WO2017198207A1 - 自移动机器人及地图构建方法、组合机器人地图调用方法 - Google Patents

自移动机器人及地图构建方法、组合机器人地图调用方法 Download PDF

Info

Publication number
WO2017198207A1
WO2017198207A1 PCT/CN2017/085017 CN2017085017W WO2017198207A1 WO 2017198207 A1 WO2017198207 A1 WO 2017198207A1 CN 2017085017 W CN2017085017 W CN 2017085017W WO 2017198207 A1 WO2017198207 A1 WO 2017198207A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
dimensional map
self
map information
mobile robot
Prior art date
Application number
PCT/CN2017/085017
Other languages
English (en)
French (fr)
Inventor
汤进举
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Priority to US16/303,100 priority Critical patent/US11052538B2/en
Priority to EP17798770.8A priority patent/EP3460404A4/en
Publication of WO2017198207A1 publication Critical patent/WO2017198207A1/zh
Priority to US17/338,406 priority patent/US11628569B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • G01C21/3867Geometry of map features, e.g. shape points, polygons or for simplified maps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the invention relates to a self-mobile robot, a map construction method and a combined robot map calling method, and belongs to the technical field of small household appliance manufacturing.
  • the so-called combined robot is a self-moving robot with multiple functions integrated by integrating functional modules with different functions.
  • An integrated method in the prior art is to superimpose functional modules having different functions on the body of the mobile robot, so that the working skill of the robot can be expanded on the basis of self-movement.
  • the drawback of the existing integration and integration method is that the height of the integrated combined robot is limited. In the walking process of the self-moving robot, if the height of the obstacle is lower than the height of the host, the robot moves by itself. Causing obstacles to make it impossible to pass.
  • the technical problem to be solved by the present invention is to provide a self-mobile robot, a map construction method, and a combined robot map calling method according to the deficiencies of the prior art.
  • the present invention generates a two-dimensional image by using a distance sensor disposed on the self-mobile robot. Based on the map, the spatial height information is superimposed and the three-dimensional map information is generated.
  • the robot in the combined state calls and plans the walking path in the working area based on the three-dimensional map; ensuring that the combined robot runs smoothly and safely in a complex environment.
  • a self-moving robot includes a robot body and a control center disposed on the body, the robot body including a first distance sensor disposed in a horizontal orientation and a second distance sensor disposed vertically upwardly, the first a distance sensor collects two-dimensional map information of the working surface where the mobile robot is located, the second distance sensor collects spatial height information above the working surface where the mobile robot is located, and the control center obtains the working surface Simultaneously with the map information, the spatial height information is superimposed on the two-dimensional map information and three-dimensional map information of the work area is obtained.
  • the first distance sensor and the second distance sensor include an ultrasonic sensor, an infrared sensor, or a visual sensor, as needed.
  • the space height information above the work surface is from the work surface to the obstacle encountered The distance between the lower surfaces.
  • the present invention also provides a map construction method for a self-mobile robot as described above, comprising the following steps:
  • Step 100 Generate two-dimensional map information of the working surface
  • Step 200 Collect spatial height information above the working surface in real time, and superimpose the spatial height information on the two-dimensional map information of the working surface to obtain three-dimensional map information of the working area and save.
  • the two-dimensional map information in the step 100 is obtained by traversing the walking scan in the working surface from the mobile robot.
  • the spatial height information above the working surface in the step 200 is a distance between the working plane and a lower surface of the obstacle encountered;
  • the specific process of superimposing the spatial height information on the pre-generated two-dimensional map information includes:
  • Step 201 The self-moving robot walks in the working area, records the coordinates of the discrete point N1 as (x1, y1), and detects that the space height above the N1 point is h1, and records the highest point M1 of the space above the discrete point N1.
  • the three-dimensional coordinates are (x1, y1, h1);
  • Step 202 The self-mobile robot continues to walk, continuously recording the three-dimensional coordinates of the highest points M2 to Mn of the upper space of the discrete points N2 to Nn until the traversal walking of the working area is completed;
  • Step 203 Fit the spatial information between the faces fitted by the discrete points N1 to Nn to the faces fitted by M1 to Mn into three-dimensional map information and save.
  • a three-dimensional map of the work area can be constructed.
  • the present invention also provides a combined robot map calling method, the combined robot includes a self-mobile robot and a functional module combinedly connected to the self-mobile robot, the self-mobile robot is provided with a storage unit, and the storage unit stores Two-dimensional map information and three-dimensional map information of the work area;
  • the combination robot includes a non-combination mode and a combination mode.
  • a non-combination mode When the mobile robot is working alone, it is a non-combination mode, and when the self-mobile robot is combined with the function module, it is a combination mode;
  • the self-mobile robot invokes the two-dimensional map information and walks on a two-dimensional work surface;
  • the combination robot invokes the three-dimensional map information and walks the work within the three-dimensional work area.
  • the combination robot plans a walking path according to the three-dimensional map information, and calculates a walkable working area.
  • the combination robot calculates map information of the first plane P1 according to the height L of the body and the three-dimensional map information, and the height difference between the first plane P1 and the working surface is Group The body height L of the robot is combined, and the combination robot plans a walking path based on the two-dimensional map information of the first plane P1.
  • the present invention provides a self-mobile robot and a map construction method, and a combined robot map calling method.
  • the present invention superimposes spatial height information on the basis of the generated two-dimensional map by using a distance sensor disposed on the self-mobile robot. And generating three-dimensional map information, the robot in the combined state, calling and planning the walking path in the working area based on the three-dimensional map; ensuring that the combined robot runs smoothly in a complex environment, safe and efficient.
  • FIG. 1 is a schematic view showing the overall structure of a self-mobile robot according to the present invention.
  • FIG. 2 is a schematic flow chart of a method for constructing a three-dimensional map of a self-mobile robot according to the present invention
  • FIG. 3 is a schematic view showing the overall structure of the combination robot of the present invention.
  • Figure 4 is a schematic view showing the walking state of the combination robot on the working surface of the present invention.
  • FIG. 1 is a schematic view showing the overall structure of a self-mobile robot according to the present invention.
  • the present invention provides a self-mobile robot 10 including a robot body 100 and a control center (not shown) disposed on the body 100.
  • the robot body 100 includes a first distance sensor 101 disposed in a horizontal orientation and a second distance sensor 102 disposed vertically upwardly, the first distance sensor 101 acquiring a two-dimensional shape of the working surface W of the self-moving robot Map information, the second distance sensor 102 collects spatial height information above the working surface W where the mobile robot is located, and the control center obtains the spatial height information while obtaining the two-dimensional map information of the working surface W Superimposed on the two-dimensional map information and obtaining three-dimensional map information of the work area.
  • the first distance sensor 101 and the second distance sensor 102 include an ultrasonic sensor, an infrared sensor, or a visual sensor, as needed.
  • the spatial height information above the work surface W is the distance between the work surface and the lower surface of the obstacle encountered in the up and down direction.
  • FIG. 2 is a schematic flow chart of a three-dimensional map construction method of a self-mobile robot according to the present invention. As shown in FIG. 2, the present invention further provides a map construction method for a self-mobile robot as described above, comprising the following steps:
  • Step 100 Generate two-dimensional map information of the working surface
  • Step 200 Collect spatial height information above the working surface in real time, and superimpose the spatial height information on the two-dimensional map information of the working surface to obtain three-dimensional map information of the working area and save.
  • the two-dimensional map information in the step 100 is obtained by traversing the walking scan in the working surface from the mobile robot.
  • the spatial height information above the working surface in the step 200 is a distance between the working plane and the lower surface of the encountered obstacle in the up and down direction;
  • the specific process of superimposing the spatial height information on the pre-generated two-dimensional map information includes:
  • Step 201 The self-moving robot walks in the working area, records the coordinates of the discrete point N1 as (x1, y1), and detects that the space height above the N1 point is h1, and records the highest point M1 of the space above the discrete point N1.
  • the three-dimensional coordinates are (x1, y1, h1);
  • Step 202 The self-mobile robot continues to walk, continuously recording the three-dimensional coordinates of the highest points M2 to Mn of the upper space of the discrete points N2 to Nn until the traversal walking of the working area is completed;
  • Step 203 Fit the spatial information between the faces fitted by the discrete points N1 to Nn to the faces fitted by M1 to Mn into three-dimensional map information and save.
  • a three-dimensional map of the work area can be constructed.
  • the present invention also provides a combination robot A comprising a self-mobile robot 10 as described above and a function module 20 integrated on the self-mobile robot.
  • the self-mobile robot can be a plurality of cleaning robots, transport robots or walking robots that can work independently.
  • the self-mobile robot 10 is a sweeping robot.
  • the function module 20 may be a combination of a security module, a humidification module, and a purification module, or a plurality of submodules.
  • the present invention also provides a combined robot map calling method
  • the combined robot A includes a self-mobile robot 10 and a function module 20 coupledly connected to the self-mobile robot, and the self-mobile robot 10 is provided with a storage unit (Fig. Not shown in the figure), the storage unit stores two-dimensional map information and three-dimensional map information of the work area.
  • the combination robot A includes a non-combination mode and a combination mode, which are non-combination modes when the mobile robot 10 operates alone, and are combined modes when the mobile robot 10 and the function module 20 are combined and coupled together.
  • the self-mobile robot 10 calls the two-dimensional map information and walks a job on the two-dimensional work surface W; in the combined mode, the combination robot 10 calls the three-dimensional map information, and Walking in a three-dimensional work area.
  • the combination robot A calculates a walking path according to the three-dimensional map information, and calculates a walkable work area.
  • the planned walking path method includes: combining the combined robot to calculate a plane map with a height L from the ground according to the height L and the three-dimensional map, and the combined robot further plans the walking path according to the plane map.
  • Figure 4 is a schematic view showing the walking state of the combination robot on the working surface of the present invention. As shown in FIG.
  • the combination robot further calculates map information of the first plane P1 according to its own body height L and the three-dimensional map information, and the first plane P1 and the work surface W The height difference between the heights is the body height L of the combination robot, and the combination robot plans the walking path based on the two-dimensional map information of the first plane P1.
  • a two-dimensional map is formed in the control center, and the two-dimensional map is formed. It belongs to the prior art and will not be described here. Subsequently, the self-moving robot 10 continues to traverse the walking in the working environment, and while the walking, the height information of the distance sensor real-time collecting working environment is transmitted to the control center, and the control center superimposes the height information on the pre-generated On the two-dimensional map, a three-dimensional map is obtained and saved in the control center.
  • the self-mobile robot can simultaneously record the space height information, that is, when obtaining the two-dimensional information of the work plane, the work can also be collected at the same time.
  • the three-dimensional information of the area to complete the establishment of a three-dimensional map of the work area.
  • the height of the combined robot is obviously much higher than the height of the mobile robot 10. Therefore, the original two-dimensional map is not enough as a basis for planning the walking path of the combined robot.
  • the position that the mobile robot 10 can smoothly pass before may fail to pass due to the problem that the height of the combined robot is increased. At this point, it is necessary to call a three-dimensional map to plan the walking path of the combined robot.
  • the self-moving robot 10 has its own body height L in the combined state.
  • the combination robot calculates the first plane P1 from the mobile robot working plane W to L through the three-dimensional map.
  • the map information, the first plane P1 can be regarded as a workable working plane of the combined robot, and the travel path of the combined robot is planned within the map of the first plane P1.
  • the present invention provides a self-mobile robot and a map construction method, and a combined robot map calling method.
  • the present invention superimposes spatial height information on the basis of the generated two-dimensional map by using a distance sensor disposed on the self-mobile robot. And generating three-dimensional map information, the robot in the combined state, calling and planning the walking path in the working area based on the three-dimensional map; ensuring that the combined robot runs smoothly in a complex environment, safe and efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种自移动机器人(10)及地图构建方法、组合机器人地图调用方法,自移动机器人(10)包括:机器人本体(100)和设置在本体(100)上的控制中心,本体(100)包括设置在水平朝向上的用于采集二维地图信息的第一距离传感器(101)和竖直向上朝向上的用于采集空间高度信息的第二距离传感器(102),控制中心在获得工作表面二维地图信息的同时,将空间高度信息叠加到二维地图信息上获得工作区域的三维地图信息。该方法通过设置在自移动机器人(10)上的距离传感器,在生成的二维地图基础上,叠加空间高度信息并生成三维地图信息,自移动机器人(10)在组合状态下,调用并基于该三维地图规划在工作区域内的行走路径,确保了组合机器人在复杂环境中运行畅通,安全高效。

Description

自移动机器人及地图构建方法、组合机器人地图调用方法 技术领域
本发明涉及一种自移动机器人及地图构建方法、组合机器人地图调用方法,属于小家电制造技术领域。
背景技术
自移动机器人以其控制方便行动灵活得到广泛应用,为了进一步使其功能更加强大,组合机器人应运而生。所谓的组合机器人就是将具有不同功能的功能模块集成在一起,形成的具备多种功能的自移动机器人。现有技术中的一种集成方式,是将具有不同功能的功能模块在自移动机器人的机体上进行高度叠加,这样一来,便可以在机器人自移动的基础上扩展其作业技能。但现有这种集成、整合方式的缺陷在于:集成后的组合机器人高度受到一定的限制,在自移动机器人的行走过程中,如果障碍物的高度低于主机高度,则对机器人的自移动行走造成障碍,使其无法顺利通过。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种自移动机器人及地图构建方法、组合机器人地图调用方法,本发明通过设置在自移动机器人上的距离传感器,在生成的二维地图基础上,叠加空间高度信息并生成三维地图信息,机器人在组合状态下,调用并基于该三维地图规划在工作区域内的行走路径;确保了组合机器人在复杂环境中运行畅通,安全高效。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种自移动机器人,包括机器人本体和设置在所述本体上的控制中心,所述机器人本体包括设置在水平朝向上的第一距离传感器和竖直向上朝向上的第二距离传感器,所述第一距离传感器采集所述自移动机器人所在工作表面的二维地图信息,所述第二距离传感器采集所述自移动机器人所在工作表面上方的空间高度信息,所述控制中心在获得所述工作表面二维地图信息的同时,将所述空间高度信息叠加到所述二维地图信息上并获得所述工作区域的三维地图信息。
根据需要,所述第一距离传感器和第二距离传感器包括超声波传感器、红外传感器或视觉传感器。
具体来说,所述工作表面上方的空间高度信息为自所述工作表面到所遇到障碍物 的下表面之间的距离。
本发明还提供一种如上所述的自移动机器人的地图构建方法,包括如下步骤:
步骤100:生成工作表面的二维地图信息;
步骤200:实时采集所述工作表面上方的空间高度信息,并将所述空间高度信息叠加到所述工作表面的二维地图信息上,以获得工作区域的三维地图信息并保存。
更具体地,所述步骤100中的二维地图信息是通过自移动机器人在所述工作表面中遍历行走扫描得到的。
进一步地,所述步骤200中的所述工作表面上方的空间高度信息为所述工作平面到所遇到障碍物的下表面之间的距离;
所述空间高度信息叠加到预先生成的二维地图信息上的具体过程包括:
步骤201:所述自移动机器人在工作区域内行走,记录离散点N1的坐标为(x1,y1),同时探测到N1点上方的空间高度为h1,则记录离散点N1上方空间的最高点M1的三维坐标为(x1、y1、h1);
步骤202:所述自移动机器人继续行走,持续记录离散点N2至Nn的上方空间的最高点M2至Mn的三维坐标,直到完成所述工作区域的遍历行走;
步骤203:将离散点N1至Nn拟合的面到M1至Mn拟合的面之间的空间信息拟合成三维地图信息并保存。
根据所述步骤203保存的三维地图信息即可构建所述工作区域的三维地图。
本发明还提供一种组合机器人地图调用方法,所述组合机器人包括自移动机器人和组合连接在所述自移动机器人上的功能模块,所述自移动机器人上设有存储单元,所述存储单元存有工作区域的二维地图信息和三维地图信息;
所述组合机器人包括非组合模式和组合模式,当自移动机器人单独工作时,为非组合模式,当自移动机器人与功能模块组合连接在一起时,为组合模式;
在非组合模式下,所述自移动机器人调用所述二维地图信息,并在二维工作表面上行走作业;
在组合模式下,所述组合机器人调用所述三维地图信息,并在三维工作区域内行走作业。
具体地说,在组合模式下,所述组合机器人根据所述三维地图信息规划行走路径,计算可行走的工作区域。
更进一步地,所述组合机器人根据自身的机身高度L及所述三维地图信息,计算出第一平面P1的地图信息,所述第一平面P1与所述工作表面之间的高度差为所述组 合机器人的机身高度L,所述组合机器人根据所述第一平面P1的二维地图信息规划行走路径。
综上所述,本发明提供一种自移动机器人及地图构建方法、组合机器人地图调用方法,本发明通过设置在自移动机器人上的距离传感器,在生成的二维地图基础上,叠加空间高度信息并生成三维地图信息,机器人在组合状态下,调用并基于该三维地图规划在工作区域内的行走路径;确保了组合机器人在复杂环境中运行畅通,安全高效。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明自移动机器人的整体结构示意图;
图2为本发明自移动机器人的三维地图构建方法流程简图;
图3为本发明组合机器人整体结构示意图;
图4为本发明组合机器人在工作表面行走状态示意图。
具体实施方式
图1为本发明自移动机器人的整体结构示意图。如图1所示,本发明提供一种自移动机器人10,包括机器人本体100和设置在所述本体100上的控制中心(图中未示出)。所述机器人本体100包括设置在水平朝向上的第一距离传感器101和竖直向上朝向上的第二距离传感器102,所述第一距离传感器101采集所述自移动机器人所在工作表面W的二维地图信息,所述第二距离传感器102采集所述自移动机器人所在工作表面W上方的空间高度信息,所述控制中心在获得所述工作表面W二维地图信息的同时,将所述空间高度信息叠加到所述二维地图信息上并获得所述工作区域的三维地图信息。根据需要,所述第一距离传感器101和第二距离传感器102包括超声波传感器、红外传感器或视觉传感器。具体来说,所述工作表面W上方的空间高度信息为在上下方向上自所述工作表面到所遇到障碍物的下表面之间的距离。
图2为本发明自移动机器人的三维地图构建方法流程简图。如图2所示,本发明还提供一种如上所述的自移动机器人的地图构建方法,包括如下步骤:
步骤100:生成工作表面的二维地图信息;
步骤200:实时采集所述工作表面上方的空间高度信息,并将所述空间高度信息叠加到所述工作表面的二维地图信息上,以获得工作区域的三维地图信息并保存。
更具体地,所述步骤100中的二维地图信息是通过自移动机器人在所述工作表面中遍历行走扫描得到的。
进一步地,所述步骤200中的所述工作表面上方的空间高度信息为在上下方向上所述工作平面到所遇到障碍物的下表面之间的距离;
所述空间高度信息叠加到预先生成的二维地图信息上的具体过程包括:
步骤201:所述自移动机器人在工作区域内行走,记录离散点N1的坐标为(x1,y1),同时探测到N1点上方的空间高度为h1,则记录离散点N1上方空间的最高点M1的三维坐标为(x1、y1、h1);
步骤202:所述自移动机器人继续行走,持续记录离散点N2至Nn的上方空间的最高点M2至Mn的三维坐标,直到完成所述工作区域的遍历行走;
步骤203:将离散点N1至Nn拟合的面到M1至Mn拟合的面之间的空间信息拟合成三维地图信息并保存。
根据所述步骤203保存的三维地图信息即可构建所述工作区域的三维地图。
图3为本发明组合机器人整体结构示意图。如图3所示,本发明还提供一种组合机器人A,包括如上所述的自移动机器人10和集成在所述自移动机器人上的功能模块20。其中的自移动机器人可以为多种可以独立工作的清洁机器人、输运机器人或者行走机器人,在本发明的一个实施例中,所述自移动机器人10为扫地机器人。根据需要,所述功能模块20可以为安防模块、加湿模块和净化模块其中一种子模块或多种子模块组合而成。
本发明还提供一种组合机器人地图调用方法,所述组合机器人A包括自移动机器人10和组合连接在所述自移动机器人上的功能模块20,所述自移动机器人10上设有存储单元(图中未示出),所述存储单元存有工作区域的二维地图信息和三维地图信息。所述组合机器人A包括非组合模式和组合模式,当自移动机器人10单独工作时,为非组合模式,当自移动机器人10与功能模块20组合连接在一起时,为组合模式。在非组合模式下,所述自移动机器人10调用所述二维地图信息,并在二维工作表面W上行走作业;在组合模式下,所述组合机器人10调用所述三维地图信息,并在三维工作区域内行走作业。
具体地说,在组合模式下,所述组合机器人A根据所述三维地图信息规划行走路径,计算可行走的工作区域。具体地,该规划行走路径方法包括,结合组合机器人根据自身高度L及所述三维地图,计算出离地面高度为L的平面地图,组合机器人再根据该平面地图规划行走路径。图4为本发明组合机器人在工作表面行走状态示意图。 结合图4所示,更进一步地,所述组合机器人根据自身的机身高度L及所述三维地图信息,计算出第一平面P1的地图信息,所述第一平面P1与所述工作表面W之间的高度差为所述组合机器人的机身高度L,所述组合机器人根据所述第一平面P1的二维地图信息规划行走路径。
如图1至图4所示,本发明的实施例的实际工作过程是这样的:
首先,如图1所示,自移动机器人10在工作环境内通过行走扫描建图或者遍历行走记录工作平面坐标信息建图后,在其控制中心内形成二维地图,上述二维地图的形成过程属于现有技术,在此不再赘述。随后,自移动机器人10继续在工作环境内遍历行走,在行走的同时,距离传感器实时采集工作环境中的高度信息传送给所述控制中心,所述控制中心将所述高度信息叠加到预先生成的二维地图上,获得三维地图并保存在所述控制中心。需要注意的是,当自移动机器人采用上述遍历行走记录工作平面坐标信息建图的方式时,自移动机器人可以同时记录空间高度信息,即在获得工作平面的二维信息时,也可以同时收集工作区域的三维信息,以完成工作区域的三维地图的建立。当组合机器人如图3所示组合连接在一起时,组合机器人的高度显然比自移动机器人10的高度增高了很多。因此,原有的二维地图则不足以作为规划组合机器人行走路径的依据。之前自移动机器人10能够顺利通行的位置可以会由于组合机器人高度增高的问题而无法通过。此时需要调用三维地图对组合机器人的行走路径进行规划。
如图4所示,自移动机器人10在组合状态下自身的机身高度为L,在本实施例中,组合机器人通过上述三维地图计算出距离自移动机器人工作平面W为L的第一平面P1的地图信息,该第一平面P1即可认定为组合机器人的可通行的工作平面,并在该第一平面P1的地图内规划组合机器人的行进路径。
综上所述,本发明提供一种自移动机器人及地图构建方法、组合机器人地图调用方法,本发明通过设置在自移动机器人上的距离传感器,在生成的二维地图基础上,叠加空间高度信息并生成三维地图信息,机器人在组合状态下,调用并基于该三维地图规划在工作区域内的行走路径;确保了组合机器人在复杂环境中运行畅通,安全高效。

Claims (10)

  1. 一种自移动机器人,包括机器人本体(100)和设置在所述本体上的控制中心,其特征在于,所述机器人本体包括设置在水平朝向上的第一距离传感器(101)和竖直向上朝向上的第二距离传感器(102),所述第一距离传感器采集所述自移动机器人所在工作表面(W)的二维地图信息,所述第二距离传感器采集所述自移动机器人所在工作表面上方的空间高度信息,所述控制中心在获得所述工作表面二维地图信息的同时,将所述空间高度信息叠加到所述二维地图信息上并获得所述工作区域的三维地图信息。
  2. 如权利要求1所述的自移动机器人,其特征在于,所述第一距离传感器(101)和第二距离传感器(102)包括超声波传感器、红外传感器或视觉传感器。
  3. 如权利要求2所述的自移动机器人,其特征在于,所述工作表面(W)上方的空间高度信息为在上下方向上自所述工作表面到所遇到障碍物的下表面之间的距离。
  4. 一种如权利要求1-3任一项所述的自移动机器人的地图构建方法,其特征在于,包括如下步骤:
    步骤100:生成工作表面的二维地图信息;
    步骤200:实时采集所述工作表面上方的空间高度信息,并将所述空间高度信息叠加到所述工作表面的二维地图信息上,以获得工作区域的三维地图信息并保存。
  5. 如权利要求4所述的自移动机器人的地图构建方法,其特征在于,所述步骤100中的二维地图信息是通过自移动机器人在所述工作表面中遍历行走扫描得到的。
  6. 如权利要求5所述的自移动机器人的地图构建方法,其特征在于,所述步骤200中的所述工作表面上方的空间高度信息为在上下方向上所述工作平面到所遇到障碍物的下表面之间的距离;
    所述空间高度信息叠加到预先生成的二维地图信息上的具体过程包括:
    步骤201:所述自移动机器人在工作区域内行走,记录离散点N1的坐标为(x1,y1),同时探测到N1点上方的空间高度为h1,则记录离散点N1上方空间的最高点M1的三维坐标为(x1、y1、h1);
    步骤202:所述自移动机器人继续行走,持续记录离散点N2至Nn的上方空间的最高点M2至Mn的三维坐标,直到完成所述工作区域的遍历行走;
    步骤203:将离散点N1至Nn拟合的面到M1至Mn拟合的面之间的空间信息拟合成三维地图信息并保存。
  7. 如权利要求6所述的自移动机器人的地图构建方法,其特征在于,根据所述步骤203保存的三维地图信息构建所述工作区域的三维地图。
  8. 一种组合机器人地图调用方法,其特征在于,所述组合机器人(A)包括自移动机器人(10)和组合连接在所述自移动机器人上的功能模块(20),所述自移动机器人上设有存储单元,所述存储单元存有工作区域的二维地图信息和三维地图信息;
    所述组合机器人包括非组合模式和组合模式,当自移动机器人单独工作时,为非组合模式,当自移动机器人与功能模块组合连接在一起时,为组合模式;
    在非组合模式下,所述自移动机器人调用所述二维地图信息,并在二维工作表面上行走作业;
    在组合模式下,所述组合机器人调用所述三维地图信息,并在三维工作区域内行走作业。
  9. 如权利要求8所述的组合机器人地图调用方法,其特征在于,在组合模式下,所述组合机器人(A)根据所述三维地图信息规划行走路径,计算可行走的工作区域。
  10. 如权利要求9所述的组合机器人地图调用方法,其特征在于,所述组合机器人根据自身的机身高度(L)及所述三维地图信息,计算出第一平面(P1)的地图信息,所述第一平面与所述工作表面(W)之间的高度差为所述组合机器人的机身高度,所述组合机器人(A)根据所述第一平面的二维地图信息规划行走路径。
PCT/CN2017/085017 2016-05-19 2017-05-19 自移动机器人及地图构建方法、组合机器人地图调用方法 WO2017198207A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/303,100 US11052538B2 (en) 2016-05-19 2017-05-19 Self-moving robot, map building method, and map invoking method for combined robot
EP17798770.8A EP3460404A4 (en) 2016-05-19 2017-05-19 AUTONOMOUS MOBILE ROBOT, CARD CONSTRUCTION METHOD, AND CARD CALLING METHOD FOR COMBINED ROBOT
US17/338,406 US11628569B2 (en) 2016-05-19 2021-06-03 Self-movement robot, map invoking method, and combined robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610334640.5 2016-05-19
CN201610334640.5A CN107402569B (zh) 2016-05-19 2016-05-19 自移动机器人及地图构建方法、组合机器人地图调用方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/303,100 A-371-Of-International US11052538B2 (en) 2016-05-19 2017-05-19 Self-moving robot, map building method, and map invoking method for combined robot
US17/338,406 Continuation US11628569B2 (en) 2016-05-19 2021-06-03 Self-movement robot, map invoking method, and combined robot

Publications (1)

Publication Number Publication Date
WO2017198207A1 true WO2017198207A1 (zh) 2017-11-23

Family

ID=60324818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085017 WO2017198207A1 (zh) 2016-05-19 2017-05-19 自移动机器人及地图构建方法、组合机器人地图调用方法

Country Status (4)

Country Link
US (2) US11052538B2 (zh)
EP (1) EP3460404A4 (zh)
CN (2) CN107402569B (zh)
WO (1) WO2017198207A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215720A1 (en) * 2018-05-09 2019-11-14 Indoor Robotics Ltd Map generating robot

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108406731B (zh) * 2018-06-06 2023-06-13 珠海一微半导体股份有限公司 一种基于深度视觉的定位装置、方法及机器人
CN110647600B (zh) * 2018-06-26 2023-10-20 百度在线网络技术(北京)有限公司 三维地图的构建方法、装置、服务器及存储介质
CN108873908B (zh) * 2018-07-12 2020-01-24 重庆大学 基于视觉slam和网络地图结合的机器人城市导航系统
TWI671610B (zh) * 2018-09-28 2019-09-11 財團法人工業技術研究院 自動引導車、自動引導車控制系統、以及自動引導車之控制方法
CN109276193A (zh) * 2018-11-13 2019-01-29 苏州苏相机器人智能装备有限公司 一种可调节高度位置的机器人及避障方法
CN109620059A (zh) * 2018-11-16 2019-04-16 深圳市赛领未来科技有限公司 用于室内的清洁和服务机器人及导航方法
CN109940620A (zh) * 2019-04-15 2019-06-28 于傲泽 一种智能探索机器人及其控制方法
CN111538338B (zh) * 2020-05-28 2023-05-26 长沙中联重科环境产业有限公司 一种机器人贴边运动控制系统及方法
CN111631650B (zh) * 2020-06-05 2021-12-03 上海黑眸智能科技有限责任公司 基于障碍物高度检测的室内平面图生成方法、系统、终端以及扫地机器人
CN111984017A (zh) * 2020-08-31 2020-11-24 苏州三六零机器人科技有限公司 清扫设备控制方法、装置、系统及计算机可读存储介质
CN112286185A (zh) * 2020-10-14 2021-01-29 深圳市杉川机器人有限公司 扫地机器人及其三维建图方法、系统及计算机可读存储介质
CN112568101B (zh) * 2020-12-03 2022-09-16 珠海格力电器股份有限公司 浇水装置及浇水方法
CN114625116A (zh) * 2021-05-06 2022-06-14 北京石头世纪科技股份有限公司 自行走设备避障方法、装置、介质和电子设备
CN113449021B (zh) * 2021-06-28 2023-05-19 华科融资租赁有限公司 空间坐标转换方法、装置、计算机设备和可读存储介质
CN113848918A (zh) * 2021-09-27 2021-12-28 上海景吾智能科技有限公司 机器人快速高效低成本的部署方法和系统
CN114610820A (zh) * 2021-12-31 2022-06-10 北京石头创新科技有限公司 三维地图显示的优化方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430207A (zh) * 2007-11-09 2009-05-13 三星电子株式会社 使用结构光产生三维地图的设备和方法
CN102359784A (zh) * 2011-08-01 2012-02-22 东北大学 一种室内移动机器人自主导航避障系统及方法
JP2014157478A (ja) * 2013-02-15 2014-08-28 Toyota Motor Corp 自律移動体及びその制御方法
CN105091884A (zh) * 2014-05-08 2015-11-25 东北大学 基于传感器网络动态环境监测的室内移动机器人路径规划方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2220643C2 (ru) 2001-04-18 2004-01-10 Самсунг Гванджу Электроникс Ко., Лтд. Автоматическое чистящее устройство, автоматическая чистящая система и способ управления этой системой (варианты)
US6917893B2 (en) * 2002-03-14 2005-07-12 Activmedia Robotics, Llc Spatial data collection apparatus and method
US20090006480A1 (en) * 2002-06-27 2009-01-01 Tele Atlas North America, Inc. System and method for providing efficient access to digital map data
US20080184518A1 (en) * 2004-08-27 2008-08-07 Sharper Image Corporation Robot Cleaner With Improved Vacuum Unit
CN101198989A (zh) * 2005-03-24 2008-06-11 G元件私人有限公司 用于邻近区域和建筑物内的可视化、规划、监视和探察的系统和设备
JP4375320B2 (ja) 2005-10-27 2009-12-02 株式会社日立製作所 移動ロボット
KR101570377B1 (ko) * 2009-03-31 2015-11-20 엘지전자 주식회사 단일 카메라를 장착한 로봇 청소기의 3차원 환경 인식 방법
CN202005711U (zh) 2011-03-31 2011-10-12 泰怡凯电器(苏州)有限公司 可自动分离的机器人
CN105813526B (zh) * 2013-12-19 2021-08-24 伊莱克斯公司 机器人清扫装置以及用于地标识别的方法
ES2681802T3 (es) * 2014-07-10 2018-09-17 Aktiebolaget Electrolux Método para detectar un error de medición en un dispositivo de limpieza robotizado
DE102014110265A1 (de) 2014-07-22 2016-01-28 Vorwerk & Co. Interholding Gmbh Verfahren zur Reinigung oder Bearbeitung eines Raumes mittels eines selbsttätig verfahrbaren Gerätes
JP6401961B2 (ja) * 2014-08-01 2018-10-10 八潮建材工業株式会社 連結部材及び天井下地材施工方法
US10182284B2 (en) 2015-06-11 2019-01-15 Facebook Technologies, Llc Connector assembly for detachable audio system
DE102015119865B4 (de) * 2015-11-17 2023-12-21 RobArt GmbH Robotergestützte Bearbeitung einer Oberfläche mittels eines Roboters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430207A (zh) * 2007-11-09 2009-05-13 三星电子株式会社 使用结构光产生三维地图的设备和方法
CN102359784A (zh) * 2011-08-01 2012-02-22 东北大学 一种室内移动机器人自主导航避障系统及方法
JP2014157478A (ja) * 2013-02-15 2014-08-28 Toyota Motor Corp 自律移動体及びその制御方法
CN105091884A (zh) * 2014-05-08 2015-11-25 东北大学 基于传感器网络动态环境监测的室内移动机器人路径规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460404A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215720A1 (en) * 2018-05-09 2019-11-14 Indoor Robotics Ltd Map generating robot

Also Published As

Publication number Publication date
US11628569B2 (en) 2023-04-18
EP3460404A4 (en) 2019-12-11
CN111190419A (zh) 2020-05-22
US11052538B2 (en) 2021-07-06
CN107402569A (zh) 2017-11-28
CN107402569B (zh) 2020-01-21
US20190168386A1 (en) 2019-06-06
CN111190419B (zh) 2022-08-09
EP3460404A1 (en) 2019-03-27
US20210347050A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
WO2017198207A1 (zh) 自移动机器人及地图构建方法、组合机器人地图调用方法
US10328573B2 (en) Robotic platform with teach-repeat mode
US11400595B2 (en) Robotic platform with area cleaning mode
WO2017198209A1 (zh) 组合机器人及其巡航路径生成方法
US20200047337A1 (en) Robotic platform with event based mode change
US20200047343A1 (en) Remote planning and locally adaptive service mapping
US20180361585A1 (en) Robotic platform with multi-function service module
WO2021008611A1 (zh) 机器人被困检测及脱困方法
WO2017211315A1 (zh) 母子机协同工作系统及其工作方法
JP3994950B2 (ja) 環境認識装置及び方法、経路計画装置及び方法、並びにロボット装置
EP1240562B1 (en) Autonomous multi-platform robot system
US20180361581A1 (en) Robotic platform with following mode
WO2016050215A1 (zh) 一种自移动表面行走机器人系统及回归主充电座的方法
JP2009165823A (ja) 移動ロボットの経路計画方法および装置
CN205210689U (zh) 一种具有高层楼宇清洁功能的智能飞行机器人
TW201826993A (zh) 具有基於環境之操作速度變化的機器人清潔裝置
CA2668915A1 (en) Autonomous multi-platform robotic system
CN103273497B (zh) 人机交互式机械手控制系统及其控制方法
US20230123512A1 (en) Robotic cleaning device with dynamic area coverage
WO2020086557A1 (en) Apparatus and method for operations of a robotic platform
EP3555721A1 (de) Verfahren zur erstellung einer umgebungskarte für ein bearbeitungsgerät
WO2019203878A1 (en) Apparatus and methods of a service robotic platform
CN106647755A (zh) 一种智能化实时构建清扫地图的扫地机器人
CN105919517A (zh) 自动清扫机器人装置
CN108873903A (zh) 一种智能吸尘机器人导航系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798770

Country of ref document: EP

Effective date: 20181219