WO2017195320A1 - 撮像光学系 - Google Patents

撮像光学系 Download PDF

Info

Publication number
WO2017195320A1
WO2017195320A1 PCT/JP2016/064127 JP2016064127W WO2017195320A1 WO 2017195320 A1 WO2017195320 A1 WO 2017195320A1 JP 2016064127 W JP2016064127 W JP 2016064127W WO 2017195320 A1 WO2017195320 A1 WO 2017195320A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
imaging optical
refractive power
object side
Prior art date
Application number
PCT/JP2016/064127
Other languages
English (en)
French (fr)
Inventor
健太 石井
大介 関
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to EP16901668.0A priority Critical patent/EP3457190B1/en
Priority to JP2016551870A priority patent/JP6118963B1/ja
Priority to CN201680085506.4A priority patent/CN109154713B/zh
Priority to PCT/JP2016/064127 priority patent/WO2017195320A1/ja
Publication of WO2017195320A1 publication Critical patent/WO2017195320A1/ja
Priority to US16/164,038 priority patent/US10831001B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Definitions

  • the present invention relates to an imaging optical system, and more particularly to an endoscope imaging optical system.
  • Endoscopes used in the medical field include insertion-type endoscopes and capsule-type endoscopes.
  • an imaging optical system at a distal end portion that is, an imaging element at a position away from the objective lens is connected by a fiber or a relay lens.
  • Such an imaging optical system of a normal insertion endoscope is required to have telecentricity in order to reduce a light amount loss.
  • an insertion type endoscope includes an electronic endoscope that has an imaging optical system and an imaging element at a distal end portion and displays an image on a display device at a distant position.
  • the capsule endoscope includes an imaging optical system and an imaging element in a capsule.
  • any type of endoscope is required to be small, wide-angle, and high-resolution. In order to achieve high resolution, it is necessary to reduce the aberration of the imaging optical system.
  • the conventional imaging optical system for endoscopes has the following problems.
  • Patent Document 1 discloses an endoscope objective lens having a configuration in which a lens having a negative refractive power, a diaphragm, a lens having a positive refractive power, and a lens having a positive refractive power are arranged from the object side to the image side. Disclosure. The aberration is sufficiently corrected by two lenses having positive refractive power between the stop and the image plane. On the other hand, there is a stop between the first lens and the second lens, and the distance between the principal points of the first lens and the second lens cannot be shortened. Therefore, a sufficient angle of view cannot be obtained.
  • Patent Document 2 discloses an endoscope objective lens having a configuration in which a lens having a negative refractive power, a lens having a positive refractive power, a diaphragm, and a lens having a positive refractive power are arranged from the object side to the image side. Disclosure. The distance between principal points of the first lens and the second lens is wide, and the angle of view is not sufficient. In addition, sapphire is used as a lens material to make a small and wide-angle imaging lens unit, which is expensive.
  • Patent Document 3 discloses an endoscope objective lens having a configuration in which a lens having a negative refractive power, a lens having a positive refractive power, a diaphragm, and a lens having a positive refractive power are arranged from the object side to the image side. Disclosure. Although the angle of view is relatively large, it emphasizes telecentricity and cannot fully correct aberrations.
  • An object of the present invention is to provide an imaging optical system for realizing an endoscope that is sufficiently small, sufficiently wide-angle, and sufficiently high in resolution.
  • An imaging optical system includes a first lens having a negative refractive power, a second lens having a positive refractive power, a diaphragm, and a first lens having a positive refractive power, which are disposed from the object side to the image side.
  • the distance between the image side principal point of the first lens and the object side principal point of the second lens is
  • the combined refractive power ⁇ 12 of a lens having a refractive power of ⁇ 1 and a lens having a refractive power of ⁇ 2 can be expressed by the following equation in paraxial theory.
  • the refractive power of the first lens is negative and the refractive power of the second lens is positive, the product ⁇ 1 ⁇ 2 of the refractive power of the first lens and the refractive power of the second lens is negative. Therefore, if d is negative, ⁇ 1 ⁇ 2 d is negative, and the combined refractive power ⁇ 12 tends to be negative. Therefore, to have a refractive power phi 12 strong negative refractive power of the synthesis, it is advantageous to satisfy the formula (1).
  • an endoscope that is sufficiently small, sufficiently wide-angle, and sufficiently high in resolution can be realized.
  • the imaging optical system according to the first embodiment of the present invention includes: 0.1 ⁇ d / f12 ⁇ 6 (2) ' Meet.
  • the imaging optical system of the second embodiment of the present invention is 0.12 ⁇ d / f12 ⁇ 0.15 (2) ” Meet.
  • the imaging optical system can be further reduced in size, and higher resolution can be obtained in the imaging optical system.
  • the imaging optical system according to the third embodiment of the present invention has the light on the image-side surface of the third lens, with the coincident principal axes of the first lens, the second lens, and the third lens as optical axes.
  • the distance from the point on the axis to the image plane is t3, and the distance from the point on the optical axis of the object side surface of the first lens to the point on the optical axis of the image side surface of the third lens is t t3 / t> 0.5 Meet.
  • the imaging optical system is small, a sufficiently large sensor size can be ensured, and a sufficient interval can be provided between the sensor and the lens. It is advantageous for assembly.
  • the light on the object-side surface of the second lens has the coincident principal axes of the first lens, the second lens, and the third lens as optical axes.
  • the point on the axis is closer to the object side than the point through which the outermost ray of the light beam corresponding to the field angle of the image side surface of the first lens passes.
  • the configuration of the present embodiment it is possible to reduce the total length of the lens and to reduce the occurrence of aberration on the image side surface of the first lens having negative refractive power.
  • the Abbe number of the substance constituting the first lens is v1
  • the Abbe number of the substance constituting the second lens is v2
  • the substance constituting the third lens is v1> v2 v3> v2 Meet.
  • the chromatic aberration is corrected well.
  • the image height of the light beam corresponding to the angle of view is y
  • the effective diameter of the first lens is D. 0.75 ⁇ 2 ⁇ y / D ⁇ 1.25 Meet.
  • the ratio of the effective diameter of the first lens to the size of the sensor is in an appropriate range, thereby reducing the size of the imaging optical system and sufficiently correcting the aberration of the imaging optical system. High resolution can be realized.
  • the imaging optical system according to the seventh embodiment of the present invention is used for an endoscope.
  • FIG. 1 is a diagram illustrating a configuration of an imaging optical system according to Example 1.
  • FIG. FIG. 4 is a diagram illustrating chromatic aberration of magnification of the imaging optical system of Example 1.
  • FIG. 3 is a diagram illustrating curvature of field of the image pickup optical system according to the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration of an imaging optical system according to a second embodiment.
  • FIG. 6 is a diagram illustrating chromatic aberration of magnification of the imaging optical system of Example 2.
  • FIG. 6 is a diagram illustrating curvature of field of the imaging optical system of Example 2.
  • FIG. 6 is a diagram illustrating a configuration of an imaging optical system of Example 3.
  • FIG. 6 is a diagram showing lateral chromatic aberration of the imaging optical system of Example 3.
  • FIG. 6 is a diagram illustrating curvature of field of the image pickup optical system according to the third embodiment.
  • FIG. 6 is a diagram illustrating a configuration of an imaging optical system according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating lateral chromatic aberration of the imaging optical system of Example 4.
  • FIG. 10 is a diagram illustrating field curvature of the imaging optical system according to the fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to a fifth embodiment.
  • FIG. 10 is a diagram illustrating chromatic aberration of magnification of the imaging optical system of Example 5.
  • FIG. 10 is a diagram illustrating curvature of field of the imaging optical system of Example 5.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to a sixth embodiment.
  • FIG. 10 is a diagram illustrating lateral chromatic aberration of the imaging optical system of Example 6.
  • FIG. 10 is a diagram illustrating field curvature of an imaging optical system according to Example 6.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to a seventh embodiment.
  • FIG. 10 is a diagram showing lateral chromatic aberration of the imaging optical system of Example 7.
  • FIG. 10 is a diagram illustrating field curvature of the imaging optical system according to the seventh embodiment.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to an eighth embodiment.
  • FIG. 10 is a diagram illustrating chromatic aberration of magnification of the imaging optical system of Example 8.
  • FIG. 10 is a diagram illustrating field curvature of the imaging optical system according to the eighth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 9.
  • FIG. 10 is a diagram illustrating lateral chromatic aberration of the imaging optical system of Example 9.
  • FIG. 10 is a diagram illustrating curvature of field of an imaging optical system according to Example 9.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 10.
  • FIG. 10 is a diagram illustrating chromatic aberration of magnification of the imaging optical system according to Example 10.
  • FIG. 10 is a diagram illustrating curvature of field of the image pickup optical system according to the tenth embodiment.
  • FIG. 1 is a diagram showing a configuration of an imaging optical system according to an embodiment of the present invention (Example 1 described later).
  • the imaging optical system includes a first lens 101 having a negative refractive power, a second lens 102 having a positive refractive power, a stop 104, and a first lens having a positive refractive power, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 105 and is then condensed on the image plane 106.
  • the optical member 105 is a cover glass of a sensor.
  • a lens having negative refractive power means a lens having negative refractive power with respect to a paraxial ray
  • a lens having positive refractive power means a paraxial ray.
  • a first feature of the imaging optical system is that a first lens having a negative refractive power, a second lens having a positive refractive power, and a stop disposed from the object side to the image side. And a third lens having a positive refractive power.
  • the diaphragm is disposed between the second lens and the third lens.
  • the second feature of the imaging optical system of the embodiment of the present invention is: d ⁇ 0 (1) 0.005 ⁇ d / f12 ⁇ 16 (2) Is to satisfy.
  • d represents a signed distance between the image-side principal point of the first lens and the object-side principal point of the second lens
  • the absolute value of d is the first lens-side principal point and the first lens-side principal point.
  • the distance between the object side principal point of the two lenses and the sign d is positive when the image side principal point of the first lens is closer to the object side than the object side principal point of the second lens. Is negative when the image side principal point is located on the image side with respect to the object side principal point of the second lens.
  • F12 represents the combined focal length of the first lens and the second lens.
  • a wide-angle lens structure is often of a retrofocus type in which a lens having a negative refractive power is disposed on the object side and a lens having a positive refractive power is disposed on the image side.
  • a lens having a strong negative refractive power on the object side is advantageous for widening the viewing angle.
  • the imaging optical system can be further reduced in size, and higher resolution can be obtained in the imaging optical system. 0.12 ⁇ d / f12 ⁇ 0.15 (2) ”
  • the combined refractive power ⁇ 12 of a lens having a refractive power of ⁇ 1 and a lens having a refractive power of ⁇ 2 can be expressed by the following equation in paraxial theory.
  • the refractive power of the first lens is negative and the refractive power of the second lens is positive
  • the product ⁇ 1 ⁇ 2 of the refractive power of the first lens and the refractive power of the second lens is negative. It is. Therefore, if d is negative, ⁇ 1 ⁇ 2 d is negative, and the combined refractive power ⁇ 12 tends to be negative. Therefore, to have a refractive power phi 12 strong negative refractive power of the synthesis, it is advantageous to satisfy the formula (1).
  • the third feature of the imaging optical system according to the embodiment of the present invention is: t3 / t> 0.5 (3) Is to satisfy.
  • t3 represents the distance from the point on the optical axis of the image side surface of the third lens to the image plane, with the coincident principal axes of the first lens, the second lens, and the third lens as the optical axis
  • t3 Represents the distance from the point on the optical axis of the object side surface of the first lens to the point on the optical axis of the image side surface of the third lens.
  • the wide-angle lens has a short focal length, and therefore the distance between the lens closest to the image side and the image plane becomes short. Since the imaging optical system of the embodiment of the present invention has a strong negative refractive power on the object side as described as the first feature, the distance from the lens surface closest to the image side to the image surface is relatively long. become longer. In particular, when the condition of the expression (3) is satisfied, a sufficiently large sensor size can be ensured despite the small size of the imaging optical system, and a sufficient space is provided between the sensor and the lens. This is advantageous for assembly.
  • a fourth feature of the imaging optical system according to the embodiment of the present invention is that the principal axes of the first lens, the second lens, and the third lens coincide with each other on the optical axis of the object side surface of the second lens. The point is that it is closer to the object side than the point through which the outermost ray of the light beam corresponding to the field angle of the image side surface of the first lens passes.
  • the configuration of the fourth feature is a configuration in which the vertex of the convex surface on the object side of the second lens is arranged in the concave portion formed by the concave surface on the image side of the first lens. In such a configuration, the total lens length is reduced, and the occurrence of aberrations on the image side surface of the first lens having negative refractive power can be reduced.
  • the fifth feature of the imaging optical system according to the embodiment of the present invention is: v1> v2 (4) v3> v2 (5) Is to satisfy.
  • v1 represents the Abbe number of the substance constituting the first lens
  • v2 represents the Abbe number of the substance constituting the second lens
  • v3 represents the Abbe number of the substance constituting the third lens.
  • Chromatic aberration is best when the second lens has the lowest Abbe number when the first lens has a negative refractive power, the second lens has a positive refractive power, and the third lens has a positive refractive power. It is corrected.
  • the sixth feature of the imaging optical system according to the embodiment of the present invention is: 0.75 ⁇ 2 ⁇ y / D ⁇ 1.25 (6) Is to satisfy.
  • y represents the image height of the light beam corresponding to the angle of view
  • D represents the effective diameter of the first lens
  • the ratio between 2 ⁇ y and D corresponding to the size of the sensor satisfies the relationship of Expression (6).
  • the ratio of 2 ⁇ y and D is equal to or lower than the lower limit value of the equation (6), the system is not sufficiently downsized.
  • the ratio of 2 ⁇ y to D is equal to or greater than the upper limit value of Expression (6), the lens diameter is too small with respect to the sensor size, and aberration correction cannot be performed sufficiently.
  • the material of the first lens is a cycloolefin polymer (grade: E48R) except for Example 5.
  • the material of the first lens of Example 5 is a cycloolefin polymer (grade: 330R).
  • the material of the second lens is polycarbonate (grade: SP1516).
  • the material of the third lens is a cycloolefin polymer (grade: E48R).
  • the material of the flat plate (assuming the cover glass of the sensor) arranged on the object side of the sensor is N-BK7.
  • each surface of each lens and optical member can be expressed by the following formula.
  • a line connecting the centers of curvature of the two surfaces of the first lens, the second lens, and the third lens is taken as the z-axis.
  • z is a coordinate indicating the position in the z-axis direction of a point on the lens surface with the image side being positive with respect to the intersection of each lens surface and the z-axis.
  • r represents the distance from the z-axis to a point on the lens surface.
  • R is a signed radius of curvature at the apex of the lens surface, that is, a signed central radius of curvature.
  • the absolute value of R is the radius of curvature at the apex of the lens surface, that is, the central radius of curvature.
  • the sign is positive when the lens surface is convex on the object side, and negative when the lens surface is convex on the image side. is there.
  • k is a conic constant.
  • Ai is an
  • the principal axes of the first lens, the second lens, and the third lens coincide with each other as an optical axis.
  • the aberration of the imaging optical system of each example is shown for F-line (wavelength 486.1 nm), d-line (wavelength 587.56 nm), and C-line (wavelength 656.27 nm).
  • FIG. 1 is a diagram illustrating a configuration of an imaging optical system according to the first embodiment.
  • the imaging optical system of Example 1 includes a first lens 101 having a negative refractive power, a second lens 102 having a positive refractive power, a stop 104, and a positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 105 and is then condensed on the image plane 106.
  • the optical member 105 is a cover glass of a sensor.
  • FIG. 1 shows the path of a light beam in which the principal ray is incident in parallel to the optical axis from the object plane at a distance of 15 mm from the first lens and the distance on the optical axis from the first lens.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 1 is a table showing the shapes of the optical elements including the first lens, the second lens, and the third lens, the properties of the materials, and the intervals between the optical elements.
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 101, the image side surface of the first lens 101, the object side surface of the second lens 102, and the image side surface of the second lens 102, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 103, the image side surface of the third lens 103, the object side surface of the flat plate 105, and the image side surface of the flat plate 105, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 101.
  • the radius of curvature represents the signed center radius of curvature of the object side of the first lens 101 (R in equation (7)), the spacing represents the thickness of the first lens 101, and the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature of the image side surface of the first lens 101 (R in equation (7)), and the interval is the object side surface of the first lens 101 and the object of the second lens 102.
  • the distance between the first lens 101 and the side surface is represented by k. The same applies to the following lines.
  • Table 2 is a table showing the aspherical coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 2 is a diagram showing chromatic aberration of magnification of the imaging optical system of Example 1.
  • FIG. The horizontal axis of FIG. 2 represents the lateral chromatic aberration of the F line and the C line with respect to the d line.
  • the vertical axis in FIG. 2 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 3 is a diagram illustrating curvature of field of the imaging optical system according to the first embodiment.
  • the horizontal axis in FIG. 3 represents the positions of the F-line, d-line, and C-line tangential image plane and sagittal image plane in the optical axis direction.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 3 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 4 is a diagram illustrating a configuration of the imaging optical system according to the second embodiment.
  • the imaging optical system of Example 2 includes a first lens 201 having a negative refractive power, a second lens 202 having a positive refractive power, a diaphragm 204, and a positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 205 and is then condensed on the image plane 206.
  • the optical member 205 is a cover glass of a sensor.
  • FIG. 4 shows the path of a light beam in which the principal ray is incident in parallel to the optical axis from the object plane at a distance of 15 mm from the first lens and the distance on the optical axis from the first lens.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 3 is a table showing the shape of the optical element including the first lens, the second lens, and the third lens, the property of the material, and the distance between the optical elements.
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 201, the image side surface of the first lens 201, the object side surface of the second lens 202, and the image side surface of the second lens 202, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 203, the image side surface of the third lens 203, the object side surface of the flat plate 205, and the image side surface of the flat plate 205, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 201.
  • the radius of curvature represents the signed center radius of curvature of the object side surface of the first lens 201 (R in equation (7)), the spacing represents the thickness of the first lens 201, and the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature (R in Expression (7)) of the image side surface of the first lens 201
  • the interval is the object side surface of the first lens 201 and the object of the second lens 202.
  • the distance between the first lens 201 and the side surface is represented by k. The same applies to the following lines.
  • Tables 4A and 4B are tables showing the aspheric coefficients of the expression (7) for the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 5 is a diagram showing chromatic aberration of magnification of the imaging optical system of Example 2.
  • the horizontal axis of FIG. 5 represents the lateral chromatic aberration of the F line and the C line with respect to the d line.
  • the vertical axis in FIG. 5 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 6 is a diagram illustrating curvature of field of the imaging optical system of Example 2.
  • the horizontal axis in FIG. 6 represents the positions of the F-line, d-line, and C-line tangential image plane and sagittal image plane in the optical axis direction.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 6 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 7 is a diagram illustrating a configuration of the imaging optical system according to the third embodiment.
  • the imaging optical system according to the third exemplary embodiment includes a first lens 301 having a negative refractive power, a second lens 302 having a positive refractive power, a diaphragm 304, and a positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 305 and is then condensed on the image plane 306.
  • the optical member 305 is a cover glass of a sensor.
  • FIG. 7 shows the path of a light beam in which the principal ray is incident in parallel to the optical axis from the object plane at a distance of 15 mm from the first lens and the distance on the optical axis from the first lens.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 5 is a table showing the shape of the optical element including the first lens, the second lens, and the third lens, the property of the material, and the distance between the optical elements.
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 301, the image side surface of the first lens 301, the object side surface of the second lens 302, and the image side surface of the second lens 302, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 303, the image side surface of the third lens 303, the object side surface of the flat plate 305, and the image side surface of the flat plate 305, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 301.
  • the radius of curvature represents the signed center radius of curvature of the object side surface of the first lens 301 (R in equation (7)), the spacing represents the thickness of the first lens 301, and the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature (R in equation (7)) of the image side surface of the first lens 301
  • the interval is the object side surface of the first lens 301 and the object of the second lens 302.
  • the distance between the first lens 301 and the side surface is represented by k. The same applies to the following lines.
  • Table 6 is a table showing the aspherical coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 8 is a diagram showing the chromatic aberration of magnification of the imaging optical system of Example 3.
  • the horizontal axis of FIG. 8 represents the lateral chromatic aberration of the F line and the C line with respect to the d line.
  • the vertical axis in FIG. 8 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 9 is a diagram illustrating the curvature of field of the imaging optical system according to the third embodiment.
  • the horizontal axis in FIG. 9 represents the positions of the F-line, d-line, and C-line tangential image plane and sagittal image plane in the optical axis direction.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 9 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 10 is a diagram illustrating a configuration of the imaging optical system according to the fourth embodiment.
  • the imaging optical system according to the fourth embodiment includes a first lens 401 having a negative refractive power, a second lens 402 having a positive refractive power, a diaphragm 404, and a positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 405 and is then condensed on the image plane 406.
  • the optical member 405 is a sensor cover glass or the like.
  • FIG. 10 shows the path of the light flux in which the principal ray is incident in parallel to the optical axis from the object plane at a distance of 15 mm from the first lens and the distance on the optical axis from the first lens.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 7 is a table showing the shape of the optical element including the first lens, the second lens, and the third lens, the property of the material, and the distance between the optical elements.
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 401, the image side surface of the first lens 401, the object side surface of the second lens 402, and the image side surface of the second lens 402, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 403, the image side surface of the third lens 403, the object side surface of the flat plate 405, and the image side surface of the flat plate 405, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 401.
  • the radius of curvature represents the signed center radius of curvature of the object side surface of the first lens 401 (R in equation (7)), the spacing represents the thickness of the first lens 401, and the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature of the image side surface of the first lens 401 (R in Expression (7)), and the interval is the object side surface of the first lens 401 and the object of the second lens 402.
  • the distance between the first lens 401 and the side surface is represented by k. The same applies to the following lines.
  • Table 8 is a table showing the aspherical coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 11 is a diagram showing the chromatic aberration of magnification of the imaging optical system of Example 4.
  • the horizontal axis in FIG. 11 represents the lateral chromatic aberration of the F line and C line with respect to the d line.
  • the vertical axis in FIG. 11 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 12 is a diagram showing field curvature of the imaging optical system of Example 4.
  • the horizontal axis in FIG. 12 represents the positions of the F-line, d-line, and C-line tangential image plane and sagittal image plane in the optical axis direction.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 12 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 13 is a diagram illustrating a configuration of the imaging optical system according to the fifth embodiment.
  • the imaging optical system of Example 5 includes a first lens 501 having a negative refractive power, a second lens 502 having a positive refractive power, a stop 504, and a positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 505 and is then condensed on the image plane 506.
  • the optical member 505 is a cover glass of a sensor.
  • FIG. 13 shows the path of the light beam in which the principal ray is incident in parallel to the optical axis from the object plane at a distance of 15 mm from the first lens and the distance on the optical axis from the first lens.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 9 is a table
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 501, the image side surface of the first lens 501, the object side surface of the second lens 502, and the image side surface of the second lens 502, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 503, the image side surface of the third lens 503, the object side surface of the flat plate 505, and the image side surface of the flat plate 505, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 501.
  • the radius of curvature represents the signed central radius of curvature (R in equation (7)) of the object side surface of the first lens 501
  • the spacing represents the thickness of the first lens 501
  • the refractive index is the first.
  • the refractive index of the material of one lens 501 is represented, the Abbe number represents the Abbe number of the material of the first lens 501, and k represents the conic constant of the equation (7) on the object side surface of the first lens 501.
  • the radius of curvature represents a signed central radius of curvature (R in equation (7)) of the image side surface of the first lens 501, and the interval is the object of the second lens 502 and the image side surface of the first lens 501.
  • the distance between the first lens 501 and the side surface is represented by k. The same applies to the following lines.
  • Table 10 is a table showing the aspheric coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 14 is a diagram showing chromatic aberration of magnification of the imaging optical system of Example 5.
  • the horizontal axis of FIG. 14 represents the lateral chromatic aberration of the F line and the C line with respect to the d line.
  • the vertical axis in FIG. 14 represents the angle of the light beam incident on the imaging optical system with respect to the optical axis of the principal ray. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 15 is a diagram illustrating curvature of field of the imaging optical system of Example 5.
  • the horizontal axis in FIG. 15 represents the positions of the F-line, d-line, and C-line tangential image plane and sagittal image plane in the optical axis direction.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 15 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 16 is a diagram illustrating a configuration of the imaging optical system according to the sixth embodiment.
  • the imaging optical system of Example 6 includes a first lens 601 having a negative refractive power, a second lens 602 having a positive refractive power, a diaphragm 604, and a positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 605 and is then condensed on the image plane 606.
  • the optical member 605 is a cover glass of a sensor.
  • FIG. 16 shows the path of the light beam in which the principal ray is incident in parallel to the optical axis from the object plane at a distance of 15 mm from the first lens and the distance on the optical axis from the first lens.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 11 is a table showing the shape of the optical element including the first lens, the second lens, and the third lens, the property of the material, and the distance between the optical elements.
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 601, the image side surface of the first lens 601, the object side surface of the second lens 602, and the image side surface of the second lens 602, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 603, the image side surface of the third lens 603, the object side surface of the flat plate 605, and the image side surface of the flat plate 605, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 601.
  • the radius of curvature represents the signed central radius of curvature of the object side surface of the first lens 601 (R in equation (7))
  • the spacing represents the thickness of the first lens 601
  • the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature of the image side surface of the first lens 601 (R in the equation (7)), and the interval is the image side surface of the first lens 601 and the object of the second lens 602.
  • the distance between the first lens 601 and the side surface is represented by k. The same applies to the following lines.
  • Table 12 is a table showing the aspherical coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 17 is a diagram showing lateral chromatic aberration of the imaging optical system of Example 6.
  • the horizontal axis in FIG. 17 represents the lateral chromatic aberration of the F line and the C line with respect to the d line.
  • the vertical axis in FIG. 17 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 18 is a diagram showing field curvature of the imaging optical system of Example 6.
  • the horizontal axis in FIG. 18 represents the positions in the optical axis direction of the tangential and sagittal image planes of the F line, d line, and C line.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 18 represents the angle of the light beam incident on the imaging optical system with respect to the optical axis of the principal ray. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 19 is a diagram illustrating a configuration of the imaging optical system according to the seventh embodiment.
  • the imaging optical system according to the seventh embodiment includes a first lens 701 having negative refractive power, a second lens 702 having positive refractive power, a diaphragm 704, and positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 705 and is then condensed on the image plane 706.
  • the optical member 705 is a cover glass of the sensor.
  • FIG. 19 shows the path of the light beam in which the principal ray is incident in parallel to the optical axis from the object surface at a distance of 15 mm on the optical axis from the first lens, and the distance on the optical axis from the first lens.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 13 is a table showing the shape of the optical element including the first lens, the second lens, and the third lens, the property of the material, and the distance between the optical elements.
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 701, the image side surface of the first lens 701, the object side surface of the second lens 702, and the image side surface of the second lens 702, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 703, the image side surface of the third lens 703, the object side surface of the flat plate 705, and the image side surface of the flat plate 705, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 701.
  • the radius of curvature represents the signed central radius of curvature of the object side surface of the first lens 701 (R in equation (7))
  • the spacing represents the thickness of the first lens 701
  • the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature (R in Expression (7)) of the image side surface of the first lens 701
  • the interval is the object side surface of the first lens 701 and the object of the second lens 702.
  • the distance between the first lens 701 and the side surface is represented by k. The same applies to the following lines.
  • Table 14 is a table showing the aspherical coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 20 is a diagram showing lateral chromatic aberration of the imaging optical system of Example 7.
  • the horizontal axis of FIG. 20 represents the lateral chromatic aberration of the F line and the C line with respect to the d line.
  • the vertical axis in FIG. 20 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 21 is a diagram illustrating the curvature of field of the imaging optical system according to the seventh embodiment.
  • the horizontal axis in FIG. 21 represents the positions of the F-line, d-line, and C-line tangential image plane and sagittal image plane in the optical axis direction.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 21 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 22 is a diagram illustrating a configuration of the imaging optical system according to the eighth embodiment.
  • the imaging optical system according to the eighth embodiment includes a first lens 801 having a negative refractive power, a second lens 802 having a positive refractive power, a stop 804, and a positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 805 and is then condensed on the image plane 806.
  • the optical member 805 is a sensor cover glass or the like.
  • FIG. 22 shows the path of the light beam in which the principal ray is incident in parallel to the optical axis from the object surface at a distance of 15 mm on the optical axis from the first lens, and the distance on the optical axis from the first lens.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 15 is a table showing the shape of the optical element including the first lens, the second lens, and the third lens, the property of the material, and the distance between the optical elements.
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 801, the image side surface of the first lens 801, the object side surface of the second lens 802, and the image side surface of the second lens 802, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 803, the image side surface of the third lens 803, the object side surface of the flat plate 805, and the image side surface of the flat plate 805, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 801.
  • the radius of curvature represents the signed central radius of curvature (R in Equation (7)) of the object side surface of the first lens 801
  • the interval represents the thickness of the first lens 801
  • the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature (R in equation (7)) of the image side surface of the first lens 801
  • the interval is the object side surface of the first lens 801 and the object of the second lens 802.
  • the distance between the first side surface 801 and the side surface is represented by k. The same applies to the following lines.
  • Table 16 is a table showing the aspheric coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 23 is a diagram showing the chromatic aberration of magnification of the imaging optical system of Example 8.
  • the horizontal axis in FIG. 23 represents the lateral chromatic aberration of the F line and C line with respect to the d line.
  • the vertical axis in FIG. 23 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 24 is a diagram showing field curvature of the imaging optical system of Example 8.
  • the horizontal axis in FIG. 24 represents the positions of the F-line, d-line, and C-line tangential image plane and sagittal image plane in the optical axis direction.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 24 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 25 is a diagram illustrating the configuration of the imaging optical system according to the ninth embodiment.
  • the imaging optical system according to the ninth embodiment includes a first lens 901 having a negative refractive power, a second lens 902 having a positive refractive power, a stop 904, and a positive refraction, which are arranged from the object side to the image side.
  • a third lens 903 having force.
  • the light beam that has passed through the lens passes through the optical member 905 and is then condensed on the image plane 906.
  • the optical member 905 is a cover glass of a sensor. In FIG.
  • Table 17 is a table showing the shape of the optical element including the first lens, the second lens, and the third lens, the property of the material, and the distance between the optical elements.
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 901, the image side surface of the first lens 901, the object side surface of the second lens 902, and the image side surface of the second lens 902, respectively.
  • Surfaces 6 to 9 represent the object side surface of the third lens 903, the image side surface of the third lens 903, the object side surface of the flat plate 905, and the image side surface of the flat plate 905, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 901.
  • the radius of curvature represents the signed central radius of curvature of the object side surface of the first lens 901 (R in equation (7))
  • the spacing represents the thickness of the first lens 901
  • the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature (R in Equation (7)) of the image side surface of the first lens 901
  • the interval is the object side surface of the first lens 901 and the object of the second lens 902.
  • the distance between the first lens 901 and the side surface is represented by k. The same applies to the following lines.
  • Table 18 is a table showing the aspheric coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 26 is a diagram showing chromatic aberration of magnification of the imaging optical system of Example 9.
  • the horizontal axis in FIG. 26 represents the lateral chromatic aberration of the F line and the C line with respect to the d line.
  • the vertical axis in FIG. 26 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 27 is a diagram illustrating the curvature of field of the imaging optical system according to the ninth example.
  • the horizontal axis in FIG. 27 represents the positions in the optical axis direction of the tangential image surface and sagittal image surface of the F line, d line, and C line.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 27 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 28 is a diagram illustrating a configuration of the imaging optical system according to the tenth embodiment.
  • the imaging optical system according to the tenth embodiment includes a first lens 1001 having a negative refractive power, a second lens 1002 having a positive refractive power, a diaphragm 1004, and a positive refraction, which are arranged from the object side to the image side.
  • the light beam that has passed through the lens passes through the optical member 1005 and is then condensed on the image plane 1006.
  • the optical member 1005 is a cover glass of a sensor. In FIG.
  • the path of the light beam in which the principal ray is incident in parallel to the optical axis from the object plane at a distance of 15 mm from the first lens and the distance on the optical axis from the first lens are shown.
  • a path of a light beam in which a chief ray is incident at a half angle of view with respect to the optical axis from an object plane at a position of 15 mm is shown.
  • Table 19 is a table
  • the numbers in the leftmost column of the table represent the face numbers.
  • Surface 1 to surface 4 represent the object side surface of the first lens 1001, the image side surface of the first lens 1001, the object side surface of the second lens 1002, and the image side surface of the second lens 1002, respectively.
  • Surface 6 to surface 9 represent the object side surface of the third lens 1003, the image side surface of the third lens 1003, the object side surface of the flat plate 1005, and the image side surface of the flat plate 1005, respectively.
  • the curvature radius of the row of the object represents the curvature radius of the surface of the object, and “Infinity” represents that the surface of the object is a plane perpendicular to the optical axis.
  • the distance between the object rows represents the distance on the optical axis from the object surface to the object side surface of the first lens 1001.
  • the radius of curvature represents the signed central radius of curvature of the object side surface of the first lens 1001 (R in equation (7)), the spacing represents the thickness of the first lens 1001, and the refractive index is the first.
  • the radius of curvature represents a signed central radius of curvature (R in equation (7)) of the image side surface of the first lens 1001
  • the interval is the object of the second lens 1002 and the image side surface of the first lens 1001.
  • the distance between the first lens 1001 and the side surface is represented by k. The same applies to the following lines.
  • Table 20 is a table showing the aspherical coefficients of the expression (7) of the surface 1-surface 4 and the surface 6-surface 9.
  • FIG. 29 is a diagram showing chromatic aberration of magnification of the imaging optical system of Example 10.
  • the horizontal axis of FIG. 29 represents the lateral chromatic aberration of the F line and the C line with respect to the d line.
  • the vertical axis in FIG. 29 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half angle of view.
  • FIG. 30 is a diagram illustrating the curvature of field of the imaging optical system according to the tenth embodiment.
  • the horizontal axis in FIG. 30 represents the positions of the F-line, d-line, and C-line tangential image plane and sagittal image plane in the optical axis direction.
  • Tan represents a tangential image plane
  • Sag represents a sagittal image plane.
  • the vertical axis in FIG. 30 represents the angle of the principal ray of the light beam incident on the imaging optical system with respect to the optical axis. The maximum value of the angle on the vertical axis corresponds to the half field angle.
  • the summary table 21 of the example is a table for determining the characteristics of the example 1 to the example 10.
  • the unit of length in the table is millimeter and the unit of angle is degree.
  • represents a half field angle
  • 2 ⁇ represents a field angle
  • the chromatic aberration of magnification of the F line and the C line with reference to the d line of the imaging optical system of most examples is within ⁇ 1 micrometer.
  • the curvature of field of the tangential and sagittal image planes of the F-line, d-line, and C-line of the imaging optical system of most embodiments is within ⁇ 40 micrometers.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

 十分に小型で、十分に広角で、十分に高解像度である内視鏡を実現するための撮像光学系を提供する。撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、絞りと、正の屈折力を有する第3レンズと、を備える。第1レンズの像側主点と該第2レンズの物体側主点との間の距離を|d|、該第1レンズの像側主点が該第2レンズの物体側主点よりも像側にある場合に、両主点の間の符号付きの距離をd=-|d|とし、該第1レンズ及び該第2レンズの合成焦点距離をf12として、 d < 0 0.005 < d / f12 < 16 を満たす。

Description

撮像光学系
 本発明は、撮像光学系、特に、内視鏡用撮像光学系に関する。
 医療分野で使用される内視鏡には、挿入型内視鏡とカプセル型内視鏡とがある。通常の挿入型内視鏡は、先端部分の撮像光学系、すなわち対物レンズと離れた位置にある撮像素子とが、ファイバまたはリレーレンズによって接続されている。このような通常の挿入型内視鏡の撮像光学系には、光量ロスを小さくするためにテレセントリック性が要求される。また、挿入型内視鏡においても、先端部分に撮像光学系と撮像素子とを有し、離れた位置にある表示装置に画像を表示する電子内視鏡がある。カプセル型内視鏡は、カプセル内に撮像光学系と撮像素子とを備えている。したがって、カプセル型内視鏡、及び電子内視鏡の撮像光学系には、テレセントリック性は要求されない。他方、いずれの型の内視鏡にも、小型で、広角で、高解像度であることが要求される。高解像度であるためには、撮像光学系の収差を小さくする必要がある。
 他方、従来技術の内視鏡用撮像光学系には、以下の問題がある。
 特許文献1は、物体側から像側に、負の屈折力を有するレンズ、絞り、正の屈折力を有するレンズ、正の屈折力を有するレンズが配置された構成の内視鏡用対物レンズを開示している。絞りから像面までの間の正の屈折力をもつ2枚のレンズで収差が十分に補正されている。他方、第1レンズと第2レンズの間に絞りがあり第1レンズと第2レンズの主点間距離を短くすることが出来ない。そのため、十分な画角を得ることが出来ない。
 特許文献2は、物体側から像側に、負の屈折力を有するレンズ、正の屈折力を有するレンズ、絞り、正の屈折力を有するレンズが配置された構成の内視鏡用対物レンズを開示している。第1レンズと第2レンズの主点間距離が広く、画角が十分ではない。加えて、小型で広角な撮像レンズユニットにするためレンズ材料にサファイアを用いており高価である。
 特許文献3は、物体側から像側に、負の屈折力を有するレンズ、正の屈折力を有するレンズ、絞り、正の屈折力を有するレンズが配置された構成の内視鏡用対物レンズを開示している。画角は比較的大きいが、テレセントリック性を重視しており、収差の補正が十分に出来ない。
 このように、十分に小型で、十分に広角で、十分に高解像度である内視鏡を実現するための撮像光学系は開発されていない。
特開2015-60019号公報 特開2004-337346号公報 特開平10-170821号公報
 したがって、十分に小型で、十分に広角で、十分に高解像度である内視鏡を実現するための撮像光学系に対するニーズがある。本発明の課題は、十分に小型で、十分に広角で、十分に高解像度である内視鏡を実現するための撮像光学系を提供することである。
 本発明による撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、絞りと、正の屈折力を有する第3レンズと、を備える。該第1レンズの像側主点と該第2レンズの物体側主点との間の距離を|d|、該第1レンズの像側主点が該第2レンズの物体側主点よりも像側にある場合に、両主点の間の符号付きの距離をd=-|d|とし、該第1レンズ及び該第2レンズの合成焦点距離をf12として、
d < 0                       (1)
0.005 < d / f12 < 16        (2)
を満たす。
 物体側から像側に配置された、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、を備える構成は、広角における諸収差を補正しやすい。テレセントリック性よりも小型化、広角化、及び高解像度化をより重視するには、絞りを第2レンズ及び第3レンズの間に配置するのが好ましい。
 第1レンズの径が大きくなりすぎず、かつ視野が十分に広角であるという条件を満たすよう第1レンズ及び第2レンズの屈折力を定めるには、式(2)を満たすことが好ましい。d / f12が式(2)の下限以下である場合には、第1レンズが小径であると画角を十分に広げることができず、式(2)の上限以上である場合には、第1レンズが小径であると収差補正が十分になされず高解像度を得ることが出来ない。
 一般に、φの屈折力を有するレンズとφの屈折力を有するレンズとの合成の屈折力φ12は、近軸理論で以下の式で表せる。
Figure JPOXMLDOC01-appb-M000001
 第1レンズの屈折力は負であり、第2レンズの屈折力は正であるので、第1レンズの屈折力と第2レンズの屈折力との積φφは負である。したがって、dが負であれば、-φφdは負となり、合成の屈折力φ12が負になりやすくなる。したがって、合成の屈折力φ12が強い負の屈折力を有するように、式(1)を満たすのが有利である。
 本発明の撮像光学系によれば、十分に小型で、十分に広角で、十分に高解像度である内視鏡を実現することができる。
 本発明の第1の実施形態の撮像光学系は、
0.1 < d / f12 < 6         (2)’
を満たす。
 本実施形態の撮像光学系においては、さらに高い解像度が得られる。
 本発明の第2の実施形態の撮像光学系は、
0.12 < d / f12 < 0.15     (2)”
を満たす。
 本実施形態によれば、撮像光学系をさらに小型化することができ、撮像光学系においてさらに高い解像度が得られる。
 本発明の第3の実施形態の撮像光学系は、該第1レンズ、該第2レンズ、及び該第3レンズの一致した主軸を光軸として、該第3レンズの像側の面の該光軸上の点から像面までの距離をt3、該第1レンズの物体側の面の該光軸上の点から該第3レンズの像側の面の該光軸上の点までの距離をtとして、
t3/t > 0.5
を満たす。
 本実施形態によれば、撮像光学系として小型であるにも関わらず十分な大きさのセンササイズを確保することができ、また、センサとレンズとの間に十分な間隔をとることができるので組立に有利である。
 本発明の第4の実施形態の撮像光学系は、該第1レンズ、該第2レンズ、及び該第3レンズの一致した主軸を光軸として、該第2レンズの物体側の面の該光軸上の点が、該第1レンズの像側の面の画角に対応する光束の最外光線が通過する点よりも物体側にある。
 本実施形態の構成によれば、レンズ全長が小さくなるとともに、負の屈折力を持つ第1レンズの像側の面での収差の発生を少なくすることができる。
 本発明の第5の実施形態の撮像光学系は、該第1レンズを構成する物質のアッベ数をv1、該第2レンズを構成する物質のアッベ数をv2、該第3レンズを構成する物質のアッベ数をv3として、
v1 > v2
v3 > v2
を満たす。
 本実施形態によれば、色収差が良好に補正される。
 本発明の第6の実施形態の撮像光学系は、画角に対応する光束の像高をy、該第1レンズの有効径をDとして、
0.75 < 2×y / D < 1.25
を満たす。
 本実施形態によれば、センサのサイズに対して、第1レンズの有効径の比を適切な範囲とすることにより、撮像光学系を小型化するとともに撮像光学系の収差を十分に補正することにより高解像度を実現することができる。
 本発明の第7の実施形態の撮像光学系は、内視鏡に使用される。
実施例1の撮像光学系の構成を示す図である。 実施例1の撮像光学系の倍率色収差を示す図である。 実施例1の撮像光学系の像面湾曲を示す図である。 実施例2の撮像光学系の構成を示す図である。 実施例2の撮像光学系の倍率色収差を示す図である。 実施例2の撮像光学系の像面湾曲を示す図である。 実施例3の撮像光学系の構成を示す図である。 実施例3の撮像光学系の倍率色収差を示す図である。 実施例3の撮像光学系の像面湾曲を示す図である。 実施例4の撮像光学系の構成を示す図である。 実施例4の撮像光学系の倍率色収差を示す図である。 実施例4の撮像光学系の像面湾曲を示す図である。 実施例5の撮像光学系の構成を示す図である。 実施例5の撮像光学系の倍率色収差を示す図である。 実施例5の撮像光学系の像面湾曲を示す図である。 実施例6の撮像光学系の構成を示す図である。 実施例6の撮像光学系の倍率色収差を示す図である。 実施例6の撮像光学系の像面湾曲を示す図である。 実施例7の撮像光学系の構成を示す図である。 実施例7の撮像光学系の倍率色収差を示す図である。 実施例7の撮像光学系の像面湾曲を示す図である。 実施例8の撮像光学系の構成を示す図である。 実施例8の撮像光学系の倍率色収差を示す図である。 実施例8の撮像光学系の像面湾曲を示す図である。 実施例9の撮像光学系の構成を示す図である。 実施例9の撮像光学系の倍率色収差を示す図である。 実施例9の撮像光学系の像面湾曲を示す図である。 実施例10の撮像光学系の構成を示す図である。 実施例10の撮像光学系の倍率色収差を示す図である。 実施例10の撮像光学系の像面湾曲を示す図である。
 図1は、本発明の一実施形態(後で説明する実施例1)の撮像光学系の構成を示す図である。撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ101と、正の屈折力を有する第2レンズ102と、絞り104と、正の屈折力を有する第3レンズ103と、を備える。上記のレンズを通過した光束は、光学部材105を通過した後、像面106上に集光される。光学部材105は、センサのカバーガラスなどである。本明細書及び特許請求の範囲において、負の屈折力を有するレンズとは、近軸光線に対して負の屈折力を有するレンズを意味し、正の屈折力を有するレンズとは、近軸光線に対して正の屈折力を有するレンズを意味する。
 本発明の撮像光学系の特徴を以下に説明する。
 本発明の実施形態の撮像光学系の第1の特徴は、物体側から像側に配置された、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、絞りと、正の屈折力を有する第3レンズと、を備えることである。物体側から像側に配置された、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、を備える構成は、広角における諸収差を補正しやすい。テレセントリック性の観点からは、絞りを第1レンズ及び第2レンズの間に配置するのが有利である。小型化、広角化、及び高解像度化の観点からは、絞りを第2レンズ及び第3レンズの間に配置するのが有利である。本発明では、テレセントリック性よりも小型化、広角化、及び高解像度化をより重視するので、絞りを第2レンズ及び第3レンズの間に配置する。
 本発明の実施形態の撮像光学系の第2の特徴は、
d < 0                      (1)
0.005 < d / f12 < 16       (2)
を満たすことである。
 ここで、dは、第1レンズの像側主点と第2レンズの物体側主点との間の符号付きの距離を表し、dの絶対値は、第1レンズの像側主点と第2レンズの物体側主点との間の距離であり、dの符号は、第1レンズの像側主点が第2レンズの物体側主点よりも物体側にある場合に正、第1レンズの像側主点が第2レンズの物体側主点よりも像側にある場合に負である。また、f12は、第1レンズ及び第2レンズの合成焦点距離を表す。
 一般に、広角レンズの構成では物体側に負の屈折力をもつレンズ、像側に正の屈折力を持つレンズを配置したレトロフォーカスタイプのものになる場合が多い。そのことからも分かるように物体側に強い負の屈折力を有するレンズが有ることは視野角の広角化に有利である。
 他方、強い負の屈折力を第1レンズだけで担った場合、第1レンズの径が大きくなりすぎてしまう。第1レンズの径が大きくなりすぎると、撮像光学系、ひいては内視鏡を小型化することができない。第1レンズの径が大きくなりすぎず、かつ視野が十分に広角であるという条件を満たすよう第1レンズ及び第2レンズの屈折力を定めるには、式(2)を満たすことが望ましい。d / f12が式(2)の下限以下である場合には、第1レンズが小径であると画角を十分に広げることができず、式(2)の上限以上である場合には、第1レンズが小径であると収差補正が十分になされず高解像度を得ることが出来ない。
 以下の条件を満たすとき、撮像光学系においてさらに高い解像度が得られる。
0.1 < d / f12 < 6         (2)’
 以下の条件を満たすとき、撮像光学系をさらに小型化することができ、撮像光学系においてさらに高い解像度が得られる。
0.12 < d / f12 < 0.15     (2)”
 一般に、φの屈折力を有するレンズとφの屈折力を有するレンズとの合成の屈折力φ12は、近軸理論で以下の式で表せる。
Figure JPOXMLDOC01-appb-M000002
 上述のように、第1レンズの屈折力は負であり、第2レンズの屈折力は正であるので、第1レンズの屈折力と第2レンズの屈折力との積φφは負である。したがって、dが負であれば、-φφdは負となり、合成の屈折力φ12が負になりやすくなる。
したがって、合成の屈折力φ12が強い負の屈折力を有するように、式(1)を満たすのが有利である。
 本発明の実施形態の撮像光学系の第3の特徴は、
t3/t > 0.5       (3)
を満たすことである。
 ここで、第1レンズ、第2レンズ、及び第3レンズの一致した主軸を光軸として、t3は第3レンズの像側の面の光軸上の点から像面までの距離を表し、tは第1レンズの物体側の面の光軸上の点から第3レンズの像側の面の光軸上の点までの距離を表す。
 一般に、広角レンズは焦点距離が短いので、最も像側のレンズと像面との距離が短くなる。本発明の実施形態の撮像光学系は、第1の特徴として説明したように、物体側に強い負の屈折力を持たせているので最も像側のレンズ面から像面までの距離が比較的長くなる。特に、式(3)の条件を満たすとき、撮像光学系として小型であるにも関わらず十分な大きさのセンササイズを確保することができ、また、センサとレンズとの間に十分な間隔をとることができるので組立に有利である。
 本発明の実施形態の撮像光学系の第4の特徴は、第1レンズ、第2レンズ、及び第3レンズの一致した主軸を光軸として、第2レンズの物体側の面の光軸上の点が、該第1レンズの像側の面の画角に対応する光束の最外光線が通過する点よりも物体側にあることである。
 第4の特徴の構成は、第1レンズの像側の凹面で形成される凹部に第2レンズの物体側の凸面の頂点が配置された構成である。このような構成の場合、レンズ全長が小さくなるとともに、負の屈折力を持つ第1レンズの像側の面での収差の発生を少なくすることができる。
 本発明の実施形態の撮像光学系の第5の特徴は、
v1 > v2       (4)
v3 > v2       (5)
を満たすことである。
 ここで、v1は第1レンズを構成する物質のアッベ数、v2は第2レンズを構成する物質のアッベ数、v3は第3レンズを構成する物質のアッベ数を表す。
 第1レンズが負の屈折力、第2レンズが正の屈折力、第3レンズが正の屈折力を持つ3枚構成の場合に、第2レンズのアッベ数が最も低い時に色収差が最も良好に補正される。
 本発明の実施形態の撮像光学系の第6の特徴は、
0.75 < 2×y / D < 1.25       (6)
を満たすことである。
 ここで、yは画角に対応する光束の像高を表し、Dは第1レンズの有効径を表す。
 センサと撮像光学系とを組み合わせたシステムを小型化するには、第1レンズの有効径を小さくする必要がある。他方、センサのサイズに対して、第1レンズの有効径を小さくしすぎると、撮像光学系で収差を十分に補正することができず、解像度を上げることができない。したがって、センサのサイズに対応する2×yとDとの比が式(6)の関係を満たすのが好ましい。2×yとDとの比が式(6)の下限値以下であると、システムが十分に小型化されない。他方、2×yとDとの比が式(6)の上限値以上であると、センサの大きさに対してレンズ径が小さすぎ収差補正が十分に行えない。
 本発明の実施例について以下に説明する。
 第1レンズの材料は、実施例5を除いてシクロオレフィンポリマー(グレード:E48R)である。実施例5の第1レンズの材料は、シクロオレフィンポリマー(グレード:330R)である。第2レンズの材料は、ポリカーボネート(グレード:SP1516)である。第3レンズの材料は、シクロオレフィンポリマー(グレード:E48R)である。センサの物体側に配置された平板(センサーのカバーガラスを想定)の材料は、N-BK7である。
 各レンズ及び光学部材の各面は、以下の式で表せる。
Figure JPOXMLDOC01-appb-M000003
第1レンズ、第2レンズ、及び第3レンズのそれぞれの二面の曲率中心を結ぶ線をz軸とする。zはそれぞれのレンズ面とz軸との交点を基準とし、像側を正とした、レンズ面上の点のz軸方向の位置を示す座標である。rはz軸からレンズ面上の点までの距離を示す。Rはレンズ面の頂点における符号付きの曲率半径、すなわち符号付きの中心曲率半径である。Rの絶対値は、レンズ面の頂点における曲率半径、すなわち中心曲率半径であり、符号は、レンズ面が物体側に凸である場合に正、レンズ面が像側に凸である場合に負である。kはコーニック定数である。Aiは非球面係数である。iは整数である。
 第1レンズ、第2レンズ、及び第3レンズの一致した主軸を光軸とする。
 各実施例の撮像光学系の収差は、F線(波長486.1nm)、d線(波長587.56nm)、及びC線(波長656.27nm)について示される。
 以下の表における「曲率半径」及び「間隔」の長さの単位は、ミリメータである。
実施例1
 図1は、実施例1の撮像光学系の構成を示す図である。実施例1の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ101と、正の屈折力を有する第2レンズ102と、絞り104と、正の屈折力を有する第3レンズ103と、を備える。上記のレンズを通過した光束は、光学部材105を通過した後、像面106上に集光される。光学部材105は、センサのカバーガラスなどである。図1には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表1は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ101の物体側面、第1レンズ101の像側面、第2レンズ102の物体側面、及び第2レンズ102の像側面を表す。面6-面9は、それぞれ、第3レンズ103の物体側面、第3レンズ103の像側面、平板105の物体側面、及び平板105の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ101の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ101の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ101の厚さを表し、屈折率は第1レンズ101の材料の屈折率を表し、アッベ数は第1レンズ101の材料のアッベ数を表し、kは第1レンズ101の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ101の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ101の像側面と第2レンズ102の物体側面との間の間隔を表し、kは第1レンズ101の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000004
 表2は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000005
 図2は、実施例1の撮像光学系の倍率色収差を示す図である。図2の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図2の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図3は、実施例1の撮像光学系の像面湾曲を示す図である。図3の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図3の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例2
 図4は、実施例2の撮像光学系の構成を示す図である。実施例2の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ201と、正の屈折力を有する第2レンズ202と、絞り204と、正の屈折力を有する第3レンズ203と、を備える。上記のレンズを通過した光束は、光学部材205を通過した後、像面206上に集光される。光学部材205は、センサのカバーガラスなどである。図4には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表3は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ201の物体側面、第1レンズ201の像側面、第2レンズ202の物体側面、及び第2レンズ202の像側面を表す。面6-面9は、それぞれ、第3レンズ203の物体側面、第3レンズ203の像側面、平板205の物体側面、及び平板205の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ201の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ201の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ201の厚さを表し、屈折率は第1レンズ201の材料の屈折率を表し、アッベ数は第1レンズ201の材料のアッベ数を表し、kは第1レンズ201の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ201の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ201の像側面と第2レンズ202の物体側面との間の間隔を表し、kは第1レンズ201の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000006
 表4A及び表4Bは、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 図5は、実施例2の撮像光学系の倍率色収差を示す図である。図5の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図5の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図6は、実施例2の撮像光学系の像面湾曲を示す図である。図6の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図6の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例3
 図7は、実施例3の撮像光学系の構成を示す図である。実施例3の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ301と、正の屈折力を有する第2レンズ302と、絞り304と、正の屈折力を有する第3レンズ303と、を備える。上記のレンズを通過した光束は、光学部材305を通過した後、像面306上に集光される。光学部材305は、センサのカバーガラスなどである。図7には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表5は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ301の物体側面、第1レンズ301の像側面、第2レンズ302の物体側面、及び第2レンズ302の像側面を表す。面6-面9は、それぞれ、第3レンズ303の物体側面、第3レンズ303の像側面、平板305の物体側面、及び平板305の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ301の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ301の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ301の厚さを表し、屈折率は第1レンズ301の材料の屈折率を表し、アッベ数は第1レンズ301の材料のアッベ数を表し、kは第1レンズ301の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ301の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ301の像側面と第2レンズ302の物体側面との間の間隔を表し、kは第1レンズ301の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000009
 表6は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000010
 図8は、実施例3の撮像光学系の倍率色収差を示す図である。図8の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図8の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図9は、実施例3の撮像光学系の像面湾曲を示す図である。図9の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図9の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例4
 図10は、実施例4の撮像光学系の構成を示す図である。実施例4の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ401と、正の屈折力を有する第2レンズ402と、絞り404と、正の屈折力を有する第3レンズ403と、を備える。上記のレンズを通過した光束は、光学部材405を通過した後、像面406上に集光される。光学部材405は、センサのカバーガラスなどである。図10には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表7は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ401の物体側面、第1レンズ401の像側面、第2レンズ402の物体側面、及び第2レンズ402の像側面を表す。面6-面9は、それぞれ、第3レンズ403の物体側面、第3レンズ403の像側面、平板405の物体側面、及び平板405の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ401の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ401の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ401の厚さを表し、屈折率は第1レンズ401の材料の屈折率を表し、アッベ数は第1レンズ401の材料のアッベ数を表し、kは第1レンズ401の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ401の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ401の像側面と第2レンズ402の物体側面との間の間隔を表し、kは第1レンズ401の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000011
 表8は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000012
 図11は、実施例4の撮像光学系の倍率色収差を示す図である。図11の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図11の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図12は、実施例4の撮像光学系の像面湾曲を示す図である。図12の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図12の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例5
 図13は、実施例5の撮像光学系の構成を示す図である。実施例5の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ501と、正の屈折力を有する第2レンズ502と、絞り504と、正の屈折力を有する第3レンズ503と、を備える。上記のレンズを通過した光束は、光学部材505を通過した後、像面506上に集光される。光学部材505は、センサのカバーガラスなどである。図13には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表9は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ501の物体側面、第1レンズ501の像側面、第2レンズ502の物体側面、及び第2レンズ502の像側面を表す。面6-面9は、それぞれ、第3レンズ503の物体側面、第3レンズ503の像側面、平板505の物体側面、及び平板505の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ501の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ501の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ501の厚さを表し、屈折率は第1レンズ501の材料の屈折率を表し、アッベ数は第1レンズ501の材料のアッベ数を表し、kは第1レンズ501の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ501の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ501の像側面と第2レンズ502の物体側面との間の間隔を表し、kは第1レンズ501の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000013
 表10は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000014
 図14は、実施例5の撮像光学系の倍率色収差を示す図である。図14の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図14の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図15は、実施例5の撮像光学系の像面湾曲を示す図である。図15の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図15の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例6
 図16は、実施例6の撮像光学系の構成を示す図である。実施例6の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ601と、正の屈折力を有する第2レンズ602と、絞り604と、正の屈折力を有する第3レンズ603と、を備える。上記のレンズを通過した光束は、光学部材605を通過した後、像面606上に集光される。光学部材605は、センサのカバーガラスなどである。図16には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表11は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ601の物体側面、第1レンズ601の像側面、第2レンズ602の物体側面、及び第2レンズ602の像側面を表す。面6-面9は、それぞれ、第3レンズ603の物体側面、第3レンズ603の像側面、平板605の物体側面、及び平板605の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ601の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ601の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ601の厚さを表し、屈折率は第1レンズ601の材料の屈折率を表し、アッベ数は第1レンズ601の材料のアッベ数を表し、kは第1レンズ601の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ601の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ601の像側面と第2レンズ602の物体側面との間の間隔を表し、kは第1レンズ601の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000015
 表12は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000016
 図17は、実施例6の撮像光学系の倍率色収差を示す図である。図17の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図17の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図18は、実施例6の撮像光学系の像面湾曲を示す図である。図18の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図18の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例7
 図19は、実施例7の撮像光学系の構成を示す図である。実施例7の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ701と、正の屈折力を有する第2レンズ702と、絞り704と、正の屈折力を有する第3レンズ703と、を備える。上記のレンズを通過した光束は、光学部材705を通過した後、像面706上に集光される。光学部材705は、センサのカバーガラスなどである。図19には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表13は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ701の物体側面、第1レンズ701の像側面、第2レンズ702の物体側面、及び第2レンズ702の像側面を表す。面6-面9は、それぞれ、第3レンズ703の物体側面、第3レンズ703の像側面、平板705の物体側面、及び平板705の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ701の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ701の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ701の厚さを表し、屈折率は第1レンズ701の材料の屈折率を表し、アッベ数は第1レンズ701の材料のアッベ数を表し、kは第1レンズ701の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ701の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ701の像側面と第2レンズ702の物体側面との間の間隔を表し、kは第1レンズ701の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000017
 表14は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000018
 図20は、実施例7の撮像光学系の倍率色収差を示す図である。図20の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図20の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図21は、実施例7の撮像光学系の像面湾曲を示す図である。図21の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図21の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例8
 図22は、実施例8の撮像光学系の構成を示す図である。実施例8の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ801と、正の屈折力を有する第2レンズ802と、絞り804と、正の屈折力を有する第3レンズ803と、を備える。上記のレンズを通過した光束は、光学部材805を通過した後、像面806上に集光される。光学部材805は、センサのカバーガラスなどである。図22には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表15は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ801の物体側面、第1レンズ801の像側面、第2レンズ802の物体側面、及び第2レンズ802の像側面を表す。面6-面9は、それぞれ、第3レンズ803の物体側面、第3レンズ803の像側面、平板805の物体側面、及び平板805の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ801の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ801の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ801の厚さを表し、屈折率は第1レンズ801の材料の屈折率を表し、アッベ数は第1レンズ801の材料のアッベ数を表し、kは第1レンズ801の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ801の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ801の像側面と第2レンズ802の物体側面との間の間隔を表し、kは第1レンズ801の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000019
 表16は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000020
 図23は、実施例8の撮像光学系の倍率色収差を示す図である。図23の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図23の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図24は、実施例8の撮像光学系の像面湾曲を示す図である。図24の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図24の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例9
 図25は、実施例9の撮像光学系の構成を示す図である。実施例9の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ901と、正の屈折力を有する第2レンズ902と、絞り904と、正の屈折力を有する第3レンズ903と、を備える。上記のレンズを通過した光束は、光学部材905を通過した後、像面906上に集光される。光学部材905は、センサのカバーガラスなどである。図25には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表17は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ901の物体側面、第1レンズ901の像側面、第2レンズ902の物体側面、及び第2レンズ902の像側面を表す。面6-面9は、それぞれ、第3レンズ903の物体側面、第3レンズ903の像側面、平板905の物体側面、及び平板905の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ901の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ901の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ901の厚さを表し、屈折率は第1レンズ901の材料の屈折率を表し、アッベ数は第1レンズ901の材料のアッベ数を表し、kは第1レンズ901の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ901の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ901の像側面と第2レンズ902の物体側面との間の間隔を表し、kは第1レンズ901の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000021
 表18は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000022
 図26は、実施例9の撮像光学系の倍率色収差を示す図である。図26の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図26の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図27は、実施例9の撮像光学系の像面湾曲を示す図である。図27の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図27の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例10
 図28は、実施例10の撮像光学系の構成を示す図である。実施例10の撮像光学系は、物体側から像側に配置された、負の屈折力を有する第1レンズ1001と、正の屈折力を有する第2レンズ1002と、絞り1004と、正の屈折力を有する第3レンズ1003と、を備える。上記のレンズを通過した光束は、光学部材1005を通過した後、像面1006上に集光される。光学部材1005は、センサのカバーガラスなどである。図28には、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に平行に入射した光束の経路と、第1レンズからの光軸上の距離が15mmの位置にある物体面から主光線が光軸に対して半画角の角度で入射した光束の経路が示されている。
 表19は、第1レンズ、第2レンズ及び第3レンズを含む光学素子の形状、材料の性質、及び光学素子間の間隔を示す表である。表の最も左側の列の数字は面番号を表す。面1-面4は、それぞれ、第1レンズ1001の物体側面、第1レンズ1001の像側面、第2レンズ1002の物体側面、及び第2レンズ1002の像側面を表す。面6-面9は、それぞれ、第3レンズ1003の物体側面、第3レンズ1003の像側面、平板1005の物体側面、及び平板1005の像側面を表す。物体の行の曲率半径は、物体の面の曲率半径を表し、「Infinity」は、物体の面が光軸に垂直な平面であることを表す。物体の行の間隔は物体の面から第1レンズ1001の物体側面までの光軸上の距離を表す。面1の行において、曲率半径は第1レンズ1001の物体側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ1001の厚さを表し、屈折率は第1レンズ1001の材料の屈折率を表し、アッベ数は第1レンズ1001の材料のアッベ数を表し、kは第1レンズ1001の物体側面の式(7)のコーニック定数を表す。面2の行において、曲率半径は第1レンズ1001の像側面の符号付きの中心曲率半径(式(7)のR)を表し、間隔は第1レンズ1001の像側面と第2レンズ1002の物体側面との間の間隔を表し、kは第1レンズ1001の像側面の式(7)のコーニック定数を表す。以下の行についても同様である。
Figure JPOXMLDOC01-appb-T000023
 表20は、面1-面4及び面6-面9の式(7)の非球面係数を示す表である。
Figure JPOXMLDOC01-appb-T000024
 図29は、実施例10の撮像光学系の倍率色収差を示す図である。図29の横軸は、d線を基準としたF線及びC線の倍率色収差を表す。図29の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
 図30は、実施例10の撮像光学系の像面湾曲を示す図である。図30の横軸は、F線、d線、及びC線のタンジェンシャル像面及びサジタル像面の光軸方向の位置を表す。図において、Tanはタンジェンシャル像面を表し、Sagはサジタル像面を表す。図30の縦軸は、撮像光学系に入射する光束の主光線の光軸に対する角度を表す。縦軸の角度の最大値は半画角に相当する。
実施例のまとめ
 表21は、実施例1-実施例10の特徴を求めた表である。表における長さの単位はミリメータであり、角度の単位は度である。
Figure JPOXMLDOC01-appb-T000025
 表において、ωは半画角を表し、2ωは画角を表す。表21によると、全ての実施例は、式(1)、式(2)、式(3)、及び式(6)を満たす。実施例1-5及び実施例7は式(2)’を満たし、実施例1は式(2)”を満たす。また、各実施例の表によると、全ての実施例は式(4)及び式(5)を満たす。
 各実施例の収差図によると、ほとんどの実施例の撮像光学系のd線を基準としたF線及びC線の倍率色収差は、±1マイクロメータ以内である。ほとんどの実施例の撮像光学系のF線、d線、及びC線のタンジェンシャル像面及びサジタル像面の像面湾曲は、±40マイクロメータ以内である。

Claims (8)

  1.  物体側から像側に配置された、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、絞りと、正の屈折力を有する第3レンズと、を備えた撮像光学系であって、
     該第1レンズの像側主点と該第2レンズの物体側主点との間の距離を|d|、該第1レンズの像側主点が該第2レンズの物体側主点よりも像側にある場合に、両主点の間の符号付きの距離をd=-|d|とし、該第1レンズ及び該第2レンズの合成焦点距離をf12として、
    d < 0
    0.005 < d / f12 < 16
    を満たす撮像光学系。
  2. 0.1 < d / f12 < 6
    を満たす請求項1に記載の撮像光学系。
  3. 0.12 < d / f12 < 0.15
    を満たす請求項1に記載の撮像光学系。
  4.  該第1レンズ、該第2レンズ、及び該第3レンズの一致した主軸を光軸として、該第3レンズの像側の面の該光軸上の点から像面までの距離をt3、該第1レンズの物体側の面の該光軸上の点から該第3レンズの像側の面の該光軸上の点までの距離をtとして、
    t3/t > 0.5
    を満たす請求項1から3のいずれかに記載の撮像光学系。
  5.  該第1レンズ、該第2レンズ、及び該第3レンズの一致した主軸を光軸として、該第2レンズの物体側の面の該光軸上の点が、該第1レンズの像側の面の画角に対応する光束の最外光線が通過する点よりも物体側にある請求項1から4のいずれかに記載の撮像光学系。
  6.  該第1レンズを構成する物質のアッベ数をv1、該第2レンズを構成する物質のアッベ数をv2、該第3レンズを構成する物質のアッベ数をv3として、
    v1 > v2
    v3 > v2
    を満たす請求項1から5のいずれかに記載の撮像光学系。
  7.  画角に対応する光束の像高をy、該第1レンズの有効径をDとして、
    0.75 < 2×y / D < 1.25
    を満たす請求項1から6のいずれかに記載の撮像光学系。
  8.  内視鏡に使用される請求項1から7のいずれかに記載の撮像光学系。
PCT/JP2016/064127 2016-05-12 2016-05-12 撮像光学系 WO2017195320A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16901668.0A EP3457190B1 (en) 2016-05-12 2016-05-12 Imaging optical system
JP2016551870A JP6118963B1 (ja) 2016-05-12 2016-05-12 撮像光学系
CN201680085506.4A CN109154713B (zh) 2016-05-12 2016-05-12 摄像光学系统
PCT/JP2016/064127 WO2017195320A1 (ja) 2016-05-12 2016-05-12 撮像光学系
US16/164,038 US10831001B2 (en) 2016-05-12 2018-10-18 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064127 WO2017195320A1 (ja) 2016-05-12 2016-05-12 撮像光学系

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/164,038 Continuation US10831001B2 (en) 2016-05-12 2018-10-18 Imaging optical system

Publications (1)

Publication Number Publication Date
WO2017195320A1 true WO2017195320A1 (ja) 2017-11-16

Family

ID=58666462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064127 WO2017195320A1 (ja) 2016-05-12 2016-05-12 撮像光学系

Country Status (5)

Country Link
US (1) US10831001B2 (ja)
EP (1) EP3457190B1 (ja)
JP (1) JP6118963B1 (ja)
CN (1) CN109154713B (ja)
WO (1) WO2017195320A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612326B (zh) 2016-10-21 2018-01-21 大立光電股份有限公司 微型取像系統、取像裝置及電子裝置
CN111856767B (zh) 2019-04-24 2022-09-23 信泰光学(深圳)有限公司 测距仪及其显示器镜组装置
KR102206565B1 (ko) * 2019-06-20 2021-01-22 한국원자력연구원 광각렌즈 시스템 및 이를 구비하는 촬영 시스템
CN112987252B (zh) * 2021-03-05 2023-11-07 江西晶超光学有限公司 光学系统、红外接收模组及电子设备
CN115421283B (zh) * 2022-10-21 2023-02-10 江西联益光学有限公司 内窥镜镜头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634878A (ja) * 1992-07-17 1994-02-10 Konica Corp 超広角レンズ装置
JPH10170821A (ja) * 1996-12-16 1998-06-26 Olympus Optical Co Ltd 内視鏡対物レンズ
JP2005181596A (ja) * 2003-12-18 2005-07-07 Nagano Kogaku Kenkyusho:Kk 広角レンズ
JP2006162829A (ja) * 2004-12-06 2006-06-22 Seiko Epson Corp 広角撮像レンズ及び撮像装置
JP2006220691A (ja) * 2005-02-08 2006-08-24 Nidec Copal Corp 撮像レンズ
JP2007025499A (ja) * 2005-07-20 2007-02-01 Alps Electric Co Ltd 光学装置
JP2007114546A (ja) * 2005-10-21 2007-05-10 Fujinon Corp 広角撮像レンズ
JP2008102500A (ja) * 2006-09-19 2008-05-01 Fujinon Corp 撮像レンズ及びこれを備えたカメラ装置
JP2009075315A (ja) * 2007-09-20 2009-04-09 Konica Minolta Opto Inc 広角レンズ
JP2009098322A (ja) * 2007-10-16 2009-05-07 Fujinon Corp 撮像レンズおよび撮像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353910B2 (ja) * 1992-04-15 2002-12-09 オリンパス光学工業株式会社 硬性内視鏡用対物光学系
JPH10260347A (ja) * 1997-03-19 1998-09-29 Fuji Photo Optical Co Ltd 内視鏡用対物レンズ
JP2004151295A (ja) * 2002-10-30 2004-05-27 Nidec Copal Corp 広角レンズ
JP4229754B2 (ja) 2003-05-15 2009-02-25 オリンパス株式会社 対物レンズ及びそれを用いた内視鏡
JP5172490B2 (ja) * 2008-06-17 2013-03-27 富士フイルム株式会社 撮像レンズ及びカプセル型内視鏡
JP5393521B2 (ja) * 2009-03-06 2014-01-22 富士フイルム株式会社 撮像レンズおよび撮像装置
WO2011027622A1 (ja) * 2009-09-01 2011-03-10 オリンパスメディカルシステムズ株式会社 対物光学系
JP5374667B1 (ja) * 2011-11-22 2013-12-25 オリンパスメディカルシステムズ株式会社 内視鏡対物光学系
JP2015060019A (ja) 2013-09-18 2015-03-30 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634878A (ja) * 1992-07-17 1994-02-10 Konica Corp 超広角レンズ装置
JPH10170821A (ja) * 1996-12-16 1998-06-26 Olympus Optical Co Ltd 内視鏡対物レンズ
JP2005181596A (ja) * 2003-12-18 2005-07-07 Nagano Kogaku Kenkyusho:Kk 広角レンズ
JP2006162829A (ja) * 2004-12-06 2006-06-22 Seiko Epson Corp 広角撮像レンズ及び撮像装置
JP2006220691A (ja) * 2005-02-08 2006-08-24 Nidec Copal Corp 撮像レンズ
JP2007025499A (ja) * 2005-07-20 2007-02-01 Alps Electric Co Ltd 光学装置
JP2007114546A (ja) * 2005-10-21 2007-05-10 Fujinon Corp 広角撮像レンズ
JP2008102500A (ja) * 2006-09-19 2008-05-01 Fujinon Corp 撮像レンズ及びこれを備えたカメラ装置
JP2009075315A (ja) * 2007-09-20 2009-04-09 Konica Minolta Opto Inc 広角レンズ
JP2009098322A (ja) * 2007-10-16 2009-05-07 Fujinon Corp 撮像レンズおよび撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3457190A4 *

Also Published As

Publication number Publication date
EP3457190A1 (en) 2019-03-20
EP3457190B1 (en) 2023-01-11
JP6118963B1 (ja) 2017-04-26
CN109154713A (zh) 2019-01-04
EP3457190A4 (en) 2019-12-25
JPWO2017195320A1 (ja) 2018-05-24
CN109154713B (zh) 2020-12-11
US20190049704A1 (en) 2019-02-14
US10831001B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
US10670854B2 (en) Endoscope objective optical system
US9678328B2 (en) Eyepiece lens and imaging apparatus
JP5324321B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP6118963B1 (ja) 撮像光学系
JP5993604B2 (ja) 赤外線用光学系
WO2018021205A1 (ja) 広角レンズ
US11199682B2 (en) Imaging optical system and image capturing apparatus
WO2015020006A1 (ja) 広角レンズ
JP6098838B2 (ja) 接眼光学系および撮像装置
WO2017068726A1 (ja) 撮像装置及びそれを備えた光学装置
US20170303774A1 (en) Endoscope magnification optical system and endoscope
JP2018055045A (ja) 広角レンズ
WO2017022670A1 (ja) 接眼光学系および電子ビューファインダー
US5691850A (en) Eyepiece
JP6435783B2 (ja) 接眼光学系
JP2019040117A (ja) 広角レンズ
JP6644292B1 (ja) 撮像光学系
JPWO2019163415A1 (ja) 接眼光学系およびヘッドマウントディスプレイ
JP5544559B1 (ja) 撮像光学系
US9551864B2 (en) Eyepiece lens and observation apparatus having the same
JP2021063955A (ja) 撮像光学系
US9575310B2 (en) Optical system for endoscope and endoscope
JP2019133055A (ja) 接眼光学系及びそれを有する観察装置、撮像装置
WO2024070928A1 (ja) 撮像光学系
JP7513976B1 (ja) 撮像光学系

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016551870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901668

Country of ref document: EP

Effective date: 20181212