WO2017199393A1 - 室外ユニットおよびそれを備えた冷凍サイクル装置 - Google Patents

室外ユニットおよびそれを備えた冷凍サイクル装置 Download PDF

Info

Publication number
WO2017199393A1
WO2017199393A1 PCT/JP2016/064866 JP2016064866W WO2017199393A1 WO 2017199393 A1 WO2017199393 A1 WO 2017199393A1 JP 2016064866 W JP2016064866 W JP 2016064866W WO 2017199393 A1 WO2017199393 A1 WO 2017199393A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchange
outdoor
heat exchanger
path
Prior art date
Application number
PCT/JP2016/064866
Other languages
English (en)
French (fr)
Inventor
中村 伸
前田 剛志
石橋 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to ES20201281T priority Critical patent/ES2960725T3/es
Priority to CN201680085102.5A priority patent/CN109073290B/zh
Priority to US16/083,553 priority patent/US10914499B2/en
Priority to EP16902412.2A priority patent/EP3460358A4/en
Priority to SG11201807906YA priority patent/SG11201807906YA/en
Priority to PCT/JP2016/064866 priority patent/WO2017199393A1/ja
Priority to JP2018518018A priority patent/JP6727297B2/ja
Priority to AU2016406843A priority patent/AU2016406843B2/en
Priority to EP20201281.1A priority patent/EP3783280B1/en
Publication of WO2017199393A1 publication Critical patent/WO2017199393A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0452Combination of units extending one behind the other with units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05308Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/022Evaporators constructed from a pair of plates forming a space in which is located a refrigerant carrying coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to an outdoor unit and a refrigeration cycle apparatus including the outdoor unit, and more particularly to an outdoor unit including an outdoor heat exchanger including a main heat exchange unit and an auxiliary heat exchange unit, and a refrigeration cycle apparatus including the outdoor unit. Is.
  • An air conditioner as a refrigeration cycle apparatus includes a refrigerant circuit including an indoor unit and an outdoor unit. In such an air conditioner, it is possible to perform a cooling operation and a heating operation by switching the flow path of the refrigerant circuit using a four-way valve or the like.
  • the indoor unit has an indoor heat exchanger. In the indoor heat exchanger, heat is exchanged between the refrigerant flowing through the refrigerant circuit and the indoor air sent by the indoor fan.
  • the outdoor unit is provided with an outdoor heat exchanger. In the outdoor heat exchanger, heat is exchanged between the refrigerant flowing through the refrigerant circuit and the outside air sent by the outdoor fan.
  • the outdoor heat exchanger used in the air conditioner includes an outdoor heat exchanger in which a heat transfer tube is disposed so as to penetrate a plurality of plate-shaped fins.
  • a heat transfer tube in which a heat transfer tube is disposed so as to penetrate a plurality of plate-shaped fins.
  • Such an outdoor heat exchanger is called a fin-and-tube heat exchanger.
  • a heat transfer tube with a reduced diameter may be used in order to efficiently perform heat exchange.
  • a flat tube having a flat cross-sectional shape with a flat cross-sectional shape may be used as such a heat transfer tube.
  • this type of outdoor heat exchanger includes a type having a main heat exchange section for condensation and an auxiliary heat exchanger for supercooling.
  • the main heat exchange part is arrange
  • the outdoor air sent by the outdoor fan passes through the outdoor heat exchanger.
  • a region where the wind speed of the outside air passing through the outdoor heat exchanger is high and a region where the wind speed of the outside air is low are generated.
  • the heat exchange between the refrigerant and the outside air varies, and the heat exchange may not be performed efficiently.
  • the heat exchange performance may be deteriorated due to the distribution of the wind speed of the outside air passing through the outdoor heat exchanger. For this reason, the outdoor unit with higher heat exchange performance is calculated
  • the present invention has been made as part of its development, and one object is to provide an outdoor unit that can improve heat exchange performance, and another object is to provide a refrigeration system having such an outdoor unit.
  • a cycle device is provided.
  • One outdoor unit is an outdoor unit including an outdoor heat exchanger.
  • the outdoor heat exchanger includes a first heat exchange part and a second heat exchange part arranged so as to be in contact with the first heat exchange part.
  • the first heat exchange unit has a plurality of first refrigerant paths.
  • the second heat exchange unit has a plurality of second refrigerant paths. Among the plurality of first refrigerant paths, the flow rate of the fluid passing through the second heat exchange section among the first path disposed closest to the second heat exchange section and the plurality of second refrigerant paths is relatively The second path arranged in the large area is connected.
  • the other outdoor unit according to the present invention is an outdoor unit provided with an outdoor heat exchanger.
  • the outdoor heat exchanger includes a first heat exchange part and a second heat exchange part arranged so as to be in contact with the first heat exchange part.
  • the first heat exchange unit has a plurality of first refrigerant paths.
  • the second heat exchange unit has a plurality of second refrigerant paths.
  • the flow rate of the fluid passing through the second heat exchange section is relatively relative to the first path arranged at the position farthest from the second heat exchange section and the plurality of second refrigerant paths. Are connected to the second path arranged in a large area.
  • the refrigeration cycle apparatus is a refrigeration cycle apparatus including the one outdoor unit or the other outdoor unit.
  • the first path disposed at the position closest to the second heat exchange unit and the second among the plurality of second refrigerant paths.
  • a second path arranged in a region where the flow velocity of the fluid passing through the heat exchange part is relatively large is connected.
  • the first path disposed at the position farthest from the second heat exchange unit and the plurality of second refrigerant paths include the first 2
  • the second path disposed in a region where the flow velocity of the fluid passing through the heat exchange section is relatively large is connected.
  • the heat exchange performance of the refrigeration cycle apparatus can be improved by providing the one outdoor unit or the other outdoor unit.
  • FIG. 1 is a perspective view showing an outdoor heat exchanger according to Embodiment 1.
  • FIG. it is sectional drawing which shows an example of the refrigerant path of a heat exchanger tube.
  • FIG. 2 It is a perspective view which shows the outdoor heat exchanger which concerns on Embodiment 2.
  • FIG. It is a figure which shows the flow of the refrigerant
  • the air conditioner 1 includes a compressor 3, an indoor heat exchanger 5, an indoor fan 7, an expansion device 9, an outdoor heat exchanger 11, an outdoor fan 21, a four-way valve 23, and a control unit 51. ing.
  • the compressor 3, the indoor heat exchanger 5, the expansion device 9, the outdoor heat exchanger 11, and the four-way valve 23 are connected by refrigerant piping.
  • the indoor heat exchanger 5 and the indoor fan 7 are arranged in the indoor unit 4.
  • the outdoor heat exchanger 11 and the outdoor fan 21 are disposed in the outdoor unit 10.
  • a series of operations of the air conditioner 1 are controlled by the control unit 51.
  • the outdoor heat exchanger 11 includes a main heat exchange unit 13 (second heat exchange unit) and an auxiliary heat exchange unit 15 (first heat exchange unit).
  • a main heat exchange unit 13 is disposed on the auxiliary heat exchange unit 15.
  • the main heat exchange unit 13a is arranged in the first row
  • the main heat exchange unit 13b is arranged in the second row.
  • the auxiliary heat exchange unit 15a is arranged in the first row
  • the auxiliary heat exchange unit 15b is arranged in the second row.
  • a plurality of heat transfer tubes 32 (32a, 32b, 32c, 32d) (second refrigerant path) are arranged so as to penetrate the plurality of plate-like fins 31.
  • a plurality of heat transfer tubes 33 (33a, 33b, 33c, 33d) (first refrigerant path) are arranged so as to penetrate the plurality of plate-like fins 31.
  • heat transfer tubes 32 and 33 for example, flat tubes having a flat cross-sectional shape having a major axis and a minor axis are used.
  • FIG. 3 shows a flat tube in which one refrigerant passage 34 is formed.
  • FIG. 4 shows a flat tube in which a plurality of refrigerant passages 34 are formed.
  • the heat transfer tubes 32 and 33 are not limited to flat tubes, and may be heat transfer tubes having a circular or oval cross-sectional shape, for example.
  • a refrigerant path is formed by the heat transfer tubes 32 and 33.
  • a refrigerant path group 14a, a refrigerant path group 14b, a refrigerant path group 14c, and a refrigerant path group 14d are formed.
  • a plurality of refrigerant paths including one refrigerant path formed by the heat transfer tubes 32a are formed.
  • a plurality of refrigerant paths including one refrigerant path formed by the heat transfer tubes 32b are formed.
  • refrigerant path group 14c a plurality of refrigerant paths including one refrigerant path formed by the heat transfer tubes 32c are formed.
  • refrigerant path group 14d a plurality of refrigerant paths including one refrigerant path formed by the heat transfer tube 32d are formed.
  • a refrigerant path 16 a, a refrigerant path 16 b, a refrigerant path 16 c, and a refrigerant path 16 d are formed by the heat transfer tube 33.
  • the refrigerant path 16a is formed by a heat transfer tube 33a.
  • the refrigerant path 16b is formed by the heat transfer tube 33b.
  • the refrigerant path 16c is formed by a heat transfer tube 33c.
  • the refrigerant path 16d is formed by a heat transfer tube 33d.
  • One end side of the refrigerant path groups 14a to 14d of the main heat exchange unit 13 and one end side of the refrigerant paths 16a to 16d of the auxiliary heat exchange unit 15 are connected by a connection pipe 35 via distributors 29a to 29d. More specifically, the refrigerant path 16a and the refrigerant path group 14a are connected. The refrigerant path 16b and the refrigerant path group 14d are connected. The refrigerant path 16c and the refrigerant path group 14c are connected. The refrigerant path 16d (first path) and the refrigerant path group 14b (second path) are connected.
  • the other end side of the refrigerant path groups 14 a to 14 d of the main heat exchange unit is connected to the header 27.
  • the other ends of the refrigerant paths 16a to 16d of the auxiliary heat exchange unit 15 are connected to the distributor 25 by connection pipes 36.
  • the outdoor heat exchanger 11 is configured as described above.
  • a high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 3.
  • the refrigerant flows according to dotted arrows.
  • the discharged high-temperature and high-pressure gas refrigerant (single phase) flows into the outdoor heat exchanger 11 of the outdoor unit 10 through the four-way valve 23.
  • the outdoor heat exchanger 11 heat exchange is performed between the refrigerant that has flowed in and the outside air (air) as a fluid supplied by the outdoor fan 21.
  • the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant (single phase).
  • the high-pressure liquid refrigerant sent out from the outdoor heat exchanger 11 becomes a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the expansion device 9.
  • the refrigerant in the two-phase state flows into the indoor heat exchanger 5 of the indoor unit 4.
  • the indoor heat exchanger 5 heat exchange is performed between the flowing refrigerant in the two-phase state and the air supplied by the indoor fan 7.
  • the liquid refrigerant evaporates to become a low-pressure gas refrigerant (single phase). By this heat exchange, the room is cooled.
  • the low-pressure gas refrigerant sent out from the indoor heat exchanger 5 flows into the compressor 3 via the four-way valve 23, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 3 again. Thereafter, this cycle is repeated.
  • the refrigerant flow in the outdoor heat exchanger 11 during the cooling operation will be described in detail.
  • the refrigerant sent from the compressor flows through the main heat exchange unit 13 and then flows through the auxiliary heat exchange unit 15.
  • the air sent by the outdoor fan 21 to the main heat exchange unit 13 and the auxiliary heat exchange unit 15 is second from the main heat exchange unit 13a and the auxiliary heat exchange unit 15a in the first row (windward side). It flows toward the main heat exchanger 13b and the auxiliary heat exchanger 15b in the row (leeward row) (see thick arrows).
  • the high-temperature and high-pressure gas refrigerant sent from the compressor 3 first flows into the header 27.
  • the refrigerant that has flowed into the header 27 flows through the refrigerant path groups 14a to 14d of the main heat exchange unit 13 in the direction indicated by the arrows.
  • the refrigerant that has flowed through the refrigerant path group 14a flows into the distributor 29a.
  • the refrigerant that has flowed through the refrigerant path group 14b flows into the distributor 29b.
  • the refrigerant that has flowed through the refrigerant path group 14c flows into the distributor 29c.
  • the refrigerant that has flowed through the refrigerant path group 14d flows into the distributor 29d.
  • the refrigerant that has flowed into each of the distributors 29a to 29d joins in each of the distributors 29a to 29d.
  • the merged refrigerant flows from each of the distributors 29a to 29d into the auxiliary heat exchange unit 15 via the connection pipe 35.
  • the refrigerant that has flowed into the auxiliary heat exchange unit 15 flows in the direction indicated by the arrows through the refrigerant paths 16a to 16d.
  • the refrigerant sent from the distributor 29a flows through the refrigerant path 16a.
  • the refrigerant sent from the distributor 29b flows through the refrigerant path 16d.
  • the refrigerant sent from the distributor 29c flows through the refrigerant path 16c.
  • the refrigerant sent from the distributor 29d flows through the refrigerant path 16b.
  • the refrigerant that has flowed through each of the refrigerant paths 16a to 16d flows into the distributor 25 through the connection pipe 36.
  • the refrigerants that have flowed together join, flow through the connection pipe 37, and are sent out of the outdoor heat exchanger 11.
  • the refrigerant flows into the outdoor heat exchanger 11 as a gas refrigerant (single phase) with a degree of superheat.
  • the refrigerant exchanges heat with the outside air (air) under a two-phase state of a liquid refrigerant and a gas refrigerant that have good heat transfer characteristics.
  • the heat-exchanged refrigerant becomes a liquid refrigerant (single phase) having a degree of supercooling and is sent out from the outdoor heat exchanger 11.
  • Liquid refrigerant single phase
  • two-phase refrigerant has a smaller heat transfer coefficient and pressure loss in the heat transfer tube than two-phase refrigerant.
  • the degree of supercooling of the refrigerant increases in the heat transfer tube, the temperature difference between the temperature of the refrigerant and the temperature outside the heat transfer tube is reduced. For this reason, the performance as an outdoor heat exchanger will fall significantly.
  • the number of refrigerant paths 16a to 16d of the auxiliary heat exchanger 15 is less than the number of refrigerant paths 14a to 14d of the main heat exchanger 13. .
  • coolant in the heat exchanger tube 33 in the auxiliary heat exchange part 15 can be raised, and the heat transfer rate in the heat exchanger tube 33 can be improved.
  • a liquid refrigerant (single phase) flows as a refrigerant in the heat transfer tube 33 in the auxiliary heat exchange unit 15.
  • the pressure loss in the heat exchanger tube 33 is also small, and the performance of the outdoor heat exchanger can be improved without adversely affecting the performance of the outdoor heat exchanger 11.
  • the flow rate of the refrigerant per refrigerant path is reduced in order not to increase the pressure loss in the heat transfer tube.
  • a high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 3.
  • the refrigerant flows according to solid arrows.
  • the discharged high-temperature and high-pressure gas refrigerant (single phase) flows into the indoor heat exchanger 5 through the four-way valve 23.
  • the indoor heat exchanger 5 heat exchange is performed between the flowing gas refrigerant and the air supplied by the indoor fan 7, and the high-temperature and high-pressure gas refrigerant is condensed to a high-pressure liquid refrigerant (single phase). become.
  • the high-pressure liquid refrigerant sent out from the indoor heat exchanger 5 becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 9.
  • the refrigerant in the two-phase state flows into the outdoor heat exchanger 11.
  • the outdoor heat exchanger 11 heat exchange is performed between the flowing two-phase refrigerant and the outside air (air) as a fluid supplied by the outdoor fan 21, and the two-phase refrigerant is a liquid refrigerant.
  • the low-pressure gas refrigerant sent out from the outdoor heat exchanger 11 flows into the compressor 3 through the four-way valve 23, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 3 again. Thereafter, this cycle is repeated.
  • the sent refrigerant flows through the auxiliary heat exchange unit 15, and then flows through the main heat exchange unit 13.
  • the air sent by the outdoor fan 21 to the main heat exchange unit 13 and the auxiliary heat exchange unit 15 is second from the main heat exchange unit 13a and the auxiliary heat exchange unit 15a in the first row (windward side). It flows toward the main heat exchanger 13b and the auxiliary heat exchanger 15b in the row (leeward row) (see thick arrows).
  • the two-phase refrigerant sent from the indoor heat exchanger 5 via the expansion device 9 first flows into the distributor 25.
  • the refrigerant that has flowed into the distributor 25 flows in the direction indicated by the arrow through the refrigerant paths 16a to 16d of the auxiliary heat exchange unit 15.
  • the refrigerant that has flowed through the refrigerant path 16a flows into the distributor 29a through the connection pipe 35.
  • the refrigerant that has flowed through the refrigerant path 16b flows into the distributor 29d through the connection pipe 35.
  • the refrigerant that has flowed through the refrigerant path 16 c flows into the distributor 29 c through the connection pipe 35.
  • the refrigerant that has flowed through the refrigerant path 16d flows into the distributor 29b through the connection pipe 35.
  • the refrigerant flowing into each of the distributors 29a to 29d flows in the direction indicated by the arrow through the refrigerant path groups 14a to 14d of the main heat exchange unit 13.
  • the refrigerant that has flowed into the distributor 29a flows through the refrigerant path group 14a.
  • the refrigerant that has flowed into the distributor 29b flows through the refrigerant path group 14b.
  • the refrigerant that has flowed into the distributor 29c flows through the refrigerant path group 14c.
  • the refrigerant that has flowed into the distributor 29d flows through the refrigerant path group 14d.
  • the refrigerant that has flowed through the refrigerant path groups 14 a to 14 d flows into the header 27.
  • the refrigerant flowing into the header 27 is sent out of the outdoor heat exchanger 11.
  • the refrigerant that has flowed through the outdoor heat exchanger 11 is sent to the compressor 3.
  • the refrigerant sent out from the outdoor heat exchanger 11 is a gas refrigerant (single phase).
  • heat exchange is performed between the outside air sent into the outdoor unit 10 by the outdoor fan 21 and the refrigerant sent into the outdoor heat exchanger 11.
  • moisture in the outside air air
  • water droplets grow on the surface of the outdoor heat exchanger 11.
  • the grown water droplets flow downward through the drainage path of the outdoor heat exchanger 11 constituted by the fins 31 and the heat transfer tubes 32 and 33, and are discharged as drain water.
  • the defrosting operation for removing frost is performed when the outside air becomes a certain temperature (for example, 0 ° C. (freezing point)) or lower.
  • the defrosting operation is an operation in which high-temperature high-pressure gas refrigerant (hot gas) is sent from the compressor 3 to the outdoor heat exchanger 11 in order to prevent frost from adhering to the outdoor heat exchanger 11 that functions as an evaporator. That is.
  • the defrosting operation may be performed when the duration time of the heating operation reaches a predetermined value (for example, 30 minutes). In addition, the defrosting operation may be performed before the heating operation when the temperature of the outside air is a certain temperature (for example, minus 6 ° C.) or less.
  • the frost (and ice) adhering to the outdoor heat exchanger 11 is melted by the high-temperature and high-pressure refrigerant sent to the outdoor heat exchanger 11.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 can be sent to the outdoor heat exchanger 11 through the four-way valve 23.
  • a bypass refrigerant pipe (not shown) may be provided between the compressor 3 and the outdoor heat exchanger 11.
  • FIG. 8 shows a relationship A graph (solid line graph) and a relationship B graph (dotted line graph), respectively.
  • the AU value is expressed by the following equation.
  • AU value 1 / (Ro + Ri + Rd)
  • the AU value increases and the heat exchange performance improves. For example, in order to reduce the heat resistance Ro outside the heat transfer tube, the heat transfer area outside the heat transfer tube is increased, the flow velocity of the fluid outside the heat transfer tube is increased, or the heat transfer coefficient outside the heat transfer tube is improved. It is necessary to have a mechanism. In order to reduce the heat resistance Ri in the heat transfer tube, it is necessary to increase the evaporation heat transfer rate ⁇ i in the heat transfer tube or increase the heat transfer area in the heat transfer tube.
  • liquid refrigerant and gas refrigerant are mixed in the heat transfer tubes 32 and 33 of the outdoor heat exchanger 11 into which the two-phase refrigerant flows.
  • the liquid refrigerant exists as a thin liquid film attached to the inner wall surfaces of the heat transfer tubes 32 and 33. For this reason, when the two-phase refrigerant in the heat transfer tubes 32 and 33 evaporates, the evaporation heat transfer coefficient in the heat transfer tubes is higher than in the case of a single-phase refrigerant (liquid refrigerant or gas refrigerant), and The exchange performance AU value is also high.
  • the outdoor unit 10 which accommodated the outdoor heat exchanger 11 is a horizontal blowing outdoor unit
  • an outdoor fan 21 is disposed so as to face the outdoor heat exchanger 11.
  • outside air is sent into the outdoor unit from one side surface portion of the outdoor unit (not shown).
  • the sent outside air passes through the outdoor heat exchanger 11 and is then sent out of the outdoor unit from the other side surface portion of the outdoor unit.
  • the wind speed of the outside air passing through the outdoor heat exchanger 11 is distributed depending on the positional relationship with the outdoor fan 21.
  • the portion of the outdoor heat exchanger 11 that is closer to the outdoor fan 21 has a higher wind speed of the outside air that passes through the portion of the outdoor heat exchanger 11.
  • the portion of the outdoor heat exchanger 11 that is located away from the outdoor fan 21 has a lower wind speed of the outside air passing through the portion of the outdoor heat exchanger 11.
  • the wind speed of the outdoor air that passes through the portion of the outdoor heat exchanger 11 that faces the outdoor fan 21 is the amount of outside air that passes through the portion of the outdoor heat exchanger 11 that does not face the outdoor fan 21. It becomes larger than the wind speed. That is, in the outdoor heat exchanger 11, the wind speed of the outside air passing through the portion located inside the projection surface (the region indicated by the two-dot chain line) of the outdoor fan 21 is higher than the wind speed of the outside air passing through the portion located outside the projection surface. large.
  • the proportion of each part of the outdoor heat exchanger 11 contributing to heat exchange with respect to the total heat exchange amount varies depending on the part of the outdoor heat exchanger 11.
  • the ratio contributing to the heat exchange is relatively high in the portion of the outdoor heat exchanger 11 that is close to the outdoor fan 21, and relatively in the portion of the outdoor heat exchanger 11 that is located away from the outdoor fan 21. Lower.
  • the wind speed (average value) of the outside air passing through the refrigerant path group 14b is larger than the wind speed (average value) of the outside air passing through the refrigerant path group 14d.
  • the ratio that the refrigerant path group 14b contributes to the heat exchange is higher than the ratio that the refrigerant path group 14d contributes to the heat exchange.
  • the heat exchange amount in each refrigerant path (group) varies depending on the wind speed distribution.
  • the refrigerant flowing through the refrigerant path groups 14a to 14d and the heat exchange performance between the refrigerant and the outside air will be described.
  • a case will be described in which a two-phase refrigerant of a liquid refrigerant and a gas refrigerant flows evenly into each of the distributors 29a to 29d.
  • the refrigerant (liquid refrigerant) that has evenly flowed into the distributors 29a to 29d exchanges heat with the outside air while flowing through the refrigerant path groups 14a to 14d. Done to become a gas refrigerant.
  • the refrigerant becomes a gas refrigerant (single phase) and is sent out from the main heat exchanging section 13. Therefore, the liquid refrigerant flowing through the refrigerant path groups 14b and 14c having a relatively high wind speed is the refrigerant path. Evaporation is completed in the middle of the groups 14b and 14c, and becomes a gas refrigerant.
  • the refrigerant distribution is adjusted according to the wind speed distribution.
  • the main heat exchanging unit 13 and the auxiliary heat exchanging unit 15 are arranged so that the refrigerant containing a larger amount of liquid refrigerant flows into the refrigerant path groups 14b and 14c having a relatively high wind speed. Yes.
  • the refrigerant flowing into the auxiliary heat exchanging section 15 is distributed in the distributor 25 and then sequentially flows through the refrigerant paths 16a to 16d, the distributors 29a to 29d, the refrigerant path groups 14a to 14 and the header 27.
  • the refrigerant paths 16a to 16d of the auxiliary heat exchange section 15 when the refrigerant friction pressure loss varies, the flow rate ratio of the refrigerant flowing through the refrigerant paths 16a to 16d and the refrigerant path groups 14a to 14 changes. .
  • the dryness refers to the ratio (ratio) of the mass of the gas refrigerant to the mass of wet steam (liquid refrigerant + gas refrigerant).
  • FIG. 12 shows the graph. The horizontal axis is the dryness, and the vertical axis is the pressure loss in the heat transfer tube.
  • the refrigerant flowing into the outdoor heat exchanger 11 functioning as an evaporator is a two-phase refrigerant consisting of a liquid refrigerant and a gas refrigerant
  • the temperature becomes a saturation temperature according to the pressure.
  • the saturation temperature also decreases.
  • the refrigerant flows from the auxiliary heat exchange unit 15 to the main heat exchange unit 13.
  • the refrigerant paths 16a to 16d of the auxiliary heat exchange section 15 have a smaller number of paths than the refrigerant path groups 14a to 14d of the main heat exchange section 13.
  • the flow rate of the refrigerant flowing through the refrigerant paths 16a to 16d increases, and the friction pressure loss of the refrigerant also increases.
  • the auxiliary heat exchange unit 15 is disposed below the main heat exchange unit 13 so as to be in contact with the main heat exchange unit 13.
  • the refrigerant path 16 d is disposed at a position closest to the main heat exchange unit 13. For this reason, since heat is conducted from the refrigerant path 16d through which the refrigerant A flows to the main heat exchanging unit 13, the refrigerant in the two-phase state is cooled and condensed in the refrigerant path 16d, so that the dryness of the refrigerant becomes low. By reducing the dryness of the refrigerant, the friction pressure loss of the refrigerant is also reduced.
  • the flow rate of the refrigerant (liquid refrigerant) flowing through the refrigerant path 16d is larger than the flow rate of the refrigerant (liquid refrigerant) flowing through the other refrigerant paths.
  • the refrigerant path 16d (first path) through which more liquid refrigerant flows is connected to the refrigerant path group 14b (second path) where the wind speed of the outside air passing therethrough is relatively high.
  • the refrigerant containing more liquid refrigerant is efficiently heat-exchanged and evaporated to become a gas refrigerant.
  • the performance of the outdoor heat exchanger 11 can be improved.
  • FIG. 13 shows the relationship between the ratio of the refrigerant friction pressure loss between the auxiliary heat exchange unit 15 and the main heat exchange unit 13 and the ratio of the number of refrigerant paths between the auxiliary heat exchange unit and the main heat exchange unit.
  • the refrigerant was assumed to be R32.
  • the number of heat transfer tubes per refrigerant path was the same.
  • the pressure between the main heat exchange unit 13 and the auxiliary heat exchange unit 15 was 0.80 MPa (saturation temperature ⁇ 0.5 ° C.).
  • the friction pressure loss of the main heat exchange part was calculated as a parameter.
  • the refrigerant flows from the main heat exchange unit 13 to the auxiliary heat exchange unit 15.
  • the refrigerant flowing through the main heat exchange unit 13 is dissipated to melt frost attached to the main heat exchange unit 13. For this reason, when flowing through the auxiliary heat exchanging unit 15, the refrigerant is sufficiently condensed to be a liquid refrigerant.
  • the refrigerant flowing through the refrigerant path 16d does not cause a phase change.
  • the frictional pressure loss of the refrigerant hardly fluctuates. For this reason, the heat exchange between the refrigerant and the outside air when operating as an evaporator (heating operation) can be improved without affecting the distribution of the refrigerant when performing the defrosting operation.
  • the following method is employed so that frost is not left. can do.
  • the flow path cross-sectional area of the heat transfer tube of the refrigerant path 16d is narrowed.
  • the diameter of the connection pipe connecting the refrigerant path 16d and the distributor is reduced.
  • the pressure resistance of the refrigerant path 16d also increases, and while maintaining the constant flow ratio of the refrigerant in the refrigerant paths 16a to 16d of the auxiliary heat exchanger 15 when operating the outdoor heat exchanger 11 as an evaporator,
  • coolants can be flowed through the refrigerant
  • the outdoor heat exchanger 11 includes a main heat exchange unit 13 (second heat exchange unit) and an auxiliary heat exchange unit 15 (first heat exchange unit).
  • main heat exchange unit 13 refrigerant path groups 14a, 14b, 14c, and 14d (second refrigerant paths) are formed.
  • auxiliary heat exchanger 15 refrigerant paths 16a, 16b, 16c, and 16d (first refrigerant path) are formed.
  • the connection mode between the refrigerant path groups 14a, 14b, 14c, and 14d and the refrigerant paths 16a, 16b, 16c, and 16d is the outdoor heat exchanger 11 according to the first embodiment.
  • the connection mode is different.
  • the refrigerant path 16a first path
  • the refrigerant path group 14b in which the wind speed of the outside air passing through is relatively large. (Second path) is connected.
  • the refrigerant path 16b and the refrigerant path group 14a are connected.
  • the refrigerant path 16c and the refrigerant path group 14d are connected.
  • the refrigerant path 16d and the refrigerant path group 14c are connected.
  • the operation of the air conditioner 1 is basically the same as the operation of the air conditioner 1 according to Embodiment 1.
  • the refrigerant discharged from the compressor 3 sequentially flows through the four-way valve 23, the outdoor heat exchanger 11, the expansion device 9, and the indoor heat exchanger 5 and returns to the compressor 3 (see the dotted arrows in FIG. 5). ).
  • the outdoor heat exchanger 11 heat exchange is performed between the high-temperature and high-pressure gas refrigerant and the outside air.
  • the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant (single phase).
  • the high-pressure liquid refrigerant becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant.
  • the indoor heat exchanger 5 heat exchange is performed between the refrigerant in the two-phase state and the outside air.
  • the liquid refrigerant evaporates into a low-pressure gas refrigerant (single phase). This heat exchange cools the room. Thereafter, this cycle is repeated.
  • the refrigerant discharged from the compressor 3 sequentially flows through the four-way valve 23, the indoor heat exchanger 5, the expansion device 9, and the outdoor heat exchanger 11 and returns to the compressor 3 (solid arrow in FIG. 5). reference).
  • the indoor heat exchanger 5 heat exchange is performed between the high-temperature and high-pressure gas refrigerant and the outside air.
  • the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant (single phase). This heat exchange heats the room.
  • the high-pressure liquid refrigerant becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant.
  • the outdoor heat exchanger 11 heat exchange is performed between the two-phase refrigerant and the outside air.
  • the liquid refrigerant evaporates into a low-pressure gas refrigerant (single phase). Thereafter, this cycle is repeated.
  • the two-phase refrigerant sent from the indoor heat exchanger 5 via the expansion device 9 first flows into the distributor 25.
  • the refrigerant that has flowed into the distributor 25 flows in the direction indicated by the arrow through the refrigerant paths 16a to 16d of the auxiliary heat exchange unit 15.
  • the refrigerant that has flowed through the refrigerant path 16a flows into the distributor 29b through the connection pipe 35.
  • the refrigerant that has flowed through the refrigerant path 16b flows into the distributor 29a through the connection pipe 35.
  • the refrigerant that has flowed through the refrigerant path 16 c flows into the distributor 29 d through the connection pipe 35.
  • the refrigerant that has flowed through the refrigerant path 16d flows into the distributor 29c through the connection pipe 35.
  • the refrigerant flowing into each of the distributors 29a to 29d flows in the direction indicated by the arrow through the refrigerant path groups 14a to 14d of the main heat exchange unit 13.
  • the refrigerant that has flowed into the distributor 29a flows through the refrigerant path group 14a.
  • the refrigerant that has flowed into the distributor 29b flows through the refrigerant path group 14b.
  • the refrigerant that has flowed into the distributor 29c flows through the refrigerant path group 14c.
  • the refrigerant that has flowed into the distributor 29d flows through the refrigerant path group 14d.
  • the refrigerant that has flowed through the refrigerant path groups 14 a to 14 d flows into the header 27.
  • the refrigerant flowing into the header 27 is sent out of the outdoor heat exchanger 11.
  • heat exchange is performed between the outside air sent into the outdoor unit 10 by the outdoor fan 21 and the refrigerant sent into the outdoor heat exchanger 11.
  • moisture in the outside air air
  • water droplets grow on the surface of the outdoor heat exchanger 11.
  • the grown water droplets flow downward through the drainage path of the outdoor heat exchanger 11 constituted by the fins 31 and the heat transfer tubes 32 and 33, and are discharged as drain water.
  • the drain water is discharged mainly from the gravity toward the lower part of the outdoor heat exchanger 11, the amount of water is relatively large in the lower part of the outdoor heat exchanger 11.
  • measures are taken to prevent the outdoor heat exchanger 11 from being damaged by corrosion of the fins 31 or the heat transfer tubes 33. That is, the lower part of the outdoor heat exchanger 11 is often only in contact with the casing of the outdoor unit or in contact with an insulator.
  • drain water tends to stay in the lower part of the outdoor heat exchanger 11.
  • the drain water is more likely to stay than the other refrigerant paths 16b to 16d.
  • the surface tension of the lower surface of the heat transfer tube is larger than that of a circular heat transfer tube having a general cross-sectional shape. For this reason, water droplets are likely to stay at the lowermost stage of the auxiliary heat exchange unit 15.
  • Drain water is low-temperature water generated by condensation of moisture contained in the outside air. Since the low-temperature drain water is likely to stay in the refrigerant path 16a, the two-phase refrigerant flowing through the refrigerant path 16a is cooled, and the gas refrigerant is condensed. Condensation of the gas refrigerant reduces the dryness of the refrigerant, and the refrigerant flowing through the refrigerant path 16a reduces the friction pressure loss in the heat transfer tube 33a (see FIG. 12).
  • the flow rate of the refrigerant (liquid refrigerant) flowing through the refrigerant path 16a is increased, and the flow rate of the refrigerant flowing through the refrigerant path 16a is larger than the flow rate of the refrigerant flowing through the other refrigerant paths 16b to 16d.
  • the refrigerant path 16 a of the auxiliary heat exchange unit 15 and the refrigerant path group 14 b of the main heat exchange unit 13 are connected by a connection pipe 35.
  • the wind speed of the outside air passing through is relatively high.
  • the refrigerant containing more liquid refrigerant is efficiently heat-exchanged and evaporated to become a gas refrigerant.
  • the performance of the outdoor heat exchanger 11 can be improved.
  • the flow path shape inside the distributor 25 or the distributors 29a to 29d may be changed. Further, the dimensions of the connection pipe 36 that connects the distributor 25 and the refrigerant paths 16a to 16d may be adjusted. Furthermore, the dimensions of the connecting pipes connecting the distributors 29a to 29d and the refrigerant path groups 16a to 16d may be adjusted.
  • the refrigerant flowing through the main heat exchange unit 13 is dissipated to melt the frost attached to the main heat exchange unit 13, so that the auxiliary When flowing through the heat exchanging section 15, the refrigerant is sufficiently condensed to be a liquid refrigerant.
  • the drain water generated during the defrosting operation does not cause a phase change in the refrigerant flowing through the refrigerant paths 16a to 16d.
  • the frictional pressure loss of the refrigerant hardly fluctuates. For this reason, the heat exchange between the refrigerant and the outside air when operating as an evaporator (heating operation) can be improved without affecting the distribution of the refrigerant when performing the defrosting operation.
  • the refrigerant path 16a When the refrigerant path 16a is not connected to the refrigerant path group 14a disposed at a position closest to the auxiliary heat exchanging section 15 in the main heat exchanging section 13, no frost is left by taking the following method. can do.
  • the flow path cross-sectional area of the heat transfer tube of the refrigerant path 16a is narrowed.
  • the diameter of the connection pipe connecting the refrigerant path 16a and the distributor is reduced.
  • the pressure resistance of the refrigerant path 16a also increases, and when the defrosting operation is performed while keeping the refrigerant diversion ratio of the refrigerant path of the auxiliary heat exchanging section when operating as an evaporator, the refrigerant path
  • the diversion ratio of the refrigerant path other than 16a can be increased.
  • coolants can be flowed through the refrigerant
  • any refrigerant such as the refrigerant R410A, the refrigerant R407C, the refrigerant R32, the refrigerant R507A, the refrigerant HFO1234yf, and the like can be used for distribution during defrosting. It is possible to improve the performance of the heat exchanger when operating as an evaporator without affecting it.
  • refrigerating machine oil used for the air conditioner 1 a refrigerating machine oil having compatibility in consideration of mutual solubility with the applied refrigerant is used.
  • fluorocarbon refrigerants such as refrigerant R410A use alkylbenzene oil-based, ester oil-based or ether oil-based refrigerator oil.
  • refrigerating machine oil such as mineral oil or fluorine oil may be used.
  • the present invention is effectively used for an air conditioner having an outdoor heat exchanger provided with a main heat exchange part and an auxiliary heat exchange part.

Abstract

 室外ユニット(10)の室外熱交換器(11)は、主熱交換部(13)および補助熱交換部(15)を備えている。主熱交換部(13)では、冷媒パス群(14a~14d)が形成されている。補助熱交換部(15)では、冷媒パス(16a~16d)が形成されている。主熱交換部(13)に最も近い、補助熱交換部(15)における冷媒パス(16d)と、主熱交換部(13)において、通り抜ける外気の風速が相対的に大きい領域に配置された冷媒パス群(14b)とが接続されている。この他、冷媒パス(16a)と冷媒パス群(14a)とが接続されている。冷媒パス(16b)と冷媒パス群(14d)とが接続されている。冷媒パス(16c)と冷媒パス群(14c)とが接続されている。

Description

室外ユニットおよびそれを備えた冷凍サイクル装置
 本発明は室外ユニットおよびそれを備えた冷凍サイクル装置に関し、特に、主熱交換部および補助熱交換部を備えた室外熱交換器を含む室外ユニットと、その室外ユニットを備えた冷凍サイクル装置とに関するものである。
 冷凍サイクル装置としての空気調和装置は、室内ユニットと室外ユニットと含む冷媒回路を備えている。このような空気調和装置では、四方弁等を用いて冷媒回路の流路を切り換えることによって、冷房運転と暖房運転とを行うことが可能とされる。
 室内ユニットには、室内熱交換器が設けられている。室内熱交換器では、冷媒回路を流れる冷媒と、室内ファンによって送り込まれる室内の空気との間で熱交換が行われる。室外ユニットには、室外熱交換器が設けられている。室外熱交換器では、冷媒回路を流れる冷媒と、室外ファンによって送り込まれる外気との間で熱交換が行われる。
 空気調和装置において使用されている室外熱交換器には、板状の複数のフィンを貫通するように伝熱管を配置させた室外熱交換器がある。このような室外熱交換器は、フィンアンドチューブ型熱交換器と呼ばれている。このフィンアンドチューブ型熱交換器では、熱交換を効率的に行うために、細径化された伝熱管を使用する場合がある。さらに、そのような伝熱管として、断面形状が扁平状の扁平型断面形状を有する扁平管が使用される場合がある。
 また、この種の室外熱交換器には、凝縮用の主熱交換部と過冷却用の補助熱交換器とを備えたタイプがある。一般に、主熱交換部は、補助熱交換部の上に配置されている。空気調和装置を冷房運転させる場合には、室外熱交換器は凝縮器として機能する。室外熱交換器に送り込まれた冷媒は、主熱交換部を流れる間に、空気との間で熱交換が行われて凝縮し、液冷媒になる。主熱交換部を流れた後、液冷媒は補助熱交換部を流れることで、さらに冷却されることになる。
 一方、空気調和装置を暖房運転させる場合は、室外熱交換器は蒸発器として機能する。室外熱交換器に送り込まれた冷媒は、補助熱交換部から主熱交換部を流れる間に、空気との間で熱交換が行われて蒸発し、ガス冷媒になる。なお、この種の室外熱交換器を備えた空気調和装置を開示した特許文献の一例として、特許文献1がある。
特開2013-83419号公報
 空気調和装置を暖房運転または冷房運転させる際には、室外熱交換器には、室外ファンによって送り込まれた外気が通過することになる。このとき、室外熱交換器と室外ファンとの配置関係等によっては、室外熱交換器を通過する外気の風速が大きい領域と、外気の風速が小さい領域とが生じる。このため、室外熱交換器では、冷媒と外気との熱交換にばらつきが生じ、熱交換が効率的に行われないことがある。
 また、伝熱管として、細径化された伝熱管を使用する場合には、並列接続される冷媒パスの数が増えるため、冷媒パスの接続順序によって伝熱管内の液冷媒とガス冷媒との相状態を均一にすることが難しくなる。
 さらに、キャピラリーチューブと呼ばれる細径管を冷媒パスのそれぞれに接続させて、各冷媒パスに流れ込む冷媒の摩擦による圧力損失を調整することによって、各冷媒パスに流れ込む冷媒量のバランスを調整する手法もある。
 ところが、この手法では、たとえば、室外熱交換器に霜が付着した状態で除霜運転を行う場合に、冷媒の流速もばらついてしまうため、霜の融解にばらつきが生じることになる。その結果、除霜時間が長くなって消費電力が増えてしまうことになる。また、一定時間当たりの暖房能力が低下することになる。さらに、霜が完全に融解する前に暖房運転を行うことを繰り返すことで、残存する霜が成長し、室外熱交換器を損傷させることがある。
 このように、室外ユニットでは、室外熱交換器を通過する外気の風速の分布に起因して熱交換性能が低下することがある。このため、より熱交換性能の高い室外ユニットが求められている。
 本発明は、その開発の一環としてなされたものであり、一つの目的は熱交換性能の向上が図られる室外ユニットを提供することであり、他の目的は、そのような室外ユニットを備えた冷凍サイクル装置を提供することである。
 本発明に係る一の室外ユニットは、室外熱交換器を備えた室外ユニットである。室外熱交換器は、第1熱交換部と、第1熱交換部と接触するように配置された第2熱交換部とを含む。第1熱交換部は、複数の第1冷媒パスを有している。第2熱交換部は、複数の第2冷媒パスを有している。複数の第1冷媒パスのうち、第2熱交換部に最も近い位置に配置された第1パスと、複数の第2冷媒パスのうち、第2熱交換部を通り抜ける流体の流速が相対的に大きい領域に配置された第2パスとが、接続されている。
 本発明に係る他の室外ユニットは、室外熱交換器を備えた室外ユニットである。室外熱交換器は、第1熱交換部と、第1熱交換部と接触するように配置された第2熱交換部とを含む。第1熱交換部は、複数の第1冷媒パスを有している。第2熱交換部は、複数の第2冷媒パスを有している。複数の第1冷媒パスのうち、第2熱交換部から最も離れた位置に配置された第1パスと、複数の第2冷媒パスのうち、第2熱交換部を通り抜ける流体の流速が相対的に大きい領域に配置された第2パスとが、接続されている。
 本発明に係る冷凍サイクル装置は、上記一の室外ユニットまたは他の室外ユニットを備えた冷凍サイクル装置である。
 本発明に係る一の室外ユニットによれば、複数の第1冷媒パスのうち、第2熱交換部に最も近い位置に配置された第1パスと、複数の第2冷媒パスのうち、第2熱交換部を通り抜ける流体の流速が相対的に大きい領域に配置された第2パスとが、接続されている。これにより、室外熱交換器を蒸発器として運転させた場合に、液冷媒をより多く含む冷媒が、第1パスから、第2熱交換部を通り抜ける流体の流速が相対的に大きい領域に配置された第2パスに流れる。その結果、室外ユニットの室外熱交換器の熱交換性能を向上させることができる。
 本発明に係る他の室外ユニットによれば、複数の第1冷媒パスのうち、第2熱交換部から最も離れた位置に配置された第1パスと、複数の第2冷媒パスのうち、第2熱交換部を通り抜ける流体の流速が相対的に大きい領域に配置された第2パスとが、接続されている。これにより、室外熱交換器を蒸発器として運転させた場合に、液冷媒をより多く含む冷媒が、第1パスから、第2熱交換部を通り抜ける流体の流速が相対的に大きい領域に配置された第2パスに流れる。その結果、室外ユニットの室外熱交換器の熱交換性能を向上させることができる。
 本発明に係る冷凍サイクル装置によれば、上記一の室外ユニットまたは他の室外ユニットを備えていることで、冷凍サイクル装置の熱交換性能を向上させることができる。
各実施の形態に係る空気調和装置の冷媒回路の一例を示す図である。 実施の形態1に係る室外熱交換器を示す斜視図である。 同実施の形態において、伝熱管の冷媒通路の一例を示す断面図である。 同実施の形態において、伝熱管の冷媒通路の他の例を示す断面図である。 同実施の形態において、空気調和装置の動作を説明するための冷媒回路における冷媒の流れを示す図である。 同実施の形態において、室外熱交換器を凝縮器として運転させている場合の、室外熱交換器における冷媒の流れを示す図である。 同実施の形態において、室外熱交換器を蒸発器として運転させている場合の、室外熱交換器における冷媒の流れを示す図である。 同実施の形態において、伝熱管内蒸発熱伝達率と乾き度との関係と、熱交換器性能と乾き度のとの関係とをそれぞれ示すグラフである。 同実施の形態において、室外熱交換器および室外熱交換器を通り抜ける外気の風速分布を示す図である。 比較例に係る室外熱交換器における冷媒の分布と風速の分布とを模式的に示す図である。 同実施の形態において、室外熱交換器における冷媒の分布と風速の分布とを模式的に示す図である。 同実施の形態において、伝熱管内の摩擦圧力損失と乾き度との関係を示すグラフである。 同実施の形態において、全熱交換器の摩擦圧力損失に対する補助熱交換器の摩擦圧力損失の比と、補助熱交換部の冷媒パス数に対する主熱交換部の冷媒パス数の比との関係を示すグラフである。 実施の形態2に係る室外熱交換器を示す斜視図である。 同実施の形態において、室外熱交換器を蒸発器として運転させている場合の、室外熱交換器における冷媒の流れを示す図である。 同実施の形態において、室外熱交換器および室外熱交換器を通り抜ける外気の風速分布を示す図である。
 実施の形態1
 はじめに、冷凍サイクル装置としての空気調和装置の全体の構成(冷媒回路)について説明する。図1に示すように、空気調和装置1は、圧縮機3、室内熱交換器5、室内ファン7、絞り装置9、室外熱交換器11、室外ファン21、四方弁23および制御部51を備えている。圧縮機3、室内熱交換器5、絞り装置9、室外熱交換器11および四方弁23が、冷媒配管によって繋がっている。
 室内熱交換器5および室内ファン7は、室内ユニット4内に配置されている。室外熱交換器11および室外ファン21は、室外ユニット10内に配置されている。空気調和装置1の一連の動作は、制御部51によって制御される。
 次に、その室外熱交換器11について説明する。図2に示すように、室外熱交換器11は、主熱交換部13(第2熱交換部)および補助熱交換部15(第1熱交換部)を備えている。補助熱交換部15の上に主熱交換部13が配置されている。主熱交換部13では、第1列目に主熱交換部13aが配置され、第2列目に主熱交換部13bが配置されている。補助熱交換部15では、第1列目に補助熱交換部15aが配置され、第2列目に補助熱交換部15bが配置されている。
 主熱交換部13(13a、13b)では、板状の複数のフィン31を貫通するように、複数の伝熱管32(32a、32b、32c、32d)(第2冷媒パス)が配置されている。補助熱交換部15(15a、15b)では、板状の複数のフィン31を貫通するように、複数の伝熱管33(33a、33b、33c、33d)(第1冷媒パス)が配置されている。
 その伝熱管32、33として、たとえば、長径と短径を有する扁平断面形状の扁平管が使用されている。その扁平管の一例として、図3に、一つの冷媒通路34が形成された扁平管を示す。扁平管の他の例として、図4に、複数の冷媒通路34が形成された扁平管を示す。なお、伝熱管32、33としては、扁平管に限られず、たとえば、断面形状が円形または楕円形等の伝熱管であってもよい。
 室外熱交換器11では、伝熱管32、33によって冷媒パスが形成される。主熱交換部13では、冷媒パス群14a、冷媒パス群14b、冷媒パス群14cおよび冷媒パス群14dが形成されている。冷媒パス群14aでは、伝熱管32aによって形成された一の冷媒パスを含む複数の冷媒パスが形成されている。冷媒パス群14bでは、伝熱管32bによって形成された一の冷媒パスを含む複数の冷媒パスが形成されている。冷媒パス群14cでは、伝熱管32cによって形成された一の冷媒パスを含む複数の冷媒パスが形成されている。冷媒パス群14dでは、伝熱管32dによって形成された一の冷媒パスを含む複数の冷媒パスが形成されている。
 補助熱交換部15では、伝熱管33によって冷媒パス16a、冷媒パス16b、冷媒パス16cおよび冷媒パス16dが形成されている。冷媒パス16aは、伝熱管33aによって形成されている。冷媒パス16bは、伝熱管33bによって形成されている。冷媒パス16cは、伝熱管33cによって形成されている。冷媒パス16dは、伝熱管33dによって形成されている。
 主熱交換部13の冷媒パス群14a~14dの一端側と補助熱交換部15の冷媒パス16a~16dの一端側とが、分配器29a~29dを介して接続配管35によって接続されている。より具体的には、冷媒パス16aと冷媒パス群14aとが接続されている。冷媒パス16bと冷媒パス群14dとが接続されている。冷媒パス16cと冷媒パス群14cとが接続されている。冷媒パス16d(第1パス)と冷媒パス群14b(第2パス)とが接続されている。
 主熱交換部の冷媒パス群14a~14dの他端側は、ヘッダ27に接続されている。補助熱交換部15の冷媒パス16a~16dの他端側は、接続配管36によって分配器25に接続されている。室外熱交換器11は、上記のように構成される。
 次に、上述した室外熱交換器11を有する室外ユニット10(図1参照)を備えた空気調和装置の動作として、まず、冷房運転の場合について説明する。
 図5に示すように、圧縮機3を駆動させることによって、圧縮機3から高温高圧のガス状態の冷媒が吐出する。以下、点線矢印にしたがって冷媒が流れる。吐出した高温高圧のガス冷媒(単相)は、四方弁23を介して室外ユニット10の室外熱交換器11に流れ込む。室外熱交換器11では、流れ込んだ冷媒と、室外ファン21によって供給される流体としての外気(空気)との間で熱交換が行われる。高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。
 室外熱交換器11から送り出された高圧の液冷媒は、絞り装置9によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、室内ユニット4の室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだ二相状態の冷媒と、室内ファン7によって供給される空気との間で熱交換が行われる。二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒(単相)になる。この熱交換によって、室内が冷却されることになる。室内熱交換器5から送り出された低圧のガス冷媒は、四方弁23を介して圧縮機3に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機3から吐出する。以下、このサイクルが繰り返される。
 次に、冷房運転時の室外熱交換器11における冷媒の流れについて詳しく説明する。図6に示すように、室外熱交換器11では、圧縮機から送られてきた冷媒は、主熱交換部13を流れ、次に、補助熱交換部15を流れる。その主熱交換部13および補助熱交換部15に対して、室外ファン21によって送り込まれた空気は、第1列目(風上側)の主熱交換部13aおよび補助熱交換部15aから、第2列目(風下列)の主熱交換部13bおよび補助熱交換部15bへ向かって流れる(太い矢印参照)。
 圧縮機3から送られた高温高圧のガス冷媒は、まず、ヘッダ27に流れ込む。ヘッダ27に流れ込んだ冷媒は、主熱交換部13の冷媒パス群14a~14dを、矢印に示す向きに流れる。冷媒パス群14aを流れた冷媒は、分配器29aに流れ込む。冷媒パス群14bを流れた冷媒は、分配器29bに流れ込む。冷媒パス群14cを流れた冷媒は、分配器29cに流れ込む。冷媒パス群14dを流れた冷媒は、分配器29dに流れ込む。分配器29a~29dのそれぞれに流れ込んだ冷媒は、それぞれの分配器29a~29d内において合流する。
 次に、合流した冷媒は、分配器29a~29dのそれぞれから、接続配管35を経て補助熱交換部15に流れ込む。補助熱交換部15に流れ込んだ冷媒は、冷媒パス16a~16dを、矢印に示す向きに流れる。分配器29aから送られた冷媒が冷媒パス16aを流れる。分配器29bから送られた冷媒が冷媒パス16dを流れる。分配器29cから送られた冷媒が冷媒パス16cを流れる。分配器29dから送られた冷媒が冷媒パス16bを流れる。
 冷媒パス16a~16dのそれぞれを流れた冷媒は、接続配管36を経て分配器25に流れ込む。分配器25内では、流れ込んだ冷媒が合流し、接続配管37を流れて室外熱交換器11の外へ送り出される。
 室外熱交換器11が凝縮器として動作する場合、一般に、冷媒は、ガス冷媒(単相)として、過熱度を有した状態で室外熱交換器11に流れ込む。室外熱交換器11では、冷媒は、伝熱特性がよいとされる液冷媒とガス冷媒との二相状態のもとで、外気(空気)と熱交換される。熱交換された冷媒は、過冷却度を有する液冷媒(単相)となって室外熱交換器11から送り出される。
 液冷媒(単相)では、二相状態の冷媒に比べて、伝熱管内の熱伝達率と圧力損失とが小さい。また、伝熱管内では、冷媒の過冷却度が大きくなるため、冷媒の温度と伝熱管の外の温度との温度差が小さくなる。このため、室外熱交換器としての性能が大きく低下することになる。
 そのため、この室外熱交換器11の補助熱交換部15では、補助熱交換部15の冷媒パス16a~16dの数が、主熱交換部13の冷媒パス14a~14dの数よりも少なく配置される。これにより、補助熱交換部15における伝熱管33内の冷媒の流速を上げることができ、伝熱管33内の熱伝達率を向上させることができる。
 また、補助熱交換部15における伝熱管33には、冷媒として液冷媒(単相)が流れる。このため、伝熱管33内の圧力損失も小さく、室外熱交換器11の性能に悪影響を及ぼさずに、室外熱交換器の性能を向上させることができる。特に、伝熱管内の流路断面積が小さい場合には、伝熱管内の圧力損失を増加させないようにするために、冷媒パス一つあたりの冷媒の流速を小さくする。これにより、伝熱管内の液冷媒の伝熱を促進させる効果を大いに発揮させることができる。
 次に、暖房運転の場合について説明する。図5に示すように、圧縮機3を駆動させることによって、圧縮機3から高温高圧のガス状態の冷媒が吐出する。以下、実線矢印にしたがって冷媒が流れる。吐出した高温高圧のガス冷媒(単相)は、四方弁23を介して室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだガス冷媒と、室内ファン7によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。この熱交換によって、室内が暖房されることになる。室内熱交換器5から送り出された高圧の液冷媒は、絞り装置9によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。
 二相状態の冷媒は、室外熱交換器11に流れ込む。室外熱交換器11では、流れ込んだ二相状態の冷媒と、室外ファン21によって供給される流体としての外気(空気)との間で熱交換が行われて、二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒(単相)になる。室外熱交換器11から送り出された低圧のガス冷媒は、四方弁23を介して圧縮機3に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機3から吐出する。以下、このサイクルが繰り返される。
 次に、暖房運転時の室外熱交換器11における冷媒の流れについて詳しく説明する。図7に示すように、室外熱交換器11では、送られてきた冷媒は、補助熱交換部15を流れ、次に、主熱交換部13を流れる。その主熱交換部13および補助熱交換部15に対して、室外ファン21によって送り込まれた空気は、第1列目(風上側)の主熱交換部13aおよび補助熱交換部15aから、第2列目(風下列)の主熱交換部13bおよび補助熱交換部15bへ向かって流れる(太い矢印参照)。
 室内熱交換器5から絞り装置9を経て送られてきた二相状態の冷媒は、まず、分配器25に流れ込む。分配器25に流れ込んだ冷媒は、補助熱交換部15の冷媒パス16a~16dを矢印に示す向きに流れる。冷媒パス16aを流れた冷媒は、接続配管35を経て分配器29aに流れ込む。冷媒パス16bを流れた冷媒は、接続配管35を経て分配器29dに流れ込む。冷媒パス16cを流れた冷媒は、接続配管35を経て分配器29cに流れ込む。冷媒パス16dを流れた冷媒は、接続配管35を経て分配器29bに流れ込む。
 次に、分配器29a~29dのそれぞれに流れ込んだ冷媒は、主熱交換部13の冷媒パス群14a~14dを、矢印に示す向きに流れる。分配器29aに流れ込んだ冷媒は、冷媒パス群14aを流れる。分配器29bに流れ込んだ冷媒は、冷媒パス群14bを流れる。分配器29cに流れ込んだ冷媒は、冷媒パス群14cを流れる。分配器29dに流れ込んだ冷媒は、冷媒パス群14dを流れる。冷媒パス群14a~14dをそれぞれ流れた冷媒は、ヘッダ27に流れ込む。ヘッダ27に流れ込んだ冷媒は、室外熱交換器11の外へ送り出される。
 室外熱交換器11を流れた冷媒は、圧縮機3へ送られる。このとき、冷媒が液冷媒の状態で圧縮機3に流れ込むと、液圧縮を起こして圧縮機3の故障の原因となることがある。このため、室外熱交換器11が蒸発器として機能する暖房運転では、室外熱交換器11から送り出される冷媒は、ガス冷媒(単相)になっていることが望ましい。
 このように、暖房運転時では、室外ファン21によって室外ユニット10内に送り込まれる外気と、室外熱交換器11に送り込まれる冷媒との間で熱交換が行われる。この熱交換が行われる際に、外気(空気)中の水分が凝縮し、室外熱交換器11の表面に水滴が成長する。成長した水滴は、フィン31と伝熱管32、33とによって構成された室外熱交換器11の排水路を通じて下方へ流れ、ドレン水として排出される。
 また、暖房運転の場合、凝縮した空気中の水分が、霜として室外熱交換器11に付着することがある。このため、空気調和装置1では、外気が一定の温度(たとえば、0℃(凝固点))以下となったときに、霜を除去するための除霜運転が行われる。
 除霜運転とは、蒸発器として機能する室外熱交換器11に霜が付着するのを防ぐために、圧縮機3から室外熱交換器11に、高温高圧のガス冷媒(ホットガス)を送り込む運転のことである。除霜運転は、暖房運転の継続時間が所定値(例えば、30分)に達した場合に行われるようにしてもよい。また、除霜運転は、外気の温度が一定温度(たとえば、マイナス6℃)以下の場合に、暖房運転を行う前に実施するようにしてもよい。室外熱交換器11に付着した霜(および氷)は、室外熱交換器11に送り込まれた高温高圧の冷媒によって融解される。
 この空気調和装置1では、圧縮機3から吐出する高温高圧のガス冷媒は、四方弁23を介して室外熱交換器11へ送り込むことができる。この他に、たとえば、圧縮機3と室外熱交換器11との間に、バイパス用の冷媒配管(図示せず)を設けてもよい。
 上述したように、室外熱交換器11を蒸発器として機能させる場合、室外熱交換器11を流れる間に、液冷媒とガス冷媒との二相状態で流れ込んだ冷媒が蒸発してガス冷媒になる。ここで、二相状態の冷媒の乾き度xと伝熱管内の蒸発熱伝達率αiの関係(関係A)と、二相状態の冷媒の乾き度xと蒸発器としての熱交換器性能AU値との関係(関係B)について説明する。図8に、関係Aのグラフ(実線のグラフ)と関係Bのグラフ(点線のグラフ)とをそれぞれ示す。
 また、伝熱管外の熱抵抗をRo、伝熱管内の熱抵抗をRi、伝熱管壁内での熱抵抗をRdとすると、AU値は、次の式によって表される。
 AU値=1/(Ro+Ri+Rd)
 熱抵抗の値が小さくなることでAU値は高くなり、熱交換性能は向上する。たとえば、伝熱管外の熱抵抗Roを小さくするには、伝熱管外の伝熱面積を増加するか、伝熱管外の流体の流速を上げるか、または、伝熱管外の熱伝達率を向上させる機構を備えている必要がある。また、伝熱管内の熱抵抗Riを小さくするには、伝熱管内の蒸発熱伝達率αiを上げるか、または、伝熱管内の伝熱面積を大きくする必要がある。
 一般に、二相状態の冷媒が流れ込んだ室外熱交換器11の伝熱管32、33内では、液冷媒とガス冷媒とが混在している。液冷媒は、伝熱管32、33の内壁面に付着した薄い液膜として存在する。このため、伝熱管32、33内の二相状態の冷媒が蒸発するときは、単相の冷媒(液冷媒またはガス冷媒)の場合と比べて、伝熱管内の蒸発熱伝達率が高く、熱交換器性能AU値も高い値を示す。
 二相状態の冷媒では、液冷媒が蒸発するにしたがい、ガス冷媒の割合が増えて、単相のガス冷媒だけの状態に近づく。すなわち、冷媒の乾き度が高い状態になる。乾き度が高い状態になると、伝熱管32、33内の内壁面に形成されている液冷媒(液膜)が乾いてしまうドライアウトという現象が起きる。このため、図8に示すように、伝熱管32、33内の蒸発熱伝達率αiは急激に低下することになる。また、熱交換器性能AU値も、急激に低い値になる。
 次に、室外熱交換器11を通り抜ける外気(空気)の風速分布について説明する。ここで、室外熱交換器11を収容した室外ユニット10(図1参照)が、たとえば、横吹き室外ユニットである場合を想定する。横吹き室外ユニットでは、図9に示すように、室外熱交換器11と対向するように室外ファン21が配置される。室外ファン21が回転することによって、室外ユニット(図示せず)の一の側面部分から外気が室外ユニット内に送り込まれる。送り込まれた外気は、室外熱交換器11を通り抜けた後、室外ユニットの他の側面部分から室外ユニットの外へ送り出される。
 ここで、室外熱交換器11を通り抜ける外気の風速には、室外ファン21との位置関係によって分布が生じる。室外ファン21から近い位置にある室外熱交換器11の部分ほど、その室外熱交換器11の部分を通り抜ける外気の風速は大きくなる。一方、室外ファン21から離れた位置にある室外熱交換器11の部分ほど、その室外熱交換器11の部分を通り抜ける外気の風速は小さくなる。
 特に、図9に示すように、室外ファン21と対向している室外熱交換器11の部分を通り抜ける外気の風速は、室外ファン21と対向していない室外熱交換器11の部分を通り抜ける外気の風速よりも大きくなる。すなわち、室外熱交換器11における、室外ファン21の投影面(二点鎖線の領域)の内側に位置する部分を通り抜ける外気の風速は、投影面の外側に位置する部分を通り抜ける外気の風速よりも大きい。
 このような風速分布が生じることによって、全体の熱交換量に対して室外熱交換器11の各部分が熱交換に寄与する割合が、室外熱交換器11の部分によって変わってくる。その熱交換に寄与する割合は、室外ファン21から近い位置にある室外熱交換器11の部分では相対的に高く、室外ファン21から離れた位置にある室外熱交換器11の部分では相対的に低くなる。
 この室外ユニット10では、たとえば、冷媒パス群14bを通り抜ける外気の風速(平均値)は、冷媒パス群14dを通り抜ける外気の風速(平均値)よりも大きくなる。このため、冷媒パス群14bが熱交換に寄与する割合は、冷媒パス群14dが熱交換に寄与する割合よりも高くなる。このように、各冷媒パス(群)における熱交換量が、風速分布によって変わってくる。
 ここで、室外熱交換器11の主熱交換部13における各冷媒パス群14a~14dについて、各冷媒パス群14a~14dを流れる冷媒と、その冷媒と外気との熱交換性能とについて説明する。まず、比較例として、分配器29a~29dのそれぞれに、液冷媒とガス冷媒との二相状態の冷媒が均等に流れ込んだ場合について説明する。
 この場合には、図10に示すように、分配器29a~29dのそれぞれに均等に流れ込んだ冷媒(液冷媒)は、各冷媒パス群14a~14dを流れる間に外気との間で熱交換が行われてガス冷媒になる。特に、主熱交換部13では、冷媒はガス冷媒(単相)となって主熱交換部13から送り出されるため、風速の相対的に大きい冷媒パス群14b、14cを流れる液冷媒は、冷媒パス群14b、14cの途中において蒸発が完了してしまい、ガス冷媒になる。
 一方、風速の相対的に小さい冷媒パス群14a、14dを流れる液冷媒は、冷媒パス群14a、14dの出口においても蒸発が完了しないため、冷媒をさらに加熱してガス冷媒にする必要がある。このため、主熱交換部13では、熱交換が完了した冷媒が存在する一方、熱交換が十分に行われていない冷媒が存在することで、一つの室外熱交換器11として見た場合の熱交換性能は低下することになる。
 比較例に対して、実施の形態1では、図11に示すように、風速分布に応じて冷媒分布が調整される。この場合、後述するように、風速の相対的に大きい冷媒パス群14b、14cへ、液冷媒をより多く含む冷媒が流れ込むように、主熱交換部13と補助熱交換部15とが配置されている。
 暖房運転時に、補助熱交換部15に流れ込んだ冷媒は、分配器25において分配された後、冷媒パス16a~16d、分配器29a~29d、冷媒パス群14a~14およびヘッダ27を順次流れることになる。ここで、補助熱交換部15の冷媒パス16a~16dにおいて、冷媒の摩擦圧力損失に変動が生じる場合には、冷媒パス16a~16dおよび冷媒パス群14a~14を流れる冷媒の流量比が変化する。
 まず、伝熱管内の液冷媒とガス冷媒との二相状態の冷媒の乾き度と冷媒の摩擦圧力損失との関係について説明する。乾き度とは、湿り蒸気(液冷媒+ガス冷媒)の質量に対するガス冷媒の質量の割合(比)をいう。図12に、そのグラフを示す。横軸は乾き度であり、縦軸は伝熱管内の圧力損失である。
 乾き度が高いほど、ガス冷媒の量が多い。蒸発器として機能する室外熱交換器11では、乾き度が低い冷媒が流れ込み、その冷媒が、外気の熱によって蒸発することで、乾き度が高くなる。図12に示すように、冷媒の摩擦圧力損失は、乾き度が比較的低い領域では、乾き度が高くなるにしたがい増加する。一方、乾き度が低くなるにしたがい、摩擦圧力損失も単調に減少する。
 蒸発器として機能する室外熱交換器11に流れ込んだ冷媒は、液冷媒とガス冷媒との二相状態の冷媒であるため、温度は圧力に応じた飽和温度になる。ただし、冷媒の摩擦圧力損失等によって、圧力が低下する場合には、飽和温度も低下することになる。
 蒸発器としての室外熱交換器11では、冷媒は、補助熱交換部15から主熱交換部13へ流れる。補助熱交換部15の冷媒パス16a~16dは、主熱交換部13の冷媒パス群14a~14dと比べてパス数が少ない。これにより、補助熱交換部15では、冷媒パス16a~16dを流れる冷媒の流量が多くなり、冷媒の摩擦圧力損失も大きくなる。このため、補助熱交換部15の冷媒パス16a~16dを流れる冷媒(冷媒A)と、主熱交換部13の冷媒パス群14a~14dを流れる冷媒(冷媒B)とでは、温度差があり、冷媒Aの温度は冷媒Bの温度よりも高くなる(冷媒A>冷媒B)。
 補助熱交換部15は、主熱交換部13に接触するように主熱交換部13の下に配置されている。その補助熱交換部15では、冷媒パス16dが、主熱交換部13に最も近い位置に配置されている。このため、冷媒Aが流れる冷媒パス16dから主熱交換部13へ熱が伝導することで、冷媒パス16dでは、二相状態の冷媒が冷却されて凝縮するため、冷媒の乾き度が低くなる。冷媒の乾き度が低くなることで、冷媒の摩擦圧力損失も減少する。
 これにより、補助熱交換部15では、冷媒パス16dを流れる冷媒(液冷媒)の流量は、他の冷媒パスを流れる冷媒(液冷媒)の流量に比べて多くなる。上述した室外熱交換器11では、液冷媒がより多く流れる冷媒パス16d(第1パス)が、通り抜ける外気の風速が相対的に大きい冷媒パス群14b(第2パス)に接続されている。これにより、図11に示されるように、液冷媒をより多く含む冷媒が効率的に熱交換されて蒸発し、ガス冷媒になる。その結果、室外熱交換器11の性能を向上させることができる。
 ここで、補助熱交換部15と主熱交換部13との冷媒の摩擦圧力損失の比率と、補助熱交換部と主熱交換部との冷媒パス数の比率との関係を図13に示す。なお、冷媒はR32と仮定した。冷媒パス一つあたりの伝熱管の本数は同じとした。主熱交換部13と補助熱交換部15との間の圧力を、0.80MPa(飽和温度-0.5℃)とした。主熱交換部の摩擦圧力損失をパラメータとして計算した。
 主熱交換部13の摩擦圧力損失にかかわらず、補助熱交換部15に対して、主熱交換部13の冷媒パス数が2倍以上ある場合には、冷媒の摩擦圧力損失の比率が、補助熱交換部において、室外熱交換器11内の全圧力損失の半分以上になる。このため、冷媒の摩擦圧力損失が、補助熱交換部15において支配的になり、補助熱交換部15における圧力損失の変化によって、主熱交換部13の冷媒パス群14a~14dへ、冷媒を分配しやすくすることができる。
 さらに、暖房運転の際に適宜行われる除霜運転では、冷媒は、主熱交換部13から補助熱交換部15へ流れることになる。主熱交換部13を流れる冷媒は、主熱交換部13に付着した霜を融解させるために放熱される。このため、補助熱交換部15を流れる際には、冷媒は、十分に凝縮して液冷媒になっている。
 主熱交換部13に最も近い位置に配置されている補助熱交換部15の冷媒パス16dでは、冷媒パス16dを流れる冷媒が相変化を起こすことはない。また、冷媒の摩擦圧力損失の変動もほとんど生じない。このため、除霜運転を行う際に冷媒の分配に影響を与えることなく、蒸発器として運転(暖房運転)させる際の、冷媒と外気との熱交換性を向上させることができる。
 冷媒パス16dが、主熱交換部13のうち補助熱交換部15に最も近い位置に配置された冷媒パス群14aに接続されていない場合に、以下の手法を採ることで霜を残さないようにすることができる。たとえば、冷媒パス16dの伝熱管の流路断面積を狭くする。あるいは、冷媒パス16dと分配器とを接続する接続配管の径を小さくする。
 こうすることで、冷媒パス16dも圧力抵抗が大きくなり、室外熱交換器11を蒸発器として運転させる際の補助熱交換部15の冷媒パス16a~16dの冷媒の分流比を一定に保ちながら、除霜運転させる際には、冷媒パス16d以外の冷媒パスの分流比を大きくすることができる。これにより、熱量が必要とされる、主熱交換部13の一番下に配置された冷媒パス群14aに、より多くの冷媒を流すことができ、霜を確実に融解させることができる。
 実施の形態2
 実施の形態2に係る室外ユニットの室外熱交換器について説明する。図14に示すように、室外熱交換器11は、主熱交換部13(第2熱交換部)と補助熱交換部15(第1熱交換部)とを備えている。主熱交換部13では、冷媒パス群14a、14b、14c、14d(第2冷媒パス)が形成されている。補助熱交換部15では、冷媒パス16a、16b、16c、16d(第1冷媒パス)が形成されている。
 実施の形態2に係る室外熱交換器11では、冷媒パス群14a、14b、14c、14dと冷媒パス16a、16b、16c、16dとの接続態様が、実施の形態1に係る室外熱交換器11の接続態様と異なる。補助熱交換部15の最下段に配置された冷媒パス16a(第1パス)と、主熱交換部13の冷媒パス群14a~14dのうち、通り抜ける外気の風速が相対的に大きい冷媒パス群14b(第2パス)とが接続されている。
 冷媒パス16bと冷媒パス群14aとが接続されている。冷媒パス16cと冷媒パス群14dとが接続されている。冷媒パス16dと冷媒パス群14cとが接続されている。なお、これ以外の構成については、図2に示す室外熱交換器11の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 次に、上述した室外熱交換器11を有する室外ユニットを備えた空気調和装置1の動作について説明する。空気調和装置1の動作は、実施の形態1に係る空気調和装置1の動作と基本的に同じである。
 まず、冷房運転では、圧縮機3から吐出した冷媒は、四方弁23、室外熱交換器11、絞り装置9および室内熱交換器5を順次流れて圧縮機3に戻る(図5の点線矢印参照)。室外熱交換器11では、高温高圧のガス冷媒と外気との間で熱交換が行われる。高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。
 絞り装置9では、高圧の液冷媒が、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。室内熱交換器5では、二相状態の冷媒と外気との間で熱交換が行われる。液冷媒は蒸発して低圧のガス冷媒(単相)になる。この熱交換によって、室内が冷却される。以下、このサイクルが繰り返される。
 次に、暖房運転では、圧縮機3から吐出した冷媒は、四方弁23、室内熱交換器5、絞り装置9および室外熱交換器11を順次流れて圧縮機3に戻る(図5の実線矢印参照)。室内熱交換器5では、高温高圧のガス冷媒と外気との間で熱交換が行われる。高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。この熱交換によって、室内が暖房される。
 絞り装置9では、高圧の液冷媒が、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。室外熱交換器11では、二相状態の冷媒と外気との間で熱交換が行われる。液冷媒は蒸発して低圧のガス冷媒(単相)になる。以下、このサイクルが繰り返される。
 次に、暖房運転時の室外熱交換器11における冷媒の流れについて詳しく説明する。図15に示すように、室内熱交換器5から絞り装置9を経て送られてきた二相状態の冷媒は、まず、分配器25に流れ込む。分配器25に流れ込んだ冷媒は、補助熱交換部15の冷媒パス16a~16dを矢印に示す向きに流れる。冷媒パス16aを流れた冷媒は、接続配管35を経て分配器29bに流れ込む。冷媒パス16bを流れた冷媒は、接続配管35を経て分配器29aに流れ込む。冷媒パス16cを流れた冷媒は、接続配管35を経て分配器29dに流れ込む。冷媒パス16dを流れた冷媒は、接続配管35を経て分配器29cに流れ込む。
 次に、分配器29a~29dのそれぞれに流れ込んだ冷媒は、主熱交換部13の冷媒パス群14a~14dを、矢印に示す向きに流れる。分配器29aに流れ込んだ冷媒は、冷媒パス群14aを流れる。分配器29bに流れ込んだ冷媒は、冷媒パス群14bを流れる。分配器29cに流れ込んだ冷媒は、冷媒パス群14cを流れる。分配器29dに流れ込んだ冷媒は、冷媒パス群14dを流れる。冷媒パス群14a~14dをそれぞれ流れた冷媒は、ヘッダ27に流れ込む。ヘッダ27に流れ込んだ冷媒は、室外熱交換器11の外へ送り出される。
 前述したように、暖房運転時では、室外ファン21によって室外ユニット10内に送り込まれる外気と、室外熱交換器11に送り込まれる冷媒との間で熱交換が行われる。この熱交換が行われる際に、外気(空気)中の水分が凝縮し、室外熱交換器11の表面に水滴が成長する。成長した水滴は、フィン31と伝熱管32、33とによって構成された室外熱交換器11の排水路を通じて下方へ流れ、ドレン水として排出される。
 このとき、ドレン水は、主に重力によって、室外熱交換器11の上部から下部へ向かって排出されるため、相対的に室外熱交換器11の下部では水分量は多い。その室外熱交換器11の下部では、フィン31または伝熱管33の腐食によって室外熱交換器11が損傷するのを防ぐための対策が採られている。すなわち、室外熱交換器11の下部は、室外ユニットの筐体とは一部のみ接触するか、または、絶縁体と接触している場合が多い。
 このため、室外熱交換器11の下部ではドレン水が滞留しやすい。特に、補助熱交換部15の最も下に配置された冷媒パス16aでは、他の冷媒パス16b~16dと比べて、ドレン水が滞留しやすくなる。
 また、伝熱管として、断面形状が扁平型の扁平管を使用した場合、伝熱管の下面の表面張力が、断面形状が一般的な円形型の伝熱管の場合と比べ大きくなる。このため、補助熱交換部15の最下段では水滴が滞留しやすくなる。
 ドレン水は、外気中に含まれる水分が凝縮して生じた低温の水である。その低温のドレン水が、冷媒パス16aに滞留しやすくなることで、冷媒パス16aを流れる二相状態の冷媒が冷却されて、ガス冷媒が凝縮する。ガス冷媒が凝縮することで、冷媒の乾き度が減少し、冷媒パス16aを流れる冷媒は、伝熱管33a内の摩擦圧力損失が減少する(図12参照)。これにより、冷媒パス16aを流れる冷媒(液冷媒)の流量が増加し、冷媒パス16aを流れる冷媒の流量は、他の冷媒パス16b~16dを流れる冷媒の流量よりも増えることになる。
 図16に示すように、その補助熱交換部15の冷媒パス16aと主熱交換部13の冷媒パス群14bとが、接続配管35によって接続されている。冷媒パス群14bでは、通り抜ける外気の風速が相対的に大きい。これにより、液冷媒をより多く含む冷媒が効率的に熱交換されて蒸発し、ガス冷媒になる。その結果、室外熱交換器11の性能を向上させることができる。
 なお、冷媒パス16a~16dおよび冷媒パス群14a~14dへの冷媒の分配量を調整するために、分配器25または分配器29a~29dの内部の流路形状を変えてもよい。また、分配器25と冷媒パス16a~16dとを接続する接続配管36の寸法を調整してもよい。さらに、分配器29a~29dと冷媒パス群16a~16dとを接続する接続配管の寸法を調整してもよい。
 また、前述したように、暖房運転の際に適宜行われる除霜運転では、主熱交換部13を流れる冷媒は、主熱交換部13に付着した霜を融解させるために放熱されるため、補助熱交換部15を流れる際には、冷媒は、十分に凝縮して液冷媒になっている。
 これにより、除霜運転時に発生するドレン水によって、冷媒パス16a~16dを流れる冷媒が相変化を起こすことはない。また、冷媒の摩擦圧力損失の変動もほとんど生じない。このため、除霜運転を行う際に冷媒の分配に影響を与えることなく、蒸発器として運転(暖房運転)させる際の、冷媒と外気との熱交換性を向上させることができる。
 冷媒パス16aが、主熱交換部13のうち補助熱交換部15に最も近い位置に配置された冷媒パス群14aに接続されていない場合に、以下の手法を採ることで霜を残さないようにすることができる。たとえば、冷媒パス16aの伝熱管の流路断面積を狭くする。あるいは、冷媒パス16aと分配器とを接続する接続配管の径を小さくする。
 こうすることで、冷媒パス16aも圧力抵抗が大きくなり、蒸発器として運転させる際の補助熱交換部の冷媒パスの冷媒の分流比を一定に保ちながら、除霜運転させる際には、冷媒パス16a以外の冷媒パスの分流比を大きくすることができる。これにより、熱量が必要とされる、主熱交換部13の一番下に配置された冷媒パス群14aに、より多くの冷媒を流すことができ、霜を確実に融解させることができる。
 上述した各実施の形態において説明した空気調和装置1に用いる冷媒としては、冷媒R410A、冷媒R407C、冷媒R32、冷媒R507A、冷媒HFO1234yf等、どのような冷媒を用いても、除霜時の分配に影響を及ぼすことなく、蒸発器として運転させる際の熱交換器性能を向上させることが可能となる。
 また、空気調和装置1に用いる冷凍機油としては、適用される冷媒との相互溶解性を考慮して適合性を有する冷凍機油が使用される。たとえば、冷媒R410A等のフルオロカーボン系冷媒では、アルキルベンゼン油系、エステル油系またはエーテル油系の冷凍機油が使用される。これらの他に、鉱油系またはフッ素油系等の冷凍機油を用いてもよい。
 なお、各実施の形態において説明した室外熱交換器を備えた空気調和装置については、必要に応じて種々組み合わせることが可能である。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本発明は、主熱交換部および補助熱交換部を備えた室外熱交換器を有する空気調和装置に有効に利用される。
  1 空気調和装置、3 圧縮機、4 室内ユニット、5 室内熱交換器、7 室内ファン、9 絞り装置、10 室外ユニット、11 室外熱交換器、13、13a、13b 主熱交換部、14a、14b、14c、14d 冷媒パス群、15、15a、15b 補助熱交換部、16a、16b、16c、16d 冷媒パス、21 室外ファン、23 四方弁、25 分配器、27 ヘッダ、29a、29b、29c、29d 分配器、31 フィン、32、32a、32b、32c、32d、33、33a、33b、33c、33d 伝熱管、35、36、37 接続配管、51 制御部。

Claims (10)

  1.  室外熱交換器を備えた室外ユニットであって、
     前記室外熱交換器は、
     第1熱交換部と、
     前記第1熱交換部と接触するように配置された第2熱交換部と
    を含み、
     前記第1熱交換部は、複数の第1冷媒パスを有し、
     前記第2熱交換部は、複数の第2冷媒パスを有し、
     前記複数の第1冷媒パスのうち、前記第2熱交換部に最も近い位置に配置された第1パスと、前記複数の第2冷媒パスのうち、前記第2熱交換部を通り抜ける流体の流速が相対的に大きい領域に配置された第2パスとが、接続された、室外ユニット。
  2.  前記複数の第1冷媒パスの数は、前記複数の第2冷媒パスの数よりも少ない、請求項1記載の室外ユニット。
  3.  前記室外熱交換器と対向するように配置され、前記室外熱交換器へ前記流体を送り込む送風部を備え、
     前記送風部から前記室外熱交換器を見て、前記第2パスは、前記送風部と前記第2熱交換部とが平面視的に重なる領域に位置するように配置された、請求項1記載の室外ユニット。
  4.  前記複数の第1冷媒パスのそれぞれおよび前記複数の第2冷媒パスのそれぞれは、伝熱管を含み、
     前記伝熱管の断面形状は扁平型である、請求項1記載の室外ユニット。
  5.  室外熱交換器を備えた室外ユニットであって、
     前記室外熱交換器は、
     第1熱交換部と、
     前記第1熱交換部と接触するように配置された第2熱交換部と
    を含み、
     前記第1熱交換部は、複数の第1冷媒パスを有し、
     前記第2熱交換部は、複数の第2冷媒パスを有し、
     前記複数の第1冷媒パスのうち、前記第2熱交換部から最も離れた位置に配置された第1パスと、前記複数の第2冷媒パスのうち、前記第2熱交換部を通り抜ける流体の流速が相対的に大きい領域に配置された第2パスとが、接続された、室外ユニット。
  6.  前記第1熱交換部は、前記第2熱交換部の下方に配置され、
     前記第1パスは、前記第1熱交換部における最下段に配置された、請求項5記載の室外ユニット。
  7.  前記複数の第1冷媒パスの数は、前記複数の第2冷媒パスの数よりも少ない、請求項5記載の室外ユニット。
  8.  前記室外熱交換器と対向するように配置され、前記室外熱交換器へ前記流体を送り込む送風部を備え、
     前記送風部から前記室外熱交換器を見て、前記第2パスは、前記送風部と前記第2熱交換部とが平面視的に重なる領域に位置するように配置された、請求項5記載の室外ユニット。
  9.  前記複数の第1冷媒パスのそれぞれおよび前記複数の第2冷媒パスのそれぞれは、伝熱管を含み、
     前記伝熱管の断面形状は扁平型である、請求項5記載の室外ユニット。
  10.  請求項1~9のいずれか1項に記載の室外ユニットを備えた冷凍サイクル装置であって、
     前記室外熱交換器が蒸発器として動作する状態では、前記第1熱交換部から前記第2熱交換部へ冷媒が流れる、冷凍サイクル装置。
PCT/JP2016/064866 2016-05-19 2016-05-19 室外ユニットおよびそれを備えた冷凍サイクル装置 WO2017199393A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES20201281T ES2960725T3 (es) 2016-05-19 2016-05-19 Unidad exterior y aparato de ciclo de refrigeración que incluye la misma
CN201680085102.5A CN109073290B (zh) 2016-05-19 2016-05-19 室外单元及具备该室外单元的制冷循环装置
US16/083,553 US10914499B2 (en) 2016-05-19 2016-05-19 Outdoor unit and refrigeration cycle apparatus including the same
EP16902412.2A EP3460358A4 (en) 2016-05-19 2016-05-19 EXTERNAL UNIT AND REFRIGERATION CYCLE DEVICE COMPRISING THE SAME
SG11201807906YA SG11201807906YA (en) 2016-05-19 2016-05-19 Outdoor unit and refrigeration cycle apparatus including the same
PCT/JP2016/064866 WO2017199393A1 (ja) 2016-05-19 2016-05-19 室外ユニットおよびそれを備えた冷凍サイクル装置
JP2018518018A JP6727297B2 (ja) 2016-05-19 2016-05-19 室外ユニットおよびそれを備えた冷凍サイクル装置
AU2016406843A AU2016406843B2 (en) 2016-05-19 2016-05-19 Outdoor Unit and Refrigeration Cycle Apparatus Including the Same
EP20201281.1A EP3783280B1 (en) 2016-05-19 2016-05-19 Outdoor unit and refrigeration cycle apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064866 WO2017199393A1 (ja) 2016-05-19 2016-05-19 室外ユニットおよびそれを備えた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017199393A1 true WO2017199393A1 (ja) 2017-11-23

Family

ID=60326291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064866 WO2017199393A1 (ja) 2016-05-19 2016-05-19 室外ユニットおよびそれを備えた冷凍サイクル装置

Country Status (8)

Country Link
US (1) US10914499B2 (ja)
EP (2) EP3460358A4 (ja)
JP (1) JP6727297B2 (ja)
CN (1) CN109073290B (ja)
AU (1) AU2016406843B2 (ja)
ES (1) ES2960725T3 (ja)
SG (1) SG11201807906YA (ja)
WO (1) WO2017199393A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130394A1 (ja) * 2017-12-25 2019-07-04 三菱電機株式会社 熱交換器および冷凍サイクル装置
JPWO2019003385A1 (ja) * 2017-06-29 2019-11-07 三菱電機株式会社 室外ユニットおよび冷凍サイクル装置
JPWO2020194442A1 (ja) * 2019-03-25 2021-10-21 三菱電機株式会社 熱交換器ユニット及び冷凍サイクル装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529604B2 (ja) * 2015-12-01 2019-06-12 三菱電機株式会社 冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219493A (ja) * 1995-02-09 1996-08-30 Daikin Ind Ltd 空気調和機
JP2010127570A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp ヒートポンプ給湯機及び冷凍機器
JP2012163328A (ja) * 2011-01-21 2012-08-30 Daikin Industries Ltd 熱交換器および空気調和機
JP2013083419A (ja) 2011-09-30 2013-05-09 Daikin Industries Ltd 熱交換器および空気調和機
WO2013161799A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
WO2015111220A1 (ja) * 2014-01-27 2015-07-30 三菱電機株式会社 熱交換器、及び、空気調和装置
WO2015132963A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 熱交換器及び空気調和機

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531351A (en) * 1976-06-25 1978-01-09 Matsushita Electric Ind Co Ltd Room cooling and heating system
JP3324240B2 (ja) * 1993-12-01 2002-09-17 株式会社デンソー 冷媒凝縮器
JP3216960B2 (ja) * 1994-09-19 2001-10-09 株式会社日立製作所 空気調和機の室外機、室内機及びそれらに用いられる冷媒分配器
JPH11304293A (ja) * 1997-07-10 1999-11-05 Denso Corp 冷媒凝縮器
JP4006821B2 (ja) * 1998-04-22 2007-11-14 株式会社デンソー 凝縮装置
JP2000081255A (ja) * 1998-09-07 2000-03-21 Sanyo Electric Co Ltd 熱交換器
KR100505236B1 (ko) * 2002-12-18 2005-08-03 엘지전자 주식회사 공기조화기
JP2007147221A (ja) * 2005-11-30 2007-06-14 Matsushita Electric Ind Co Ltd フィン付き熱交換器
CN201335512Y (zh) * 2008-08-22 2009-10-28 Tcl集团股份有限公司 一种改进流程结构的冷凝器装置
JP5385588B2 (ja) * 2008-10-30 2014-01-08 シャープ株式会社 空気調和機の室外機
CN101545702A (zh) * 2009-05-06 2009-09-30 海信(山东)空调有限公司 一种空调室外机冷凝器及采用该冷凝器的室外机
CN201402010Y (zh) * 2009-05-06 2010-02-10 海信(山东)空调有限公司 一种空调室外机冷凝器及采用该冷凝器的室外机
WO2013046729A1 (ja) * 2011-09-30 2013-04-04 ダイキン工業株式会社 熱交換器および空気調和機
JP5907752B2 (ja) * 2012-02-20 2016-04-26 株式会社ケーヒン・サーマル・テクノロジー 熱交換器
EP2853843B1 (en) * 2012-04-26 2020-03-11 Mitsubishi Electric Corporation A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
CN102798203B (zh) * 2012-08-29 2014-08-27 海信(山东)空调有限公司 空调室外机冷凝器及安装有该冷凝器的空调室外机
JP5644889B2 (ja) * 2013-04-30 2014-12-24 ダイキン工業株式会社 空気調和機の室内ユニット
CN105283718B (zh) 2013-06-13 2017-10-24 三菱电机株式会社 空调装置
JP2015052439A (ja) * 2013-09-09 2015-03-19 ダイキン工業株式会社 熱交換器
ES2700604T3 (es) 2013-09-11 2019-02-18 Daikin Ind Ltd Intercambiador de calor y aparato de aire acondicionado
JP6171765B2 (ja) * 2013-09-11 2017-08-02 ダイキン工業株式会社 熱交換器
JP6253814B2 (ja) * 2015-01-30 2017-12-27 三菱電機株式会社 熱交換器、及び冷凍サイクル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219493A (ja) * 1995-02-09 1996-08-30 Daikin Ind Ltd 空気調和機
JP2010127570A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp ヒートポンプ給湯機及び冷凍機器
JP2012163328A (ja) * 2011-01-21 2012-08-30 Daikin Industries Ltd 熱交換器および空気調和機
JP2013083419A (ja) 2011-09-30 2013-05-09 Daikin Industries Ltd 熱交換器および空気調和機
WO2013161799A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
WO2015111220A1 (ja) * 2014-01-27 2015-07-30 三菱電機株式会社 熱交換器、及び、空気調和装置
WO2015132963A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 熱交換器及び空気調和機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019003385A1 (ja) * 2017-06-29 2019-11-07 三菱電機株式会社 室外ユニットおよび冷凍サイクル装置
WO2019130394A1 (ja) * 2017-12-25 2019-07-04 三菱電機株式会社 熱交換器および冷凍サイクル装置
EP3734190A4 (en) * 2017-12-25 2021-01-06 Mitsubishi Electric Corporation HEAT EXCHANGER AND COOLING CYCLE DEVICE
JPWO2020194442A1 (ja) * 2019-03-25 2021-10-21 三菱電機株式会社 熱交換器ユニット及び冷凍サイクル装置
JP7080395B2 (ja) 2019-03-25 2022-06-03 三菱電機株式会社 熱交換器ユニット及び冷凍サイクル装置

Also Published As

Publication number Publication date
JP6727297B2 (ja) 2020-07-22
SG11201807906YA (en) 2018-12-28
US20190078817A1 (en) 2019-03-14
EP3460358A1 (en) 2019-03-27
US10914499B2 (en) 2021-02-09
AU2016406843A1 (en) 2018-10-11
CN109073290A (zh) 2018-12-21
EP3460358A4 (en) 2019-05-15
AU2016406843B2 (en) 2019-09-12
JPWO2017199393A1 (ja) 2019-01-24
ES2960725T3 (es) 2024-03-06
EP3783280A1 (en) 2021-02-24
CN109073290B (zh) 2020-10-30
EP3783280B1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
US10386081B2 (en) Air-conditioning device
CN109312971B (zh) 制冷循环装置
WO2018047416A1 (ja) 空気調和装置
JP4922669B2 (ja) 空気調和機及び空気調和機の熱交換器
WO2013051166A1 (ja) 冷凍サイクル装置
JP6157723B2 (ja) 空気調和装置
WO2017199393A1 (ja) 室外ユニットおよびそれを備えた冷凍サイクル装置
JP6285172B2 (ja) 空気調和機の室外機
JPWO2018078800A1 (ja) 熱交換器及び冷凍サイクル装置
JP5627635B2 (ja) 空気調和機
JP2013155961A (ja) 熱交換器及びそれを備えた空気調和機
JP6910436B2 (ja) 室外ユニットおよび冷凍サイクル装置
JP2012237518A (ja) 空気調和機
JP7123238B2 (ja) 冷凍サイクル装置
WO2020235030A1 (ja) 熱交換器およびそれを用いた冷凍サイクル装置
JP7112168B2 (ja) 熱交換器及び冷凍サイクル装置
JP2011058771A (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
WO2020110301A1 (ja) 冷凍サイクル装置
WO2020012548A1 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
CN117355721A (zh) 热交换器、具备热交换器的空调装置的室外机、以及具备空调装置的室外机的空调装置
JPWO2020194442A1 (ja) 熱交換器ユニット及び冷凍サイクル装置
WO2017195296A1 (ja) 空気調和装置
JP2014129895A (ja) 空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518018

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2016406843

Country of ref document: AU

Date of ref document: 20160519

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016902412

Country of ref document: EP

Effective date: 20181219