WO2017197794A1 - 用于照明或显示的激光白光发光装置 - Google Patents

用于照明或显示的激光白光发光装置 Download PDF

Info

Publication number
WO2017197794A1
WO2017197794A1 PCT/CN2016/094605 CN2016094605W WO2017197794A1 WO 2017197794 A1 WO2017197794 A1 WO 2017197794A1 CN 2016094605 W CN2016094605 W CN 2016094605W WO 2017197794 A1 WO2017197794 A1 WO 2017197794A1
Authority
WO
WIPO (PCT)
Prior art keywords
white light
transparent fluorescent
light emitting
fluorescent ceramic
emitting device
Prior art date
Application number
PCT/CN2016/094605
Other languages
English (en)
French (fr)
Inventor
曹永革
夏泽强
申小飞
麻朝阳
Original Assignee
中国人民大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民大学 filed Critical 中国人民大学
Publication of WO2017197794A1 publication Critical patent/WO2017197794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements

Definitions

  • the invention relates to a laser white light emitting device for illumination or display, belonging to the field of illumination and display.
  • the lighting started with the incandescent lamp invented by Edison, and later invented low-pressure sodium lamps, fluorescent lamps, high-pressure mercury lamps, metal halide lamps, high-pressure sodium lamps, trichromatic fluorescent lamps, compact fluorescent lamps, high-frequency electrodeless lamps and LEDs.
  • light source Generally, the evaluation criteria of the light source include energy efficiency, luminous flux, color rendering index, color temperature and other parameters. Among them, the energy efficiency of the light source reflects its power saving capability, and the LED white light source has the characteristics of high energy efficiency and long life, and is recognized as being followed by incandescence. Green lighting source after the lamp and fluorescent lamp.
  • LEDs are often used as excitation sources to excite the corresponding phosphors to obtain white light sources.
  • the first solution is to use a blue light-emitting diode to excite a yellow phosphor.
  • the phosphor emits yellow light under the excitation of blue light, and then mixes with the partially diffused blue light.
  • the white light is produced by the principle, the white light color index prepared by the scheme is relatively low, and the white light parameter changes relatively with temperature and working current;
  • the second scheme is that the red, green and blue three primary color light emitting diodes are directly mixed into white light due to three light emitting diodes.
  • the efficiency and optical power do not change synchronously with the parameters such as injection current, temperature and time, so a relatively high control circuit is required.
  • the third scheme is to activate red, green and blue primary color phosphors by ultraviolet or near-ultraviolet light-emitting diodes, due to human vision. It is not sensitive to ultraviolet or near-ultraviolet light. The color of this white light is determined only by the phosphor. Therefore, the color rendering index of this scheme is high and the white light parameters are relatively stable.
  • the fourth scheme is to use a blue laser as a light source to excite the yellow phosphor, the phosphor. The yellow light is emitted by the blue laser, and then mixed with the partially diffused blue light, which is represented by the complementary color principle. White light.
  • the light source excites the phosphor to produce white light
  • the disadvantages of the phosphor phosphor are: 1.
  • the phosphor has a very long time decay at high temperature; 2.
  • the phosphors of different colors are inconsistently attenuated. After a period of time, the light source is prone to color drift; 3.
  • the phosphor is used in combination with silica gel, and the yellowing of the silica gel under long-term high temperature causes the light effect to decrease. Therefore, the use of phosphor luminescence is one of the biggest technical difficulties at present.
  • the laser white light emitting device for illumination or display provided by the invention comprises a heat sink substrate, a semiconductor laser chip and a transparent fluorescent ceramic;
  • the semiconductor laser chip lasing blue light
  • the semiconductor laser chip is fixed on the heat sink substrate;
  • the semiconductor laser chip is packaged by the transparent fluorescent ceramic.
  • the semiconductor laser chip is soldered to the heat sink substrate;
  • the heat sink substrate is made of aluminum, copper, aluminum nitride or aluminum oxide.
  • the light emitting surface of the transparent fluorescent ceramic may be a curved surface, such as a spherical surface.
  • the light-emitting surface of the transparent fluorescent ceramic is coated with an anti-reflection film to increase the light-emitting rate and reduce the scattering of the light-emitting surface;
  • the light-incident surface of the transparent fluorescent ceramic is sequentially coated with an anti-reflection film and a reflective film, that is, two films are plated on the light-incident surface, and the anti-reflection film functions to increase the laser light-input rate of the reflective film.
  • the role is to prevent white light reflection and improve white light output rate;
  • the non-light-emitting surface of the transparent fluorescent ceramic and the non-light-emitting surface plated total reflection film that is, the combined surface of the transparent fluorescent ceramic and the heat sink substrate is plated with the total reflection film to reduce white light loss and improve white light emission rate.
  • the transparent fluorescent ceramic has a molecular formula of Y 3 Al 5 O 12 :xCe 3+ , wherein x is a number between 0 and 0.05, such as 0.03.
  • the transparent fluorescent ceramic is prepared according to a method comprising the following steps:
  • the ceramic raw material powder and the sintering aid are obtained by sintering
  • the ceramic raw material powder is Al 2 O 3 , Y 2 O 3 and CeO 2 ;
  • the sintering aid is at least one of MgO and SiO 2 .
  • the sintering includes sequential vacuum sintering and annealing treatment
  • the vacuum sintering temperature is 1730 ⁇ 1800 ° C, the holding time is 5 ⁇ 30 hours, the degree of vacuum is 10 -3 ⁇ 10 -5 Pa;
  • the annealing treatment is carried out under the conditions of 1200 to 1500 ° C for 5 to 40 hours, and then cooled with the furnace.
  • the sintering aid is used in an amount of 0 to 1%, such as 1%, of the total mass of the ceramic raw material powder;
  • the molar ratio of the Al 2 O 3 , the Y 2 O 3 and the CeO 2 is calculated according to a stoichiometric ratio of the elements Al, Y and Ce in the formula Y 3 Al 5 O 12 :xCe 3+ .
  • the laser white light emitting device of the present invention can be fabricated as follows:
  • the semiconductor laser chip is soldered and fixed on the heat sink substrate, the transparent fluorescent ceramic prepared by sintering is subjected to a coating process, and then the coated transparent fluorescent ceramic is packaged on the semiconductor laser chip and fixed on the heat sink substrate.
  • the laser white light emitting device is obtained.
  • the semiconductor laser chip can generate white light by transparently irradiating the transparent fluorescent ceramic after coating.
  • Figure 1 is a flow chart for fabricating a laser white light emitting device for illumination or display of the present invention.
  • FIG. 2 is a schematic view of a transparent fluorescent ceramic of the laser white light emitting device for illumination or display of the present invention.
  • FIG. 3 is a schematic view showing the structure of a laser white light emitting device for illumination or display according to the present invention.
  • FIG. 4 is a schematic view showing the illuminating light shape of a white light source of a laser white light emitting device for illumination or display according to the present invention.
  • Figure 5 is a graph showing the spectral distribution of a laser white light emitting device for illumination or display of the present invention.
  • the white light device emits light.
  • FIG. 1 is a flow chart for preparing a laser white light emitting device for illumination or display, which is prepared according to the flow shown in FIG. 1:
  • the light-emitting surface of the transparent fluorescent ceramic 1 is coated with an anti-reflection film to obtain a light-transmitting film layer 2, and the light-incident surface is sequentially plated with the light-reflecting film layer 3 and the light-integrating total reflection film layer 4, and the non-light-emitting and light-incident surface plating is completed.
  • the reflective film obtains a total reflection film layer, that is, a heat sink substrate in combination with the total reflection film layer 5, as shown in FIG.
  • the semiconductor laser chip 7 having the lasing wavelength in the blue light is soldered on the heat sink substrate 6 with solder (solder paste or the like), and the coated transparent phosphor ceramic 1 is fixed on the heat sink substrate (by the aluminum nitride substrate.
  • the substrate or the copper substrate is made of other high thermal conductive materials, and the semiconductor laser chip 7 is packaged so that the light emitting surface of the transparent fluorescent ceramic is spherical, that is, the laser white light emitting device for illumination or display of the present invention is obtained.
  • Figure 3 shows.
  • the laser white light emitting device for illumination or display prepared by the present invention excites the transparent fluorescent ceramic to produce white light, as shown in FIG.
  • the white light obtained by using the laser white light emitting device of the present invention has the advantages of high energy efficiency, high luminous flux and high thermal stability as compared with the current mainstream white light emitting device.
  • the spectral distribution diagram of the laser white light-emitting device of the present invention is shown in Fig. 5. As can be seen from the figure, the white light obtained by the white light of the invention has good emission spectrum continuity and good color rendering property.
  • the white light produced by the laser white light emitting device of the present invention is characterized by high energy efficiency, high luminous flux and high thermal stability.
  • the laser white light emitting device for illumination or display uses a semiconductor laser with a lasing wavelength of blue light instead of the existing light emitting diode as an excitation light source for exciting the transparent fluorescent ceramic to emit white light, and the advantages thereof are mainly manifested in The following aspects:
  • the semiconductor laser chip is easier to achieve high power and high electro-optical conversion efficiency output, and the improvement of the performance of the core device directly leads to the improvement of the performance of the prepared white light source.
  • the invention combines the transparent fluorescent ceramic with the chip of the excitation light source, thereby avoiding the decrease of the luminous efficiency or the failure of the light source due to the heating of the phosphor and the silica gel; if the heat resistance of the transparent fluorescent ceramic is made according to the application requirements, the device works at The high current and high temperature environment avoids the drop in device output power and electro-optic conversion efficiency when operating at high temperatures or high injection currents.
  • the invention combines a transparent fluorescent ceramic with a chip of an excitation light source, and a transparent fluorescent ceramic
  • the heat resistance stability increases the power of the laser white light device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种用于照明或显示的激光白光发光装置。激发白光发光装置包括热沉基板(6)、半导体激光器芯片(7)和透明荧光陶瓷(1);半导体激光器芯片(7)激射蓝光;半导体激光器芯片(7)固定于热沉基板(6)上;半导体激光器芯片(7)由透明荧光陶瓷(1)进行封装。激光白光发光装置将透明荧光陶瓷与激发光源的芯片结合,避免了荧光粉和硅胶因器件发热而导致发光效率的下降或光源失效;若根据应用需要,透明荧光陶瓷的耐热性能使装置工作在高电流高温度环境,避免了在高温或高注入电流工作时器件输出功率和电光转换效率的下降。

Description

用于照明或显示的激光白光发光装置 技术领域
本发明涉及一种用于照明或显示的激光白光发光装置,属于照明和显示领域。
背景技术
照明起始于爱迪生发明的白炽灯,后来又陆续发明了低压钠灯、荧光灯、高压汞灯、金属卤化物灯、高压钠灯、三基色荧光灯、紧凑型荧光灯、高频无极灯和发光二极管LED等电光源。通常光源的评价标准有能效、光通量、显色指数、色温等参数,其中光源能效的高低反应了其节电能力,发光二极管LED白光光源具有高能效、长寿命等特点,被公认为是继白炽灯、日光灯之后的绿色照明光源。
目前在照明领域,多采用发光二极管LED做激发光源,激发相应的荧光粉获得白光光源。以发光二极管为基础的白光光源有四个主要方案:第一种方案是用蓝光发光二极管激发黄色荧光粉,荧光粉在蓝光的激发下发射黄光,再与透出的部分蓝光混合,由补色原理而呈现白光,该方案制备的白光显色指数比较低且白光参数随温度和工作电流变化比较大;第二种方案是由红绿蓝三基色发光二极管直接混合成白光,由于三个发光二极管的效率、光功率随注入电流、温度、时间等参数不同步变化,因此要求比较高的控制电路;第三种方案是由紫外或近紫外发光二极管激发红绿蓝三基色荧光粉,由于人视觉对紫外或近紫外光不敏感,这种白光的颜色只由荧光粉决定,因此该方案显色指数高且白光参数比较稳定,第四种方案是用蓝光激光器做光源激发黄色荧光粉,荧光粉在蓝光的激光器激发下发射黄光,再与透出的部分蓝光混合,由补色原理而呈现白光。
在以上这四种方案中,都是光源激发荧光粉产生白光,激发荧光粉发光的缺点有:1、荧光粉在高温下长时间工作衰减非常严重;2、不同颜色的荧光粉衰减不一致,使用一段时间后光源容易产生色漂移;3、荧光粉使用使都和硅胶混合使用,硅胶在长时间高温下黄变导致光效下降。因此不使用荧光粉发光是目前最大的技术难点之一。
发明内容
本发明的目的是提供一种用于照明或显示的激光白光发光装置,该激 光白光发光装置采用透明荧光陶瓷代替荧光粉发光,从而获得白光光源,具有高能效、高光通量和高热稳定性,因此能够避免高温时荧光粉衰减导致光源失效。
本发明提供的用于照明或显示的激光白光发光装置,包括热沉基板、半导体激光器芯片和透明荧光陶瓷;
所述半导体激光器芯片激射蓝光;
所述半导体激光器芯片固定于所述热沉基板上;
所述半导体激光器芯片由所述透明荧光陶瓷进行封装。
上述的激光白光发光装置中,所述半导体激光器芯片焊接于所述热沉基板上;
所述热沉基板由铝、铜、氮化铝或氧化铝制成。
上述的激光白光发光装置中,所述透明荧光陶瓷的出光面可为曲面,如球面。
上述的激光白光发光装置中,所述透明荧光陶瓷的出光面镀增透膜,以提高出光率,减少出光面的散射;
所述透明荧光陶瓷的入光面依次镀增透膜和反射膜,即在所述入光面上镀两层膜,所述增透膜的作用是增加激光器入光率,所述反射膜的作用是防止白光反射,提高白光出光率;
所述透明荧光陶瓷的非出光面和非入光面镀全反射膜,即所述透明荧光陶瓷与所述热沉基板的结合面镀所述全反射膜,以减少白光损失,提高白光出光率。
上述的激光白光发光装置中,所述透明荧光陶瓷的分子式为Y3Al5O12:xCe3+,其中,x为0~0.05之间的数,如0.03。
上述的激光白光发光装置中,所述透明荧光陶瓷按照包括如下步骤的方法制备:
陶瓷原料粉体和烧结助剂经烧结即得;
所述陶瓷原料粉体为Al2O3、Y2O3和CeO2
所述烧结助剂为MgO和SiO2中的至少一种。
上述的激光白光发光装置中,所述烧结包括依次进行的真空烧结和退火处理;
所述真空烧结的温度为1730~1800℃,保温时间为5~30小时,真空度为10-3~10-5Pa;
所述退火处理的条件为:在1200~1500℃的条件下保温5~40小时,然后随炉冷却。
所述烧结助剂的用量为所述陶瓷原料粉体的总质量的0~1%,如1%;
所述Al2O3、所述Y2O3与所述CeO2的摩尔比按照分子式为Y3Al5O12:xCe3+中元素Al、Y和Ce的化学计量比计算得到。
本发明激光白光发光装置可按照如下步骤进行制作:
将所述半导体激光器芯片焊接固定于热沉基板上,将烧结制备的透明荧光陶瓷进行镀膜处理,然后将镀膜后的透明荧光陶瓷对所述半导体激光器芯片进行封装,并固定于所述热沉基板上,即得到了所述激光白光发光装置。
所述半导体激光器芯片通过激发镀膜后的透明荧光陶瓷,即能使透明荧光陶瓷产生白光。
透明荧光陶瓷在制作用于照明或显示的激光白光发光装置中的应用也是本发明的保护范围。
附图说明
图1是制作本发明用于照明或显示的激光白光发光装置的流程图。
图2是本发明用于照明或显示的激光白光发光装置的透明荧光陶瓷示意图。
图3是本发明用于照明或显示的激光白光发光装置的结构示意图。
图4是本发明用于照明或显示的激光白光发光装置白光光源的发光光形示意图。
图5是本发明用于照明或显示的激光白光发光装置的光谱分布曲线图。
图中各标记如下:
1透明荧光陶瓷、2出光增透膜层、3入光增透膜层、4入光全反射膜层、5热沉基板结合全反射膜层、6热沉基板、7半导体激光器芯片、8激光白光装置发光方向。
实施发明的最佳方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
图1为制备用于照明或显示的激光白光发光装置的流程图,按照图1所示的流程进行制备:
制备透明荧光陶瓷:
准确称取Al2O3、Y2O3和CeO2并进行充分研磨,其中,摩尔比CeO2、Y2O3、Al2O3的摩尔比为18:291:5(其中x=0.03)。向研磨好的粉体中加入烧结助剂MgO,其质量用量为总原料粉体的1%,,然后在真空度为10- 4Pa的条件下进行真空烧结,烧结温度为1780℃,保温时间为20小时;最后在1400℃下保温25小时进行退火,随炉冷却即得到透明荧光陶瓷Y3Al5O12:xCe3+,x=0.03。
对透明荧光陶瓷进行镀膜处理:
将透明荧光陶瓷1的出光面镀增透膜,得到出光增透膜层2,入光面依次镀入光增透膜层3和入光全反射膜层4,非出光和入光面镀全反射膜得到全反射膜层,即热沉基板结合全反射膜层5,如图2所示。
将激射波长位于蓝光的半导体激光器芯片7用焊料(锡膏等)焊接在热沉基板6上,再将镀膜处理后的透明荧光陶瓷1固定于热沉基板(由氮化铝基板.氧化铝基板或铜基板等其他高导热材质制成)6上,并对半导体激光器芯片7实现封装,使透明荧光陶瓷的出光面为球面,即得到本发明用于照明或显示的激光白光发光装置,如图3所示。
本发明制备的用于照明或显示的激光白光发光装置,使用时,半导体激光器激发透明荧光陶瓷产生白光,如图4所示。
本发明激光白光发光装置的积分球测试结果如表1中所示。
表1激光白光发光装置积分球测试数据
Figure PCTCN2016094605-appb-000001
由表1中的数据可以看出,相对于目前行业主流白光发光装置来说,采用本发明的激光白光发光装置所得到的白光具有高能效、高光通量和高热稳定性的优点。
本发明激光白光发光装置的光谱分布图如图5所示,由该图可以看出,采用本发明的白光所得到的发射光谱连续性好、显色性好。
由上述分析可以看出,本发明激光白光发光装置产生的白光具有高能效、高光通量和高热稳定性的特点。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业应用
本发明提供的用于照明或显示的激光白光发光装置,利用激射波长位于蓝光的半导体激光器代替现有的发光二极管作为激发光源,用以激发透明荧光陶瓷使其发白光,其优点主要表现在如下方面:
1、半导体激光器芯片更容易实现高功率和高电光转换效率输出,而核心器件性能的提高将直接导致所制备的白光光源性能的提高。
2、本发明将透明荧光陶瓷与激发光源的芯片结合,避免了荧光粉和硅胶因器件发热而导致发光效率的下降或光源失效;若根据应用需要,透明荧光陶瓷的耐热性能使装置工作在高电流高温度环境,避免了在高温或高注入电流工作时器件输出功率和电光转换效率的下降。
3、本发明将透明荧光陶瓷与激发光源的芯片结合,透明荧光陶瓷的 耐热稳定性使激光白光装置的功率提高。
4、由于半导体激光器的光斑很容易整形,甚至可耦合进入光纤输出,所以可采用该方式制作出具有特殊用途的固态白光装置。

Claims (12)

  1. 一种用于照明或显示的激光白光发光装置,其特征在于:所述激发白光发光装置包括热沉基板、半导体激光器芯片和透明荧光陶瓷;
    所述半导体激光器芯片激射蓝光;
    所述半导体激光器芯片固定于所述热沉基板上;
    所述半导体激光器芯片由所述透明荧光陶瓷进行封装。
  2. 根据权利要求1所述的激光白光发光装置,其特征在于:所述半导体激光器芯片焊接于所述热沉基板上;
    所述热沉基板由铝、铜、氮化铝或氧化铝制成。
  3. 根据权利要求1或2所述的激光白光发光装置,其特征在于:所述透明荧光陶瓷的出光面为曲面。
  4. 根据权利要求1或2所述的激光白光发光装置,其特征在于:所述透明荧光陶瓷的出光面镀增透膜;
    所述透明荧光陶瓷的入光面依次镀增透膜和反射膜;
    所述透明荧光陶瓷的非出光面和非入光面镀全反射膜。
  5. 根据权利要求3所述的激光白光发光装置,其特征在于:所述透明荧光陶瓷的出光面镀增透膜;
    所述透明荧光陶瓷的入光面依次镀增透膜和反射膜;
    所述透明荧光陶瓷的非出光面和非入光面镀全反射膜。
  6. 根据权利要求1或2所述的激光白光发光装置,其特征在于:所述透明荧光陶瓷的分子式为Y3Al5O12:xCe3+,其中,x为0~0.5之间的数,但x不为零。
  7. 根据权利要求3所述的激光白光发光装置,其特征在于:所述透明荧光陶瓷的分子式为Y3Al5O12:xCe3+,其中,x为0~0.5之间的数,但x不为零。
  8. 根据权利要求4所述的激光白光发光装置,其特征在于:所述透明荧光陶瓷的分子式为Y3Al5O12:xCe3+,其中,x为0~0.5之间的数,但x不为零。
  9. 根据权利要求5所述的激光白光发光装置,其特征在于:所述透明荧光陶瓷的分子式为Y3Al5O12:xCe3+,其中,x为0~0.5之间的数,但x 不为零。
  10. 根据权利要求6-9中任一项所述的激光白光发光装置,其特征在于:所述透明荧光陶瓷按照包括如下步骤的方法制备:
    陶瓷原料粉体和烧结助剂经烧结即得;
    所述陶瓷原料粉体为Al2O3、Y2O3和CeO2
    所述烧结助剂为MgO和SiO2中的至少一种。
  11. 根据权利要求10所述的激光白光发光装置,其特征在于:所述烧结包括依次进行的真空烧结和退火处理;
    所述真空烧结的温度为1730~1800℃,保温时间为5~30小时,真空度为10-1~10-4Pa;
    所述退火处理的条件为:在1200~1500℃的条件下保温5~40小时,然后随炉冷却。
  12. 透明荧光陶瓷在制作用于照明或显示的激光白光发光装置中的应用;
    所述透明荧光陶瓷的分子式为Y3Al5O12:xCe3+,其中,x为0~0.05之间的数,但x不为零。
PCT/CN2016/094605 2016-05-18 2016-08-11 用于照明或显示的激光白光发光装置 WO2017197794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610329920.7 2016-05-18
CN201610329920.7A CN105826457B (zh) 2016-05-18 2016-05-18 用于照明或显示的激光白光发光装置

Publications (1)

Publication Number Publication Date
WO2017197794A1 true WO2017197794A1 (zh) 2017-11-23

Family

ID=56530913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094605 WO2017197794A1 (zh) 2016-05-18 2016-08-11 用于照明或显示的激光白光发光装置

Country Status (2)

Country Link
CN (1) CN105826457B (zh)
WO (1) WO2017197794A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289549A (zh) * 2019-06-20 2019-09-27 中国科学院半导体研究所 半导体激光器芯片、其封装方法及半导体激光器
CN112410033A (zh) * 2020-10-20 2021-02-26 青岛中科芯成照明技术有限公司 一种荧光材料、荧光薄膜材料及高散热荧光薄膜

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826457B (zh) * 2016-05-18 2018-01-09 中国人民大学 用于照明或显示的激光白光发光装置
CN107726056A (zh) * 2016-08-11 2018-02-23 广州市新晶瓷材料科技有限公司 高色域激光白光光源的制作方法
CN107726084A (zh) * 2016-08-11 2018-02-23 广州市新晶瓷材料科技有限公司 具有新型激光光源的手电筒
CN107726055A (zh) * 2016-08-11 2018-02-23 广州市新晶瓷材料科技有限公司 白光激光光源封装方法
CN107732648A (zh) * 2016-08-11 2018-02-23 广州市新晶瓷材料科技有限公司 基于氮化铝陶瓷的激光光源封装方法
CN108302360A (zh) * 2016-08-11 2018-07-20 广州市新晶瓷材料科技有限公司 具有新型激光光源的路灯
CN107869687A (zh) * 2016-09-22 2018-04-03 广州市新晶瓷材料科技有限公司 一种小角度的白光光源
CN107859881A (zh) * 2016-09-22 2018-03-30 广州市新晶瓷材料科技有限公司 一种直插式激光白光光源
CN107859883A (zh) * 2016-09-22 2018-03-30 广州市新晶瓷材料科技有限公司 一种激光白光光源装置
CN107919429A (zh) * 2016-10-10 2018-04-17 广州市新晶瓷材料科技有限公司 一种高显色指数激光白光装置及其实现方法
CN107940251A (zh) * 2016-10-13 2018-04-20 广州达森灯光股份有限公司 基于单晶转换激光光源的摇头灯
CN108374990A (zh) * 2016-10-13 2018-08-07 广州达森灯光股份有限公司 受激光转化锥面介质光源的摇头灯
CN107940267A (zh) * 2016-10-13 2018-04-20 广州达森灯光股份有限公司 基于陶瓷转换激光光源的摇头灯
CN108374991A (zh) * 2016-10-13 2018-08-07 广州达森灯光股份有限公司 基于玻璃转换激光光源的摇头灯
CN108374989A (zh) * 2016-10-13 2018-08-07 广州达森灯光股份有限公司 受激光转化平面介质光源的摇头灯
CN108666405A (zh) * 2017-03-27 2018-10-16 广州市新晶瓷材料科技有限公司 一种激光白光装置及其实现方法
CN110017434A (zh) * 2018-01-10 2019-07-16 深圳光峰科技股份有限公司 波长转换装置及其光源
CN108180403A (zh) * 2018-02-12 2018-06-19 中国人民大学 一种液冷激光发光装置及其制作方法
CN108364941A (zh) * 2018-04-18 2018-08-03 广州东有电子科技有限公司 基于cob封装结构的双面发光led光源结构
CN110165545A (zh) * 2019-05-06 2019-08-23 江苏稳润光电科技有限公司 一种高功率激光器件及其制作方法
CN113025306B (zh) * 2019-12-09 2023-07-21 上海航空电器有限公司 自带复合抛物面集光能力的荧光体及其制备方法
CN112599509A (zh) * 2020-11-09 2021-04-02 新沂市锡沂高新材料产业技术研究院有限公司 一种高亮度、色温可调的固态照明光源
CN113175629A (zh) * 2021-04-26 2021-07-27 中国科学院半导体研究所 基于钙钛矿量子点荧光粉的激光照明系统
CN114464608B (zh) * 2022-02-16 2022-11-15 深圳市旋彩电子有限公司 一种摄影灯cob双色光源及其封装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370906A (zh) * 2006-01-16 2009-02-18 飞利浦拉米尔德斯照明设备有限责任公司 磷光体转换的发光器件
CN102136541A (zh) * 2010-01-22 2011-07-27 中国科学院上海硅酸盐研究所 一种透明陶瓷白光led器件
CN104505456A (zh) * 2014-12-16 2015-04-08 福建中科芯源光电科技有限公司 一种散热良好的大功率白光led及其制造方法
CN204497262U (zh) * 2014-12-16 2015-07-22 福建中科芯源光电科技有限公司 一种散热良好的大功率白光led
CN105826457A (zh) * 2016-05-18 2016-08-03 中国人民大学 用于照明或显示的激光白光发光装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697367B (zh) * 2009-09-30 2014-04-02 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
JP2014179469A (ja) * 2013-03-14 2014-09-25 Toshiba Corp 半導体発光素子、発光装置及び半導体発光素子の製造方法
JP2015216354A (ja) * 2014-04-23 2015-12-03 日東電工株式会社 波長変換部材およびその製造方法
CN105098037A (zh) * 2015-08-10 2015-11-25 南京邮电大学 一种通信、照明复用led灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370906A (zh) * 2006-01-16 2009-02-18 飞利浦拉米尔德斯照明设备有限责任公司 磷光体转换的发光器件
CN102136541A (zh) * 2010-01-22 2011-07-27 中国科学院上海硅酸盐研究所 一种透明陶瓷白光led器件
CN104505456A (zh) * 2014-12-16 2015-04-08 福建中科芯源光电科技有限公司 一种散热良好的大功率白光led及其制造方法
CN204497262U (zh) * 2014-12-16 2015-07-22 福建中科芯源光电科技有限公司 一种散热良好的大功率白光led
CN105826457A (zh) * 2016-05-18 2016-08-03 中国人民大学 用于照明或显示的激光白光发光装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289549A (zh) * 2019-06-20 2019-09-27 中国科学院半导体研究所 半导体激光器芯片、其封装方法及半导体激光器
CN110289549B (zh) * 2019-06-20 2023-09-05 中国科学院半导体研究所 半导体激光器芯片、其封装方法及半导体激光器
CN112410033A (zh) * 2020-10-20 2021-02-26 青岛中科芯成照明技术有限公司 一种荧光材料、荧光薄膜材料及高散热荧光薄膜
CN112410033B (zh) * 2020-10-20 2023-06-30 青岛中科芯成照明技术有限公司 一种荧光材料、荧光薄膜材料及高散热荧光薄膜

Also Published As

Publication number Publication date
CN105826457B (zh) 2018-01-09
CN105826457A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2017197794A1 (zh) 用于照明或显示的激光白光发光装置
Tanabe et al. YAG glass-ceramic phosphor for white LED (II): luminescence characteristics
Fujita et al. YAG glass-ceramic phosphor for white LED (I): background and development
TWI261937B (en) Light-emitting apparatus and illuminating apparatus
CN103803797B (zh) 一种led用发光玻璃及其制备方法
US9772072B2 (en) Illumination apparatus
US8044410B2 (en) White light-emitting diode and its light conversion layer
CN112470296A (zh) 全频谱白光发光装置
CN103395997B (zh) 一种白光led用稀土掺杂透明玻璃陶瓷及其制备方法
TWI657064B (zh) 螢光玻璃陶瓷材料、其製造方法及包括其的發光裝置
CN109798457A (zh) 一种透射式蓝光激光照明组件
Xu et al. Enhanced luminescent performance for remote LEDs of Ce: YAG phosphor-in-glass film on regular textured glass substrate by using chemical wet-etching
TWI390768B (zh) Warm white light emitting diodes and their fluorescent powder
KR101496718B1 (ko) 형광체 및 발광소자
CN103078048B (zh) 白光发光装置
CN201237164Y (zh) 一种白光led
CN101935165A (zh) 无机硅酸盐发光玻璃及其制备方法
WO2013159664A1 (zh) 一种白光led发光装置及制备方法
CN108793733A (zh) 一种高熔点led用荧光玻璃及放电等离子体烧结制备方法
Ma et al. Efficient thermal and luminescent regulations of LuAG: Ce-PiG based remote LED/LD
CN103489857A (zh) 一种白光led发光装置
CN208538902U (zh) Led封装体及高透光率led灯
CN205692859U (zh) 一种用于照明或显示的激光白光发光装置
CN210485320U (zh) 一种高显色指数高稳定性的白光ld
Liang et al. Study on phosphor schemes in full spectrum WLED

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902174

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902174

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902174

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30-10-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 16902174

Country of ref document: EP

Kind code of ref document: A1