WO2017188269A1 - Semiconductor package and semiconductor device using same - Google Patents

Semiconductor package and semiconductor device using same Download PDF

Info

Publication number
WO2017188269A1
WO2017188269A1 PCT/JP2017/016419 JP2017016419W WO2017188269A1 WO 2017188269 A1 WO2017188269 A1 WO 2017188269A1 JP 2017016419 W JP2017016419 W JP 2017016419W WO 2017188269 A1 WO2017188269 A1 WO 2017188269A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
semiconductor package
terminal
wiring board
signal terminal
Prior art date
Application number
PCT/JP2017/016419
Other languages
French (fr)
Japanese (ja)
Inventor
白崎 隆行
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201780024399.9A priority Critical patent/CN109075527B/en
Priority to JP2018514634A priority patent/JP6849670B2/en
Priority to KR1020187029979A priority patent/KR102164911B1/en
Publication of WO2017188269A1 publication Critical patent/WO2017188269A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to a semiconductor package for housing a semiconductor element used in the field of optical communication and the like and a semiconductor device using the same.
  • the semiconductor device is composed of a semiconductor package and semiconductor elements such as LD (Laser Diode) and PD (Photo Diode) (see Japanese Patent Application Laid-Open No. 2011-119634).
  • LD Laser Diode
  • PD Photo Diode
  • the semiconductor package according to the embodiment of the present invention includes a base, a signal terminal, a wiring board, and a ground terminal.
  • the base has a through hole penetrating in the thickness direction.
  • the signal terminal is provided in the through hole.
  • the wiring board is provided with a ground conductor layer on the upper surface between the lower surface of the base and a line conductor connected to the signal terminal so as to overlap the ground conductor layer on the lower surface.
  • the ground terminal penetrates the wiring board and is connected to the ground conductor layer.
  • the ground terminal is provided at a distance less than a quarter of the wavelength of the high-frequency signal transmitted through the line conductor from the position overlapping the outer edge of the base.
  • a semiconductor device includes a semiconductor package according to an embodiment of the present invention having the above-described configuration, a semiconductor element mounted in the semiconductor package, and a lid bonded to the base body of the semiconductor package. And.
  • FIG. 1A and 1B are perspective views illustrating a semiconductor package according to an embodiment of the present invention, in which FIG. 1A is a perspective view from the top surface and FIG. 1B is a perspective view from the bottom surface.
  • FIG. 2A is a perspective view showing a semiconductor package according to an embodiment of the present invention
  • FIG. 2A is a perspective view from above
  • FIG. 2B is a perspective view from below.
  • 3A is a plan view of a wiring board of the semiconductor package according to the embodiment of the present invention shown in FIG. 1
  • FIG. 3A is a plan view of the upper surface of the wiring board
  • FIG. 3B is a plan view of the lower surface of the wiring board.
  • FIG. 2 is a top perspective view of the semiconductor package according to the embodiment of the present invention shown in FIG. 1.
  • FIG. 2 is a bottom perspective view of the semiconductor package according to the embodiment of the present invention shown in FIG. 1. It is a perspective view which shows the semiconductor package which concerns on other embodiment of this invention. It is a perspective view showing a semiconductor package concerning one embodiment of the present invention. It is a perspective view which shows the semiconductor device which concerns on other embodiment of this invention.
  • FIG. 1 is a perspective view of a semiconductor package 1 according to an embodiment of the present invention
  • FIG. 1A is a perspective view showing an upper surface side of the semiconductor package 1 according to an embodiment of the present invention
  • FIG. 1B is a perspective view showing the lower surface side of the semiconductor package 1 according to one embodiment of the present invention
  • 2 is a perspective view of the semiconductor package 1 according to the embodiment of the present invention shown in FIG. 1 when each terminal is fixed with solder or the like, and FIG. 2A shows the upper surface side.
  • FIG. 2B is a perspective view showing the lower surface side.
  • 3 is a plan view of the wiring board 4, FIG. 3 (a) is a top plan view, and FIG. 3 (b) is a bottom plan view.
  • a semiconductor package 1 according to an embodiment of the present invention includes a base 2, a signal terminal 3, a wiring board 4, and a ground terminal 5.
  • the base body 2 has a through hole 21 that penetrates in the thickness direction, as shown in FIG.
  • the base 2 is made of, for example, a metal having good thermal conductivity.
  • the base 2 can dissipate heat generated from the semiconductor element to the outside of the semiconductor package 1 when the semiconductor device operates.
  • the base 2 is close to the thermal expansion coefficient of the semiconductor element to be mounted and the internal wiring board 9 connected to the base 2.
  • the substrate 2 is made of, for example, an iron-based alloy such as an Fe—Ni—Co alloy or an Fe—Mn alloy, or a metal such as pure iron. More specifically, there is an SPC (Steel Plate Cold) material of Fe 99.6 mass% -Mn 0.4 mass%.
  • the shape of the substrate 2 is, for example, a circular shape, a semicircular shape, a rectangular shape, etc. in plan view.
  • the substrate 2 is, for example, a flat plate having a thickness of 0.5 mm to 2 mm, a circular shape having a diameter of 3 mm to 10 mm, a semicircular shape obtained by cutting a part of a circumference having a radius of 1.5 mm to 8 mm, and a side of 3 mm.
  • the thickness of the base body 2 may not be uniform. For example, if the thickness of the outer side of the base body 2 is increased, a heat sink such as a housing for housing a semiconductor device can be easily adhered. The generated heat is easily released to the outside through the substrate 2.
  • the thickness of the substrate 2 is 0.5 mm or more, when the lid for protecting the semiconductor element is bonded to the upper surface of the substrate 2, the substrate 2 is difficult to be deformed such as bending due to bonding conditions such as a bonding temperature. Become. Moreover, when the thickness of the base 2 is 2 mm or less, the semiconductor package 1 and the semiconductor device can be prevented from being enlarged. That is, the semiconductor package 1 and the semiconductor device can be reduced in size.
  • the surface of the base 2 has excellent corrosion resistance, excellent wettability with the brazing material for bonding and fixing the internal wiring board 9 or the lid, and a Ni layer having a thickness of 0.5 ⁇ m to 9 ⁇ m and a thickness.
  • An Au layer having a thickness of 0.5 ⁇ m to 5 ⁇ m is preferably sequentially deposited by a plating method. Thereby, it is possible to effectively prevent the base 2 from being oxidatively corroded and to favorably bond the internal wiring board 9 or the lid to the base 2.
  • the signal terminal 3 is provided in the 1st through-hole 21 of the base
  • one end 32 of the signal terminal 3 is formed from the lower surface of the wiring board 4 through a second through hole 43 provided at a position overlapping the line conductor 42 of the wiring board 4, which will be described later.
  • the other end 31 protrudes from the upper surface of the base 2 by about 1 mm to 20 mm and is fixed.
  • the other end 31 of the signal terminal 3 and the signal line 91 provided on the internal wiring board 9 are electrically connected by a conductive bonding material, and the semiconductor element 7 is conductive.
  • the signal terminal 3 fulfills a function of inputting and outputting a high frequency signal between the semiconductor element 7 and the external electric circuit.
  • the signal terminal 3 is made of, for example, an Fe—Ni—Co alloy, an Fe—Mn alloy, SUS, or an SPC material. Since the signal terminal 3 is made of such a material, it is possible to suppress thermal stress caused by a difference in thermal expansion coefficient between the base 2 and the fixing member 23 and to transmit a high-frequency signal satisfactorily over a long period of time. be able to.
  • the signal terminal 3 has a diameter of 0.2 mm to 2 mm, for example.
  • a sealing material 22 is provided between the base 2 and the signal terminal 3 to ensure insulation between the base 2 and the signal terminal 3 and to fix the signal terminal 3 in the through hole 21 of the base 2. It has been.
  • the sealing material 22 is made of an insulating inorganic material such as glass or ceramics.
  • Such a sealing material 22 includes, for example, glass such as borosilicate glass and soda glass and those glass added with a ceramic filler for adjusting the thermal expansion coefficient and relative dielectric constant of the sealing material.
  • the relative dielectric constant is appropriately selected for impedance matching. Examples of the filler that lowers the dielectric constant include lithium oxide.
  • the diameter of the first through hole 21 is 0.75 mm when the outer diameter of the signal terminal 3 is 0.25 mm.
  • the characteristic impedance can be set to 25 ⁇ .
  • the characteristic impedance is 25 ⁇ by setting the diameter of the through hole 21 to 0.64 mm. By setting the diameter of the through hole 21 to 1.62 mm, the characteristic impedance can be set to 50 ⁇ .
  • the diameter of the signal terminal 3 is, for example, 0.15 mm to 0.25 mm.
  • the diameter of the signal terminal 3 is 0.15 mm or more, the signal terminal 3 is difficult to bend in handling when the semiconductor package 1 is mounted. Further, when the diameter is 0.25 mm or less, the impedance can be reduced even if impedance matching is performed.
  • a wiring substrate 4 is provided on the lower surface of the base 2.
  • the wiring substrate 4 is made of a ceramic insulating material such as an aluminum oxide (alumina: Al 2 O 3 ) sintered body and an aluminum nitride (AlN) sintered body, or a base having insulating properties and flexibility. It consists of a flexible substrate or the like in which an electric circuit is formed by bonding a conductive metal such as copper foil to a film. In plan view, for example, one end is provided in a semicircular shape so as to overlap the outer shape of the base 2, and the other end is provided in a rectangular shape and connected to an external electric circuit.
  • the wiring board 4 has a length from one end to the other end of 5 mm ⁇ 50 mm, a length in the width direction perpendicular to the direction from the one end to the other end, 3 mm ⁇ 10 mm, and a thickness of 0.1 mm to 1 mm.
  • the wiring board 4 is provided with a ground conductor layer 41 between the upper surface, that is, the lower surface of the substrate 2, and a line conductor 42 is formed on the lower surface.
  • the thickness of the wiring board 4 is approximately the same as the distance between the outer surface of the signal terminal 3 and the inner surface of the through hole 21. More specifically, the thickness of the insulating substrate, which is the dielectric of the wiring substrate 4, is the distance between the outer surface of the signal terminal 3 and the inner surface of the through hole 21, that is, the dielectric between the signal terminal 3 and the through hole 21. It is about the same as the thickness of the sealing material 22. If the thickness of the wiring board 4 is ⁇ 20% of the thickness of the sealing material 22, as described above, the propagation mode in the course of conversion from the coaxial structure to the microstrip structure is prevented from being stably radiated. be able to.
  • a ground conductor layer 41 is provided on the upper surface of the wiring board 4.
  • the ground conductor layer 41 is made of, for example, gold, silver, nickel, copper, or the like.
  • the ground conductor layer 41 has, for example, a width of 0.05 mm to 1 mm and a thickness of 0.01 mm to 0.5 mm. The length is 5 mm to 50 mm.
  • the ground conductor layer 41 serves as a ground and can be set to a reference potential.
  • the line conductor 42 is provided on the lower surface of the wiring board 4 so as to overlap the ground conductor layer 41.
  • the microstrip structure enables smooth transmission of high-frequency signals.
  • the line conductor 42 can input a high-frequency signal from the external electric circuit to the semiconductor element via the signal terminal 3, for example.
  • the ground conductor layer 41 is provided with a non-formation region 41a where the ground conductor layer 41 is not provided at a position overlapping the line conductor 42 in plan view.
  • the semiconductor package 1 of this embodiment can reduce the electrostatic capacitance of the line conductor 42 and the grounding conductor layer 41, and can improve the fall of the characteristic impedance in the line conductor 42.
  • the line conductor 42 is formed accordingly.
  • the line conductor 42 and the external electric circuit are connected by, for example, solder.
  • the line conductor 42 is bent. As a shape, the connection position with the external electric circuit may be as close as possible.
  • the line conductor 42 When the line conductor 42 is bent, for example, if the bending angle is bent stepwise so that the bending angle is larger than 90 °, or the corner portion of the bent portion is rounded, the high frequency due to reflection at the bent portion is obtained. It is good because the loss of can be reduced. In the case of bending in stages, the loss is reduced when the bending angle is 120 ° or more. Further, the line conductor 42 may be bent stepwise only at the outer side of the bent portion, but the inner side of the bent portion may be bent stepwise or rounded in the same manner.
  • the semiconductor package 1 has a ground terminal 5 that penetrates the wiring board 4 and is connected to the ground conductor layer 41.
  • the ground terminal 5 is made of, for example, an Fe—Ni—Co alloy, Fe—Mn alloy, SUS, SPC material, or the like.
  • the ground terminal 5 has a diameter of 0.2 mm to 1 mm, for example, and a length of 1 mm to 5 mm.
  • the ground terminal 5 is inserted into a fourth through-hole 44 provided in the wiring board 4 and is connected to the ground conductor layer 41 by a conductive bonding material 24 such as solder, and serves as a ground. For this reason, the ground terminal 5 can be set to the reference potential.
  • the wiring board 4 is provided with a connection conductor layer 45 around the fourth through hole 44 on the lower surface in order to improve the bonding strength with the ground terminal 5 via the bonding material 24 such as solder.
  • FIG. 4 and 5 are plan perspective views of the semiconductor package 1 according to one embodiment of the present invention. 4 is a top perspective view, and FIG. 5 is a bottom perspective view.
  • the ground terminal 5 is provided at a distance less than a quarter of the wavelength of the high-frequency signal transmitted through the line conductor 42 from the position overlapping the outer edge of the base 2.
  • the distance between the ground terminal 5 and the outer edge of the base 2 is L1 in FIG. L1 is, for example, 0.7 mm to 7 mm.
  • L1 is less than a quarter of the wavelength of the high-frequency signal to be transmitted, resonance between the base 2 and the ground terminal 5 that occurs at a quarter of the wavelength can be suppressed.
  • Resonance is a phenomenon that occurs at an integral multiple of a quarter of the wavelength. For this reason, when resonance occurs in transmission of a high-frequency signal, transmission loss increases.
  • the distance between the ground terminal 5 and the outer edge of the substrate 2 is set to a distance less than one-fourth of the wavelength in plan view, resonance does not occur, and transmission loss can be suppressed. That is, a high frequency signal can be transmitted under favorable conditions.
  • Resonance depends on the relationship between the distance that the wave propagates and the wavelength.
  • the distance that this wave propagates is the distance between the base 2 and the ground terminal 5, the distance between the ground conductor layer 41 and the ground terminal 5, and the distance between the signal terminal 3 and the ground terminal 5.
  • resonance occurs at a distance that is an integral multiple of a quarter of a wavelength, and resonance does not occur at a distance that is outside an integral multiple of a quarter of a wavelength. That is, if the distance between the base 2 and the ground terminal 5, the distance between the ground conductor layer 41 and the ground terminal 5, and the distance between the signal terminal 3 and the ground terminal 5 are out of an integral multiple of a quarter of the wavelength, Resonance does not occur.
  • the distance L1 between the base 2 and the ground terminal 5 the distance L2 between the ground conductor layer 41 and the ground terminal 5 described later, and the distance L3 between the signal terminal 3 and the ground terminal 5 are 1 ⁇ 4 of the wavelength. Resonance can be prevented from occurring by making the distance less than.
  • 18 GHz to 22 GHz is regarded as a 20 GHz signal.
  • 40 GHz 36 GHz to 44 GHz is regarded as a 40 GHz signal.
  • Up to 10% before and after the frequency of the standard value signal can be regarded as the standard value signal.
  • the ground conductor layer 41 is provided at a position overlapping the base 2 in a plan view.
  • the ground conductor layer 41 provided at a position overlapping the base 2 is provided at a distance of less than a quarter of the wavelength of the high frequency signal transmitted from the ground terminal 5 through the line conductor 42.
  • the distance between the ground conductor layer 41 and the ground terminal 5 is L2 in FIG. L2 is, for example, 0.7 mm to 7 mm.
  • the signal terminal 3 is provided at a distance less than a quarter of the wavelength of the high-frequency signal transmitted from the ground terminal 5 through the line conductor 42 in a plan view.
  • the distance between the signal terminal 3 and the ground terminal 5 is L3 in FIG. L3 is, for example, 0.7 mm to 7 mm.
  • L3 is less than a quarter of the wavelength of the high-frequency signal to be transmitted, resonance between the signal terminal 3 and the ground terminal 5 that occurs at a quarter of the wavelength can be suppressed.
  • transmission loss can be suppressed. That is, a high frequency signal can be transmitted under favorable conditions.
  • FIG. 6 shows a semiconductor package 1 according to another embodiment of the present invention.
  • FIG. 6 shows that the substrate 6 for reinforcing the wiring board 4 is provided between the base 2 and the wiring board 4 in addition to the semiconductor package 1 according to the embodiment of the present invention. Different from the semiconductor package 1 according to the embodiment.
  • the substrate 6 is provided between the base 2 and the wiring substrate 4.
  • the substrate 6 is provided for reinforcement when the wiring substrate 4 is a flexible substrate or the like.
  • the substrate 6 has, for example, a rectangular shape, a circular shape, a semicircular shape, or the like in plan view.
  • the size is 3 mm ⁇ 3 mm to 10 mm ⁇ 10 mm.
  • the thickness is 0.5 mm to 3 mm.
  • the substrate 6 is made of, for example, a ceramic substrate, a resin substrate, a glass substrate, or the like.
  • the semiconductor package 1 includes the substrate 6 between the base 2 and the wiring substrate 4, the strength of the semiconductor package 1 can be maintained even when the wiring substrate 4 is a flexible substrate or the like. That is, even when a force is applied from the outside, it is possible to suppress the connection inside the semiconductor package 1, particularly the connection of the semiconductor element and the load on each terminal.
  • the base 2 is made of an Fe—Mn alloy
  • the ingot (lumb) is manufactured in a predetermined shape by applying a known metal processing method such as rolling or punching, and the first through hole 21 is drilled. It is formed by punching with a metal mold. Further, the mounting surface 1b of the base body 2 can be formed by cutting or pressing.
  • the signal terminal 3 is made of a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy.
  • a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy.
  • the ingot (lumb) is rolled or punched, By applying a metal processing method such as cutting, a wire having a length of 1.5 mm to 22 mm and a diameter of 0.1 mm to 1 mm is manufactured.
  • the sealing material 22 filled in the first through hole 21 for example, when the sealing material is made of glass, first, a powder pressing method or an extrusion molding method is used. Use to mold glass powder. Next, a cylindrical molded body is produced in which the inner diameter is matched with the outer diameter of the signal terminal 3 and the outer diameter is matched with the shape of the first through hole 21.
  • the signal terminal 3 is inserted into the hole of the molded body of the sealing material 22, the molded body is inserted into a mold, heated to a predetermined temperature to melt the glass, and then cooled and solidified. By solidifying, a sealing material having a predetermined shape to which the signal terminal 3 is fixed is formed.
  • the through hole 21 is hermetically sealed by the sealing material 22, and the signal terminal 3 is insulated and fixed from the base 2 by the sealing material 22, thereby forming a coaxial line.
  • Only the sealing material that matches the shape of the through hole 21 is formed in advance, and this is inserted into the through hole 21 and the signal terminal 3 is also inserted into the hole of the sealing material 22, and the sealing material 22 and the first
  • the inner surface of the through hole 21 and the outer surface of the signal terminal 3 may be joined at the same time.
  • the signal terminal 3 is made of a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy.
  • a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy.
  • the ingot (lumb) is rolled or punched, By applying a metal processing method such as cutting, a wire having a length of 1.5 mm to 22 mm and a diameter of 0.1 mm to 1 mm is manufactured.
  • the ground terminal 5 is joined to the base 2.
  • the ground terminal 5 is manufactured in the same manner as the signal terminal 3 and is joined to the lower surface of the base 2 using a brazing material or the like.
  • a hole may be formed in the lower surface of the base 2 in advance, and the ground terminal 5 may be inserted into the hole for bonding.
  • the wiring substrate 4 is, for example, a flexible wiring substrate
  • a conductive metal such as copper foil is bonded to the upper and lower surfaces of a thin and soft base film having an insulating property made of polyimide or the like.
  • the wiring board 4 provided with the ground conductor layer 41 and the line conductor 42 having a desired shape is manufactured.
  • the wiring board 4 manufactured in this way is joined to the lower surface of the base 2 via solder, and the tip of the signal terminal 3 and the line conductor 42 are connected with a brazing material, whereby the semiconductor package according to the embodiment of the present invention. 1
  • FIG. 7 is a perspective view of the semiconductor device 10 according to an embodiment of the present invention.
  • a semiconductor device 10 according to an embodiment of the present invention includes a semiconductor package 1 according to an embodiment of the present invention, a semiconductor element 7 mounted on a base 2, and a lid 8 bonded to the base 2. I have.
  • Examples of the semiconductor element 7 include optical semiconductor elements such as LD (laser diode) and PD (photodiode), semiconductor elements including semiconductor integrated circuit elements, piezoelectric elements such as crystal resonators and surface acoustic wave elements, and pressure sensor elements. , Capacitive elements, resistors and the like. These semiconductor elements are mounted on the base 2.
  • optical semiconductor elements such as LD (laser diode) and PD (photodiode)
  • semiconductor elements including semiconductor integrated circuit elements, piezoelectric elements such as crystal resonators and surface acoustic wave elements, and pressure sensor elements.
  • Capacitive elements, resistors and the like are mounted on the base 2.
  • the semiconductor element 7 may be mounted on the base 2 by being fixed with a conductive bonding material such as a brazing material or a conductive resin.
  • a conductive bonding material such as a brazing material or a conductive resin.
  • a gold-tin (Au—Sn) alloy or a gold-germanium (Au—Ge) alloy is used to fix the wiring board 4.
  • a brazing material such as a tin-silver (Sn—Ag) alloy or a tin-silver-copper (Sn—Ag—Cu) alloy having a lower melting point is used to fix the semiconductor element 7.
  • An adhesive made of a resin such as Ag epoxy that can be cured at a temperature lower than the melting point may be used as the bonding material.
  • the wiring board 4 may be mounted on the base 2 after the semiconductor element 7 is mounted on the base 2.
  • the melting point of the bonding material used when mounting the wiring board 4 on the base 2. Should be lower.
  • the paste of the bonding material is printed on the wiring board 4 or the base body 2 by using a screen printing method, a bonding material layer is formed by a photolithography method, or the low melting point brazing material to be the bonding material
  • a preform can be placed.
  • the lid body 8 has an outer shape along the outer peripheral region of the base body 2 and a shape having a space that covers the semiconductor element 7 mounted on the base body 2.
  • the size is the same as that of the base 2 in a top view. Further, the lid 8 may be smaller than the base 2.
  • a third through hole 81 is provided as a window that transmits light in a portion facing the semiconductor element 7. Instead of the third through hole 81 or in addition to the window, an optical fiber and an optical isolator for preventing return light may be joined.
  • the lid 8 is made of a metal such as an Fe—Ni—Co alloy, an Fe—Ni alloy, or an Fe—Mn alloy, and is produced by subjecting these plate materials to a known metal working method such as press working or punching. .
  • the lid 8 should preferably have the same thermal expansion coefficient as the material of the base 2, and it is better to use the same material as that of the base 2.
  • a flat or lens-shaped glass window member is joined to a member provided with a hole in a portion facing the semiconductor element 7 with a low melting point glass or the like.
  • the lid 8 is joined to the base 2 by welding such as seam welding or YAG laser welding or brazing with a brazing material such as an Au—Sn brazing material.
  • the semiconductor element 7 is mounted on the base 2, the terminal of the semiconductor element 7 and the line conductor 42 of the wiring substrate 4 are connected by a bonding wire or the like, and the lid body 8 is joined to the upper surface of the frame portion.
  • a semiconductor device according to one embodiment is obtained.
  • the semiconductor element 7 is directly mounted on the base 2, which is to radiate the heat generated in the semiconductor element 7 to the outside through the metal base 2.
  • a Peltier element or the like may be mounted between the semiconductor element 7 (and the wiring board 4) to cool the semiconductor element 7.
  • the semiconductor device 10 may include a substrate 6 as a reinforcing member similarly to the semiconductor package 1 shown in FIG. Since the semiconductor device 10 includes the substrate 6, the strength of the wiring substrate 4 made of a flexible substrate or the like can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Geometry (AREA)
  • Light Receiving Elements (AREA)

Abstract

This semiconductor package is provided with a base body, a signal terminal, a wiring board, and a grounding terminal. The base body has a through hole penetrating in the thickness direction. The signal terminal is provided in the through hole. The wiring board is provided with: a grounding conductor layer on an upper surface, i.e., a surface facing a lower surface of the base body; and a path conductor connected to the signal terminal, said path conductor being on a lower surface such that the path conductor overlaps the grounding conductor layer. The grounding terminal penetrates the wiring board, and is connected to the grounding conductor layer. The grounding terminal is provided at a distance shorter than, from a position overlapping an outer end of the base body, 1/4 of the wavelength of a high frequency signal transmitted in the path conductor.

Description

半導体パッケージおよびそれを用いた半導体装置Semiconductor package and semiconductor device using the same
 本発明は、光通信分野等に用いられる半導体素子等を収納するための半導体パッケージおよびそれを用いた半導体装置に関する。 The present invention relates to a semiconductor package for housing a semiconductor element used in the field of optical communication and the like and a semiconductor device using the same.
 近年、光通信装置を用いて光信号を受発信する半導体装置等の高速化が注目されている。このような半導体装置は、より高出力化させ、高速化させることが要求されている。 In recent years, attention has been focused on increasing the speed of semiconductor devices that receive and transmit optical signals using optical communication devices. Such a semiconductor device is required to have higher output and higher speed.
 半導体装置は、半導体パッケージと、LD(Laser Diode:レーザダイオード)やPD(Photo Diode:フォトダイオ-ド)等の半導体素子と、から構成される(特開2011-119634号公報を参照)。 The semiconductor device is composed of a semiconductor package and semiconductor elements such as LD (Laser Diode) and PD (Photo Diode) (see Japanese Patent Application Laid-Open No. 2011-119634).
 特開2011-119634号公報に開示された技術では、半導体パッケージにおいて、貫通孔を有する基体と、貫通孔に固定された信号端子と、信号端子と接続された信号線路導体を有する配線基板と、基体と接合された接地端子とを備えている。信号端子と接地端子は、平面透視において、基体の中心近辺に設けられている。しかしながら、特許文献1の技術では、信号端子と接地端子が基体の中心にあることによって、高周波信号が信号端子と接地端子を介して伝送する際に、基体と接地端子との間に生じる電位差により、基体と接地端子との間で共振現象が発生する場合があった。その際には半導体パッケージの周波数特性が劣化する場合があった。 In the technology disclosed in Japanese Patent Application Laid-Open No. 2011-119634, in a semiconductor package, a substrate having a through hole, a signal terminal fixed to the through hole, a wiring board having a signal line conductor connected to the signal terminal, And a ground terminal joined to the base. The signal terminal and the ground terminal are provided in the vicinity of the center of the base body in plan perspective. However, in the technique of Patent Document 1, since the signal terminal and the ground terminal are in the center of the base, when a high-frequency signal is transmitted through the signal terminal and the ground terminal, a potential difference generated between the base and the ground terminal. In some cases, a resonance phenomenon occurs between the base and the ground terminal. At that time, the frequency characteristics of the semiconductor package may be deteriorated.
 本発明の実施形態に係る半導体パッケージは、基体と、信号端子と、配線基板と、接地端子とを備えている。基体は、厚み方向に貫通する貫通孔を有する。信号端子は、貫通孔に設けられている。配線基板は、基体の下面との間である上面に接地導体層と、下面に接地導体層と重なるように、信号端子と接続された線路導体とが設けられている。接地端子は、配線基板を貫通して、接地導体層と接続されている。接地端子は、基体の外縁と重なる位置から、線路導体を伝送される高周波信号の波長の4分の1未満の距離に設けられている。 The semiconductor package according to the embodiment of the present invention includes a base, a signal terminal, a wiring board, and a ground terminal. The base has a through hole penetrating in the thickness direction. The signal terminal is provided in the through hole. The wiring board is provided with a ground conductor layer on the upper surface between the lower surface of the base and a line conductor connected to the signal terminal so as to overlap the ground conductor layer on the lower surface. The ground terminal penetrates the wiring board and is connected to the ground conductor layer. The ground terminal is provided at a distance less than a quarter of the wavelength of the high-frequency signal transmitted through the line conductor from the position overlapping the outer edge of the base.
 本発明の実施形態に係る半導体装置は、上記各構成の本発明の実施形態に係る半導体パッケージと、前記半導体パッケージ内に実装された半導体素子と、前記半導体パッケージの前記基体に接合された蓋体とを備えている。 A semiconductor device according to an embodiment of the present invention includes a semiconductor package according to an embodiment of the present invention having the above-described configuration, a semiconductor element mounted in the semiconductor package, and a lid bonded to the base body of the semiconductor package. And.
本発明の一実施形態に係る半導体パッケージを示す斜視図であり、図1(a)は上面からの斜視図で、図1(b)は下面からの斜視図である。1A and 1B are perspective views illustrating a semiconductor package according to an embodiment of the present invention, in which FIG. 1A is a perspective view from the top surface and FIG. 1B is a perspective view from the bottom surface. 本発明の一実施形態に係る半導体パッケージを示す斜視図であり、図2(a)は上面からの斜視図で、図2(b)は下面からの斜視図である。FIG. 2A is a perspective view showing a semiconductor package according to an embodiment of the present invention, FIG. 2A is a perspective view from above, and FIG. 2B is a perspective view from below. 図1に示した本発明の一実施形態に係る半導体パッケージの配線基板の平面図であり、図3(a)は配線基板の上面の平面図、図3(b)は配線基板の下面の平面図である。3A is a plan view of a wiring board of the semiconductor package according to the embodiment of the present invention shown in FIG. 1, FIG. 3A is a plan view of the upper surface of the wiring board, and FIG. 3B is a plan view of the lower surface of the wiring board. FIG. 図1に示した本発明の一実施形態に係る半導体パッケージの上面透視図である。FIG. 2 is a top perspective view of the semiconductor package according to the embodiment of the present invention shown in FIG. 1. 図1に示した本発明の一実施形態に係る半導体パケージの下面透視図である。FIG. 2 is a bottom perspective view of the semiconductor package according to the embodiment of the present invention shown in FIG. 1. 本発明の他の実施形態に係る半導体パッケージを示す斜視図である。It is a perspective view which shows the semiconductor package which concerns on other embodiment of this invention. 本発明の一実施形態に係る半導体パッケージを示す斜視図である。It is a perspective view showing a semiconductor package concerning one embodiment of the present invention. 本発明の他の実施形態に係る半導体装置を示す斜視図である。It is a perspective view which shows the semiconductor device which concerns on other embodiment of this invention.
 本発明の半導体パッケージおよび半導体装置について、図面を参照しながら説明する。 The semiconductor package and the semiconductor device of the present invention will be described with reference to the drawings.
  <半導体パッケージの構成>
 図1は、本発明の一実施形態に係る半導体パッケージ1の斜視図で、図1(a)は、本発明の一実施形態に係る半導体パッケージ1の上面側を示した斜視図である。また図1(b)は、本発明の一実施形態に係る半導体パッケージ1の下面側を示した斜視図である。また、図2は、図1に示した本発明の一実施形態に係る半導体パッケージ1において、はんだ等で各端子を固定した場合の斜視図で、図2(a)は、上面側を示した斜視図で、図2(b)は、下面側を示した斜視図である。また、図3は、配線基板4の平面図であり、図3(a)が上面の平面図、図3(b)が下面の平面図である。これらの図において、本発明の一実施形態に係る半導体パッケージ1は、基体2と、信号端子3と、配線基板4と、接地端子5とを備えている。
<Structure of semiconductor package>
FIG. 1 is a perspective view of a semiconductor package 1 according to an embodiment of the present invention, and FIG. 1A is a perspective view showing an upper surface side of the semiconductor package 1 according to an embodiment of the present invention. FIG. 1B is a perspective view showing the lower surface side of the semiconductor package 1 according to one embodiment of the present invention. 2 is a perspective view of the semiconductor package 1 according to the embodiment of the present invention shown in FIG. 1 when each terminal is fixed with solder or the like, and FIG. 2A shows the upper surface side. FIG. 2B is a perspective view showing the lower surface side. 3 is a plan view of the wiring board 4, FIG. 3 (a) is a top plan view, and FIG. 3 (b) is a bottom plan view. In these drawings, a semiconductor package 1 according to an embodiment of the present invention includes a base 2, a signal terminal 3, a wiring board 4, and a ground terminal 5.
 基体2は、図1に示すように、厚み方向に貫通する貫通孔21を有している。基体2は、たとえば熱伝導性の良い金属等から成る。基体2は、半導体装置が作動する際に半導体素子から発生する熱を半導体パッケージ1の外部に放散することができる。基体2は、実装される半導体素子や、基体2と接続される内部配線基板9の熱膨張係数に近いものである。 The base body 2 has a through hole 21 that penetrates in the thickness direction, as shown in FIG. The base 2 is made of, for example, a metal having good thermal conductivity. The base 2 can dissipate heat generated from the semiconductor element to the outside of the semiconductor package 1 when the semiconductor device operates. The base 2 is close to the thermal expansion coefficient of the semiconductor element to be mounted and the internal wiring board 9 connected to the base 2.
 基体2は、たとえば、Fe-Ni-Co合金やFe-Mn合金等の鉄系の合金や純鉄等の金属から成る。より具体的には、Fe99.6質量%-Mn0.4質量%系のSPC(Steel Plate Cold)材がある。 The substrate 2 is made of, for example, an iron-based alloy such as an Fe—Ni—Co alloy or an Fe—Mn alloy, or a metal such as pure iron. More specifically, there is an SPC (Steel Plate Cold) material of Fe 99.6 mass% -Mn 0.4 mass%.
 基体2の形状は、たとえば平面視において、円形状、半円形状、矩形状等である。基体2は、たとえば厚みが0.5mm~2mmの平板状であり、直径が3mm~10mmの円形状、半径が1.5mm~8mmの円周の一部を切り取った半円形状、一辺が3mm~15mmの矩形状等である。基体2の厚みは一様でなくてもよく、たとえば、基体2の外側の厚みを厚くすると、半導体装置を収納する筐体等の放熱体となるものを密着させやすくなるので、半導体素子等から発生した熱を基体2を介して外部により放出しやすくなる。 The shape of the substrate 2 is, for example, a circular shape, a semicircular shape, a rectangular shape, etc. in plan view. The substrate 2 is, for example, a flat plate having a thickness of 0.5 mm to 2 mm, a circular shape having a diameter of 3 mm to 10 mm, a semicircular shape obtained by cutting a part of a circumference having a radius of 1.5 mm to 8 mm, and a side of 3 mm. A rectangular shape of ˜15 mm. The thickness of the base body 2 may not be uniform. For example, if the thickness of the outer side of the base body 2 is increased, a heat sink such as a housing for housing a semiconductor device can be easily adhered. The generated heat is easily released to the outside through the substrate 2.
 基体2の厚みが0.5mm以上の場合は、半導体素子を保護するための蓋体を基体2の上面に接合する際に、接合温度等の接合条件によって基体2が曲がる等の変形がしにくくなる。また、基体2の厚みが2mm以下の場合には、半導体パッケージ1および半導体装置が大型化するのを抑制することができる。つまり、半導体パッケージ1および半導体装置の小型化を図ることができる。 When the thickness of the substrate 2 is 0.5 mm or more, when the lid for protecting the semiconductor element is bonded to the upper surface of the substrate 2, the substrate 2 is difficult to be deformed such as bending due to bonding conditions such as a bonding temperature. Become. Moreover, when the thickness of the base 2 is 2 mm or less, the semiconductor package 1 and the semiconductor device can be prevented from being enlarged. That is, the semiconductor package 1 and the semiconductor device can be reduced in size.
 また、基体2の表面には、耐食性に優れ、内部配線基板9あるいは蓋体を接合し固定するためのろう材との濡れ性に優れた、厚さが0.5μm~9μmのNi層と厚さが0.5μm~5μmのAu層とをめっき法によって順次被着させておくのがよい。これにより、基体2が酸化腐食するのを有効に防止できるとともに内部配線基板9あるいは蓋体を基体2に良好に接合することができる。 In addition, the surface of the base 2 has excellent corrosion resistance, excellent wettability with the brazing material for bonding and fixing the internal wiring board 9 or the lid, and a Ni layer having a thickness of 0.5 μm to 9 μm and a thickness. An Au layer having a thickness of 0.5 μm to 5 μm is preferably sequentially deposited by a plating method. Thereby, it is possible to effectively prevent the base 2 from being oxidatively corroded and to favorably bond the internal wiring board 9 or the lid to the base 2.
 基体2の第1の貫通孔21には、信号端子3が後述する絶縁性の封止材22を介して設けられている。信号端子3は、たとえば一方の端部32は基体2の下面から後述する、配線基板4の線路導体42と重なる位置に設けられた第2の貫通孔43を介して、配線基板4の下面から突出させ、他方の端部31は基体2の上面から1mm~20mm程度突出させて固定される。たとえば、図1に示すように、信号端子3の他方の端部31と内部配線基板9に設けられた信号線路91とは導電性の接合材によって電気的に接続され、半導体素子7は導電性の接着材を介して信号線路91に電気的に接続されるとともに、信号端子3の一方の端部32は配線基板4に設けられた線路導体42を介して外部電気回路に電気的に接続されることによって、信号端子3は半導体素子7と外部電気回路との間で高周波信号を入出力することができる機能を果たす。 The signal terminal 3 is provided in the 1st through-hole 21 of the base | substrate 2 through the insulating sealing material 22 mentioned later. For example, one end 32 of the signal terminal 3 is formed from the lower surface of the wiring board 4 through a second through hole 43 provided at a position overlapping the line conductor 42 of the wiring board 4, which will be described later. The other end 31 protrudes from the upper surface of the base 2 by about 1 mm to 20 mm and is fixed. For example, as shown in FIG. 1, the other end 31 of the signal terminal 3 and the signal line 91 provided on the internal wiring board 9 are electrically connected by a conductive bonding material, and the semiconductor element 7 is conductive. And one end 32 of the signal terminal 3 is electrically connected to an external electric circuit via a line conductor 42 provided on the wiring board 4. Thus, the signal terminal 3 fulfills a function of inputting and outputting a high frequency signal between the semiconductor element 7 and the external electric circuit.
 信号端子3は、たとえばFe-Ni-Co合金、Fe-Mn合金、SUSおよびSPC材からなっている。信号端子3は、このような材料から成ることによって、基体2および固定部材23との熱膨張係数差に伴って生じる熱応力を抑制することができるとともに、長期間にわたって高周波信号を良好に伝送させることができる。また、信号端子3は、たとえば直径0.2mm~2mmである。 The signal terminal 3 is made of, for example, an Fe—Ni—Co alloy, an Fe—Mn alloy, SUS, or an SPC material. Since the signal terminal 3 is made of such a material, it is possible to suppress thermal stress caused by a difference in thermal expansion coefficient between the base 2 and the fixing member 23 and to transmit a high-frequency signal satisfactorily over a long period of time. be able to. The signal terminal 3 has a diameter of 0.2 mm to 2 mm, for example.
 また、基体2と信号端子3との間に、基体2と信号端子3との間の絶縁性を確保するとともに、信号端子3を基体2の貫通孔21内に固定する封止材22が設けられている。封止材22は、ガラスやセラミックスなどの絶縁性の無機材料から成る。このような封止材22は、たとえばホウケイ酸ガラス、ソーダガラス等のガラスおよびこれらのガラスに封止材の熱膨張係数や比誘電率を調整するためのセラミックフィラーを加えたものが挙げられ、インピーダンスマッチングのためにその比誘電率を適宜選択する。比誘電率を低下させるフィラーとしては、酸化リチウム等が挙げられる。 In addition, a sealing material 22 is provided between the base 2 and the signal terminal 3 to ensure insulation between the base 2 and the signal terminal 3 and to fix the signal terminal 3 in the through hole 21 of the base 2. It has been. The sealing material 22 is made of an insulating inorganic material such as glass or ceramics. Such a sealing material 22 includes, for example, glass such as borosilicate glass and soda glass and those glass added with a ceramic filler for adjusting the thermal expansion coefficient and relative dielectric constant of the sealing material. The relative dielectric constant is appropriately selected for impedance matching. Examples of the filler that lowers the dielectric constant include lithium oxide.
 たとえば、封止材22に比誘電率が6.8であるものを用いると、第1の貫通孔21の直径は、信号端子3の外径が0.25mmの場合は、0.75mmとすることで特性インピーダンスを25Ωとすることができる。また、封止材に比誘電率が5であるものを用いると、信号端子3の外径が0.25mmの場合は、貫通孔21の直径を0.64mmとすることで特性インピーダンスを25Ωと、貫通孔21の直径を1.62mmとすることで特性インピーダンスを50Ωとすることができる。 For example, when the sealing material 22 having a relative dielectric constant of 6.8 is used, the diameter of the first through hole 21 is 0.75 mm when the outer diameter of the signal terminal 3 is 0.25 mm. Thus, the characteristic impedance can be set to 25Ω. Further, when a sealing material having a relative dielectric constant of 5 is used, when the outer diameter of the signal terminal 3 is 0.25 mm, the characteristic impedance is 25Ω by setting the diameter of the through hole 21 to 0.64 mm. By setting the diameter of the through hole 21 to 1.62 mm, the characteristic impedance can be set to 50Ω.
 信号端子3の強度を確保しながらより高い特性インピーダンスでのマッチングを行ないつつ小型にするには、信号端子3の直径は、たとえば0.15mm~0.25mmである。信号端子3の直径が0.15mm以上であると、半導体パッケージ1を実装する場合の取り扱いで信号端子3が曲がりにくくなる。また、直径が0.25mm以下であると、インピーダンス整合させたとしても小型化させることができる。 In order to reduce the size while performing matching with higher characteristic impedance while ensuring the strength of the signal terminal 3, the diameter of the signal terminal 3 is, for example, 0.15 mm to 0.25 mm. When the diameter of the signal terminal 3 is 0.15 mm or more, the signal terminal 3 is difficult to bend in handling when the semiconductor package 1 is mounted. Further, when the diameter is 0.25 mm or less, the impedance can be reduced even if impedance matching is performed.
 基体2の下面に配線基板4が設けられている。配線基板4は、たとえば酸化アルミニウム(アルミナ:Al)質焼結体および窒化アルミニウム(AlN)質焼結体等のセラミックス絶縁材料またはポリイミド等からなる、絶縁性と柔軟性を持ったベースフィルムに銅箔等の導電性金属を貼り合わせて電気回路を形成したフレキシブル基板等から成る。平面視において、たとえば、一端は基体2の外形と重なるように半円形状に設けられ、他端は矩形状に設けられて外部電気回路に接続される。また、配線基板4は、一端から他端までの長さが5mm×50mm、一端から他端の方向と直交する幅方向の長さは3mm×10mmで、厚みは0.1mm~1mmである。また、配線基板4は、上面、つまり基体2の下面との間に接地導体層41が設けられ、下面には線路導体42が形成されている。 A wiring substrate 4 is provided on the lower surface of the base 2. The wiring substrate 4 is made of a ceramic insulating material such as an aluminum oxide (alumina: Al 2 O 3 ) sintered body and an aluminum nitride (AlN) sintered body, or a base having insulating properties and flexibility. It consists of a flexible substrate or the like in which an electric circuit is formed by bonding a conductive metal such as copper foil to a film. In plan view, for example, one end is provided in a semicircular shape so as to overlap the outer shape of the base 2, and the other end is provided in a rectangular shape and connected to an external electric circuit. The wiring board 4 has a length from one end to the other end of 5 mm × 50 mm, a length in the width direction perpendicular to the direction from the one end to the other end, 3 mm × 10 mm, and a thickness of 0.1 mm to 1 mm. The wiring board 4 is provided with a ground conductor layer 41 between the upper surface, that is, the lower surface of the substrate 2, and a line conductor 42 is formed on the lower surface.
 配線基板4は、その厚みが信号端子3の外面と貫通孔21の内面との間の距離と同程度である。詳細には配線基板4の誘電体である絶縁基板の厚みが信号端子3の外面と貫通孔21の内面との間の距離、即ち信号端子3と貫通孔21との間にある誘電体である封止材22の厚みと同程度である。配線基板4の厚みが封止材22の厚みの±20%であれば、上記したように、同軸構造からマイクロストリップ構造への変換途中における伝播モードが安定して電磁波が放射されるのを抑えることができる。 The thickness of the wiring board 4 is approximately the same as the distance between the outer surface of the signal terminal 3 and the inner surface of the through hole 21. More specifically, the thickness of the insulating substrate, which is the dielectric of the wiring substrate 4, is the distance between the outer surface of the signal terminal 3 and the inner surface of the through hole 21, that is, the dielectric between the signal terminal 3 and the through hole 21. It is about the same as the thickness of the sealing material 22. If the thickness of the wiring board 4 is ± 20% of the thickness of the sealing material 22, as described above, the propagation mode in the course of conversion from the coaxial structure to the microstrip structure is prevented from being stably radiated. be able to.
 配線基板4の上面には、接地導体層41が設けられている。接地導体層41は、たとえば金、銀、ニッケルおよび銅等から成る。接地導体層41は、たとえば幅が0.05mm~1mmであり、厚みは0.01mm~0.5mmである。また、長さは、5mm~50mmである。接地導体層41は、グランドの役割を果たしており、基準電位にすることができる。 A ground conductor layer 41 is provided on the upper surface of the wiring board 4. The ground conductor layer 41 is made of, for example, gold, silver, nickel, copper, or the like. The ground conductor layer 41 has, for example, a width of 0.05 mm to 1 mm and a thickness of 0.01 mm to 0.5 mm. The length is 5 mm to 50 mm. The ground conductor layer 41 serves as a ground and can be set to a reference potential.
 線路導体42は、配線基板4の下面に接地導体層41と重なるように設けられている。このことによって、マイクロストリップ構造にすることで、高周波信号の伝送を円滑に行なうことができる。また、線路導体42は、例えば、外部電気回路から半導体素子に信号端子3を介して高周波信号を入力することができる。また、接地導体層41は、平面視において、線路導体42と重なる位置に接地導体層41を設けない非形成領域41aが設けられる。これにより、本実施形態の半導体パッケージ1は、線路導体42と接地導体層41との静電容量を低減することができ、線路導体42における特性インピーダンスの低下を改善することができる。 The line conductor 42 is provided on the lower surface of the wiring board 4 so as to overlap the ground conductor layer 41. As a result, the microstrip structure enables smooth transmission of high-frequency signals. Further, the line conductor 42 can input a high-frequency signal from the external electric circuit to the semiconductor element via the signal terminal 3, for example. In addition, the ground conductor layer 41 is provided with a non-formation region 41a where the ground conductor layer 41 is not provided at a position overlapping the line conductor 42 in plan view. Thereby, the semiconductor package 1 of this embodiment can reduce the electrostatic capacitance of the line conductor 42 and the grounding conductor layer 41, and can improve the fall of the characteristic impedance in the line conductor 42. FIG.
 また線路導体42は、信号端子3や外部電気回路との接続形態によってその接続が異なるので、それに応じて形成されるものである。また、線路導体42と外部電気回路とはたとえばはんだによって接続されるが、この信号端子3と外部電気回路との距離を短くすることで信号の伝送損失を少なくするために、線路導体42を屈曲した形状として、外部電気回路との接続位置ができるだけ近くなるようにしてもよい。 Further, since the connection of the line conductor 42 differs depending on the connection form with the signal terminal 3 and the external electric circuit, the line conductor 42 is formed accordingly. The line conductor 42 and the external electric circuit are connected by, for example, solder. In order to reduce signal transmission loss by shortening the distance between the signal terminal 3 and the external electric circuit, the line conductor 42 is bent. As a shape, the connection position with the external electric circuit may be as close as possible.
 なお、線路導体42を屈曲させる場合には、たとえば屈曲角度が90°よりも大きくなるように段階的に屈曲させたり、屈曲部の角の部分に丸みをつけたりすると、屈曲部での反射による高周波の損失を少なくすることができるのでよい。段階的に屈曲させる場合は、屈曲角度を120°以上とすると損失がより少なくなる。また、線路導体42は屈曲部の外側だけを段階的に屈曲させたりしてもよいが、屈曲部の内側も同様に段階的に屈曲させたり丸みをつけたりしてもよい。 When the line conductor 42 is bent, for example, if the bending angle is bent stepwise so that the bending angle is larger than 90 °, or the corner portion of the bent portion is rounded, the high frequency due to reflection at the bent portion is obtained. It is good because the loss of can be reduced. In the case of bending in stages, the loss is reduced when the bending angle is 120 ° or more. Further, the line conductor 42 may be bent stepwise only at the outer side of the bent portion, but the inner side of the bent portion may be bent stepwise or rounded in the same manner.
 半導体パッケージ1は、配線基板4を貫通して接地導体層41と接続された接地端子5を有している。接地端子5は、たとえばFe-Ni-Co合金、Fe-Mn合金、SUSおよびSPC材等から成る。接地端子5は、たとえば直径0.2mm~1mmであり、長さは1mm~5mmである。接地端子5は、配線基板4に設けられる第4の貫通孔44に挿通されるとともに、接地導体層41とはんだ等の導電性の接合材24によって接続されており、グランドの役割を果たす。このため、接地端子5は、基準電位にすることができる。なお、配線基板4は、下面の第4の貫通孔44の周囲に、はんだ等の接合材24を介した接地端子5との接合強度を向上させるために接続導体層45が設けられる。 The semiconductor package 1 has a ground terminal 5 that penetrates the wiring board 4 and is connected to the ground conductor layer 41. The ground terminal 5 is made of, for example, an Fe—Ni—Co alloy, Fe—Mn alloy, SUS, SPC material, or the like. The ground terminal 5 has a diameter of 0.2 mm to 1 mm, for example, and a length of 1 mm to 5 mm. The ground terminal 5 is inserted into a fourth through-hole 44 provided in the wiring board 4 and is connected to the ground conductor layer 41 by a conductive bonding material 24 such as solder, and serves as a ground. For this reason, the ground terminal 5 can be set to the reference potential. The wiring board 4 is provided with a connection conductor layer 45 around the fourth through hole 44 on the lower surface in order to improve the bonding strength with the ground terminal 5 via the bonding material 24 such as solder.
 図4および図5は、本発明の一実施形態に係る半導体パッケージ1の平面透視図である。図4は、上面透視図であり、図5は下面透視図を示している。 4 and 5 are plan perspective views of the semiconductor package 1 according to one embodiment of the present invention. 4 is a top perspective view, and FIG. 5 is a bottom perspective view.
 図4および図5に示すように、接地端子5は、基体2の外縁と重なる位置から、線路導体42を伝送される高周波信号の波長の4分の1未満の距離に設けられている。接地端子5と基体2の外縁との距離は、図4のL1である。L1は、たとえば0.7mm~7mmである。L1が伝送される高周波信号の波長の4分の1未満であることによって、波長の4分の1で起こる基体2と接地端子5との共振を抑制することができる。共振は、波長の4分の1の整数倍で起こる現象である。このため、高周波の信号の伝送等において共振が起こると、伝送損失が大きくなる。このとき、平面視において接地端子5と基体2の外縁との距離が波長の4分の1未満の距離に設けられていると、共振が起こらないため、伝送損失を抑制することができる。つまり、高周波の信号を良好な条件で伝送することができる。 As shown in FIGS. 4 and 5, the ground terminal 5 is provided at a distance less than a quarter of the wavelength of the high-frequency signal transmitted through the line conductor 42 from the position overlapping the outer edge of the base 2. The distance between the ground terminal 5 and the outer edge of the base 2 is L1 in FIG. L1 is, for example, 0.7 mm to 7 mm. When L1 is less than a quarter of the wavelength of the high-frequency signal to be transmitted, resonance between the base 2 and the ground terminal 5 that occurs at a quarter of the wavelength can be suppressed. Resonance is a phenomenon that occurs at an integral multiple of a quarter of the wavelength. For this reason, when resonance occurs in transmission of a high-frequency signal, transmission loss increases. At this time, if the distance between the ground terminal 5 and the outer edge of the substrate 2 is set to a distance less than one-fourth of the wavelength in plan view, resonance does not occur, and transmission loss can be suppressed. That is, a high frequency signal can be transmitted under favorable conditions.
 共振は、波が伝播される距離と波長との関係に依存する。この波が伝播される距離は、基体2と接地端子5との距離、接地導体層41と接地端子5との距離および信号端子3と接地端子5との距離である。これらの距離に関して、波長の4分の1の整数倍の距離で共振が起き、波長の4分の1の整数倍から外れた距離では共振は起きない。つまり、基体2と接地端子5との距離、接地導体層41と接地端子5との距離および信号端子3と接地端子5との距離が波長の4分の1の整数倍から外れていれば、共振は起きない。ただし、波長の4分の1の距離が含まれていると、その位置で共振が起きるため、波長の4分の1未満の距離であれば、共振が起きないようにすることができる。つまり、上述したように基体2と接地端子5との距離L1、後述する接地導体層41と接地端子5との距離L2および信号端子3と接地端子5との距離L3が波長の4分の1未満の距離にすることで、共振が起きないようにすることができる。 Resonance depends on the relationship between the distance that the wave propagates and the wavelength. The distance that this wave propagates is the distance between the base 2 and the ground terminal 5, the distance between the ground conductor layer 41 and the ground terminal 5, and the distance between the signal terminal 3 and the ground terminal 5. Regarding these distances, resonance occurs at a distance that is an integral multiple of a quarter of a wavelength, and resonance does not occur at a distance that is outside an integral multiple of a quarter of a wavelength. That is, if the distance between the base 2 and the ground terminal 5, the distance between the ground conductor layer 41 and the ground terminal 5, and the distance between the signal terminal 3 and the ground terminal 5 are out of an integral multiple of a quarter of the wavelength, Resonance does not occur. However, if a distance of a quarter of the wavelength is included, resonance occurs at that position. Therefore, if the distance is less than a quarter of the wavelength, resonance can be prevented. That is, as described above, the distance L1 between the base 2 and the ground terminal 5, the distance L2 between the ground conductor layer 41 and the ground terminal 5 described later, and the distance L3 between the signal terminal 3 and the ground terminal 5 are ¼ of the wavelength. Resonance can be prevented from occurring by making the distance less than.
 このとき、たとえば20GHzの信号が伝送されるのであれば、18GHz~22GHzは20GHzの信号とみなす。また、40GHzの場合には、36GHz~44GHzは40GHzの信号とみなす。規格値の信号の周波数の前後10%までは、その規格値の信号とみなすことができる。 At this time, for example, if a 20 GHz signal is transmitted, 18 GHz to 22 GHz is regarded as a 20 GHz signal. In the case of 40 GHz, 36 GHz to 44 GHz is regarded as a 40 GHz signal. Up to 10% before and after the frequency of the standard value signal can be regarded as the standard value signal.
 図4および図5に示すように、接地導体層41は、平面透視において、基体2と重なる位置に設けられている。基体2と重なる位置に設けられている接地導体層41は、接地端子5から線路導体42を伝送される高周波信号の波長の4分の1未満の距離に設けられている。接地導体層41と接地端子5との距離は、図4のL2である。L2は、たとえば0.7mm~7mmである。L2が伝送される高周波信号の波長の4分の1未満であることによって、波長の4分の1で起こる接地導体層41と接地端子5との共振を抑制することができる。このとき、上述したように接地導体層41と接地端子5との間に共振が起こらないため、伝送損失を抑制することができる。つまり、高周波の信号を良好な条件で伝送することができる。 As shown in FIGS. 4 and 5, the ground conductor layer 41 is provided at a position overlapping the base 2 in a plan view. The ground conductor layer 41 provided at a position overlapping the base 2 is provided at a distance of less than a quarter of the wavelength of the high frequency signal transmitted from the ground terminal 5 through the line conductor 42. The distance between the ground conductor layer 41 and the ground terminal 5 is L2 in FIG. L2 is, for example, 0.7 mm to 7 mm. When L2 is less than a quarter of the wavelength of the high-frequency signal transmitted, resonance between the ground conductor layer 41 and the ground terminal 5 that occurs at a quarter of the wavelength can be suppressed. At this time, since no resonance occurs between the ground conductor layer 41 and the ground terminal 5 as described above, transmission loss can be suppressed. That is, a high frequency signal can be transmitted under favorable conditions.
 また、同じく図4および図5に示すように、信号端子3は、平面透視において、接地端子5から線路導体42を伝送される高周波信号の波長の4分の1未満の距離に設けられている。信号端子3と接地端子5との距離は、図4のL3である。L3は、たとえば0.7mm~7mmである。L3が伝送される高周波信号の波長の4分の1未満であることによって、波長の4分の1で起こる信号端子3と接地端子5との間の共振を抑制することができる。このとき、上述したように信号端子3と接地端子5との間に共振が起こらないため、伝送損失を抑制することができる。つまり、高周波の信号を良好な条件で伝送することができる。 Similarly, as shown in FIGS. 4 and 5, the signal terminal 3 is provided at a distance less than a quarter of the wavelength of the high-frequency signal transmitted from the ground terminal 5 through the line conductor 42 in a plan view. . The distance between the signal terminal 3 and the ground terminal 5 is L3 in FIG. L3 is, for example, 0.7 mm to 7 mm. When L3 is less than a quarter of the wavelength of the high-frequency signal to be transmitted, resonance between the signal terminal 3 and the ground terminal 5 that occurs at a quarter of the wavelength can be suppressed. At this time, since no resonance occurs between the signal terminal 3 and the ground terminal 5 as described above, transmission loss can be suppressed. That is, a high frequency signal can be transmitted under favorable conditions.
 図6は、本発明の他の実施形態に係る半導体パッケージ1である。図6は、本発明の一実施形態に係る半導体パッケージ1に加えて、基体2と配線基板4との間に配線基板4を補強するための基板6を設けられている点が、本発明の一実施形態に係る半導体パッケージ1と異なる。 FIG. 6 shows a semiconductor package 1 according to another embodiment of the present invention. FIG. 6 shows that the substrate 6 for reinforcing the wiring board 4 is provided between the base 2 and the wiring board 4 in addition to the semiconductor package 1 according to the embodiment of the present invention. Different from the semiconductor package 1 according to the embodiment.
 図6に示すように、基板6は、基体2と配線基板4との間に設けられる。基板6は、配線基板4がフレキシブル基板等である場合に、補強のために設けられる。基板6は、たとえば平面視において、矩形状、円形状および半円形状等である。大きさは、3mm×3mm~10mm×10mmである。厚みは、0.5mm~3mmである。基板6は、たとえばセラミック基板、樹脂基板およびガラス基板等から成る。 As shown in FIG. 6, the substrate 6 is provided between the base 2 and the wiring substrate 4. The substrate 6 is provided for reinforcement when the wiring substrate 4 is a flexible substrate or the like. The substrate 6 has, for example, a rectangular shape, a circular shape, a semicircular shape, or the like in plan view. The size is 3 mm × 3 mm to 10 mm × 10 mm. The thickness is 0.5 mm to 3 mm. The substrate 6 is made of, for example, a ceramic substrate, a resin substrate, a glass substrate, or the like.
 半導体パッケージ1は、基体2と配線基板4との間に基板6を備えていることによって、配線基板4がフレキシブル基板等の場合であっても、半導体パッケージ1の強度を保つことができる。つまり、外部から力が加えられても半導体パッケージ1の内部、特に半導体素子等の接続、各端子への負荷を抑制することができる。 Since the semiconductor package 1 includes the substrate 6 between the base 2 and the wiring substrate 4, the strength of the semiconductor package 1 can be maintained even when the wiring substrate 4 is a flexible substrate or the like. That is, even when a force is applied from the outside, it is possible to suppress the connection inside the semiconductor package 1, particularly the connection of the semiconductor element and the load on each terminal.
  <半導体パッケージの製造方法>
 基体2は、Fe-Mn合金から成る場合は、このインゴット(塊)に圧延加工や打ち抜き加工等の周知の金属加工方法を施すことによって所定形状に製作され、第1の貫通孔21はドリル加工や金型による打ち抜き加工によって形成される。また、基体2の搭載面1bは、切削加工やプレス加工することによって形成することができる。
<Semiconductor package manufacturing method>
When the base 2 is made of an Fe—Mn alloy, the ingot (lumb) is manufactured in a predetermined shape by applying a known metal processing method such as rolling or punching, and the first through hole 21 is drilled. It is formed by punching with a metal mold. Further, the mounting surface 1b of the base body 2 can be formed by cutting or pressing.
 信号端子3は、Fe-Ni-Co合金やFe-Ni合金等の金属から成り、たとえば信号端子3がFe-Ni-Co合金から成る場合は、このインゴット(塊)に圧延加工や打ち抜き加工、切削加工等の金属加工方法を施すことによって、長さが1.5mm~22mmで直径が0.1mm~1mmの線状に製作される。 The signal terminal 3 is made of a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy. For example, when the signal terminal 3 is made of an Fe—Ni—Co alloy, the ingot (lumb) is rolled or punched, By applying a metal processing method such as cutting, a wire having a length of 1.5 mm to 22 mm and a diameter of 0.1 mm to 1 mm is manufactured.
 信号端子3を第1の貫通孔21に充填された封止材22を貫通して固定するには、たとえば、封止材がガラスから成る場合は、まず、粉体プレス法や押し出し成形法を用いてガラス粉末を成形する。次に、内径を信号端子3の外径に合わせ、外径を第1の貫通孔21の形状に合わせた筒状の成形体を作製する。この封止材22の成形体の孔に信号端子3を挿通して成形体を型に挿入して、所定の温度に加熱してガラスを溶融させた後、冷却して固化させる。固化させることによって、信号端子3が固定された所定形状の封止材を形成しておく。これにより、封止材22によって貫通孔21が気密に封止されるとともに、封止材22によって信号端子3が基体2と絶縁されて固定され、同軸線路が形成される。あらかじめ貫通孔21の形状に合わせた封止材だけを形成しておき、これを貫通孔21に挿入するとともに信号端子3も封止材22の孔に挿通し、封止材22と第1の貫通孔21の内面および信号端子3の外面との接合を同時に行なってもよい。 In order to fix the signal terminal 3 through the sealing material 22 filled in the first through hole 21, for example, when the sealing material is made of glass, first, a powder pressing method or an extrusion molding method is used. Use to mold glass powder. Next, a cylindrical molded body is produced in which the inner diameter is matched with the outer diameter of the signal terminal 3 and the outer diameter is matched with the shape of the first through hole 21. The signal terminal 3 is inserted into the hole of the molded body of the sealing material 22, the molded body is inserted into a mold, heated to a predetermined temperature to melt the glass, and then cooled and solidified. By solidifying, a sealing material having a predetermined shape to which the signal terminal 3 is fixed is formed. Thereby, the through hole 21 is hermetically sealed by the sealing material 22, and the signal terminal 3 is insulated and fixed from the base 2 by the sealing material 22, thereby forming a coaxial line. Only the sealing material that matches the shape of the through hole 21 is formed in advance, and this is inserted into the through hole 21 and the signal terminal 3 is also inserted into the hole of the sealing material 22, and the sealing material 22 and the first The inner surface of the through hole 21 and the outer surface of the signal terminal 3 may be joined at the same time.
 信号端子3は、Fe-Ni-Co合金やFe-Ni合金等の金属から成り、たとえば信号端子3がFe-Ni-Co合金から成る場合は、このインゴット(塊)に圧延加工や打ち抜き加工、切削加工等の金属加工方法を施すことによって、長さが1.5mm~22mmで直径が0.1mm~1mmの線状に製作される。 The signal terminal 3 is made of a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy. For example, when the signal terminal 3 is made of an Fe—Ni—Co alloy, the ingot (lumb) is rolled or punched, By applying a metal processing method such as cutting, a wire having a length of 1.5 mm to 22 mm and a diameter of 0.1 mm to 1 mm is manufactured.
 基体2には接地端子5が接合される。接地端子5は、信号端子3と同様にして製作され、基体2の下面にろう材等を用いて接合される。位置決めの容易性と接合強度の向上のために、予め基体2の下面に穴を形成しておき、その穴に接地端子5を挿入して接合してもよい。このようにして基体2に接地端子5を接合することによって、接続端子3を外部電気回路に接続した際には、基体2が接地導体としても機能する。 The ground terminal 5 is joined to the base 2. The ground terminal 5 is manufactured in the same manner as the signal terminal 3 and is joined to the lower surface of the base 2 using a brazing material or the like. In order to facilitate positioning and improve bonding strength, a hole may be formed in the lower surface of the base 2 in advance, and the ground terminal 5 may be inserted into the hole for bonding. By joining the ground terminal 5 to the base body 2 in this way, the base body 2 also functions as a ground conductor when the connection terminal 3 is connected to an external electric circuit.
 配線基板4は、たとえばフレキシブル配線基板である場合には、ポリイミド等からなる絶縁性を持った、薄く柔らかいベースフィルムの上下面に銅箔等の導電性金属を貼り合わせ、導電性金属を所定の形状にエッチング加工することにより、所望の形状からなる接地導体層41および線路導体42が設けられた配線基板4が作製される。 When the wiring substrate 4 is, for example, a flexible wiring substrate, a conductive metal such as copper foil is bonded to the upper and lower surfaces of a thin and soft base film having an insulating property made of polyimide or the like. By etching into the shape, the wiring board 4 provided with the ground conductor layer 41 and the line conductor 42 having a desired shape is manufactured.
 このようにして作製した配線基板4を基体2の下面にはんだを介して、接合し、信号端子3の先端と線路導体42をろう材で接続することで、本発明の実施形態に係る半導体パッケージ1となる。 The wiring board 4 manufactured in this way is joined to the lower surface of the base 2 via solder, and the tip of the signal terminal 3 and the line conductor 42 are connected with a brazing material, whereby the semiconductor package according to the embodiment of the present invention. 1
  <半導体装置の構造>
 図7は、本発明の一実施形態に係る半導体装置10の斜視図を示している。図7において、本発明の一実施形態に係る半導体装置10は、本発明の実施形態に係る半導体パッケージ1と、基体2に実装された半導体素子7と、基体2に接合された蓋体8を備えている。
<Structure of semiconductor device>
FIG. 7 is a perspective view of the semiconductor device 10 according to an embodiment of the present invention. In FIG. 7, a semiconductor device 10 according to an embodiment of the present invention includes a semiconductor package 1 according to an embodiment of the present invention, a semiconductor element 7 mounted on a base 2, and a lid 8 bonded to the base 2. I have.
 半導体素子7としては、LD(レーザーダイオード)やPD(フォトダイオ-ド)等の光半導体素子、半導体集積回路素子を含む半導体素子、水晶振動子や弾性表面波素子等の圧電素子、圧力センサー素子、容量素子、抵抗器等が挙げられる。これらの半導体素子は、基体2に実装される。 Examples of the semiconductor element 7 include optical semiconductor elements such as LD (laser diode) and PD (photodiode), semiconductor elements including semiconductor integrated circuit elements, piezoelectric elements such as crystal resonators and surface acoustic wave elements, and pressure sensor elements. , Capacitive elements, resistors and the like. These semiconductor elements are mounted on the base 2.
 半導体素子7の基体2への実装は、ろう材や導電性樹脂等の導電性の接合材によって固定することによって行なえばよい。たとえば、配線基板4を基体2と接合した後に半導体素子7を基体2に実装する場合は、配線基板4の固定には金-錫(Au-Sn)合金や金-ゲルマニウム(Au-Ge)合金のろう材を接合材として用い、半導体素子7の固定には、これらよりも融点の低い錫-銀(Sn-Ag)合金や錫-銀-銅(Sn-Ag-Cu)合金のろう材や、融点よりも低い温度で硬化可能な、Agエポキシ等の樹脂製の接着剤を接合材として用いればよい。 The semiconductor element 7 may be mounted on the base 2 by being fixed with a conductive bonding material such as a brazing material or a conductive resin. For example, when the semiconductor element 7 is mounted on the base 2 after the wiring board 4 is joined to the base 2, a gold-tin (Au—Sn) alloy or a gold-germanium (Au—Ge) alloy is used to fix the wiring board 4. In order to fix the semiconductor element 7, a brazing material such as a tin-silver (Sn—Ag) alloy or a tin-silver-copper (Sn—Ag—Cu) alloy having a lower melting point is used to fix the semiconductor element 7. An adhesive made of a resin such as Ag epoxy that can be cured at a temperature lower than the melting point may be used as the bonding material.
 また、半導体素子7を基体2に実装した後に配線基板4を基体2に実装してもよく、その場合は上記とは逆に、配線基板4を基体2に実装する際に用いる接合材の融点の方を低くすればよい。いずれの場合であっても、配線基板4や基体2に接合材のペーストをスクリーン印刷法を用いて印刷したり、フォトリソグラフィ法によって接合材層を形成したり、接合材となる低融点ろう材のプリフォームを載置するなどすればよい。 Further, the wiring board 4 may be mounted on the base 2 after the semiconductor element 7 is mounted on the base 2. In this case, contrary to the above, the melting point of the bonding material used when mounting the wiring board 4 on the base 2. Should be lower. In any case, the paste of the bonding material is printed on the wiring board 4 or the base body 2 by using a screen printing method, a bonding material layer is formed by a photolithography method, or the low melting point brazing material to be the bonding material For example, a preform can be placed.
 蓋体8は、図7および図8に示すように、基体2の外周領域に沿った外形で、基体2に実装された半導体素子7を覆うような空間を有する形状のものである。大きさは、上面視において基体2と同じ大きさである。また、蓋体8は基体2より小さくてもよい。半導体素子7と対向する部分に光を透過させる窓として第3の貫通孔81を設ける。第3の貫通孔81に換えて、または窓に加えて光ファイバおよび戻り光防止用の光アイソレータを接合したものでもよい。 As shown in FIGS. 7 and 8, the lid body 8 has an outer shape along the outer peripheral region of the base body 2 and a shape having a space that covers the semiconductor element 7 mounted on the base body 2. The size is the same as that of the base 2 in a top view. Further, the lid 8 may be smaller than the base 2. A third through hole 81 is provided as a window that transmits light in a portion facing the semiconductor element 7. Instead of the third through hole 81 or in addition to the window, an optical fiber and an optical isolator for preventing return light may be joined.
 蓋体8は、Fe-Ni-Co合金やFe-Ni合金、Fe-Mn合金等の金属から成り、これらの板材にプレス加工や打ち抜き加工等の周知の金属加工方法を施すことによって作製される。蓋体8は、基体2の材料と同程度の熱膨張係数を有するものがよく、基体2の材料と同じものを用いるのがよりよい。蓋体8が第3の貫通孔81を有する場合は、半導体素子7と対向する部分に孔を設けたものに、平板状やレンズ状のガラス製の窓部材を低融点ガラスなどによって接合する。蓋体8の基体2への接合は、シーム溶接やYAGレーザ溶接等の溶接またはAu-Snろう材等のろう材によるろう接によって行なわれる。 The lid 8 is made of a metal such as an Fe—Ni—Co alloy, an Fe—Ni alloy, or an Fe—Mn alloy, and is produced by subjecting these plate materials to a known metal working method such as press working or punching. . The lid 8 should preferably have the same thermal expansion coefficient as the material of the base 2, and it is better to use the same material as that of the base 2. When the lid 8 has the third through-hole 81, a flat or lens-shaped glass window member is joined to a member provided with a hole in a portion facing the semiconductor element 7 with a low melting point glass or the like. The lid 8 is joined to the base 2 by welding such as seam welding or YAG laser welding or brazing with a brazing material such as an Au—Sn brazing material.
 基体2に半導体素子7を実装し、半導体素子7の端子と配線基板4の線路導体42とをボンディングワイヤ等で接続するとともに、枠部の上面に蓋体8を接合することによって、本発明の一実施形態に係る半導体装置となる。この例では半導体素子7は基体2に直接実装されているが、これは半導体素子7で発生した熱を金属製の基体2を通して外部へ放熱するためである。半導体素子7の発熱が大きい場合は、半導体素子7(および配線基板4)との間にペルチェ素子等を搭載して、半導体素子7を冷却するようにしてもよい。 The semiconductor element 7 is mounted on the base 2, the terminal of the semiconductor element 7 and the line conductor 42 of the wiring substrate 4 are connected by a bonding wire or the like, and the lid body 8 is joined to the upper surface of the frame portion. A semiconductor device according to one embodiment is obtained. In this example, the semiconductor element 7 is directly mounted on the base 2, which is to radiate the heat generated in the semiconductor element 7 to the outside through the metal base 2. When the semiconductor element 7 generates a large amount of heat, a Peltier element or the like may be mounted between the semiconductor element 7 (and the wiring board 4) to cool the semiconductor element 7.
 また、図8に示すように、半導体装置10は、図6に示した半導体パッケージ1と同様に補強部材としての基板6を備えていてもよい。半導体装置10は基板6を備えていることによって、フレキシブル基板等から成る配線基板4の強度を向上させることができる。 Further, as shown in FIG. 8, the semiconductor device 10 may include a substrate 6 as a reinforcing member similarly to the semiconductor package 1 shown in FIG. Since the semiconductor device 10 includes the substrate 6, the strength of the wiring substrate 4 made of a flexible substrate or the like can be improved.
 以上に説明した、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更等が可能である。さらに、請求の範囲に属する変更等は全て本発明の範囲内のものである。 The present invention described above is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. Further, all modifications and the like belonging to the claims are within the scope of the present invention.
1 半導体パッケージ
2 基体
21 貫通孔(第1の貫通孔)
22 封止材
23 固定部材
3 信号端子
31 一方の端部
32 他方の端部
4 配線基板
41 接地導体層
42 線路導体
43 第2の貫通孔
5 接地端子
6 基板
7 半導体素子
8 蓋体
81 第3の貫通孔
9 内部配線基板
91 信号線路
10 半導体装置
DESCRIPTION OF SYMBOLS 1 Semiconductor package 2 Base | substrate 21 Through-hole (1st through-hole)
22 sealing material 23 fixing member 3 signal terminal 31 one end 32 other end 4 wiring board 41 ground conductor layer 42 line conductor 43 second through hole 5 ground terminal 6 substrate 7 semiconductor element 8 lid 81 third Through hole 9 Internal wiring board 91 Signal line 10 Semiconductor device

Claims (5)

  1.  厚み方向に貫通する貫通孔を有する基体と、
    前記貫通孔に設けられた信号端子と、
    前記基体の下面との間である上面に接地導体層と、下面に前記接地導体層と重なるように、前記信号端子と接続された線路導体とが設けられた配線基板と、
    前記配線基板を貫通して、前記接地導体層と接続された接地端子とを備えており、
    前記接地端子は、前記基体の外縁と重なる位置から、前記線路導体を伝送される高周波信号の波長の4分の1未満の距離に設けられていることを特徴とする半導体パッケージ。
    A substrate having a through-hole penetrating in the thickness direction;
    A signal terminal provided in the through hole;
    A wiring board provided with a ground conductor layer on an upper surface between the lower surface of the base and a line conductor connected to the signal terminal so as to overlap the ground conductor layer on a lower surface;
    A ground terminal connected to the ground conductor layer through the wiring board;
    The semiconductor package according to claim 1, wherein the ground terminal is provided at a distance less than a quarter of a wavelength of a high-frequency signal transmitted through the line conductor from a position overlapping with an outer edge of the base.
  2.  平面透視において、前記基体と重なる位置に設けられた前記接地導体層は、前記接地端子から、前記線路導体を伝送される高周波信号の波長の4分の1未満の距離に設けられていることを特徴とする請求項1に半導体パッケージ。 In planar perspective, the ground conductor layer provided at a position overlapping the base body is provided at a distance of less than a quarter of the wavelength of the high-frequency signal transmitted through the line conductor from the ground terminal. The semiconductor package according to claim 1.
  3.  前記信号端子は、前記接地端子から前記線路導体を伝送される高周波信号の波長の4分の1未満の距離に設けられていることを特徴とする請求項1または請求項2に記載の半導体パッケージ。 3. The semiconductor package according to claim 1, wherein the signal terminal is provided at a distance of less than a quarter of a wavelength of a high-frequency signal transmitted through the line conductor from the ground terminal. .
  4.  平面透視において、前記基体と前記配線基板の間に、基板をさらに備えていることを特徴とする請求項1~3のいずれか1つに記載の半導体パッケージ。 The semiconductor package according to any one of claims 1 to 3, further comprising a substrate between the base body and the wiring substrate in plan perspective.
  5.  請求項1~4のいずれか1つに記載の半導体パッケージと、
    前記半導体パッケージ内に実装された半導体素子と、
    前記半導体パッケージの前記基体に接合された蓋体とを備えていることを特徴とする半導体装置。
    A semiconductor package according to any one of claims 1 to 4;
    A semiconductor element mounted in the semiconductor package;
    A semiconductor device comprising: a lid joined to the base of the semiconductor package.
PCT/JP2017/016419 2016-04-26 2017-04-25 Semiconductor package and semiconductor device using same WO2017188269A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780024399.9A CN109075527B (en) 2016-04-26 2017-04-25 Semiconductor package and semiconductor device using the same
JP2018514634A JP6849670B2 (en) 2016-04-26 2017-04-25 Semiconductor package and semiconductor device using it
KR1020187029979A KR102164911B1 (en) 2016-04-26 2017-04-25 Semiconductor package and semiconductor device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016088170 2016-04-26
JP2016-088170 2016-04-26

Publications (1)

Publication Number Publication Date
WO2017188269A1 true WO2017188269A1 (en) 2017-11-02

Family

ID=60160793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016419 WO2017188269A1 (en) 2016-04-26 2017-04-25 Semiconductor package and semiconductor device using same

Country Status (4)

Country Link
JP (1) JP6849670B2 (en)
KR (1) KR102164911B1 (en)
CN (1) CN109075527B (en)
WO (1) WO2017188269A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264320B1 (en) * 2022-07-19 2023-04-25 三菱電機株式会社 Semiconductor laser light source device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027136A (en) * 2019-08-02 2021-02-22 CIG Photonics Japan株式会社 Optical module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228766A (en) * 2004-02-10 2005-08-25 Opnext Japan Inc Optical transmitter
JP2008211072A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Optical module
JP2010245507A (en) * 2009-01-27 2010-10-28 Kyocera Corp Package for mounting electronic component thereon, and electronic device using the same
JP2011134740A (en) * 2009-12-22 2011-07-07 Kyocera Corp Package for mounting electronic component, and electronic device using the same
JP2012064817A (en) * 2010-09-16 2012-03-29 Kyocera Corp Package for mounting electronic component and module for communication
JP2012238647A (en) * 2011-05-10 2012-12-06 Sumitomo Electric Device Innovations Inc Optical element mounting package and optical module
JP2013197274A (en) * 2012-03-19 2013-09-30 Nippon Telegr & Teleph Corp <Ntt> Optical module

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3436009B2 (en) * 1996-07-31 2003-08-11 住友電気工業株式会社 Optical semiconductor device
JPH1197846A (en) * 1997-09-16 1999-04-09 Micronics Japan Co Ltd Wiring board and wiring apparatus using the same
JP4091938B2 (en) * 2004-10-21 2008-05-28 日東電工株式会社 Method for manufacturing printed circuit board
JP2007123738A (en) * 2005-10-31 2007-05-17 Sony Corp Optical transmission module, optical transmission/reception module and optical communication apparatus
CN101246886B (en) * 2008-03-19 2010-06-02 江苏宏微科技有限公司 Power transistor with MOS structure and production method thereof
CN101587933B (en) * 2009-07-07 2010-12-08 苏州晶方半导体科技股份有限公司 Wafer level encapsulating structure of a luminous diode and manufacturing method thereof
US8475058B2 (en) * 2010-08-18 2013-07-02 Sumitomo Electric Industries, Ltd. Optical module with ceramic package reducing optical coupling stress
JP2013089727A (en) * 2011-10-17 2013-05-13 Fujikura Ltd Flexible printed circuit board
CN204597019U (en) * 2012-06-29 2015-08-26 株式会社村田制作所 Cable is fixed on fixed structure and the cable of circuit board
JP6218481B2 (en) 2012-09-27 2017-10-25 三菱電機株式会社 Flexible substrate, substrate connection structure, and optical module
JP5902825B2 (en) * 2012-10-29 2016-04-13 京セラ株式会社 Device storage package and mounting structure
KR20140057979A (en) * 2012-11-05 2014-05-14 삼성전자주식회사 Semiconductor package and method of manufacturing the semiconductor package
KR20150075347A (en) * 2013-12-25 2015-07-03 가부시끼가이샤 도시바 Semiconductor package, semiconductor module and semiconductor device
JP6305179B2 (en) * 2014-04-15 2018-04-04 日本オクラロ株式会社 Optical module
JP6317989B2 (en) * 2014-04-24 2018-04-25 新光電気工業株式会社 Wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228766A (en) * 2004-02-10 2005-08-25 Opnext Japan Inc Optical transmitter
JP2008211072A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Optical module
JP2010245507A (en) * 2009-01-27 2010-10-28 Kyocera Corp Package for mounting electronic component thereon, and electronic device using the same
JP2011134740A (en) * 2009-12-22 2011-07-07 Kyocera Corp Package for mounting electronic component, and electronic device using the same
JP2012064817A (en) * 2010-09-16 2012-03-29 Kyocera Corp Package for mounting electronic component and module for communication
JP2012238647A (en) * 2011-05-10 2012-12-06 Sumitomo Electric Device Innovations Inc Optical element mounting package and optical module
JP2013197274A (en) * 2012-03-19 2013-09-30 Nippon Telegr & Teleph Corp <Ntt> Optical module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264320B1 (en) * 2022-07-19 2023-04-25 三菱電機株式会社 Semiconductor laser light source device

Also Published As

Publication number Publication date
KR20180123122A (en) 2018-11-14
CN109075527A (en) 2018-12-21
JP6849670B2 (en) 2021-03-24
KR102164911B1 (en) 2020-10-13
CN109075527B (en) 2021-06-29
JPWO2017188269A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP5473583B2 (en) Electronic component mounting package and electronic device using the same
US9273914B2 (en) Electronic component mounting package and electronic apparatus using the same
JP5409432B2 (en) Electronic component mounting package and electronic device using the same
JP2016189431A (en) Package for mounting electronic component and electronic component using the same
JP4874298B2 (en) Connection structure between signal terminal and signal line conductor, electronic component mounting package and electronic device
JP2009152520A (en) Connection structure between signal terminal and signal line conductor, electronic component mounting package, and electronic apparatus
JP5004824B2 (en) Connection structure between signal terminal and signal line conductor, electronic component mounting package and electronic device
JP6039470B2 (en) Electronic component mounting package and electronic device using the same
WO2017188269A1 (en) Semiconductor package and semiconductor device using same
CN107534021B (en) Electronic component mounting package and electronic device using same
JP2010245507A (en) Package for mounting electronic component thereon, and electronic device using the same
JP5312358B2 (en) Electronic component mounting package and electronic device using the same
JP6431441B2 (en) Electronic component mounting package and electronic device using the same
JP2009054982A (en) Package for mounting electronic component, and electronic equipment using the same
JP5361609B2 (en) Electronic component mounting package and electronic device
JP5361637B2 (en) Electronic component mounting package and electronic device using the same
JP5404484B2 (en) Electronic component mounting package and electronic device using the same
JP5519432B2 (en) High frequency package
JP5460089B2 (en) Electronic component mounting package and electronic device using the same
JP5725886B2 (en) Device storage package and mounting structure
JP2009054750A (en) Package for mounting electronic component, and electronic equipment using the same
JP2009158520A (en) Connection substrate and electronic device
JP2009283903A (en) Connection substrate and electronic device
JP2009283884A (en) Connection substrate and electronic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514634

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187029979

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789551

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789551

Country of ref document: EP

Kind code of ref document: A1