WO2017193350A1 - 信息传输的方法及用户设备 - Google Patents

信息传输的方法及用户设备 Download PDF

Info

Publication number
WO2017193350A1
WO2017193350A1 PCT/CN2016/081926 CN2016081926W WO2017193350A1 WO 2017193350 A1 WO2017193350 A1 WO 2017193350A1 CN 2016081926 W CN2016081926 W CN 2016081926W WO 2017193350 A1 WO2017193350 A1 WO 2017193350A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
transmission
information
resource
data
Prior art date
Application number
PCT/CN2016/081926
Other languages
English (en)
French (fr)
Inventor
黎超
张兴炜
孙迎花
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202011382909.XA priority Critical patent/CN112672275B/zh
Priority to KR1020207022213A priority patent/KR20200096311A/ko
Priority to EP16901305.9A priority patent/EP3442283B1/en
Priority to JP2019507979A priority patent/JP6663076B2/ja
Priority to CN201680084652.5A priority patent/CN109076502B/zh
Priority to KR1020187033958A priority patent/KR102142256B1/ko
Priority to PCT/CN2016/081926 priority patent/WO2017193350A1/zh
Publication of WO2017193350A1 publication Critical patent/WO2017193350A1/zh
Priority to US16/185,684 priority patent/US11018800B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0025Synchronization between nodes synchronizing potentially movable access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0095Synchronisation arrangements determining timing error of reception due to propagation delay estimated based on signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method for information transmission and a user equipment.
  • V2X Vehicle to X
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian
  • P2V Pedestrian to Vehicle
  • the 3rd Generation Partnership Project (3GPP) is recommended to be based on the existing Device to Device (D2D) protocol when studying the Internet of Vehicles.
  • D2D Device to Device
  • LTE Long Term Evolution
  • car networking applications require a maximum movement speed of up to 500 km/h in the intelligent traffic spectrum around 5.9 GHz.
  • the maximum Doppler spread when the vehicle moves is proportional to the vehicle's mobile reliability and the frequency value used in vehicle communication. Therefore, the existing D2D protocol cannot meet the requirements of higher moving speed, especially the higher moving speed at higher frequencies.
  • the embodiment of the invention provides a method for information transmission, which can meet the transmission requirements of a high-speed mobile UE.
  • a method of information transmission comprising:
  • the first UE sends the control information in the transmission manner on the first link.
  • the first UE may determine the transmission mode of the control information according to the first speed information.
  • the first UE can select a suitable transmission mode for the high-speed UE, thereby ensuring the transmission requirement of the high-speed UE. Guarantee the success rate of transmission.
  • the method may further include: the first UE sends the first speed information to the first base station on the second link, where the first speed information includes: the speed of the first UE Size, or speed class information of the first UE.
  • the first base station may be a serving base station of the first UE.
  • the first UE may periodically send the first speed information to the first base station on the second link; or the first UE may be at a speed of the first UE Transmitting the first speed information to the first base station on the second link when the change occurs; or the first UE is reporting the first UE sent by the first base station After indicating the speed information, transmitting the first speed information to the first base station on the second link.
  • the transmission mode is a first transmission mode
  • the speed information determines that the first UE belongs to the second type of UE, and the transmission mode is the second transmission mode.
  • the first type of UE may be a non-high speed UE, and the second type of UE is a high speed UE.
  • the first transmission mode includes a first transmission resource
  • the second transmission mode includes a second transmission resource.
  • the first transmission resource may be determined from the first resource set or the first resource subset of the first resource set
  • the second transmission resource may be determined from the second resource set or the second resource subset of the second resource set.
  • the determining, by the first UE, the transmission manner of the control information according to the first speed information may include:
  • the first UE determines, according to the first speed information, that the first UE belongs to the first type of UE, determining, according to the first resource set or from the first resource subset of the first resource set, a first transmission resource, where the first resource subset is predefined; if the first UE determines, according to the first speed information, that the first UE belongs to the second type UE, then from the second The second transmission resource is determined by the resource concentration or from the second resource subset of the second resource set, wherein the second resource subset is predefined.
  • the method before the determining the transmission mode of the control information, the method further includes: the first UE acquiring the first resource set and the second resource set.
  • the first set of resources and the second set of resources may be pre-configured.
  • the method further includes: the first UE receiving the first indication information sent by the first base station on the second link, where the first indication information is used to indicate The first resource set and the second resource set are described.
  • the first resource set and the second resource set may be the same resource set; or the second resource set belongs to a subset of the first resource set.
  • the first UE determines, according to the first speed information, that the first UE belongs to a first type of UE, determining that the control information is carried in a first control channel;
  • the UE determines, according to the first speed information, that the first UE belongs to the second type of UE, and determines that the control information is carried in the second control channel.
  • the first control channel may be a first PSCCH
  • the second control channel may be a second PSCCH.
  • control information includes the first speed information
  • the first UE sends the control information in the transmission manner on the first link, where the first UE is in the first
  • the first speed information is sent to the second UE in a transmission manner on a link.
  • control channel carrying the control information may be a third control channel.
  • the third control channel is a PSBCH.
  • control information is used to indicate a type of the service, and the type of the service is a security type or a non-security type.
  • control information indicates whether the first UE is a synchronization source, and/or the control information indicates an identifier of a synchronization source of the first UE.
  • the synchronization source of the first UE is a first base station, and the identifier of the synchronization source of the first UE may be a physical cell identifier of the first base station; or the synchronization source of the first UE is global navigation.
  • the satellite system GNSS, the identifier of the synchronization source of the first UE may be a predefined identifier corresponding to the GNSS.
  • the method may further include: the first UE transmitting a synchronization signal on the first link.
  • the synchronization signal is used to indicate a type of service, and the type of the service is a security type or a non-security type.
  • the method may further include: determining, by the first UE, a synchronization source of the first UE.
  • Determining the synchronization source of the first UE if the first UE determines that the first UE belongs to the first type of UE according to the first speed information, determining, according to pre-configured information, Synchronization source. If the pre-configured information indicates that the synchronization source is a GNSS, the processing unit preferentially determines that the synchronization source is a GNSS.
  • the first UE determines, according to the first speed information, that the first UE belongs to the second type of UE, the first UE preferentially determines that the synchronization source is a GNSS.
  • the first UE uses the GNSS as a synchronization source. If the first UE cannot detect the signal of the GNSS, the first UE determines that the synchronization source is a first base station or a third UE.
  • the first base station may be a serving base station of the first UE, and the third UE may be a UE directly synchronized to the GNSS.
  • the first UE is capable of detecting the signal of the GNSS, including: if the first UE cannot detect the signal of the GNSS, the first UE starts a timer; and then in the The signal of the GNSS is detected within the duration of the timer.
  • the first UE cannot detect the signal of the GNSS, and if the first UE cannot detect the signal of the GNSS, the first UE starts a timer; and within the duration of the timer The signal of the GNSS is still not detected.
  • the signal capable of detecting the GNSS includes: a signal capable of detecting a GNSS whose signal strength is greater than or equal to a preset signal strength threshold.
  • the signal that cannot detect the GNSS includes: detecting any signal of the GNSS, or detecting a signal of the GNSS whose signal strength is less than the preset signal strength threshold.
  • the method further includes: the first UE transmitting data on the first link by using a fourth transmission resource.
  • the fourth transmission resource is indicated by the control information.
  • each K consecutive subcarriers located on the same symbol includes one subcarrier for transmitting the data, and K is a positive integer greater than or equal to 2.
  • control information further indicates a number of transmissions of the data, and a time-frequency resource at each transmission.
  • the number of transmissions of the data is multiple, the frequency domain resources used for each transmission of the data are the same, the fourth transmission resource includes the same frequency domain resource, and transmission with the data. Multiple time domain resources corresponding to the number of times.
  • the number of times the data is transmitted is N times
  • the fourth transmission resource includes a time-frequency resource used for M times of the N times, so that the receiving end of the control information is according to the control.
  • the time-frequency resources used by the M transmissions included in the information determine time-frequency resources used for the N transmissions, where M ⁇ N and M and N are positive integers.
  • the first UE sends the first transmission resource on the first link.
  • the data includes: the first UE transmitting the data and the first sequence on the first link by using the fourth transmission resource; wherein the first sequence is a ZC of a predefined length
  • the sequence set is determined after removing the predefined second sequence.
  • control information and the data are located in the same subframe.
  • the transmitting the control information includes: determining a first transmit power of the control information and a second transmit power of the data; if a sum of the first transmit power and the second transmit power is greater than a maximum transmit power And multiplying the first transmit power by a first scaling value as a first power, and multiplying the second transmit power by a second scaling value as a second power, so that the first power and the second The sum of the powers is less than or equal to the maximum transmit power; transmitting the control information using the first power, and transmitting the data using the second power,
  • the first scaling value is equal or unequal to the second scaling value.
  • the method further includes: when the first UE belongs to the second type of UE, the first UE uses the fifth transmission resource, and the data on the first link is used on the second link. Send to the second base station.
  • the second base station is a serving base station of the receiving end of the data.
  • the data transmission of the first link from the first UE to the receiving end can be assisted by the base station to ensure the transmission success rate of the high-speed UE.
  • the method before the sending, on the second link, the data on the first link to the second base station, the method further includes: sending, by the first UE, resource request information to the first base station; The indication information of the fifth transmission resource sent by the first base station.
  • the resource request information is a speed-related scheduling request SR or a buffer status report BSR.
  • the speed-related information may be: indication information including a speed in the SR or the BSR; or the first UE sends an indication of the speed of the first UE along with the SR or the BSR.
  • the indication information of the speed may be a specific speed value of the first UE, and may also indicate indication information whether the first UE is in a high speed state. For example, if the first UE is in the connected state, the SR or BSR is directly sent to the first base station. If the first UE is in the idle state, the scheduling request or the BSR is sent to the first base station after the first UE switches to the connected state.
  • the receiving end of the data is a second UE
  • the serving base station of the second UE is the first base station
  • the first base station and the second base station are the same base station.
  • the receiving end of the data includes a second UE and a fourth UE, where the serving base station of the second UE is the first base station, and the serving base station of the fourth UE is the third base station,
  • the second base station includes the first base station and the third base station.
  • a method for information transmission comprising:
  • the first UE determines, according to the first speed information, that the first UE belongs to the first type of UE, and determines the synchronization source according to pre-configured information, where the pre-configured information indicates The synchronization source is a GNSS, and the first UE preferentially determines that the synchronization source is a GNSS. If the first UE determines that the first UE belongs to the second type of UE according to the first speed information, the first UE preferentially determines that the synchronization source is a GNSS.
  • the first UE uses the GNSS as a synchronization source. If the first UE cannot detect the signal of the GNSS, the first UE determines that the synchronization source is the first base station or the second UE.
  • the first base station is a serving base station of the first UE, and the second UE is a UE directly synchronized to a GNSS.
  • the first UE is capable of detecting the signal of the GNSS, including: if the first UE cannot detect the signal of the GNSS, the first UE starts a timer; and then in the The signal of the GNSS is detected within the duration of the timer.
  • the first UE cannot detect the signal of the GNSS, and if the first UE cannot detect the signal of the GNSS, the first UE starts a timer; and within the duration of the timer The signal of the GNSS is still not detected.
  • the signal capable of detecting the GNSS includes: a signal capable of detecting a GNSS whose signal strength is greater than or equal to a preset intensity threshold.
  • the signal that cannot detect the GNSS includes: detecting no signal of the GNSS, or detecting a signal of the GNSS whose signal strength is less than the preset intensity threshold.
  • the preset strength threshold may be specified by a protocol, or may be preset at the first UE, or may be indicated by signaling by the serving base station of the first UE.
  • a method for information transmission including:
  • the first user equipment UE determines the number of transmissions of data scheduled by the control information, and determines a transmission manner of the control information according to the number of transmissions of the data;
  • the first UE sends the control information in the transmission manner on the first link.
  • the number of times the data is transmitted may be determined by the first UE according to the speed information of the first UE.
  • the valid fields of the control information are different.
  • control information includes a number of transmissions of the data, and indication information of a time-frequency resource at each transmission of the data.
  • the first field of the control information and the second field of the control information include time-frequency resources of two of the four transmissions.
  • the number of transmissions of the data is multiple, and the frequency domain resources used for each transmission of the data are the same, the control information includes the same frequency domain resource, and the transmission time of the data.
  • control information may further include indication information of a current number of transmissions, and/or the control information may further include indication information of a speed of the first UE.
  • the method further includes: transmitting the data on the first link according to the control information.
  • the control information may be carried on a physical edge link control channel PSCCH, and the data may be carried on a physical edge link shared channel PSSCH.
  • the data is carried in a traffic channel, and the control information is located in the same subframe as the data.
  • the transmitting the control information includes: determining a first transmit power of the control information and a second transmit power of the data; if a sum of the first transmit power and the second transmit power is greater than a maximum transmit power And multiplying the first transmit power by a first scaling value as a first power, and multiplying the second transmit power by a second scaling value as a second power, so that the first power and the second The sum of the powers is less than or equal to the maximum transmit power; the control information is transmitted using the first power, and the data is transmitted using the second power.
  • the first scaling value is equal or unequal to the second scaling value.
  • a method for information transmission comprising:
  • the first base station receives the speed information sent by the at least one UE
  • the first base station sends first indication information to the at least one UE on the second link, where the first indication information is used to indicate the first resource set and the second resource set.
  • the at least one UE may be from the first resource set or from the second resource set
  • the transmission resource for the first link is selected.
  • the first base station may send the first indication information on the second link by means of broadcast or multicast.
  • the first indication information is used to indicate that the first resource set is used for a first type of UE, and the second resource set is used by a second type of UE. In this way, if the first UE belongs to the first type of UE, the first UE determines the first transmission resource from the first resource set or from the first resource subset of the first resource set according to the first indication information. If the first UE belongs to the second type of UE, the first UE determines the second transmission resource from the second resource set or from the second resource subset of the second resource set according to the first indication information.
  • the first indication information may further indicate a location of the first resource subset in the first resource set, where the location may be a time domain location or a frequency domain location or a time-frequency location.
  • the first indication information may further indicate a location of the second resource subset in the second resource set, where the location may be a time domain location or a frequency domain location or a time-frequency location.
  • the first resource set and the second resource set are the same resource set.
  • the second set of resources is a subset of the first set of resources.
  • the first indication information may further indicate a location of the second resource set in the first resource set, where the location may be a time domain location or a frequency domain location or a time-frequency location.
  • the first indication information may further indicate a preset speed threshold, so that the at least one UE determines whether it belongs to the first type UE or the second type UE.
  • the method may include: the first base station receives the sending resource request information sent by the first UE, the first base station allocates resources to the first UE, and sends the indication information of the fifth transmission resource to the first UE.
  • the resource request information may be a speed related scheduling request SR or a buffer status report BSR.
  • the first base station may receive, on the second link, first link data that is sent by the first UE by using the fifth transmission resource, and the first base station may send the first link data to the second UE.
  • the second UE is a receiving end of the first link data.
  • a user equipment where the UE is a first UE, including a processing unit and a sending unit. a processing unit, configured to determine first speed information of the first UE, further configured to determine a transmission manner of the control information according to the first speed information, and a sending unit, configured to use the processing unit on the first link
  • the determined transmission mode transmits the control information.
  • the first UE of the fifth aspect is capable of implementing the method of information transmission performed by the first UE in the method of the first aspect.
  • a user equipment where the UE is a first UE, including a receiver, a processor, and a transmitter. a processor, configured to determine first speed information of the first UE, further configured to determine a transmission manner of control information according to the first speed information, and a transmitter configured to use the processor on the first link The determined transmission mode transmits the control information.
  • the first UE of the sixth aspect is capable of implementing the method of information transmission performed by the first UE in the method of the first aspect.
  • a computer readable storage medium in a seventh aspect, storing a program causing a UE to perform any of the above first aspects, and various implementations thereof The method of transmission.
  • a user equipment where the UE is a first UE, and includes: a first determining unit and a second determining unit. a first determining unit, configured to determine first speed information of the first UE, and a second determining unit, configured to determine synchronization of the first UE according to the first speed information determined by the first determining unit source.
  • the first UE of the eighth aspect is capable of implementing the method for information transmission performed by the first UE in the method of the second aspect.
  • a ninth aspect provides a user equipment, where the UE is a first UE, including: a memory and a processor.
  • the memory is configured to store code executed by the processor, the processor is configured to determine first speed information of the first UE, and determine a synchronization source of the first UE according to the first speed information.
  • the first UE of the ninth aspect is capable of implementing the method for information transmission performed by the first UE in the method of the second aspect.
  • a computer readable storage medium storing a program causing a UE to perform the second aspect described above, and any one of its various implementations for information The method of transmission.
  • a user equipment where the UE is a first UE, and includes: a processing unit and a sending unit. a processing unit, configured to determine a number of transmissions of data scheduled by the control information, and determine a transmission manner of the control information according to the number of transmissions of the data; and a sending unit, configured to send, by using the transmission manner, on the first link The control information.
  • the first UE of the eleventh aspect is capable of implementing the method of information transmission performed by the first UE in the method of the third aspect.
  • a user equipment where the UE is a first UE, including: a memory, a processor, and a transmitter.
  • the memory is used to store code executed by the processor.
  • a processor configured to determine a number of transmissions of data scheduled by the control information, and determine a transmission manner of the control information according to the number of transmissions of the data; and a transmitter configured to send the transmission manner on the first link The control information.
  • the first UE of the twelfth aspect is capable of implementing the method of the third aspect, which is performed by the first UE The method of information transfer for rows.
  • a computer readable storage medium in a thirteenth aspect, storing a program causing a UE to perform the above third aspect, and any one of the various implementations of the information transmission Methods.
  • a base station is provided, where the base station is a first base station, and includes a receiving unit, a processing unit, and a sending unit.
  • the receiving unit is configured to receive the speed information sent by the at least one UE;
  • the processing unit is configured to determine the first resource set and the second resource set according to the speed information of the at least one UE; and
  • the sending unit is configured to use the second link
  • the at least one UE sends the first indication information, where the first indication information is used to indicate the first resource set and the second resource set.
  • the first base station of the fourteenth aspect is capable of implementing the method for information transmission performed by the first base station in the method of the fourth aspect.
  • a base station is provided, the base station being a first base station, including a receiver, a processor, and a transmitter.
  • the receiver is configured to receive the speed information sent by the at least one UE;
  • the processor is configured to determine the first resource set and the second resource set according to the speed information of the at least one UE; and the transmitter is configured to use the at least one on the second link
  • the UE sends first indication information, where the first indication information is used to indicate the first resource set and the second resource set.
  • the first base station of the fifteenth aspect is capable of implementing the method for information transmission performed by the first base station in the method of the fourth aspect.
  • a computer readable storage medium storing a program causing a base station to perform the fourth aspect described above, and any of its various implementations for The method of information transmission.
  • the first UE if the speed of the first UE is less than a preset speed threshold, or if the speed level of the first UE is less than a preset speed level threshold, the first UE belongs to the first type of UE. If the speed of the first UE is greater than or equal to a preset speed threshold, or if the speed level of the first UE is greater than or equal to a preset speed level threshold, the first UE belongs to the second type of UE.
  • the first type of UE may be a non-high speed UE, and the second type of UE may be a high speed UE.
  • the transmission manner may include at least one of: a transmission resource used by the control information; a cyclic redundancy check CRC mask of the control information; and a scrambling sequence of the control information a demodulation reference signal used by the control channel carrying the control information; a size of a physical resource occupied by the control information when transmitting; a modulation and coding scheme MCS used by the control information; and a number of transmissions of the control information.
  • FIG. 1 is a schematic diagram of a scenario of V2V communication according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a first resource set and a second resource set according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method of information transmission in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of control information indication according to an embodiment of the present invention.
  • FIG. 6 is another schematic diagram of the control information indication in accordance with an embodiment of the present invention.
  • FIG. 7 is another schematic diagram of the control information indication in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of data transmission occupation resources according to an embodiment of the present invention.
  • FIG. 9 is another schematic diagram of data transmission occupation resources according to an embodiment of the present invention.
  • FIG. 10 is another schematic diagram of data transmission occupation resources according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another scenario of an embodiment of the present invention.
  • Figure 12 is a flow chart of a method of information transmission in accordance with another embodiment of the present invention.
  • Figure 13 is a flow chart of a method of information transmission in accordance with another embodiment of the present invention.
  • FIG. 14 is a flow chart of a method of information transmission in accordance with another embodiment of the present invention.
  • Figure 15 is a block diagram showing the structure of a user equipment according to an embodiment of the present invention.
  • Figure 16 is a block diagram showing the structure of a user number device according to another embodiment of the present invention.
  • Figure 17 is a block diagram showing the schematic structure of a system chip according to an embodiment of the present invention.
  • Figure 18 is a block diagram showing the structure of a user number device according to another embodiment of the present invention.
  • Figure 19 is a block diagram showing the structure of a user number device according to another embodiment of the present invention.
  • 20 is a schematic block diagram of a system chip of another embodiment of the present invention.
  • Figure 21 is a block diagram showing the structure of a user number device according to another embodiment of the present invention.
  • Figure 22 is a block diagram showing the structure of a user number device according to another embodiment of the present invention.
  • FIG. 23 is a schematic block diagram of a system chip of another embodiment of the present invention.
  • Figure 24 is a block diagram showing the structure of a user number device according to another embodiment of the present invention.
  • Figure 25 is a block diagram showing the structure of a user number device according to another embodiment of the present invention.
  • Figure 26 is a block diagram showing the schematic structure of a system chip according to another embodiment of the present invention.
  • Figure 27 is a block diagram showing the structure of a base station according to an embodiment of the present invention.
  • Figure 28 is a block diagram showing the structure of a base station according to another embodiment of the present invention.
  • 29 is a schematic block diagram of a system chip of another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a scenario of V2V communication according to an embodiment of the present invention.
  • Figure 1 shows a schematic diagram of the communication between four vehicles on a lane.
  • V2V communication can realize assisted driving and automatic driving through wireless communication between multiple onboard units (OBUs), thereby effectively improving traffic efficiency, avoiding traffic accidents, and reducing driving risks.
  • OBUs onboard units
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • An evolved NodeB (eNB) 10, a Road Side Unit (RSU) 30, a UE 41, a UE 42, and a UE 43 are shown in FIG.
  • the RSU 30 is capable of direct communication with the eNB 10; the UE 41, the UE 42 and the UE 43 are capable of direct communication with the eNB 10 or with the eNB 10 via the RSU 30.
  • FIG. 2 also shows a Global Navigation Satellite System (GNSS) 20, which can be used to provide location, timing, and the like for other network elements.
  • GNSS Global Navigation Satellite System
  • the RSU 30 can be functionally either a function of an in-vehicle device or an eNB.
  • the UE 41, the UE 42 and the UE 43 may refer to in-vehicle devices, and the in-vehicle devices may perform V2V communication through a side link (Sidelink).
  • the in-vehicle device has the maximum relative moving speed as the vehicle moves at a high speed, for example, when the UE 41 and the UE 42 are relatively moving.
  • the spectrum of the cellular link can be used between the various devices shown in FIG. 2, and the intelligent traffic spectrum near 5.9 GHz can also be used.
  • the technology for communication between devices can be enhanced based on the LTE protocol or enhanced based on D2D technology.
  • an edge link may refer to a communication link between a UE and a UE, and is also referred to as a D2D link in D2D communication, and some scenarios are also referred to as a PC5 link.
  • a V2V link In the Internet of Vehicles, it can also be called a V2V link, or a Vehicle to Infrastructure (V2I) link, or a Vehicle to Pedestrian (V2P) link.
  • the edge link can transmit information in any of broadcast, unicast, multicast, or multicast. Where the link
  • the spectrum of the cellular link can be used, for example, using the uplink spectrum of the cellular link; a dedicated spectrum allocated for intelligent traffic can also be used, which is not limited by the present invention.
  • the UE may also be referred to as a terminal, and may include an OBU on the vehicle, or may include an RSU having a terminal function on the roadside, and may also include a mobile phone used by a pedestrian.
  • the User Equipment may be in a state of high-speed mobility, which places higher demands on the transmission quality of the wireless link of the V2X communication. How to ensure the correct transmission of control information and data information between UEs without greatly increasing the complexity of the receiver is a key problem to be solved by the present invention.
  • the physical side link control channel (PSCCH) used in the transmission between the UEs is one physical resource block (PRB).
  • PRB physical resource block
  • the performance of the prior art is greatly degraded, so that the coverage requirement of the transmission distance cannot be satisfied.
  • the demodulation capability of the data channel scheduled by the PSCCH that is, the Physical Sidelink Shared Channel (PSSCH) is correspondingly affected.
  • PSSCH Physical Sidelink Shared Channel
  • First link indicates a communication link between UEs. It can be a D2D link or a V2X link or a side link (Sidelink, SL). For example, it may be the link between the UE 41 and the UE 42 in the foregoing FIG. 2, which may be the link between the RSU 30 and the UE 43 in FIG. 2 described above.
  • the communication on the first link may be performed in any one of unicast, multicast, and broadcast.
  • Second link indicates the communication link between the UE and the base station. It can be a cellular link. For example, it may be the link between the UE 41/UE 42/UE 43 and the base station 10 in the foregoing FIG. 2, which may be the link between the RSU 30 and the eNB 10 in FIG. 2 described above. Alternatively, if the RSU 30 in FIG. 2 is an RSU having a base station function, the second link may be a link between the UE 41/UE 42/UE 43 and the RSU 30.
  • the “predefined” in the embodiment of the present invention may be specified in the protocol, or may be pre-configured, for example, may be pre-configured by signaling.
  • the present invention is not limited thereto.
  • At least two types of UEs are defined, including a first type UE and a second type UE.
  • the speed of the first type of UE is less than a preset speed threshold, and the speed of the second type of UE is greater than or equal to a preset speed threshold.
  • the first type of UE is a UE whose speed is lower than a preset speed threshold
  • the second type of UE A UE whose speed is greater than or equal to a preset speed threshold.
  • the first type of UE may be referred to as a low speed UE or a non-high speed UE
  • the second type of UE may be referred to as a high speed UE.
  • the speed of the UE in the embodiment of the present invention may be an absolute speed, that is, a ground speed.
  • the manner in which the UE acquires the first absolute speed includes: determining by the GNSS mode; or if the UE is an OBU, obtaining corresponding through a corresponding module on the vehicle (such as an engine block, a gearbox module, or other module that electrically controls speed) Speed information; or obtained by information indicated by the base station.
  • the UE refers to a communication module of the physical layer, it may be obtained by using indication information of other layers.
  • the preset speed threshold may be a predefined speed value.
  • the preset speed threshold is 250 km/h.
  • multiple speed thresholds may be defined in the embodiment of the present invention, including, for example, a first speed threshold, a second speed threshold, and a third speed threshold. Accordingly, different speed levels can be set for the speed. Also, the speed level is related to multiple speed thresholds.
  • the first speed threshold is represented as v1
  • the second speed threshold is represented as v2
  • the third speed threshold is represented as v3, and v1 ⁇ v2 ⁇ v3. It is assumed that the speed of the UE is expressed as v.
  • the relationship between the speed grade and the plurality of speed thresholds can be as shown in Table 1 below.
  • the preset speed threshold can be represented by the speed grade. If the preset speed threshold is v2, then the UEs of the speed classes 0 and 1 in Table 1 are the aforementioned first type UE, and the UEs of the speed levels 2 and 3 in Table 1 are the foregoing second type UE. . That is, the first type of UE is a UE whose speed level is less than a preset level threshold, and the second type of UE is a UE whose speed level is greater than or equal to a preset level threshold.
  • the preset level threshold may be 1.
  • the maximum value of the speed corresponding to the preset level threshold is the foregoing preset speed threshold, and the preset speed threshold may be one or multiple, and the present invention does not Make restrictions.
  • v1 150 km/h
  • v2 200 km/h
  • v3 250 km/h.
  • the speed of the UE in the embodiment of the present invention may be a relative speed.
  • it may be the speed relative to other objects (which may be another UE or multiple UEs).
  • other objects may be UEs that are capable of communicating with the UE over the first link.
  • the speed of the UE may be the relative speed between the UE (e.g., UE 41 in Figure 2) and another UE on the opposite end (e.g., UE 42 in Figure 2).
  • the speed of the UE may be the relative speed between the UE (e.g., UE 41 in Figure 2) and the other UEs of the peer (e.g., UE 42 and UE 43 in Figure 2).
  • the manner in which the UE obtains the relative speed includes: first acquiring its own absolute speed, and then acquiring speed and location information of other UEs by measuring or parsing data packets sent from other UEs.
  • the UE obtains information on the relative speed of one or more UEs based on the information.
  • the acquisition may be obtained by using indication information of other layers.
  • the above preset speed threshold may be represented by a preset level threshold level.
  • the first type of UE is a UE whose speed level is less than a preset level threshold
  • the second type of UE is a UE whose speed level is greater than or equal to a preset level threshold.
  • the relative speed of the UE 41 relative to the UE 42 is ⁇ v2
  • the relative speed of the UE 41 relative to the UE 43 is ⁇ v3.
  • the speed level of the UE 41 is 2.
  • the first type of UE may send the control information on the first link, and may use the first transmission mode.
  • the second type of UE sends the control information on the first link, and may use the second transmission mode.
  • the first transmission mode is different from the second transmission mode.
  • the transmission mode may include at least one of the following: a transmission resource used by the control information, a Cyclic Redundancy Check (CRC) mask of the control information, a scrambling sequence of the control information, and a control for carrying the control information.
  • CRC Cyclic Redundancy Check
  • DMRS DeModulation Reference Signal
  • MCS Modulation and Coding Scheme
  • the number of times the control information is transmitted may be the maximum number of times the control information is transmitted.
  • Different transmission methods refer to at least one of the differences listed above. That is, different transmission modes may include at least one of the following: different transmission resources, different CRC masks, different scrambling sequences, different DMRSs, different physical resource sizes, different MCSs, and different The number of times the control information is transmitted, and so on.
  • the different transmission resources may include: the transmission resources used by the first type UE and the second type UE are from different resource sets; or the transmission resources used by the first type UE and the second type UE are from the same resource set, but
  • the information indicates a resource or a subset of resources used by the second type of UE, or a subset of resources used by the second type of UE is defined using a predefined manner.
  • different CRC masks refer to: using a sequence sequence defined by a sequence for scrambling the CRC part of the information to be transmitted.
  • the information carried by the control channel is x bits (for example, 50 bits), and the information of the x ratio is added with a N bit (such as 16 bits) CRC check bit before encoding.
  • the CRC mask refers to a predefined sequence of sequences of length N bits, which is used to add to the corresponding bits of the CRC. For example, for a CRC of 16 bits long, the CRC mask can be: 1111000011110000 or 1111111100000000. It can also be other predefined values, not listed here.
  • a pre-defined mask is added to add the corresponding bit to the check bit of the CRC.
  • the receiver can complete the corresponding CRC check operation only after knowing these predefined masks. Different CRC masks are used to distinguish the first transmission mode from the second transmission mode, so that the UE transmitter or receiver of the two transmission modes can receive the information corresponding to the two transmission modes in a corresponding processing manner, Improve the efficiency of processing.
  • different scrambling sequences refer to different sequence types for generating scrambling sequences, or different generating polynomials for generating scrambling sequences.
  • the method may include: generating an initial value difference of the scrambling sequence.
  • the different DMRSs may include different DMRS sequences, that is, include at least one of the following: different root sequence numbers, different cyclic shifts, and different orthogonal cover codes (OCCs). .
  • Different DMRSs may be included on symbols occupied by a plurality of different DMRSs used in one transmission, and the DMRS sequences mapped on different symbols are different. For example, if there are 4 DMRS symbols in one transmission, the DMRS sequence on one of the 4 DMRS symbols is different from the DMRS sequence on the other partial DMRS symbols.
  • DMRS refers to a signal generated by mapping a predefined sequence (DMRS sequence) onto a symbol occupied by a DMRS according to a certain rule.
  • the size of the physical resource occupied by the different control information transmission may include: the number of PRBs occupied by the first transmission mode and the second transmission mode when the control information is transmitted. For example, the first transmission mode occupies 1 PRB, and the second transmission mode occupies 2 or 3 or 4 PRBs.
  • different MCSs refer to different MCSs used when different types of control channels transmit control information.
  • the MCS of the first transmission mode is MCS1
  • the MCS of the second transmission mode is MCS2.
  • the MCS2 is lower than the MCS1, so that the transmission success rate of the high-speed UE can be guaranteed.
  • the number of transmissions of different control information refers to different types of transmission times.
  • the number of transmissions of the first transmission mode is N1
  • the number of transmissions of the second transmission mode is N2
  • the transmission mode may also be a field included in the control information, and the like.
  • the control information using the first transmission mode includes A1 fields
  • the control information using the second transmission mode includes A2 fields
  • control information transmitted by the first type of UE may be carried on the first control channel
  • control information transmitted by the second type of UE may be carried on the second control channel.
  • the first control channel may be a first PSCCH
  • the second control channel may be a second PSCCH.
  • a corresponding data channel (which may also be referred to as a traffic channel) may include a first PSSCH and a second PSSCH, and the first PSSCH corresponds to the first PSCCH, and the second PSSCH corresponds to the second PSCCH.
  • the first PSCCH is used for the first link data transmission of the first type of UE, and the second PSCCH is used for the first link data transmission of the second type of UE.
  • the first PSCCH has a different transmission mode than the second PSCCH.
  • the first PSCCH and the second PSCCH may be the same or different. The difference includes one of the above transmission methods.
  • any of the above transmissions is the same, and the same fields are included in the first and second control channels; some or all of the fields have different values for the first and second control channels.
  • the first control channel and the second control channel include the same field indicating speed information.
  • the values in the same field in the first control channel and the second control channel are different.
  • the first control channel includes 1-bit speed indication information, which is 0, corresponding to the first type of UE.
  • the first control channel includes 1-bit speed indication information, which takes a value of 1, corresponding to the second type of UE.
  • the speed of the first type of UE is less than a preset speed threshold, and the speed of the second type of UE is greater than or equal to a preset speed threshold. That is, the first type of UE is a UE whose speed is lower than a preset speed threshold, and the second type of UE is a UE whose speed is greater than or equal to a preset speed threshold. It can be understood that the first PSCCH is used for a normal speed (or called non-high speed) scene, and the second PSCCH is used for a high speed scene.
  • the sizes of the first PSCCH and the second PSCCH may be the same or different, and the present invention is not limited thereto.
  • the first transmission manner includes: the transmission resource used by the control information is the first transmission resource.
  • the second transmission method includes: the transmission resource used by the control information is the second transmission resource.
  • the first transmission mode includes a first transmission resource
  • the second transmission mode includes a second transmission resource.
  • the first transmission resource may be from the first resource set, and the second transmission resource may be from the second resource set.
  • the first transmission resource may be from a first resource subset of the first resource set, and the second transmission resource may be from a second resource subset of the second resource set.
  • the first transmission resource may be from the first resource set, and the second transmission resource may also be from the first resource set, and the usage information indicates the resource occupied by the second transmission or uses a predefined manner to define the second type of UE used. A subset of the first set of resources.
  • the first resource set (and/or the first resource subset) and the second resource set (and/or the second resource subset) may be predefined, for example, may be pre-configured. Or, may be pre-defined by the agreement.
  • the first resource set (and/or the first resource subset) and the second resource set (and/or the second resource subset) may be the first indication sent by the first base station. Obtained in the information.
  • the first indication information is described in more detail in the following method embodiments.
  • the first resource set and the second resource set may be the same resource set, as shown in FIG. 3( a ). Assuming a resource set, the first transmission resource and the second transmission resource can be determined from the resource set.
  • the first resource set includes N physical resource blocks (PRBs), and the N PRBs can be represented as ⁇ 0, 1, 2, ..., N-1 ⁇ .
  • PRBs physical resource blocks
  • the first transmission resource and the second transmission resource each have N different candidate locations in the resource sets of the N PRBs. At this point, the UE will blindly detect all possible candidate locations, which results in higher complexity.
  • the second set of resources belongs to a subset of the first set of resources, as shown in Figure 3(b). Then, at this time, the first transmission resource may be determined from the first resource set, and the second transmission resource may be determined from the second resource set.
  • the first resource set and the second resource set are different.
  • the first resource set and the second resource set may be adjacent or not adjacent in the frequency domain.
  • FIG. 3(c) the first capital adjacent in the frequency domain
  • FIG. 3(d) shows the first resource set and the second resource set that are not adjacent in the frequency domain. Then, at this time, the first transmission resource may be determined from the first resource set, and the second transmission resource may be determined from the second resource set.
  • the first resource set and the second resource set are different. Then, the first transmission resource may be determined from the first resource subset of the first resource set, and the second transmission resource is determined from the second resource subset of the second resource set. Alternatively, the first transmission resource is determined from the first resource set, and the second transmission resource is determined from the second resource subset of the second resource set. Alternatively, the first transmission resource is determined from the first resource subset of the first resource set, and the second transmission resource is determined from the second resource set.
  • the first resource set and the second resource set are the same resource set.
  • the first transmission resource may be determined from the first resource subset of the first resource set, and the second transmission resource is determined from the second resource subset of the second resource set.
  • the first transmission resource is determined from the first resource set, and the second transmission resource is determined from the second resource subset of the second resource set.
  • the first transmission resource is determined from the first resource subset of the first resource set, and the second transmission resource is determined from the second resource set.
  • first resource set and the second resource set are the same resource set, as shown in Figure 3(a).
  • first resource subset is a subset of the first resource set
  • second resource subset is a subset of the second resource set, as shown in FIG. 3( e ) and FIG. 3( f ).
  • the location of the time-frequency resource of the first resource subset in the first resource set may be predefined or indicated by signaling, and the location of the time-frequency resource of the second resource subset in the second resource set may also be Pre-defined or indicated by signaling.
  • both the first resource set and the second resource set may be referred to as a resource set, and the resource set includes N physical resource blocks (Physical Resource Block, PRB). ), N PRBs can be represented as ⁇ 0, 1, 2, ..., N-1 ⁇ .
  • PRB Physical Resource Block
  • the UE can perform blind detection according to the determined location, which can reduce blind detection. The number of times, thereby reducing the complexity.
  • a frequency domain location of the first resource subset and/or the second resource subset in the resource set may be defined.
  • Only the frequency domain location or the time domain location of the second subset of resources in the second resource set may be defined. Then, at this time, the first transmission resource may be determined from the first resource set, and the second transmission resource may be determined from the second resource subset.
  • Only the frequency domain location or the time domain location of the first resource subset in the first resource set may be defined. Then, at this time, the first transmission resource may be determined from the first resource subset, and the second transmission resource may be determined from the second resource set.
  • the frequency domain location or the time domain location of the first resource subset in the first resource set may be defined at the same time, and the frequency domain location or the time domain location of the second resource subset in the second resource set may be defined. Then, at this time, the first transmission resource may be determined from the first resource subset, and the second transmission resource may be determined from the second resource subset.
  • the frequency domain locations of the resource sets respectively occupied by the first resource subset and the second resource subset are occupied, and the first resource subset and the second resource subset occupy different frequency domain locations.
  • first subset of resources and the second subset of resources may be adjacent or non-contiguous in the frequency domain.
  • the present invention is not limited thereto.
  • FIG. 3(e) is merely a schematic description, and the first resource subset and/or the second resource subset may occupy discontinuous frequency domain locations.
  • FIG. 3(e) shows that the first resource subset occupies consecutive frequency domain locations, the second resource subset occupies consecutive frequency domain locations, and the first resource subset and the second resource subset are in the frequency domain. It is not adjacent.
  • the second subset of resources occupies the i1, i1+M1, i1+2*M1, . . . , i1+k1*M1 subcarriers of the resource set.
  • the values of i1 and M1 may be predefined or may be indicated by a base station by signaling. Generally, 0 ⁇ i1 ⁇ M1, and i1 and M1 are integers.
  • the first resource subset may be simultaneously indicated to occupy the i2, i2+M2, i2+2*M2, . . . , i2+k2*M2 subcarriers of the resource set.
  • the values of i2 and M2 may be predefined or may be indicated by a base station by signaling. Generally, 0 ⁇ i2 ⁇ M2, and i2 and M2 are integers.
  • the time domain locations of the resource sets respectively occupied by the first resource subset and the second resource subset are occupied, and the first resource subset and the second resource subset occupy different time domain locations.
  • first subset of resources and the second subset of resources may be adjacent or non-contiguous in the time domain.
  • the present invention is not limited thereto.
  • FIG. 3(f) is merely a schematic description, and the first resource subset and/or the second resource subset may occupy discontinuous time domain locations.
  • FIG. 3(f) shows that the first resource subset occupies consecutive time domain locations, the second resource subset occupies consecutive time domain locations, and the first resource subset and the second resource subset are in the time domain. It is not adjacent.
  • the second subset of resources occupies the i3, i3+M3, i3+2*M3, . . . , i3+k3*M3 symbols (or subframes) of the resource set.
  • the values of i3 and M3 may be predefined or may be indicated by a base station by signaling. Generally, 0 ⁇ i3 ⁇ M3, and i3 and M3 are integers.
  • the first resource subset may be simultaneously indicated to occupy the i4, i4+M4, i4+2*M4, . . . , i4+k4*M4 symbols (or subframes) of the resource set.
  • the values of i4 and M4 may be predefined or may be indicated by a base station by signaling. Generally, 0 ⁇ i4 ⁇ M4, and i4 and M4 are integers.
  • the first resource subset is defined by i1 and M1 in the frequency domain location of the second resource set. Then, at this time, the first transmission resource may be determined from the first resource set, and the second transmission resource may be determined from the second resource subset.
  • the first UE may determine that the sequence number of the subcarrier occupied by the second subset of resources is ⁇ 1, 5, 9, 13... ⁇ . It can be seen that in this case, the number of blind detections for the first resource set is N, the number of blind detections for the second resource subset is N/M1, and the total number of blind detections is N+N/M1.
  • the number of blind detections of the second subset of resources is reduced to the original 1/M1, thereby greatly reducing the complexity of blind detection.
  • the frequency domain location of the second resource subset in the second resource set is defined by i1 and M1
  • the frequency domain location of the first resource subset in the first resource set is defined by i2 and M2.
  • the first transmission resource may be determined from the first resource subset
  • the number of blind detections for the first subset of resources is N/M2
  • the number of blind detections for the second subset of resources is N/M1
  • the total number of blind detections is N/M2+ N/M1.
  • the base station can optimize according to the number of blind detections and available resources, and reduce the number of blind detections as much as possible while ensuring available resources, thereby achieving optimization processing.
  • the type and transmission mode of the UE may have the corresponding relationship as shown in Table 2. And, the correspondence may be predefined or indicated by the base station by signaling.
  • FIG. 4 is a flow chart of a method of information transmission in accordance with an embodiment of the present invention.
  • the method shown in FIG. 4 may be performed by a first UE, which may be the UE 41 shown in FIG. 2, and the method includes:
  • the first UE determines first speed information of the first UE.
  • the first speed information may be used to indicate the size of the speed of the first UE.
  • the first speed information may represent the magnitude of the speed of the first UE in the form of a speed grade.
  • the speed of the first UE herein may be an absolute speed, or may be a relative speed with respect to another UE or a plurality of UEs, and may also be an acceleration of the first UE to the ground or an acceleration with respect to another UE or another UE. This invention is not limited thereto.
  • the first speed information is used to indicate the magnitude of the absolute speed of the first UE.
  • the first UE may acquire the first speed information by using a GNSS mode.
  • the first UE may obtain the first speed information by using information indicated by the first base station.
  • the first UE may obtain the first speed information by using indication information of other layers.
  • the first UE may determine the first speed information by using a corresponding speed measuring device.
  • the first UE may determine the first speed information by a corresponding module on the vehicle, such as an engine module, a gearbox module, or other module that electrically controls speed.
  • the current speed of the first UE is measured as v, and the unit of the speed is km/h, or miles/h.
  • the first speed information is used to indicate the magnitude of the relative speed of the first UE relative to another UE (eg, the second UE).
  • the first UE may first determine its own absolute speed (ie, the absolute speed of the first UE), and then obtain speed information and/or information of the second UE by measuring or parsing a signal or a data packet sent from the second UE. location information. Further, the first UE may determine information about the relative speed of the first UE relative to the second UE according to the information.
  • the second UE may be one UE or multiple different UEs. When the second UE is a plurality of different UEs, it is some weighted value relative to the plurality of UE speeds. For example, arithmetic weighted average, geometrically weighted average, and the like.
  • the first UE may obtain the first speed information by using indication information of other layers.
  • the first UE determines, according to the first speed information, a transmission manner of the control information.
  • the first UE may determine the type of the first UE according to the first speed information of the first UE, that is, determine that the first UE belongs to the first type UE or the second type UE.
  • the first UE belongs to the first type of UE. And if the first speed information indicates that the speed of the first UE is greater than or equal to a preset speed threshold, the first UE belongs to the second type of UE.
  • the first UE belongs to the first type of UE.
  • the first speed information indicates that the relative speed of the first UE relative to the second UE is greater than or equal to a preset speed threshold, the first UE belongs to the second type of UE.
  • the first UE belongs to the first type of UE. And if the first speed information indicates that the speed level of the first UE is greater than or equal to a preset level threshold, the first UE belongs to the second type of UE.
  • the speed level of the first UE is determined according to the speed of the first UE, and the speed of the first UE may be an absolute speed or a relative speed.
  • the speed threshold and/or the speed level threshold may be predefined, or may be indicated by the first base station by signaling.
  • the first base station herein may be a serving base station of the first UE.
  • the first base station may be the eNB 10 shown in FIG. 2, or may also be an RSU having a base station function, which is not limited by the present invention.
  • the control information in the embodiment of the present invention is carried on the third control channel.
  • the third control channel may be a PSCCH or a Physical Sidelink Broadcast Channel (PSBCH).
  • PSSCH Physical Sidelink Broadcast Channel
  • the transmission mode of the control information carried by the PSBCH may be configured in the first UE before S102. Then, in S102, the first UE may acquire the pre-configured transmission mode.
  • the transmission manner of the control information determined by S102 may include a third transmission resource.
  • the third control channel carrying the control information may be used to indicate the type of the service.
  • the business can include security services and non-security services.
  • Security services can be used for security in public safety or Intelligent Transportation Systems (ITS).
  • ITS-safety Intelligent Transportation Systems
  • Non-secure services can be as non-secure services in ITS, ie non-ITS-safety; or non-public security services, ie ordinary data transmission services.
  • the type of service can be either a security type or a non-security type.
  • the type of service can be indicated by the control information. That is to say, the control information is used to indicate the type of the service, wherein the type of the service is a security type or a non-security type.
  • the type of the service may be indicated using a 1-bit field in the third control channel or a predefined CRC mask or a predefined scrambling sequence or using a predefined DMRS or a predefined transmission resource.
  • a “1” indicated in the 1-bit field may be used to indicate a security service, and “0” may be a non-security service; or,
  • a CRC mask of all "1" may be used to represent a security-type service, and a CRC mask of all "0" may be used to represent a non-secure service;
  • a predefined DMRS is used to indicate a security class service.
  • a DMRS sequence transmitted with control information is generated into two groups, one for indicating security-type services and the other for indicating non-secure services.
  • the control information may be carried on the PSSCH or on the PSBCH.
  • the two sets of DMRS may be two sets of DMRS sequences having different cyclic shifts, or may be two sets of DMRS sequences having different root serial numbers, or may be two sets of DMRS sequences having different OCCs; or
  • different resources are used to indicate the security type service, where the resources may be different time domain resources, different frequency domain resources, and may be periods or intervals for transmitting control information. Different transmission periods and different transmission intervals correspond to security and non-security services.
  • the method shown in FIG. 4 may further include: the first UE sends a synchronization signal on the first link.
  • the synchronization signal may be a Sidelink Synchronization Signal (SLSS).
  • SLSS Sidelink Synchronization Signal
  • the second UE may select the first UE as the synchronization source of the second UE, and the second UE may The synchronization signal sent by the first UE completes synchronization with the first UE.
  • the synchronization signal can be used to indicate the type of service.
  • the type of business can be either a security type or a non-security type.
  • the type of the service can be indicated by the period or interval at which the synchronization signal is transmitted.
  • a period threshold may be set, when the period of transmitting the synchronization signal is greater than the period
  • the type of the service is a security type.
  • the period of the synchronization signal is less than or equal to the size threshold of the period
  • the type of the service is a non-security type.
  • an interval threshold may be set. When the interval at which the synchronization signal is transmitted is greater than the threshold of the interval, the type of the service is a security type; when the interval at which the synchronization signal is transmitted is less than or equal to the threshold of the interval. , indicating that the type of business is a non-secure type.
  • the present invention is not limited thereto.
  • the type of the service can be indicated by a combination of different primary synchronization signals.
  • the type of the service can be indicated by a combination of different slave synchronization signals.
  • the type of the service can be indicated by a combination of the primary synchronization signal and the secondary synchronization signal.
  • secure and non-secure services are indicated by a combination of different sequences of two primary synchronization signals and/or a combination of different sequences of different synchronization signals from the two. For example, when the sequences of the two primary synchronization signals are the same, it is expressed as a security service; when the sequences of the two primary synchronization signals are different, it indicates that it is not a security industry.
  • sequences of the two primary synchronization signals are the same, they are represented as non-secure services; when the sequences of the two primary synchronization signals are different, they are represented as security services.
  • sequence of two slave sync signals can be indicated by the same operation as the master identical signal sequence. It is not listed here one by one.
  • different primary synchronization signal sequences may be used to indicate secure traffic and non-secure traffic, respectively, and/or different slave synchronization signal sequences may be used to indicate both secure traffic and non-secure traffic.
  • two sets of primary synchronization signal sequences can be defined, the first set of primary synchronization signal sequences being different from the second set of primary synchronization signal sequences, and used to indicate both secure and non-secure services, respectively.
  • the first set of primary synchronization signal sequences includes Zadoff-Chu sequences with root sequence numbers 26 and 37; the second group of primary synchronization signal sequences includes one or more sequence Zadoff-Chu sequences with root sequence numbers not equal to 26 and 37.
  • two sets of slave sync signal sequences can be defined, the first set of slave sync signal sequences being different from the second set of slave sync signal sequences, and used to indicate both secure and non-secure services, respectively.
  • the range of the identification of the first set of slave synchronization signal sequences is [0, 83]
  • the range of the identification of the second set of slave synchronization signal sequences is [84, 167].
  • the value range of the identification of the first set of slave synchronization signal sequences is [0, 167]
  • the range of identification of the second set of slave synchronization signal sequences is [168, 335].
  • the third control channel that carries the control information may further indicate at least one of the following information: whether the first UE is a synchronization source, and an identifier of a synchronization source of the first UE.
  • the identifier of the synchronization source of the first UE is the physical cell identifier of the first base station; or, if the synchronization source of the first UE is GNSS, the identifier of the synchronization source of the first UE is a predefined corresponding to the GNSS Logo.
  • the predefined identifier corresponding to the GNSS may be preset for the GNSS, for example, may be a negative number, such as -1.
  • a negative number such as -1.
  • it may be a value larger than an existing first service set identifier (SSID), such as 336 or 400.
  • SSID first service set identifier
  • it can also be an identifier that is predefined among 0 to 335.
  • the present invention is not limited thereto.
  • the control information may indicate whether the first UE can be used as a synchronization source. That is, the control information may be used to indicate whether the first UE is a synchronization source.
  • the identification of the synchronization source of the first UE may be indicated by the control information. That is, the control information can be used to indicate the identity of the synchronization source of the first UE.
  • whether the first UE can be used as a synchronization source can be indicated by a specific field in the third control channel. Assuming that the particular field is field A, then setting the field A to 1 indicates that the first UE can be used as a synchronization source. Setting the field A to 0 indicates that the first UE cannot be used as a synchronization source.
  • the identification of the synchronization source of the first UE may be indicated by another specific field in the third control channel.
  • the another specific field may be set to 1. If the synchronization source of the first UE is not GNSS, another specific field of this may be set to zero.
  • the identifier of the synchronization source of the first UE is the physical cell identifier of the first base station. If the synchronization source of the first UE is a GNSS, the identifier of the synchronization source of the first UE is a predefined identifier corresponding to the GNSS.
  • the identifier of the synchronization source of the first UE is an identifier of another UE or a synchronization signal identifier of the UE.
  • the field B may be set to -1 to indicate that the synchronization source of the first UE is GNSS.
  • the third control channel further indicates that the first UE can serve as a synchronization source, and the first UE transmits a synchronization signal on the first link. Then, another UE (such as the second UE) that receives the control information and the synchronization signal may select the first UE as the synchronization source of the second UE according to the control information and the synchronization signal sent by the first UE.
  • another UE such as the second UE
  • the method may further include: determining, by the first UE, a synchronization source of the first UE.
  • the first UE may determine a synchronization source of the first UE according to the first speed information.
  • the first UE may determine the synchronization source according to the pre-configured information.
  • the first UE determines that the synchronization source is the first base station, where the first base station may be the serving base station of the first UE.
  • the first UE may perform synchronization with the first base station by using a method in the prior art, and details are not described herein again.
  • the first UE preferentially determines that the synchronization source is a GNSS.
  • the first UE determines that the synchronization source is an RSU.
  • the first UE may preferentially determine that the synchronization source is a GNSS. Or if the first UE determines that the first UE belongs to the first type of UE according to the first speed information, and the pre-configured information indicates that the synchronization source is a GNSS, the first UE may preferentially determine that the synchronization source is a GNSS.
  • the first UE preferentially determines that the synchronization source is a GNSS, and may include: if the first UE can detect the signal of the GNSS, the first UE uses the GNSS as a synchronization source. If the first UE cannot detect the signal of the GNSS, the first UE determines that the synchronization source is a first base station or a third UE, where the first base station is a service of the first UE The base station, the third UE is a UE that is directly synchronized to the GNSS.
  • the first UE uses the GNSS as a synchronization source.
  • the signal of the GNSS can be detected, including: a signal capable of detecting a GNSS whose signal strength is greater than or equal to a preset signal strength threshold.
  • the signal of the GNSS can be detected, which can include: detecting the signal of the GNSS at the current time.
  • the signal of the GNSS can be detected, which may include: when the signal of the GNSS cannot be detected, the first UE starts a timer; and then detects the signal of the GNSS within the duration of the timer.
  • the first UE can re-attempt to detect the signal of the GNSS within the duration of the timer, which can enable the first UE to synchronize to the GNSS as much as possible.
  • the receiving end of the traffic channel transmitted by the first UE is Second UE. If the first UE and the second UE are synchronized to two different base stations when the first UE is transmitting the traffic channel, when the relative vehicle speed between the first UE and the second UE is 500 km/h, the two UEs are The maximum frequency offset value on the first link at 5.9 GHz is 7.4 kHz. If the first UE and the second UE are synchronized to the GNSS when the first UE is transmitting the traffic channel, when the relative vehicle speed between the first UE and the second UE is 500 km/h, the two UEs are at 5.9 GHz.
  • the maximum frequency offset value on the first link is 4.0 kHz. It can be seen that for high-speed UE signal transmission and reception, the high-speed UE should be synchronized to the GNSS as much as possible. Therefore, when the first UE belongs to the second type of UE, the embodiment of the present invention preferentially determines the synchronization source of the first UE as the GNSS, and enables the first UE to synchronize to the GNSS as much as possible, thereby reducing the first The frequency deviation of the traffic transmission on the link, thereby ensuring the transmission performance on the first link, reducing the packet error rate and expanding the coverage.
  • the timer in the embodiment of the present invention may be configured by the first base station, or may be predefined, or may be internally implemented by the first UE.
  • the first UE may lock to the timing of the GNSS for a period of time within the duration of the timer according to a timer generated by its own internal clock.
  • the duration of the timer may be determined by the accuracy of the internal clock of the UE, or may be a signaling indication configured by the base station, or may be predefined. For example, the duration is 10 minutes or 2 minutes.
  • the first UE may use the first base station or the third UE as a synchronization source.
  • the first base station is a serving base station of the first UE
  • the third UE is a UE directly synchronized to the GNSS. That is, the synchronization source of the third UE is GNSS.
  • the first UE may use the third UE as the synchronization source, and may include: the first UE receives the synchronization signal sent by the third UE, and performs timing according to the synchronization signal sent by the third UE.
  • the synchronization signal sent by the third UE may be a Sidelink Synchronization Signal (SLSS).
  • SLSS Sidelink Synchronization Signal
  • the signal of the GNSS cannot be detected, and may include: any signal that cannot detect the GNSS, or a signal of the GNSS whose signal strength is less than a preset signal strength threshold.
  • the GNSS signal cannot be detected, and may include: when the GNSS signal cannot be detected, the first UE starts the timer; and the GNSS signal is still not detected within the duration of the timer.
  • the first UE may determine the synchronization source according to a predefined priority order.
  • the predefined priority order may be: GNSS ⁇ first base station ⁇ third UE ⁇ fourth UE.
  • the predefined priority order may be: GNSS ⁇ third UE ⁇ first base station ⁇ fourth UE.
  • the third UE here is a UE that is directly synchronized to the GNSS
  • the fourth UE is a UE that is not directly synchronized to the GNSS
  • the second UE is a UE that is indirectly synchronized to the GNSS. That is to say, the synchronization source of the third UE is GNSS, and the synchronization source of the fourth UE is not GNSS.
  • the next priority is used as the synchronization source.
  • a timer is started, and if the signal quality still does not meet the performance requirement before the timer ends, the timer ends. After that, the next priority is used as the synchronization source.
  • a first timer may be used in synchronization with the GNSS
  • a second timer is used in synchronization with the first base station
  • a third timer is used in synchronization with the third UE
  • the fourth timer is used in the process of UE synchronization.
  • the process of determining the synchronization source when the first UE cannot detect the signal of the GNSS may include:
  • the first UE attempts to use the first base station as a synchronization source. If the first UE attempts to succeed, the first UE uses the first base station as a synchronization source; if the first UE attempts to fail, and the first UE can detect a synchronization signal of the third UE, The first UE uses the third UE as a synchronization source; if the first UE attempts to fail, and the first UE cannot detect the synchronization signal of the third UE, the first UE will The fourth UE serves as a synchronization source.
  • the process of determining the synchronization source when the first UE cannot detect the signal of the GNSS may include:
  • the first UE uses the third UE as a synchronization source. If the first UE cannot detect the synchronization signal of the third UE, the first UE attempts to use the first base station as a synchronization source; if the first UE attempts to succeed, the first UE will The first base station is used as a synchronization source; if the first UE attempts to fail, the first UE uses the fourth UE as a synchronization source.
  • control information in the embodiment of the present invention is carried on the first control channel or the second control channel. That is, the control channel carrying the control information may be the first control channel or the second control channel.
  • the first control channel may be the first PSCCH
  • the second control channel may be the second PSCCH.
  • the control information is carried on the first control channel if the first UE belongs to the first type of UE. If the first UE belongs to the second type of UE, the control information is carried on the second control channel.
  • the transmission mode is the first transmission mode. If the first UE determines that the first UE belongs to the second type of UE according to the first speed information, it may be determined that the transmission mode is the second transmission mode.
  • the first transmission mode and the second transmission mode may be predefined.
  • the first transmission mode and the second transmission mode may be pre-configured on the first UE, or the first transmission mode and the second transmission mode may be pre-defined in the protocol.
  • the transmission resource of the first transmission mode may be configured as the first transmission resource, and the transmission resource of the second transmission mode is the second transmission resource.
  • the first transmission resource may be from the first resource set, and the second transmission resource may be from the second resource set.
  • the first transmission resource may be from a first resource subset of the first resource set, and the second transmission resource may be from a second resource subset of the second resource set.
  • the first resource set and the second resource set may be predefined.
  • the first subset of resources and the second subset of resources may be predefined.
  • the first resource set and the second resource set may be predetermined, and at the same time, the location of the first resource subset in the first resource set and the second resource subset in the second resource set are predefined.
  • the first resource set and the second resource set may be different resource sets, or the first resource set and the second resource set may be the same resource set, or the second resource set may be the first A subset of the resource set.
  • the scrambling sequence of the first transmission mode may be pre-configured as the first scrambling sequence, and the scrambling sequence of the second transmission mode is the second scrambling sequence.
  • the CRC mask of the first transmission mode may be pre-configured as the first CRC mask, and the CRC mask of the second transmission mode is the second CRC mask.
  • the first UE may obtain the predefined first transmission mode and the second transmission mode, and determine, according to the first speed information, that the transmission mode of the control information is the first transmission mode or the second transmission mode.
  • the first transmission mode and the second transmission mode may be determined according to signaling indications of the first base station.
  • the first base station herein may be the eNB 10 shown in FIG. 2, or may be an RSU having a base station function, which is not limited by the present invention.
  • the first transmission mode includes the first transmission resource
  • the second transmission mode includes the second transmission resource.
  • the first UE may receive the first indication information sent by the first base station, where The first indication information is used to indicate the first resource set and the second resource set. Further, in S102, the first UE may determine, according to the first indication information and the first speed information, a transmission mode of the control channel.
  • the first indication information may be sent by the first base station in a multicast or broadcast manner.
  • the first indication information may be sent by the first base station to the partial UE or all UEs in the cell where the first base station is located on the second link.
  • Some of the UEs here include the first UE.
  • the first indication information may be sent by the first base station by using Radio Resource Control (RRC) signaling or a System Information Block (SIB).
  • RRC Radio Resource Control
  • SIB System Information Block
  • the first indication information may be indicated by the first base station by using dynamic signaling in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the DCI may be a DCI in a Physical Downlink Control Channel (PDCCH), or may be a dedicated DCI.
  • the pre-configured resource is indicated for high speed or low speed UE, for example by a specific field in the DCI.
  • 1 bit in the DCI may be used to indicate whether the transmission resource indicated in the DCI or in the RRC and/or SIB is for a high speed or a low speed UE.
  • the first transmission mode includes a first transmission resource
  • the second transmission mode includes a second transmission resource.
  • the first transmission resource is from the first resource set or the first resource subset in the first resource set.
  • the second transmission resource is from a second resource set or a second resource subset in the second resource set.
  • the first indication information in the embodiment of the present invention may be used to indicate the first resource set and the second resource set.
  • S102 includes: if the first UE belongs to the first type of UE, the first UE determines, according to the first indication information, the first transmission resource from the first resource set or from the first resource subset in the first resource set, thereby Determine the first transmission method. If the first UE belongs to the second type of UE, the first UE determines the second transmission resource from the second resource set or the second resource subset from the second resource set according to the first indication information, thereby determining the second transmission mode.
  • the first base station may decide, according to the speed information of the UE in the cell that it serves, when to send the first indication information, or determine when and how to send the first indication information.
  • the first UE may send the first speed information to the first base station, and receive the first indication information sent by the first base station. Enter one In step S102, the first UE determines a transmission mode of the control channel according to the first speed information and the first indication information.
  • the first UE may send the first speed information to the first base station on the second link.
  • the first UE may periodically send the first speed information to the first base station on the second link.
  • the first UE may transmit the first speed information to the first base station on the second link when the speed of the first UE changes (eg, from low speed to high speed, or from high speed to low speed).
  • the first UE may send the first speed information to the first base station on the second link after receiving the indication sent by the first base station to report the speed information of the first UE.
  • the first UE may directly send information about the speed of the first UE to the first base station.
  • the speed here may be the absolute speed of the first UE or may be the relative speed of the first UE relative to the other UE.
  • the first UE may send information of the speed of the first UE to the first base station on the second link.
  • the first UE may transmit information of the speed level of the first UE to the first base station. Specifically, the first UE may send information of the speed level of the first UE to the first base station on the second link.
  • the first UE may send location information of the first UE to the first base station. Specifically, the first UE may send the location information of the first UE to the first base station on the second link. In this way, the first base station may determine the speed information of the first UE according to the location information and the time interval and the like that are sent by the first UE at least twice.
  • the first UE may transmit the acceleration of the first UE to the first base station. Specifically, the first UE may send the acceleration information of the first UE to the first base station on the second link. In this way, the first base station can predict the speed of the first UE according to the acceleration.
  • the first base station can decide when to send the first indication information according to the received speed information, or decide when and how to send the first indication information.
  • the first base station may decide to send the first indication information in the form of a broadcast.
  • the first base station may send the first indication to the first UE by using the DCI in the Physical Downlink Control Channel (PDCCH). information.
  • PDCCH Physical Downlink Control Channel
  • the first base station determines, according to the reporting by the UE, that there is no UE, the speed is greater than or equal to a preset speed threshold (or greater than or equal to a preset level threshold), That is to say, all UEs in the cell are low-speed UEs (or non-high-speed UEs), and the first base station may not send the first indication information.
  • the first base station may transmit indication information indicating that there is no high speed UE.
  • the first base station may only indicate the first transmission mode.
  • One of the indications displayed is indicated by a field.
  • a field For example, it may be indicated by a 1-bit field, for example, "1" indicates that there is a high-speed UE, and "0" indicates that there is no high-speed UE.
  • the first UE before the S102, if the first UE belongs to the second type of UE, the first UE sends the first speed information to the first base station. The first UE may then receive the first indication information sent by the first base station. Further, in S102, the first UE determines a transmission manner of the control information according to the first speed information and the first indication information.
  • the method shown in FIG. 4 may further include: determining, by the first UE, a synchronization source of the first UE. Moreover, this step can be performed before or after S102, which is not limited by the present invention.
  • the first UE may determine the first UE synchronization source according to the first speed information.
  • the first UE may determine the synchronization source according to the pre-configured information. If the first UE determines, according to the first speed information, that the first UE belongs to the second type of UE, the first UE may preferentially determine that the synchronization source is a GNSS.
  • the first UE may determine the synchronization source according to a predefined priority order.
  • the method for determining the synchronization source by the first UE may be referred to in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the first UE sends control information on the first link.
  • the first UE sends the control information on the first link in the transmission mode determined by S102.
  • the first UE may send control information to the second UE on the first link.
  • the link between the first UE and the second UE is the first link. It can be understood that the first UE can be a sender device on the first link, and the second UE can be a receiver on the first link. device.
  • the first UE may send the control information in the first transmission manner on the first link. If the first UE belongs to the second type of UE, in S103, the first UE may send the control information in a second transmission manner on the first link.
  • the control information is carried on the third control channel.
  • the third control channel is a PSBCH.
  • the control information sent in S103 may be used to indicate whether the first UE is a synchronization source, and/or an identifier used to indicate a synchronization source of the first UE.
  • control information is carried on the first control channel or the second control channel.
  • the control information is carried on the first control channel if the first UE belongs to the first type of UE. If the first UE belongs to the second type of UE, the control information is carried on the second control channel.
  • the first control channel can be the first PSCCH and the second control channel can be the second PSCCH.
  • control information may include at least one of the following information:
  • the type of the first UE may be included, that is, the first UE belongs to the first type UE or the second type UE. That is, the control information may include indication information that the first UE belongs to the first type of UE, or the control information may include indication information that the first UE belongs to the second type of UE.
  • the first UE may be a second type of UE (ie, a high-speed UE) by using a 1-bit "1”
  • the first UE is a first-type UE (ie, a non-high-speed UE) by a 1-bit "0".
  • the speed indication information of the first UE includes first speed information. That is, the control information includes the first speed information.
  • the magnitude of the speed of the first UE may be included.
  • the speed here can be the size of the absolute speed, or it can be the relative speed.
  • speed grade information of the first UE may be included.
  • the speed level information can be indicated by 2 bits "10", that is, the speed level is 2.
  • the speed level is 3 by 2 bits "11".
  • the control information may include first speed information.
  • the first UE may send the first speed information to the second UE by using the first link.
  • the second UE performs corresponding processing.
  • the control information may indicate whether the first UE is a high speed UE using 1 bit. If the first When a UE is a high speed UE, the resources selected and reserved by the first UE have a higher priority.
  • the second UE should avoid selecting the resources selected and/or reserved by the first UE when performing resource selection and reselection. This can preferentially guarantee the resource usage of the high speed UE (first UE).
  • the control information may be an SA.
  • the time-frequency resource of the scheduled data may be indicated by the SA.
  • the number of times of data transmission may be predefined.
  • the number of transmissions of data is pre-configured on the first UE, or the protocol pre-specifies the number of transmissions of data of the high-speed UE.
  • the number of times of data transmission may be obtained by the first UE from information sent by the serving base station of the second UE.
  • the number of times of data transmission is determined by the first UE according to at least one of the following information: first speed information of the first UE, geographical location information of the first UE and/or the second UE, and signal of the first UE Quality, signal quality of data transmitted by the second UE, and/or signal, and the like.
  • the invention is not limited thereto.
  • the first UE may determine the number of times of data transmission according to the first speed information of the first UE. For example, if the first UE determines that the first UE belongs to the first type of UE, it may be determined that the number of times of data transmission is N1; and if the first UE determines that the first UE belongs to the second type of UE, the data transmission may be determined. The number of times is N2.
  • the values of N1 and N2 may be pre-configured, or may be specified by a protocol, or may be indicated by the first base station by signaling, etc., which is not limited by the present invention. Alternatively, the values of N1 and N2 may satisfy N1 ⁇ N2.
  • the control information may be sent once or multiple times. It is assumed that in the embodiment of the present invention, the first UE sends the control information to the second UE on the first link. That is, the second UE is the receiving end device of the control information. Then the second UE may receive control information sent multiple times. If the second UE detects multiple control information within a predefined time period, and the content included in the multiple control information (ie, the number of transmissions of the scheduled data, and the time-frequency resource at each transmission) are the same, The second UE may determine that the received plurality of control information indicates the transmission of the same data.
  • control information may further include indication information of the current number of transmissions.
  • the control information may include a field indicating the current number of transmissions. For example, assume that the number of times the control information is transmitted is two times. Then, a 1-bit field can be used in the control information to indicate the current number of transmissions. Specifically, the 1-bit field is “0” indicating that the current status is The first transmission of control information, the 1-bit field being "1" indicates that the current transmission is the second transmission of control information. Correspondingly, for the second UE, any one of the 2 transmissions of the control information received by the second UE is valid.
  • the second UE can simultaneously receive 2 transmissions of the control information, where the fields indicating the number of transmissions are 0 and 1, respectively, and the positions of the indicated time-frequency resources of the scheduled data are identical, then the received 2 times can be considered
  • the control information is a different retransmission of the same control information.
  • control information may include indication information of the number of times of transmission of the data scheduled by the control information.
  • the control information may include an indication of the number of transmissions of the data in an explicit or implicit manner.
  • a field indicating the number of transmissions of data scheduled by the control information may be included in the control information, such as using a 2-bit field to indicate 1, 2, 3 or 4 transmissions, respectively.
  • control information may include 2*N+1 values, respectively indicating the number of transmissions, and the time and frequency resources of the N transmissions.
  • control information may include the same frequency domain resource, and indication information of multiple time domain resources corresponding to the number of transmissions of the data. For example, if the number of transmissions is N, the control information includes at least 2+N values indicating the number of transmissions, one same frequency domain resource, and N time domain resources.
  • the control information may include a time-frequency resource used for M times of the N times, and indicates, by using an implicit manner, when other NM transmissions are used. Frequency resources.
  • the receiving end device of the control information may determine another time-frequency resource of the N-M transmission according to the M-time transmission time-frequency resources included in the control information. For example, time-frequency resources used for additional N-M transmissions may be determined based on the received control information and a predefined relationship, where M ⁇ N and M and N are positive integers.
  • the above “2*N+1 values” and “2+N values” cannot be simply understood as “2*N+1 numerical values” and “2+N numerical values”.
  • the "value" in which the frequency domain resource representing a transmission may include the value of the frequency domain start position and the value of the frequency domain end position, and the like.
  • the transmission times are different, and the transmission manners of the control information may be the same or different.
  • control information can use a uniform transmission method.
  • the information included in the control information is numTx, t1, f1, t2, and f2.
  • the time domain location and the frequency domain location of the first transmission may be indicated by t1, f1, respectively, and the time domain location and the frequency domain location of the second transmission are respectively indicated by t2, f2.
  • t1 may represent the absolute value of the time domain location, and may also represent the relative value of the time domain location, for example, may be a relative value relative to the time domain in which the current control information is transmitted.
  • the time domain position t1 of the first transmission of data is the relative position with respect to the starting time domain position of the control information.
  • t2 can represent the absolute value of the time domain location, and can also represent the relative value of the time domain location, for example, may be a relative value relative to the time domain in which the current control information is transmitted, or may be relative to the first transmission.
  • the relative value of the time domain As shown in FIG. 5, the time domain position t2 of the second transmission of data is the relative position with respect to the starting time domain position of the first transmission of data.
  • f1 may represent an absolute value of a frequency domain location, and may also represent a relative value of a frequency domain location, for example, may be a relative value relative to a frequency domain in which current control information is transmitted.
  • f2 may represent an absolute value of the frequency domain location, and may also represent a relative value of the frequency domain location, for example, may be a relative value relative to a frequency domain in which the current control information is transmitted, or may be relative to the first transmission. The relative value of the frequency domain.
  • f1 may include a starting position, an ending position, and a position of each occupied PRB occupied by the frequency domain when the data is first transmitted.
  • f2 may include a starting position, an ending position, and a position of each occupied PRB occupied by the data when the data is first transmitted.
  • t1 and f1 may be relative values or absolute values, as shown in FIG. 6, and t1 represents a relative value.
  • the time domain position and the frequency domain position of the ith transmission in the fourth time may be indicated by t1 and f1, respectively, and the time domain position and the frequency domain position of the jth transmission in the fourth time are respectively indicated by t2 and f2.
  • the time-frequency resource in the second transmission may be determined according to a function of t1, f1, or the time-frequency resource in the second transmission may be determined according to a function of t2, f2, or the second transmission.
  • the time-frequency resource can be determined according to the function of t1, f1, t2, and f2.
  • the time-frequency resource at the fourth transmission may be determined according to a function of t1, f1, or the time-frequency resource at the fourth transmission may be determined according to a function of t2, f2, or, for the fourth time.
  • the time-frequency resource during transmission can be determined according to the function of t1, f1, t2, and f2.
  • the time-frequency resource of the second transmission is determined according to the time-frequency resource of the first transmission
  • the time-frequency resource of the fourth transmission is determined according to the time-frequency resource of the third transmission.
  • the time domain location of the second transmission is an adjacent subframe after the time domain location of the first transmission, and it may be determined that the frequency domain location of the second transmission is the same as the frequency domain location of the first transmission.
  • the time domain location of the fourth transmission is an adjacent subframe after the time domain location of the third transmission, and it may be determined that the frequency domain location of the fourth transmission is the same as the frequency domain location of the third transmission.
  • the time domain location of the second transmission is obtained by the pre-configured first offset value of the first transmission time domain location, and the frequency domain location of the second transmission may be determined to be the first transmission.
  • the frequency domain position is obtained by the pre-configured second offset value.
  • it may be determined that the time domain location of the fourth transmission is obtained by the third transmission time domain location by the pre-configured third offset value, and the frequency domain location of the fourth transmission may be determined to be the third transmission.
  • the frequency domain position is obtained by the pre-configured fourth offset value.
  • a function may be set to determine that the time domain location of the second transmission is g1 (t1, f1, SA ID ), and the frequency domain location of the second transmission is determined to be g2 (t1, f1, SA ID ). It is determined that the time domain position of the fourth transmission is g3 (t1, f1, SA ID ), and the frequency domain position of the fourth transmission is determined to be g4 (t1, f1, SA ID ).
  • g1, g2, g3, and g4 are functions
  • SA ID represents the ID of the control information.
  • the time domain location of the second transmission is (t1+SA ID ) mod A
  • the frequency domain location of the second transmission is (f1+SA ID ) mod B
  • the time domain location of the fourth transmission is (t2+SA ID ) mod A
  • the frequency domain location of the fourth transmission is (f2+SA ID ) mod B.
  • mod represents the modulo operation.
  • a and B can be predefined parameters.
  • the predefined parameters A and B can be fixed values and can be related to resource pools.
  • the receiver here refers to a receiving device that receives the control information.
  • the control information may use different transmission methods for different transmission times.
  • the S102 may include: determining, by the first UE, the number of times of data scheduled by the control information according to the first speed information, and determining a transmission manner of the control information according to the number of transmissions of the data.
  • control information may include t1, f1.
  • the position of each time-frequency resource can be indicated by the displayed signaling, and the flexibility of resource scheduling can be ensured.
  • the time-frequency resource of each transmission can be quickly obtained without performing complicated calculation processing.
  • f, f1-f4, t1-t4 in the above embodiment may be either an absolute value or a relative value, which is not limited in the present invention.
  • the second UE receives the control information sent by the first UE on the first link, and the second UE may obtain the indication information of the number of times of the data scheduled by the control information, and further The second UE may acquire the time-frequency resource at each transmission in the control information corresponding to the field corresponding to each transmission. Therefore, after the second UE can receive the data sent by the first UE on the first link according to the control information.
  • the time-frequency resource of the primary transmission is obtained in the first field of the control information.
  • the first time transmission of the second transmission is obtained in the first field of the control information
  • the second transmission in the second transmission is obtained in the second field of the control information.
  • Time-frequency resources When the number of times of data transmission is four times, the first time of the fourth transmission is acquired in the first field of the control information, and the second transmission of the fourth transmission is obtained in the second field of the control information.
  • the time-frequency resource acquires the time-frequency resource of the third transmission in the fourth transmission in the third field of the control information, and acquires the time-frequency resource of the fourth transmission in the fourth transmission in the fourth field of the control information.
  • the frequency domain resources used for each transmission of the data are the same, and the control information includes the same frequency domain resource and one-to-one correspondence with the number of data transmissions.
  • Instructions for multiple time domain resources may be obtained.
  • the second UE may obtain the same frequency domain resource from a frequency domain field of the control information, and acquire a time domain resource that is transmitted multiple times from a field corresponding to the number of transmissions.
  • time-frequency resources of two of the four transmissions are acquired in the first field of the control information and the second field of the control information; according to four times The time-frequency resource of two transmissions in the transmission determines the time-frequency resources of the other two transmissions in the four transmissions.
  • control information may include a time-frequency resource for the first transmission and a third transmission. Time-frequency resources. Then, the second UE may determine the time-frequency resource of the second transmission and the time-frequency resource of the fourth transmission according to the control information and the predefined offset or function.
  • the control information can be transmitted differently for different transmission times.
  • the second UE may determine, according to the number of transmissions of the data, a transmission mode of the control information, where the transmission mode is one of at least two predefined transmission modes; and further, may be acquired according to the determined transmission mode. Time-frequency resources at each transmission.
  • the method further includes: the first UE transmitting data on the first link.
  • the data is carried on a traffic channel (also referred to as a data channel). Specifically, if the first UE belongs to the first type of UE, the data may be carried on the first traffic channel. If the first UE belongs to the second type of UE, the data may be carried on the second traffic channel.
  • the first traffic channel may be the first PSSCH
  • the second traffic channel may be the second PSSCH.
  • the first UE may use the fourth transmission resource to transmit data on the first link.
  • the fourth transmission resource may be selected from a resource pool, where the resource pool may be configured by a base station.
  • the fourth transmission resource may be indicated by control information.
  • a transmission mode of multiple traffic channels may be defined.
  • one of a plurality of transmission modes can be selected.
  • one of the transmission modes may be as shown in FIG. 8, that is, the transmission mode employed in the prior art.
  • the DMRS is transmitted on the symbols of the numbers 2, 5, 8, and 11 as shown in FIG. 8, and the data is transmitted on the symbols of the numbers 1, 3, 4, 6, 7, 9, 10, and 12. And, data is transmitted on each of the subcarriers of symbols 1, 3, 4, 6, 7, 9, 10, and 12.
  • each K consecutive subcarriers located on the same symbol includes one subcarrier for transmitting the data, and K is a positive integer greater than or equal to 2.
  • K is a positive integer greater than or equal to 2.
  • DMRSs are transmitted on symbols 2, 5, 8, and 11.
  • symbols 1, 3, 4, 6, 7, 9, 10, and 12 only one of every two adjacent subcarriers is used to transmit data.
  • subcarriers for transmitting data are interlaced with each other.
  • DMRSs are transmitted on symbols 2, 5, 8, and 11.
  • symbols 1, 3, 4, 6, 7, 9, 10, and 12 On each of the symbols 1, 3, 4, 6, 7, 9, 10, and 12, only one of every two adjacent subcarriers is used to transmit data. And, of any two adjacent subcarriers, each symbol of one of the subcarriers is not used for transmitting data. Or, for another understanding, two adjacent ones for transmitting data On the symbols (such as symbols 1 and 3, or, as in symbols 3 and 4), the sequence numbers of the subcarriers used to transmit data are the same.
  • the subcarriers transmitting data can be equally spaced.
  • the interval is two.
  • One of the two adjacent subcarriers located on the same data symbol is used to transmit data, and the other subcarrier is empty, and no data is sent.
  • FIG. 8 to FIG. 10 are only a few illustrative examples of the embodiments of the present invention.
  • the transmission modes described herein may also be other situations, which are not enumerated here.
  • the first UE may send data using any one of the transmission modes.
  • the data is transmitted using the transmission mode as shown in FIG. 8.
  • the first UE belongs to the second type of UE data is transmitted using the transmission mode as shown in FIG. 9 or FIG.
  • the first UE may receive an indication of the first base station and use the transmission mode according to the indication of the first base station.
  • the first base station instructs the first UE to transmit data using the transmission mode as shown in FIG. 9
  • the first UE performs data transmission using the transmission mode as shown in FIG. 9 according to the indication of the first base station.
  • the receiving end of the data (such as the second UE) may also receive data according to the transmission mode indicated by the indication of the first base station.
  • the indication information of the transmission mode may be included in the traffic channel.
  • the transmission mode used can be indicated by a 2-bit field.
  • a transmission mode as shown in FIG. 8 can be expressed by "00”
  • a transmission mode as shown in FIG. 9 is represented by "01”
  • a transmission mode as shown in FIG. 10 is represented by "10".
  • the receiving end of the data (such as the second UE) can determine the transmission mode according to the indication, and further receive the data according to the transmission mode.
  • the first UE may send the first sequence together with the data on the first link.
  • the first UE may use the fourth transmission resource to transmit data and the first sequence on the first link.
  • the fourth transmission resource may be selected from a resource pool, where the resource pool may be configured by a base station.
  • the fourth transmission resource may be indicated by control information.
  • the first sequence may be the DMRS sequence in Figures 8-10.
  • the first sequence may be a set of predefined length ZC sequences (ie, Zadoff-Chu sequences) to remove the predefined second sequence After the determination.
  • the predefined length is the bandwidth occupied by the DMRS, that is, the bandwidth occupied by the data in the frequency domain in one transmission.
  • the first UE may send data and a ZC sequence on the first link. If the first UE belongs to the second type of UE, the first UE may transmit data and the first sequence on the first link. It can be seen that the set of sequences used by the second type of UE is smaller than the set of sequences used by the first type of UE.
  • the first UE can determine the first sequence from Z.
  • the ID included in the PSCCH can be used to obtain the root number of the ZC.
  • the set Z1 of the ZC sequence may be ⁇ 0, 1, 2, ..., 29 ⁇
  • the first sequence can be selected from Z, for example, it can be calculated and selected according to the ID included in the PSCCH, for example, 21 can be selected.
  • the existing formula for determining the sequence hop of the DMRS can be directly modified to:
  • the new mapping relationship can be as shown in Table 3 below.
  • the first UE sends data to the second UE on the first link.
  • the first UE may send data to the second UE by using the second link.
  • the first UE may send data on the first link to the first base station through the second link. Further, the first base station may send the data to the second UE by using the second link.
  • the resource request information may be a speed related Scheduling Request (SR) or a Buffer Status Report (BSR).
  • the speed-related information may be: indication information including a speed in the SR or the BSR; or the first UE sends an indication of the speed of the first UE along with the SR or the BSR.
  • the indication information of the speed may be a specific speed value of the first UE, and may also indicate indication information whether the first UE is in a high speed state.
  • the first base station may determine that the first UE is a high-speed UE, and the first base station may determine a higher priority for the first UE. Further, the first base station is the first base station.
  • the first UE allocates an uplink transmission resource.
  • the uplink transmission resource may be a fifth transmission resource.
  • the first UE directly sends the SR or BSR related to the speed. If the first UE is in an idle state, the first UE transmits a speed related SR or BSR after entering the connected state.
  • the first UE is UE1 in FIG. 11, and the second UE is UE2 in FIG.
  • the serving base stations of UE1 and UE2 are both eNB1.
  • UE1 can transmit data to eNB1 through the second link between UE1 and eNB1, and then send data to UE2 through eNB1 through the second link between eNB1 and UE2.
  • the first UE may send data on the first link to the second base station through the second link. Further, the second base station may send the data to the second UE by using the second link.
  • the first UE Before the first UE can send the resource request information to the second base station, the first UE receives the indication information of the fifth transmission resource sent by the second base station. In this way, the first UE can use the fifth transmission resource to send data to the second base station through the second link.
  • the resource request information may be an SR or BSR related to speed.
  • the first UE is UE1 in FIG. 11, and the second UE is UE3 in FIG.
  • the serving base station of UE1 is eNB1, and the serving base station of UE3 is eNB2.
  • UE1 can transmit data to eNB2 through the second link between UE1 and eNB2, and then send data to UE3 through eNB2 through the second link between eNB2 and UE3.
  • the first UE may send the data on the first link to the first base station through the second link. And then sent by the first base station to the second base station. Further, the second base station can pass the data The second link is sent to the second UE.
  • the first UE Before the first UE can send the resource request information to the first base station, the first UE receives the indication information of the fifth transmission resource sent by the first base station. In this way, the first UE can use the fifth transmission resource to send data to the first base station through the second link.
  • the resource request information may be an SR or BSR related to speed.
  • the first UE is UE1 in FIG. 11, and the second UE is UE3 in FIG.
  • the serving base station of UE1 is eNB1, and the serving base station of UE3 is eNB2.
  • UE1 can send data to eNB1 through the second link between UE1 and eNB1, and eNB1 can send data to eNB2 through the S1 interface between eNB1 and eNB2, and then between eNB2 and UE3 through eNB2.
  • the second link transmits data to UE3.
  • the first UE sends data to multiple UEs on the first link, for example, the first UE may be sent in a broadcast manner on the first link.
  • the first UE may assist the data transmission to the multiple UEs by the serving base stations of the multiple UEs through the second link.
  • the first UE and the serving base stations of the multiple UEs are both the first base station.
  • the first UE may send data on the first link to the first base station through the second link.
  • the first base station may send the data to the multiple UEs through the second link.
  • the first base station may send data to multiple UEs in a broadcast or multicast manner.
  • the first UE Before the first UE can send the resource request information to the first base station, the first UE receives the indication information of the fifth transmission resource sent by the first base station. In this way, the first UE can use the fifth transmission resource to send data to the first base station through the second link.
  • the resource request information may be an SR or BSR related to speed.
  • the first base station After the first base station receives the SR or BSR related to the speed, the first base station may determine that the first UE is a high-speed UE, and the first base station may determine a higher priority for the first UE. Further, the first base station is the first base station.
  • the first UE allocates an uplink transmission resource.
  • the uplink transmission resource may be a fifth transmission resource.
  • the first UE is UE1 in FIG. 11, and multiple UEs are UE2 and UE4 in FIG.
  • the serving base stations of UE1, UE2 and UE4 are both eNB1.
  • UE1 can transmit data to eNB1 through the second link between UE1 and eNB1, and then send data to UE2 and UE4 through eNB1 through the second link.
  • eNB1 may transmit data to multiple UEs over a cellular link in a broadcast or multicast manner.
  • the serving base station of the first UE is the first base station
  • multiple UEs do not belong to the same A cell, that is, a serving base station in which two UEs exist in multiple UEs is different.
  • the first UE may send data on the first link to the serving base station of the multiple UEs through the second link. Further, the serving base station of the multiple UEs may send the data to the corresponding UE of the multiple UEs through the second link.
  • the first UE Before the first UE can send the resource request information to the serving base station of the multiple UEs, the first UE receives the indication information of the fifth transmission resource sent by the serving base station of the multiple UEs.
  • the fifth transmission resource may be a public uplink transmission resource. In this way, the first UE can use the fifth transmission resource to transmit data to the serving base stations of the plurality of UEs through the second link.
  • the resource request information may be sent by using an SR or a BSR. Specifically, the resource request information may be an SR or BSR related to speed.
  • the first UE is UE1 in FIG. 11, and multiple UEs are UE2 and UE3 in FIG.
  • the serving base stations of UE1 and UE4 are both eNB1, and the serving base station of UE3 is eNB2.
  • UE1 may transmit data to eNB1 through the second link between UE1 and eNB1, transmit data to eNB2 through the second link between UE1 and eNB2, and then pass through eNB1 through the second between eNB1 and UE4.
  • the link transmits data to the UE 4, and the eNB2 transmits data to the UE 3 through the second link between the eNB2 and the UE3.
  • the UE1 can simultaneously transmit data to the eNB1 and the eNB2 by using the fifth transmission resource.
  • the fifth transmission resource may be a public uplink transmission resource allocated for the first UE.
  • the first UE may be allocated a common uplink transmission resource in a predefined manner, or the eNB1 and the eNB2 may negotiate to allocate a common uplink transmission resource to the first UE.
  • the data transmission on the first link can be assisted by the second link, so that the transmission reliability and coverage of the data transmitted by the first UE (High Speed UE) can be improved.
  • the first UE can send control information on the first link, and can also send data on the first link.
  • the control information can be carried on the control channel, and the data can be carried on the traffic channel.
  • the first UE when the first UE sends data on the first link, it may be performed in a manner similar to sending control information as described above. For example, a similar method can be used to determine the manner in which the data is transmitted, and then the data is transmitted on the first link in a determined manner.
  • control channel may be a PSCCH (eg, a second PSCCH) and the traffic channel may be a PSSCH (eg, PSSCH).
  • PSCCH eg, a second PSCCH
  • PSSCH eg, PSSCH
  • the PSCCH and the PSSCH may be transmitted in different subframes, or may be transmitted in the same subframe. That is, in the embodiment of the present invention, the control information and the data may be In different sub-frames, or control information and data can be located in the same sub-frame.
  • the transmit power of the control information and the transmit power of the data may be determined in the following manner.
  • the first transmit power of the control information and the second transmit power of the data are respectively determined according to the open loop power.
  • the first transmit power and the second transmit power may be represented by a linear value, a logarithmic value, or a value of other units, which is not limited in the present invention. If the first transmit power value of the control information is a linear value, it is expressed as If the second transmit power of the data is a linear value, it is expressed as
  • the method for determining the first transmit power and the second transmit power according to the open loop power is:
  • P PSCCH_O 10log 10 (M PSCCH )+P O_PSCCH,1 + ⁇ PSCCH,1 ⁇ PL,
  • P PSSCH_O 10 log 10 (M PSSCH ) + P O_PSSCH, 1 + ⁇ PSSCH, 1 ⁇ PL.
  • the calculated first transmit power P PSCCH_O and second transmit power P PSSCH_O may be logarithmic values of power.
  • M PSCCH represents the transmission bandwidth of the PSCCH
  • M PSSCH represents the transmission bandwidth of the PSSCH
  • PL represents the path loss value of the second link between the first UE and the serving base station (e.g., the first base station).
  • ⁇ PSCCH,1 and ⁇ PSSCH,1 represent the path loss compensation coefficients of PSCCH and PSSCH , respectively.
  • P O_PSCCH,1 and P O_PSSCH,1 are two power values configured by the serving base station or predefined.
  • the PL may be notified to the first UE in the form of signaling after being determined by the serving base station, or may be determined by the first UE.
  • the method for calculating the path loss value can be referred to the prior art and will not be described in detail herein.
  • ⁇ PSCCH,1 , ⁇ PSSCH,1 , P O_PSCCH,1 and P O_PSSCH,1 may be notified to the first UE by the serving base station in the form of signaling, or may be predefined.
  • the serving base station may transmit configuration information, which may include values of ⁇ PSCCH,1 , ⁇ PSSCH,1 , P O_PSCCH,1 and P O_PSSCH,1 .
  • the maximum transmit power that the first UE can provide on the first link may determine that the actual transmit power of the control information is the first transmit power, and the actual transmit power of the data is the second transmit power.
  • the first transmit power may be scaled, and the second The transmit power is scaled such that the sum of the transmit powers after scaling is no greater than the maximum transmit power that the first UE can provide on the first link.
  • the first transmit power and the second transmit power may be scaled in equal proportions, and the scaling ratio is both w, then the scaling should satisfy:
  • the actual transmit power of the control information is the first transmit power multiplied by the zoom ratio, ie
  • the actual transmit power of the data is the second transmit power multiplied by the scaling ratio, ie
  • the first transmit power and the second transmit power may be scaled unequally, and the scaling ratios are w 1 and w 2 , respectively, and the scaling should satisfy:
  • the actual transmit power of the control information is the first transmit power multiplied by the scaling ratio w 1 , ie
  • the actual transmit power of the data is the second transmit power multiplied by the scaling ratio w 2 , ie
  • the control information and the data are located in the same subframe: if the sum of the first transmit power of the determined control channel and the second transmit power of the data channel is greater than the maximum transmit power, then the first The transmit power is multiplied by the first scaling ratio as the first power, and the second transmit power is multiplied by the second scaling ratio as the second power such that the sum of the first power and the second power is not greater than the maximum transmit power. Further, the first power transmission control information can be used on the first link and the second power transmission data channel can be used.
  • the transmission power between the PSCCH and the PSSCH can be allocated in any of the following ways, or the transmission mode of the PSCCH and the PSSCH can be determined:
  • the first UE may discard the PSSCH and only transmit the PSCCH in the current subframe.
  • the first UE may separately transmit the PSCCH and the PSSCH in different subframes.
  • the first UE may increase the number of transmissions.
  • the PSCCH and the PSSCH are located in the same subframe, and in some transmissions of the multiple transmissions, the PSCCH and the PSSCH are located in different subframes.
  • the third transmit power may be the first transmit power
  • the fourth transmit power may be the second transmit power
  • the third transmit power and the fourth transmit power may be the transmit power indicated by the first base station
  • the third transmit power and the fourth transmit power may be determined by the first UE according to a predefined rule.
  • the first UE may determine that the number of transmissions is N, the M times of the P transmissions and the PSSCH of the N transmissions are located in the same subframe, and the other N-M transmissions of the PSCCH and the PSSCH are located in different subframes. In the M transmissions, the actual transmit power of the PSCCH located in the same subframe and the actual transmit power of the PSSCH may be determined first.
  • Figure 12 is a flow chart of a method for information transmission in accordance with another embodiment of the present invention. The method shown in Figure 12 includes:
  • the first UE determines first speed information of the first UE.
  • the first speed information may be used to indicate the size of the speed of the first UE.
  • the first speed information may represent the magnitude of the speed of the first UE in the form of a speed grade.
  • the speed of the first UE herein may be an absolute speed, or may be a relative speed with respect to another UE or a plurality of UEs, and may also be an acceleration of the first UE to the ground or an acceleration with respect to another UE or another UE. This invention is not limited thereto.
  • the first speed information is used to indicate the magnitude of the absolute speed of the first UE.
  • the first UE may acquire the first speed information by using a GNSS mode.
  • the first UE may obtain the first speed information by using information indicated by the first base station.
  • the first UE may obtain the first speed information by using indication information of other layers.
  • the first UE may determine the first speed information by using a corresponding speed measuring device.
  • a corresponding speed measuring device For example, if the first UE is an OBU, then the first UE can pass through a corresponding module on the car, such as launching
  • the first speed information is determined by a machine module, a gearbox module, or other module that electrically controls the speed.
  • the current speed of the first UE is measured as v, and the unit of the speed may be km/h or miles/h, which is not limited by the present invention.
  • the first speed information is used to indicate the magnitude of the relative speed of the first UE relative to another UE (eg, the second UE).
  • the first UE may first determine its own absolute speed (ie, the absolute speed of the first UE), and then obtain speed information and/or information of the second UE by measuring or parsing a signal or a data packet sent from the second UE. location information. Further, the first UE may determine information about the relative speed of the first UE relative to the second UE according to the information.
  • the second UE may be one UE or multiple different UEs. When the second UE is a plurality of different UEs, it is some weighted value relative to the plurality of UE speeds. For example, arithmetic weighted average, geometrically weighted average, and the like.
  • the first UE may obtain the first speed information by using indication information of other layers.
  • the first UE determines a synchronization source of the first UE according to the first speed information.
  • the first UE may determine the synchronization source according to the pre-configured information.
  • the first UE determines that the synchronization source is the first base station, and optionally, the first base station is the serving base station of the first UE. If the first UE belongs to the first type of UE and the pre-selected information indicates that the synchronization source of the first UE is the base station, the first UE may perform synchronization with the first base station by using a method in the prior art, and details are not described herein again.
  • the first UE preferentially determines that the synchronization source is a GNSS.
  • the first UE determines that the synchronization source is an RSU.
  • the first UE may preferentially determine that the synchronization source is a GNSS. Or if the first UE determines that the first UE belongs to the first type of UE according to the first speed information, and the pre-configured information indicates that the synchronization source is a GNSS, the first UE may preferentially determine that the synchronization source is a GNSS.
  • the first UE preferentially determines that the synchronization source is a GNSS, and may include: if the first UE can detect the signal of the GNSS, the first UE uses the GNSS as a synchronization source. If the first UE cannot detect the signal of the GNSS, the first UE determines that the synchronization source is a first base station or a third UE, where the first base station is a service of the first UE The base station, the third UE is a UE that is directly synchronized to the GNSS.
  • the first UE uses the GNSS as a synchronization source.
  • the signal of the GNSS can be detected, including: a signal capable of detecting a GNSS whose signal strength is greater than or equal to a preset signal strength threshold.
  • a signal capable of detecting a GNSS whose signal strength is greater than or equal to a preset signal strength threshold if the first UE is able to detect a valid GNSS signal, the GNSS is used as the synchronization source.
  • Valid here may mean that the signal strength is greater than or equal to a preset signal strength threshold.
  • the signal of the GNSS can be detected, which can include: detecting the signal of the GNSS at the current time.
  • being able to detect the signal of the GNSS may include: starting a timer when the signal of the GNSS cannot be detected; and then detecting the signal of the GNSS within the duration of the timer.
  • the first UE can re-attempt to detect the signal of the GNSS within the duration of the timer, which can enable the first UE to synchronize to the GNSS as much as possible.
  • the receiving end of the traffic channel transmitted by the first UE is the second UE. If the first UE and the second UE are synchronized to two different base stations when the first UE is transmitting the traffic channel, when the relative vehicle speed between the first UE and the second UE is 500 km/h, the two UEs are The maximum frequency offset value on the first link at 5.9 GHz is 7.4 kHz. If the first UE and the second UE are synchronized to the GNSS when the first UE is transmitting the traffic channel, when the relative vehicle speed between the first UE and the second UE is 500 km/h, the two UEs are at 5.9 GHz.
  • the maximum frequency offset value on the first link is 4.0 kHz. It can be seen that for high-speed UE signal transmission and reception, the high-speed UE should be synchronized to the GNSS as much as possible. Therefore, when the first UE belongs to the second type of UE, the embodiment of the present invention preferentially determines the synchronization source of the first UE as the GNSS, and enables the first UE to synchronize to the GNSS as much as possible, thereby reducing the first The frequency deviation of the traffic transmission on the link, thereby ensuring the transmission performance on the first link, reducing the packet error rate and expanding the coverage.
  • the timer in the embodiment of the present invention may be configured by the first base station, or may be predefined, or may be internally implemented by the first UE.
  • the first UE may lock to the timing of the GNSS for a period of time within the duration of the timer according to a timer generated by its own internal clock.
  • the duration of the timer may be predefined, or may depend on the accuracy of the internal clock of the UE, or may also depend on the signaling indication configured by the base station. For example, the duration is 10 minutes or 2 minutes.
  • the first UE may use the first base station or the third UE as a synchronization source.
  • the first base station is a serving base station of the first UE
  • the third UE is a UE directly synchronized to the GNSS. That is, the synchronization source of the third UE is GNSS.
  • the first UE may use the third UE as the synchronization source, and may include: the first UE receives the synchronization signal sent by the third UE, and performs timing according to the synchronization signal sent by the third UE.
  • the synchronization signal sent by the third UE may be an SLSS.
  • the signal of the GNSS cannot be detected, and may include: any signal that cannot detect the GNSS, or a signal of the GNSS whose signal strength is less than a preset signal strength threshold.
  • the GNSS signal cannot be detected, which may include: starting the timer when the GNSS signal cannot be detected; and still not detecting the GNSS signal within the duration of the timer.
  • the first UE may determine the synchronization source according to a predefined priority order.
  • the predefined priority order may be: GNSS ⁇ first base station ⁇ third UE ⁇ fourth UE.
  • the predefined priority order may be: GNSS ⁇ third UE ⁇ first base station ⁇ fourth UE.
  • the third UE here is a UE that is directly synchronized to the GNSS
  • the fourth UE is a UE that is not directly synchronized to the GNSS. That is to say, the synchronization source of the third UE is GNSS, and the synchronization source of the fourth UE is not GNSS.
  • the next priority is used as the synchronization source.
  • a timer is started, and if the signal quality still does not meet the performance requirement before the timer ends, the timer ends. After that, the next priority is used as the synchronization source.
  • a first timer may be used in synchronization with the GNSS
  • a second timer is used in synchronization with the first base station
  • a third timer is used in synchronization with the third UE
  • the fourth timer is used in the process of UE synchronization.
  • the process of determining the synchronization source when the first UE cannot detect the signal of the GNSS may include:
  • the first UE attempts to use the first base station as a synchronization source. If the first UE attempts to succeed, the first UE uses the first base station as a synchronization source; if the first UE attempts to fail, and the first UE can detect a synchronization signal of the third UE, And the first UE uses the third UE as a synchronization source; if the first UE attempts to fail, and the first UE cannot detect And the synchronization signal to the third UE, the first UE uses the fourth UE as a synchronization source.
  • the process of determining the synchronization source when the first UE cannot detect the signal of the GNSS may include:
  • the first UE uses the third UE as a synchronization source. If the first UE cannot detect the synchronization signal of the third UE, the first UE attempts to use the first base station as a synchronization source; if the first UE attempts to succeed, the first UE will The first base station is used as a synchronization source; if the first UE attempts to fail, the first UE uses the fourth UE as a synchronization source.
  • the method may include: the first UE sends control information on the first link.
  • control information may be used to indicate at least one of the following: the type of the service, the first speed information, whether the first UE is the synchronization source, and the identifier of the synchronization source of the first UE.
  • control information can be carried on a third control channel.
  • the third control channel is PSCCH or PSBCH.
  • the third control channel that carries the control information may be used to indicate at least one of the following: a type of the service, the first speed information, whether the first UE is a synchronization source, and an identifier of the synchronization source of the first UE.
  • the business can include security services and non-security services.
  • the type of service can be either a security type or a non-security type.
  • Security services can be used for security services such as ITS-safety in public safety or Intelligent Transportation Systems (ITS).
  • ITS Intelligent Transportation Systems
  • Non-secure services can be as non-secure services in ITS, ie non-ITS-safety; or non-public security services, ie ordinary data transmission services.
  • the type of the service may be indicated using a 1-bit field in the third control channel or a predefined CRC mask or a predefined scrambling sequence or using a predefined DMRS or a predefined transmission resource.
  • a security class service may be indicated by a “1” indicated in a 1-bit field, and a “0” indicates a non-security-type service; or, specifically, a CRC mask of all “1” may be used to represent a security-type service.
  • a CRC mask of all "0" indicates a non-secure type of service.
  • a predefined DMRS is used to indicate security-type services.
  • a DMRS sequence transmitted with control information is generated into two groups, one for indicating security-type services and the other for indicating non-secure services.
  • the control information may be carried on the PSCCH or on the PSBCH.
  • the two groups of DMRS can be two sets of DMRS sequences with different cyclic shifts. Or two sets of DMRS sequences with different root numbers, or two sets of DMRS sequences with different OCCs.
  • different resources are used to indicate the security service, where the resources may be different time domain resources, different frequency domain resources, different code domain resources, or may be a period or interval for transmitting the third control channel. . Different transmission periods and different transmission intervals correspond to security and non-security services.
  • the first speed information may include a size of the speed of the first UE, or speed level information of the first UE.
  • whether the first UE can be used as a synchronization source can be explicitly or implicitly indicated.
  • whether the first UE can be used as a synchronization source can be indicated by a specific field in the third control channel. Assuming that the particular field is field A, then setting the field A to 1 indicates that the first UE can be used as a synchronization source. Setting the field A to 0 indicates that the first UE cannot be used as a synchronization source.
  • the identifier of the synchronization source of the first UE may be explicitly or implicitly indicated.
  • the identity of the synchronization source of the first UE may be indicated by another specific field in the third control channel.
  • the another specific field may be set to 1. If the synchronization source of the first UE is not GNSS, another specific field of this may be set to zero.
  • the identifier of the synchronization source of the first UE is the physical cell identifier of the first base station. If the synchronization source of the first UE is a GNSS, the identifier of the synchronization source of the first UE is a predefined identifier corresponding to the GNSS.
  • the identifier of the synchronization source of the first UE is an identifier of another UE or a synchronization signal identifier of the UE.
  • the predefined identifier corresponding to the GNSS may be preset for the GNSS, for example, may be a negative number, such as -1.
  • a negative number such as -1.
  • it may be a value larger than an existing first service set identifier (SSID), such as 336 or 400.
  • SSID first service set identifier
  • it can also be an identifier that is predefined among 0 to 335.
  • the present invention is not limited thereto.
  • the field B may be set to -1 to indicate that the synchronization source of the first UE is GNSS.
  • the method shown in FIG. 12 further includes: the first UE transmitting a synchronization signal on the first link.
  • the synchronization signal can be SLSS.
  • the synchronization signal can be used to indicate the type of service.
  • the type of business can be safe Type or non-secure type.
  • the type of the service can be indicated by the period or interval at which the synchronization signal is transmitted.
  • a size threshold of one period may be set.
  • the type indicating the service is a security type; when the period of transmitting the synchronization signal is less than or equal to the size threshold of the period.
  • an interval threshold may be set.
  • the type of the service is a security type; when the interval at which the synchronization signal is transmitted is less than or equal to the threshold of the interval.
  • the present invention is not limited thereto.
  • the type of the service can be indicated by a combination of different primary synchronization signals.
  • the type of the service can be indicated by a combination of different slave synchronization signals.
  • the type of the service can be indicated by a combination of the primary synchronization signal and the secondary synchronization signal.
  • secure and non-secure services are indicated by a combination of different sequences of two primary synchronization signals and/or a combination of different sequences of different synchronization signals from the two. For example, when the sequences of the two primary synchronization signals are the same, it is expressed as a security service; when the sequences of the two primary synchronization signals are different, it indicates that it is not a security industry.
  • sequences of the two primary synchronization signals are the same, they are represented as non-secure services; when the sequences of the two primary synchronization signals are different, they are represented as security services.
  • sequence of two slave sync signals can be indicated by the same operation as the master identical signal sequence. It is not listed here one by one.
  • different primary synchronization signal sequences may be used to indicate secure traffic and non-secure traffic, respectively, and/or different slave synchronization signal sequences may be used to indicate both secure traffic and non-secure traffic.
  • two sets of primary synchronization signal sequences can be defined, the first set of primary synchronization signal sequences being different from the second set of primary synchronization signal sequences, and used to indicate both secure and non-secure services, respectively.
  • the first set of primary synchronization signal sequences includes Zadoff-Chu sequences with root sequence numbers 26 and 37; the second group of primary synchronization signal sequences includes one or more sequence Zadoff-Chu sequences with root sequence numbers not equal to 26 and 37.
  • two sets of slave sync signal sequences can be defined, the first set of slave sync signal sequences being different from the second set of slave sync signal sequences, and used to indicate both secure and non-secure services, respectively.
  • the range of the identification of the first set of slave synchronization signal sequences is [0, 83]
  • the range of the identification of the second set of slave synchronization signal sequences is [84, 167].
  • the value range of the identification of the first set of slave synchronization signal sequences is [0, 167]
  • the range of identification of the second set of slave synchronization signal sequences is [168, 335].
  • control information may be used to indicate at least one of: first speed information, a current number of transmissions of the control information, a number of times of data scheduled by the control information, and Time-frequency resources at each transmission of the data.
  • control information is carried on a first control channel or a second control channel.
  • the control information is carried on the first control channel if the first UE belongs to the first type of UE. If the first UE belongs to the second type of UE, the control information is carried on the second control channel.
  • the control information may include: speed indication information of the first UE.
  • the first UE may transmit data on the first link.
  • the first UE may transmit data on the first link using the fourth transmission resource.
  • the first UE may transmit data and the first sequence on the first link using the fourth transmission resource.
  • the fourth transmission resource may be indicated by the control information.
  • the first UE may transmit data and a ZC sequence on the first link.
  • the first UE may transmit data and the first sequence on the first link.
  • the first sequence refer to the related description in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • control information transmitted by the first UE on the first link may be located in a different subframe from the data transmitted on the first link, or the control information and the data may also be located in the same subframe.
  • the first UE may be configured to send control information and data on the first link.
  • it may include:
  • the first transmit power and the second transmit power are greater than a maximum transmit power, multiplying the first transmit power by a first scaling value as a first power, multiplying the second transmit power by a first
  • the second scaling value is used as the second power, such that the sum of the first power and the second power is less than or equal to the maximum transmit power;
  • the first scaling value is equal or unequal to the second scaling value.
  • the transmission power between the PSCCH and the PSSCH can be allocated in any of the following ways, or the transmission mode of the PSCCH and the PSSCH can be determined:
  • the first UE may discard the PSSCH and only transmit the PSCCH in the current subframe.
  • the first UE may separately transmit the PSCCH and the PSSCH in different subframes.
  • the first UE may increase the number of transmissions.
  • the PSCCH and the PSSCH are located in the same subframe, and in some transmissions of the multiple transmissions, the PSCCH and the PSSCH are located in different subframes.
  • the third transmit power may be the first transmit power
  • the fourth transmit power may be the second transmit power
  • the third transmit power and the fourth transmit power may be the transmit power indicated by the first base station
  • the third transmit power and the fourth transmit power may be determined by the first UE according to a predefined rule.
  • Figure 13 is a flow chart of a method of information transmission in accordance with another embodiment of the present invention. The method shown in Figure 13 includes:
  • the first UE determines a number of transmissions of data scheduled by the control information, and determines a transmission manner of the control information according to the number of transmissions of the data.
  • the first UE may determine the number of transmissions of data scheduled by the control information according to at least one of the following methods: the first UE determines the number of transmissions of the data according to the information of the speed of the first UE; and the first UE according to the information indicated by the base station Determining the number of transmissions of the data; the first UE determines the number of transmissions of the data according to the predefined information; the first UE determines the number of transmissions of the data according to the transmission condition; and the first UE determines the number of transmissions of the data according to the service characteristics.
  • the first UE may determine, according to the first speed information of the first UE, the number of times of data scheduled by the control information, and determine a transmission manner of the control information according to the number of times of the data transmission.
  • the first speed information may be used to indicate the size of the speed of the first UE.
  • the information of the speed herein includes the absolute speed, the relative speed, and the acceleration.
  • the method for determining the first speed information by the first UE may refer to the descriptions of S101 and S201 in the foregoing embodiment of the present invention, and is not repeated here.
  • the number of times of data transmission may be predefined. For example, passing data The number of transmissions is pre-configured on the first UE, or the protocol pre-specifies the number of transmissions of data of the high-speed UE. Alternatively, the number of times of data transmission may be obtained by the first UE from information sent by the serving base station of the second UE. Alternatively, the number of times of data transmission is determined by the first UE according to at least one of the following information: first speed information of the first UE, geographical location information of the first UE and/or the second UE. The invention is not limited thereto.
  • the first UE may determine the number of times of data transmission according to the first speed information of the first UE. For example, if the first UE determines that the first UE belongs to the first type of UE, it may be determined that the number of times of data transmission is N1; and if the first UE determines that the first UE belongs to the second type of UE, the data transmission may be determined. The number of times is N2.
  • the values of N1 and N2 may be pre-configured, or may be specified by a protocol, or may be indicated by the first base station by signaling, etc., which is not limited by the present invention. Alternatively, the values of N1 and N2 may satisfy N1 ⁇ N2.
  • the first UE determines the number of transmissions of the data according to the information indicated by the base station.
  • the base station indicates the number of transmissions of the data to the first UE by using signaling.
  • the number of transmissions of the data is indicated by DCI signaling, RRC message, and SIB message.
  • RRC or SIB message indication when an RRC or SIB message indication is used, parameters related to the resource pool may be used to indicate the number of transmissions.
  • the method is to let the base station control the number of times the first UE transmits the first data, and let the base station control the transmission resources and efficiency according to the network condition to ensure the transmission performance and efficiency of the entire system.
  • the first UE determines the number of transmissions of the data according to the predefined information. Similar to the information determination indicated by the base station, when the first UE is outside the network coverage, the number of transmissions of the data is indicated by predefined information.
  • the predefined information is preset in the UE in advance; when the UE accesses the network, the predefined information can also be updated through the network.
  • the first UE determines the number of transmissions of the data according to the transmission condition.
  • the transmission condition includes: a signal quality of the data received by the first UE, a quality of the channel detected by the first UE, and an energy of the interference signal measured by the first UE in the resource pool of the data transmission, where the first UE is The energy of signals sent by other UEs is detected in the resource pool of data transmission.
  • the worse the signal quality the more the number of transmissions.
  • the number of transmissions is smaller to reduce further mutual interference between the UEs.
  • the first UE determines the number of transmissions of the data according to the service characteristics.
  • the service characteristics here include: whether the UE is a security service or a non-secure service; a quality of service QoS requirement of the UE transmission service; a priority of the UE transmission service.
  • the service transmitted by the UE is a security service. The higher the QoS requirement, the higher the priority, and the greater the number of transmissions used. To ensure the transmission characteristics of the business.
  • the transmission manners of the control information may be the same or different for different transmission times.
  • the effective fields of the control information are different.
  • control information may further include indication information of a current number of transmissions of the control information, and/or include first speed information of the first UE.
  • control information may include a field indicating the current number of transmissions.
  • a 1-bit field can be used in the control information to indicate the current number of transmissions.
  • a 1-bit field of “0” indicates that the current transmission is the first transmission of the control information
  • a 1-bit field of “1” indicates that the current transmission is the second transmission of the control information.
  • control information may include a field indicating speed information of the first UE.
  • information indicating the speed of the first UE may be used in the control information.
  • a 1-bit field of "0" indicates that the speed of the first UE is less than a preset speed threshold, that is, the first UE belongs to the first type of UE, and the 1-bit field is "1", indicating that the speed of the first UE is greater than or equal to the pre-
  • the speed threshold is set, that is, the first UE belongs to the second type UE.
  • control information may include indication information of the number of times of transmission of the data scheduled by the control information.
  • the control information may include the transmission number indication information of the data in an explicit or implicit manner.
  • a field indicating the number of transmissions of data scheduled by the control information may be included in the control information, such as a 2-bit field indicating 1, 2, 3 or 4 transmissions, respectively.
  • control information may be carried on a control channel, and the control channel is a PSCCH.
  • the number of transmissions of the data may be indicated by the control channel in an explicit or implicit manner.
  • the number of transmissions of the data may be indicated by specific indication information of the control channel.
  • the specific indication information may be predefined, for example, may be specified by a protocol, or indicated by a base station by signaling, or indicated by the control information, or implicitly indicated by a control channel, and the present invention is This is not limited.
  • Implicitly indicated by a control channel for example, by a CRC mask, a demodulation reference signal used by the control channel through a scrambling sequence of the control channel; and a size of a physical resource occupied by transmission over the control channel Time-frequency resources occupied by the control channel (for example, different data transmission times use different resource sets).
  • the transmission manners of the control information may be the same or different for different transmission times of data. For example, when the number of transmissions of the data is different, the effective fields of the control information are different.
  • the frequency domain resources used for each transmission of the data are the same.
  • the control information includes the same frequency domain resource, and indication information of multiple time domain resources corresponding to the number of transmissions of the data.
  • the number of times the data is transmitted is N times
  • the control information includes a time-frequency resource used for M times of the N times, so that the receiving end of the control information is included according to the control information.
  • the time-frequency resources used for the M transmissions determine the time-frequency resources used for the N transmissions, where M ⁇ N and M and N are positive integers.
  • the first UE sends the control information in the transmission manner on the first link.
  • control information in the embodiment of the present invention may further include the current number of transmissions of the control information, and/or may further include first speed information of the first UE.
  • the method may further include: the first UE transmitting data on the first link.
  • the data is data scheduled by the control information.
  • the method can include the first UE transmitting data and the first sequence on the first link.
  • first sequence refer to the related description in the foregoing embodiment, and details are not described herein again.
  • control information is carried on a control channel
  • data is carried on a data channel (or called a traffic channel).
  • the control channel can be a PSCCH
  • data channel can be a PSSCH.
  • control information and the data in the embodiment of the present invention may be located in different subframes, or the control information and data in the embodiment of the present invention may be located in the same subframe.
  • the first UE sends the control information and the data on the first link in the transmission manner.
  • the sending, by the first UE, the control information and the data on the first link may include:
  • the first transmit power and the second transmit power are greater than a maximum transmit power, multiplying the first transmit power by a first scaling value as a first power, multiplying the second transmit power by a first
  • the second scaling value is used as the second power, such that the sum of the first power and the second power is less than or equal to the maximum transmit power;
  • the first scaling value is equal or unequal to the second scaling value.
  • the foregoing first transmit power and the second transmit power may be determined according to the method of the open loop power. Specifically, the method for determining the first transmit power and the second transmit power in the foregoing embodiment may be referred to, to avoid repetition. I won't go into details here.
  • the transmission mode in the embodiment of the present invention may include at least one of the following: a transmission resource used by the control information; a cyclic redundancy check CRC mask of the control information; a scrambling sequence of the control information; a demodulation reference signal used by the control channel of the control information; a size of a physical resource occupied by the control information when transmitting; a modulation and coding scheme MCS used by the control information; and a number of transmissions of the control information.
  • FIG. 14 is a flow chart of a method of information transmission in accordance with another embodiment of the present invention.
  • the method shown in Figure 14 includes:
  • the second UE receives the control information sent by the first UE on the first link.
  • control information includes the number of transmissions of data scheduled by the control information, and indication information of time-frequency resources at each transmission.
  • the number of times of data transmission may be predefined.
  • the number of transmissions of data is pre-configured on the first UE, or the protocol pre-specifies the number of transmissions of data of the high-speed UE.
  • the number of times of data transmission may be obtained by the first UE from information sent by the serving base station of the second UE.
  • the number of times of data transmission is determined by the first UE according to at least one of the following information: first speed information of the first UE, geographical location information of the first UE and/or the second UE, and signal of the first UE Quality, signal quality of data transmitted by the second UE, and/or signal, and the like.
  • the invention is not limited thereto.
  • control information may include indication information of a current transmission number of the control information, and/or the control information may include indication information of a speed of the first UE.
  • control information may include a field indicating the current number of transmissions.
  • a 1-bit field can be used in the control information to indicate the current number of transmissions.
  • a 1-bit field of “0” indicates that the current transmission is the first transmission of the control information
  • a 1-bit field of “1” indicates that the current transmission is the second transmission of the control information.
  • any one of the 2 transmissions of the control information received by the second UE is valid.
  • the second UE can simultaneously receive 2 transmissions of the control information, where the indication is transmitted If the fields of the number of transmissions are 0 and 1, respectively, and the positions of the time-frequency resources of the scheduled data are all the same, it can be considered that the control information received twice is a different retransmission of the same control information.
  • control information may include a field indicating speed information of the first UE.
  • information indicating the speed of the first UE may be used in the control information.
  • a 1-bit field of "0" indicates that the speed of the first UE is less than a preset speed threshold, that is, the first UE belongs to the first type of UE, and the 1-bit field is "1", indicating that the speed of the first UE is greater than or equal to the pre-
  • the speed threshold is set, that is, the first UE belongs to the second type UE.
  • control information may include transmission frequency indication information of the data scheduled by the control information.
  • the control information may include the transmission number indication information of the data in an explicit or implicit manner.
  • a field indicating the number of transmissions of data scheduled by the control information may be included in the control information, such as a 2-bit field indicating 1, 2, 3 or 4 transmissions, respectively.
  • control information in the embodiment of the present invention may be carried in a control channel.
  • control channel may be a PSCCH.
  • the second UE acquires indication information of the number of times of transmission of the data scheduled by the control information.
  • the number of times the data is transmitted can be obtained explicitly or implicitly.
  • the second UE may acquire the number of transmissions of the data from the specific indication information.
  • the specific indication information may be predefined, for example, may be specified by a protocol, or indicated by the base station by signaling, or indicated by the control information, or implicitly by a control channel carrying the control information.
  • the invention is not limited thereto. Implicitly indicated by a control channel carrying the control information, for example, by a CRC mask, by a scrambling sequence of the control channel, by a demodulation reference signal used by the control channel; when transmitting over the control channel
  • the size of the occupied physical resources; the time-frequency resources occupied by the control channel (for example, different data transmission times use different resource sets).
  • the second UE acquires the time-frequency resource in each transmission in the field corresponding to each transmission in the control information.
  • the control information may include the same frequency domain resource, and the data The indication information of the plurality of time domain resources corresponding to the number of transmissions.
  • the second UE may obtain the same frequency domain resource from the control information, and acquire the time domain resource that is transmitted multiple times from a field corresponding to the number of transmissions.
  • the number of times of transmitting the data is one time, acquiring the time-frequency resource of the primary transmission in a first field of the control information.
  • the number of transmissions of the data is twice Obtaining a time-frequency resource of the first transmission in the secondary transmission in a first field of the control information, and acquiring a second transmission in the secondary transmission in a second field of the control information Time-frequency resources.
  • two of the four transmissions are acquired in a first field of the control information and a second field of the control information.
  • Time-frequency resources determining time-frequency resources of the other two transmissions of the four transmissions according to time-frequency resources of two of the four transmissions.
  • the frequency domain resource of the second transmission is the same as the frequency domain resource of the first transmission, and the time-frequency resource of the second transmission is adjacent to or spaced apart from the time-frequency resource of the first transmission by a predefined one.
  • the value of the frequency domain resource of the fourth transmission is the same as the frequency domain resource of the third transmission, and the time-frequency resource of the fourth transmission is adjacent to or spaced apart from the time-frequency resource of the third transmission.
  • the control information only indicates the time-frequency resources of the first and third transmissions, and the time-frequency resources of the second and fourth transmissions may be acquired according to the predefined manner.
  • the number of times of transmitting the data is N times
  • acquiring time-frequency resources used for M times of the N times from a specific location of the control information and further according to the The time-frequency resource used by the M transmissions included in the control information determines a time-frequency resource used by the N transmissions, where M ⁇ N and M and N are positive integers.
  • the time-frequency resources used by other N-M transmissions may be determined based on the time-frequency resources used for the M transmissions according to a predefined method.
  • the number of times of data transmission is different, and the transmission manner of the control information may be the same or different.
  • a uniform transmission of control information can be used.
  • the second UE may acquire the time-frequency resource at each transmission from the corresponding field of the control information according to the unified transmission mode.
  • a unified control information transmission mode is used, which can ensure an indication of time-frequency resources for different transmission times, and can reduce the complexity of the second UE blind detection.
  • control information may use different transmission methods for different transmission times. and also That is to say, for different transmission times, the transmission mode of the control channel carrying the control information is different.
  • S403 may include: determining, by the second UE, a transmission manner of the control information according to the number of transmissions of the data, where the transmission manner is one of pre-defined at least two transmission modes; Obtaining the time-frequency resource at the time of each transmission according to the transmission manner.
  • control information may include t1, f1.
  • the position of the time-frequency resource at each transmission can be indicated by the displayed signaling, which can ensure the flexibility of resource scheduling.
  • the time-frequency resources of each transmission can be quickly obtained without performing complicated calculation processing.
  • the second UE only needs to detect the control information of the transmission mode corresponding to the number of times of data transmission, and does not need to detect the control information corresponding to other transmission modes. Thereby reducing the complexity of the detection. Moreover, different transmission modes are designed for different data transmission times, which can ensure resource utilization of control information transmission, thereby improving resource utilization efficiency during transmission.
  • f, f1 to f4, and t1 to t4 in the above embodiment may be either absolute values or relative values, which is not limited in the present invention.
  • the foregoing transmission manner may include at least one of: a transmission resource used by the control information; a cyclic redundancy check CRC mask of the control information; a scrambling sequence of the control information; and control of carrying the control information a demodulation reference signal used by the channel; a size of a physical resource occupied by the control information when transmitting; a modulation and coding scheme MCS used by the control information; and a number of transmissions of the control information.
  • the method further includes: receiving, by the second UE, data sent by the first UE on the first link according to the control information.
  • the second UE may receive the data sent by the first UE on the first link by using the transmission resource indicated by the control information.
  • the method further includes: receiving, by the second UE, data and a first sequence sent by the first UE on the first link according to the control information.
  • the second UE receives the data and the ZC sequence sent by the first UE on the first link according to the control information.
  • the second UE receives the data and the first sequence sent by the first UE on the first link according to the control information.
  • the first sequence refer to the related description in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the data can be carried on a traffic channel.
  • the traffic channel is a PSSCH.
  • FIG. 15 is a block diagram showing the structure of a user equipment according to an embodiment of the present invention.
  • the UE shown in FIG. 15 is the first UE 100 including the processing unit 110 and the transmitting unit 120.
  • the processing unit 110 is configured to determine first speed information of the first UE.
  • the processing unit 110 is further configured to determine, according to the first speed information, a transmission manner of the control information
  • the sending unit 120 is configured to send the control information on the first link in the transmission manner determined by the processing unit 110.
  • the first speed information may be used to indicate the size of the speed of the first UE 100.
  • the first speed information may represent the magnitude of the speed of the first UE 100 in the form of a speed grade.
  • the speed of the first UE 100 herein may be an absolute speed, or may be a relative speed with respect to another UE or multiple UEs, and may also be acceleration of the first UE to the ground or relative to another UE or multiple UEs. Acceleration, the present invention is not limited thereto.
  • the processing unit 110 may determine the first speed information by using indication information of other layers.
  • the processing unit 110 may acquire the first speed information through the GNSS mode. Alternatively, the processing unit 110 may obtain the first speed information by using information indicated by the first base station. Optionally, the first UE 100 may obtain the first speed information by using a corresponding speed measuring device. For example, if the first UE 100 is an OBU, the processing unit 110 may acquire the first speed information through a corresponding module on the automobile, such as an engine module, a gearbox module, or other module that electrically controls the speed. . For example, the current speed of the first UE is measured as v, and the unit of the speed may be km/h, or may be miles/h.
  • the processing unit 110 may first determine its own absolute speed, and then determine the speed information of the second UE by measuring or parsing the data packet sent by the second UE. Or location information. Further processing unit 110 may determine information of the relative speed of the first UE 100 relative to the second UE based on the information.
  • the second UE may be one UE or multiple different UEs. When the second UE is a plurality of different UEs, it is some weighted value relative to the plurality of UE speeds. For example, arithmetic weighted average, geometrically weighted average, and the like.
  • the transmission manner may include at least one of: a transmission resource used by the control information; a cyclic redundancy check CRC mask of the control information; a scrambling sequence of the control information; a demodulation reference signal used by the control channel of the control information; a size of a physical resource occupied by the control information when transmitting; a modulation and coding scheme MCS used by the control information; and a number of transmissions of the control information.
  • the processing unit 110 may determine that the transmission mode is the first transmission mode; A speed information determines that the first UE 100 belongs to the second type of UE, and the processing unit 110 may determine that the transmission mode is the second transmission mode.
  • the first type of UE may be a non-high speed UE, and the second type of UE may be a high speed UE.
  • the first transmission mode includes a first transmission resource
  • the second transmission mode includes a second transmission resource.
  • the first transmission resource may be from the first resource set or the first resource subset from the first resource set
  • the second transmission resource may be from the second resource set or the second resource subset from the second resource set.
  • the first UE 100 may further include a receiving unit.
  • the receiving unit may be configured to: acquire the first resource set and the second resource set.
  • the first set of resources and the second set of resources may be predefined. For example, it can be as stipulated in the agreement.
  • the receiving unit may be configured to: receive the first indication information sent by the first base station on the second link, where the first indication information is used to indicate the first resource set and the second resource set.
  • the sending unit 120 is configured to send the first speed information to the first base station on the second link, where the first speed information includes: a size of the speed of the first UE 100, or Speed grade information of the first UE 100.
  • the processing unit 110 may receive the first indication information sent by the first base station on the second link. That is to say, the first indication information may be indicated after the first speed information received by the first base station.
  • the first indication information may be further used to indicate a location of the first resource subset in the first resource set, and/or to indicate a location of the second resource subset in the second resource set.
  • the sending unit 120 may be specifically configured to: periodically send the first speed information to the first base station on a second link; or, when the speed of the first UE 100 changes, Transmitting the first speed information to the first base station on the second link; or, after receiving, by the receiving unit, the indication sent by the first base station to report the speed information of the first UE 100, The first speed information is sent to the first base station on the two links.
  • the first resource set and the second resource set are the same resource set; or the second resource set belongs to a subset of the first resource set.
  • the processing unit 110 may be specifically configured to: if it is determined that the first UE 100 belongs to the first type of UE according to the first speed information, from the first resource set or from the first resource set Determining, by the resource subset, the first transmission resource, where the first resource subset is predefined or pre-configured; and determining, according to the first speed information, that the first UE 100 belongs to the second class Determining, by the UE, the second transmission resource from the second resource set or from the second resource subset of the second resource set, where the first resource subset is predefined or pre-configured .
  • control information is used to indicate a type of the service, where the type of the service is a security type or a non-security type.
  • control information may further indicate whether the first UE 100 is a synchronization source, and/or the control information may further indicate an identifier of the synchronization source of the first UE 100.
  • the identifier of the synchronization source of the first UE 100 is the physical cell identifier of the first base station; or, if the synchronization source of the first UE 100 is a GNSS, The identifier of the synchronization source of the first UE 100 is a predefined identifier corresponding to the GNSS.
  • the control information may be carried on the third control channel.
  • the third control channel is a PSBCH.
  • the third control channel is used to indicate a type of service, and the type of the service is a security type or a non-security type.
  • the sending unit 120 is further configured to: send a synchronization signal on the first link.
  • the synchronization signal is used to indicate a type of the service, and the type of the service is a security type or a non-security type.
  • control information may be used to indicate the first speed information, and/or the control information may be used to indicate the number of times the data scheduled by the control information is transmitted. And time-frequency resources at each transmission of the data.
  • control information may further be used to indicate the current number of transmissions of the control information.
  • the control information may be carried on the first control channel or the second control channel.
  • the first control channel is the first PSCCH and the second control channel is the second PSCCH.
  • the control information is carried on the first control channel; and determining, according to the first speed information, that the first UE 100 belongs to the second For class UE, the control information is carried on the second control channel.
  • the sending unit 120 is configured to send the first speed information to the second UE in the transmission manner on the first link.
  • the processing unit 110 may also be configured to determine a synchronization source of the first UE 100.
  • the processing unit 110 is configured to determine, according to the first speed information, that the first UE 100 belongs to the first type of UE, and determine the synchronization source according to the pre-configured information.
  • the pre-configured information indicates that the synchronization source of the first type of UE is the base station, and the first UE determines that the synchronization source is the first base station, where the first base station may be the serving base station of the first UE.
  • the first UE may perform synchronization with the first base station by using a method in the prior art, and details are not described herein again.
  • the pre-configured information indicates that the synchronization source of the first type of UE is a GNSS, and the first UE preferentially determines that the synchronization source is a GNSS.
  • the pre-configured information indicates that the synchronization source of the first type of UE is an RSU, and the first UE determines that the synchronization source is an RSU.
  • the synchronization source is preferentially determined to be a GNSS.
  • the processing unit 110 is specifically configured to: if the signal of the GNSS can be detected, use the GNSS as a synchronization source. If the signal of the GNSS cannot be detected, it is determined that the synchronization source is the first base station or the third UE.
  • the first base station may be a serving base station of the first UE 100
  • the third UE may be a UE directly synchronized to the GNSS.
  • the processing unit 110 can detect the signal of the GNSS, and if the processing unit 110 cannot detect the signal of the GNSS, the processing unit 110 starts a timer; and then within the duration of the timer.
  • the signal of the GNSS is detected.
  • Processing unit 110 cannot detect The signal to the GNSS may be: if the processing unit 110 cannot detect the signal of the GNSS, the processing unit 110 starts a timer; and the signal of the GNSS cannot be detected within the duration of the timer.
  • the processing unit 110 can detect the signal of the GNSS, which can be: the processing unit 110 can detect the signal of the GNSS whose signal strength is greater than or equal to the preset signal strength threshold.
  • the processing unit 110 cannot detect the signal of the GNSS, and may mean that the processing unit 110 cannot detect any signal of the GNSS, or detects a signal of the GNSS whose signal strength is less than the preset signal strength threshold.
  • the sending unit 120 in the embodiment of the present invention may be further configured to: send data on the first link by using a fourth transmission resource, where the fourth transmission resource is controlled by the control channel Information indicated.
  • the sending unit 120 may first send control information and then send data. Alternatively, the transmitting unit 120 can simultaneously transmit control information and data.
  • control information and data may be located in different subframes, or the control information and data may be located in the same subframe.
  • the present invention is not limited thereto.
  • the control information may be carried on the control channel, and the data may be carried on the traffic channel, where the control channel may be a PSCCH and the traffic channel may be a PSSCH.
  • the sending unit 120 may be on the first link, where the fourth transmission resource sends data to the second UE.
  • control information may be used to indicate the number of transmissions of the data, and the time-frequency resources at each transmission.
  • the number of transmissions of the data is multiple, the frequency domain resources used for each transmission of the data are the same, and the fourth transmission resource may include the same frequency domain resource, and the data Multiple time domain resources corresponding to the number of transmissions.
  • the number of transmissions of the data is N times
  • the fourth transmission resource may include a time-frequency resource used for M times of the N times, so that the receiving end of the control channel is according to the The time-frequency resource used by the M-th transmission included in the control channel determines a time-frequency resource used by the N-time transmission, where M ⁇ N and M and N are positive integers.
  • the sending unit 120 is specifically configured to: send the data and the first sequence on the first link by using the fourth transmission resource.
  • the first sequence is determined after removing a predefined second sequence from a predefined length of ZC sequence set.
  • the sending unit 120 may use the fourth transmission resource to send the data and the ZC sequence of a predefined length on the first link. If the first UE 100 belongs to the second type of UE, the transmitting unit 120 may transmit the data and the first sequence on the first link using the fourth transmission resource.
  • the first sequence refer to the related description in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the processing unit 110 may be further configured to: determine a first transmit power of the control information and a second transmit power of the data; if the first transmit power and the first The sum of the two transmit powers is greater than the maximum transmit power, determining that the first power is the first transmit power multiplied by the first scaling value, and determining that the second power is the second transmit power multiplied by the second scaling value, such that The sum of the first power and the second power is less than or equal to the maximum transmit power.
  • the sending unit 120 is specifically configured to send the control information by using the first power on the first link, and send the data by using the second power.
  • the first scaling value is equal or unequal to the second scaling value.
  • the first transmit power and the second transmit power may be open loop transmit power.
  • the transmitting unit 120 may transmit control information in the current subframe and transmit data in subsequent subframes. That is, the control information and data are split into different subframes for transmission.
  • the sending unit 120 is further configured to: when the first UE 100 is a second type of UE, use the fifth transmission resource, and use the first chain on the second link.
  • the data on the road is sent to the second base station.
  • the second base station is a serving base station of the receiving end of the data.
  • the fifth transmission resource may be configured by the serving base station of the first UE 100 for the first UE 100.
  • the sending unit 120 is further configured to send the resource request information to the first base station, where the processing unit 110 is further configured to receive the indication information of the fifth transmission resource that is sent by the first base station.
  • the resource request information may be a speed-related SR or a BSR.
  • the receiving end of the data is a second UE
  • the serving base station of the second UE is the first base station
  • the first base station and the second base station are the same base station.
  • the receiving end of the data includes a second UE and a fourth UE, where the second UE The serving base station is the first base station, and the serving base station of the fourth UE is a third base station, and the second base station includes the first base station and the third base station.
  • the receiving unit may be implemented by a receiver
  • the processing unit 110 may be implemented by a processor
  • the sending unit 120 may be implemented by a transmitter.
  • the first UE 100 may include a processor 151, a receiver 152, a transmitter 153, and a memory 154.
  • the memory 154 can be used to store a speed threshold or a speed level threshold, etc., and can also be used to store code and the like executed by the processor 151.
  • the various components in the first UE 100 are coupled together by a bus system 155, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the first UE 100 shown in FIG. 15 or the first UE 100 shown in FIG. 16 can implement the various processes implemented by the first UE in the foregoing method embodiment of FIG. 4, and details are not described herein again to avoid repetition.
  • the system chip 1600 of FIG. 17 includes an input interface 1610, an output interface 1620, at least one processor 1630, and a memory 1640.
  • the input interface 1610, the output interface 1620, the processor 1630, and the memory 1640 are connected by a bus.
  • the processor 1630 is configured to execute code in the memory 1640, and when the code is executed, the processor 1630 implements the method of information transmission performed by the first UE in FIG.
  • FIG. 18 is a structural block diagram of a user equipment according to another embodiment of the present invention.
  • the first UE 200 shown in FIG. 18 includes a first determining unit 210 and a second determining unit 220.
  • the first determining unit 210 is configured to determine first speed information of the first UE.
  • the second determining unit 220 is configured to determine a synchronization source of the first UE according to the first speed information determined by the first determining unit 210.
  • the first speed information may be used to indicate the size of the speed of the first UE 200.
  • the first speed information may represent the magnitude of the speed of the first UE 200 in the form of a speed grade.
  • the speed of the first UE 200 herein may be an absolute speed, or may be a relative speed with respect to another UE or multiple UEs, and may also be acceleration of the first UE to the ground or relative to another UE or multiple UEs. Acceleration, the present invention is not limited thereto.
  • the first determining unit 210 may determine the first speed information by using indication information of other layers.
  • the first determining unit 210 may acquire the first speed information through the GNSS mode.
  • the first determining unit 210 can The first speed information is obtained by information indicated by the first base station.
  • the first UE 200 may acquire the first speed information by using a corresponding speed measuring device.
  • the first determining unit 210 may obtain the first module by using a corresponding module on the automobile, such as an engine module, a gearbox module, or other module that electrically controls the speed.
  • Speed information For example, the current speed of the first UE is measured as v, and the unit of the speed may be km/h, or may be miles/h.
  • the first determining unit 210 may first determine its own absolute speed, and then determine the speed information and/or the location information of the second UE by measuring or parsing the data packet sent by the second UE. Further, the first determining unit 210 may determine information about the relative speed of the first UE 200 relative to the second UE according to the information.
  • the second UE may be one UE or multiple different UEs. When the second UE is a plurality of different UEs, it is some weighted value relative to the plurality of UE speeds. For example, arithmetic weighted average, geometrically weighted average, and the like.
  • the second determining unit 220 is specifically configured to: if the first UE 200 belongs to the first type of UE according to the first speed information, determine the synchronization source according to the pre-configured information.
  • the pre-configured information indicates that the synchronization source of the first type of UE is the base station, and the first UE determines that the synchronization source is the first base station, where the first base station may be the serving base station of the first UE.
  • the first UE may perform synchronization with the first base station by using a method in the prior art, and details are not described herein again.
  • the pre-configured information indicates that the synchronization source of the first type of UE is a GNSS, and the first UE determines that the synchronization source is a GNSS, and if the pre-configured information indicates that the synchronization source is a GNSS, the first UE preferentially determines the location.
  • the synchronization source is GNSS.
  • the pre-configured information indicates that the synchronization source of the first type of UE is an RSU, and the first UE determines that the synchronization source is an RSU.
  • the synchronization source is preferentially determined to be a GNSS.
  • the second determining unit 220 is specifically configured to: if the signal of the GNSS can be detected, use the GNSS as a synchronization source. If the signal of the GNSS cannot be detected, it is determined that the synchronization source is the first base station or the third UE.
  • the first base station may be a serving base station of the first UE 200
  • the third UE may be a UE directly synchronized to the GNSS.
  • the second determining unit 220 can detect the signal of the GNSS, and if the second determining unit 220 cannot detect the signal of the GNSS, the second determining unit 220 starts a timer; The signal of the GNSS is detected within the duration of the timer.
  • the second determining unit 220 cannot detect the signal of the GNSS, and may be: if the second determining unit 220 cannot detect the signal of the GNSS, the second determining unit 220 starts a timer; and the duration of the timer The signal of the GNSS is still not detected within.
  • the second determining unit 220 can detect the signal of the GNSS, and the second determining unit 220 can detect the signal of the GNSS whose signal strength is greater than or equal to the preset signal strength threshold.
  • the second determining unit 220 cannot detect the signal of the GNSS, and may mean that the second determining unit 220 cannot detect any signal of the GNSS, or detects a signal of the GNSS whose signal strength is less than the preset signal strength threshold.
  • the signal strength threshold may be predefined, for example, may be pre-configured on the first UE. Alternatively, the signal strength threshold may be indicated by the first base station by signaling.
  • the first UE 200 may include a receiving unit, configured to receive a signaling indication of the first base station to acquire the signal strength threshold.
  • the first UE 200 shown in FIG. 18 may further include a sending unit, configured to send control information on the first link after completing the timing with the synchronization source, or send the control information on the first link and data.
  • a sending unit configured to send control information on the first link after completing the timing with the synchronization source, or send the control information on the first link and data.
  • the sending unit may be configured to send the control information on the first link.
  • the sending unit can also be used to send data (or send data and sequence) on the first link.
  • the sending unit may be configured to send data and a predefined length of the ZC sequence on the first link.
  • the transmitting unit may be configured to transmit data and the first sequence on the first link.
  • the receiving unit may be implemented by a receiver
  • the first determining unit 210 and the second determining unit 220 may be implemented by a processor
  • the sending unit may be implemented by a transmitter.
  • the first UE 200 may include a processor 181, a receiver 182, a transmitter 183, and a memory 184.
  • the memory 184 can be used to store a speed threshold or a speed level threshold, etc., and can also be used to store code and the like executed by the processor 181.
  • the various components in the first UE 200 are coupled together by a bus system 185, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the first UE 200 shown in FIG. 18 or the first UE 200 shown in FIG. 19 can implement the foregoing diagram.
  • the various processes implemented by the first UE in the method embodiment of FIG. 12 are not repeated here to avoid repetition.
  • the system chip 1900 of FIG. 20 includes an input interface 1910, an output interface 1920, at least one processor 1930, and a memory 1940.
  • the input interface 1910, the output interface 1920, the processor 1930, and the memory 1940 are connected by a bus.
  • the processor 1930 is configured to execute code in the memory 1940, and when the code is executed, the processor 1930 implements the method of information transmission performed by the first UE in FIG.
  • FIG. 21 is a block diagram showing the structure of a user equipment according to another embodiment of the present invention.
  • the first UE 300 shown in FIG. 21 includes a processing unit 310 and a transmitting unit 320.
  • the processing unit 310 is configured to determine a number of transmissions of data scheduled by the control information, and determine a transmission manner of the control information according to the number of transmissions of the data;
  • the sending unit 320 is configured to send the control information in the transmission manner on the first link.
  • the processing unit 310 may determine the number of times of data transmission according to the information of the speed of the first UE.
  • the processing unit 310 may be configured to determine, according to the first speed information of the first UE, a number of transmissions of data scheduled by the control information, and further determine a transmission manner of the control information according to the number of transmissions of the data.
  • the first speed information may be used to indicate the size of the speed of the first UE 300.
  • it can be expressed in the form of absolute speed, relative speed, acceleration, and the like.
  • the number of transmissions is N1; when the first UE 300 belongs to the second type of UE, the number of transmissions is N2.
  • N1 ⁇ N2.
  • the number of times of data transmission may be predefined.
  • the number of transmissions of data is pre-configured on the first UE, or the protocol pre-specifies the number of transmissions of data of the high-speed UE.
  • the number of times of data transmission may be obtained by the first UE from information sent by the serving base station of the second UE.
  • the number of times of data transmission is determined by the first UE according to at least one of the following information: first speed information of the first UE, geographical location information of the first UE and/or the second UE, and signal of the first UE Quality, signal quality of data transmitted by the second UE, and/or signal, and the like.
  • the invention is not limited thereto.
  • the first UE may further include a receiving unit, configured to receive, by the serving base station of the second UE, if the number of times of the data is obtained by the first UE from the information sent by the serving base station of the second UE. information.
  • the transmission manner includes at least one of: a transmission resource used by the control information; a cyclic redundancy check CRC mask of the control information; a scrambling sequence of the control information; a demodulation reference signal used by the control channel of the control information; a size of the physical resource occupied by the control information when transmitting; a modulation and coding scheme MCS used by the control information; and a number of transmissions of the control information.
  • valid fields of the control information are different.
  • control information includes a number of transmissions of the data, and indication information of a time-frequency resource at each transmission of the data.
  • the number of transmissions of the data is N times
  • the control information includes a time-frequency resource used for M times of the N times, so that the receiving end of the control information is
  • the time-frequency resource used by the M-th transmission included in the control information determines a time-frequency resource used by the N-time transmission, where M ⁇ N and M and N are positive integers.
  • a time-frequency resource of two of the four transmissions may be included in a first field of the control information and a second field of the control information.
  • the data is transmitted multiple times, and the frequency domain resources used by each transmission of the data are the same, and the control information includes the same frequency domain resource, and The number of transmissions of the data corresponds to the indication information of the plurality of time domain resources.
  • control information may further include indication information of a current number of transmissions, and/or the control information may further include indication information of a speed of the first UE.
  • control information may include first speed information of the first UE 300.
  • the sending unit 320 is further configured to: send the data on the first link according to the control information.
  • the sending unit 320 may be further configured to: send the data and the sequence on the first link according to the control information.
  • the transmitting unit 320 may transmit data (or transmit data and sequence) on the first link using the transmission resource indicated by the control information.
  • the transmitting unit 320 can be configured to transmit data and a predefined length of ZC sequence on the first link. If the first UE 300 belongs to the second type of UE, the transmitting unit 320 can be configured to transmit data and the first sequence on the first link. turn off For the first sequence, refer to the related description in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • control information and data may be located in different subframes, or the control information and data may be located in the same subframe.
  • control information may be carried on the PSCCH and the data may be carried on the PSSCH.
  • the processing unit 310 may be further configured to: determine a first transmit power of the control information and a second transmit power of the data; if the first transmit power and the first The sum of the two transmit powers is greater than the maximum transmit power, determining that the first power is the first transmit power multiplied by the first scaling value, and determining that the second power is the second transmit power multiplied by the second scaling value, such that The sum of the first power and the second power is less than or equal to the maximum transmit power.
  • the sending unit 320 is specifically configured to send the control information by using the first power on the first link, and send the data by using the second power.
  • the first scaling value is equal or unequal to the second scaling value.
  • the first transmit power and the second transmit power may be open loop transmit power.
  • the receiving unit may be implemented by a receiver
  • the processing unit 310 may be implemented by a processor
  • the sending unit 320 may be implemented by a transmitter.
  • the second UE 300 may include a processor 211, a receiver 212, a transmitter 213, and a memory 214.
  • the memory 214 can be used to store code and the like executed by the processor 211.
  • the various components in the first UE 300 are coupled together by a bus system 215, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the first UE 300 shown in FIG. 21 or the first UE 300 shown in FIG. 22 can implement the various processes implemented by the first UE in the foregoing method embodiment of FIG. 13. To avoid repetition, details are not described herein again.
  • the system chip 2200 of FIG. 23 includes an input interface 2210, an output interface 2220, at least one processor 2230, and a memory 2240.
  • the input interface 2210, the output interface 2220, the processor 2230, and the memory 2240 are connected by a bus.
  • the processor 2230 is configured to execute code in the memory 2240, and when the code is executed, the processor 2230 implements the method of information transmission performed by the first UE in FIG.
  • FIG. 24 is a structural block diagram of a user equipment according to another embodiment of the present invention.
  • the second shown in Figure 24 The UE 500 includes a receiving unit 510 and a processing unit 520.
  • the receiving unit 510 is configured to receive, by using the first link, control information sent by the first UE.
  • the processing unit 520 is configured to acquire indication information of the number of times of transmission of the data scheduled by the control information received by the receiving unit 510, and is further configured to acquire, in the control information, a field corresponding to each transmission, to acquire the each transmission. Time-frequency resources.
  • the control information may be used to indicate the number of times the data is transmitted, and the time-frequency resource at each transmission.
  • the number of times of data transmission may be determined by the first UE according to the speed information of the first UE.
  • the transmission of the data may be determined by the first UE according to the first speed information of the first UE.
  • control information may further include indication information of a current number of transmissions, and/or the control information may further include first speed information of the first UE.
  • the current transmission number refers to the current number of transmissions of the control information.
  • the number of transmissions of the data is multiple times, and the frequency domain resources used by each transmission of the data are the same.
  • the control information may include the same frequency domain resource, and the data.
  • the number of transmissions corresponds to the indication information of multiple time domain resources.
  • the processing unit 520 is specifically configured to: when the number of transmissions of the data is one time, acquire the time-frequency resource of the primary transmission in a first field of the control information; when the number of transmissions of the data is two times Obtaining a time-frequency resource of the first transmission in the secondary transmission in a first field of the control information, and acquiring a second transmission in the secondary transmission in a second field of the control information a time-frequency resource; when the number of transmissions of the data is four times, obtaining, in a first field of the control information, a time-frequency resource of the first transmission in the four transmissions, and a second time in the control information Obtaining a time-frequency resource of the second transmission in the four transmissions, and acquiring, in a third field of the control information, a time-frequency resource of the third transmission in the fourth transmission, where the control information is The fourth field acquires a time-frequency resource of the fourth transmission of the four transmissions.
  • the processing unit 520 is specifically configured to: when the number of transmissions of the data is four times, acquire the four of the four times in the first field of the control information and the second field of the control information. Time-frequency resources for two transmissions; determining time-frequency resources of the other two transmissions of the four transmissions according to time-frequency resources of two of the four transmissions.
  • the transmission manners of the control channels carrying the control information may be the same or different for different transmission times.
  • the processing unit 520 is specifically configured to: determine, according to the number of transmissions of the data, a transmission mode of the control information, where the transmission mode is one of at least two predefined transmission manners; according to the transmission mode, Obtaining the time-frequency resource at the time of each transmission.
  • the transmission manner may include at least one of: a transmission resource used by the control information; a cyclic redundancy check CRC mask of the control information; a scrambling sequence of the control information; a demodulation reference signal used by the control channel of the control information; a size of a physical resource occupied by the control information when transmitting; a modulation and coding scheme MCS used by the control information; and a number of transmissions of the control information.
  • the receiving unit 510 is further configured to receive the data on the first link according to the control information.
  • the receiving unit 510 is further configured to receive the data and sequence on the first link according to the control information.
  • the receiving unit 510 receives the data and the ZC sequence sent by the first UE on the first link according to the control information.
  • the receiving unit 510 receives the data and the first sequence sent by the first UE on the first link according to the control information.
  • the first sequence refer to the related description in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the control information can be carried on the control channel, and the data can be carried on the traffic channel.
  • the control channel can be a PSCCH and the traffic channel can be a PSSCH.
  • control information and the data may be located in different subframes, or the control information and the data may be located in the same subframe.
  • the second UE 500 shown in FIG. 24 may further include a sending unit, which may be configured to send a feedback message for the data, such as an ACK or a NACK, to the first UE.
  • a sending unit which may be configured to send a feedback message for the data, such as an ACK or a NACK, to the first UE.
  • the receiving unit 510 may be implemented by a receiver
  • the processing unit 520 may be implemented by a processor
  • the sending unit may be implemented by a transmitter.
  • the second UE 500 may include a processor 251, a receiver 252, a transmitter 253, and a memory 254.
  • the memory 254 can be used to store code and the like executed by the processor 251.
  • the various components in the second UE 500 are coupled together by a bus system 255, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the second UE 500 shown in FIG. 24 or the second UE 500 shown in FIG. 25 can implement the various processes implemented by the second UE in the foregoing method embodiment of FIG. 14. To avoid repetition, details are not described herein again.
  • FIG. 26 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 2600 of FIG. 26 includes an input interface 2610, an output interface 2620, at least one processor 2630, and a memory 2640.
  • the input interface 2610, the output interface 2620, the processor 2630, and the memory 2640 are connected by a bus.
  • the processor 2630 is configured to execute code in the memory 2640, and when the code is executed, the processor 2630 implements the method of information transmission performed by the second UE in FIG.
  • FIG. 27 is a block diagram showing the structure of a base station according to an embodiment of the present invention.
  • the first base station 400 shown in FIG. 27 includes a receiving unit 410, a processing unit 420, and a transmitting unit 430.
  • the receiving unit 410 is configured to receive speed information sent by at least one UE.
  • the processing unit 420 is configured to determine the first resource set and the second resource set according to the speed information of the at least one UE received by the receiving unit 410.
  • the sending unit 430 is configured to send first indication information to the at least one UE on the second link, where the first indication information is used to indicate the first resource set and the second resource set.
  • the sending unit 430 may send the first indication information on the second link by means of broadcast or multicast.
  • the at least one UE includes the first UE.
  • the first indication information is used to indicate that the first resource set is used for a first type of UE, and the second resource set is used by a second type of UE. In this way, if the first UE belongs to the first type of UE, the first UE determines the first transmission resource from the first resource set or from the first resource subset of the first resource set according to the first indication information. If the first UE belongs to the second type of UE, the first UE determines the second transmission resource from the second resource set or from the second resource subset of the second resource set according to the first indication information.
  • the first indication information may further indicate a location of the first resource subset in the first resource set, where the location may be a time domain location or a frequency domain location or a time-frequency location.
  • the first indication information may further indicate a location of the second resource subset in the second resource set, where the location may be a time domain location or a frequency domain location or a time-frequency location.
  • the first resource set and the second resource set are the same resource set.
  • the second set of resources is a subset of the first set of resources.
  • the first indication information may further indicate a location of the second resource set in the first resource set, where the location may be a time domain location or a frequency domain location or a time-frequency location.
  • the first indication information may further indicate a preset speed threshold, so that the at least one UE determines whether it belongs to the first type UE or the second type UE.
  • the receiving unit 410 is further configured to receive a sending resource request message sent by the first UE. interest.
  • the processing unit 420 allocates resources to the first UE, and sends, by the sending unit 430, indication information of the fifth transmission resource to the first UE.
  • the resource request information may be a speed-related SR or a BSR.
  • the receiving unit 410 may further receive, on the second link, first link data that is sent by the first UE by using the fifth transmission resource, and the sending unit 430 may send the first link data to the second UE.
  • the second UE is a receiving end of the first link data.
  • the receiving unit 410 may be implemented by a receiver
  • the processing unit 420 may be implemented by a processor
  • the sending unit 430 may be implemented by a transmitter.
  • the first base station 400 may include a processor 241, a receiver 242, a transmitter 243, and a memory 244.
  • the memory 244 can be used to store a speed threshold or a speed level threshold, etc., and can also be used to store code and the like executed by the processor 241.
  • the various components in the first base station 400 are coupled together by a bus system 245, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the first base station 400 shown in FIG. 27 or the first base station 400 shown in FIG. 28 can implement the processes implemented by the first base station in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the system chip 2500 of FIG. 29 includes an input interface 2510, an output interface 2520, at least one processor 2530, and a memory 2540.
  • the input interface 2510, the output interface 2520, the processor 2530, and the memory 2540 are connected by a bus.
  • the processor 2530 is configured to execute code in the memory 2540, and when the code is executed, the processor 2530 implements the method of information transmission performed by the first base station in the foregoing method embodiments.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be combined by hardware and software modules in the decoding processor.
  • the execution is complete.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another The system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本发明实施例提出了一种信息传输的方法,包括:第一UE确定所述第一UE的第一速度信息;所述第一UE根据所述第一速度信息,确定控制信息的传输方式;所述第一UE在第一链路上以所述传输方式发送所述控制信息。本发明实施例中,第一UE可以根据第一速度信息确定控制信息的传输方式,当第一UE为高速UE时,能够为高速UE选择合适的传输方式,从而能够保证高速UE的传输需求,保证传输的成功率。

Description

信息传输的方法及用户设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种信息传输的方法及用户设备。
背景技术
近年来,随着智能技术的发展,智能交通、无人驾驶等技术受到了越来越多的关注。为了推动上述产业的发展,车联网的技术和标准是解决上述问题的关键所在。车联网技术中车与任何设备间的通信(Vehicle to X,V2X),包括车车(Vehicle to Vehicle,V2V)通信,车物(Vehicle to Infrastructure,V2I)通信,车人(Vehicle to Pedestrian,V2P)通信,人车(Pedestrian to Vehicle,P2V)通信等。V2X通信中的一个基本问题是:如何在各种复杂的环境下实现车与各种设备之间的高效通信,特别地提高通信的可靠性并减少通信的时延。
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在研究车联网的时候,建议基于现有的设备到设备(Device to Device,D2D)协议进行。然而现有的D2D协议是基于长期演进(Long Term Evolution,LTE)上行技术进行的,在2GHz频率下能够支持的移动速度不超过200km/h。然而,车联网应用要求在5.9GHz附近的智能交通频谱下能够支持最高达500km/h的最大移动速度。车辆移动时的最大多普勒扩展正比于车辆的移动信度和车辆通信时使用的频率值。因此,现有的D2D协议无法满足更高移动速度的要求,特别是更高频率下的更高移动速度的要求。
发明内容
本发明实施例提供了一种信息传输的方法,能够满足高速移动的UE的传输需求。
第一方面,提供了一种信息传输的方法,包括:
第一UE确定所述第一UE的第一速度信息;
所述第一UE根据所述第一速度信息确定控制信息的传输方式;
所述第一UE在第一链路上以所述传输方式发送所述控制信息。
本发明实施例中,第一UE可以根据第一速度信息确定控制信息的传输方式,当第一UE为高速UE时,能够为高速UE选择合适的传输方式,从而能够保证高速UE的传输需求,保证传输的成功率。
可选地,该方法还可以包括:所述第一UE在第二链路上将所述第一速度信息发送至第一基站,所述第一速度信息包括:所述第一UE的速度的大小,或所述第一UE的速度等级信息。其中,第一基站可以为第一UE的服务基站。
其中,所述第一UE可以在所述第二链路上将所述第一速度信息周期性地发送至所述第一基站;或者,所述第一UE可以在所述第一UE的速度发生变化时,在所述第二链路上将所述第一速度信息发送至所述第一基站;或者,所述第一UE在接收到所述第一基站发送的上报所述第一UE的速度信息的指示后,在所述第二链路上将所述第一速度信息发送至所述第一基站。
可选地,若所述第一UE根据所述第一速度信息确定所述第一UE属于第一类UE,则所述传输方式为第一传输方式;若所述第一UE根据所述第一速度信息确定所述第一UE属于第二类UE,则所述传输方式为第二传输方式。其中,第一类UE可以为非高速UE,第二类UE为高速UE。
可选地,所述第一传输方式包括第一传输资源,所述第二传输方式包括第二传输资源。第一传输资源可以从第一资源集或第一资源集的第一资源子集中确定,第二传输资源可以从第二资源集或第二资源集的第二资源子集中确定。
相应地,所述第一UE根据所述第一速度信息确定控制信息的传输方式,可以包括:
若所述第一UE根据所述第一速度信息确定所述第一UE属于所述第一类UE,则从第一资源集中或从所述第一资源集的第一资源子集中确定所述第一传输资源,其中,所述第一资源子集是预定义的;若所述第一UE根据所述第一速度信息确定所述第一UE属于所述第二类UE,则从第二资源集中或从所述第二资源集的第二资源子集中确定所述第二传输资源,其中,所述第二资源子集是预定义的。
可选地,在所述确定控制信息的传输方式之前,还包括:所述第一UE获取第一资源集和第二资源集。例如,第一资源集和第二资源集可以是预先配置的。
可选地,在所述确定控制信息的传输方式之前,还包括:所述第一UE在第二链路上接收第一基站发送的第一指示信息,所述第一指示信息用于指示所述第一资源集和所述第二资源集。
其中,所述第一资源集与所述第二资源集可以为同一个资源集;或者,所述第二资源集属于所述第一资源集的子集。
可选地,作为一例,若所述第一UE根据所述第一速度信息确定所述第一UE属于第一类UE,则确定所述控制信息承载在第一控制信道;若所述第一UE根据所述第一速度信息确定所述第一UE属于第二类UE,则确定所述控制信息承载在第二控制信道。其中,第一控制信道可以为第一PSCCH,第二控制信道可以为第二PSCCH。
可选地,所述控制信息包括所述第一速度信息;所述第一UE在第一链路上以所述传输方式发送所述控制信息,可以包括:所述第一UE在所述第一链路上以所述传输方式将所述第一速度信息发送至第二UE。
可选地,作为另一例,承载所述控制信息的控制信道可以为第三控制信道。例如,该第三控制信道为PSBCH。
可选地,所述控制信息用于指示业务的类型,所述业务的类型为安全类型或非安全类型。可选地,所述控制信息指示所述第一UE是否为同步源,和/或,所述控制信息指示所述第一UE的同步源的标识。
其中,所述第一UE的同步源为第一基站,所述第一UE的同步源的标识可以为所述第一基站的物理小区标识;或者,所述第一UE的同步源为全球导航卫星系统GNSS,所述第一UE的同步源的标识可以为与所述GNSS对应的预定义的标识。
可选地,所述方法还可以包括:所述第一UE在所述第一链路上发送同步信号。可选地,所述同步信号用于指示业务的类型,所述业务的类型为安全类型或非安全类型。
可选地,所述方法还可以包括:所述第一UE确定所述第一UE的同步源。
其中,所述确定所述第一UE的同步源,包括:若所述第一UE根据所述第一速度信息确定所述第一UE属于第一类UE,则根据预先配置的信息确定所述同步源。如果所述预先配置的信息指示同步源为GNSS,则所述处理单元优先确定所述同步源为GNSS。
若所述第一UE根据所述第一速度信息确定所述第一UE属于第二类UE,则所述第一UE优先确定所述同步源为GNSS。
具体地,如果所述第一UE能够检测到所述GNSS的信号,则所述第一UE将所述GNSS作为同步源。如果所述第一UE无法检测到所述GNSS的信号,则所述第一UE确定所述同步源为第一基站或第三UE。其中,所述第一基站可以为所述第一UE的服务基站,所述第三UE可以为直接同步到GNSS的UE。
可选地,所述第一UE能够检测到所述GNSS的信号,包括:若所述第一UE无法检测到所述GNSS的信号,则所述第一UE启动定时器;并随后在所述定时器的时长内检测到所述GNSS的信号。所述第一UE无法检测到所述GNSS的信号,包括:若所述第一UE无法检测到所述GNSS的信号,则所述第一UE启动定时器;并在所述定时器的时长内依然无法检测到所述GNSS的信号。
其中,所述能够检测到GNSS的信号,包括:能够检测到信号强度大于或等于预设的信号强度阈值的GNSS的信号。所述无法检测到GNSS的信号,包括:无法检测到GNSS的任何信号,或者,检测到信号强度小于所述预设的信号强度阈值的GNSS的信号。
可选地,所述方法还包括:所述第一UE使用第四传输资源,在所述第一链路上发送数据。其中,所述第四传输资源是由所述控制信息所指示的。
可选地,位于同一符号上的每K个连续的子载波包括一个用于传输所述数据的子载波,K为大于或等于2的正整数。
可选地,所述控制信息还指示所述数据的传输次数,以及每次传输时的时频资源。
作为一例,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,所述第四传输资源包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源。
作为另一例,所述数据的传输次数为N次,所述第四传输资源包括所述N次中的M次传输所使用的时频资源,以使得所述控制信息的接收端根据所述控制信息包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。
可选地,所述第一UE使用所述第四传输资源,在所述第一链路上发送 所述数据,包括:所述第一UE使用所述第四传输资源,在所述第一链路上发送所述数据和第一序列;其中,所述第一序列是在预定义长度的ZC序列集中除去预定义的第二序列后所确定的。
可选地,作为一个实施例,所述控制信息和所述数据位于同一个子帧。所述发送所述控制信息,包括:确定所述控制信息的第一发射功率以及所述数据的第二发射功率;若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则将所述第一发射功率乘以第一缩放值作为第一功率,将所述第二发射功率乘以第二缩放值作为第二功率,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率;使用所述第一功率发送所述控制信息,并使用所述第二功率发送所述数据,
其中,所述第一缩放值与所述第二缩放值相等或不相等。
可选地,所述方法还包括:当所述第一UE属于第二类UE时,所述第一UE使用第五传输资源,在第二链路上将所述第一链路上的数据发送至第二基站。其中,所述第二基站为所述数据的接收端的服务基站。
这样,能够由基站协助完成第一UE至接收端的第一链路的数据传输,保证高速UE的传输成功率。
可选地,在第二链路上将所述第一链路上的数据发送至第二基站之前,还包括:所述第一UE向第一基站发送资源请求信息;所述第一UE接收所述第一基站发送的所述第五传输资源的指示信息。
其中,所述资源请求信息为与速度相关的调度请求SR或缓存状态报告BSR。所述与速度相关的信息可以是:在SR或BSR中包含速度的指示信息;或者第一UE在发送SR或BSR的同时还附带发送指示第一UE的速度的指示信息。可选的,所述速度的指示信息可以是第一UE的具体的速度值,还可以指示第一UE是否处于高速状态下的指示信息。例如,如果第一UE处于连接态,则直接向第一基站发送SR或BSR。如果第一UE处于空闲态,则在第一UE切换至连接态后再向第一基站发送调度请求或BSR。
作为一例,所述数据的接收端为第二UE,所述第二UE的服务基站为所述第一基站,则所述第一基站与所述第二基站为同一个基站。
作为另一例,所述数据的接收端包括第二UE和第四UE,所述第二UE的服务基站为所述第一基站,所述第四UE的服务基站为第三基站,则所述第二基站包括所述第一基站和所述第三基站。
第二方面,提供了一种用于信息传输的方法,包括:
第一UE确定所述第一UE的第一速度信息;
所述第一UE根据所述第一速度信息,确定所述第一UE的同步源。
可选地,所述第一UE根据所述第一速度信息确定所述第一UE属于第一类UE,则根据预先配置的信息确定所述同步源,其中,如果所述预先配置的信息指示同步源为GNSS,则所述第一UE优先确定所述同步源为GNSS。如果所述第一UE根据所述第一速度信息确定所述第一UE属于第二类UE,则所述第一UE优先确定所述同步源为GNSS。
可选地,如果所述第一UE能够检测到所述GNSS的信号,则所述第一UE将所述GNSS作为同步源。如果所述第一UE无法检测到所述GNSS的信号,则所述第一UE确定所述同步源为第一基站或第二UE。其中,所述第一基站为所述第一UE的服务基站,所述第二UE为直接同步到GNSS的UE。
可选地,所述第一UE能够检测到所述GNSS的信号,包括:若所述第一UE无法检测到所述GNSS的信号,则所述第一UE启动定时器;并随后在所述定时器的时长内检测到所述GNSS的信号。所述第一UE无法检测到所述GNSS的信号,包括:若所述第一UE无法检测到所述GNSS的信号,则所述第一UE启动定时器;并在所述定时器的时长内依然无法检测到所述GNSS的信号。
这样,能够保证第一UE尽可能地同步到GNSS,从而保证作为高速UE的第一UE的通信成功率。
可选地,所述能够检测到GNSS的信号,包括:能够检测到信号强度大于或等于预设的强度阈值的GNSS的信号。所述无法检测到GNSS的信号,包括:无法检测到GNSS的任何信号,或者,检测到信号强度小于所述预设的强度阈值的GNSS的信号。
其中,预设的强度阈值可以是协议规定的,或者可以是预先设置在第一UE处的,或者可以是由第一UE的服务基站通过信令进行指示的。
第三方面,提供了一种信息传输的方法,包括:
第一用户设备UE确定控制信息所调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式;
所述第一UE在第一链路上以所述传输方式发送所述控制信息。
可选地,其中,数据的传输次数可以是第一UE根据第一UE的速度信息所确定的。
可选地,当所述数据的传输次数不同时,所述控制信息的有效字段不同。
可选地,所述控制信息包括所述数据的传输次数,以及所述数据的每次传输时的时频资源的指示信息。
作为一例,当所述数据的传输次数为四次时,在所述控制信息的第一字段和所述控制信息的第二字段包括所述四次传输中的其中两次传输的时频资源。
作为另一例,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,所述控制信息包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源的指示信息。
可选地,所述控制信息还可以包括当前传输次数的指示信息,和/或,所述控制信息还可以包括所述第一UE的速度的指示信息。
可选地,所述方法还包括:根据所述控制信息,在所述第一链路上发送所述数据。其中,所述控制信息可以承载在物理边链路控制信道PSCCH,所述数据可以承载在物理边链路共享信道PSSCH。
可选地,所述数据承载在业务信道中,所述控制信息与所述数据位于同一个子帧。所述发送所述控制信息,包括:确定所述控制信息的第一发射功率以及所述数据的第二发射功率;若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则将所述第一发射功率乘以第一缩放值作为第一功率,将所述第二发射功率乘以第二缩放值作为第二功率,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率;使用所述第一功率发送所述控制信息,并使用所述第二功率发送所述数据。
其中,所述第一缩放值与所述第二缩放值相等或不相等。
第四方面,提供了一种用于信息传输的方法,包括:
第一基站接收至少一个UE发送的速度信息;
所述第一基站根据所述至少一个UE的速度信息,确定第一资源集和第二资源集;
所述第一基站在第二链路上向所述至少一个UE发送第一指示信息,该第一指示信息用于指示所述第一资源集和所述第二资源集。
这样,所述至少一个UE可以从所述第一资源集或从所述第二资源集中 选择用于第一链路的传输资源。
可选地,第一基站可以通过广播或组播的方式,在第二链路上发送该第一指示信息。
其中,所述第一指示信息用于指示:所述第一资源集用于第一类UE,所述第二资源集用于第二类UE。这样,如果第一UE属于第一类UE,则第一UE根据第一指示信息,从第一资源集中或从第一资源集的第一资源子集中确定第一传输资源。如果第一UE属于第二类UE,则第一UE根据第一指示信息,从第二资源集中或从第二资源集的第二资源子集中确定第二传输资源。
可选地,第一指示信息还可以指示第一资源子集在第一资源集中的位置,该位置可以是时域位置或频域位置或时频位置。可选地,该第一指示信息还可以指示第二资源子集在第二资源集中的位置,该位置可以是时域位置或频域位置或时频位置。
可选地,第一资源集与第二资源集为同一个资源集。
可选地,第二资源集为第一资源集的子集。此时,第一指示信息还可以指示第二资源集在第一资源集中的位置,该位置可以是时域位置或频域位置或时频位置。
可选地,第一指示信息还可以指示预设的速度阈值,以便于至少一个UE确定自己属于第一类UE还是属于第二类UE。
可选地,该方法可以包括:第一基站接收第一UE发送的发送资源请求信息,所述第一基站为所述第一UE分配资源,并向第一UE发送第五传输资源的指示信息。其中,所述资源请求信息可以为与速度相关的调度请求SR或缓存状态报告BSR。
进一步地,第一基站可以在第二链路上接收第一UE使用该第五传输资源发送的第一链路数据,并且第一基站可以将该第一链路数据发送至第二UE。其中,第二UE为第一链路数据的接收端。
第五方面,提供了一种用户设备,该UE为第一UE,包括处理单元和发送单元。处理单元,用于确定所述第一UE的第一速度信息,还用于根据所述第一速度信息确定控制信息的传输方式;发送单元,用于在第一链路上以所述处理单元确定的所述传输方式发送所述控制信息。第五方面的第一UE能够实现第一方面的方法中由第一UE执行的信息传输的方法。
第六方面,提供了一种用户设备,该UE为第一UE,包括接收器、处理器和发送器。处理器,用于确定所述第一UE的第一速度信息,还用于根据所述第一速度信息确定控制信息的传输方式;发送器,用于在第一链路上以所述处理器确定的所述传输方式发送所述控制信息。第六方面的第一UE能够实现第一方面的方法中由第一UE执行的信息传输的方法。
第七方面,提供了一种一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得UE执行上述第一方面,及其各种实现方式中的任一种信息传输的方法。
第八方面,提供了一种用户设备,所述UE为第一UE,包括:第一确定单元和第二确定单元。第一确定单元,用于确定所述第一UE的第一速度信息;第二确定单元,用于根据所述第一确定单元确定的所述第一速度信息,确定所述第一UE的同步源。第八方面的第一UE能够实现第二方面的方法中由第一UE执行的用于信息传输的方法。
第九方面,提供了一种用户设备,所述UE为第一UE,包括:存储器和处理器。存储器用于存储处理器执行的代码,处理器用于确定所述第一UE的第一速度信息;并根据所述第一速度信息,确定所述第一UE的同步源。第九方面的第一UE能够实现第二方面的方法中由第一UE执行的用于信息传输的方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得UE执行上述第二方面,及其各种实现方式中的任一种用于信息传输的方法。
第十一方面,提供了一种用户设备,所述UE为第一UE,包括:处理单元和发送单元。处理单元,用于确定控制信息所调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式;发送单元,用于在第一链路上以所述传输方式发送所述控制信息。第十一方面的第一UE能够实现第三方面的方法中由第一UE执行的信息传输的方法。
第十二方面,提供了一种用户设备,所述UE为第一UE,包括:存储器、处理器和发送器。存储器用于存储处理器执行的代码。处理器,用于确定控制信息所调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式;发送器,用于在第一链路上以所述传输方式发送所述控制信息。第十二方面的第一UE能够实现第三方面的方法中由第一UE执 行的信息传输的方法。
第十三方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得UE执行上述第三方面,及其各种实现方式中的任一种信息传输的方法。
第十四方面,提供了一种基站,所述基站为第一基站,包括接收单元、处理单元和发送单元。接收单元用于接收至少一个UE发送的速度信息;处理单元用于根据所述至少一个UE的速度信息,确定第一资源集和第二资源集;发送单元用于在第二链路上向所述至少一个UE发送第一指示信息,该第一指示信息用于指示所述第一资源集和所述第二资源集。第十四方面的第一基站能够实现第四方面的方法中由第一基站执行的用于信息传输的方法。
第十五方面,提供了一种基站,所述基站为第一基站,包括接收器、处理器和发送器。接收器用于接收至少一个UE发送的速度信息;处理器用于根据所述至少一个UE的速度信息,确定第一资源集和第二资源集;发送器用于在第二链路上向所述至少一个UE发送第一指示信息,该第一指示信息用于指示所述第一资源集和所述第二资源集。第十五方面的第一基站能够实现第四方面的方法中由第一基站执行的用于信息传输的方法。
第十六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得基站执行上述第四方面,及其各种实现方式中的任一种用于信息传输的方法。
本发明实施例中,如果第一UE的速度小于预设的速度阈值,或者,如果第一UE的速度等级小于预设的速度等级阈值,则所述第一UE属于第一类UE。如果第一UE的速度大于或等于预设的速度阈值,或者,如果第一UE的速度等级大于或等于预设的速度等级阈值,则所述第一UE属于第二类UE。其中,第一类UE可以为非高速UE,第二类UE可以为高速UE。
上述各个实施例中,所述传输方式可以包括以下中的至少一种:所述控制信息使用的传输资源;所述控制信息的循环冗余校验CRC掩码;所述控制信息的加扰序列;承载所述控制信息的控制信道使用的解调参考信号;所述控制信息传输时占用的物理资源的大小;所述控制信息使用的调制和编码方案MCS;所述控制信息的传输次数。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一个V2V通信的场景的示意图。
图2是本发明实施例的一个应用场景的示意图。
图3是本发明实施例的第一资源集与第二资源集的示意图。
图4是本发明一个实施例的信息传输的方法的流程图。
图5是本发明实施例的控制信息指示的一个示意图。
图6是本发明实施例的控制信息指示的另一个示意图。
图7是本发明实施例的控制信息指示的另一个示意图。
图8是本发明实施例的数据传输占用资源的一个示意图。
图9是本发明实施例的数据传输占用资源的另一个示意图。
图10是本发明实施例的数据传输占用资源的另一个示意图。
图11是本发明实施例的另一个场景示意图。
图12是本发明另一个实施例的信息传输的方法的流程图。
图13是本发明另一个实施例的信息传输的方法的流程图。
图14是本发明另一个实施例的信息传输的方法的流程图。
图15是本发明一个实施例的用户设备的结构框图。
图16是本发明另一个实施例的用户数设备的结构框图。
图17是本发明一个实施例的系统芯片的示意性的结构框图。
图18是本发明另一个实施例的用户数设备的结构框图。
图19是本发明另一个实施例的用户数设备的结构框图。
图20是本发明另一个实施例的系统芯片的示意性的结构框图。
图21是本发明另一个实施例的用户数设备的结构框图。
图22是本发明另一个实施例的用户数设备的结构框图。
图23是本发明另一个实施例的系统芯片的示意性的结构框图。
图24是本发明另一个实施例的用户数设备的结构框图。
图25是本发明另一个实施例的用户数设备的结构框图。
图26是本发明另一个实施例的系统芯片的示意性的结构框图。
图27是本发明一个实施例的基站的结构框图。
图28是本发明另一个实施例的基站的结构框图。
图29是本发明另一个实施例的系统芯片的示意性的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例的一个V2V通信的场景的示意图。图1示出的为在车道上的4个车相互之间进行通信的示意图。
V2V通信可通过多个车载单元(On board Unit,OBU)之间的无线通信,实现辅助驾驶和自动驾驶,从而能够有效地提升交通的通行效率,避免交通事故,降低行车风险。
图2是本发明实施例的一个应用场景的示意图。图2中示出了演进型基站(evolved NodeB,eNB)10、路边单元(Road Side Unit,RSU)30、UE 41、UE 42和UE 43。其中,RSU 30能够与eNB 10进行直接通信;UE 41、UE 42和UE 43能够与eNB 10进行直接通信,或者通过RSU 30与eNB 10进行通信。另外,图2中还示出了全球导航卫星系统(Global Navigation Satellite System,GNSS)20,可以用于为其他的网元提供位置、授时等信息。
其中,RSU 30在功能上既可以是一个车载设备的功能,也可以是一个eNB的功能。其中,UE 41、UE 42和UE 43可以指车载设备,车载设备之间可以通过边链路(Sidelink)进行V2V通信。车载设备随着车辆高速移动,例如,UE 41和UE 42之间相对运功时,具有最大的相对移动速度。
图2中所示的各个设备之间在进行通信时可以使用蜂窝链路的频谱,也可以使用5.9GHz附近的智能交通频谱。各个设备之间相互通信的技术可以基于LTE协议进行增强,也可以基于D2D技术进行增强。
本发明实施例中,边链路(SL)可以是指UE与UE之间的通信链路,在D2D通信中也称为D2D链路,另外某些场景也称为PC5链路。在车联网中,也可以称为V2V链路,或者车辆-设施(Vehicle to Infrastructure,V2I)链路,或者车辆-行人(Vehicle to Pedestrian,V2P)链路等。该边链路可以通过广播、单播、多播或组播中的任意一种形式发送信息。其中,该边链路 可以使用蜂窝链路的频谱,例如使用蜂窝链路的上行频谱;还可以使用为智能交通分配的专用的频谱,本发明对此不做限定。
本发明实施例中,UE也可以称为终端,可以包括车辆上的OBU,也可以包括路边的具有终端功能的RSU等,还可以包括行人所使用的手机等。
用户设备(User Equipment,UE)可能处于高速移动的状态,这样对V2X通信的无线链路的传输质量提出了更高的要求。如何在无需大幅度增加接收机的复杂度的同时,保证UE之间的控制信息以及数据信息正确地传输,是本发明所要解决的关键问题。
现有的方案中,UE之间的传输中使用的物理边链路控制信道(Physical Sidelink Control Channel,PSCCH)的大小为1个物理资源块(Physical Resource Block,PRB)。但是该现有技术在应用到5.9GHz附近的智能交通频谱的最大相对车速为500km/h时,性能下降较大,从而不能满足传输距离的覆盖要求。而且一旦PSCCH解调性能下降,PSCCH所调度的数据信道,即物理边链路共享信道(Physical Sidelink Shared Channel,PSSCH)的解调能力也相应地受到影响。
下面首先对本发明所涉及到的一些术语进行简单的描述:
第一链路:表示UE之间的通信链路。可以是D2D链路或者V2X链路或者边链路(Sidelink,SL)等。举例来说,可以是前述图2中UE 41与UE42之间的链路,可以是前述图2中RSU 30与UE 43之间的链路。第一链路上的通信可以是基于单播、组播、广播中的任意一种方式进行。
第二链路:表示UE与基站之间的通信链路。可以是蜂窝链路。举例来说,可以是前述图2中UE 41/UE 42/UE 43与基站10之间的链路,可以是前述图2中RSU 30与eNB 10之间的链路。或者,若图2中的RSU 30为具有基站功能的RSU,则第二链路可以为UE 41/UE 42/UE 43与RSU 30之间的链路。
另外,本发明实施例中的“预定义”可以是协议中规定好的,或者也可以是预先配置的,例如可以是通过信令预先配置的。本发明对此不限定。
本发明实施例中,定义了至少两类UE,包括第一类UE和第二类UE。其中,第一类UE的速度小于预设的速度阈值,第二类UE的速度大于或等于预设的速度阈值。
也就是说,第一类UE为速度小于预设的速度阈值的UE,第二类UE 为速度大于或等于预设的速度阈值的UE。可以将第一类UE称为低速UE或非高速UE,将第二类UE称为高速UE。
可选地,作为一例,本发明实施例中UE的速度可以是绝对速度,即对地速度。UE获取第一绝对速度的方式包括:通过GNSS模式确定;或者如果UE是OBU,则通过车上的相应模块(如发动机块,变速箱模块,或其他的对速度进行电控的模块)获取相应的速度信息;或者通过基站指示的信息来获取。可选地,如果UE指的是物理层的通信模块,则可以通过其他层的指示信息来获取。
可选地,预设的速度阈值可以为一个预定义的速度值。例如预设的速度阈值为250km/h。
可选地,本发明实施例中可以定义多个速度门限值,例如包括第一速度阈值、第二速度阈值和第三速度阈值。相应地,可以为速度设定不同的速度等级。并且,速度等级与多个速度门限值有关。
举例来说,假设第一速度阈值表示为v1,第二速度阈值表示为v2,第三速度阈值表示为v3,且v1<v2<v3。假设UE的速度表示为v。那么,速度等级与多个速度门限值的关系可以如下的表一所示。
表一
速度等级 UE的速度v
0 v<v1
1 v1≤v<v2
2 v2≤v<v3
3 v≥v3
可理解,预设的速度阈值可以通过速度等级进行表示。若预设的速度阈值为v2,那么,表一中的速度等级0和1的UE即为前述的第一类UE,表一中的速度等级2和3的UE即为前述的第二类UE。也就是说,第一类UE为速度等级小于预设的等级阈值的UE,第二类UE为速度等级大于或等于预设的等级阈值的UE。针对表一的情形,预设的等级阈值可以为1。并且,对照表一,可以理解,预设的等级阈值对应的速度的最大值即为前述的预设的速度阈值,预设的速度阈值可以是一个,也可以是多个,本发明对此不做限制。
作为一例,v1=150km/h,v2=200km/h,v3=250km/h。
可选地,作为另一例,本发明实施例中UE的速度可以是相对速度。例如,可以是相对于其他物体(可以是另一个UE或多个UE)的速度。举例来说,其他物体可以是能够通过第一链路与该UE进行通信的对端的UE。
该UE的速度可以是该UE(例如图2中的UE 41)与对端的另一UE(例如图2中的UE 42)之间的相对速度。或者,该UE的速度可以是该UE(例如图2中的UE 41)与对端的另多个UE(例如图2中的UE 42和UE 43)之间的相对速度。UE获取相对速度的方式包括:先获取自己的绝对速度,然后通过测量或解析来自其他UE发送的数据包来获取其他UE的速度与位置信息。UE根据这些信息来获得与一个或多个UE的相对速度的信息。可选地,如果UE指的是物理层的通信模块,则获取可以是通过其他层的指示信息来获取。
上述预设的速度阈值可以用预设的等级阈值等级来表示。第一类UE为速度等级小于预设的等级阈值的UE,第二类UE为速度等级大于或等于预设的等级阈值的UE。
以图2中的UE 41为例,假设UE 41相对于UE 42的相对速度为Δv2,UE 41相对于UE 43的相对速度为Δv3。v2≤Δv2<v3,且v2≤Δv3<v3。那么,参照表一,可知UE 41的速度等级为2。
本发明实施例中,第一类UE在第一链路发送控制信息,可以使用第一传输方式;第二类UE在第一链路发送控制信息,可以使用第二传输方式。
其中,第一传输方式与第二传输方式不同。
传输方式可以包括以下中的至少一种:控制信息使用的传输资源、控制信息的循环冗余校验(Cyclic Redundancy Check,CRC)掩码、控制信息的加扰序列、承载所述控制信息的控制信道使用的解调参考信号(DeModulation Reference Signal,DMRS)、控制信息传输时占用的物理资源的大小、控制信息使用的调制和编码方案(Modulation and Coding Scheme,MCS)、控制信息的传输次数等。
其中,控制信息的传输次数可以是指,控制信息的最大传输次数。
不同的传输方式是指上述所列的至少一项不同。也就是说,不同的传输方式可以包括以下的至少一种:不同的传输资源、不同的CRC掩码、不同的加扰序列、不同的DMRS、不同的物理资源的大小、不同的MCS、不同 的控制信息的传输次数等。
其中,不同的传输资源可以包括:第一类UE和第二类UE使用的传输资源来自不同的资源集;或者第一类UE和第二类UE使用的传输资源来自相同的资源集,但是用信息指示出第二类UE使用的资源或资源子集,或使用预定义的方式限定第二类UE使用的资源子集。
其中,不同的CRC掩码是指:使用一个序列定义的序列串,用于对待传输信息的CRC部分进行加扰。例如控制信道承载的信息为x比特(例如50比特),对这x比例的信息在编码之前会加上长为N比特(如16比特)CRC校验位。而CRC掩码是指一个长为N比特的预定义的序列串,用于加在CRC的对应比特上。例如,对长为16比特的CRC,CRC掩码可以是:1111000011110000,也可以是1111111100000000。也还可以是别的预定义的值,这里不一一列举。在生成控制信息时,CRC检验位得到后,需要加预定义的掩码按对应比特加在CRC的检验位上。接收机只有知道这些预定义的掩码之后,才可以完成相应的CRC校验操作。不同的CRC掩码用于区分第一传输方式和第二传输方式,从而这两者传输方式的UE发射机或接收机能够以相对应的处理方法来接收这两种传输方式对应的信息,以提高处理的效率。
其中,不同的加扰序列,是指生成加扰序列的序列类型不同,或者生成加扰序列的生成多项式不同。可选地,可以包括:生成加扰序列的初始值不同。
其中,不同的DMRS可以包括不同的DMRS序列,即包括以下中的至少一种:不同的根序列号、不同的循环移位(cyclic shift)、不同的正交覆盖码(Orthogonal Cover Code,OCC)。不同的DMRS可以包括在一次传输时使用的多个不同的DMRS所占用的符号上,在不同的符号上映射的DMRS序列不同。例如:如果在一次传输时有4个DMRS符号,则在这4个DMRS符号上其中一部分符号上的DMRS序列与其它部分的DMRS符号上的DMRS序列不同。这里,DMRS是指将预定义的序列(DMRS序列)按一定的规则映射到DMRS所占用的符号上的生成的信号。
其中,不同的控制信息传输时占用的物理资源的大小,可以包括:第一传输方式与第二传输方式中控制信息传输时所占用的PRB的数量不同。例如,第一传输方式占用1个PRB,第二传输方式占用2个或3个或4个PRB。
其中,不同的MCS,是指不同类型的控制信道传输控制信息时使用的MCS不同。例如,第一传输方式的MCS为MCS1,第二传输方式的MCS为MCS2。其中MCS2比MCS1要低,从而能够保证高速UE的传输成功率。
其中,不同的控制信息的传输次数,是指不同类型的传输次数不同。例如,第一传输方式的传输次数为N1,第二传输方式的传输次数为N2,且N1<N2。由于第二类UE的速度大于第一类UE的速度,这样,第二类UE使用的传输方式的传输次数多,能够保证高速UE的传输成功率。
可选地,传输方式还可以是控制信息所包含的字段等。例如,使用第一传输方式的控制信息包含A1个字段,使用第二传输方式的控制信息包含A2个字段,且A1<A2。
可选地,作为一个实施例,第一类UE传输的控制信息可以承载于第一控制信道,第二类UE传输的控制信息可以承载于第二控制信道。其中,第一控制信道可以为第一PSCCH,第二控制信道可以为第二PSCCH。
也就是说,本发明实施例中,在第一链路上可以定义两种不同的控制信道,第一PSCCH和第二PSCCH。相应的数据信道(也可以称为业务信道)可以包括第一PSSCH和第二PSSCH,且第一PSSCH与第一PSCCH对应,第二PSSCH与第二PSCCH对应。第一PSCCH用于第一类UE的第一链路数据传输,第二PSCCH用于第二类UE的第一链路数据传输。第一PSCCH与第二PSCCH具有不同的传输方式。其中,第一PSCCH与第二PSCCH可以相同或不同。不同包括上述的传输方式之一不同。相同则上述传输之式任何一种都相同,并且第一和第二控制信道中包括了相同的字段;其中的部分或全部字段对第一和第二控制信道的取值不同。例如,第一控制信道和第二控制信道包括同一指示速度信息的字段。第一控制信道与第二控制信道中这个相同的字段中的取值各不相同。例如,第一控制信道包括1比特的速度指示信息,其取值为0,对应第一类UE;第一控制信道包括1比特的速度指示信息,其取值为1,对应第二类UE。
其中,第一类UE的速度小于预设的速度阈值,第二类UE的速度大于或等于预设的速度阈值。也就是说,第一类UE为速度小于预设的速度阈值的UE,第二类UE为速度大于或等于预设的速度阈值的UE。可以理解,第一PSCCH用于普通速度(或称为非高速)的场景,第二PSCCH用于高速的场景。
另外,第一PSCCH与第二PSCCH的大小可以相同或不同,本发明对此不限定。
可选地,作为一种实现方式,第一传输方式包括:控制信息使用的传输资源为第一传输资源。第二传输方法包括:控制信息使用的传输资源为第二传输资源。或者,可以表述为:第一传输方式包括第一传输资源,第二传输方式包括第二传输资源。
其中,第一传输资源可以来自于第一资源集,第二传输资源可以来自于第二资源集。或者,第一传输资源可以来自于第一资源集的第一资源子集,第二传输资源可以来自于第二资源集的第二资源子集。或者,第一传输资源可以来自于第一资源集,第二传输资源也可以来自于第一资源集,并且使用信息指示第二传输占用的资源或使用预定义的方式限定第二类UE使用的第一资源集中的子集。
可选地,本发明实施例中,第一资源集(和/或第一资源子集)和第二资源集(和/或第二资源子集)可以是预定义的,例如可以是预先配置的,或者可以是协议预先规定好的。
可选地,本发明实施例中,第一资源集(和/或第一资源子集)和第二资源集(和/或第二资源子集)可以是从第一基站发送的第一指示信息中所获取的。关于该第一指示信息在后续的方法实施例中作较为详细的描述。
作为一例,第一资源集与第二资源集可以为同一个资源集,如图3(a)所示。假设称为资源集,那么,可以从该资源集中确定第一传输资源和第二传输资源。
假设第一资源集包括N个物理资源块(Physical Resource Block,PRB),N个PRB可以表示为{0,1,2,…,N-1}。
第一传输资源和第二传输资源在N个PRB的资源集中各自会有N个不同的候选位置。此时,UE将对所有可能的候选位置进行盲检测,这样导致复杂度较高。
作为另一例,第二资源集属于第一资源集的子集,如图3(b)所示。那么,此时,可以从第一资源集中确定第一传输资源,从第二资源集中确定第二传输资源。
作为另一例,第一资源集和第二资源集不同。其中,第一资源集和第二资源集可以在频域上相邻或不相邻。如图3(c)所示为在频域上相邻的第一资 源集和第二资源集,图3(d)所示为在频域上不相邻的第一资源集和第二资源集。那么,此时,可以从第一资源集中确定第一传输资源,从第二资源集中确定第二传输资源。
作为另一例,第一资源集和第二资源集不同。那么可以从第一资源集的第一资源子集中确定第一传输资源,从第二资源集的第二资源子集中确定第二传输资源。或者,从第一资源集中确定第一传输资源,从第二资源集的第二资源子集中确定第二传输资源。或者,从第一资源集的第一资源子集中确定第一传输资源,从第二资源集中确定第二传输资源。
作为另一例,第一资源集和第二资源集为同一个资源集。那么可以从第一资源集的第一资源子集中确定第一传输资源,从第二资源集的第二资源子集中确定第二传输资源。或者,从第一资源集中确定第一传输资源,从第二资源集的第二资源子集中确定第二传输资源。或者,从第一资源集的第一资源子集中确定第一传输资源,从第二资源集中确定第二传输资源。
本发明实施例中对包含资源子集的情形进行较为详细的描述。假设,第一资源集和第二资源集为同一个资源集,如图3(a)所示。且第一资源子集为第一资源集的子集,第二资源子集为第二资源集的子集,如图3(e)和图3(f)所示。
其中,第一资源子集在第一资源集中的时频资源的位置可以是预先定义或者是由信令进行指示的,第二资源子集在第二资源集中的时频资源的位置也可以是预先定义或者是由信令进行指示的。
由于第一资源集和第二资源集为同一个资源集,此时可以将第一资源集和第二资源集都称为资源集,假设资源集包括N个物理资源块(Physical Resource Block,PRB),N个PRB可以表示为{0,1,2,…,N-1}。
若限定了第一资源子集和/或第二资源子集在资源集中的位置,例如在资源集中的时频资源的位置,这样UE可以根据确定的位置进行盲检测,这样能够减少盲检测的次数,从而减小复杂度。
作为一例,可以限定第一资源子集和/或第二资源子集在资源集中的频域位置。
可以只限定第二资源子集在第二资源集中的频域位置或时域位置。那么,此时可以从第一资源集中确定第一传输资源,从第二资源子集中确定第二传输资源。
可以只限定第一资源子集在第一资源集中的频域位置或时域位置。那么,此时可以从第一资源子集中确定第一传输资源,从第二资源集中确定第二传输资源。
可以同时限定第一资源子集在第一资源集中的频域位置或时域位置,并限定第二资源子集在第二资源集中的频域位置或时域位置。那么,此时可以从第一资源子集中确定第一传输资源,从第二资源子集中确定第二传输资源。
如图3(e)所示为第一资源子集和第二资源子集分别占用的资源集中的频域位置,且第一资源子集和第二资源子集占用不同的频域位置。
另外,第一资源子集和第二资源子集可以在频域上相邻或不相邻。本发明对此不限定。
应注意,图3(e)仅是示意性的描述,第一资源子集和/或第二资源子集可以占用不连续的频域位置。
例如,图3(e)所示为第一资源子集占用连续的频域位置,第二资源子集占用连续的频域位置,且第一资源子集与第二资源子集在频域上是不相邻的。
再例如,第二资源子集占用该资源集的第i1,i1+M1,i1+2*M1,…,i1+k1*M1个子载波。其中,i1和M1的值可以是预定义的,也可以是由基站通过信令指示的。一般地,0≤i1<M1,且i1和M1为整数。
可选地,可以同时指示第一资源子集占用该资源集的第i2,i2+M2,i2+2*M2,…,i2+k2*M2个子载波。其中,i2和M2的值可以是预定义的,也可以是由基站通过信令指示的。一般地,0≤i2<M2,且i2和M2为整数。
如图3(f)所示为第一资源子集和第二资源子集分别占用的资源集中的时域位置,且第一资源子集和第二资源子集占用不同的时域位置。
另外,第一资源子集和第二资源子集可以在时域上相邻或不相邻。本发明对此不限定。
应注意,图3(f)仅是示意性的描述,第一资源子集和/或第二资源子集可以占用不连续的时域位置。
例如,图3(f)所示为第一资源子集占用连续的时域位置,第二资源子集占用连续的时域位置,且第一资源子集与第二资源子集在时域上是不相邻的。
再例如,第二资源子集占用该资源集的第i3,i3+M3,i3+2*M3,…,i3+k3*M3个符号(或子帧)。其中,i3和M3的值可以是预定义的,也可以是由基站通过信令指示的。一般地,0≤i3<M3,且i3和M3为整数。
可选地,可以同时指示第一资源子集占用该资源集的第i4,i4+M4,i4+2*M4,…,i4+k4*M4个符号(或子帧)。其中,i4和M4的值可以是预定义的,也可以是由基站通过信令指示的。一般地,0≤i4<M4,且i4和M4为整数。
举例来说,若通过i1和M1限定第二资源子集在第二资源集中的频域位置。那么,此时可以从第一资源集中确定第一传输资源,从第二资源子集中确定第二传输资源。假设i1=1,M1=4。这样,第一UE可以确定第二资源子集占用的子载波的序号为{1,5,9,13…}。可见,这种情形下,对第一资源集的盲检的次数为N,对第二资源子集的盲检的次数为N/M1,总的盲检的次数为N+N/M1。这样对第二资源子集的盲检的次数减少为原先的1/M1,从而大幅度地降低盲检的复杂度。
举例来说,若通过i1和M1限定第二资源子集在第二资源集中的频域位置,通过i2和M2限定第一资源子集在第一资源集中的频域位置。那么,此时可以从第一资源子集中确定第一传输资源,从第二资源子集中确定第二传输资源。假设i1=1,M1=4和i2=0,M2=4。这样,第一UE可以确定第一资源子集占用的子载波的序号为{0,4,8,12…},第二资源子集占用的子载波的序号为{1,5,9,13…}。可见,这种情形下,对第一资源子集的盲检的次数为N/M2,对第二资源子集的盲检的次数为N/M1,总的盲检的次数为N/M2+N/M1。这样对第一资源子集的盲检的次数减少为原先的1/M2,对第二资源子集的盲检的次数减少为原先的1/M1,从而大幅度地降低盲检的复杂度。进一步地可理解,当M1=M2=2时,总的盲检次数为N,与不存在第二资源子集时的次数相等。并且,可以理解,当对该第一资源子集和第二资源子集的限定越多时,该盲检的次数越少,但是同时可用资源也会越少。因此,基站可以根据盲检次数和可用资源进行优化,在保证可用资源的前提下尽量地减少盲检次数,从而实现优化处理。
可见,本发明实施例中,UE的类型与传输方式可以具有如表二所示的对应关系。并且,该对应关系可以是预定义的或者是由基站通过信令指示的。
表二
UE 传输方式
第一类UE 第一传输方式
第二类UE 第二传输方式
图4是本发明一个实施例的信息传输的方法的流程图。图4所示的方法可以由第一UE执行,该第一UE可以为图2中所示的UE 41,该方法包括:
S101,第一UE确定第一UE的第一速度信息。
本发明实施例中,第一速度信息可以用来表示第一UE的速度的大小。可选地,第一速度信息可以以速度等级的形式来表示第一UE的速度的大小。这里的第一UE的速度可以是绝对速度,或者也可以是相对于另一UE或多个UE的相对速度,还可以第一UE对地的加速度或相对另一UE或另多个UE的加速度,本发明对此不限定。
作为一个实施例,若第一速度信息用来表示第一UE的绝对速度的大小。
可选地,第一UE可以通过GNSS模式获取第一速度信息。或者,第一UE可以通过第一基站所指示的信息获取该第一速度信息。
可选地,如果第一UE为物理层的通信模块,那么,第一UE可以通过其他层的指示信息来获取该第一速度信息。
可选地,第一UE可以通过相应的测速装置确定该第一速度信息。例如,若第一UE为OBU,那么,第一UE可以通过汽车上的相应的模块,如发动机模块、变速箱模块、或其他的对速度进行电控的模块等,确定该第一速度信息。例如,测量得到该第一UE的当前速度为v,该速度的单位为km/h,或为miles/h。
作为另一个实施例,若第一速度信息用来表示第一UE相对于另一UE(如第二UE)的相对速度的大小。
可选地,第一UE可以先确定自己的绝对速度(即第一UE的绝对速度),然后通过测量或解析来自第二UE发送的信号或数据包来获取第二UE的速度信息和/或位置信息。进一步地第一UE可以根据这些信息确定第一UE相对于第二UE的相对速度的信息。这里第二UE可以是一个UE,也可以是多个不同的UE。当第二UE是多个不同的UE时,则是相对多个UE速度的某种加权值。例如算术加权平均值,几何加权平均值等。
可选地,如果第一UE为物理层的通信模块,那么,第一UE可以通过其他层的指示信息来获取该第一速度信息。
S102,第一UE根据该第一速度信息确定控制信息的传输方式。
第一UE可以根据第一UE的第一速度信息,确定第一UE的类型,即确定第一UE属于第一类UE或第二类UE。
可选地,若第一速度信息指示该第一UE的速度小于预设的速度阈值,则第一UE属于第一类UE。若第一速度信息指示该第一UE的速度大于或等于预设的速度阈值,则第一UE属于第二类UE。
或者,若第一速度信息指示该第一UE相对于第二UE的相对速度小于预设的速度阈值,则第一UE属于第一类UE。若第一速度信息指示该第一UE相对于第二UE的相对速度大于或等于预设的速度阈值,则第一UE属于第二类UE。
可选地,若第一速度信息指示该第一UE的速度等级小于预设的等级阈值,则第一UE属于第一类UE。若第一速度信息指示该第一UE的速度等级大于或等于预设的等级阈值,则第一UE属于第二类UE。其中,第一UE的速度等级是根据第一UE的速度确定的,第一UE的速度可以是绝对速度或相对速度。
其中,速度阈值和/或速度等级阈值可以是预定义的,或者可以是第一基站通过信令进行指示的。这里的第一基站可以是第一UE的服务基站。例如,第一基站可以是图2中所示的eNB 10,或者也可以是具有基站功能的RSU,本发明对此不限定。
作为一种实现方式,本发明实施例中的控制信息承载于第三控制信道。例如,第三控制信道可以为PSCCH,也可以为物理边链路广播信道(Physical Sidelink Broadcast Channel,PSBCH)。
若第三控制信道为PSBCH,则在S102之前,可以在第一UE配置PSBCH承载的控制信息的传输方式,那么相应地,在S102中,第一UE可以获取预配置的传输方式。可选地,S102所确定的控制信息的传输方式可以包括第三传输资源。
可选地,承载该控制信息的第三控制信道可以用于指示业务的类型。其中,业务可以包括安全类业务和非安全类业务。安全类业务可以如用于公共安全或者智能交通系统(Intelligent Transportation Systems,ITS)中的安全类 业务,即ITS-safety。非安全类业务可以如ITS中的非安全类业务,即non-ITS-safety;或者如非公共安全类业务,即普通的数据传输业务。相应地,业务的类型可以为安全类型或者非安全类型。
例如,可以由该控制信息指示业务的类型。也就是说,控制信息用于指示业务的类型,其中,业务的类型为安全类型或非安全类型。
例如,可以使用第三控制信道中的1比特字段或预定义的CRC掩码或预定义的加扰序列或使用预定义的DMRS或预定义的传输资源等方式指示该业务的类型。
具体地,可以使用1比特字段中指示的“1”表示安全类业务,“0”表示非安全类业务;或者,
具体地,可以使用全为“1”的CRC掩码表示安全类业务,使用全为“0”的CRC掩码表示非安全类业务;或者,
具体地,使用预定义的DMRS来指示安全类业务。例如,将与控制信息一起发送的DMRS序列生成两组,一组用来指示安全类业务,另一组用来指示非安全类业务。所述控制信息可以承载于PSSCH,也可以承载于PSBCH。两组DMRS可以是两组具有不同的循环移位的DMRS序列,或者可以是两组具有不同根序列号的DMRS序列,或者可以是两组具有不同OCC的DMRS序列;或者,
具体地,使用不同的资源来指示安全类业务,这里的资源可以是不同的时域资源,不同的频域资源,还可以是传输控制信息的周期或者间隔。不同的传输周期和不同的传输间隔对应安全类和非安全类业务。
可选地,本发明实施例中,图4所示的方法还可以包括:第一UE在第一链路上发送同步信号。其中,同步信号可以为边链路同步信号(Sidelink Synchronization Signal,SLSS)。
这样,如果另一UE(如第二UE)检测到该第一UE发送的同步信号,那么,第二UE可以选择将该第一UE作为第二UE的同步源,并且第二UE可以根据该第一UE发送的同步信号,完成与第一UE之间的同步。
可选地,该同步信号可以用于指示业务的类型。业务的类型可以为安全类型或者非安全类型。
例如,可以通过传输同步信号的周期或者间隔指示该业务的类型。举例来说,可以设定一个周期的大小阈值,当传输同步信号的周期大于该周期的 大小阈值时,表示业务的类型为安全类型;当传输同步信号的周期小于或等于该周期的大小阈值时,表示业务的类型为非安全类型。举例来说,可以设定一个间隔的大小阈值,当传输同步信号的间隔大于该间隔的大小阈值时,表示业务的类型为安全类型;当传输同步信号的间隔小于或等于该间隔的大小阈值时,表示业务的类型为非安全类型。本发明对此不限定。
例如,可以通过不同的主同步信号的组合方式指示该业务的类型。或者可以通过不同的从同步信号的组合方式指示该业务的类型。或者可以通过主同步信号和从同步信号的组合方式指示该业务的类型。例如,用两个主同步信号的不同序列的组合和/或两上不同的从同步信号的不同序列的组合来指示安全和非安全业务。举例来说,当两个主同步信号的序列相同时,表示为安全业务;当两个主同步信号的序列不同时表示非为安全业。再举例来说,当两个主同步信号的序列相同时,表示为非安全业务;当两个主同步信号的序列不同时表示为安全业务。类似地,可以对两个从同步信号的序列做与主同信号序列相同的操作来指示。这里不再一一罗列。
可选地,可以使用不同的主同步信号序列分别指示安全业务和非安全业务,和/或,可以使用不同的从同步信号序列分别指示安全业务和非安全业务。
举例来说,可以定义两组主同步信号序列,第一组主同步信号序列与第二组主同步信号序列不同,且分别用于指示安全业务和非安全业务。例如,第一组主同步信号序列包括根序列号为26和37的Zadoff-Chu序列;第二组主同步信号序列包括根序列号不等于26和37的一个或多个序列Zadoff-Chu序列。
举例来说,可以定义两组从同步信号序列,第一组从同步信号序列与第二组从同步信号序列不同,且分别用于指示安全业务和非安全业务。例如,第一组从同步信号序列的标识的取值范围为[0,83],第二组从同步信号序列的标识的取值范围为[84,167]。再例如,第一组从同步信号序列的标识的取值范围为[0,167],第二组从同步信号序列的标识的取值范围为[168,335]。
可选地,承载该控制信息的第三控制信道还可以指示以下信息中的至少一种:第一UE是否为同步源、第一UE的同步源的标识。
其中,如果所述第一UE的同步源为第一基站,则所述第一UE的同步源的标识为所述第一基站的物理小区标识;或者,如果所述第一UE的同步源为GNSS,则所述第一UE的同步源的标识为与所述GNSS对应的预定义 的标识。
可理解,本发明实施例中,与GNSS对应的预定义的标识可以是预先为GNSS设置的,例如可以为负数,如-1。例如可以为大于现有的第一链路服务集标识符(Service Set Identifier,SSID)的值,如336或400等。例如,还可以是在0到335之中预定义的一个标识。本发明对此不限定。
其中,可以显式地或隐式地指示该第一UE是否可以作为同步源。例如,可以由该控制信息指示该第一UE是否可以作为同步源。也就是说,该控制信息可以用于指示第一UE是否为同步源。例如,可以由该控制信息指示该第一UE的同步源的标识。也就是说,该控制信息可以用于指示第一UE的同步源的标识。
再例如,可以通过第三控制信道中的一个特定字段表示该第一UE是否可以作为同步源。假设该一个特定字段为字段A,那么,可以将该字段A设置为1表示该第一UE可以作为同步源。可以将该字段A设置为0表示该第一UE不能作为同步源。
可以通过第三控制信道中的另一特定字段指示该第一UE的同步源的标识。可选地,若第一UE的同步源为GNSS,则该另一特定字段可以设置为1。若第一UE的同步源不为GNSS,则该的另一特定字段可以设置为0。或者,可选地,若第一UE的同步源为第一基站,则该第一UE的同步源的标识为第一基站的物理小区标识。若第一UE的同步源为GNSS,则该第一UE的同步源的标识为与GNSS对应的预定义的标识。若第一UE的同步源为另一UE(如第三UE或第四UE),则该第一UE的同步源的标识为另一UE的标识或该UE的同步信号标识。
假设指示该第一UE的同步源的标识的另一特定字段为字段B,那么,可以将该字段B设置为-1表示该第一UE的同步源为GNSS。
可理解,如果该第三控制信道还指示该第一UE可以作为同步源,并且第一UE在第一链路上发送同步信号。那么,接收到该控制信息和同步信号的另一UE(如第二UE)可以根据该控制信息以及第一UE发送的同步信号,选择将该第一UE作为第二UE的同步源。
如果该第三控制信道指示第一UE的同步源的标识,那么,可理解,在此之前,还可以包括:第一UE确定第一UE的同步源。
具体地,第一UE可以根据第一速度信息,确定第一UE的同步源。
如果第一UE根据第一速度信息确定该第一UE属于第一类UE,则第一UE可以根据预先配置的信息确定同步源。
例如,若预先配置的信息指示第一类UE的同步源为基站,则第一UE确定同步源为第一基站,其中,第一基站可以为第一UE的服务基站。
若第一UE属于第一类UE且预选配的信息指示第一UE的同步源为基站,则第一UE可以采用现有技术的方法完成与第一基站之间的同步,这里不再赘述。
例如,若预先配置的信息指示第一类UE的同步源为GNSS,则所述第一UE优先确定所述同步源为GNSS。
例如,若预先配置的信息指示第一类UE的同步源为RSU,则第一UE确定同步源为RSU。
如果第一UE根据第一速度信息确定该第一UE属于第二类UE,则第一UE可以优先确定同步源为GNSS。或者如果第一UE根据第一速度信息确定该第一UE属于第一类UE,并且所述预先配置的信息指示同步源为GNSS,则第一UE可以优先确定同步源为GNSS。
其中,第一UE优先确定同步源为GNSS,可以包括:如果所述第一UE能够检测到所述GNSS的信号,则所述第一UE将所述GNSS作为同步源。如果所述第一UE无法检测到所述GNSS的信号,则所述第一UE确定所述同步源为第一基站或第三UE,其中,所述第一基站为所述第一UE的服务基站,所述第三UE为直接同步到GNSS的UE。
具体地,如果第一UE能够检测到GNSS的信号,则第一UE将GNSS作为同步源。
可选地,能够检测到GNSS的信号,包括:能够检测到信号强度大于或等于预设的信号强度阈值的GNSS的信号。
可选地,能够检测到GNSS的信号,可以包括:在当前时刻能够检测到GNSS的信号。
或者,能够检测到GNSS的信号,可以包括:在无法检测到GNSS的信号时,第一UE启动定时器;并随后在定时器的时长内检测到GNSS的信号。
可见,若第一UE不能够检测到GNSS的信号,可以在定时器的时长内重新尝试检测GNSS的信号,这样能够使得第一UE尽可能地同步到GNSS。
如果第一UE为第二类UE,假设第一UE所传输的业务信道的接收端为 第二UE。如果第一UE在传输业务信道时,第一UE和第二UE同步到两个不同的基站,那么当第一UE与第二UE之间的相对车速为500km/h时,这两个UE在5.9GHz上的第一链路上的最大频率偏差值为7.4kHz。如果第一UE在传输业务信道时,第一UE和第二UE同步到GNSS,那么当第一UE与第二UE之间的相对车速为500km/h时,这两个UE在5.9GHz上的第一链路上的最大频率偏差值为4.0kHz。由此可见,对于高速UE的信号收发,应该尽可能地将该高速UE同步到GNSS上。因此,当第一UE属于第二类UE时,本发明实施例优先将第一UE的同步源确定为GNSS,能够使得第一UE尽可能地同步到GNSS,从而尽可能地减小在第一链路上的业务传输的频率偏差,从而保证第一链路上的传输性能,减少误包率并扩大覆盖范围。
应注意,本发明实施例中的定时器可以是第一基站配置的,或者可以是预定义的,或者可以是第一UE内部实现的。例如,第一UE可以根据自己内部的时钟产生的定时器,在定时器的时长内锁定到GNSS的定时一段时间。其中,定时器的时长可以取决于UE内部时钟的精度,也可以是通过基站配置的信令指示,还可以是预定义的。例如,该时长为10分钟或2分钟。
具体地,如果第一UE无法检测到GNSS的信号,则第一UE可以将第一基站或第三UE作为同步源。其中,第一基站为第一UE的服务基站,第三UE为直接同步到GNSS的UE。即第三UE的同步源为GNSS。
其中,第一UE将第三UE作为同步源,可以包括,第一UE接收第三UE发送的同步信号,并根据第三UE发送的同步信号进行定时。第三UE发送的同步信号可以为边链路同步信号(Sidelink Synchronization Signal,SLSS)。
可选地,无法检测到GNSS的信号,可以包括:无法检测到GNSS的任何信号,或者,检测到信号强度小于预设的信号强度阈值的GNSS的信号。
或者,无法检测到GNSS的信号,可以包括:在无法检测到GNSS的信号时,第一UE启动定时器;并在定时器的时长内依然无法检测到GNSS的信号。
作为另一种理解,本发明实施例中,若第一UE属于第二类UE,则第一UE可以按照预定义的优先级顺序确定同步源。
预定义的优先级顺序可以为:GNSS→第一基站→第三UE→第四UE。或者,预定义的优先级顺序可以为:GNSS→第三UE→第一基站→第四UE。 这里的第三UE为直接同步到GNSS的UE,第四UE为非直接同步到GNSS的UE或第二UE为间接同步到GNSS的UE。也就是说,第三UE的同步源为GNSS,第四UE的同步源不是GNSS。
具体地,如果第一UE接收到上一优先级的信号的信号质量不满足性能的要求,则将下一优先级的作为同步源。或者,如果第一UE接收到上一优先级的信号的信号质量不满足性能的要求,则启动一个定时器,如果在定时器结束之前,信号质量依然不满足性能的要求,则在定时器结束后,将下一优先级的作为同步源。
可理解,不同的优先级的定时器所设置的时长可以是等长的也可以是不等长的,本发明对此不限定。例如,可以在与GNSS同步的过程中使用第一定时器,在与第一基站同步的过程中使用第二定时器,在与第三UE同步的过程中使用第三定时器,在与第四UE同步的过程中使用第四定时器。
若优先级顺序为:GNSS→第一基站→第三UE→第四UE。则第一UE在无法检测到GNSS的信号时确定同步源的过程可以包括:
所述第一UE尝试将第一基站作为同步源。如果所述第一UE尝试成功,则所述第一UE将所述第一基站作为同步源;如果所述第一UE尝试失败,且所述第一UE能够检测到第三UE的同步信号,则所述第一UE将所述第三UE作为同步源;如果所述第一UE尝试失败,且所述第一UE无法检测到所述第三UE的同步信号,则所述第一UE将第四UE作为同步源。
若优先级顺序为:GNSS→第三UE→第一基站→第四UE。则第一UE在无法检测到GNSS的信号时确定同步源的过程可以包括:
如果所述第一UE能够检测到第三UE的同步信号,则所述第一UE将所述第三UE作为同步源。如果所述第一UE无法检测到所述第三UE的同步信号,则所述第一UE尝试将第一基站作为同步源;如果所述第一UE尝试成功,则所述第一UE将所述第一基站作为同步源;如果所述第一UE尝试失败,则所述第一UE将第四UE作为同步源。
作为另一种实现方式,本发明实施例中的控制信息承载于第一控制信道或第二控制信道。即承载控制信息的控制信道可以为第一控制信道或第二控制信道。例如,第一控制信道为可以为第一PSCCH,第二控制信道可以为第二PSCCH。
其中,如果该第一UE属于第一类UE,该控制信息承载于第一控制信道。如果该第一UE属于为第二类UE,该控制信息承载于第二控制信道。
具体地,若所述第一UE根据所述第一速度信息确定所述第一UE属于第一类UE,则可以确定传输方式为第一传输方式。若所述第一UE根据所述第一速度信息确定所述第一UE属于第二类UE,则可以确定传输方式为第二传输方式。
可选地,作为一个实施例,第一传输方式和第二传输方式可以是预定义的。例如,可以将第一传输方式和第二传输方式预先配置在第一UE上,或者协议中可以预先规定第一传输方式和第二传输方式。
举例来说,可以预先配置第一传输方式的传输资源为第一传输资源,第二传输方式的传输资源为第二传输资源。
其中,第一传输资源可以来自于第一资源集,第二传输资源可以来自于第二资源集。或者,第一传输资源可以来自于第一资源集的第一资源子集,第二传输资源可以来自于第二资源集的第二资源子集。
本发明实施例中,可以预定义第一资源集和第二资源集。或者,可以预定义第一资源子集和第二资源子集。可以预定以第一资源集和第二资源集,且同时预定义第一资源子集在第一资源集中的位置,和第二资源子集在第二资源集中的位置。
可选地,第一资源集和第二资源集可以为不同的两个资源集,或者,第一资源集与第二资源集可以为同一个资源集,或者,第二资源集可以为第一资源集的一个子集。
举例来说,可以预先配置第一传输方式的加扰序列为第一加扰序列,第二传输方式的加扰序列为第二加扰序列。
举例来说,可以预先配置第一传输方式的CRC掩码为第一CRC掩码,第二传输方式的CRC掩码为第二CRC掩码。
这样,在S102中,第一UE可以获取预定义的第一传输方式和第二传输方式,并根据第一速度信息确定控制信息的传输方式为第一传输方式或者为第二传输方式。
可选地,作为另一个实施例,第一传输方式和第二传输方式可以根据第一基站的信令指示所确定的。这里的第一基站可以是图2中所示的eNB 10,也可以是具有基站功能的RSU,本发明对此不限定。
以第一传输方式包括第一传输资源,第二传输方式包括第二传输资源为例,本发明实施例中在S102之前,可以包括:第一UE接收第一基站发送的第一指示信息,该第一指示信息用于指示第一资源集和第二资源集。进一步地,在S102中,第一UE可以根据第一指示信息和第一速度信息,确定控制信道的传输方式。
可选地,第一指示信息可以是第一基站以组播或广播的形式进行发送的。第一指示信息可以是第一基站在第二链路上发送至该第一基站所在的小区中的部分UE或全部UE的。这里的部分UE包括第一UE。
可选地,第一指示信息可以是第一基站通过无线资源控制(Radio Resource Control,RRC)信令或系统信息块(System Information Block,SIB)进行发送的。
可选地,第一指示信息可以是第一基站在下行控制信息(Downlink Control Information,DCI)中通过动态信令进行指示的。例如,该DCI可以是物理下行控制信道(Physical Downlink Control Channel,PDCCH)中的DCI,或者可以是专用的DCI。例如通过在DCI中特定字段来指示预配置的资源是用于高速还是低速UE。具体地,可以使用DCI中的1比特来指示DCI指示的或者RRC和/或SIB中指示的传输资源是用于高速还是低速UE。
作为一例,第一传输方式包括第一传输资源,第二传输方式包括第二传输资源。其中,第一传输资源来自于第一资源集或第一资源集中的第一资源子集。第二传输资源来自于第二资源集或第二资源集中的第二资源子集。本发明实施例中的第一指示信息可以用于指示所述第一资源集和所述第二资源集。
相应地,S102包括:如果第一UE属于第一类UE,则第一UE根据第一指示信息,从第一资源集或从第一资源集中的第一资源子集确定第一传输资源,从而确定第一传输方式。如果第一UE属于第二类UE,则第一UE根据第一指示信息,从第二资源集或从第二资源集中的第二资源子集确定第二传输资源,从而确定第二传输方式。
可选地,第一基站可以根据其所服务小区内的UE的速度信息,决定何时发送第一指示信息,或,决定何时并如何发送第一指示信息。
可理解,本发明实施例中,在S102之前,可以包括:第一UE将所述第一速度信息发送至第一基站,并接收第一基站发送的第一指示信息。进一 步地,在S102中,第一UE根据第一速度信息和第一指示信息确定控制信道的传输方式。
具体地,第一UE可以在第二链路上将第一速度信息发送至第一基站。
可选地,第一UE可以在第二链路上将第一速度信息周期性地发送至第一基站。或者,第一UE可以在第一UE的速度发生变化时(如从低速变成高速,或者从高速变成低速),在第二链路上将第一速度信息发送至第一基站。或者,第一UE可以在接收到第一基站发送的上报第一UE的速度信息的指示后,在第二链路上将第一速度信息发送至第一基站。
作为一例,第一UE可以直接将第一UE的速度的信息发送至第一基站。这里的速度可以是第一UE的绝对速度,或者,可以是第一UE相对于另一UE的相对速度。具体地,第一UE可以在第二链路上将第一UE的速度的信息发送至第一基站。
作为另一例,第一UE可以将第一UE的速度等级的信息发送至第一基站。具体地,第一UE可以在第二链路上将第一UE的速度等级的信息发送至第一基站。
作为另一例,第一UE可以将第一UE的位置信息发送至第一基站。具体地,第一UE可以在第二链路上将第一UE的位置信息发送至第一基站。这样第一基站可以根据第一UE上报的至少两次发送的位置信息和时间间隔等确定第一UE的速度信息。
作为另一例,第一UE可以将第一UE的加速度发送至第一基站。具体地,第一UE可以在第二链路上将第一UE的加速度信息发送至第一基站。这样第一基站可以根据加速度对第一UE的速度进行预测。
可以理解,处于该第一基站的服务范围内的其他的UE也可以执行该速度上报的过程。
这样,第一基站可以根据所接收的速度的信息,决定何时发送第一指示信息,或,决定何时并如何发送第一指示信息。
举例来说,如果第一基站根据UE的上报,确定存在多个UE的速度大于或等于预设的速度阈值(或大于或等于预设的等级阈值),并且多个UE在小区内的分布不集中(例如有的UE位于小区中心,有的UE位于小区边缘),那么第一基站可以决定以广播的形式发送第一指示信息。
举例来说,如果第一基站只接收到第一UE的上报,并且第一UE的速 度大于或等于预设的速度阈值(或大于或等于预设的等级阈值),那么第一基站可以通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)中的DCI向第一UE发送第一指示信息。
可理解,作为另一种实现,举例来说,如果第一基站根据UE的上报,确定存在不存在任何UE的速度大于或等于预设的速度阈值(或大于或等于预设的等级阈值),也就是说,小区中的所有UE都是低速UE(或非高速UE),那么第一基站可以不发送第一指示信息。第一基站可以发送用于指示不存在高速UE的指示信息。或者,第一基站可以只指示第一传输方式。
其中的一种显示的指示方式是通过字段来指示。例如,可以通过1比特的字段来指示,例如“1”表示存在高速UE,“0”表示不存在高速UE。
可选地,本发明实施例中,在S102之前,如果第一UE属于第二类UE,则第一UE将该第一速度信息发送至第一基站。之后第一UE可以接收第一基站发送的第一指示信息。进一步地,在S102中,第一UE根据第一速度信息和第一指示信息确定控制信息的传输方式。
如果所述控制信息承载于第一控制信道或第二控制信道,图4所示的方法还可以进一步包括:第一UE确定第一UE的同步源。并且,该步骤可以在S102之前或之后执行,本发明对此不限定。
具体地,第一UE可以根据第一速度信息,确定第一UE同步源。
如果第一UE根据第一速度信息确定该第一UE属于第一类UE,则第一UE可以根据预先配置的信息确定同步源。如果第一UE根据第一速度信息确定该第一UE属于第二类UE,则第一UE可以优先确定同步源为GNSS。
作为另一种理解,本发明实施例中,若第一UE属于第二类UE,则第一UE可以按照预定义的优先级顺序确定同步源。
具体地,第一UE确定同步源的方法,可以参见前述实施例所述,为避免重复,这里不再赘述。
S103,第一UE在第一链路上发送控制信息。
具体地,第一UE在第一链路上,以S102所确定的传输方式,发送该控制信息。
可选地,在S103中,第一UE可以在第一链路上将控制信息发送至第二UE。其中,第一UE与第二UE之间的链路为第一链路。可理解,第一UE可以为第一链路上的发送端设备,第二UE可以为第一链路上的接收端 设备。
如果该第一UE属于第一类UE,则在S103中,第一UE可以在第一链路上,以第一传输方式发送该控制信息。如果该第一UE属于第二类UE,则在S103中,第一UE可以在第一链路上,以第二传输方式发送该控制信息。
如上述S102中所述,作为一种实现方式,该控制信息承载于第三控制信道。例如,第三控制信道为PSBCH。可选地,S103中所发送的控制信息可以用于指示第一UE是否为同步源,和/或,用于指示第一UE的同步源的标识。
作为另一种实现方式,该控制信息承载于第一控制信道或第二控制信道。其中,如果该第一UE属于第一类UE,该控制信息承载于第一控制信道。如果该第一UE属于第二类UE,该控制信息承载于第二控制信道。例如,第一控制信道可以为第一PSCCH,第二控制信道可以为第二PSCCH。
本发明实施例中,控制信息可以包括如下信息的至少一种:
1)、该第一UE的速度指示信息。
作为一例,可以包括该第一UE的类型,即该第一UE是属于第一类UE或第二类UE。也就是说,控制信息可以包括第一UE属于第一类UE的指示信息,或者,控制信息可以包括第一UE属于第二类UE的指示信息。例如,可以通过1比特“1”表示该第一UE为第二类UE(即高速UE),通过1比特“0”表示该第一UE为第一类UE(即非高速UE)。
作为另一例,该第一UE的速度指示信息包括第一速度信息。也就是说,控制信息包括第一速度信息。
例如,可以包括第一UE的速度的大小。这里速度的大小可以是绝对速度的大小,或者可以是相对速度的大小。
例如,可以包括该第一UE的速度等级信息。例如,可以通过2比特“10”指示速度等级信息,即速度等级为2。通过2比特“11”表示速度等级为3。
可选地,当第一UE属于第二类UE时,该控制信息可以包括第一速度信息。
可理解,在S103中,可以包括:第一UE通过第一链路将第一速度信息发送至第二UE。第二UE在接收到该第一速度信息后,做相应的处理。例如,控制信息可以使用1比特指示所述第一UE是否为高速UE。如果第 一UE为高速UE,则第一UE选择和预留的资源具有更高的优先级。第二UE在接收到第一UE发送的控制信息后,第二UE在做资源选择和重选时,应该尽量避免选用第一UE选择和/或预留的资源。这样能够优先保证高速UE(第一UE)的资源使用。
2)、该控制信息所调度的数据的传输次数,以及每次传输时的时频资源。
其中,控制信息可以为SA。例如,第一UE在自主模式下的资源选择和指示过程中,可以通过SA指示所调度的数据的时频资源。
本发明实施例中,数据的传输次数可以是预定义的。例如,将数据的传输次数预先配置在第一UE上,或者,协议预先规定高速UE的数据的传输次数。或者,数据的传输次数可以是第一UE从第二UE的服务基站所发送的信息中获取的。或者,数据的传输次数是第一UE依据以下信息中的至少一种进行确定的:第一UE的第一速度信息、第一UE和/或第二UE的地理位置信息、第一UE的信号质量、第二UE发送的数据和/或信号的信号质量等。本发明对此不作限定。
可选地,作为一个实施例,第一UE可以根据第一UE的第一速度信息确定数据的传输次数。举例来说,假设第一UE确定该第一UE属于第一类UE,则可以确定数据的传输次数为N1;假设第一UE确定该第一UE属于第二类UE,则可以确定数据的传输次数为N2。N1和N2的值可以是预先配置的,或者可以是协议指定的,或者可以是第一基站通过信令指示的等等,本发明对此不限定。可选地,N1和N2的值可以满足N1<N2。
本发明实施例中,控制信息可以发送一次,也可以发送多次。假设本发明实施例中,第一UE在第一链路上将该控制信息发送至第二UE。即第二UE为控制信息的接收端设备。那么第二UE可能会收到多次发送的控制信息。如果第二UE在预定义的时间段内检测到多个控制信息,且该多个控制信息包括的内容(即所调度的数据的传输次数,以及每次传输时的时频资源)相同,则第二UE可以确定接收到的多个控制信息指示的是同一个数据的传输。
若该控制信息传输多次,那么,该控制信息可以进一步包括当前传输次数的指示信息。可选地,该控制信息可以包括指示当前传输次数的字段。举例来说,假设该控制信息传输的次数为2次。那么,可以在该控制信息中使用1比特字段指示当前的传输次数。具体地,1比特字段为“0”表示当前为 控制信息的第一次传输,1比特字段为“1”表示当前为控制信息的第二次传输。相应地,对于第二UE来说,第二UE接收到的控制信息的2次传输中的任意一次都是有效的。如果第二UE能够同时接收到控制信息的2次传输,其中指示传输次数的字段分别为0和1,并且指示的所调度数据的时频资源的位置完全相同,则可以认为2次接收到的控制信息为同一个控制信息的不同重传。
可选地,该控制信息可以包括该控制信息所调度的数据的传输次数的指示信息。控制信息中可以通过显式或隐式的方式包括该数据的传输次数的指示信息。举例来说,可以在该控制信息中包括指示该控制信息所调度的数据的传输次数的字段,如使用2比特的字段分别指示1,2,3或4次传输。
可选地,如果数据的传输次数为N,那么该控制信息可以包括2*N+1个值,分别指示传输次数,以及N次传输的时、频资源。
可选地,如果数据的传输次数为多次,并且该数据的每次传输所使用的频域资源相同。那么,该控制信息可以包括该相同的频域资源,以及与数据的传输次数一一对应的多个时域资源的指示信息。例如,假设传输次数为N,那么,该控制信息至少包括2+N个值,分别指示传输次数、一个相同的频域资源、以及N个时域资源。
可选地,如果数据的传输次数为N,那么该控制信息可以包括所述N次中的M次传输所使用的时频资源,并通过隐式的方式指示其他的N-M次传输所使用的时频资源。该控制信息的接收端设备可以根据该控制信息中包括的M次传输的时频资源确定另外的N-M次传输的时频资源。例如,可以根据接收到的控制信息和预定义的关系确定另外的N-M次传输所使用的时频资源,其中,M<N且M和N为正整数。
应注意,上述的“2*N+1个值”“2+N个值”不能简单地理解为是“2*N+1个数值”“2+N个数值”。例如,其中表示某次传输的频域资源的“值”可以包括频域起始位置的数值和频域结束位置的数值等。
本发明实施例中,传输次数不同,控制信息的传输方式可以相同或不同。
可选地,控制信息可以使用一种统一的传输方式。作为一例,假设控制信息包括的信息为numTx,t1,f1,t2,f2。
如果numTx=2,那么,可以通过t1,f1分别指示第一次传输的时域位置和频域位置,通过t2,f2分别指示第二次传输的时域位置和频域位置。
其中,t1可以表示时域位置的绝对值,也可以表示时域位置的相对值,例如可以是相对于当前控制信息传输所在的时域的相对值。如图5所示,数据的第一次传输的时域位置t1为相对于控制信息的起始时域位置的相对位置。
其中,t2可以表示时域位置的绝对值,也可以表示时域位置的相对值,例如可以是相对于当前控制信息传输所在的时域的相对值,或者,可以是相对于第一次传输的时域的相对值。如图5所示,数据的第二次传输的时域位置t2为相对于数据的第一次传输的起始时域位置的相对位置。
其中,f1可以表示频域位置的绝对值,也可以表示频域位置的相对值,例如可以是相对于当前控制信息传输所在的频域的相对值。
其中,f2可以表示频域位置的绝对值,也可以表示频域位置的相对值,例如可以是相对于当前控制信息传输所在的频域的相对值,或者,可以是相对于第一次传输的频域的相对值。
其中,f1可以包括数据第一次传输时占用的频域的起始位置、结束位置、以及所占用的各个PRB的位置。其中,f2可以包括数据第一次传输时占用的频域的起始位置、结束位置、以及所占用的各个PRB的位置。
如果numTx=1,那么,可以通过t1,f1分别指示该一次传输的时域位置和频域位置。此时可以设定t2=t1,f2=f1。或者,此时可以设定t2和f2为预定义的固定值,这些预定义的固定值为没有实际意义的值,例如,t2=f2=0。或者,此时可以设定t2和f2为预留字段,具体地,对于接收该控制信息的接收设备来说,当接收设备解析到numTx=1时,不去读取t2和f2字段。其中,t1和f1可以是相对值或绝对值,如图6所示,t1表示相对值。
如果numTx=4,可以通过t1,f1分别指示四次中第i次传输的时域位置和频域位置,通过t2,f2分别指示四次中第j次传输的时域位置和频域位置。
举例来说,i=1,j=3。那么,第二次传输时的时频资源可以是根据t1,f1的函数进行确定,或者,第二次传输时的时频资源可以是根据t2,f2的函数进行确定,或者,第二次传输时的时频资源可以是根据t1,f1,t2,f2的函数进行确定。类似地,第四次传输时的时频资源可以是根据t1,f1的函数进行确定,或者,第四次传输时的时频资源可以是根据t2,f2的函数进行确定,或者,第四次传输时的时频资源可以是根据t1,f1,t2,f2的函数进行确定。
如图7所示,第二次传输的时频资源是根据第一次传输的时频资源确定的,第四次传输的时频资源是根据第三次传输的时频资源确定的。
例如,可以确定第二次传输的时域位置是第一次传输的时域位置之后的相邻的子帧,可以确定第二次传输的频域位置与第一次传输的频域位置相同。例如,可以确定第四次传输的时域位置是第三次传输的时域位置之后的相邻的子帧,可以确定第四次传输的频域位置与第三次传输的频域位置相同
例如,可以确定第二次传输的时域位置是由第一次传输的时域位置通过预配置的第一偏移值得到的,可以确定第二次传输的频域位置是由第一次传输的频域位置通过预配置的第二偏移值得到的。例如,可以确定第四次传输的时域位置是由第三次传输的时域位置通过预配置的第三偏移值得到的,可以确定第四次传输的频域位置是由第三次传输的频域位置通过预配置的第四偏移值得到的。
例如,可以设定函数,确定第二次传输的时域位置为g1(t1,f1,SAID),确定第二次传输的频域位置为g2(t1,f1,SAID)。确定第四次传输的时域位置为g3(t1,f1,SAID),确定第四次传输的频域位置为g4(t1,f1,SAID)。其中,g1,g2,g3,g4为函数,SAID表示控制信息的ID。
为方便理解,这里可以举一个特定的例子:第二次传输的时域位置为(t1+SAID)mod A,第二次传输的频域位置为(f1+SAID)mod B。第四次传输的时域位置为(t2+SAID)mod A,第四次传输的频域位置为(f2+SAID)mod B。其中,mod表示取模操作。A和B可以预定义的参数。该预定义的参数A和B可以是固定值,可以是与资源池有关的。
这样,本实施例中使用统一的控制信息的传输方式,以保证针对不同的传输次数时的时频资源的指示,并且能够减少接收机盲检的复杂度。这里的接收机是指接收该控制信息的接收设备。
可选地,针对不同的传输次数,控制信息可以使用不同的传输方式。相应地,本发明实施例中,S102可以包括:第一UE根据所述第一速度信息确定控制信息调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式。
若传输次数为1,那么控制信息可以包括t1,f1。
若传输次数为2,那么控制信息可以包括t1,f1,t2,f2。如果其中f1=f2,传输次数为2时控制信息可以包括f,t1,t2。
若传输次数为4,那么控制信息可以包括t1,f1,t2,f2,t3,f3,t4,f4。如果其中f1=f2=f3=f4,传输次数为4时控制信息可以包括f,t1,t2,t3,t4。
可见,使用不同的传输方式,可以通过显示的信令指示每次的时频资源的位置,能够保证资源调度的灵活性。相应地,对于接收控制信息的接收设备来说,可以迅速获取每次传输的时频资源,无需进行复杂的计算处理。
应注意,上述实施例中的f,f1-f4,t1-t4既可以是绝对值,也可以是相对值,本发明对此不限定。
对于接收该控制信息的第二UE来说,第二UE在第一链路上接收第一UE发送的控制信息,第二UE可以获取该控制信息所调度的数据的传输次数的指示信息,进一步第二UE可以在该控制信息中与每次传输所对应的字段,获取每次传输时的时频资源。从而在此之后,第二UE可以依据该控制信息,在第一链路上接收第一UE发送的数据。
可选地,作为一例,当数据的传输次数为一次时,在控制信息的第一字段获取该一次传输的时频资源。当数据的传输次数为二次时,在控制信息的第一字段获取该二次传输中的第一次传输的时频资源,在控制信息的第二字段获取二次传输中的第二次传输的时频资源。当数据的传输次数为四次时,在控制信息的第一字段获取四次传输中的第一次传输的时频资源,在控制信息的第二字段获取四次传输中的第二次传输的时频资源,在控制信息的第三字段获取四次传输中的第三次传输的时频资源,在控制信息的第四字段获取四次传输中的第四次传输的时频资源。
可选地,作为另一例,若数据的传输次数为多次,数据的每次传输所使用的频域资源相同,控制信息包括该相同的频域资源,以及与数据的传输次数一一对应的多个时域资源的指示信息。相应地,第二UE可以从该控制信息的频域字段获取该相同的频域资源,从与传输次数一一对应的字段获取多次传输的时域资源。
可选地,作为另一例,当数据的传输次数为四次时,在控制信息的第一字段和控制信息的第二字段获取四次传输中的其中两次传输的时频资源;根据四次传输中的其中两次传输的时频资源,确定四次传输中的另外两次传输的时频资源。
举例来说,控制信息中可以包括第一次传输的时频资源以及第三次传输 的时频资源。那么,第二UE可以根据控制信息以及预定义的偏移或函数,确定第二次传输的时频资源以及第四次传输的时频资源。
如前所述,对于不同的传输次数,控制信息的传输方式可以不同。那么,第二UE可以根据数据的传输次数,确定控制信息的传输方式,其中,所述传输方式是预定义的至少两种传输方式中的一种;进一步地可以根据所确定的传输方式,获取每次传输时的时频资源。
进一步地,在S103之后,还可以包括:第一UE在第一链路上发送数据。
其中,该数据承载在业务信道(也称为数据信道)上。具体地,如果第一UE属于第一类UE,该数据可以承载在第一业务信道上。如果第一UE属于第二类UE,该数据可以承载在第二业务信道上。这里,第一业务信道可以为第一PSSCH,第二业务信道可以为第二PSSCH。
具体地,第一UE可以使用第四传输资源,在第一链路上发送数据。
可选地,该第四传输资源可以是从资源池中所选择的,该资源池可以是基站配置的。可选地,该第四传输资源可以是由控制信息所指示的。
本发明实施例中,可以定义多种业务信道的传输模式。在进行数据的传输时,可以从多种传输模式中选择其中的一种传输模式。
可选地,其中的一种传输模式可以如图8所示,即现有技术中所采用的传输模式。如图8中在序号为2、5、8和11的符号上传输DMRS,在序号为1、3、4、6、7、9、10和12的符号上传输数据。并且,在符号1、3、4、6、7、9、10和12的每一个子载波上均传输数据。
可选地,另一种传输模式中,位于同一符号上的每K个连续的子载波包括一个用于传输所述数据的子载波,K为大于或等于2的正整数。例如K=2。
如图9所示,在符号2、5、8和11上传输DMRS。在符号1、3、4、6、7、9、10和12中的每一个符号上,每两个相邻的子载波中只有一个子载波用于传输数据。并且,用于传输数据的两个相邻的符号(如符号1和3,或者,如符号3和4)上,用于传输数据的子载波是彼此交错的。
如图10所示,在符号2、5、8和11上传输DMRS。在符号1、3、4、6、7、9、10和12中的每一个符号上,每两个相邻的子载波中只有一个子载波用于传输数据。并且,任意两个相邻的子载波中,其中一个子载波的每一个符号都不用于传输数据。或者,换一个理解,用于传输数据的两个相邻的 符号(如符号1和3,或者,如符号3和4)上,用于传输数据的子载波的序号是相同的。
可见,在数据符号(如上述的符号1、3、4、6、7、9、10和12)上,传输数据的子载波可以是等间隔的。在图9和图10所示的实施例中,该间隔为2。位于同一个数据符号上的相邻的两个子载波中,其中一个子载波用于传输数据,另一个子载波为空,不发数据。
应注意,图8至图10所描述的传输模式仅仅是本发明实施例的几个示意性的例子,这里所说的传输模式也可以是其他的情形,此处不再一一列举。
本发明实施例中,第一UE可以使用任何一种传输模式发送数据。或者,第一UE属于第一类UE时,使用如图8所示的传输模式发送数据。第一UE属于第二类UE时,使用如图9或图10所示的传输模式发送数据。
或者,在此之前,第一UE可以接收第一基站的指示,并根据第一基站的指示使用传输模式。
例如,如果第一基站指示第一UE使用如图9所示的传输模式发送数据,则第一UE根据第一基站的指示使用如图9所示的传输模式进行数据传输。相应地,数据的接收端(如第二UE)也可以根据第一基站的指示所指示的传输模式,进行数据的接收。
可选地,本发明实施例中,第一UE在发送数据时,可以在业务信道中包括传输模式的指示信息。举例来说,可以通过2比特字段指示所使用的传输模式。例如,可以用“00”表示如图8所示的传输模式,用“01”表示如图9所示的传输模式,用“10”表示如图10所示的传输模式。这样,数据的接收端(如第二UE)可以根据该指示确定传输模式,进一步根据传输模式进行数据的接收。
作为一个实施例,本发明实施例中,第一UE可以在第一链路上与数据一起发送第一序列。
具体地,第一UE可以使用第四传输资源,在第一链路上发送数据和第一序列。
可选地,该第四传输资源可以是从资源池中所选择的,该资源池可以是基站配置的。可选地,该第四传输资源可以是由控制信息所指示的。
第一序列可以是图8至图10中的DMRS序列。其中,第一序列可以是在预定义长度的ZC序列(即Zadoff-Chu序列)集中除去预定义的第二序列 后所确定的。其中预定义的长度为DMRS所占的带宽,亦即为一次传输时数据在频域所占用的带宽。
可选地,如果第一UE属于第一类UE,第一UE可以在第一链路上发送数据和ZC序列。如果第一UE属于第二类UE,第一UE可以在第一链路上发送数据和第一序列。由此可见,第二类UE所使用的序列的集合小于第一类UE所使用的序列的集合。
假设将第一序列的集合表示为Z,将ZC序列的集合表示为Z1,将第二序列的集合表示为Z0,那么可以具有如下关系:Z=Z1-Z0。于是,第一UE可以从Z从确定第一序列。
作为一例,在现有的D2D技术中,可以使用PSCCH中包括的ID来获得ZC的根号。ZC序列的集合Z1可以为{0,1,2,…,29},第二序列的集合Z0可以为{0,20},则Z={1,2,…,19,21,…,29}。那么可以从Z中选择第一序列,例如可以根据PSCCH所包括的ID进行计算并选择,例如可以选21。
作为另一例,可以直接将现有的确定DMRS的序列跳的公式修改成:
Figure PCTCN2016081926-appb-000001
这里L的值为集合Z的大小,如上面的例子中Z={1,2,…,19,21,…,29},从而L=28,然后按去掉Z0序列后的映射关系来获取对应的根序列。在上面的例子中,新的映射关系可以如下表三所示。
表三
Figure PCTCN2016081926-appb-000002
本发明实施例中,第一UE在第一链路上将数据发送至第二UE。当第一UE属于第二类UE时,第一UE可以通过第二链路,由基站协助将数据发送至第二UE。
具体地,如果第一UE和第二UE的服务基站均为第一基站,第一UE可以将第一链路上的数据,通过第二链路发送至第一基站。进一步地,第一基站可以将该数据通过第二链路发送至第二UE。
在此之前,第一UE可以向第一基站发送资源请求信息,进一步第一UE接收第一基站发送的第五传输资源的指示信息。这样,第一UE可以使 用第五传输资源,在第二链路上将数据发送至第一基站。其中,资源请求信息可以为与速度有关的调度请求(Scheduling Request,SR)或缓存状态报告(Buffer Status Report,BSR)。所述与速度相关的信息可以是:在SR或BSR中包含速度的指示信息;或者第一UE在发送SR或BSR的同时还附带发送指示第一UE的速度的指示信息。可选的,所述速度的指示信息可以是第一UE的具体的速度值,还可以指示第一UE是否处于高速状态下的指示信息。其中,第一基站在接收到与速度有关的SR或BSR后,可以确定第一UE为高速UE,进而第一基站可以为第一UE确定较高的优先级,进一步地,第一基站为该第一UE分配上行发送资源。这里,该上行发送资源可以为第五传输资源。
可选地,如果第一UE处于连接态,则第一UE直接发送与速度有关的SR或BSR。如果第一UE处于空闲态,那么第一UE在进入连接态之后再发送与速度有关的SR或BSR。
举例来说,假设第一UE为图11中的UE1,第二UE为图11中的UE2。UE1和UE2的服务基站均为eNB1。那么,UE1可以通过UE1与eNB1之间的第二链路,将数据发送至eNB1,再由eNB1通过eNB1与UE2之间的第二链路,将数据发送至UE2。
具体地,如果第一UE的服务基站为第一基站,第二UE的服务基站为第二基站,第一UE可以将第一链路上的数据,通过第二链路发送至第二基站。进一步地,第二基站可以将该数据通过第二链路发送至第二UE。
在此之前,第一UE可以向第二基站发送资源请求信息,进一步第一UE接收第二基站发送的第五传输资源的指示信息。这样,第一UE可以使用第五传输资源,将数据通过第二链路发送至第二基站。其中,资源请求信息可以为与速度有关的SR或BSR。
举例来说,假设第一UE为图11中的UE1,第二UE为图11中的UE3。UE1的服务基站为eNB1,UE3的服务基站为eNB2。那么,UE1可以通过UE1与eNB2之间的第二链路,将数据发送至eNB2,再由eNB2通过eNB2与UE3之间的第二链路,将数据发送至UE3。
具体地,如果第一UE的服务基站为第一基站,第二UE的服务基站为第二基站,第一UE可以将第一链路上的数据,通过第二链路发送至第一基站,再由第一基站发送至第二基站。进一步地,第二基站可以将该数据通过 第二链路发送至第二UE。
在此之前,第一UE可以向第一基站发送资源请求信息,进一步第一UE接收第一基站发送的第五传输资源的指示信息。这样,第一UE可以使用第五传输资源,将数据通过第二链路发送至第一基站。其中,资源请求信息可以为与速度有关的SR或BSR。
举例来说,假设第一UE为图11中的UE1,第二UE为图11中的UE3。UE1的服务基站为eNB1,UE3的服务基站为eNB2。那么,UE1可以通过UE1与eNB1之间的第二链路,将数据发送至eNB1,eNB1可以通过eNB1与eNB2之间的S1接口,将数据发送至eNB2,再由eNB2通过eNB2与UE3之间的第二链路,将数据发送至UE3。
本发明实施例中,第一UE在第一链路上将数据发送至多个UE,例如第一UE可以在第一链路上以广播的形式发送。当第一UE属于第二类UE时,第一UE可以通过第二链路,由多个UE的服务基站协助将数据发送至多个UE。
具体地,如果第一UE与多个UE的服务基站均为第一基站。第一UE可以将第一链路上的数据,通过第二链路发送至第一基站。进一步地,第一基站可以将该数据通过第二链路发送至多个UE。其中,第一基站可以通过广播或组播的形式,将数据发送至多个UE。
在此之前,第一UE可以向第一基站发送资源请求信息,进一步第一UE接收第一基站发送的第五传输资源的指示信息。这样,第一UE可以使用第五传输资源,将数据通过第二链路发送至第一基站。其中,资源请求信息可以为与速度有关的SR或BSR。其中,第一基站在接收到与速度有关的SR或BSR后,可以确定第一UE为高速UE,进而第一基站可以为第一UE确定较高的优先级,进一步地,第一基站为该第一UE分配上行发送资源。这里,该上行发送资源可以为第五传输资源。
举例来说,假设第一UE为图11中的UE1,多个UE为图11中的UE2和UE4。UE1、UE2和UE4的服务基站均为eNB1。那么,UE1可以通过UE1与eNB1之间的第二链路,将数据发送至eNB1,再由eNB1通过第二链路,将数据发送至UE2和UE4。例如,eNB1可以以广播或组播的方式通过蜂窝链路将数据发送至多个UE。
具体地,如果第一UE的服务基站为第一基站,多个UE不属于同一个 小区,即多个UE中存在两个UE的服务基站不同。第一UE可以将第一链路上的数据,通过第二链路发送至多个UE的服务基站。进一步地,多个UE的服务基站可以将该数据通过第二链路发送至多个UE中对应的UE。
在此之前,第一UE可以向多个UE的服务基站发送资源请求信息,进一步第一UE接收多个UE的服务基站发送的第五传输资源的指示信息。其中,第五传输资源可以是公共的上行传输资源。这样,第一UE可以使用第五传输资源,将数据通过第二链路发送至多个UE的服务基站。其中,资源请求信息可以通过SR或BSR进行发送。具体地,资源请求信息可以为与速度有关的SR或BSR。
举例来说,假设第一UE为图11中的UE1,多个UE为图11中的UE2和UE3。UE1和UE4的服务基站均为eNB1,UE3的服务基站为eNB2。那么,UE1可以通过UE1与eNB1之间的第二链路将数据发送至eNB1,通过UE1与eNB2之间的第二链路将数据发送至eNB2;再由eNB1通过eNB1与UE4之间的第二链路将数据发送至UE4,由eNB2通过eNB2与UE3之间的第二链路将数据发送至UE3。其中,UE1可以使用第五传输资源将数据同时发送至eNB1和eNB2。
可选地,第五传输资源可以是为第一UE分配的一份公共的上行发送资源。例如,可以通过预定义的方式为第一UE分配一份公共上行发送资源,或者,可以由eNB1和eNB2协商为第一UE分配一份公共上行发送资源。
这样,本发明实施例中,可以通过第二链路来协助第一链路上的数据传输,从而能够提高第一UE(高速UE)发送的数据的传输可靠性和覆盖范围。
可见,第一UE可以在第一链路上发送控制信息,也可以在第一链路上发送数据。其中,控制信息可以承载在控制信道,数据可以承载在业务信道。
应注意,本发明实施例中,第一UE在第一链路上发送数据时,可以采用如上所述的类似于发送控制信息的方式进行。例如,可以采用类似的方法确定所述数据的传输方式,然后再在第一链路上以确定的传输方式发送数据。
可选地,控制信道可以为PSCCH(例如为第二PSCCH),业务信道可以为PSSCH(例如为PSSCH)。
本发明实施例中,PSCCH和PSSCH可以在不同的子帧进行传输,也可以在同一个子帧进行传输。也就是说,本发明实施例中,控制信息和数据可 以位于不同的子帧,或者,控制信息和数据可以位于同一个子帧。
可选地,当控制信息和数据位于同一个子帧传输时,可以采用如下的方式确定控制信息的发射功率和数据的发射功率。
按照开环功率分别确定控制信息的第一发射功率以及数据的第二发射功率。设控制信息的第一发射功率为PPSCCH_O,数据的第二发射功率为PPSSCH_O。其中第一发射功率和第二发射功率可以是以线性值、对数值或其它单位的值表示,本发明对此不做限定。如果控制信息的第一发射功率值为线性值时,表示为
Figure PCTCN2016081926-appb-000003
如果数据的第二发射功率为线性值时,表示为
Figure PCTCN2016081926-appb-000004
第一发射功率和第二发射功率按照开环功率的确定方法为:
PPSCCH_O=10log10(MPSCCH)+PO_PSCCH,1PSCCH,1·PL,
PPSSCH_O=10log10(MPSSCH)+PO_PSSCH,1PSSCH,1·PL。
这里,计算出的第一发射功率PPSCCH_O和第二发射功率PPSSCH_O可以为功率的对数值。
其中,MPSCCH表示PSCCH的传输带宽,MPSSCH表示PSSCH的传输带宽。PL表示该第一UE与服务基站(如第一基站)之间第二链路的路损值。αPSCCH,1和αPSSCH,1分别表示PSCCH和PSSCH的路损补偿系数。PO_PSCCH,1和PO_PSSCH,1是服务基站配置的或者预定义的两个功率值。
PL可以是由服务基站确定之后以信令的形式通知给该第一UE的,或者,可以是由该第一UE自行确定的。计算路损值的方法可以参见现有技术,这里不再详细描述。
αPSCCH,1,αPSSCH,1,PO_PSCCH,1和PO_PSSCH,1可以是由服务基站以信令的形式通知给该第一UE的,也可以是预定义的。例如,在图4所示的方法之前,服务基站可以发送配置信息,该配置信息可以包括αPSCCH,1,αPSSCH,1,PO_PSCCH,1和PO_PSSCH,1的值。
作为一种实现方式,如果上述第一发射功率与第二发射功率之和不大于 第一UE在第一链路上可提供的最大发射功率,则可以确定控制信息的实际发射功率为第一发射功率,数据的实际发射功率为第二发射功率。
作为另一种实现方式,如果上述第一发射功率与第二发射功率之和大于第一UE在第一链路上可提供的最大发射功率,则可以将第一发射功率进行缩放,将第二发射功率进行缩放,以使得缩放之后的两者发射功率之和不大于第一UE在第一链路上可提供的最大发射功率。
作为一例,对第一发射功率和第二发射功率可以进行等比例的缩放,缩放比均为w,则缩放后应满足:
Figure PCTCN2016081926-appb-000005
从而可以确定控制信息的实际发射功率为第一发射功率乘以缩放比,即
Figure PCTCN2016081926-appb-000006
数据的实际发射功率为第二发射功率乘以缩放比,即
Figure PCTCN2016081926-appb-000007
作为另一例,对第一发射功率和第二发射功率可以进行不等比例的缩放,缩放比分别为w1和w2,则缩放后应满足:
Figure PCTCN2016081926-appb-000008
从而可以确定控制信息的实际发射功率为第一发射功率乘以缩放比w1,即
Figure PCTCN2016081926-appb-000009
数据的实际发射功率为第二发射功率乘以缩放比w2,即
Figure PCTCN2016081926-appb-000010
可见,本发明实施例中,针对控制信息和数据位于同一个子帧的情形:如果确定的控制信道的第一发射功率与数据信道的第二发射功率之和大于最大发射功率,那么可以将第一发射功率乘以第一缩放比作为第一功率,将第二发射功率乘以第二缩放比作为第二功率,以使得第一功率与第二功率之和不大于最大发射功率。进一步地,可以在第一链路上使用第一功率发送控制信息并使用第二功率发送数据信道。
作为另一种实现方式,如果第一基站通过信令指示第一UE需要将PSCCH和PSSCH在同一个子帧传输,或者第一UE确定需要将PSCCH和PSSCH在同一个子帧传输,且PSCCH的第三发射功率与PSSCH的第四发 射功率之和大于第一UE在第一链路上可提供的最大发射功率。那么,可以按以下方式中的任意一种来分配PSCCH和PSSCH之间的发射功率,或者确定PSCCH和PSSCH的传输方式:
方式一:第一UE可以将PSSCH丢弃,在当前子帧中只传输PSCCH。
方式二:第一UE可以将PSCCH和PSSCH在不同的子帧分别传输。
方式三:第一UE可以增加传输次数,在多次传输中的一些传输中PSCCH和PSSCH位于同一个子帧,在多次传输中的一些传输中PSCCH和PSSCH位于不同子帧。
这里,第三发射功率可以是上述的第一发射功率,第四发射功率可以是上述的第二发射功率,或者,第三发射功率和第四发射功率可以是第一基站指示的发射功率,或者,第三发射功率和第四发射功率可以是第一UE按预定义规则所确定的。
第一UE可以确定传输次数为N,该N次传输中的M次传输PSCCH和PSSCH位于同一个子帧,在其他的N-M次传输PSCCH和PSSCH位于不同子帧。在该M次传输中,可以先确定位于同一个子帧的PSCCH的实际发射功率和PSSCH的实际发射功率。
图12是本发明另一个实施例的用于信息传输的方法的流程图。图12所示的方法包括:
S201,第一UE确定第一UE的第一速度信息。
本发明实施例中,第一速度信息可以用来表示第一UE的速度的大小。可选地,第一速度信息可以以速度等级的形式来表示第一UE的速度的大小。这里的第一UE的速度可以是绝对速度,或者也可以是相对于另一UE或多个UE的相对速度,还可以第一UE对地的加速度或相对另一UE或另多个UE的加速度,本发明对此不限定。
作为一个实施例,若第一速度信息用来表示第一UE的绝对速度的大小。
可选地,第一UE可以通过GNSS模式获取第一速度信息。或者,第一UE可以通过第一基站所指示的信息获取该第一速度信息。
可选地,如果第一UE为物理层的通信模块,那么,第一UE可以通过其他层的指示信息来获取该第一速度信息。
可选地,第一UE可以通过相应的测速装置确定该第一速度信息。例如,若第一UE为OBU,那么,第一UE可以通过汽车上的相应的模块,如发动 机模块、变速箱模块、或其他的对速度进行电控的模块等,确定该第一速度信息。例如,测量得到该第一UE的当前速度为v,该速度的单位可以为km/h,也可为miles/h,本发明对此不做限定。
作为另一个实施例,若第一速度信息用来表示第一UE相对于另一UE(如第二UE)的相对速度的大小。
可选地,第一UE可以先确定自己的绝对速度(即第一UE的绝对速度),然后通过测量或解析来自第二UE发送的信号或数据包来获取第二UE的速度信息和/或位置信息。进一步地第一UE可以根据这些信息确定第一UE相对于第二UE的相对速度的信息。这里第二UE可以是一个UE,也可以是多个不同的UE。当第二UE是多个不同的UE时,则是相对多个UE速度的某种加权值。例如算术加权平均值,几何加权平均值等。
可选地,如果第一UE为物理层的通信模块,那么,第一UE可以通过其他层的指示信息来获取该第一速度信息。
S202,第一UE根据第一速度信息,确定第一UE的同步源。
如果第一UE根据第一速度信息确定该第一UE属于第一类UE,则第一UE可以根据预先配置的信息确定同步源。
例如,若预先配置的信息指示第一类UE的同步源为基站,则第一UE确定同步源为第一基站,其中,可选地第一基站为第一UE的服务基站。若第一UE属于第一类UE且预选配的信息指示第一UE的同步源为基站,则第一UE可以采用现有技术的方法完成与第一基站之间的同步,这里不再赘述。
例如,若预先配置的信息指示第一类UE的同步源为GNSS,则所述第一UE优先确定所述同步源为GNSS。
例如,若预先配置的信息指示第一类UE的同步源为RSU,则第一UE确定同步源为RSU。
如果第一UE根据第一速度信息确定该第一UE属于第二类UE,则第一UE可以优先确定同步源为GNSS。或者如果第一UE根据第一速度信息确定该第一UE属于第一类UE,并且所述预先配置的信息指示同步源为GNSS,则第一UE可以优先确定同步源为GNSS。
其中,第一UE优先确定同步源为GNSS,可以包括:如果所述第一UE能够检测到所述GNSS的信号,则所述第一UE将所述GNSS作为同步源。 如果所述第一UE无法检测到所述GNSS的信号,则所述第一UE确定所述同步源为第一基站或第三UE,其中,所述第一基站为所述第一UE的服务基站,所述第三UE为直接同步到GNSS的UE。
具体地,如果第一UE能够检测到GNSS的信号,则第一UE将GNSS作为同步源。
可选地,能够检测到GNSS的信号,包括:能够检测到信号强度大于或等于预设的信号强度阈值的GNSS的信号。换句话说,如果第一UE能够检测到有效的GNSS的信号,则将GNSS作为同步源。这里的有效可以是指信号强度大于或等于预设的信号强度阈值。
可选地,能够检测到GNSS的信号,可以包括:在当前时刻能够检测到GNSS的信号。或者,能够检测到GNSS的信号,可以包括:在无法检测到GNSS的信号时启动定时器;并随后在定时器的时长内检测到GNSS的信号。
可见,若第一UE不能够检测到GNSS的信号,可以在定时器的时长内重新尝试检测GNSS的信号,这样能够使得第一UE尽可能地同步到GNSS。
如果第一UE为第二类UE,假设第一UE所传输的业务信道的接收端为第二UE。如果第一UE在传输业务信道时,第一UE和第二UE同步到两个不同的基站,那么当第一UE与第二UE之间的相对车速为500km/h时,这两个UE在5.9GHz上的第一链路上的最大频率偏差值为7.4kHz。如果第一UE在传输业务信道时,第一UE和第二UE同步到GNSS,那么当第一UE与第二UE之间的相对车速为500km/h时,这两个UE在5.9GHz上的第一链路上的最大频率偏差值为4.0kHz。由此可见,对于高速UE的信号收发,应该尽可能地将该高速UE同步到GNSS上。因此,当第一UE属于第二类UE时,本发明实施例优先将第一UE的同步源确定为GNSS,能够使得第一UE尽可能地同步到GNSS,从而尽可能地减小在第一链路上的业务传输的频率偏差,从而保证第一链路上的传输性能,减少误包率并扩大覆盖。
应注意,本发明实施例中的定时器可以是第一基站配置的,或者可以是预定义的,或者可以是第一UE内部实现的。例如,第一UE可以根据自己内部的时钟产生的定时器,在定时器的时长内锁定到GNSS的定时一段时间。其中,定时器的时长可以是预定义的,或者可以取决于UE内部时钟的精度,或者也可以取决于基站配置的信令指示。例如,该时长为10分钟或2分钟。
具体地,如果第一UE无法检测到GNSS的信号,则第一UE可以将第一基站或第三UE作为同步源。其中,第一基站为第一UE的服务基站,第三UE为直接同步到GNSS的UE。即第三UE的同步源为GNSS。
其中,第一UE将第三UE作为同步源,可以包括,第一UE接收第三UE发送的同步信号,并根据第三UE发送的同步信号进行定时。第三UE发送的同步信号可以为SLSS。
可选地,无法检测到GNSS的信号,可以包括:无法检测到GNSS的任何信号,或者,检测到信号强度小于预设的信号强度阈值的GNSS的信号。
或者,无法检测到GNSS的信号,可以包括:在无法检测到GNSS的信号时启动定时器;并在定时器的时长内依然无法检测到GNSS的信号。
作为另一种理解,本发明实施例中,若第一UE属于第二类UE,则第一UE可以按照预定义的优先级顺序确定同步源。
预定义的优先级顺序可以为:GNSS→第一基站→第三UE→第四UE。或者,预定义的优先级顺序可以为:GNSS→第三UE→第一基站→第四UE。这里的第三UE为直接同步到GNSS的UE,第四UE为非直接同步到GNSS的UE。也就是说,第三UE的同步源为GNSS,第四UE的同步源不是GNSS。
具体地,如果第一UE接收到上一优先级的信号的信号质量不满足性能的要求,则将下一优先级的作为同步源。或者,如果第一UE接收到上一优先级的信号的信号质量不满足性能的要求,则启动一个定时器,如果在定时器结束之前,信号质量依然不满足性能的要求,则在定时器结束后,将下一优先级的作为同步源。
可理解,不同的优先级的定时器所设置的时长可以是等长的也可以是不等长的,本发明对此不限定。例如,可以在与GNSS同步的过程中使用第一定时器,在与第一基站同步的过程中使用第二定时器,在与第三UE同步的过程中使用第三定时器,在与第四UE同步的过程中使用第四定时器。
若优先级顺序为:GNSS→第一基站→第三UE→第四UE。则第一UE在无法检测到GNSS的信号时确定同步源的过程可以包括:
所述第一UE尝试将第一基站作为同步源。如果所述第一UE尝试成功,则所述第一UE将所述第一基站作为同步源;如果所述第一UE尝试失败,且所述第一UE能够检测到第三UE的同步信号,则所述第一UE将所述第三UE作为同步源;如果所述第一UE尝试失败,且所述第一UE无法检测 到所述第三UE的同步信号,则所述第一UE将第四UE作为同步源。
若优先级顺序为:GNSS→第三UE→第一基站→第四UE。则第一UE在无法检测到GNSS的信号时确定同步源的过程可以包括:
如果所述第一UE能够检测到第三UE的同步信号,则所述第一UE将所述第三UE作为同步源。如果所述第一UE无法检测到所述第三UE的同步信号,则所述第一UE尝试将第一基站作为同步源;如果所述第一UE尝试成功,则所述第一UE将所述第一基站作为同步源;如果所述第一UE尝试失败,则所述第一UE将第四UE作为同步源。
进一步地,在S202之后,可以包括:第一UE在第一链路上发送控制信息。
可选地,作为一个实施例,该控制信息可以用于指示以下中的至少一种:业务的类型、第一速度信息、第一UE是否作为同步源、第一UE的同步源的标识。
例如,该控制信息可以承载于第三控制信道。例如,第三控制信道为PSCCH或PSBCH。可选地,承载该控制信息的第三控制信道可以用于指示以下中的至少一种:业务的类型、第一速度信息、第一UE是否作为同步源、第一UE的同步源的标识。
其中,业务可以包括安全类业务和非安全类业务。相应地,业务的类型可以为安全类型或者非安全类型。安全类业务可以如用于公共安全或者智能交通系统(Intelligent Transportation Systems,ITS)中的安全类业务,即ITS-safety。非安全类业务可以如ITS中的非安全类业务,即non-ITS-safety;或者如非公共安全类业务,即普通的数据传输业务。
例如,可以使用第三控制信道中的1比特字段或预定义的CRC掩码或预定义的加扰序列或使用预定义的DMRS或预定义的传输资源等方式指示该业务的类型。具体地,可以使用1比特字段中指示的“1”表示安全类业务,“0”表示非安全类业务;或者,具体地,可以使用全为“1”的CRC掩码表示安全类业务,使用全为“0”的CRC掩码表示非安全类业务。
或者,具体地,使用预定义的DMRS来指示安全类业务。例如,将与控制信息一起发送的DMRS序列生成两组,一组用来指示安全类业务,另一组用来指示非安全类业务。所述控制信息可以承载于PSCCH,也可以承载于PSBCH。两组DMRS可以是两组具有不同的循环移位的DMRS序列, 或者两组具有不同根序列号的DMRS序列,或者两组具有不同OCC的DMRS序列。
或者,具体地,使用不同的资源来指示安全类业务,这里的资源可以是不同的时域资源,不同的频域资源,不同的码域资源,还可以是传输第三控制信道的周期或者间隔。不同的传输周期和不同的传输间隔对应安全类和非安全类业务。
其中,第一速度信息可以包括第一UE的速度的大小,或第一UE的速度等级信息。
其中,可以显式地或隐式地指示该第一UE是否可以作为同步源。
例如,可以通过第三控制信道中的一个特定字段表示该第一UE是否可以作为同步源。假设该一个特定字段为字段A,那么,可以将该字段A设置为1表示该第一UE可以作为同步源。可以将该字段A设置为0表示该第一UE不能作为同步源。
其中,可以显式地或隐式地指示该第一UE的同步源的标识。
例如,可以通过第三控制信道中的另一特定字段指示该第一UE的同步源的标识。可选地,若第一UE的同步源为GNSS,则该另一特定字段可以设置为1。若第一UE的同步源不为GNSS,则该的另一特定字段可以设置为0。或者,可选地,若第一UE的同步源为第一基站,则该第一UE的同步源的标识为第一基站的物理小区标识。若第一UE的同步源为GNSS,则该第一UE的同步源的标识为与GNSS对应的预定义的标识。若第一UE的同步源为另一UE(如第三UE或第四UE),则该第一UE的同步源的标识为另一UE的标识或该UE的同步信号标识。
可理解,本发明实施例中,与GNSS对应的预定义的标识可以是预先为GNSS设置的,例如可以为负数,如-1。例如可以为大于现有的第一链路服务集标识符(Service Set Identifier,SSID)的值,如336或400等。例如,还可以是在0到335之中预定义的一个标识。本发明对此不限定。
假设指示该第一UE的同步源的标识的另一特定字段为字段B,那么,可以将该字段B设置为-1表示该第一UE的同步源为GNSS。
进一步地,图12所示的方法还包括:第一UE在第一链路上发送同步信号。其中,同步信号可以为SLSS。
可选地,该同步信号可以用于指示业务的类型。业务的类型可以为安全 类型或者非安全类型。
例如,可以通过传输同步信号的周期或者间隔指示该业务的类型。举例来说,可以设定一个周期的大小阈值,当传输同步信号的周期大于该周期的大小阈值时,表示业务的类型为安全类型;当传输同步信号的周期小于或等于该周期的大小阈值时,表示业务的类型为非安全类型。举例来说,可以设定一个间隔的大小阈值,当传输同步信号的间隔大于该间隔的大小阈值时,表示业务的类型为安全类型;当传输同步信号的间隔小于或等于该间隔的大小阈值时,表示业务的类型为非安全类型。本发明对此不限定。
例如,可以通过不同的主同步信号的组合方式指示该业务的类型。或者可以通过不同的从同步信号的组合方式指示该业务的类型。或者可以通过主同步信号和从同步信号的组合方式指示该业务的类型。例如,用两个主同步信号的不同序列的组合和/或两上不同的从同步信号的不同序列的组合来指示安全和非安全业务。举例来说,当两个主同步信号的序列相同时,表示为安全业务;当两个主同步信号的序列不同时表示非为安全业。再举例来说,当两个主同步信号的序列相同时,表示为非安全业务;当两个主同步信号的序列不同时表示为安全业务。类似地,可以对两个从同步信号的序列做与主同信号序列相同的操作来指示。这里不再一一罗列。
可选地,可以使用不同的主同步信号序列分别指示安全业务和非安全业务,和/或,可以使用不同的从同步信号序列分别指示安全业务和非安全业务。
举例来说,可以定义两组主同步信号序列,第一组主同步信号序列与第二组主同步信号序列不同,且分别用于指示安全业务和非安全业务。例如,第一组主同步信号序列包括根序列号为26和37的Zadoff-Chu序列;第二组主同步信号序列包括根序列号不等于26和37的一个或多个序列Zadoff-Chu序列。
举例来说,可以定义两组从同步信号序列,第一组从同步信号序列与第二组从同步信号序列不同,且分别用于指示安全业务和非安全业务。例如,第一组从同步信号序列的标识的取值范围为[0,83],第二组从同步信号序列的标识的取值范围为[84,167]。再例如,第一组从同步信号序列的标识的取值范围为[0,167],第二组从同步信号序列的标识的取值范围为[168,335]。
此处关于第三控制信道以及同步信号,可以参见前述图4的实施例中的相关描述,为避免重复,这里不再赘述。
可选地,作为另一个实施例,该控制信息可以用于指示以下中的至少一种:第一速度信息、所述控制信息的当前传输次数、所述控制信息所调度的数据的传输次数以及所述数据的每次传输时的时频资源。
例如,该控制信息承载于第一控制信道或第二控制信道。其中,如果该第一UE属于第一类UE,该控制信息承载于第一控制信道。如果该第一UE属于为第二类UE,该控制信息承载于第二控制信道。可选地,该控制信息可以包括:第一UE的速度指示信息。
相应地,可理解,在此之后,第一UE可以在第一链路上发送数据。
作为一例,第一UE可以使用第四传输资源,在第一链路上发送数据。或者,第一UE可以使用第四传输资源,在第一链路上发送数据和第一序列。其中,第四传输资源可以是控制信息所指示的。
例如,当第一UE属于第一类UE时,第一UE可以在第一链路上发送数据和ZC序列。当第一UE属于第二类UE时,第一UE可以在第一链路上发送数据和第一序列。其中,关于该第一序列,可以参见前述实施例中的相关描述,为避免重复,这里不再赘述。
可选地,第一UE在第一链路上传输的控制信息与在第一链路上传输的数据可以位于不同的子帧,或者控制信息与数据也可以位于同一个子帧。
可选地,若控制信息与数据位于同一个子帧,在该方法之后,可以包括第一UE在第一链路上发送控制信息和数据。
具体地,可以包括:
确定所述控制信息的第一发射功率以及所述数据的第二发射功率;
若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则将所述第一发射功率乘以第一缩放值作为第一功率,将所述第二发射功率乘以第二缩放值作为第二功率,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率;
在第一链路上使用所述第一功率发送所述控制信息,并使用所述第二功率发送所述数据,
其中,所述第一缩放值与所述第二缩放值相等或不相等。
作为另一种实现方式,如果第一基站通过信令指示第一UE需要将PSCCH和PSSCH在同一个子帧传输,或者第一UE确定需要将PSCCH和PSSCH在同一个子帧传输,且PSCCH的第三发射功率与PSSCH的第四发 射功率之和大于第一UE在第一链路上可提供的最大发射功率。那么,可以按以下方式中的任意一种来分配PSCCH和PSSCH之间的发射功率,或者确定PSCCH和PSSCH的传输方式:
方式一:第一UE可以将PSSCH丢弃,在当前子帧中只传输PSCCH。
方式二:第一UE可以将PSCCH和PSSCH在不同的子帧分别传输。
方式三:第一UE可以增加传输次数,在多次传输中的一些传输中PSCCH和PSSCH位于同一个子帧,在多次传输中的一些传输中PSCCH和PSSCH位于不同子帧。
这里,第三发射功率可以是上述的第一发射功率,第四发射功率可以是上述的第二发射功率,或者,第三发射功率和第四发射功率可以是第一基站指示的发射功率,或者,第三发射功率和第四发射功率可以是第一UE按预定义规则所确定的。
此处关于控制信息与数据的传输,可以参见前述图4的实施例中的相关描述,为避免重复,这里不再赘述。
图13是本发明另一个实施例的信息传输的方法的流程图。图13所示的方法包括:
S301,第一UE确定控制信息所调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式。
第一UE可以根据以下方法中的至少一种来确定控制信息所调度的数据的传输次数:第一UE根据第一UE的速度的信息确定该数据的传输次数;第一UE根据基站指示的信息确定该数据的传输次数;第一UE根据预定义的信息确定该数据的传输次数;第一UE根据传输条件确定该数据的传输次数;第一UE根据业务特性确定该数据的传输次数。
可选地,S301中,第一UE可以根据第一UE的第一速度信息确定控制信息所调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式。
本发明实施例中,第一速度信息可以用来表示第一UE的速度的大小。这里的速度的信息包括绝对速度、相对速度和加速度,第一UE确定第一速度信息的方法可以参考本发明前述实施例中S101和S201的描述,这里不再重复。
本发明实施例中,数据的传输次数可以是预定义的。例如,将数据的传 输次数预先配置在第一UE上,或者,协议预先规定高速UE的数据的传输次数。或者,数据的传输次数可以是第一UE从第二UE的服务基站所发送的信息中获取的。或者,数据的传输次数是第一UE依据以下信息中的至少一种进行确定的:第一UE的第一速度信息、第一UE和/或第二UE的地理位置信息。本发明对此不作限定。
可选地,作为一个实施例,第一UE可以根据第一UE的第一速度信息确定数据的传输次数。举例来说,假设第一UE确定该第一UE属于第一类UE,则可以确定数据的传输次数为N1;假设第一UE确定该第一UE属于第二类UE,则可以确定数据的传输次数为N2。N1和N2的值可以是预先配置的,或者可以是协议指定的,或者可以是第一基站通过信令指示的等等,本发明对此不限定。可选地,N1和N2的值可以满足N1<N2。
可选地,第一UE根据基站指示的信息确定该数据的传输次数,具体地基站通过信令向第一UE指示该数据的传输次数。例如,通过DCI信令,RRC消息,SIB消息来指示该数据的传输次数。具体地,当使用RRC或SIB消息指示时,可以使用与资源池相关的参数来指示传输次数。这种方法是让基站来控制第一UE传输第一数据的次数,让基站根据网络的情况控制传输的资源和效率,以保证整个系统的传输性能和效率。
可选地,第一UE根据预定义的信息确定该数据的传输次数。与基站指示的信息确定类似,当第一UE处于网络覆盖外时,则按预定义信息指示该数据的传输次数。该预定义的信息是提前预置在UE内的;当UE接入到网络中时,这些预定义的信息,还可以通过网络来做更新。
可选地,第一UE根据传输条件确定该数据的传输次数。所述的传输条件包括:第一UE接收到的数据的信号质量,第一UE检测到的信道的质量,第一UE在数据传输的资源池中测量到的干扰信号的能量,第一UE在数据传输的资源池中检测到其他UE发送信号的能量。总的来说,信号质量越差,则传输次数越多。或者当第一UE在数据传输的资源池中测量到的干扰信号的能量越高时,传输次数越小,以减少UE之间的进一步的相互干扰。
可选地,第一UE根据业务特性确定该数据的传输次数。这里的业务特性包括:UE是安全业务还是非安全业务;UE传输业务的服务质量QoS需求;UE传输业务的优先级等。UE传输的业务为安全性业务,QoS需求越高,优先级越高,使用的传输次数就会越大。以保证业务的传输特性的需求。
可选地,针对不同的传输次数,控制信息的传输方式可以相同或不同。
例如,当所述数据的传输次数不同时,所述控制信息的有效字段不同。
可选地,该控制信息还可以包括所述控制信息的当前传输次数的指示信息,和/或,包括所述第一UE的第一速度信息。
可选地,该控制信息可以包括指示当前传输次数的字段。举例来说,假设该控制信息传输的次数为2次。那么,可以在该控制信息中使用1比特字段指示当前的传输次数。具体地,1比特字段为“0”表示当前为控制信息的第一次传输,1比特字段为“1”表示当前为控制信息的第二次传输。
可选地,该控制信息可以包括指示第一UE的速度信息的字段。举例来说,可以在该控制信息中使用1比特字段指示第一UE的速度的信息。具体地,1比特字段为“0”表示第一UE的速度小于预设的速度阈值,即第一UE属于第一类UE,1比特字段为“1”表示第一UE的速度大于或等于预设的速度阈值,即第一UE属于第二类UE。
可选地,该控制信息可以包括该控制信息所调度的数据的传输次数的指示信息。控制信息中可以通过显式或隐式的方式包括该数据的传输次数指示信息。举例来说,可以在该控制信息中包括指示该控制信息所调度的数据的传输次数的字段,如2比特的字段分别指示1,2,3或4次传输。
可选地,该控制信息可以承载于控制信道,该控制信道为PSCCH。
可选地,可以由该控制信道通过显式或隐式的方式指示该数据的传输次数。例如,可以通过控制信道的特定的指示信息来指示该数据的传输次数。特定的指示信息可以是预定义的,例如可以是协议规定的,或者是基站通过信令指示的,或者是所述控制信息中指示的,或者是通过控制信道来隐式指示的,本发明对此不限定。通过控制信道来隐式指示的例如:通过CRC掩码,通过所述控制信道的加扰序列,通过所述控制信道使用的解调参考信号;通过所述控制信道传输时占用的物理资源的大小;通过所述控制信道占用的时频资源(例如:不同的数据传输次数使用不同的资源集合)。
本发明实施例中,针对不同的数据的传输次数,控制信息的传输方式可以相同或不同。例如,当所述数据的传输次数不同时,所述控制信息的有效字段不同。
作为一例,当所述数据的传输次数为四次时,在所述控制信息的第一字段和所述控制信息的第二字段包括所述四次传输中的其中两次传输的时 频资源。
作为另一例,所述数据的每次传输所使用的频域资源相同。所述控制信息包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源的指示信息。
作为另一例,所述数据的传输次数为N次,所述控制信息包括N次中的M次传输所使用的时频资源,以使得所述控制信息的接收端根据所述控制信息包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。
更进一步地,该每次传输的时频资源的指示信息,可以参见前述图5至图7部分的相关描述,为避免重复,这里不再赘述。
S302,所述第一UE在第一链路上以所述传输方式发送所述控制信息。
可选地,本发明实施例中的控制信息还可以包括所述控制信息的当前传输次数,和/或,还可以包括所述第一UE的第一速度信息。
可选地,该方法还可以包括:第一UE在第一链路上发送数据。所述数据为所述控制信息所调度的数据。
或者,可选地,该方法可以包括:第一UE在第一链路上发送数据和第一序列。其中,关于该第一序列可以参见前述实施例中的相关描述,这里不再赘述。
可选地,该控制信息承载于控制信道,该数据承载于数据信道(或称为业务信道)。该控制信道可以为PSCCH,该数据信道可以为PSSCH。
本发明实施例中的控制信息和数据可以位于不同的子帧,或者,本发明实施例中的控制信息和数据可以位于同一个子帧。
可选地,若控制信息与数据位于同一个子帧,那么,在S302中,第一UE以所述传输方式,在第一链路上发送控制信息和数据。
进一步地,第一UE在第一链路上发送控制信息和数据可以包括:可以包括:
确定所述控制信息的第一发射功率以及所述数据的第二发射功率;
若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则将所述第一发射功率乘以第一缩放值作为第一功率,将所述第二发射功率乘以第二缩放值作为第二功率,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率;
在第一链路上使用所述第一功率发送所述控制信息,并使用所述第二功率发送所述数据,
其中,所述第一缩放值与所述第二缩放值相等或不相等。
上述的第一发射功率和第二发射功率可以是按照开环功率的方法进行确定的,具体地,可以参照前述的实施例中第一发射功率和第二发射功率的确定方法,为避免重复,这里不再赘述。
本发明实施例中的传输方式可以包括以下中的至少一种:所述控制信息使用的传输资源;所述控制信息的循环冗余校验CRC掩码;所述控制信息的加扰序列;承载所述控制信息的控制信道使用的解调参考信号;所述控制信息传输时占用的物理资源的大小;所述控制信息使用的调制和编码方案MCS;所述控制信息的传输次数。
图14是本发明另一个实施例的信息传输的方法的流程图。图14所示的方法包括:
S401,第二UE在第一链路上接收第一UE发送的控制信息。
具体地,该控制信息包括该控制信息所调度的数据的传输次数,以及每次传输时的时频资源的指示信息。
本发明实施例中,数据的传输次数可以是预定义的。例如,将数据的传输次数预先配置在第一UE上,或者,协议预先规定高速UE的数据的传输次数。或者,数据的传输次数可以是第一UE从第二UE的服务基站所发送的信息中获取的。或者,数据的传输次数是第一UE依据以下信息中的至少一种进行确定的:第一UE的第一速度信息、第一UE和/或第二UE的地理位置信息、第一UE的信号质量、第二UE发送的数据和/或信号的信号质量等。本发明对此不作限定。
可选地,该控制信息可以包括该控制信息的当前传输次数的指示信息,和/或,该控制信息可以包括第一UE的速度的指示信息。
可选地,该控制信息可以包括指示当前传输次数的字段。举例来说,假设该控制信息传输的次数为2次。那么,可以在该控制信息中使用1比特字段指示当前的传输次数。具体地,1比特字段为“0”表示当前为控制信息的第一次传输,1比特字段为“1”表示当前为控制信息的第二次传输。相应地,对于第二UE来说,第二UE接收到的控制信息的2次传输中的任意一次都是有效的。如果第二UE能够同时接收到控制信息的2次传输,其中指示传 输次数的字段分别为0和1,并且指示的所调度数据的时频资源的位置完全相同,则可以认为2次接收到的控制信息为同一个控制信息的不同重传。
可选地,该控制信息可以包括指示第一UE的速度信息的字段。举例来说,可以在该控制信息中使用1比特字段指示第一UE的速度的信息。具体地,1比特字段为“0”表示第一UE的速度小于预设的速度阈值,即第一UE属于第一类UE,1比特字段为“1”表示第一UE的速度大于或等于预设的速度阈值,即第一UE属于第二类UE。
可选地,该控制信息可以包括该控制信息所调度的数据的传输次数指示信息。控制信息中可以通过显式或隐式的方式包括该数据的传输次数指示信息。举例来说,可以在该控制信息中包括指示该控制信息所调度的数据的传输次数的字段,如2比特的字段分别指示1,2,3或4次传输。
本发明实施例中的该控制信息可以承载在控制信道中。可选地,该控制信道可以为PSCCH。
S402,第二UE获取所述控制信息所调度的数据的传输次数的指示信息。
可以通过显式或隐式的方式获取该数据的传输次数。例如,第二UE可以从特定的指示信息获取该数据的传输次数。特定的指示信息可以是预定义的,例如可以是协议规定的,或者是基站通过信令指示的,或者是所述控制信息中指示的,或者是通过承载所述控制信息的控制信道来隐式指示的,本发明对此不限定。通过承载所述控制信息的控制信道来隐式指示的例如:通过CRC掩码,通过所述控制信道的加扰序列,通过所述控制信道使用的解调参考信号;通过所述控制信道传输时占用的物理资源的大小;通过所述控制信道占用的时频资源(例如:不同的数据传输次数使用不同的资源集合)。
S403,第二UE在所述控制信息中与每次传输所对应的字段,获取所述每次传输时的时频资源。
可选地,如果所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,所述控制信息可以包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源的指示信息。相应地,第二UE可以从控制信息中获取该相同的频域资源,从与传输次数一一对应的字段获取多次传输的时域资源。
可选地,作为一例,当所述数据的传输次数为一次时,在所述控制信息的第一字段获取所述一次传输的时频资源。当所述数据的传输次数为二次 时,在所述控制信息的第一字段获取所述二次传输中的第一次传输的时频资源,在所述控制信息的第二字段获取所述二次传输中的第二次传输的时频资源。当所述数据的传输次数为四次时,在所述控制信息的第一字段获取所述四次传输中的第一次传输的时频资源,在所述控制信息的第二字段获取所述四次传输中的第二次传输的时频资源,在所述控制信息的第三字段获取所述四次传输中的第三次传输的时频资源,在所述控制信息的第四字段获取所述四次传输中的第四次传输的时频资源。
可选地,作为另一例,当所述数据的传输次数为四次时,在所述控制信息的第一字段和所述控制信息的第二字段获取所述四次传输中的其中两次传输的时频资源;根据所述四次传输中的其中两次传输的时频资源,确定所述四次传输中的另外两次传输的时频资源。例如,其中第二次传输的频域资源与第一次传输的频域资源相同,第二次传输的时频资源与第一次传输的时频资源在子帧上相邻或间隔一个预定义的值;其中第四次传输的频域资源与第三次传输的频域资源相同,第四次传输的时频资源与第三次传输的时频资源在子帧上相邻或间隔一个预定义的值。所述控制信息仅指示第一次和第三次传输的时频资源,第二次和第四次传输的时频资源可以根据该预定义的方式获取。
可选地,作为另一例,当所述数据的传输次数为N次时,从所述控制信息的特定位置获取所述N次中的M次传输所使用的时频资源,并进一步根据所述控制信息包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。例如,可以根据预定义的方法,在M次传输所使用的时频资源的基础上,确定其他的N-M次传输所使用的时频资源。
本发明实施例中,数据的传输次数不同,控制信息的传输方式可以相同或不同。
可选地,可以使用统一的控制信息的传输方式。这样,在S403中,第二UE可以根据该统一的传输方式,从控制信息的相应的字段,获取每次传输时的时频资源。本实施例中使用统一的控制信息传输方式,可以以保证针对不同的传输次数时的时频资源的指示,并且能够减少第二UE盲检的复杂度。
可选地,针对不同的传输次数,控制信息可以使用不同的传输方式。也 就是说,对于不同的传输次数,承载控制信息的控制信道的传输方式不同。
此时,S403可以包括:所述第二UE根据所述数据的传输次数,确定所述控制信息的传输方式,其中,所述传输方式是预定义的至少两种传输方式中的一种;并根据所述传输方式获取所述每次传输时的时频资源。
若传输次数为1,那么控制信息可以包括t1,f1。
若传输次数为2,那么控制信息可以包括t1,f1,t2,f2。如果其中f1=f2,传输次数为2时控制信息可以包括f,t1,t2。
若传输次数为4,那么控制信息可以包括t1,f1,t2,f2,t3,f3,t4,f4。如果其中f1=f2=f3=f4,传输次数为4时控制信息可以包括f,t1,t2,t3,t4。
可见,针对不同的数据传输次数使用不同的传输方式,可以通过显示的信令指示每次传输时时频资源的位置,能够保证资源调度的灵活性。相应地,对于第二UE来说,可以迅速获取每次传输的时频资源,无需进行复杂的计算处理。
可见,第二UE只需要检测与数据的传输次数对应的传输方式的控制信息,而不需要检测其他的传输方式对应的控制信息。从而减少了检测的复杂度。并且为不同的数据的传输次数设计不同的传输方式,能够保证控制信息传输的资源利用率,进而能够提高传输时的资源使用效率。
应注意,上述实施例中的f,f1~f4,t1~t4既可以是绝对值,也可以是相对值,本发明对此不限定。
上述的传输方式可以包括以下至少一种:所述控制信息使用的传输资源;所述控制信息的循环冗余校验CRC掩码;所述控制信息的加扰序列;承载所述控制信息的控制信道使用的解调参考信号;所述控制信息传输时占用的物理资源的大小;所述控制信息使用的调制和编码方案MCS;所述控制信息的传输次数。
关于控制信息的传输方式,可以参见前述图4的实施例部分的相关描述,为避免重复,这里不再赘述。
可选地,在S403之后,还可以包括:第二UE根据该控制信息,在第一链路上接收第一UE发送的数据。
具体地,第二UE可以使用控制信息所指示的传输资源,在第一链路上接收第一UE发送的数据。
或者,可选地,在S403之后,还可以包括:第二UE根据该控制信息,在第一链路上接收第一UE发送的数据和第一序列。
作为一例,当第一UE属于第一类UE时,第二UE根据该控制信息在第一链路上接收第一UE发送的数据和ZC序列。当第一UE属于第二类UE时,第二UE根据该控制信息在第一链路上接收第一UE发送的数据和第一序列。其中,关于该第一序列,可以参见前述实施例中的相关描述,为避免重复,这里不再赘述。
可选地,该数据可以承载在业务信道上。例如,该业务信道为PSSCH。
图15是本发明一个实施例的用户设备的结构框图。图15所示的UE为第一UE 100包括处理单元110和发送单元120。
处理单元110,用于确定所述第一UE的第一速度信息;
处理单元110,还用于根据所述第一速度信息确定控制信息的传输方式;
发送单元120,用于在第一链路上以处理单元110确定的所述传输方式发送所述控制信息。
本发明实施例中,第一速度信息可以用来表示第一UE 100的速度的大小。可选地,第一速度信息可以以速度等级的形式来表示第一UE 100的速度的大小。这里的第一UE 100的速度可以是绝对速度,或者也可以是相对于另一UE或多个UE的相对速度,还可以第一UE对地的加速度或相对另一UE或另多个UE的加速度,本发明对此不限定。
可选地,如果第一UE 100为物理层的通信模块,那么,处理单元110可以通过其他层的指示信息来确定该第一速度信息。
若第一速度信息用来表示第一UE 100的绝对速度的大小,处理单元110可以通过GNSS模式获取第一速度信息。或者,处理单元110可以通过第一基站所指示的信息获取该第一速度信息。可选地,第一UE 100可以通过相应的测速装置获取该第一速度信息。例如,若第一UE 100为OBU,那么,处理单元110可以通过汽车上的相应的模块,如发动机模块、变速箱模块、或其他的对速度进行电控的模块等,获取该第一速度信息。例如,测量得到该第一UE的当前速度为v,该速度的单位可以为km/h,或可以为miles/h。
若第一速度信息用来表示第一UE 100相对于另一UE(如第二UE)的相对速度的大小。可选地,处理单元110可以先确定自己的绝对速度,然后通过测量或解析来自第二UE发送的数据包来确定第二UE的速度信息和/ 或位置信息。进一步地处理单元110可以根据这些信息确定第一UE 100相对于第二UE的相对速度的信息。这里第二UE可以是一个UE,也可以是多个不同的UE。当第二UE是多个不同的UE时,则是相对多个UE速度的某种加权值。例如算术加权平均值,几何加权平均值等。
本发明实施例中,传输方式可以包括以下中的至少一种:所述控制信息使用的传输资源;所述控制信息的循环冗余校验CRC掩码;所述控制信息的加扰序列;承载所述控制信息的控制信道使用的解调参考信号;所述控制信息传输时占用的物理资源的大小;所述控制信息使用的调制和编码方案MCS;所述控制信息的传输次数。
可选地,作为一个实施例,若根据所述第一速度信息确定所述第一UE100属于第一类UE,则处理单元110可以确定所述传输方式为第一传输方式;若根据所述第一速度信息确定所述第一UE 100属于第二类UE,则处理单元110可以确定所述传输方式为第二传输方式。其中,第一类UE可以为非高速UE,第二类UE可以为高速UE。
可选地,作为一个实施例,第一传输方式包括第一传输资源,第二传输方式包括第二传输资源。其中,第一传输资源可以来自第一资源集或来自第一资源集的第一资源子集,第二传输资源可以来自第二资源集或来自第二资源集的第二资源子集。
本发明实施例中,第一UE 100还可以进一步包括接收单元。
作为一例,接收单元可以用于:获取第一资源集和第二资源集。第一资源集和第二资源集可以是预定义的。例如,可以是协议规定好的。
作为另一例,接收单元可以用于:在第二链路上接收第一基站发送的第一指示信息,所述第一指示信息用于指示所述第一资源集和所述第二资源集。
可选地,发送单元120可以用于:在第二链路上将所述第一速度信息发送至第一基站,所述第一速度信息包括:所述第一UE 100的速度的大小,或所述第一UE 100的速度等级信息。进一步地,处理单元110可以在第二链路上接收第一基站发送的第一指示信息。也就是说,第一指示信息可以是第一基站接收到的第一速度信息后所指示的。
可选地,第一指示信息还可以用于指示第一资源子集在第一资源集中的位置,和/或,用于指示第二资源子集在第二资源集中的位置。
其中,发送单元120可以具体用于:在第二链路上将所述第一速度信息周期性地发送至所述第一基站;或者,在所述第一UE 100的速度发生变化时,在第二链路上将所述第一速度信息发送至所述第一基站;或者,在接收单元接收到所述第一基站发送的上报所述第一UE 100的速度信息的指示后,在第二链路上将所述第一速度信息发送至所述第一基站。
可选地,所述第一资源集与所述第二资源集为同一个资源集;或者,所述第二资源集属于所述第一资源集的子集。
相应地,处理单元110可以具体用于:若根据所述第一速度信息确定所述第一UE 100属于第一类UE,则从所述第一资源集中或从所述第一资源集的第一资源子集中确定所述第一传输资源,其中,所述第一资源子集是预定义的或者是预配置的;若根据所述第一速度信息确定所述第一UE 100属于第二类UE,则从所述第二资源集中或从所述第二资源集的第二资源子集中确定所述第二传输资源,其中,所述第一资源子集是预定义的或者是预配置的。
可选地,作为一种实现方式,该控制信息用于指示业务的类型,所述业务的类型为安全类型或非安全类型。
作为一例,控制信息还可以进一步指示所述第一UE 100是否为同步源,和/或,控制信息还可以进一步指示第一UE 100的同步源的标识。
其中,若第一UE 100的同步源为第一基站,所述第一UE 100的同步源的标识为所述第一基站的物理小区标识;或者,若第一UE 100的同步源为GNSS,所述第一UE 100的同步源的标识为与所述GNSS对应的预定义的标识。
其中,该控制信息可以承载于第三控制信道。例如,该第三控制信道为PSBCH。
作为一例,该第三控制信道用于指示业务的类型,所述业务的类型为安全类型或非安全类型。
作为另一例,发送单元120还可以用于:在所述第一链路上发送同步信号。可选地,同步信号用于指示业务的类型,所述业务的类型为安全类型或非安全类型。
可选地,作为另一种实现方式,该控制信息可以用于指示所述第一速度信息,和/或,该控制信息可以用于指示该控制信息所调度的数据的传输次数 以及所述数据的每次传输时的时频资源。
作为一例,该控制信息还可以进一步用于指示该控制信息的当前传输次数。
其中,该控制信息可以承载于第一控制信道或第二控制信道。例如,第一控制信道为第一PSCCH,第二控制信道为第二PSCCH。
若根据所述第一速度信息确定所述第一UE 100属于第一类UE,则所述控制信息承载于第一控制信道;若根据所述第一速度信息确定所述第一UE100属于第二类UE,则所述控制信息承载于第二控制信道。
可选地,相应地,发送单元120可用于在所述第一链路上,以所述传输方式将所述第一速度信息发送至第二UE。
作为一个实施例,处理单元110还可以用于确定第一UE 100的同步源。
处理单元110,具体用于:若根据所述第一速度信息确定所述第一UE 100属于第一类UE,则根据预先配置的信息确定所述同步源。
例如,预先配置的信息指示第一类UE的同步源为基站,则第一UE确定同步源为第一基站,其中,第一基站可以为第一UE的服务基站。
若第一UE属于第一类UE且预选配的信息指示第一UE的同步源为基站,则第一UE可以采用现有技术的方法完成与第一基站之间的同步,这里不再赘述。
例如,预先配置的信息指示第一类UE的同步源为GNSS,则所述第一UE优先确定所述同步源为GNSS。
例如,预先配置的信息指示第一类UE的同步源为RSU,则第一UE确定同步源为RSU。
若根据所述第一速度信息确定所述第一UE 100属于第二类UE,则优先确定所述同步源为GNSS。
其中,处理单元110,具体用于:如果能够检测到所述GNSS的信号,则将所述GNSS作为同步源。如果无法检测到所述GNSS的信号,则确定所述同步源为第一基站或第三UE。可选地,所述第一基站可以为所述第一UE100的服务基站,所述第三UE可以为直接同步到GNSS的UE。
可选地,处理单元110能够检测到所述GNSS的信号,可以为:若处理单元110无法检测到所述GNSS的信号,则处理单元110启动定时器;并随后在所述定时器的时长内检测到所述GNSS的信号。处理单元110无法检测 到所述GNSS的信号,可以为:若处理单元110无法检测到所述GNSS的信号,则处理单元110启动定时器;并在所述定时器的时长内依然无法检测到所述GNSS的信号。
本发明实施例中,处理单元110能够检测到GNSS的信号,可以是指:处理单元110能够检测到信号强度大于或等于预设的信号强度阈值的GNSS的信号。处理单元110无法检测到GNSS的信号,可以是指:处理单元110无法检测到GNSS的任何信号,或者,检测到信号强度小于所述预设的信号强度阈值的GNSS的信号。
进一步地,本发明实施例中的发送单元120还可以用于使用第四传输资源,在所述第一链路上发送数据;其中,所述第四传输资源是由所述控制信道承载的控制信息所指示的。
其中,发送单元120可以先发送控制信息,再发送数据。或者,发送单元120可以同时发送控制信息和数据。
可选地,控制信息和数据可以位于不同的子帧,或者,控制信息和数据可以位于同一个子帧。本发明对此不限定。其中,控制信息可以承载于控制信道,数据可以承载于业务信道,其中,控制信道可以为PSCCH,业务信道可以为PSSCH。
具体地,发送单元120可以在第一链路上,所述第四传输资源将数据发送至第二UE。
其中,位于同一符号上的每K个连续的子载波可以包括一个用于传输所述数据的子载波,K为大于或等于2的正整数。可以参见前述的图9和图10所示的具体的K=2的示例。
可选地,控制信息可以用于指示所述数据的传输次数,以及每次传输时的时频资源。
作为一例,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,所述第四传输资源可以包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源。
作为另一例,所述数据的传输次数为N次,所述第四传输资源可以包括所述N次中的M次传输所使用的时频资源,以使得所述控制信道的接收端根据所述控制信道包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。
可选地,作为一个实施例,发送单元120具体用于:使用所述第四传输资源,在所述第一链路上发送所述数据和第一序列。其中,所述第一序列是在预定义长度的ZC序列集中除去预定义的第二序列后所确定的。
具体地,如果第一UE 100属于第一类UE,发送单元120可以使用所述第四传输资源,在所述第一链路上发送所述数据和预定义长度的ZC序列。如果第一UE 100属于第二类UE,发送单元120可以使用所述第四传输资源,在所述第一链路上发送所述数据和第一序列。关于第一序列,可以参见前述方法实施例中的相关描述,为避免重复,这里不再赘述。
如果控制信息和数据位于同一个子帧,那么处理单元110还可以用于:确定所述控制信息的第一发射功率以及所述数据的第二发射功率;若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则确定第一功率为所述第一发射功率乘以第一缩放值,确定第二功率为所述第二发射功率乘以第二缩放值,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率。进一步地发送单元120具体用于在所述第一链路上使用所述第一功率发送所述控制信息,并使用所述第二功率发送所述数据。其中,所述第一缩放值与所述第二缩放值相等或不相等。
其中,第一发射功率和第二发射功率可以是开环发射功率。第一缩放值表示为w1,第二缩放值表示为w2。其中,w1=w2或者w1≠w2。
或者,如果处理单元110确定第一发射功率与第二发射功率之和大于最大发射功率,则发送单元120可以在当前子帧发送控制信息,并在后续的子帧发送数据。也就是将控制信息与数据拆分到不同的子帧进行发送。
可选地,作为另一个实施例,发送单元120,还用于:当所述第一UE 100为第二类UE时,使用第五传输资源,在第二链路上将所述第一链路上的数据发送至第二基站。其中,所述第二基站为所述数据的接收端的服务基站。
其中,第五传输资源可以是第一UE 100的服务基站为第一UE 100进行配置的。可选地,发送单元120还可以用于向第一基站发送资源请求信息;处理单元110还可以用于接收所述第一基站发送的所述第五传输资源的指示信息。其中,资源请求信息可以为与速度相关的SR或BSR。
作为一例,所述数据的接收端为第二UE,所述第二UE的服务基站为所述第一基站,则所述第一基站与所述第二基站为同一个基站。
作为另一例,所述数据的接收端包括第二UE和第四UE,所述第二UE 的服务基站为所述第一基站,所述第四UE的服务基站为第三基站,则所述第二基站包括所述第一基站和所述第三基站。
应注意,本发明实施例中,接收单元可以由接收器实现,处理单元110可以由处理器实现,发送单元120可以由发送器实现。如图16所示,第一UE 100可以包括处理器151、接收器152、发送器153和存储器154。其中,存储器154可以用于存储速度阈值或速度等级阈值等,还可以用于存储处理器151执行的代码等。
第一UE 100中的各个组件通过总线系统155耦合在一起,其中总线系统155除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图15所示的第一UE 100或图16所示的第一UE 100能够实现前述图4的方法实施例中由第一UE所实现的各个过程,为避免重复,这里不再赘述。
图17是本发明实施例的系统芯片的示意性结构图。图17的系统芯片1600包括输入接口1610、输出接口1620、至少一个处理器1630、存储器1640,所述输入接口1610、输出接口1620、所述处理器1630以及存储器1640之间通过总线相连,所述处理器1630用于执行所述存储器1640中的代码,当所述代码被执行时,所述处理器1630实现图4中由第一UE执行的信息传输的方法。
图18是本发明另一个实施例的用户设备的结构框图。图18所示的第一UE 200包括第一确定单元210和第二确定单元220。
第一确定单元210,用于确定所述第一UE的第一速度信息。
第二确定单元220,用于根据第一确定单元210确定的所述第一速度信息,确定所述第一UE的同步源。
本发明实施例中,第一速度信息可以用来表示第一UE 200的速度的大小。可选地,第一速度信息可以以速度等级的形式来表示第一UE 200的速度的大小。这里的第一UE 200的速度可以是绝对速度,或者也可以是相对于另一UE或多个UE的相对速度,还可以第一UE对地的加速度或相对另一UE或另多个UE的加速度,本发明对此不限定。
可选地,如果第一UE 200为物理层的通信模块,那么,第一确定单元210可以通过其他层的指示信息来确定该第一速度信息。
若第一速度信息用来表示第一UE 210的绝对速度的大小,第一确定单元210可以通过GNSS模式获取第一速度信息。或者,第一确定单元210可 以通过第一基站所指示的信息获取该第一速度信息。可选地,第一UE 200可以通过相应的测速装置获取该第一速度信息。例如,若第一UE 200为OBU,那么,第一确定单元210可以通过汽车上的相应的模块,如发动机模块、变速箱模块、或其他的对速度进行电控的模块等,获取该第一速度信息。例如,测量得到该第一UE的当前速度为v,该速度的单位可以为km/h,或可以为miles/h。
若第一速度信息用来表示第一UE 200相对于另一UE(如第二UE)的相对速度的大小。可选地,第一确定单元210可以先确定自己的绝对速度,然后通过测量或解析来自第二UE发送的数据包来确定第二UE的速度信息和/或位置信息。进一步地第一确定单元210可以根据这些信息确定第一UE200相对于第二UE的相对速度的信息。这里第二UE可以是一个UE,也可以是多个不同的UE。当第二UE是多个不同的UE时,则是相对多个UE速度的某种加权值。例如算术加权平均值,几何加权平均值等。
可选地,第二确定单元220具体用于:若根据所述第一速度信息确定所述第一UE 200属于第一类UE,则根据预先配置的信息确定所述同步源。
例如,预先配置的信息指示第一类UE的同步源为基站,则第一UE确定同步源为第一基站,其中,第一基站可以为第一UE的服务基站。
若第一UE属于第一类UE且预选配的信息指示第一UE的同步源为基站,则第一UE可以采用现有技术的方法完成与第一基站之间的同步,这里不再赘述。
例如,预先配置的信息指示第一类UE的同步源为GNSS,则第一UE确定同步源为GNSS,并且若所述预先配置的信息指示同步源为GNSS,则所述第一UE优先确定所述同步源为GNSS。
例如,预先配置的信息指示第一类UE的同步源为RSU,则第一UE确定同步源为RSU。
若根据所述第一速度信息确定所述第一UE 200属于第二类UE,则优先确定所述同步源为GNSS。
其中,第二确定单元220,具体用于:如果能够检测到所述GNSS的信号,则将所述GNSS作为同步源。如果无法检测到所述GNSS的信号,则确定所述同步源为第一基站或第三UE。可选地,所述第一基站可以为所述第一UE 200的服务基站,所述第三UE可以为直接同步到GNSS的UE。
可选地,第二确定单元220能够检测到所述GNSS的信号,可以为:若第二确定单元220无法检测到所述GNSS的信号,则第二确定单元220启动定时器;并随后在所述定时器的时长内检测到所述GNSS的信号。第二确定单元220无法检测到所述GNSS的信号,可以为:若第二确定单元220无法检测到所述GNSS的信号,则第二确定单元220启动定时器;并在所述定时器的时长内依然无法检测到所述GNSS的信号。
本发明实施例中,第二确定单元220能够检测到GNSS的信号,可以是指:第二确定单元220能够检测到信号强度大于或等于预设的信号强度阈值的GNSS的信号。第二确定单元220无法检测到GNSS的信号,可以是指:第二确定单元220无法检测到GNSS的任何信号,或者,检测到信号强度小于所述预设的信号强度阈值的GNSS的信号。
其中的信号强度阈值可以是预定义的,例如可以是预先配置在第一UE上的。或者,信号强度阈值可以是第一基站通过信令指示的。第一UE 200可以包括接收单元,用于接收第一基站的信令指示以获取该信号强度阈值。
另外,图18所示的第一UE 200还可以包括发送单元,用于在完成与同步源的定时之后,在第一链路上发送控制信息,或者,在第一链路上发送控制信息和数据。
可选地,发送单元可以用于在第一链路上发送控制信息。并且,发送单元还可以用于在第一链路上发送数据(或发送数据和序列)。
作为一例,若第一UE 200属于第一类UE,发送单元可以用于在第一链路上发送数据和预定义长度的ZC序列。如果第一UE 200属于第二类UE,发送单元可以用于在所述第一链路上发送数据和第一序列。关于第一序列,可以参见前述方法实施例中的相关描述,为避免重复,这里不再赘述。
应注意,本发明实施例中,接收单元可以由接收器实现,第一确定单元210和第二确定单元220可以由处理器实现,发送单元可以由发送器实现。如图19所示,第一UE 200可以包括处理器181、接收器182、发送器183和存储器184。其中,存储器184可以用于存储速度阈值或速度等级阈值等,还可以用于存储处理器181执行的代码等。
第一UE 200中的各个组件通过总线系统185耦合在一起,其中总线系统185除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图18所示的第一UE 200或图19所示的第一UE 200能够实现前述图 12的方法实施例中由第一UE所实现的各个过程,为避免重复,这里不再赘述。
图20是本发明实施例的系统芯片的示意性结构图。图20的系统芯片1900包括输入接口1910、输出接口1920、至少一个处理器1930、存储器1940,所述输入接口1910、输出接口1920、所述处理器1930以及存储器1940之间通过总线相连,所述处理器1930用于执行所述存储器1940中的代码,当所述代码被执行时,所述处理器1930实现图12中由第一UE执行的信息传输的方法。
图21是本发明另一个实施例的用户设备的结构框图。图21所示的第一UE 300包括处理单元310和发送单元320。
处理单元310,用于确定控制信息所调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式;
发送单元320,用于在第一链路上以所述传输方式发送所述控制信息。
可选地,处理单元310可以根据第一UE的速度的信息确定数据的传输次数。例如,处理单元310可以用于根据第一UE的第一速度信息确定控制信息所调度的数据的传输次数,并进一步根据所述数据的传输次数确定所述控制信息的传输方式。
其中,第一速度信息可以用于表示第一UE 300的速度的大小。例如,可以以绝对速度、相对速度、加速度等形式表示。
例如,当第一UE 300属于第一类UE时,传输次数为N1;当第一UE 300属于第二类UE时,传输次数为N2。可选地,N1<N2。
本发明实施例中,数据的传输次数可以是预定义的。例如,将数据的传输次数预先配置在第一UE上,或者,协议预先规定高速UE的数据的传输次数。或者,数据的传输次数可以是第一UE从第二UE的服务基站所发送的信息中获取的。或者,数据的传输次数是第一UE依据以下信息中的至少一种进行确定的:第一UE的第一速度信息、第一UE和/或第二UE的地理位置信息、第一UE的信号质量、第二UE发送的数据和/或信号的信号质量等。本发明对此不作限定。
其中,可理解,若数据的传输次数是第一UE从第二UE的服务基站所发送的信息中获取的,该第一UE还可以包括接收单元,用于接收第二UE的服务基站发送的信息。
可选地,所述传输方式包括以下中的至少一种:所述控制信息使用的传输资源;所述控制信息的循环冗余校验CRC掩码;所述控制信息的加扰序列;承载所述控制信息的控制信道使用的解调参考信号;所述控制信息传输时占用的物理资源的大小;所述控制信息使用的调制和编码方案MCS;所述控制信息的传输次数。
可选地,作为一个实施例,当所述数据的传输次数不同时,所述控制信息的有效字段不同。
可选地,作为一个实施例,所述控制信息包括所述数据的传输次数,以及所述数据的每次传输时的时频资源的指示信息。
可选地,作为另一个实施例,所述数据的传输次数为N次,所述控制信息包括N次中的M次传输所使用的时频资源,以使得所述控制信息的接收端根据所述控制信息包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。
例如,当所述数据的传输次数为四次时,可以在所述控制信息的第一字段和所述控制信息的第二字段包括所述四次传输中的其中两次传输的时频资源。
可选地,作为另一个实施例,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,所述控制信息包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源的指示信息。
可选地,作为另一个实施例,所述控制信息还可以包括当前传输次数的指示信息,和/或,所述控制信息还可以包括所述第一UE的速度的指示信息。
例如,控制信息可以包括第一UE 300的第一速度信息。
可选地,作为另一个实施例,发送单元320还可以用于:根据所述控制信息,在所述第一链路上发送所述数据。
或者,发送单元320还可以用于:根据所述控制信息在所述第一链路上发送所述数据和序列。
具体地,发送单元320可以使用控制信息所指示的传输资源,在第一链路上发送数据(或者发送数据和序列)。
举例来说,如果第一UE 300属于第一类UE,发送单元320可以用于在第一链路上发送数据和预定义长度的ZC序列。如果第一UE 300属于第二类UE,发送单元320可以用于在所述第一链路上发送数据和第一序列。关 于第一序列,可以参见前述方法实施例中的相关描述,为避免重复,这里不再赘述。
可选地,控制信息和数据可以位于不同的子帧,或者,控制信息和数据可以位于相同的子帧。可选地,控制信息可以承载于PSCCH,数据可以承载于PSSCH。
如果控制信息和数据位于同一个子帧,那么处理单元310还可以用于:确定所述控制信息的第一发射功率以及所述数据的第二发射功率;若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则确定第一功率为所述第一发射功率乘以第一缩放值,确定第二功率为所述第二发射功率乘以第二缩放值,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率。进一步地发送单元320具体用于在所述第一链路上使用所述第一功率发送所述控制信息,并使用所述第二功率发送所述数据。其中,所述第一缩放值与所述第二缩放值相等或不相等。
其中,第一发射功率和第二发射功率可以是开环发射功率。第一缩放值表示为w1,第二缩放值表示为w2。其中,w1=w2或者w1≠w2
应注意,本发明实施例中,接收单元可以由接收器实现,处理单元310可以由处理器实现,发送单元320可以由发送器实现。如图22所示,第二UE 300可以包括处理器211、接收器212、发送器213和存储器214。其中,存储器214可以用于存储处理器211执行的代码等。
第一UE 300中的各个组件通过总线系统215耦合在一起,其中总线系统215除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图21所示的第一UE 300或图22所示的第一UE 300能够实现前述图13的方法实施例中由第一UE所实现的各个过程,为避免重复,这里不再赘述。
图23是本发明实施例的系统芯片的示意性结构图。图23的系统芯片2200包括输入接口2210、输出接口2220、至少一个处理器2230、存储器2240,所述输入接口2210、输出接口2220、所述处理器2230以及存储器2240之间通过总线相连,所述处理器2230用于执行所述存储器2240中的代码,当所述代码被执行时,所述处理器2230实现图13中由第一UE执行的信息传输的方法。
图24是本发明另一个实施例的用户设备的结构框图。图24所示的第二 UE 500包括接收单元510和处理单元520。
接收单元510用于在第一链路上接收第一UE发送的控制信息。
处理单元520用于获取接收单元510接收的所述控制信息所调度的数据的传输次数的指示信息;还用于在所述控制信息中与每次传输所对应的字段,获取所述每次传输时的时频资源。
其中,控制信息可以用于指示所述数据的传输次数,以及每次传输时的时频资源。其中,数据的传输次数可以是由第一UE根据所述第一UE的速度信息进行确定的。例如,数据的传输此时可以是第一UE根据第一UE的第一速度信息进行确定的。
可选地,控制信息还可以包括当前传输次数的指示信息,和/或,控制信息还可以包括第一UE的第一速度信息。其中,当前传输次数指的是控制信息的当前传输次数。
可选地,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,那么,所述控制信息可以包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源的指示信息。
作为一例,处理单元520具体用于:当所述数据的传输次数为一次时,在所述控制信息的第一字段获取所述一次传输的时频资源;当所述数据的传输次数为二次时,在所述控制信息的第一字段获取所述二次传输中的第一次传输的时频资源,在所述控制信息的第二字段获取所述二次传输中的第二次传输的时频资源;当所述数据的传输次数为四次时,在所述控制信息的第一字段获取所述四次传输中的第一次传输的时频资源,在所述控制信息的第二字段获取所述四次传输中的第二次传输的时频资源,在所述控制信息的第三字段获取所述四次传输中的第三次传输的时频资源,在所述控制信息的第四字段获取所述四次传输中的第四次传输的时频资源。
作为另一例,处理单元520具体用于:当所述数据的传输次数为四次时,在所述控制信息的第一字段和所述控制信息的第二字段获取所述四次传输中的其中两次传输的时频资源;根据所述四次传输中的其中两次传输的时频资源,确定所述四次传输中的另外两次传输的时频资源。
本发明实施例中,对于不同的传输次数,承载所述控制信息的控制信道的传输方式可以相同或不同。
若对于不同的传输次数,承载所述控制信息的控制信道的传输方式不 同。处理单元520具体用于:根据所述数据的传输次数,确定所述控制信息的传输方式,其中,所述传输方式是预定义的至少两种传输方式中的一种;根据所述传输方式,获取所述每次传输时的时频资源。
本发明实施例中,传输方式可以包括以下中的至少一种:所述控制信息使用的传输资源;所述控制信息的循环冗余校验CRC掩码;所述控制信息的加扰序列;承载所述控制信息的控制信道使用的解调参考信号;所述控制信息传输时占用的物理资源的大小;所述控制信息使用的调制和编码方案MCS;所述控制信息的传输次数。
进一步地,接收单元510还可以用于根据所述控制信息,在所述第一链路上接收所述数据。或者,接收单元510还可以用于根据所述控制信息,在所述第一链路上接收所述数据和序列。
作为一例,当第一UE属于第一类UE时,接收单元510根据该控制信息在第一链路上接收第一UE发送的数据和ZC序列。当第一UE属于第二类UE时,接收单元510根据该控制信息在第一链路上接收第一UE发送的数据和第一序列。其中,关于该第一序列,可以参见前述实施例中的相关描述,为避免重复,这里不再赘述。
其中,控制信息可以承载在控制信道,数据可以承载在业务信道。例如,控制信道可以为PSCCH,业务信道可以为PSSCH。
本发明实施例中,控制信息与数据可以位于不同的子帧,或者,控制信息与数据可以位于同一个子帧。
另外,图24所示的第二UE 500还可以包括发送单元,可以用于向第一UE发送针对所述数据的反馈消息,如ACK或NACK。
应注意,本发明实施例中,接收单元510可以由接收器实现,处理单元520可以由处理器实现,发送单元可以由发送器实现。如图25所示,第二UE 500可以包括处理器251、接收器252、发送器253和存储器254。其中,存储器254可以用于存储处理器251执行的代码等。
第二UE 500中的各个组件通过总线系统255耦合在一起,其中总线系统215除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图24所示的第二UE 500或图25所示的第二UE 500能够实现前述图14的方法实施例中由第二UE所实现的各个过程,为避免重复,这里不再赘述。
图26是本发明实施例的系统芯片的示意性结构图。图26的系统芯片2600包括输入接口2610、输出接口2620、至少一个处理器2630、存储器2640,所述输入接口2610、输出接口2620、所述处理器2630以及存储器2640之间通过总线相连,所述处理器2630用于执行所述存储器2640中的代码,当所述代码被执行时,所述处理器2630实现图14中由第二UE执行的信息传输的方法。
图27是本发明一个实施例的基站的结构框图。图27所示的第一基站400包括接收单元410、处理单元420和发送单元430。
接收单元410用于接收至少一个UE发送的速度信息。
处理单元420用于根据接收单元410接收到的所述至少一个UE的速度信息,确定第一资源集和第二资源集。
发送单元430用于在第二链路上向所述至少一个UE发送第一指示信息,所述第一指示信息用于指示第一资源集和第二资源集。
可选地,发送单元430可以通过广播或组播的方式,在第二链路上发送该第一指示信息。
其中,至少一个UE包括第一UE。所述第一指示信息用于指示:所述第一资源集用于第一类UE,所述第二资源集用于第二类UE。这样,如果第一UE属于第一类UE,则第一UE根据第一指示信息,从第一资源集中或从第一资源集的第一资源子集中确定第一传输资源。如果第一UE属于第二类UE,则第一UE根据第一指示信息,从第二资源集中或从第二资源集的第二资源子集中确定第二传输资源。
可选地,第一指示信息还可以指示第一资源子集在第一资源集中的位置,该位置可以是时域位置或频域位置或时频位置。可选地,该第一指示信息还可以指示第二资源子集在第二资源集中的位置,该位置可以是时域位置或频域位置或时频位置。
可选地,第一资源集与第二资源集为同一个资源集。可选地,第二资源集为第一资源集的子集。此时,第一指示信息还可以指示第二资源集在第一资源集中的位置,该位置可以是时域位置或频域位置或时频位置。
可选地,第一指示信息还可以指示预设的速度阈值,以便于至少一个UE确定自己属于第一类UE还是属于第二类UE。
可选地,接收单元410还可以用于接收第一UE发送的发送资源请求信 息。处理单元420为所述第一UE分配资源,并由发送单元430向第一UE发送第五传输资源的指示信息。其中,所述资源请求信息可以为与速度相关的SR或BSR。
进一步地,接收单元410还可以在第二链路上接收第一UE使用该第五传输资源发送的第一链路数据,并且发送单元430可以将该第一链路数据发送至第二UE。其中,第二UE为第一链路数据的接收端。
应注意,本发明实施例中,接收单元410可以由接收器实现,处理单元420可以由处理器实现,发送单元430可以由发送器实现。如图28所示,第一基站400可以包括处理器241、接收器242、发送器243和存储器244。其中,存储器244可以用于存储速度阈值或速度等级阈值等,还可以用于存储处理器241执行的代码等。
第一基站400中的各个组件通过总线系统245耦合在一起,其中总线系统245除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图27所示的第一基站400或图28所示的第一基站400能够实现前述方法实施例中由第一基站所实现的各个过程,为避免重复,这里不再赘述。
图29是本发明实施例的系统芯片的示意性结构图。图29的系统芯片2500包括输入接口2510、输出接口2520、至少一个处理器2530、存储器2540,所述输入接口2510、输出接口2520、所述处理器2530以及存储器2540之间通过总线相连,所述处理器2530用于执行所述存储器2540中的代码,当所述代码被执行时,所述处理器2530实现前述方法实施例中由第一基站执行的信息传输的方法。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合 执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (66)

  1. 一种信息传输的方法,其特征在于,包括:
    第一用户设备UE确定所述第一UE的第一速度信息;
    所述第一UE根据所述第一速度信息确定控制信息的传输方式;
    所述第一UE在第一链路上以所述传输方式发送所述控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述传输方式包括以下中的至少一种:
    所述控制信息使用的传输资源;
    所述控制信息的循环冗余校验CRC掩码;
    所述控制信息的加扰序列;
    承载所述控制信息的控制信道使用的解调参考信号;
    所述控制信息传输时占用的物理资源的大小;
    所述控制信息使用的调制和编码方案MCS;
    所述控制信息的传输次数。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述第一UE根据所述第一速度信息确定控制信息的传输方式之前,还包括:
    所述第一UE在第二链路上将所述第一速度信息发送至第一基站,所述第一速度信息包括:所述第一UE的速度的大小,或所述第一UE的速度等级信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第一UE在第二链路上将所述第一速度信息发送至第一基站,包括:
    所述第一UE在所述第二链路上将所述第一速度信息周期性地发送至所述第一基站;或者,
    所述第一UE在所述第一UE的速度发生变化时,在所述第二链路上将所述第一速度信息发送至所述第一基站;或者,
    所述第一UE在接收到所述第一基站发送的上报所述第一UE的速度信息的指示后,在所述第二链路上将所述第一速度信息发送至所述第一基站。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,第一UE根据所述第一速度信息确定控制信息的传输方式,包括:
    若所述第一UE根据所述第一速度信息确定所述第一UE属于第一类UE,则确定所述控制信息的传输方式为第一传输方式;
    若所述第一UE根据所述第一速度信息确定所述第一UE属于第二类UE,则确定所述控制信息的传输方式为第二传输方式,
    其中,所述第一类UE为非高速UE,所述第二类UE为高速UE。
  6. 根据权利要求5所述的方法,其特征在于,所述第一传输方式包括第一传输资源,所述第二传输方式包括第二传输资源,
    所述第一UE根据所述第一速度信息确定控制信息的传输方式,包括:
    若所述第一UE根据所述第一速度信息确定所述第一UE属于所述第一类UE,则从第一资源集中或从所述第一资源集的第一资源子集中确定所述第一传输资源,其中,所述第一资源子集是预定义的;
    若所述第一UE根据所述第一速度信息确定所述第一UE属于所述第二类UE,则从第二资源集中或从所述第二资源集的第二资源子集中确定所述第二传输资源,其中,所述第二资源子集是预定义的。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一UE根据所述第一速度信息确定控制信息的传输方式之前,还包括:
    所述第一UE在第二链路上接收第一基站发送的第一指示信息,所述第一指示信息用于指示所述第一资源集和所述第二资源集。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一资源集与所述第二资源集为同一个资源集;或者,所述第二资源集属于所述第一资源集的子集。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述控制信息包括所述第一速度信息;
    所述第一UE在第一链路上以所述传输方式发送所述控制信息,包括:
    所述第一UE在所述第一链路上以所述传输方式将所述第一速度信息发送至第二UE。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述控制信息用于指示业务的类型,所述业务的类型为安全类型或非安全类型。
  11. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一UE在所述第一链路上发送同步信号,所述同步信号用于指示业务的类型,所述业务的类型为安全类型或非安全类型。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述方法 还包括:
    所述第一UE使用第四传输资源在所述第一链路上发送数据;
    其中,所述第四传输资源是由所述控制信息所指示的。
  13. 根据权利要求12所述的方法,其特征在于,所述控制信息指示所述数据的传输次数,以及所述数据的每次传输时的时频资源。
  14. 根据权利要求13所述的方法,其特征在于,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,
    所述第四传输资源包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源。
  15. 根据权利要求13所述的方法,其特征在于,所述数据的传输次数为N次,
    所述第四传输资源包括所述N次中的M次传输所使用的时频资源,以使得所述控制信息的接收端根据所述控制信息包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述第一UE使用第四传输资源在所述第一链路上发送数据,包括:
    所述第一UE使用所述第四传输资源在所述第一链路上发送所述数据和第一序列;
    其中,所述第一序列是在预定义长度的ZC序列集中除去预定义的第二序列后所确定的。
  17. 根据权利要求13至16任一项所述的方法,其特征在于,所述控制信息和所述数据位于同一个子帧;
    所述发送所述控制信息,包括:
    确定所述控制信息的第一发射功率以及所述数据的第二发射功率;
    若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则将所述第一发射功率乘以第一缩放值作为第一功率,将所述第二发射功率乘以第二缩放值作为第二功率,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率;
    使用所述第一功率发送所述控制信息,并使用所述第二功率发送所述数据,
    其中,所述第一缩放值与所述第二缩放值相等或不相等。
  18. 根据权利要求1至17任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一UE属于第二类UE时,所述第一UE使用第五传输资源,在第二链路上将所述第一链路上的数据发送至第二基站,
    其中,所述第二类UE为高速UE,所述第二基站为所述数据的接收端的服务基站。
  19. 根据权利要求18所述的方法,其特征在于,在第二链路上所述将第一链路上的数据发送至第二基站之前,还包括:
    所述第一UE向第一基站发送资源请求信息,其中,所述资源请求信息为与速度相关的调度请求SR或缓存状态报告BSR;
    所述第一UE接收所述第一基站发送的所述第五传输资源的指示信息。
  20. 一种用于信息传输的方法,其特征在于,包括:
    第一用户设备UE确定所述第一UE的第一速度信息;
    所述第一UE根据所述第一速度信息,确定所述第一UE的同步源。
  21. 根据权利要求20所述的方法,其特征在于,所述第一UE根据所述第一速度信息,确定所述第一UE的同步源,包括:
    如果所述第一UE根据所述第一速度信息确定所述第一UE属于第一类UE,则所述第一UE根据预先配置的信息确定所述同步源,其中,如果所述预先配置的信息指示同步源为全球导航卫星系统GNSS,则所述第一UE优先确定所述同步源为GNSS;
    如果所述第一UE根据所述第一速度信息确定所述第一UE属于第二类UE,则所述第一UE优先确定所述同步源为GNSS,
    其中,所述第一类UE为非高速UE,所述第二类UE为高速UE。
  22. 根据权利要求21所述的方法,其特征在于,所述第一UE优先确定所述同步源为GNSS,包括:
    如果所述第一UE能够检测到所述GNSS的信号,则所述第一UE将所述GNSS作为同步源;
    如果所述第一UE无法检测到所述GNSS的信号,则所述第一UE确定所述同步源为第一基站或第二UE,其中,所述第一基站为所述第一UE的服务基站,所述第二UE为直接同步到GNSS的UE。
  23. 根据权利要求22所述的方法,其特征在于,所述第一UE能够检测到所述GNSS的信号,包括:
    若所述第一UE无法检测到所述GNSS的信号,则所述第一UE启动定时器;并随后在所述定时器的时长内检测到所述GNSS的信号;
    和/或,
    所述第一UE能够检测到信号强度大于或等于预设的信号强度阈值的所述GNSS的信号。
  24. 根据权利要求22所述的方法,其特征在于,所述第一UE无法检测到所述GNSS的信号,包括:
    若所述第一UE无法检测到所述GNSS的信号,则所述第一UE启动定时器;并在所述定时器的时长内依然无法检测到所述GNSS的信号;
    和/或,
    所述第一UE检测到信号强度小于所述预设的信号强度阈值的所述GNSS的信号。
  25. 一种信息传输的方法,其特征在于,包括:
    第一用户设备UE确定控制信息所调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式;
    所述第一UE在第一链路上以所述传输方式发送所述控制信息。
  26. 根据权利要求25所述的方法,其特征在于,所述传输方式包括以下中的至少一种:
    所述控制信息使用的传输资源;
    所述控制信息的循环冗余校验CRC掩码;
    所述控制信息的加扰序列;
    承载所述控制信息的控制信道使用的解调参考信号;
    所述控制信息传输时占用的物理资源的大小;
    所述控制信息使用的调制和编码方案MCS;
    所述控制信息的传输次数。
  27. 根据权利要求25或26所述的方法,其特征在于,当所述数据的传输次数不同时,所述控制信息的有效字段不同。
  28. 根据权利要求25至27任一项所述的方法,其特征在于,所述控制信息包括所述数据的传输次数,以及所述数据的每次传输时的时频资源的指 示信息。
  29. 根据权利要求28所述的方法,其特征在于,所述数据的传输次数为N次,所述控制信息包括N次中的M次传输所使用的时频资源,以使得所述控制信息的接收端根据所述控制信息包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。
  30. 根据权利要求28所述的方法,其特征在于,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,
    所述控制信息包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源的指示信息。
  31. 根据权利要求25至30任一项所述的方法,其特征在于,所述控制信息包括当前传输次数的指示信息,和/或,所述控制信息包括所述第一UE的速度的指示信息。
  32. 根据权利要求25至31任一项所述的方法,其特征在于,所述方法还包括:
    根据所述控制信息,在所述第一链路上发送所述数据。
  33. 根据权利要求25至32任一项所述的方法,其特征在于,所述控制信息与所述数据位于同一个子帧;
    所述发送所述控制信息,包括:
    确定所述控制信息的第一发射功率以及所述数据的第二发射功率;
    若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则将所述第一发射功率乘以第一缩放值作为第一功率,将所述第二发射功率乘以第二缩放值作为第二功率,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率;
    使用所述第一功率发送所述控制信息,并使用所述第二功率发送所述数据,
    其中,所述第一缩放值与所述第二缩放值相等或不相等。
  34. 一种用户设备UE,其特征在于,所述UE为第一UE,包括:
    处理单元,用于确定所述第一UE的第一速度信息;
    所述处理单元,还用于根据所述第一速度信息确定控制信息的传输方式;
    发送单元,用于在第一链路上以所述处理单元确定的所述传输方式发送所述控制信息。
  35. 根据权利要求34所述的用户设备,其特征在于,所述传输方式包括以下中的至少一种:
    所述控制信息使用的传输资源;
    所述控制信息的循环冗余校验CRC掩码;
    所述控制信息的加扰序列;
    承载所述控制信息的控制信道使用的解调参考信号;
    所述控制信息传输时占用的物理资源的大小;
    所述控制信息使用的调制和编码方案MCS;
    所述控制信息的传输次数。
  36. 根据权利要求34或35所述的用户设备,其特征在于,
    所述发送单元,还用于:在第二链路上将所述第一速度信息发送至第一基站,所述第一速度信息包括:所述第一UE的速度的大小,或所述第一UE的速度等级信息。
  37. 根据权利要求36所述的用户设备,其特征在于,所述UE还包括接收单元,
    所述发送单元,具体用于:
    在所述第二链路上将所述第一速度信息周期性地发送至所述第一基站;或者,
    在所述第一UE的速度发生变化时,在所述第二链路上将所述第一速度信息发送至所述第一基站;或者,
    在所述接收单元接收到所述第一基站发送的上报所述第一UE的速度信息的指示后,在所述第二链路上将所述第一速度信息发送至所述第一基站。
  38. 根据权利要求34至37任一项所述的用户设备,其特征在于,所述处理单元,具体用于:
    若根据所述第一速度信息确定所述第一UE属于第一类UE,则确定所述控制信息的传输方式为第一传输方式;
    若根据所述第一速度信息确定所述第一UE属于第二类UE,则确定所述控制信息的传输方式为第二传输方式,
    其中,所述第一类UE为非高速UE,所述第二类UE为高速UE。
  39. 根据权利要求38所述的用户设备,其特征在于,所述第一传输方式包括第一传输资源,所述第二传输方式包括第二传输资源,
    所述处理单元,具体用于:
    若根据所述第一速度信息确定所述第一UE属于所述第一类UE,则从第一资源集中或从所述第一资源集的第一资源子集中确定所述第一传输资源,其中,所述第一资源子集是预定义的;
    若根据所述第一速度信息确定所述第一UE属于所述第二类UE,则从第二资源集中或从所述第二资源集的第二资源子集中确定所述第二传输资源,其中,所述第二资源子集是预定义的。
  40. 根据权利要求39所述的用户设备,其特征在于,所述UE还包括接收单元,用于:在第二链路上接收第一基站发送的第一指示信息,所述第一指示信息用于指示所述第一资源集和所述第二资源集。
  41. 根据权利要求39或40所述的用户设备,其特征在于,所述第一资源集与所述第二资源集为同一个资源集;或者,所述第二资源集属于所述第一资源集的子集。
  42. 根据权利要求34至41任一项所述的用户设备,其特征在于,所述控制信息包括所述第一速度信息;
    所述发送单元,具体用于:在所述第一链路上以所述传输方式将所述第一速度信息发送至第二UE。
  43. 根据权利要求34至42任一项所述的用户设备,其特征在于,所述控制信息用于指示业务的类型,所述业务的类型为安全类型或非安全类型。
  44. 根据权利要求34至42任一项所述的用户设备,其特征在于,
    所述发送单元,还用于:在所述第一链路上发送同步信号,所述同步信号用于指示业务的类型,所述业务的类型为安全类型或非安全类型。
  45. 根据权利要求34至44任一项所述的用户设备,其特征在于,
    所述发送单元,还用于:使用第四传输资源在所述第一链路上发送数据;
    其中,所述第四传输资源是由所述控制信息所指示的。
  46. 根据权利要求45所述的用户设备,其特征在于,所述控制信息指示所述数据的传输次数,以及所述数据的每次传输时的时频资源。
  47. 根据权利要求46所述的用户设备,其特征在于,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,
    所述第四传输资源包括所述相同的频域资源,以及与所述数据的传输次数一一对应的多个时域资源。
  48. 根据权利要求46所述的用户设备,其特征在于,所述数据的传输次数为N次,
    所述第四传输资源包括所述N次中的M次传输所使用的时频资源,以使得所述控制信息的接收端根据所述控制信息包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。
  49. 根据权利要求46至48任一项所述的用户设备,其特征在于,
    所述发送单元,具体用于:使用所述第四传输资源在所述第一链路上发送所述数据和第一序列;
    其中,所述第一序列是在预定义长度的ZC序列集中除去预定义的第二序列后所确定的。
  50. 根据权利要求46至49任一项所述的用户设备,其特征在于,所述控制信息和所述数据位于同一个子帧;
    所述处理单元,还用于:确定所述控制信息的第一发射功率以及所述数据的第二发射功率;若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则将所述第一发射功率乘以第一缩放值作为第一功率,将所述第二发射功率乘以第二缩放值作为第二功率,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率;
    所述发送单元,具体用于使用所述处理单元确定的所述第一功率发送所述控制信息,并使用所述处理单元确定的所述第二功率发送所述数据,
    其中,所述第一缩放值与所述第二缩放值相等或不相等。
  51. 根据权利要求34至50任一项所述的用户设备,其特征在于,
    所述发送单元,还用于:当所述第一UE属于第二类UE时,使用第五传输资源,在第二链路上将所述第一链路上的数据发送至第二基站,
    其中,所述第二类UE为高速UE,所述第二基站为所述数据的接收端的服务基站。
  52. 根据权利要求51所述的用户设备,其特征在于,所述UE还包括接收单元,
    所述发送单元,还用于向第一基站发送资源请求信息,其中,所述资源 请求信息为与速度相关的调度请求SR或缓存状态报告BSR;
    所述接收单元,用于接收所述第一基站发送的所述第五传输资源的指示信息。
  53. 一种用户设备UE,其特征在于,所述UE为第一UE,包括:
    第一确定单元,用于确定所述第一UE的第一速度信息;
    第二确定单元,用于根据所述第一确定单元确定的所述第一速度信息,确定所述第一UE的同步源。
  54. 根据权利要求53所述的用户设备,其特征在于,所述第二确定单元,具体用于:
    如果根据所述第一速度信息确定所述第一UE属于第一类UE,则根据预先配置的信息确定所述同步源,其中,如果所述预先配置的信息指示同步源为全球导航卫星系统GNSS,则所述第一UE优先确定所述同步源为GNSS;
    如果根据所述第一速度信息确定所述第一UE属于第二类UE,则优先确定所述同步源为GNSS,
    其中,所述第一类UE为非高速UE,所述第二类UE为高速UE。
  55. 根据权利要求54所述的用户设备,其特征在于,所述第二确定单元,具体用于:
    如果能够检测到所述GNSS的信号,则将所述GNSS作为同步源;
    如果无法检测到所述GNSS的信号,则确定所述同步源为第一基站或第二UE,其中,所述第一基站为所述第一UE的服务基站,所述第二UE为直接同步到GNSS的UE。
  56. 根据权利要求55所述的用户设备,其特征在于,所述第二确定单元能够检测到所述GNSS的信号,包括:
    若所述第二确定单元无法检测到所述GNSS的信号,则启动定时器;并随后在所述定时器的时长内检测到所述GNSS的信号;
    和/或,
    所述第二确定单元能够检测到信号强度大于或等于预设的信号强度阈值的所述GNSS的信号。
  57. 根据权利要求55所述的用户设备,其特征在于,所述第二确定单元无法检测到所述GNSS的信号,包括:
    若所述第二确定单元无法检测到所述GNSS的信号,则启动定时器;并在所述定时器的时长内依然无法检测到所述GNSS的信号;
    和/或,
    所述第二确定单元检测到信号强度小于所述预设的信号强度阈值的所述GNSS的信号。
  58. 一种用户设备UE,其特征在于,所述UE为第一UE,包括:
    处理单元,用于确定控制信息所调度的数据的传输次数,并根据所述数据的传输次数确定所述控制信息的传输方式;
    发送单元,用于在第一链路上以所述传输方式发送所述控制信息。
  59. 根据权利要求58所述的用户设备,其特征在于,所述传输方式包括以下中的至少一种:
    所述控制信息使用的传输资源;
    所述控制信息的循环冗余校验CRC掩码;
    所述控制信息的加扰序列;
    承载所述控制信息的控制信道使用的解调参考信号;
    所述控制信息传输时占用的物理资源的大小;
    所述控制信息使用的调制和编码方案MCS;
    所述控制信息的传输次数。
  60. 根据权利要求58或59所述的用户设备,其特征在于,当所述数据的传输次数不同时,所述控制信息的有效字段不同。
  61. 根据权利要求58至60任一项所述的用户设备,其特征在于,所述控制信息包括所述数据的传输次数,以及所述数据的每次传输时的时频资源的指示信息。
  62. 根据权利要求61所述的用户设备,其特征在于,所述数据的传输次数为N次,所述控制信息包括N次中的M次传输所使用的时频资源,以使得所述控制信息的接收端根据所述控制信息包括的所述M次传输所使用的时频资源确定所述N次传输所使用的时频资源,其中,M<N且M和N为正整数。
  63. 根据权利要求61所述的用户设备,其特征在于,所述数据的传输次数为多次,所述数据的每次传输所使用的频域资源相同,
    所述控制信息包括所述相同的频域资源,以及与所述数据的传输次数一 一对应的多个时域资源的指示信息。
  64. 根据权利要求58至63任一项所述的用户设备,其特征在于,所述控制信息包括当前传输次数的指示信息,和/或,所述控制信息包括所述第一UE的速度的指示信息。
  65. 根据权利要求58至64任一项所述的用户设备,其特征在于,所述发送单元,还用于:
    根据所述控制信息,在所述第一链路上发送所述数据。
  66. 根据权利要求58至65任一项所述的用户设备,其特征在于,所述控制信息与所述数据位于同一个子帧;
    所述处理单元,还用于:确定所述控制信息的第一发射功率以及所述数据的第二发射功率;若所述第一发射功率与所述第二发射功率之和大于最大发射功率,则将所述第一发射功率乘以第一缩放值作为第一功率,将所述第二发射功率乘以第二缩放值作为第二功率,以使得所述第一功率与所述第二功率之和小于或等于所述最大发射功率;
    所述发送单元,具体用于:使用所述处理单元确定的所述第一功率发送所述控制信息,并使用所述处理单元确定的所述第二功率发送所述数据,
    其中,所述第一缩放值与所述第二缩放值相等或不相等。
PCT/CN2016/081926 2016-05-12 2016-05-12 信息传输的方法及用户设备 WO2017193350A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202011382909.XA CN112672275B (zh) 2016-05-12 2016-05-12 信息传输的方法及用户设备
KR1020207022213A KR20200096311A (ko) 2016-05-12 2016-05-12 정보 전송 방법 및 사용자 장비
EP16901305.9A EP3442283B1 (en) 2016-05-12 2016-05-12 Information transmission method and user equipment
JP2019507979A JP6663076B2 (ja) 2016-05-12 2016-05-12 情報送信方法及びユーザ装置
CN201680084652.5A CN109076502B (zh) 2016-05-12 2016-05-12 信息传输的方法及用户设备
KR1020187033958A KR102142256B1 (ko) 2016-05-12 2016-05-12 정보 전송 방법 및 사용자 장비
PCT/CN2016/081926 WO2017193350A1 (zh) 2016-05-12 2016-05-12 信息传输的方法及用户设备
US16/185,684 US11018800B2 (en) 2016-05-12 2018-11-09 Information transmission method and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081926 WO2017193350A1 (zh) 2016-05-12 2016-05-12 信息传输的方法及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/185,684 Continuation US11018800B2 (en) 2016-05-12 2018-11-09 Information transmission method and user equipment

Publications (1)

Publication Number Publication Date
WO2017193350A1 true WO2017193350A1 (zh) 2017-11-16

Family

ID=60267745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081926 WO2017193350A1 (zh) 2016-05-12 2016-05-12 信息传输的方法及用户设备

Country Status (6)

Country Link
US (1) US11018800B2 (zh)
EP (1) EP3442283B1 (zh)
JP (1) JP6663076B2 (zh)
KR (2) KR102142256B1 (zh)
CN (2) CN109076502B (zh)
WO (1) WO2017193350A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239881A1 (ja) * 2018-06-11 2019-12-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、および送信装置
CN111247855A (zh) * 2018-09-28 2020-06-05 联发科技股份有限公司 新的无线电移动通信中v2x ue自主的按需网络配置
CN111757458A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信的方法和终端装置
CN112425217A (zh) * 2018-07-16 2021-02-26 Oppo广东移动通信有限公司 一种同步源优先级确定方法、设备和计算机存储介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545575B (zh) * 2016-04-23 2022-06-21 上海朗帛通信技术有限公司 一种窄带移动通信的方法和装置
CN108307535B (zh) * 2016-08-25 2021-05-07 北京三星通信技术研究有限公司 传输数据的方法及设备
CN113329499A (zh) 2016-10-17 2021-08-31 Oppo广东移动通信有限公司 信息传输方法和装置
WO2018174691A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 동기 신호 전송 방법 및 상기 방법을 이용하는 단말
JP6902156B2 (ja) * 2017-04-10 2021-07-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてサイドリンク信号を送信する方法及び装置
CN111096040B (zh) * 2017-09-04 2023-09-19 Lg电子株式会社 V2x通信装置及其通信方法
KR20190127193A (ko) * 2018-05-03 2019-11-13 삼성전자주식회사 무선통신 시스템에서 그룹캐스트를 위한 동기화 방법 및 장치
US20200053835A1 (en) 2018-08-08 2020-02-13 Idac Holdings, Inc. Uu interface enhancement for nr v2x
KR102633533B1 (ko) 2018-11-09 2024-02-06 주식회사 엘지화학 파라데이 상자를 이용한 플라즈마 식각 방법
CN111836183B (zh) * 2019-04-12 2023-04-07 中信科智联科技有限公司 发送资源池的选择方法、装置及车载单元
CN112449324A (zh) * 2019-08-27 2021-03-05 中兴通讯股份有限公司 辅助驾驶方法、终端及辅助驾驶系统
WO2021066374A1 (ko) * 2019-10-02 2021-04-08 엘지전자 주식회사 Nr v2x에서 s-ssb를 전송하는 방법 및 장치
US11665655B2 (en) * 2020-04-10 2023-05-30 Qualcomm Incorporated Sidelink synchronization signal for connected user equipment
US20220386140A1 (en) * 2021-06-01 2022-12-01 Qualcomm Incorporated On demand sidelink retransmission for higher bands

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054986A1 (en) * 2012-10-02 2014-04-10 Telefonaktiebolaget L M Ericsson (Publ) Method and device for d2d configuration
WO2014182342A1 (en) * 2013-05-06 2014-11-13 Intel IP Corporation Prioritized synchronization signals and mechanism for distributed device-to-device systems
CN104811925A (zh) * 2014-01-29 2015-07-29 索尼公司 设备到设备发现和/或设备到设备通信的同步方法、用户设备和同步控制单元
CN104883728A (zh) * 2014-02-27 2015-09-02 上海朗帛通信技术有限公司 一种d2d通信中的传输方法和装置
US9147294B1 (en) * 2014-05-30 2015-09-29 Denso International America, Inc. Apparatus and method for intelligent channel switching to support V2X communication
CN105280005A (zh) * 2014-06-06 2016-01-27 电信科学技术研究院 一种道路安全消息的发送方法及装置
CN105337706A (zh) * 2014-08-07 2016-02-17 中兴通讯股份有限公司 数据发送方法、装置及系统
CN105357716A (zh) * 2015-12-10 2016-02-24 北京北方烽火科技有限公司 一种资源分配方法及装置

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266982C (zh) * 2002-02-07 2006-07-26 松下电器产业株式会社 无线电通信设备和传输速率确定方法
US6967940B2 (en) * 2002-07-19 2005-11-22 Interdigital Technology Corporation Dynamic forward error correction in UTRA systems
WO2005109690A1 (en) * 2004-05-06 2005-11-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving transmission status information and buffer state information in a mobile communication system that supports uplink packet service
KR101049138B1 (ko) * 2007-03-19 2011-07-15 엘지전자 주식회사 이동 통신 시스템에서, 수신확인신호 수신 방법
NZ586363A (en) * 2008-02-06 2013-05-31 Ericsson Telefon Ab L M Methods and devices relating to downlink assignments
US8532164B2 (en) * 2008-03-12 2013-09-10 Panasonic Corporation Wireless communication apparatus, wireless communication system, and wireless communication method
KR101641119B1 (ko) * 2009-02-02 2016-07-20 삼성전자 주식회사 무선 통신 시스템에서 제어 채널 송수신 방법 및 장치
US9450727B2 (en) * 2009-02-03 2016-09-20 Google Technology Holdings LLC Physical layer acknowledgement signaling resource allocation in wireless communication systems
EP2911446B1 (en) * 2009-06-16 2018-08-08 Huawei Technologies Co., Ltd. Method and apparatus for mapping and detecting control channel
CN101989970A (zh) 2009-08-07 2011-03-23 中国移动通信集团公司 一种解调导频信号的发送方法和设备
JP5645414B2 (ja) * 2010-02-03 2014-12-24 本田技研工業株式会社 クラッチ制御装置
CN101795145B (zh) 2010-02-08 2014-11-05 中兴通讯股份有限公司 测量参考信号的发送方法及系统
EP2583519A4 (en) * 2010-06-18 2015-03-25 Blackberry Ltd SYSTEM AND METHOD FOR THE TRANSMISSION OF UPLINK CONTROL INFORMATION IN A CARRIER ASSEMBLY
CN101958774B (zh) 2010-09-30 2015-10-21 中兴通讯股份有限公司 一种反馈信息发送方法和用户设备
WO2012060603A2 (ko) * 2010-11-03 2012-05-10 엘지전자 주식회사 무선통신 시스템에서 제어정보의 전송방법 및 장치
WO2012093783A2 (ko) * 2011-01-05 2012-07-12 엘지전자 주식회사 무선 접속 시스템에서 단말 간 협력적 통신을 수행하기 위한 방법 및 장치
US9622132B2 (en) * 2011-07-28 2017-04-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Switching between cellular and license-exempt (shared) bands
KR102110214B1 (ko) * 2012-04-26 2020-05-13 한국전자통신연구원 부분적 단말 제어 단말 대 단말 통신 방법
CN102651907B (zh) * 2012-05-03 2014-12-31 华为技术有限公司 一种上行传输处理方法、基站和用户设备
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
CN103580772B (zh) * 2012-07-18 2017-06-06 华为技术有限公司 数据传输方法、系统及设备,终端获取数据的方法及终端
US9462567B2 (en) * 2013-03-01 2016-10-04 Intel IP Corporation Network-level device proximity detection
CN105122910B (zh) * 2013-03-14 2018-10-12 Lg 电子株式会社 在无线通信系统中通过使用设备对设备通信接收信号的方法
GB2514373B (en) * 2013-05-21 2015-07-08 Broadcom Corp Method, apparatus and computer program for controlling a user equipment
EP3016302B1 (en) * 2013-06-26 2018-05-23 LG Electronics Inc. Method and apparatus for acquiring control information in wireless communication system
US10462802B2 (en) * 2013-08-07 2019-10-29 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication
KR102058876B1 (ko) * 2013-08-19 2019-12-26 삼성전자 주식회사 장치 간 통신에서의 혼잡 상황 해결 방법 및 장치
US9949248B2 (en) * 2013-08-20 2018-04-17 Qualcomm Incorporated Restrictions on control channel scheduling
CN103501543A (zh) * 2013-10-18 2014-01-08 北京大学 车联网中基于时分多址的资源调度方案
US10187531B2 (en) * 2013-10-31 2019-01-22 Samsung Electronics Co., Ltd. Method and system for charging information recording in device to device (D2D) communication
CN103686895B (zh) * 2013-12-09 2017-05-03 北京邮电大学 切换控制方法、无线网络控制器和接入节点
JP6892735B2 (ja) * 2014-01-31 2021-06-23 シャープ株式会社 端末装置、基地局装置、および通信制御方法
CN110234168B (zh) * 2014-02-27 2022-12-06 Lg 电子株式会社 在无线通信系统中发送侧链路数据信号的方法和装置
EP3119012B1 (en) * 2014-03-11 2020-04-29 LG Electronics Inc. Method and apparatus for device-to-device user equipment to transmit discovery signal in wireless communication system
US10524282B2 (en) * 2014-03-19 2019-12-31 Qualcomm Incorporated Scheduling assignment content and transmission in wireless communications
US10652936B2 (en) * 2014-03-21 2020-05-12 Nokia Technologies Oy Short identifiers for device-to-device (D2D) broadcast communications
CN111867120A (zh) * 2014-04-04 2020-10-30 北京三星通信技术研究有限公司 数据传输的方法、基站及终端
EP3169013B1 (en) * 2014-04-21 2019-01-02 LG Electronics Inc. -1- Method for transmitting and receiving downlink control information in wireless communication system supporting device-to-device communication and device therefor
CN104202740B (zh) * 2014-05-08 2019-07-19 中兴通讯股份有限公司 通信数据发送方法、装置及用户设备
KR101984601B1 (ko) * 2014-05-09 2019-05-31 엘지전자 주식회사 단말간 직접 통신을 지원하는 통신 시스템에서 송수신 단말간 통신을 위한 자원할당 방법 및 이를 위한 장치
US10142922B2 (en) * 2014-05-09 2018-11-27 Sony Corporation D2D peer discovery and data transmission
US9247546B2 (en) * 2014-05-13 2016-01-26 Lg Electronics Inc. Allocation of resources for device-to-device (D2D) communication and method and apparatus for transmitting and receiving signal on the basis of the resource allocation
US9942879B2 (en) * 2014-05-19 2018-04-10 Samsung Electronics Co., Ltd. Method and apparatus for avoiding resource collision in mobile communication system
KR102344081B1 (ko) * 2014-05-23 2021-12-28 삼성전자 주식회사 다수의 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 피드백 송수신 방법 및 장치
US10667249B2 (en) * 2014-06-24 2020-05-26 Lg Electronics Inc. Resource allocation method for communication between transceiving terminals in communication system supporting device to device communication, and apparatus therefor
KR102009495B1 (ko) * 2014-07-17 2019-08-12 엘지전자 주식회사 무선 통신 시스템에서 스케줄링 요청 방법 및 이를 위한 장치
US11083003B2 (en) * 2014-08-01 2021-08-03 Apple Inc. PDCCH design for narrowband deployment
CN106465345B (zh) * 2014-08-01 2020-04-03 华为技术有限公司 数据传输的方法和用户设备
US10334648B2 (en) * 2014-08-18 2019-06-25 Lg Electronics Inc. Method for device-to-device communication in wireless communication system and apparatus therefor
WO2016028126A1 (ko) * 2014-08-22 2016-02-25 엘지전자(주) 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
US10166917B2 (en) * 2014-08-30 2019-01-01 Mariana Goldhamer Transmission of uncompressed video in cellular networks
CN105451211B (zh) 2014-09-25 2019-12-27 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
KR102185182B1 (ko) * 2014-09-25 2020-12-01 삼성전자주식회사 전류 소모를 줄이기 위한 방법 및 그 전자 장치
KR101967566B1 (ko) * 2014-10-31 2019-04-09 소니 주식회사 사용자 장비, 통신 시스템, 및 사용자 장비 제어 방법
US10219279B2 (en) * 2015-01-14 2019-02-26 Qualcomm Incorporated Signaling to request increased transmission power limit in an emergency
EP3249993A4 (en) * 2015-01-23 2018-03-07 Samsung Electronics Co., Ltd. Method and device for supporting data communication in wireless communication system
US10271365B2 (en) * 2015-02-12 2019-04-23 Nec Corporation Method and system for device to device communication
US10887793B2 (en) * 2015-03-06 2021-01-05 Nec Corporation Radio station, radio terminal apparatus, and method for these
WO2016144055A1 (en) * 2015-03-06 2016-09-15 Samsung Electronics Co., Ltd. Method and apparatus for performing and reporting measurements by user equipment configured with multiple carriers in mobile communication systems
WO2016159713A1 (ko) * 2015-04-01 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 rstd 측정 관련 동작 수행 방법
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
JP6732185B2 (ja) * 2015-04-10 2020-07-29 京セラ株式会社 ユーザ端末及び制御方法
KR102441168B1 (ko) * 2015-05-08 2022-09-07 삼성전자주식회사 차량 서비스를 위한 자원 할당 장치 및 방법
US10531504B2 (en) * 2015-06-02 2020-01-07 Nec Corporation Base station and scheduling method
CN105307216B (zh) * 2015-06-26 2019-02-12 哈尔滨工业大学深圳研究生院 一种基于lte车联网的无线资源分配方法
KR20190002431A (ko) * 2016-05-11 2019-01-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 통신 방법, 단말 기기 및 네트워크 기기

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054986A1 (en) * 2012-10-02 2014-04-10 Telefonaktiebolaget L M Ericsson (Publ) Method and device for d2d configuration
WO2014182342A1 (en) * 2013-05-06 2014-11-13 Intel IP Corporation Prioritized synchronization signals and mechanism for distributed device-to-device systems
CN104811925A (zh) * 2014-01-29 2015-07-29 索尼公司 设备到设备发现和/或设备到设备通信的同步方法、用户设备和同步控制单元
CN104883728A (zh) * 2014-02-27 2015-09-02 上海朗帛通信技术有限公司 一种d2d通信中的传输方法和装置
US9147294B1 (en) * 2014-05-30 2015-09-29 Denso International America, Inc. Apparatus and method for intelligent channel switching to support V2X communication
CN105280005A (zh) * 2014-06-06 2016-01-27 电信科学技术研究院 一种道路安全消息的发送方法及装置
CN105337706A (zh) * 2014-08-07 2016-02-17 中兴通讯股份有限公司 数据发送方法、装置及系统
CN105357716A (zh) * 2015-12-10 2016-02-24 北京北方烽火科技有限公司 一种资源分配方法及装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239881A1 (ja) * 2018-06-11 2019-12-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、および送信装置
JPWO2019239881A1 (ja) * 2018-06-11 2021-07-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法、および送信装置
US11470453B2 (en) 2018-06-11 2022-10-11 Panasonic Intellectual Property Corporation Of America Transmission method and transmission device
JP7365337B2 (ja) 2018-06-11 2023-10-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、および送信装置
CN112425217A (zh) * 2018-07-16 2021-02-26 Oppo广东移动通信有限公司 一种同步源优先级确定方法、设备和计算机存储介质
CN112425217B (zh) * 2018-07-16 2023-06-02 Oppo广东移动通信有限公司 一种同步源优先级确定方法、设备和计算机存储介质
CN111247855A (zh) * 2018-09-28 2020-06-05 联发科技股份有限公司 新的无线电移动通信中v2x ue自主的按需网络配置
CN111247855B (zh) * 2018-09-28 2023-10-03 联发科技股份有限公司 新的无线电移动通信中车联网的通信方法
CN111757458A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信的方法和终端装置

Also Published As

Publication number Publication date
KR102142256B1 (ko) 2020-08-07
CN109076502A (zh) 2018-12-21
CN112672275A (zh) 2021-04-16
US11018800B2 (en) 2021-05-25
EP3442283B1 (en) 2023-10-04
CN109076502B (zh) 2020-12-15
EP3442283A4 (en) 2019-03-20
EP3442283A1 (en) 2019-02-13
US20190097751A1 (en) 2019-03-28
CN112672275B (zh) 2023-06-02
KR20200096311A (ko) 2020-08-11
JP6663076B2 (ja) 2020-03-11
JP2019515612A (ja) 2019-06-06
KR20180137547A (ko) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2017193350A1 (zh) 信息传输的方法及用户设备
US11659371B2 (en) Resource selection method in vehicle to everything communication and apparatus therefore
CN110832899B (zh) 操作终端以进行v2x通信的方法以及使用该方法的终端
US20230189330A1 (en) Method for indicating the allocated resources for a harq message in a random access procedure for a low-complexity, narrowband terminal
CN111491362B (zh) 确定发射功率的方法、用户设备和基站
WO2017133446A1 (zh) 车联网中的v2x通信方法及装置
US11785551B2 (en) Data transmission method and terminal device thereof
CN114451047A (zh) 无线通信系统中的旁路资源确定、旁路信号发送和接收方法及装置
US9999066B2 (en) Method and device of resource allocations for scheduling assignments in device to device communications
EP3761739B1 (en) Communication method, terminal and computer program
US20220417976A1 (en) Processing time determination method and device of terminal in wireless vehicle communication system
WO2016123772A1 (zh) 一种传输业务数据的方法和装置
JP2018528704A (ja) 車両用送信のための速度依存の送信フォーマット
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
JP2020092446A (ja) 情報送信方法及びユーザ装置
WO2023284692A1 (en) Sidelink communication method, and terminal device
WO2022267898A1 (zh) 一种资源指示方法和装置
WO2023206547A1 (zh) 相对位置的定位方法、装置、设备和介质
WO2021088080A1 (zh) 一种数据的发送、接收方法、参考信号的发送方法及装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019507979

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016901305

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016901305

Country of ref document: EP

Effective date: 20181107

ENP Entry into the national phase

Ref document number: 20187033958

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901305

Country of ref document: EP

Kind code of ref document: A1