power
  • chromatic aberration can be corrected at a position where the axial ray height is higher. Therefore, chromatic aberration can be corrected more favorably.
  • the lens surface on the object side of the third lens is preferably an aspherical surface.
  • the relay optical system of the present embodiment preferably satisfies the following conditional expression (2).
  • PS is Petzval sum
  • TL is the total length of the relay optical system, It is.
  • the overall refractive power is positive.
  • the relay optical system includes a positive lens and a negative lens. Therefore, the refractive power of the entire relay optical system is determined by the refractive power of the positive lens and the refractive power of the negative lens.
  • the ratio of the negative refractive power to the refractive power of the entire relay optical system can be increased. As a result, it becomes possible to correct the curvature of field favorably.
  • conditional expression (2) If the upper limit value of conditional expression (2) is exceeded, the ratio of the negative refractive power to the refractive power of the entire relay optical system becomes small. Therefore, the field curvature cannot be corrected sufficiently. If the lower limit of conditional expression (2) is not reached, spherical aberration cannot be corrected satisfactorily.
  • conditional expression (2) 3.5 ⁇ PS ⁇ TL ⁇ 7.5 (2 ′) 3.5 ⁇ PS ⁇ TL ⁇ 7 (2 ”)
  • the relay optical system of the present embodiment preferably satisfies the following conditional expression (3).
  • fCL1 is the focal length of the first cemented lens
  • fCL2 is the focal length of the second cemented lens
  • ⁇ gF3 is the partial dispersion ratio of the third lens
  • ⁇ gF4 is the partial dispersion ratio of the fourth lens
  • ⁇ d3 is the Abbe number of the third lens
  • ⁇ d4 is the Abbe number of the fourth lens.
  • FCL2 ⁇ ( ⁇ gF3 ⁇ gF4) / ( ⁇ d3 ⁇ d4) represents the secondary spectrum of the second cemented lens, specifically, the amount of residual chromatic aberration of g-line with respect to F-line.
  • “ 5 ” represents “10 ⁇ 5 ”.
  • Satisfying conditional expression (3) makes it possible to correct the secondary spectrum satisfactorily. As a result, an image with high resolution can be formed.
  • the amount of the secondary spectrum finally generated is an amount obtained by multiplying the amount of the secondary spectrum in one relay optical system by the number of relays. Therefore, the amount of secondary spectrum in one relay optical system is preferably as small as possible.
  • the secondary spectrum is corrected well. Therefore, even if the relay optical system of the present embodiment is used for the optical system of the rigid endoscope, the amount of the secondary spectrum that is finally generated can be reduced. As a result, an image with high resolution can be formed.
  • conditional expression (3) If the upper limit value of conditional expression (3) is exceeded, the secondary spectrum becomes large, and it becomes difficult to form an image with high resolution. If the lower limit of conditional expression (3) is not reached, spherical aberration cannot be corrected satisfactorily.
  • conditional expression (3 ′) or (3 ′′) is satisfied instead of conditional expression (3).
  • 1E-5
  • the relay optical system of the present embodiment preferably satisfies the following conditional expression (4). -0.5 ⁇ f2 / fCL2 ⁇ -0.2 (4) here, f2 is the focal length of the second lens, fCL2 is the focal length of the second cemented lens, It is.
  • the ratio of the negative refractive power to the refractive power of the entire relay optical system can be increased.
  • conditional expression (4) If the lower limit value of conditional expression (4) is not reached, the ratio of the negative refractive power to the refractive power of the entire relay optical system becomes small. In this case, the curvature of field deteriorates, leading to deterioration of the imaging performance in the peripheral portion of the image. If the upper limit value of conditional expression (4) is exceeded, spherical aberration and chromatic aberration will deteriorate. Therefore, it becomes difficult to form an image with high resolution.
  • conditional expression (4 ′) or (4 ′′) is satisfied instead of conditional expression (4). -0.5 ⁇ f2 / fCL2 ⁇ -0.23 (4 ') -0.47 ⁇ f2 / fCL2 ⁇ -0.26 (4 ")
  • the relay optical system of the present embodiment preferably satisfies the following conditional expression (5). 0.25 ⁇ f1 / fCL12 ⁇ 1 (5) here, f1 is the focal length of the first lens, fCL12 is a composite focal length of the first cemented lens and the second cemented lens, It is.
  • the positive refractive power of the first lens can be appropriately set.
  • the negative refractive power of the second lens can also be set to an appropriate magnitude.
  • conditional expression (5 ′) or (5 ′′) is satisfied instead of conditional expression (5). 0.28 ⁇ f1 / fCL12 ⁇ 0.7 (5 ') 0.3 ⁇ f1 / fCL12 ⁇ 0.5 (5 ")
  • the relay optical system of the present embodiment preferably satisfies the following conditional expression (6). 0.07 ⁇ NA (6) here, NA is the numerical aperture of the relay optical system, It is.
  • Satisfying conditional expression (6) makes it possible to form a bright and high-resolution image.
  • conditional expression (6 ′) or (6 ′′) is satisfied instead of conditional expression (6). 0.09 ⁇ NA (6 ') 0.105 ⁇ NA (6 ")
  • the rigid endoscope of this embodiment has the relay optical system of this embodiment.
  • the rigid endoscope of this embodiment has a plurality of relay optical systems.
  • the relay optical system of this embodiment is used for at least one of the plurality of relay optical systems.
  • the Petzval sum is reduced, so that the field curvature can be reduced. Therefore, an image with high resolution can be formed by using at least one relay optical system according to this embodiment.
  • an image with high resolution can be obtained.
  • a high-quality image can be acquired by capturing an image with a high resolution.
  • the rigid mirror of the present embodiment includes an objective lens, an eyepiece lens, and a relay optical system disposed between the objective lens and the eyepiece lens, and the total number of relay optical systems is 7 or more. It is preferable that the total number of relay optical systems in the embodiment is 3 or more.
  • the Petzval sum is reduced, so that the field curvature can be reduced. Therefore, when the total number of relay optical systems is 7 or more, an image with high resolution can be formed by setting the total number of relay optical systems of this embodiment to 3 or more. As a result, according to the rigid endoscope of this embodiment, an image with high resolution can be obtained. In addition, a high-quality image can be acquired by capturing an image with a high resolution.
  • the rigid mirror optical system includes an objective lens, an eyepiece lens, and a plurality of relay optical systems.
  • the numerical aperture on the image side in each of the objective lens, the eyepiece lens, and the relay optical system is equal to or greater than the numerical aperture of the relay optical system of the present embodiment.
  • a high-quality image can be acquired by capturing an image with a high resolution.
  • FIG. 12 is a diagram showing a rigid endoscope.
  • FIG. 12 schematically shows the observation optical system of the rigid endoscope. Therefore, the optical element constituting the observation optical system is shown as a single lens.
  • the observation optical system 10 is disposed inside a rigid tube (not shown).
  • the observation optical system 10 includes an objective lens 1, a relay optical system 2, a relay optical system 3, a relay optical system 4, and an eyepiece 5 in order from the object side.
  • the objective lens 1 forms a primary image on the image plane 6.
  • the primary image is relayed to the image side by the relay optical system 2.
  • a first relay image is formed on the image plane 7.
  • the first relay image is relayed to the image side by the relay optical system 3.
  • a second relay image is formed on the image plane 8.
  • the second relay image is relayed to the image side by the relay optical system 4.
  • a third relay image is formed on the image plane 9.
  • the third relay image can be observed with the eyepiece 5.
  • a camera head optical system including an image sensor may be arranged on the image side (right side) of the eyepiece 5. In this way, an image of the object can be acquired.
  • the number of relay optical systems is three, but is not limited thereto.
  • the total number of relay optical systems can be 7 or more.
  • the total length of the rigid tube becomes longer.
  • the entire length of the rigid tube is increased, the operability is deteriorated. For this reason, the total length of the rigid tube is limited.
  • the total length of one relay optical system may be shortened. This means that the focal length in one relay optical system is shortened.
  • the relay optical system of the present embodiment is an optical system having a high ability to correct various aberrations. Therefore, in the relay optical system of this embodiment, an increase in various aberrations can be suppressed even if the numerical aperture is increased. That is, even if the total number of relay optical systems is increased, high imaging performance can be maintained and a bright image can be formed.
  • the total number of relay optical systems is 7 or more
  • by increasing the total number of relay optical systems of this embodiment to 3 or more it is possible to suppress an increase in field curvature, an increase in spherical aberration, and an increase in chromatic aberration. Therefore, according to the rigid endoscope of this embodiment, an image with high resolution can be obtained. In addition, a high-quality image can be acquired by capturing an image with a high resolution.
  • the horizontal axis represents the amount of aberration.
  • the unit of aberration is mm.
  • NA is the numerical aperture and IH is the image height.
  • the unit of the wavelength of the aberration curve is nm.
  • an aperture stop S is disposed in the relay optical system.
  • the aperture stop S may not be arranged in the relay optical system.
  • FIG. 2A is a lens cross-sectional view of the relay optical system according to the first embodiment.
  • 2B and 2C are aberration diagrams of the relay optical system according to Example 1.
  • SA spherical aberration
  • AS astigmatism
  • the relay optical system includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system of the first embodiment, a plane of symmetry exists at the position of the aperture stop S.
  • FIG. 3A is a lens cross-sectional view of the relay optical system according to the second embodiment.
  • 3B and 3C are aberration diagrams of the relay optical system according to Example 2.
  • SA spherical aberration
  • AS astigmatism
  • the relay optical system includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system of Example 2, a plane of symmetry exists at the position of the aperture stop S.
  • FIG. 4A is a lens cross-sectional view of the relay optical system according to the third embodiment.
  • 4B and 4C are aberration diagrams of the relay optical system according to Example 3.
  • SA spherical aberration
  • AS astigmatism
  • the relay optical system of Example 3 includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system of Example 3, a symmetrical plane exists at the position of the aperture stop S.
  • the aspheric surfaces are provided on a total of two surfaces, that is, the object side surface of the biconvex positive lens L3 and the image side surface of the biconvex positive lens L6.
  • FIG. 5A is a lens cross-sectional view of a relay optical system according to the fourth embodiment.
  • FIGS. 5B and 5C are aberration diagrams of the relay optical system according to Example 4.
  • FIG. 5B shows spherical aberration (SA)
  • FIG. 5C shows astigmatism (AS). Show.
  • the relay optical system of Example 4 includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system of the fourth embodiment, a plane of symmetry exists at the position of the aperture stop S.
  • FIG. 6A is a lens cross-sectional view of the relay optical system according to Example 5.
  • 6B and 6C are aberration diagrams of the relay optical system according to Example 5.
  • SA spherical aberration
  • AS astigmatism
  • the relay optical system of Example 5 includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system of Example 5, a symmetrical plane exists at the position of the aperture stop S.
  • the aspheric surfaces are provided on a total of two surfaces, that is, the object side surface of the biconvex positive lens L3 and the image side surface of the biconvex positive lens L6.
  • FIG. 7A is a lens cross-sectional view of the relay optical system according to Example 6.
  • 7B and 7C are aberration diagrams of the relay optical system according to Example 6.
  • SA spherical aberration
  • AS astigmatism
  • the relay optical system of Example 6 includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system of Example 6, a plane of symmetry exists at the position of the aperture stop S.
  • the aspheric surfaces are provided on a total of two surfaces, that is, the object side surface of the biconvex positive lens L3 and the image side surface of the biconvex positive lens L6.
  • FIG. 8A is a lens cross-sectional view of a relay optical system according to the seventh embodiment.
  • 8B and 8C are aberration diagrams of the relay optical system according to Example 7.
  • SA spherical aberration
  • AS astigmatism
  • the relay optical system of Example 7 includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system according to the seventh embodiment, a plane of symmetry exists at the position of the aperture stop S.
  • the aspheric surfaces are provided on a total of two surfaces, that is, the object side surface of the biconvex positive lens L3 and the image side surface of the biconvex positive lens L6.
  • FIG. 9A is a lens sectional view of the relay optical system according to the eighth embodiment.
  • FIGS. 9B and 9C are aberration diagrams of the relay optical system according to Example 8.
  • FIG. 9B shows spherical aberration (SA)
  • FIG. 9C shows astigmatism (AS). Show.
  • the relay optical system includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a negative meniscus lens L3 having a convex surface facing the object side, and a biconvex positive lens L4.
  • the third cemented lens CL3 includes a biconvex positive lens L5 and a negative meniscus lens L6 having a convex surface facing the image side.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system according to the eighth embodiment, a plane of symmetry exists at the position of the aperture stop S.
  • the aspherical surface is provided on a total of two surfaces including the object side surface of the negative meniscus lens L3 and the image side surface of the negative meniscus lens L6.
  • FIG. 10A is a lens sectional view of the relay optical system according to the ninth embodiment.
  • FIGS. 10B and 10C are aberration diagrams of the relay optical system according to Example 9.
  • FIG. 10B shows spherical aberration (SA), and
  • FIG. 10C shows astigmatism (AS). Show.
  • the relay optical system includes, in order from the object side, a first cemented lens CL1 having a positive refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system according to the ninth embodiment, a plane of symmetry exists at the position of the aperture stop S.
  • the aspheric surfaces are provided on a total of two surfaces, that is, the object side surface of the biconvex positive lens L3 and the image side surface of the biconvex positive lens L6.
  • FIG. 11A is a lens cross-sectional view of the relay optical system according to the tenth embodiment.
  • FIGS. 11B and 11C are aberration diagrams of the relay optical system according to Example 10.
  • FIG. 11B shows spherical aberration (SA)
  • FIG. 11C shows astigmatism (AS). Show.
  • the relay optical system of Example 10 includes, in order from the object side, a first cemented lens CL1 having a negative refractive power, a second cemented lens CL2 having a positive refractive power, and a third lens having a positive refractive power.
  • the aperture stop S is disposed between the second cemented lens CL2 and the third cemented lens CL3.
  • the first cemented lens CL1 includes a biconvex positive lens L1 and a biconcave negative lens L2.
  • the second cemented lens CL2 includes a biconvex positive lens L3 and a negative meniscus lens L4 having a convex surface facing the image side.
  • the third cemented lens CL3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a biconvex positive lens L6.
  • the fourth cemented lens CL4 includes a biconcave negative lens L7 and a biconvex positive lens L8.
  • the first set of cemented lenses includes a first cemented lens CL1 and a fourth cemented lens CL4.
  • the fourth cemented lens CL4 has a shape that is plane-symmetric with the shape of the first cemented lens CL1.
  • the fourth cemented lens CL4 is disposed at a position symmetrical to the first cemented lens CL1.
  • the second set of cemented lenses includes a second cemented lens CL2 and a third cemented lens CL3.
  • the third cemented lens CL3 has a shape that is plane-symmetric with the shape of the second cemented lens CL2.
  • the third cemented lens CL3 is arranged at a position symmetrical to the second cemented lens CL2.
  • the first cemented lens CL1 and the fourth cemented lens CL4 are symmetric with respect to the aperture stop S. Further, with respect to the aperture stop S, the second cemented lens CL2 and the third cemented lens CL3 are symmetric. In the relay optical system of Example 10, a plane of symmetry exists at the position of the aperture stop S.
  • the aspheric surfaces are provided on a total of two surfaces, that is, the object side surface of the biconvex positive lens L3 and the image side surface of the biconvex positive lens L6.
  • the numerical data of each of the above examples is shown below.
  • r is the radius of curvature of each lens surface
  • d is the distance between the lens surfaces
  • ne is the refractive index of the e-line of each lens
  • ⁇ d is the Abbe number of each lens.
  • NA is the numerical aperture
  • IH is the image height
  • TL is the total length of the relay optical system
  • ⁇ gF3 and ⁇ gF4 are partial dispersion ratios
  • PS is the Petzval sum.
  • the total length of the relay optical system is a distance between two images (a distance from an object plane to an image plane in plane data).
  • the aspherical shape is expressed by the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the cone coefficient is k, and the aspherical coefficients are A4, A6, A8, A10, A12. expressed.
  • z (y 2 / r) / [1+ ⁇ 1 ⁇ (1 + k) (y / r) 2 ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10 + A12y 12 + “En” (n is an integer) indicates “10 ⁇ n ”.
  • the symbols of these specification values are common to the numerical data of the examples described later.
  • Numerical example 1 Unit mm Surface data Surface number r d ne ⁇ d Object plane ⁇ 1.6920 1 4.3492 3.4484 1.88815 40.76 2 -2.3878 0.9814 1.67718 38.15 3 1.5712 0.6227 4 2.8873 3.5804 1.49846 81.54 5 -1.6244 0.6768 1.51825 64.14 6 -3.3614 0.1692 7 (Aperture) ⁇ 0.1692 8 3.3614 0.6768 1.51825 64.14 9 1.6244 3.5804 1.49846 81.54 10 -2.8873 0.6227 11 -1.5712 0.9814 1.66718 38.15 12 2.3878 3.4484 1.88815 40.76 13 -4.3492 1.6920 Image plane ⁇ Various data NA 0.1000 IH 1.000 TL 22.34 ⁇ gF3 0.5375 ⁇ gF4 0.5353 PS 0.1810
  • Numerical example 2 Unit mm Surface data Surface number r d ne ⁇ d Object plane ⁇ 1.6920 1 4.3492 3.4484 1.88815 40.76 2 -2.3878 0.9814 1.67718 38.15 3 1.5712 0.6227 4 2.8873 3.5804 1.49846 81.54 5 -1.6244 0.6768 1.51825 64.14 6 -3.3614 0.1692 7 (Aperture) ⁇ 0.1692 8 3.3614 0.6768 1.51825 64.14 9 1.6244 3.5804 1.49846 81.54 10 -2.8873 0.6227 11 -1.5712 0.9814 1.66718 38.15 12 2.3878 3.4484 1.88815 40.76 13 -4.3492 1.6920 Image plane ⁇ Various data NA 0.0794 IH 1.000 TL 22.34 ⁇ gF3 0.5375 ⁇ gF4 0.5353 PS 0.1810
  • the present invention is useful for a relay optical system in which curvature of field, spherical aberration, and chromatic aberration are well corrected, and a rigid mirror including the relay optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

像面湾曲、球面収差及び色収差が良好に補正されたリレー光学系及びそれを備えた硬性鏡を提供する。 物体側から順に、第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、第2の接合レンズCL2と面対称な第3の接合レンズCL3と、第1の接合レンズCL1と面対称な第4の接合レンズCL4と、を有し、第1の接合レンズCL1は、正の屈折力を有する第1のレンズL1と、負の屈折力を有する第2のレンズL2と、を有し、第2の接合レンズCL2は、第3のレンズL3と、第4のレンズL4と、を有し、第1のレンズL1の形状は、両凸形状であり、第2のレンズL2の形状は、両凹形状であり、下記の条件式(1)を満足することを特徴とする。 -0.4<f2/fCL12<-0.1 (1)

Description

リレー光学系及びそれを備えた硬性鏡
 本発明は、リレー光学系及びそれを備えた硬性鏡に関する。
 近年、硬性鏡を用いた診断では、診断精度の向上が望まれている。この要求に応えるために、硬性鏡には、高解像度で物体(対象物)を観察できることや、高画質で物体の画像を取得できることが望まれている。
 物体の観察や物体の画像の取得は、硬性鏡内に配置された観察光学系を介して行われる。物体の画像の取得では、例えば、観察光学系にカメラヘッドが接続される。カメラヘッドには、撮像素子として、例えば、CCD(Charge Coupled Devices)やC-MOS(Complementary Metal Oxide Semiconductor)が用いられる。
 観察光学系は、対物レンズと、接眼レンズと、複数のリレー光学系と、を有する。複数のリレー光学系は、対物レンズと接眼レンズの間に配置されている。
 対物レンズによって、物体の像(以下、「1次像」という)が形成される。1次像は倒立像、すなわち、物体を上下方向に倒置した像になる。リレー光学系では、1次像のリレーが行われる。リレー光学系で形成される像も倒立像である。1次像が倒立像で、リレーされた像も倒立像である。よって、リレーが1回行われた後の像は、正立像になる。硬性鏡では、通常、正立像を観察又は撮像する。1次像が倒立像なので、リレー光学系の数は奇数となる。
 特許文献1、特許文献2及び特許文献3には、リレー光学系が開示されている。
特表2007-522507号公報 特開2000-010024号公報 特開2015-118136号公報
 撮像素子の多画素化と小型化に伴い、撮像素子の画素ピッチが年々小さくなっている。画素ピッチが小さくなると、画素の面積が小さくなる。
 物体の一点をレンズで結像すると、レンズの像面に点像が形成される。この点像は、回折の影響によってある程度の広がりを持つ。そのため、画素の面積が小さくなると、それに合わせて点像を小さくしなければ、高画質な画像を得ることができない。
 点像を小さくするためには、光学系の開口数を大きくすれば良い。しかしながら、開口数を大きくすると、一般的に収差の発生量が増大する。収差を良好に補正するためには、例えば、レンズの枚数を増やさなくてはならない。そうすると、光学系が大型化してしまう。
 硬性鏡の観察光学系には、リレー光学系が複数配置されている。この場合、観察光学系の大部分は、リレー光学系によって占められることになる。そのため、リレー光学系の結像性能は、観察光学系の結像性能に対して非常に大きな影響を及ぼす。このようなことから、リレー光学系では、諸収差が良好に補正されていることが重要になる。
 リレー光学系は、通常、大きな正の屈折力を有する。正の屈折力が大きい光学系では、像面湾曲の量も大きくなる。そのため、複数のリレー光学系で像のリレーを行うと、最終的に発生する像面湾曲の量は、1つのリレー光学系における像面湾曲の量に、リレー回数を掛け合わせた量になる。その結果、最終的に形成される像では、非常に大きな像面湾曲が発生する。従って、リレー光学系では、像面湾曲が良好に補正されていることが重要となる。
 また、1つのリレー光学系における光量損失が大きいと、複数のリレー光学系で像のリレーを行った場合に、最終的に形成される像が暗くなる。最終的に形成される像を明るくするには、開口数を大きくすれば良い。しかしながら、開口数を大きくすると、球面収差が大きくなる。そのため、リレー光学系では、球面収差が良好に補正されていることも重要になる。
 更に、リレー光学系では、色収差が良好に補正されていることも重要である。
 特許文献1のリレー光学系では、2つの正レンズの間に負レンズを配置することで、像面湾曲を補正している。しかしながら、像面湾曲がどの程度まで補正されているかは不明である。また、球面収差や色収差の補正の程度についても不明である。
 特許文献2のリレー光学系では、開口数が小さくならないようしている。しかしながら、リレー光学系における正の屈折力が大きいため、像面湾曲が十分に補正されているとは言い難い。
 特許文献3のリレー光学系では、諸収差が補正され、有効口径が小さい光学系になっている。しかしながら、開口数が大きいとは言い難い。
 本発明は、このような課題に鑑みてなされたものであって、像面湾曲、球面収差及び色収差が良好に補正されたリレー光学系及びそれを備えた硬性鏡を提供することを目的とするものである。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係るリレー光学系は、
 物体側から順に、
 第1の接合レンズと、
 正の屈折力を有する第2の接合レンズと、
 第2の接合レンズと面対称な第3の接合レンズと、
 第1の接合レンズと面対称な第4の接合レンズと、を有し、
 第1の接合レンズは、正の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、を有し、
 第2の接合レンズは、第3のレンズと、第4のレンズと、を有し、
 第1のレンズの形状は、両凸形状であり、
 第2のレンズの形状は、両凹形状であり、
 下記の条件式(1)を満足することを特徴とする。
 -0.4<f2/fCL12<-0.1   (1)
 ここで、
 f2は、第2レンズの焦点距離、
 fCL12は、第1の接合レンズと第2の接合レンズとの合成焦点距離、
である。
 また、本発明の硬性鏡は、
 上述のリレー光学系を有することを特徴とする。
 本発明によれば、像面湾曲、球面収差及び色収差が良好に補正されたリレー光学系及びそれを備えた硬性鏡を提供することができる。
本実施形態のリレー光学系の基本的な構成を示すレンズ断面図である。 実施例1のリレー光学系のレンズ断面図と収差図である。 実施例2のリレー光学系のレンズ断面図と収差図である。 実施例3のリレー光学系のレンズ断面図と収差図である。 実施例4のリレー光学系のレンズ断面図と収差図である。 実施例5のリレー光学系のレンズ断面図と収差図である。 実施例6のリレー光学系のレンズ断面図と収差図である。 実施例7のリレー光学系のレンズ断面図と収差図である。 実施例8のリレー光学系のレンズ断面図と収差図である。 実施例9のリレー光学系のレンズ断面図と収差図である。 実施例10のリレー光学系のレンズ断面図と収差図である。 硬性鏡を示す図である。
 以下、本実施形態に係るリレー光学系について、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の実施形態に係るリレー光学系により、この発明が限定されるものではない。
 リレー光学系は、像をリレーするために用いられる。リレー光学系でリレーされる像は、例えば、対物レンズによって形成される。対物レンズは、物体とリレー光学系との間に配置される。対物レンズによって1次像が形成される。リレー光学系は、この1次像をリレーして、像を形成する。以下の説明における物体側とは、1次像側を意味している。
 本実施形態のリレー光学系は、物体側から順に、第1の接合レンズと、正の屈折力を有する第2の接合レンズと、第2の接合レンズと面対称な第3の接合レンズと、第1の接合レンズと面対称な第4の接合レンズと、を有し、第1の接合レンズは、正の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、を有し、第2の接合レンズは、第3のレンズと、第4のレンズと、を有し、第1のレンズの形状は、両凸形状であり、第2のレンズの形状は、両凹形状であり、下記の条件式(1)を満足することを特徴とする。
 -0.4<f2/fCL12<-0.1   (1)
 ここで、
 f2は、第2レンズの焦点距離、
 fCL12は、第1の接合レンズと第2の接合レンズとの合成焦点距離、
である。
 図1に、本実施形態のリレー光学系の基本的な構成を示す。図1(a)は構成例1におけるレンズ断面図、図1(b)は構成例2におけるレンズ断面図である。構成例1と構成例2は多くの点で共通している。よって、以下では、構成例1を用いて説明し、構成例2については、構成例1と相違する点を説明する。
 構成例1では、リレー光学系RL1は、第1の接合レンズCL1と、第2の接合レンズCL2と、第3の接合レンズCL3と、第4の接合レンズCL4と、からなる。第2の接合レンズCL2と第3の接合レンズCL3との間に、開口絞りSが配置されている。
 図1において、紙面内の左方向を物体側、右方向を像側とする。リレー光学系RL1の物体側には、対物レンズ(不図示)が配置されている。対物レンズによって、1次像Ioが形成される。リレー光学系RL1では、1次像Ioのリレーが行われる。その結果、リレー光学系RL1の像側に、リレーされた像Iが形成される。
 リレー光学系RL1では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 リレー光学系RL1では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。リレー光学系RL1では、開口絞りSの位置に、対称面が存在している。
 このように、リレー光学系RL1は、面対称になっている1組の接合レンズを、光学系内に複数有している。そのため、コマ収差や倍率色収差を良好に補正することができる。
 第1の接合レンズCL1は、第1のレンズL1と、第2のレンズL2と、を有する。第1のレンズL1は正の屈折力を有し、第2のレンズL2は負の屈折力を有する。これにより、第1の接合レンズでは、主に、像面湾曲を良好に補正することができる。
 第2の接合レンズCL2は、第3のレンズL3と、第4のレンズL4と、を有する。リレー光学系RL1では、第3のレンズL3は正の屈折力を有し、第4のレンズL4は負の屈折力を有する。リレー光学系RL2では、第3のレンズL3は負の屈折力を有し、第4のレンズL4は正の屈折力を有する。
 第2の接合レンズCL2の位置では、第1の接合レンズCL1の位置に比べて、軸上光線の高さが高くなる。第2の接合レンズCL2を2つのレンズで構成することで、色収差や球面収差を良好に補正することができる。
 第1のレンズL1の形状は、両凸形状になっている。そのため、第1のレンズL1に入射した光線は、光軸方向に向かって屈折される。これにより、入射光束線の径を小さくできる。その結果、レンズの有効口径を小さくできる。
 第2のレンズL2の形状は、両凹形状になっている。このようにすることで、像面湾曲や球面収差を良好に補正できる。
 第2のレンズL2の形状を両凹形状にすると、第2のレンズL2に大きな負の屈折力を持たせやすくなる。第2のレンズL2の負の屈折力を大きくできると、リレー光学系全体におけるペッツバール和を小さくすることができる。その結果、特に、像面湾曲を良好に補正することができる。
 構成例1や構成例2では、リレー光学系中に開口絞りSが配置されている。開口絞りSとしては、例えば、開口が設けられた金属板が用いられる。開口の大きさで、光束径が決まる。開口絞りSを用いなくても光束径を決めることができるのであれば、リレー光学系中に開口絞りSが配置されている必要はない。
 本実施形態のリレー光学系は、構成例1又は構成例2を備え、上述の条件式(1)を満足する。
 条件式(1)式を満足することで、第2のレンズに適切な大きさの負の屈折力を持たせることができる。その結果、像面湾曲を良好に補正しつつ、色収差や球面収差も良好に補正することが可能となる。
 条件式(1)の下限値を下回ると、第2のレンズにおける負の屈折力が小さくなる。この場合、像面湾曲が増大するので、像の周辺における結像性能が劣化する。条件式(1)の上限値を上回ると、第2のレンズにおける負の屈折力が大きくなる。この場合、色収差や球面収差が増大するので、像の中心から周辺までの広い範囲で良好な結像性能を得ることができなくなる。
 光学系の開口数を大きくすると、収差の発生量が増大しやすくなる。本実施形態のリレー光学系は、諸収差を補正する能力が高い光学系になっている。よって、本実施形態のリレー光学系では、開口数を大きくしても、像面湾曲の増大、球面収差の増大及び色収差の増大を抑えることができる。このように、本実施形態のリレー光学系よれば、開口数が大きく、高い結像性能を有するリレー光学系を実現できる。
 条件式(1)に代えて、以下の条件式(1’)又は(1”)を満足することが好ましい。
 -0.4<f2/fCL12<-0.13   (1’)
 -0.38<f2/fCL12<-0.15   (1”)
 本実施形態のリレー光学系では、第3のレンズは正の屈折力を有し、第4のレンズは負の屈折力を有するか、又は、第3のレンズは負の屈折力を有し、第4のレンズは正の屈折力を有することが好ましい。
 このようにすることで、軸上光線高がより高くなっている位置で、色収差を補正することができる。そのため、色収差をより良好に補正できる。
 本実施形態のリレー光学系では、第3のレンズの物体側のレンズ面は、非球面であることが好ましい。
 このようにすることで、球面収差をより良好に補正できる。すなわち、開口数を大きくしても高い結像性能が維持できる。その結果、解像度が高い像を形成することができる。
 本実施形態のリレー光学系は、以下の条件式(2)を満足することが好ましい。
 3<PS×TL<8   (2)
 ここで、
 PSは、ペッツバール和、
 TLは、リレー光学系の全長、
である。
 リレー光学系では、全体の屈折力は正の屈折力である。リレー光学系は、正レンズと負レンズとを含んでいる。よって、リレー光学系全体の屈折力は、正レンズの屈折力の大きさと負レンズの屈折力の大きさとで決まることになる。
 条件式(2)を満足することで、リレー光学系全体の屈折力に占める負の屈折力の割合を大きくすることができる。その結果、像面湾曲を良好に補正することが可能となる。
 条件式(2)の上限値を上回ると、リレー光学系全体の屈折力に占める負の屈折力の割合が小さくなる。そのため、像面湾曲の補正が十分にできなくなる。条件式(2)の下限値を下回ると、球面収差が良好に補正できなくなる。
 条件式(2)に代えて、以下の条件式(2’)又は(2”)を満足することが好ましい。
 3.5<PS×TL<7.5   (2’)
 3.5<PS×TL<7   (2”)
 本実施形態のリレー光学系は、以下の条件式(3)を満足することが好ましい。
 0.5E-5<|(fCL2/fCL1)×(θgF3-θgF4)/(νd3-νd4)|<100E-5   (3)
 ここで、
 fCL1は、第1の接合レンズの焦点距離、
 fCL2は、第2の接合レンズの焦点距離、
 θgF3は、第3のレンズの部分分散比、
 θgF4は、第4のレンズの部分分散比、
 νd3は、第3のレンズのアッベ数、
 νd4は、第4のレンズのアッベ数
である。
 (fCL2×(θgF3-θgF4)/(νd3-νd4)は、第2の接合レンズにおける2次スペクトル、具体的には、F線に対するg線の残存色収差量を表している。また、「E-5」は「10-5」を表している。
 条件式(3)を満足することで、2次スペクトルを良好に補正することができる。その結果、解像度が高い像を形成することができる。
 硬性鏡では、複数のリレー光学系によって、像のリレーが複数回行われる。この場合、最終的に発生する2次スペクトルの量は、1つのリレー光学系における2次スペクトルの量に、リレー回数を掛け合わせた量になる。よって、1つのリレー光学系における2次スペクトルの量は、できるだけ小さくすることが好ましい。
 上述のように、本実施形態のリレー光学系は、2次スペクトルが良好に補正されている。よって、本実施形態のリレー光学系を硬性鏡の光学系に使用しても、最終的に発生する2次スペクトルの量を少なくすることができる。その結果、解像度が高い像を形成することができる。
 条件式(3)の上限値を上回ると、2次スペクトルが大きくなるので、解像度が高い像を形成することが困難となる。条件式(3)の下限値を下回ると、球面収差が良好に補正できなくなる。
 条件式(3)に代えて、以下の条件式(3’)又は(3”)を満足することが好ましい。
 1E-5<|(fCL2/fCL1)×(θgF3-θgF4)/(νd3-νd4)|<80E-5   (3')
 1E-5<|(fCL2/fCL1)×(θgF3-θgF4)/(νd3-νd4)|<30E-5   (3”)
 本実施形態のリレー光学系は、以下の条件式(4)を満足することが好ましい。
 -0.5<f2/fCL2<-0.2    (4)
 ここで、
 f2は、第2のレンズの焦点距離、
 fCL2は、第2の接合レンズの焦点距離、
である。
 条件式(4)を満足することで、リレー光学系全体の屈折力に占める負の屈折力の割合を大きくすることができる。その結果、像面湾曲を良好に補正しつつ、色収差や球面収差を良好に補正することが可能となる。
 条件式(4)の下限値を下回ると、リレー光学系全体の屈折力に占める負の屈折力の割合が小さくなる。この場合、像面湾曲が悪化するので、像の周辺部における結像性能の劣化につながる。条件式(4)の上限値を上回ると、球面収差や色収差が悪化する。そのため、解像度が高い像を形成することが困難になる。
 条件式(4)に代えて、以下の条件式(4’)又は(4”)を満足することが好ましい。
 -0.5<f2/fCL2<-0.23   (4')
 -0.47<f2/fCL2<-0.26   (4”)
 本実施形態のリレー光学系は、以下の条件式(5)を満足することが好ましい。
 0.25<f1/fCL12<1   (5)
 ここで、
 f1は、第1レンズの焦点距離、
 fCL12は、第1の接合レンズと第2の接合レンズとの合成焦点距離、
である。
 条件式(5)を満足することで、第1レンズの正の屈折力を適切な大きさにすることができる。これにより、第2レンズの負の屈折力も適切な大きさにすることができる。その結果、像面湾曲を良好に補正しつつ、色収差や球面収差も良好に補正することが可能となる。
 条件式(5)に代えて、以下の条件式(5’)又は(5”)を満足することが好ましい。
 0.28<f1/fCL12<0.7   (5’)
 0.3<f1/fCL12<0.5   (5”)
 本実施形態のリレー光学系は、以下の条件式(6)を満足することが好ましい。
 0.07<NA   (6)
 ここで、
 NAは、リレー光学系の開口数、
である。
 条件式(6)を満足することで、明るく、解像度の高い像を形成することができる。
 条件式(6)に代えて、以下の条件式(6’)又は(6”)を満足することが好ましい。
 0.09<NA   (6')
 0.105<NA   (6”)
 本実施形態の硬性鏡は、本実施形態のリレー光学系を有することを特徴とする。
 本実施形態の硬性鏡は、複数のリレー光学系を有している。そして、本実施形態の硬性鏡では、複数のリレー光学系の少なくとも1つに、本実施形態のリレー光学系が用いられている。本実施形態のリレー光学系では、ペッツバール和が小さくなるので、像面湾曲を小さくできる。そのため、本実施形態のリレー光学系を少なくとも1つ用いることで、解像度が高い像を形成することが可能になる。
 このように、本実施形態の硬性鏡によれば、解像度が高い像を得ることができる。また、解像度が高い像を撮像することで、高画質の画像を取得することができる。
 本実施形態の硬性鏡は、対物レンズと、接眼レンズと、対物レンズと接眼レンズとの間に配置されたリレー光学系と、を有し、リレー光学系の総数は7以上であり、本実施形態のリレー光学系の総数が3以上であることが好ましい。
 本実施形態のリレー光学系では、ペッツバール和が小さくなるので、像面湾曲を小さくできる。そのため、リレー光学系の総数が7以上の場合、本実施形態のリレー光学系の総数を3以上にすることで、解像度が高い像を形成することが可能になる。その結果、本実施形態の硬性鏡によれば、解像度が高い像を得ることができる。また、解像度が高い像を撮像することで、高画質の画像を取得することができる。
 硬性鏡光学系が、対物レンズと、接眼レンズと、複数のリレー光学系で構成されているとする。この場合、対物レンズ、接眼レンズ及びリレー光学系の各々で、像側の開口数が本実施形態のリレー光学系の開口数と同等以上であることが望ましい。
 このようにすることで、収差が良好に補正されるので、明るく、高解像度な像を形成することができる。また、解像度が高い像を撮像することで、高画質の画像を取得することができる。
 図12は、硬性鏡を示す図である。図12では、硬性鏡の観察光学系が概略的に示されている。そのため、観察光学系を構成する光学要素は単レンズで示されている。
 観察光学系10は、硬性管(不図示)の内部に配置されている。観察光学系10は、物体側から順に、対物レンズ1と、リレー光学系2と、リレー光学系3と、リレー光学系4と、接眼レンズ5と、を有する。
 対物レンズ1は、像面6に1次像を形成する。1次像は、リレー光学系2によって像側にリレーされる。これにより、像面7に第1のリレー像が形成される。第1のリレー像は、リレー光学系3によって像側にリレーされる。これにより、像面8に第2のリレー像が形成される。第2のリレー像は、リレー光学系4によって像側にリレーされる。これにより、像面9に第3のリレー像が形成される。
 第3のリレー像は、接眼レンズ5で観察することができる。接眼レンズ5の像側(右側)に、撮像素子を含んだカメラヘッド光学系を配置しても良い。このようにすることで、物体の画像を取得することができる。
 図12に示す観察光学系10では、リレー光学系の数は3であるが、これに限られない。例えば、リレー光学系の総数を7以上にすることができる。
 リレー光学系の総数を増やすと、硬性管の全長が長くなる。硬性管の全長が長くなると、操作性が悪くなる。このようなことから、硬性管の全長は限られた長さになる。限られた長さの中でリレー光学系の総数を増やすためには、一つのリレー光学系の全長を短くすれば良い。これは、一つのリレー光学系における焦点距離が短くなることを意味する。
 有効口径の値は変わらずに焦点距離が短くなると、開口数が大きくなる。よって、リレー光学系における焦点距離が短くなると、リレー光学系における開口数は大きくなる。
 上述のように、光学系の開口数を大きくすると、収差の発生量が増大しやすくなる。しかしながら、本実施形態のリレー光学系は、諸収差を補正する能力が高い光学系になっている。よって、本実施形態のリレー光学系では、開口数を大きくしても、諸収差の増大を抑えることができる。すなわち、リレー光学系の総数を増やしても、高い結像性能の維持と明るい像の形成とを行うことができる。
 リレー光学系の総数を7以上にする場合、本実施形態のリレー光学系の総数を3以上にすることで、像面湾曲の増大、球面収差の増大及び色収差の増大を抑えることができる。よって、本実施形態の硬性鏡によれば、解像度が高い像を得ることができる。また、解像度が高い像を撮像することで、高画質の画像を取得することができる。
 以下、実施例について説明する。各収差図において、横軸は収差量を表している。球面収差と非点収差については、収差量の単位はmmである。NAは開口数、IHは像高である。収差曲線の波長の単位はnmである。
 各実施例では、リレー光学系中に開口絞りSが配置されている。ただし、開口絞りSを用いなくても光束径を決めることができるのであれば、リレー光学系中に開口絞りSが配置されていなくても良い。
(実施例1)
 実施例1に係るリレー光学系について説明する。図2(a)は、実施例1に係るリレー光学系のレンズ断面図である。また、図2(b)、(c)は実施例1に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例1のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例1のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例1のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例1のリレー光学系では、開口絞りSの位置に、対称面が存在している。
(実施例2)
 実施例2に係るリレー光学系について説明する。図3(a)は、実施例2に係るリレー光学系のレンズ断面図である。また、図3(b)、(c)は実施例2に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例2のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例2のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例2のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例2のリレー光学系では、開口絞りSの位置に、対称面が存在している。
(実施例3)
 実施例3に係るリレー光学系について説明する。図4(a)は、実施例3に係るリレー光学系のレンズ断面図である。また、図4(b)、(c)は実施例3に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例3のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例3のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例3のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例3のリレー光学系では、開口絞りSの位置に、対称面が存在している。
 非球面は、両凸正レンズL3の物体側面と、両凸正レンズL6の像側面と、の合計2面に設けられている。
(実施例4)
 実施例4に係るリレー光学系について説明する。図5(a)は、実施例4に係るリレー光学系のレンズ断面図である。また、図5(b)、(c)は実施例4に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例4のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例4のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例4のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例4のリレー光学系では、開口絞りSの位置に、対称面が存在している。
(実施例5)
 実施例5に係るリレー光学系について説明する。図6(a)は、実施例5に係るリレー光学系のレンズ断面図である。また、図6(b)、(c)は実施例5に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例5のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例5のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例5のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例5のリレー光学系では、開口絞りSの位置に、対称面が存在している。
 非球面は、両凸正レンズL3の物体側面と、両凸正レンズL6の像側面と、の合計2面に設けられている。
(実施例6)
 実施例6に係るリレー光学系について説明する。図7(a)は、実施例6に係るリレー光学系のレンズ断面図である。また、図7(b)、(c)は実施例6に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例6のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例6のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例6のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例6のリレー光学系では、開口絞りSの位置に、対称面が存在している。
 非球面は、両凸正レンズL3の物体側面と、両凸正レンズL6の像側面と、の合計2面に設けられている。
(実施例7)
 実施例7に係るリレー光学系について説明する。図8(a)は、実施例7に係るリレー光学系のレンズ断面図である。また、図8(b)、(c)は実施例7に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例7のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例7のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例7のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例7のリレー光学系では、開口絞りSの位置に、対称面が存在している。
 非球面は、両凸正レンズL3の物体側面と、両凸正レンズL6の像側面と、の合計2面に設けられている。
(実施例8)
 実施例8に係るリレー光学系について説明する。図9(a)は、実施例8に係るリレー光学系のレンズ断面図である。また、図9(b)、(c)は実施例8に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例8のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、物体側に凸面を向けた負メニスカスレンズL3と、両凸正レンズL4と、からなる。第3の接合レンズCL3は、両凸正レンズL5と、像側に凸面を向けた負メニスカスレンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例8のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例8のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例8のリレー光学系では、開口絞りSの位置に、対称面が存在している。
 非球面は、負メニスカスレンズL3の物体側面と、負メニスカスレンズL6の像側面と、の合計2面に設けられている。
(実施例9)
 実施例9に係るリレー光学系について説明する。図10(a)は、実施例9に係るリレー光学系のレンズ断面図である。また、図10(b)、(c)は実施例9に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例9のリレー光学系は、物体側から順に、正の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、正の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2と第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例9のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例9のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例9のリレー光学系では、開口絞りSの位置に、対称面が存在している。
 非球面は、両凸正レンズL3の物体側面と、両凸正レンズL6の像側面と、の合計2面に設けられている。
(実施例10)
 実施例10に係るリレー光学系について説明する。図11(a)は、実施例10に係るリレー光学系のレンズ断面図である。また、図11(b)、(c)は実施例10に係るリレー光学系の収差図であって、(b)は球面収差(SA)を示し、(c)は非点収差(AS)を示している。
 実施例10のリレー光学系は、物体側から順に、負の屈折力を有する第1の接合レンズCL1と、正の屈折力を有する第2の接合レンズCL2と、正の屈折力を有する第3の接合レンズCL3と、負の屈折力を有する第4の接合レンズCL4と、からなる。開口絞りSは、第2の接合レンズCL2とる第3の接合レンズCL3との間に配置されている。
 第1の接合レンズCL1は、両凸正レンズL1と、両凹負レンズL2と、からなる。第2の接合レンズCL2は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。第3の接合レンズCL3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。第4の接合レンズCL4は、両凹負レンズL7と、両凸正レンズL8と、からなる。
 実施例10のリレー光学系では、2組の接合レンズが、面対称に配置されている。1組目の接合レンズは、第1の接合レンズCL1と第4の接合レンズCL4とからなる。第4の接合レンズCL4は、第1の接合レンズCL1の形状と面対称な形状を有する。第4の接合レンズCL4は、第1の接合レンズCL1と面対称な位置に配置されている。
 2組目の接合レンズは、第2の接合レンズCL2と第3の接合レンズCL3とからなる。第3の接合レンズCL3は、第2の接合レンズCL2の形状と面対称な形状を有する。第3の接合レンズCL3は、第2の接合レンズCL2と面対称な位置に配置されている。
 実施例10のリレー光学系では、開口絞りSに対して、第1の接合レンズCL1と第4の接合レンズCL4とが対称になっている。また、開口絞りSに対して、第2の接合レンズCL2と第3の接合レンズCL3とが対称になっている。実施例10のリレー光学系では、開口絞りSの位置に、対称面が存在している。
 非球面は、両凸正レンズL3の物体側面と、両凸正レンズL6の像側面と、の合計2面に設けられている。
 以下に、上記各実施例の数値データを示す。面データにおいて、記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νdは各レンズのアッベ数である。また、各種データにおいて、NAは開口数、IHは像高、TLはリレー光学系の全長、θgF3とθgF4は部分分散比、PSはペッツバール和である。リレー光学系の全長は、2つの像の間の距離(面データにおける物体面から像面までの距離)である。
 また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10、A12…としたとき、次の式で表される。
 z=(y2/r)/[1+{1-(1+k)(y/r)21/2
    +A4y4+A6y6+A8y8+A10y10+A12y12+…
 また、「E-n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
数値実施例1
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.6920 
   1       4.3492    3.4484    1.88815      40.76
   2      -2.3878    0.9814    1.67718      38.15
   3       1.5712    0.6227
   4       2.8873    3.5804    1.49846      81.54
   5      -1.6244    0.6768    1.51825      64.14
   6      -3.3614    0.1692
   7(絞り)  ∞       0.1692
   8       3.3614    0.6768    1.51825      64.14
   9       1.6244    3.5804    1.49846      81.54
  10      -2.8873    0.6227
  11      -1.5712    0.9814    1.66718      38.15
  12       2.3878    3.4484    1.88815      40.76
  13      -4.3492    1.6920
像面        ∞
 
各種データ
NA        0.1000
IH        1.000
TL       22.34
θgF3     0.5375
θgF4     0.5353
PS        0.1810
数値実施例2
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.6920
   1       4.3492    3.4484    1.88815      40.76
   2      -2.3878    0.9814    1.67718      38.15
   3       1.5712    0.6227
   4       2.8873    3.5804    1.49846      81.54
   5      -1.6244    0.6768    1.51825      64.14
   6      -3.3614    0.1692
   7(絞り)  ∞       0.1692
   8       3.3614    0.6768    1.51825      64.14
   9       1.6244    3.5804    1.49846      81.54
  10      -2.8873    0.6227
  11      -1.5712   0.9814    1.66718      38.15
  12       2.3878    3.4484    1.88815      40.76
  13      -4.3492    1.6920
像面        ∞
 
各種データ
NA        0.0794
IH        1.000
TL       22.34
θgF3     0.5375
θgF4     0.5353
PS        0.1810
数値実施例3
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.4989
   1       5.5468    3.9128    2.01169      28.27
   2      -3.4156    0.6815    1.62409      36.26
   3       1.7079    0.5501
   4*      2.6173    4.0384    1.43985      94.93
   5      -1.6017    0.5039    1.51825      64.14
   6      -2.9709    0.1004
   7(絞り)  ∞       0.1004
   8       2.9709    0.5039    1.51825      64.14
   9       1.6017    4.0384    1.43985      94.93
  10*     -2.6173    0.5501
  11      -1.7079    0.6815    1.62409      36.26
  12       3.4156    3.9128    2.01169      28.27
  13      -5.5468    1.4989
像面        ∞
 
非球面データ
第4面
K=1.3352
A4=-7.8861E-03
第10面
K=1.3352
A4=7.8861E-03
 
各種データ
NA        0.126
IH        1.000
TL       22.57
θgF3     0.534
θgF4     0.5353
PS        0.2193
数値実施例4
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.3469
   1       5.5824    3.8133    2.01169      28.27
   2      -4.3058    0.6304    1.62409      36.26
   3       2.0846    0.4326
   4       3.3001    4.5940    1.43985      94.93
   5      -1.6484    0.3877    1.51825      64.14
   6      -2.8785    0.0852
   7(絞り)  ∞       0.0852
   8       2.8785    0.3877    1.51825      64.14
   9       1.6484    4.5940    1.43985      94.93
  10      -3.3001    0.4326
  11      -2.0846    0.6304    1.62409      36.26
  12       4.3058    3.8133    2.01169      28.27
  13      -5.5824    1.3469
像面        ∞
 
各種データ
NA        0.1246
IH        1.000
TL       22.58
θgF3     0.534
θgF4     0.5353
PS        0.2454
数値実施例5
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.8167
   1      19.5954    5.0378    2.01169      28.27
   2      -3.2960    2.2706    1.62409      36.26
   3       3.9954    1.5727
   4*      3.6196    4.8760    1.43985      94.93
   5      -2.6864    0.4529    1.69979      55.53
   6      -5.0412    0.6291
   7(絞り)  ∞       0.6291
   8       5.0412    0.4529    1.69979      55.53
   9       2.6864    4.8760    1.43985      94.93
  10*     -3.6196    1.5727
  11      -3.9954    2.2706    1.62409      36.26
  12       3.2960    5.0378    2.01169      28.27
  13     -19.5954    1.8167
像面        ∞
 
非球面データ
第4面
K=0.0343
A4=-2.8223E-03
第10面
K=0.0343
A4=2.8223E-03
 
各種データ
NA        0.1546
IH        1.000
TL       33.31
θgF3     0.534
θgF4     0.5434
PS        0.1840
数値実施例6
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.7935
   1      19.9317    4.8199    2.01169      28.27
   2      -3.3856    2.2765    1.62409      36.26
   3       4.0449    1.5636
   4*      3.5769    5.1751    1.43985      94.93
   5      -2.7738    0.5759    1.69979      55.53
   6      -5.1694    0.5347
   7(絞り)  ∞       0.5347
   8       5.1694    0.5759    1.69979      55.53
   9       2.7738    5.1751    1.43985      94.93
  10*     -3.5769    1.5636
  11      -4.0449    2.2765    1.62409      36.26
  12       3.3856    4.8199    2.01169      28.27
  13     -19.9317    1.7935
像面        ∞
 
非球面データ
第4面
K=0.0323
A4=-3.4447E-03
第10面
K=0.0323
A4=3.4447E-03
 
各種データ
NA        0.1524
IH        1.000
TL       33.48
θgF3     0.534
θgF4     0.5434
PS        0.1841
数値実施例7
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.7893
   1      15.3350    4.7990    2.01169      28.27
   2      -3.8708    2.1366    1.62409      36.26
   3       4.0920    1.5293
   4*      3.9257    5.0818    1.43985      94.93
   5      -2.6180    0.5884    1.65425      58.55
   6      -4.8779    0.7316
   7(絞り)  ∞       0.7316
   8       4.8779    0.5884    1.65425      58.55
   9       2.6180    5.0818    1.43985      94.93
  10*     -3.9257    1.5293
  11      -4.0920    2.1366    1.62409      36.26
  12       3.8708    4.7990    2.01169      28.27
  13     -15.3350    1.7893
像面        ∞
 
非球面データ
第4面
K=0.5062
A4=-3.3438E-03
第10面
K=0.5062
A4=3.3438E-03
 
各種データ
NA        0.13
IH        1.000
TL       33.31
θgF3     0.534
θgF4     0.5424
PS        0.1881
数値実施例8
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.6672
   1       3.8459    3.3078    1.88815      40.76
   2      -6.4323    1.1905    1.72538      34.71
   3       1.7657    0.6553
   4*      3.5464    0.9993    1.51825      64.06
   5       1.5741    3.1690    1.49846      81.54
   6      -3.0729    0.0948
   7(絞り)  ∞       0.0948
   8       3.0729    3.1690    1.49846      81.54
   9      -1.5741    0.9993    1.51825      64.06
  10*     -3.5464    0.6553
  11      -1.7657    1.1905    1.72538      34.71
  12       6.4323    3.3078    1.88815      40.76
  13      -3.8459    1.6672
像面        ∞
 
非球面データ
第4面
K=2.1601
A4=-1.2021E-02
第10面
K=2.1601
A4=1.2021E-02
 
各種データ
NA        0.125
IH        1.000
TL       22.17
θgF3     0.5333
θgF4     0.5375
PS        0.1819
数値実施例9
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.5203
   1       5.0823    2.9710    1.88815      40.76
   2      -3.2361    1.4800    1.61669      44.27
   3       1.9643    0.8708
   4*      3.7520    3.7050    1.49846      81.54
   5      -2.0323    0.6446    1.61669      44.27
   6      -3.4301    0.0941
   7(絞り)  ∞       0.0941
   8       3.4301    0.6446    1.61669      44.27
   9       2.0323    3.7050    1.49846      81.54
  10*     -3.7520    0.8708
  11      -1.9643    1.4800    1.61669      44.27
  12       3.2361    2.9710    1.88815      40.76
  13      -5.0823    1.5203
像面        ∞
 
非球面データ
第4面
K=0.7292
A4=-4.0535E-03
第10面
K=0.7292
A4=4.0535E-03
 
各種データ
NA        0.125
IH        1.000
TL       22.57
θgF3     0.5375
θgF4     0.5633
PS        0.2034
数値実施例10
単位  mm
 
面データ
  面番号     r         d          ne         νd
物体面      ∞       1.7096
   1      24.7277    4.5913    2.01169      28.27
   2      -2.5922    1.1081    1.62409      36.26
   3       2.7376    1.5000
   4*      2.8362    6.5368    1.43985      94.93
   5      -2.3436    0.5671    1.69979      55.53
   6      -4.6762    0.8560
   7(絞り)  ∞       0.8560
   8       4.6762    0.5671    1.69979      55.53
   9       2.3436    6.5368    1.43985      94.93
  10*     -2.8362    1.5000
  11      -2.7376    1.1081    1.62409      36.26
  12       2.5922    4.5913    2.01169      28.27
  13     -24.7277    1.7095
像面        ∞
 
非球面データ
第4面
K=-0.3449
A4=-2.4423E-03
第10面
K=-0.3449
A4=2.4423E-03
 
各種データ
NA        0.140
IH        1.000
TL       33.74
θgF3     0.534
θgF4     0.5434
PS        0.1523
 次に、各実施例における条件式の値を以下に示す。
    条件式
(1)f2/fCL12
(2)PS×TL
(3)|(fCL2/fCL1)×(θgF3-θgF4)/(νd3-νd4)|
(4)f2/fCL2
(5)f1/fCL12
 
条件式    実例施1        実例施2        実例施3
(1)      -0.178          -0.178          -0.258
(2)       4.043           4.043           4.949
(3)       2.833E-05       2.833E-05       1.102E-05
(4)      -0.311          -0.311          -0.393
(5)       0.321           0.321           0.398
 
条件式    実例施4        実例施5        実例施6
(1)      -0.318          -0.321          -0.324
(2)       5.541           6.130           6.162
(3)       1.48E-05        8.6E-05         8.096E-05
(4)      -0.444          -0.372          -0.378
(5)       0.437           0.390           0.392
 
条件式    実例施7        実例施8        実例施9
(1)      -0.343          -0.232          -0.248
(2)       6.266           4.032           4.591
(3)       8.538E-05       7.267E-05      25.2E-05
(4)      -0.406          -0.423          -0.372
(5)       0.415           0.411           0.372
 
条件式    実例施10
(1)      -0.246
(2)       5.139
(3)       4.105E-06
(4)      -0.317
(5)       0.316
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
 本発明は、像面湾曲、球面収差及び色収差が良好に補正されたリレー光学系及びそれを備えた硬性鏡に有用である。
 RL1、RL2 リレー光学系
 L1~L8 レンズ
 CL1~CL4 接合レンズ
 S 開口絞り
 Io 1次像
 I 像面
 1 対物レンズ
 2、3、4 リレー光学系
 5 接眼レンズ
 6、7、8、9 像面
 10 観察光学系

Claims (9)

  1.  物体側から順に、
     第1の接合レンズと、
     正の屈折力を有する第2の接合レンズと、
     前記第2の接合レンズと面対称な第3の接合レンズと、
     前記第1の接合レンズと面対称な第4の接合レンズと、を有し、
     前記第1の接合レンズは、正の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、を有し、
     前記第2の接合レンズは、第3のレンズと、第4のレンズと、を有し、
     前記第1のレンズの形状は、両凸形状であり、
     前記第2のレンズの形状は、両凹形状であり、
     下記の条件式(1)を満足することを特徴とするリレー光学系。
     -0.4<f2/fCL12<-0.1   (1)
     ここで、
     f2は、前記第2レンズの焦点距離、
     fCL12は、前記第1の接合レンズと前記第2の接合レンズとの合成焦点距離、
    である。
  2.  前記第3のレンズは正の屈折力を有し、前記第4のレンズは負の屈折力を有することを特徴とする請求項1に記載のリレー光学系。
  3.  前記第3のレンズは負の屈折力を有し、前記第4のレンズは正の屈折力を有することを特徴とする請求項1に記載のリレー光学系。
  4.  前記第3のレンズの物体側のレンズ面は、非球面であることを特徴とする請求項1から3のいずれか一項に記載のリレー光学系。
  5.  以下の条件式(2)を満足することを特徴とする請求項1から4のいずれか一項に記載のリレー光学系。
     3<PS×TL<8   (2)
     ここで、
     PSは、ペッツバール和、
     TLは、前記リレー光学系の全長、
    である。
  6.  以下の条件式(3)を満足することを特徴とする請求項1から5のいずれか一項に記載のリレー光学系。
     0.5E-5<|(fCL2/fCL1)×(θgF3-θgF4)/(νd3-νd4)|<100E-5   (3)
     ここで、
     fCL1は、前記第1の接合レンズの焦点距離、
     fCL2は、前記第2の接合レンズの焦点距離、
     θgF3は、前記第3のレンズの部分分散比、
     θgF4は、前記第4のレンズの部分分散比、
     νd3は、前記第3のレンズのアッベ数、
     νd4は、前記第4のレンズのアッベ数
    である。
  7.  以下の条件式(4)を満足することを特徴とする請求項1から6のいずれか一項に記載のリレー光学系。
     -0.5<f2/fCL2<-0.2    (4)
     ここで、
     f2は、前記第2のレンズの焦点距離、
     fCL2は、前記第2の接合レンズの焦点距離、
    である。
  8.  請求項1から7のいずれか一項に記載のリレー光学系を有することを特徴とする硬性鏡。
  9.  対物レンズと、
     接眼レンズと、
     前記対物レンズと前記接眼レンズとの間に配置されたリレー光学系と、を有し、
     前記リレー光学系の総数は7以上であり、
     請求項1から7のいずれか一項に記載のリレー光学系の総数が3以上であることを特徴とする請求項8に記載の硬性鏡。
PCT/JP2017/014121 2016-05-20 2017-04-04 リレー光学系及びそれを備えた硬性鏡 WO2017199613A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017554918A JP6279178B1 (ja) 2016-05-20 2017-04-04 リレー光学系及びそれを備えた硬性鏡
DE112017002595.8T DE112017002595T5 (de) 2016-05-20 2017-04-04 Relaisoptiksystem und starres Endoskop, das dies verwendet
CN201780018913.8A CN108780211B (zh) 2016-05-20 2017-04-04 中继光学系统和具备该中继光学系统的硬式内镜
US16/125,635 US10859811B2 (en) 2016-05-20 2018-09-07 Relay optical system and rigid endoscope using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-101270 2016-05-20
JP2016101270 2016-05-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/125,635 Continuation US10859811B2 (en) 2016-05-20 2018-09-07 Relay optical system and rigid endoscope using the same

Publications (1)

Publication Number Publication Date
WO2017199613A1 true WO2017199613A1 (ja) 2017-11-23

Family

ID=60325167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014121 WO2017199613A1 (ja) 2016-05-20 2017-04-04 リレー光学系及びそれを備えた硬性鏡

Country Status (5)

Country Link
US (1) US10859811B2 (ja)
JP (1) JP6279178B1 (ja)
CN (1) CN108780211B (ja)
DE (1) DE112017002595T5 (ja)
WO (1) WO2017199613A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006899A (ja) * 2019-06-06 2021-01-21 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung 内視鏡のための反転システムおよび内視鏡

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111904373A (zh) * 2020-09-04 2020-11-10 鹰利视医疗科技有限公司 一种4k超高清腹腔镜的转像镜结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207215A (en) * 1981-05-29 1982-12-18 Teruushinnoputeitsukusu Inc Flat view lens
JPS61184513A (ja) * 1984-10-02 1986-08-18 Olympus Optical Co Ltd 像伝達光学系
JP6029159B1 (ja) * 2016-05-13 2016-11-24 株式会社タムロン 観察光学系、観察撮像装置、観察撮像システム、結像レンズ系及び観察光学系の調整方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799656A (en) * 1972-06-08 1974-03-26 Bell & Howell Co Optical relay system
JPS5548281B2 (ja) * 1973-03-09 1980-12-05
JPS581763B2 (ja) * 1978-06-19 1983-01-12 旭光学工業株式会社 回折限界の解像力を有する等倍複写用レンズ
US4575195A (en) 1981-05-29 1986-03-11 Jan Hoogland Flat field lenses
JPH0762736B2 (ja) * 1984-09-25 1995-07-05 オリンパス光学工業株式会社 像伝達光学系
JPH0694989A (ja) * 1992-08-22 1994-04-08 Dr Canzek Endoscopie Ag 光学リレー・レンズ・システム
US5743846A (en) * 1994-03-17 1998-04-28 Olympus Optical Co., Ltd. Stereoscopic endoscope objective lens system having a plurality of front lens groups and one common rear lens group
JP2000010024A (ja) 1998-06-18 2000-01-14 Olympus Optical Co Ltd 硬性鏡光学系
US6490085B1 (en) * 2001-02-21 2002-12-03 Richard Wolf Gmbh Symmetric anastigmatic endoscope relay system
US7515335B2 (en) 2004-02-13 2009-04-07 Olympus Winter & Ibe Gmbh Endoscope relay lens
EP2743748B1 (en) * 2011-08-08 2018-02-21 Olympus Corporation Rigid scope optical assembly and rigid endoscope
CN103969789A (zh) * 2013-01-25 2014-08-06 北京威斯顿亚太光电仪器有限公司 超高像质硬管内窥镜光学系统
US9918619B2 (en) * 2013-05-15 2018-03-20 Novadaq Technologies, Inc. Highly corrected relay system
JP2015118136A (ja) 2013-12-17 2015-06-25 コニカミノルタ株式会社 リレー光学系及び硬性鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207215A (en) * 1981-05-29 1982-12-18 Teruushinnoputeitsukusu Inc Flat view lens
JPS61184513A (ja) * 1984-10-02 1986-08-18 Olympus Optical Co Ltd 像伝達光学系
JP6029159B1 (ja) * 2016-05-13 2016-11-24 株式会社タムロン 観察光学系、観察撮像装置、観察撮像システム、結像レンズ系及び観察光学系の調整方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006899A (ja) * 2019-06-06 2021-01-21 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung 内視鏡のための反転システムおよび内視鏡
US11497385B2 (en) 2019-06-06 2022-11-15 Olympus Winter & Ibe Gmbh Reversal system for an endoscope and an endoscope
JP2023058648A (ja) * 2019-06-06 2023-04-25 オリンパス ビンテル ウント イーベーエー ゲーエムベーハー 内視鏡のための反転システムおよび内視鏡

Also Published As

Publication number Publication date
US20190004307A1 (en) 2019-01-03
US10859811B2 (en) 2020-12-08
CN108780211A (zh) 2018-11-09
CN108780211B (zh) 2020-08-14
JPWO2017199613A1 (ja) 2018-05-31
JP6279178B1 (ja) 2018-02-14
DE112017002595T5 (de) 2019-05-02

Similar Documents

Publication Publication Date Title
US9983398B2 (en) Microscope tube lens, microscope apparatus and image pickup optical system
US8422150B2 (en) Objective optical system
US20160116724A1 (en) Objective for microscope
JP5885537B2 (ja) 顕微鏡対物レンズ
US20180003944A1 (en) Endoscope magnification optical system and endoscope
US7982961B2 (en) Dry-type microscope objective lens
JP6197147B1 (ja) 対物光学系
US10585263B2 (en) Imaging lens
CN109073865A (zh) 物镜光学系统
US20170242237A1 (en) Objective optical system for endoscope
JP7559045B2 (ja) 広視野対物レンズ
JP2008116794A (ja) 撮像レンズ
CN109073864B (zh) 内窥镜对物光学系统
WO2017217291A1 (ja) リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡
WO2017179373A1 (ja) 内視鏡用対物光学系
JP6337687B2 (ja) リアコンバージョンレンズ
JP6279178B1 (ja) リレー光学系及びそれを備えた硬性鏡
JP5705014B2 (ja) 結像レンズ、撮像光学系、及び、顕微鏡
CN112748556B (zh) 一种内窥镜光学系统
JPWO2017216969A1 (ja) 明るいリレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡
WO2021084835A1 (ja) 光学系及び光学機器
US11150462B2 (en) Objective optical system
JP2007010700A (ja) 撮像レンズ
JP6754916B2 (ja) 内視鏡用変倍光学系及び内視鏡
WO2016114082A1 (ja) 対物レンズ及びそれを備えた撮像装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017554918

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799047

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799047

Country of ref document: EP

Kind code of ref document: A1