WO2017187990A1 - 透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム - Google Patents

透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム Download PDF

Info

Publication number
WO2017187990A1
WO2017187990A1 PCT/JP2017/015035 JP2017015035W WO2017187990A1 WO 2017187990 A1 WO2017187990 A1 WO 2017187990A1 JP 2017015035 W JP2017015035 W JP 2017015035W WO 2017187990 A1 WO2017187990 A1 WO 2017187990A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
light scatterer
transparent light
fine particles
reflective
Prior art date
Application number
PCT/JP2017/015035
Other languages
English (en)
French (fr)
Inventor
池田 哲
孝介 八牧
彰 松尾
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to EP17789277.5A priority Critical patent/EP3451058A4/en
Priority to CN201780023633.6A priority patent/CN109073963B/zh
Priority to KR1020187030867A priority patent/KR102013094B1/ko
Priority to JP2018503677A priority patent/JP6313919B2/ja
Priority to US16/096,192 priority patent/US10641933B2/en
Publication of WO2017187990A1 publication Critical patent/WO2017187990A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene

Definitions

  • the present invention is a transparent light scatterer that is excellent in transparency and color reproducibility, has high brightness, and can realize a reflective transparent screen that can clearly see an image, a reflective transparent screen including the same, And a video projection system including the same.
  • a reflective screen for a projector characterized by providing a diffusion layer has been proposed (see Patent Document 2). Furthermore, a reflective screen has been proposed in which a light diffusing layer formed of a continuous layer made of a transparent resin and a dispersion layer made of anisotropic transparent particles is laminated on a light reflecting substrate. (See Patent Document 3).
  • Patent Documents 1 to 3 have the following technical problems.
  • the reflective screen described in Patent Document 1 since the substrate surface is coated with a high concentration of scaly particles having an average particle diameter of 5 ⁇ m to 200 ⁇ m, the image cannot be clearly seen due to the glare of the coating film. Since a white vinyl chloride film is used, it is impossible to see through, and there is a technical problem that it cannot be suitably used as a transparent screen.
  • the reflective screen described in Patent Document 2 contains a scaly aluminum paste having an average particle size of 4 ⁇ m to 60 ⁇ m as a light reflector in a high concentration of 10 to 80 weight, and the obtained film is not transparent.
  • anisotropic transparent particles dispersed in a dispersion layer are non-metallic particles of mica, talc, and montmorillonite.
  • talc and montmorillonite are clay-based particles, regular reflectance is obtained.
  • talc and montmorillonite are clay-based particles, regular reflectance is obtained.
  • the present invention has been made in view of the above-described technical problems, and its purpose is to provide a transparent transparent screen that is excellent in transparency and color reproducibility, has high brightness, and can clearly see an image. It is to provide a light scatterer. Another object of the present invention is to provide a transparent screen including the transparent light scatterer, and to provide a video projection system including the transparent light scatterer or the transparent screen and a video projection device. is there.
  • the present inventors have solved the above technical problem by forming a transparent light scatterer by dispersing specific metal-based fine particles in a transparent binder. It has been found that a transparent light scatterer that can be suitably used for a reflective transparent screen is obtained. The present invention has been completed based on such findings. *
  • a transparent light scatterer comprising a transparent binder and metal-based fine particles
  • the metal material of the metal-based fine particles has a reflectance R of 50% or more at a measurement wavelength of 550 nm, and an absolute value of a difference between the reflectance R at a measurement wavelength of 450 nm and the reflectance R at a measurement wavelength of 650 nm is at a measurement wavelength of 550 nm.
  • a transparent light scatterer is provided in which the average secondary particle diameter of the metal-based fine particles in the transparent light scatterer is 100 nm to 2000 nm.
  • the content of the metal-based fine particles is preferably 0.0001 to 0.020% by mass with respect to the transparent binder.
  • a real term ⁇ ′ of the dielectric constant at a wavelength of 550 nm of the metal material is ⁇ 60 to 0.
  • the metal material is preferably at least one selected from the group consisting of aluminum, silver, platinum, titanium, nickel, and chromium.
  • the transparent light scatterer preferably has a haze value of 35% or less.
  • the transparent light scatterer preferably has a total light transmittance of 70% or more.
  • the transparency of the transparent light scatterer is 70% or more.
  • the transparent light scatterer is preferably for a reflective transparent screen.
  • a reflective transparent screen provided with the above transparent light scatterer.
  • the reflective transparent screen preferably has a diffuse reflected light relative luminance measured by a variable angle spectrophotometer satisfying the following condition A.
  • Condition A When the light is incident at an angle of 45 degrees with respect to the parallel direction of the reflective transparent screen surface and the brightness of 135 degrees which is the regular reflection direction is 100, the relative brightness of the diffuse reflected light of 90 degrees is 0. .001 or more.
  • a vehicle member provided with the above transparent light scatterer or the above reflective transparent screen.
  • a building member provided with the above transparent light scatterer or the above reflective transparent screen.
  • a video projection system including the above transparent light scatterer or the above reflective transparent screen and a video projection device.
  • the transparent light scatterer according to the present invention can realize a reflective transparent screen that is excellent in transparency and color reproducibility, has high luminance, and can clearly see an image. Furthermore, the transparent light scatterer by this invention can be used suitably also for the member for vehicles, or the member for buildings.
  • the transparent light scatterer according to the present invention can also be suitably used as a light guide plate used in an image display device, an image projection device, a scanner light source, and the like.
  • FIG. 1 is a schematic diagram showing an embodiment of a transparent screen and an image projection system according to the present invention. It is the schematic of the measurement conditions of diffuse reflected light relative luminance.
  • the transparent light scatterer according to the present invention comprises a transparent binder and metal-based fine particles.
  • transparent light scatterers metallic fine particles dispersed in a transparent binder aggregate at an appropriate size, and while maintaining transparency, the projection light emitted from the image projection device is anisotropically scattered and reflected. An image can be formed.
  • the transparent light scatterer according to the present invention is used as a reflective transparent screen, it is excellent in transparency and color reproducibility, has high luminance, and allows an image to be clearly seen.
  • Such a transparent light scatterer can also be suitably used as a reflective screen used in a head-up display, a wearable display or the like.
  • the term “transparent” is sufficient as long as the transparency can be realized according to the application, and includes “translucent”.
  • FIG. 1 shows a schematic cross-sectional view in the thickness direction of an embodiment of a transparent light scatterer according to the present invention.
  • the transparent light scatterer 10 is formed by dispersing metal-based fine particles 12 in a transparent binder 11.
  • the transparent light scatterer may be a multilayered structure that further includes other layers such as a protective layer, a base material layer, an adhesive layer, and an antireflection layer.
  • the transparent light scatterer preferably has a haze value of 35% or less, more preferably 1 to 25%, more preferably 1.5 to 20%, and even more preferably 2 to 15%. Particularly preferred is 2.5 to 10%.
  • the total light transmittance is preferably 70% or more, more preferably 75% or more, further preferably 80% or more, still more preferably 85% or more, and preferably 99% or less. More preferably, it is 97% or less, more preferably 95% or less, and still more preferably 90% or less.
  • the color tone can be evaluated by, for example, the values of a * and b * in the CIE 1976 (L *, a *, b *) color space.
  • the color of the scattered light when white light is incident is preferably -20 to +20 for both a * and b *, more preferably -10 to +10 for both a * and b *, and further preferably Both a * and b * are ⁇ 5 to +5. If the haze value and the total light transmittance are within the above ranges, the transparency is high and the transmission visibility can be further improved. If the values of a * and b * are within the above ranges, the color reproducibility is improved. Excellent screen performance.
  • the haze value and total light transmittance of the transparent light scatterer were measured using a turbidimeter (Nippon Denshoku Industries Co., Ltd., product number: NDH-5000) according to JIS-K-7361 and JIS- It can be measured according to K-7136.
  • the color of the transparent light scatterer is in the 0 degree direction when the incident angle is set to 45 degrees using a goniophotometer (manufactured by Nippon Denshoku Industries Co., Ltd., product number: GC5000L, D65 light source). It can be evaluated by the values of a * and b * when expressed in the CIE 1976 color space.
  • the transparency of the transparent light scatterer is preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, still more preferably 85% or more, and particularly preferably. It is 90% or more, preferably 99% or less, more preferably 98% or less, still more preferably 97% or less, and still more preferably 95% or less. If the image clarity of the transparent light scatterer is within the above range, the image seen through the transparent screen is very clear. In the present invention, the image clarity is a value of image definition (%) when measured with an optical comb width of 0.125 mm in accordance with JIS K7374.
  • the thickness of the transparent light scatterer is not particularly limited, but is preferably 0.1 ⁇ m to 20 mm, more preferably 0.5 ⁇ m from the viewpoints of application, productivity, handleability, and transportability. Is 15 mm, more preferably 1 ⁇ m to 10 mm.
  • the “transparent light scatterer” includes so-called films, sheets, and molded bodies having various thicknesses such as a coating film formed by coating on a substrate and a plate (plate-shaped molded product). To do.
  • a transparent binder is used in order to obtain a transparent light scatterer with high transparency.
  • the transparent binder include an organic binder and an inorganic binder.
  • thermoplastic resins and self-crosslinking resins such as thermosetting resins and ionizing radiation curable resins can be used.
  • thermoplastic resin examples include acrylic resins, polyester resins, polyolefin resins, cellulose resins, vinyl resins, polycarbonate resins, polystyrene resins, polyamide resins, fluorine resins, and polyimide resins. .
  • polymethyl methacrylate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polypropylene resin, cycloolefin polymer resin, cellulose acetate propionate resin, polyvinyl butyral resin, polycarbonate resin, nitrocellulose resin, and polystyrene resin are used. It is more preferable.
  • These resins can be used alone or in combination of two or more.
  • ionizing radiation curable resins include acrylic, urethane, acrylic urethane, epoxy, and silicone resins.
  • those having an acrylate-based functional group such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, many Monofunctional monomers such as (meth) allylate oligomers or prepolymers of polyfunctional compounds such as monohydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone And polyfunctional monomers such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropy
  • thermosetting resins examples include phenolic resins, epoxy resins, silicone resins, melamine resins, urethane resins, and urea resins. Among these, epoxy resins and silicone resins are preferable.
  • Examples of the highly transparent inorganic binder include water glass, a glass material having a low softening point, and a sol-gel material.
  • Water glass refers to a concentrated aqueous solution of alkali silicate, and sodium is usually included as an alkali metal.
  • a typical water glass can be represented by Na 2 O.nSiO 2 (n: any positive number), and as a commercial product, sodium silicate manufactured by Fuji Chemical Co., Ltd. can be used.
  • the glass material having a low softening point is a glass having a softening temperature of preferably 150 to 620 ° C., more preferably a softening temperature of 200 to 600 ° C., and most preferably a softening temperature of 250 to 550. It is in the range of ° C.
  • a PbO—B 2 O 3 system, a PbO—B 2 O 3 —SiO 2 system, a PbO—ZnO—B 2 O 3 system a mixture containing an acid component and a metal chloride is heat-treated.
  • the lead-free low softening point glass etc. which are obtained by this can be mentioned.
  • a solvent, a high boiling point organic solvent, and the like can be mixed with the low softening point glass material.
  • the sol-gel material is a group of compounds that are cured by hydrolysis polycondensation by the action of heat, light, catalyst, and the like.
  • metal alkoxide metal alcoholate
  • metal chelate compound metal halide
  • liquid glass spin-on glass
  • reaction product thereof which may contain a catalyst for promoting curing.
  • photoreactive functional group such as an acryl group
  • the cured sol-gel material refers to a state in which the polymerization reaction of the sol-gel material has sufficiently progressed.
  • the sol-gel material is chemically bonded to the surface of the inorganic substrate in the course of the polymerization reaction and strongly adheres. Therefore, a stable cured product layer can be formed by using a cured body of a sol-gel material as the cured product layer.
  • a metal alkoxide is a compound group obtained by reacting an arbitrary metal species with water or an organic solvent using a hydrolysis catalyst or the like.
  • the metal species of the metal alkoxide include silicon, titanium, aluminum, germanium, boron, zirconium, tungsten, sodium, potassium, lithium, magnesium, tin and the like.
  • metal alkoxides whose metal species is silicon include dimethyldiethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, methyltriethoxysilane (MTES), vinyltriethoxysilane, p-styryltriethoxysilane, methylphenyldioxysilane.
  • a compound group in which the ethoxy group of these compound groups is replaced by a methoxy group, a propyl group, an isopropyl group, a hydroxy group, or the like a compound group in which the ethoxy group of these compound groups is replaced by a methoxy group, a propyl group, an isopropyl group, a hydroxy group, or the like.
  • TEOS triethoxysilane
  • TMOS tetramethoxysilane
  • solvent used inorganic binders
  • the solvent is not limited to an organic solvent, and a solvent used in a general coating composition can be used.
  • hydrophilic solvents such as water can be used.
  • the binder of this invention is a liquid, it does not need to contain a solvent.
  • the solvent include alcohols such as methanol, ethanol, isopropyl alcohol (IPA), n-propanol, butanol, 2-butanol, ethylene glycol, propylene glycol, hexane, heptane, octane, decane, cyclohexane and the like.
  • alcohols such as methanol, ethanol, isopropyl alcohol (IPA), n-propanol, butanol, 2-butanol, ethylene glycol, propylene glycol, hexane, heptane, octane, decane, cyclohexane and the like.
  • Aliphatic hydrocarbons aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetramethylbenzene, ethers such as diethyl ether, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, isophorone, cyclohexanone, cyclopentanone, N- Ketones such as methyl-2-pyrrolidone, ether alcohols such as butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol
  • Glycols such as ethylene glycol and propylene glycol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl car
  • the metal material used for the metal-based fine particles a metal having excellent reflectivity for projected light and color reproducibility is used. Specifically, the metal material has a reflectance R at a measurement wavelength of 550 nm of 50% or more, preferably 55% or more, more preferably 60% or more, still more preferably 70% or more, and preferably Is 99% or less, more preferably 98% or less, still more preferably 97% or less, and even more preferably 95% or less.
  • reflectance R refers to the reflectance when light is incident on a metal material from the vertical direction.
  • the reflectance R can be calculated by the following formula (1) using the refractive index n and the extinction coefficient k, which are intrinsic values of the metal material.
  • n and k are, for example, in Handbook of Optical Constants of Solids: Volume 1 (by Edward D. Palik), PB Johnson and RW Christy, PHYSICAL REVIEW B, Vol. 6, No. 12, 4370-4379 (1972), etc. Are listed.
  • R ⁇ (1-n) 2 + k 2 ⁇ / ⁇ (1 + n) 2 + k 2 ⁇ Formula (1) That is, the reflectance R (550) at a measurement wavelength of 550 nm can be calculated from n and k measured at a wavelength of 550 nm.
  • the metal material has an absolute value of the difference between the reflectance R (450) at the measurement wavelength 450 nm and the reflectance R (650) at the measurement wavelength 650 nm within 25% of the reflectance R (650) at the measurement wavelength 550 nm. Yes, preferably within 20%, more preferably within 15%, even more preferably within 10%, preferably 0% or more, more preferably 0.5% or more, and even more Preferably it is 1% or more.
  • the metal material used for the metal-based fine particles has a real term ⁇ ′ (550) of a dielectric constant at 550 nm of preferably ⁇ 60 to 0, more preferably ⁇ 50 to ⁇ 5, still more preferably ⁇ 47 to ⁇ 8, Even more preferably, it is -45 to -10.
  • the real term ⁇ ′ of the dielectric constant can be calculated by the following formula (2) using the values of the refractive index n and the extinction coefficient k.
  • ⁇ ′ n 2 ⁇ k 2 formula (2)
  • the present invention is not bound by any theory, when the real term ⁇ ′ of the dielectric constant of the metal material satisfies the above numerical range, the following action occurs, and the transparent light scatterer is used as a reflective transparent screen.
  • any metal material may be used as long as it uses a metal material satisfying the above-described reflectance R, preferably the real term of the dielectric constant, and pure metals and alloys can also be used.
  • the pure metal is preferably selected from the group consisting of aluminum, silver, platinum, titanium, nickel, and chromium.
  • the metal-based fine particles fine particles made of these metal materials, or fine particles obtained by coating these metal materials with resin, glass, natural mica, or synthetic mica can be used.
  • the shape of the metal-based fine particles is not particularly limited, and flaky fine particles, substantially spherical fine particles, and the like can be used.
  • n (450) represents a refractive index at a measurement wavelength of 450 nm
  • n (550) represents a refractive index at a measurement wavelength of 550 nm
  • n (650) represents a refractive index at a measurement wavelength of 650 nm
  • K (450) represents an extinction coefficient at a measurement wavelength of 450 nm
  • k (550) represents an extinction coefficient at a measurement wavelength of 550 nm
  • k (650) represents an extinction coefficient at a measurement wavelength of 650 nm.
  • the metal-based fine particles are aggregated in an appropriate size that can achieve both transparency and reflectivity in the transparent light scatterer.
  • the average secondary particle diameter of the metal-based fine particles in the transparent light scatterer is 100 nm to 2000 nm, preferably 200 nm to 1800 nm, more preferably 300 nm to 1500 nm. If the average secondary particle size is too small, Rayleigh scattering occurs and blue light is reflected, so that the visually recognized image light is bluish. Furthermore, if the average secondary particle diameter is too small, it is necessary to add a large amount of fine particles in order to form an image of the projection light emitted from the projector, resulting in a light scatterer with poor transparency.
  • the average secondary particle diameter is 100 nm or more, the visually recognized image light can be prevented from being bluish. On the other hand, if the average secondary particle diameter is too large, forward scattering of the projection light increases, so that the haze increases and the transparency of the light scatterer decreases. When the average secondary particle diameter is 2000 nm or less, particularly excellent transparency can be realized.
  • the average secondary particle diameter is based on an image measured with a scanning electron microscope (SEM, manufactured by Hitachi High-Technologies Corporation, trade name: SU-1500). It is a value obtained by calculating the average value of the particle diameter when the particle diameter in the axial direction) / 2.
  • the content of the metal-based fine particles in the transparent light scatterer is preferably 0.0001 to 0.020% by mass, more preferably 0.0005 to 0.015% by mass with respect to the transparent binder, Preferably, the content is 0.001 to 0.01% by mass.
  • the content of the metal-based fine particles is 0.0001% or more, the projected light can be imaged more clearly, and when it is 0.020% by mass or less, the transparency of the film can be sufficiently suppressed. .
  • a transparent light scatterer by dispersing metallic fine particles in the resin at a very low concentration as in the above range, it is possible to form an image by sufficiently scattering and reflecting the projection light while maintaining transparency. it can.
  • the base material layer is a layer for supporting the transparent light scatterer, and can improve the strength of the transparent light scatterer.
  • the base material layer is preferably made of a highly transparent resin or glass that does not impair the transmission visibility and desired optical properties of the transparent light scatterer.
  • a resin for example, a highly transparent resin similar to the above transparent light scatterer can be used.
  • Acrylic resins acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, polyester resins, polyolefin resins, urethane resins, epoxy resins, polycarbonate resins, cellulose resins, Acetal resin, vinyl resin, polystyrene resin, polyamide resin, polyimide resin, melamine resin, phenol resin, silicone resin, polyarylate resin, polyvinyl alcohol resin, polyvinyl chloride resin, polysulfone resin Resins, thermoplastic resins such as fluorine resins, thermosetting resins, ionizing radiation curable resins, and the like can be suitably used.
  • seat which laminated
  • the thickness of a base material layer can be suitably changed according to a use and material so that the intensity
  • the protective layer may be laminated on both the front surface side (observer side) and the back surface side of the transparent light scatterer, or any one of them, such as light resistance, scratch resistance, substrate adhesion, and antifouling property. It is a layer for imparting functions.
  • the protective layer is preferably formed using a resin that does not impair the transmission visibility and desired optical characteristics of the transparent light scatterer.
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose resins such as diacetyl cellulose and triacetyl cellulose
  • acrylic resins such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymers, and the like.
  • styrene resins such as (AS resin), polycarbonate resins, and the like.
  • polyolefin resins such as polyethylene, polypropylene, ethylene / propylene copolymers, olefin resins having cycloolefin or norbornene structures, vinyl chloride resins, amide resins such as nylon and aromatic polyamide, imide resins, Sulfone resin, polyether sulfone resin, polyether ether ketone resin, polyphenylene sulfide resin, vinyl alcohol resin, vinylidene chloride resin, vinyl butyral resin, arylate resin, polyoxymethylene resin, epoxy resin Or the blend of the said resin etc. are mentioned as an example of resin which forms a protective film.
  • ionizing radiation curable resins such as acrylics, urethanes, acrylic urethanes, epoxies, and silicones, those obtained by mixing thermoplastic resins and solvents with ionizing radiation curable resins, and thermosetting resins.
  • the film forming component of the ionizing radiation curable resin composition is preferably one having an acrylate functional group, such as a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, Spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers or prepolymers such as (meth) arylate of polyfunctional compounds such as polyhydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, Monofunctional and polyfunctional monomers such as methylstyrene and N-vinylpyrrolidone, such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate Of diethyl methacrylate, diethylene glycol di
  • acetophenones, benzophenones, Michler benzoyl benzoate, ⁇ -amyloxime ester, tetramethylchuram mono are used as photopolymerization initiators.
  • a mixture of sulfide, thioxanthone, n-butylamine, triethylamine, poly-n-butylphosphine, or the like as a photosensitizer can be used.
  • the ionizing radiation curable resin composition can be cured by a normal curing method, that is, by irradiation with electron beams or ultraviolet rays.
  • a normal curing method that is, by irradiation with electron beams or ultraviolet rays.
  • electron beam curing 50 to 50 emitted from various electron beam accelerators such as Cockloft Walton type, bandegraph type, resonant transformation type, insulated core transformer type, linear type, dynamitron type, high frequency type, etc.
  • An electron beam having an energy of 1000 KeV, preferably 100 to 300 KeV is used.
  • ultraviolet rays emitted from rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. Available.
  • the protective layer is formed by applying the coating liquid of the ionizing radiation (ultraviolet ray) radiation curable resin composition by a method such as spin coating, die coating, dip coating, bar coating, flow coating, roll coating, gravure coating, or the like. It can be formed by applying to the surface side (observer side) and / or the back side of the transparent light scatterer for use, and curing the coating solution by the above-mentioned means.
  • a fine structure such as a concavo-convex structure, a prism structure, or a microlens structure can be provided on the surface of the protective layer according to the purpose.
  • An adhesion layer is a layer for sticking a transparent light-scattering body to a support body.
  • the pressure-sensitive adhesive layer is preferably formed using a pressure-sensitive adhesive composition that does not impair the transmission visibility and desired optical properties of the transparent light scatterer.
  • the pressure-sensitive adhesive composition include natural rubber, synthetic rubber, acrylic resin, polyvinyl ether resin, urethane resin, and silicone resin.
  • synthetic rubbers include styrene-butadiene rubber, acrylonitrile-butadiene rubber, polyisobutylene rubber, isobutylene-isoprene rubber, styrene-isoprene block copolymer, styrene-butadiene block copolymer, styrene-ethylene-butylene block.
  • a copolymer is mentioned.
  • Specific examples of the silicone resin system include dimethylpolysiloxane.
  • the acrylic resin pressure-sensitive adhesive is a polymer containing at least a (meth) acrylic acid alkyl ester monomer. Generally, it is a copolymer of a (meth) acrylic acid alkyl ester monomer having an alkyl group having about 1 to 18 carbon atoms and a monomer having a carboxyl group.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • Examples of (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, sec-propyl (meth) acrylate, (meth) acrylic acid n-butyl, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid Examples include n-octyl, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, undecyl (meth) acrylate, and lauryl (meth) acrylate. Further, the above (meth) acrylic acid alkyl ester is usually copolymerized at a ratio of 30 to 99.5
  • Examples of the monomer having a carboxyl group that forms the acrylic resin pressure-sensitive adhesive include monomers containing a carboxyl group such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, monobutyl maleate and ⁇ -carboxyethyl acrylate. Can be mentioned.
  • the acrylic resin pressure-sensitive adhesive may be copolymerized with a monomer having another functional group within a range not impairing the characteristics of the acrylic resin pressure-sensitive adhesive.
  • monomers having other functional groups include monomers containing hydroxyl groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and allyl alcohol; (meth) acrylamide, N-methyl Monomers containing amide groups such as (meth) acrylamide and N-ethyl (meth) acrylamide; Monomers containing amide groups and methylol groups such as N-methylol (meth) acrylamide and dimethylol (meth) acrylamide; Monomers having functional groups such as monomers containing amino groups such as meth) acrylate, dimethylaminoethyl (meth) acrylate and vinylpyridine; ⁇ ⁇ ⁇ ⁇ epoxy group-containing monomers such as allyl glycidyl ether and (meth)
  • fluorine-substituted (meth) acrylic acid alkyl ester, (meth) acrylonitrile and the like, vinyl group-containing aromatic compounds such as styrene and methylstyrene, vinyl acetate, and vinyl halide compounds can be used.
  • adhesives such as SK Dyne 2094, SK Dyne 2147, SK Dyne 1811L, SK Dyne 1442, SK Dyne 1435, and SK Dyne 1415 (above, manufactured by Soken Chemical Co., Ltd.), Olivain EG-655, Olivevine BPS5896 (above, manufactured by Toyo Ink Co., Ltd.), etc. (above, trade name) can be suitably used.
  • the antireflection layer is a layer for preventing reflection on the surface of the transparent light scatterer or, when the transparent light scatterer is a laminate with a support or the like, or reflection from outside light on the laminate. It is.
  • the antireflection layer may be laminated only on one side of the transparent light scatterer or the laminate on the viewer side or on the opposite side, or may be laminated on both sides. In particular, when used as a reflective screen, it is preferably laminated on the viewer side.
  • the antireflection layer is preferably formed using a resin or metal that does not impair the transmission visibility and desired optical properties of the transparent light scatterer or the laminate.
  • a resin curable by ultraviolet rays or an electron beam that is, an ionizing radiation curable resin, a mixture of an ionizing radiation curable resin and a thermoplastic resin and a solvent, and a thermosetting resin are used.
  • ionizing radiation curable resins are particularly preferable.
  • the method for forming the antireflection layer is not particularly limited, but is a method of pasting a coating film, a method of dry coating directly on a film substrate by vapor deposition or sputtering, gravure coating, micro gravure coating, bar coating, slide die coating. Methods such as wet coating such as coating, slot die coating, and dip coating can be used.
  • the method for producing a transparent light scatterer according to the present invention includes a step of forming a transparent light scatterer.
  • the process of forming the transparent light scatterer includes an extrusion method comprising a kneading step and a film forming step, a cast film forming method, a spin coat, a die coat, a dip coat, a bar coat, a flow coat, a roll coat, a gravure coat, a spray coat, etc.
  • the coating method, injection molding method, calendar molding method, blow molding method, compression molding method, cell casting method, etc. can be molded and processed by known methods. The method can be suitably used.
  • each process of the extrusion molding method will be described in detail.
  • mixing process is a process of knead
  • the kneading extruder may be a single screw kneading extruder or a biaxial kneading extruder.
  • the average value over the entire screw length of the twin-screw kneading extruder is preferably 3 to 1800 KPa, more preferably 6 to 1400 KPa, while applying the above resin and metal-based fine particles.
  • a step of kneading to obtain a resin composition is preferred.
  • the shear stress is within the above range, the fine particles can be sufficiently dispersed in the resin.
  • the shear stress is 3 KPa or more, the dispersion uniformity of the fine particles can be further improved, and if it is 1800 KPa or less, decomposition of the resin is prevented and bubbles are prevented from being mixed into the transparent light scattering body. Can do.
  • the shear stress can be set in a desired range by adjusting the twin-screw kneading extruder.
  • a resin (masterbatch) to which fine particles have been added in advance and a resin to which fine particles have not been added are kneaded using a single-screw kneading extruder or a twin-screw kneading extruder, A resin composition may be obtained.
  • a master batch may be produced using a single-screw kneading extruder, or a master batch may be produced by adding a commonly known dispersant.
  • additives may be added to the resin composition as long as the transmission visibility of the transparent light scatterer and desired optical performance are not impaired.
  • the additive include an antioxidant, a lubricant, an ultraviolet absorber, a compatibilizer, a nucleating agent, and a stabilizer.
  • the resin and the fine particles are as described above.
  • the twin-screw kneading extruder used in the kneading process is one in which two screws are inserted into a cylinder, and is configured by combining screw elements.
  • a flight screw including at least a conveying element and a kneading element can be suitably used.
  • the kneading element preferably contains at least one selected from the group consisting of a kneading element, a mixing element, and a rotary element.
  • the film forming step is a step of forming a film of the resin composition obtained in the kneading step.
  • the film forming method is not particularly limited, and a transparent light scatterer comprising a resin composition can be formed by a conventionally known method.
  • the resin composition obtained in the kneading step is supplied to a melt extruder heated to a temperature equal to or higher than the melting point (Tm to Tm + 70 ° C.) to melt the resin composition.
  • a melt extruder a single screw kneading extruder, a twin screw kneading extruder, a vent extruder, a tandem extruder, etc. can be used according to the objective.
  • the molten resin composition is extruded into a sheet shape by a die such as a T die, and the extruded sheet material is rapidly cooled and solidified by a rotating cooling drum or the like to form a sheet-shaped molded body.
  • a die such as a T die
  • the resin composition obtained in the kneading process is directly extruded from a die in a molten state to form a sheet-like transparent light scatterer. You can also.
  • the sheet-like transparent light scatterer obtained by the film forming step may be further uniaxially or biaxially stretched by a conventionally known method. Mechanical strength can be improved by extending
  • a reflective transparent screen according to the present invention comprises the above transparent light scatterer.
  • the reflective transparent screen may be composed only of the transparent light scatterer described above, or may further include a support such as a transparent partition.
  • the reflective transparent screen may be a flat surface, a curved surface, or an uneven surface.
  • the support is for supporting the transparent light scatterer.
  • the support may be any support that does not impair the transmission visibility and desired optical characteristics of the reflective transparent screen. Examples thereof include a transparent partition, a glass window, a head-up display for a passenger car, and a wearable display.
  • the diffuse reflected light relative luminance measured with a variable angle spectrophotometer satisfies the following condition A.
  • Condition A when light is incident at an angle of 45 degrees with respect to the parallel direction of the screen surface, the brightness of the light diffusely reflected at an angle of 90 degrees is within a preferable range, so that a clear image can be obtained. Can be displayed.
  • Condition A When the light is incident at an angle of 45 degrees with respect to the parallel direction of the screen surface and the luminance of the regular reflection direction of 135 degrees is 100, the relative luminance of the 90-degree diffuse reflected light is 0.001 or more. Yes, preferably from 0.002 to 1, and more preferably from 0.004 to 0.5.
  • the vehicle member according to the present invention includes the transparent light scatterer or the reflective transparent screen described above, and may further include an antireflection layer or the like.
  • Examples of the vehicle member include a windshield and a side glass. Since the vehicle member includes the transparent light scatterer or the reflective transparent screen, a clear image can be displayed on the vehicle member without providing a separate screen.
  • the building member according to the present invention includes the transparent light scatterer or the reflective transparent screen, and may further include an antireflection layer or the like.
  • Examples of the building member include a window glass of a house, a glass wall of a convenience store, a road surface store, and the like. Since the building member includes the transparent light scatterer or the reflective transparent screen, a clear image can be displayed on the building member without providing a separate screen.
  • An image projection system includes the above-described transparent light scatterer or reflective transparent screen, and an image projection device.
  • the video projection apparatus is not particularly limited as long as it can project an image on a screen.
  • a commercially available front projector can be used.
  • FIG. 2 shows a schematic diagram of an embodiment of a reflective transparent screen and an image projection system according to the present invention.
  • the reflective transparent screen 20 includes a transparent partition (support) 21 and a transparent light scatterer 10 disposed on the observer 22 side on the transparent partition 21.
  • the transparent light scatterer 10 may include an adhesive layer in order to stick to the transparent partition 21.
  • the video projection system includes a reflective transparent screen 20 and a video projection device 23 installed on the same side (front side) as the observer 22 with respect to the reflective transparent screen 20.
  • the projection light 24 emitted from the video projection device 23 enters from the front side of the transparent screen 20 and is anisotropically scattered by the transparent light scatterer 10, so that the observer 22 can visually recognize the scattered light 25.
  • Image clarity Image clarity (%) measured using an image clarity measuring instrument (Suga Test Instruments Co., Ltd., product number: ICM-1T) in accordance with JIS K7374 with an optical comb width of 0.125 mm. The value of) was defined as image clarity. The larger the image sharpness value, the higher the image clarity, and the clearer the image seen through the transparent screen.
  • (6) Relative brightness of diffuse reflected light Using a variable angle spectrophotometer (manufactured by Murakami Color Research Laboratory, model number: GSP-2), light is emitted at an angle of 45 degrees with respect to the parallel direction of the reflective transparent screen surface.
  • the diffuse reflected light relative luminance was measured while changing the measurement angle, and the diffuse reflected light relative luminance at 90 degrees when the luminance in the regular reflection direction of 135 degrees was taken as 100 was calculated.
  • a schematic diagram of the method for measuring the diffuse reflected light relative luminance is shown in FIG. (7) Evaluation of simultaneous visibility of background image and projected image From a position 50 cm away from the normal direction of the transparent screen at an angle of 45 degrees to the lower side, an ultra short focus type projector (manufactured by Seiko Epson Corporation) , Model No .: EB-535W).
  • PET Polyethylene terephthalate
  • Al fine particles A Al fine particles manufactured by Nippon Ion Co., Ltd.
  • the obtained pellets were supplied to a hopper of a biaxial kneading extruder equipped with a strand die to obtain PET pellets in which aluminum fine particles A were kneaded at an extrusion temperature of 250 ° C.
  • the obtained aluminum fine particle A-containing PET pellets were put into a hopper of a single screw extruder equipped with a T die and extruded at 250 ° C. to form a film having a thickness of 100 ⁇ m to obtain a transparent light scatterer.
  • the average secondary particle diameter of the aluminum fine particles A in the obtained transparent light scatterer was measured and found to be 100 nm.
  • the transparent light scatterer has a haze value of 2.7%, a total light transmittance of 89.1%, a color index of a * of 0.12, and b * of 3.15, which is highly transparent. Had sex. Further, the image clarity was 93%, and the image seen through the transparent light scatterer was clear. Furthermore, using the transparent light scatterer as it is as a transparent screen, the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer, which was 0.118. When an image was projected with an ultra-short focus projector, A clear background image and a very clear projected image could be seen at the same time.
  • Example 2 A transparent light scatterer in the same manner as in Example 1 except that 0.015% by mass of aluminum fine particles B (aluminum powder manufactured by Daiwa Metal Powder Industry Co., Ltd.) was added instead of the aluminum fine particles A. Was made.
  • aluminum fine particles B aluminum powder manufactured by Daiwa Metal Powder Industry Co., Ltd.
  • the average secondary particle diameter of the aluminum fine particles B in the obtained transparent light scatterer was measured and found to be 1800 nm.
  • the transparent light scatterer has a haze value of 13.7%, a total light transmittance of 76.1%, a color index of a * of 0.15, and b * of 2.72, which is highly transparent. Had sex. Further, the image clarity was 85%, and the image seen through the transparent light scatterer was clear. Furthermore, using the transparent light scatterer as it is as a transparent screen, the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer, which was 0.025. A clear background image and a clear projected image could be seen at the same time.
  • Example 3 A transparent light scatterer was prepared in the same manner as in Example 1 except that 0.01% by mass of silver fine particles (aluminum powder manufactured by Shinko Chemical Co., Ltd.) was added to the PET pellets instead of the aluminum fine particles A. did.
  • silver fine particles aluminum powder manufactured by Shinko Chemical Co., Ltd.
  • the transparent light scatterer has a haze value of 4.1%, a total light transmittance of 83.6%, a color index of a * of ⁇ 0.06, and b * of 3.43, which are high. It had transparency. Further, the image clarity was 87%, and the image seen through the transparent light scatterer was clear. Furthermore, the transparent light scatterer was used as it was as a transparent screen, and the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer. As a result, it was 0.007. A clear background image and a very clear projected image could be seen at the same time.
  • Example 4 Using a sputtering apparatus (manufactured by ULVAC, model number: MLH-2304), a nickel thin film having a thickness of 500 nm was prepared by a DC magnetron sputtering method, and the resulting nickel thin film was pulverized (pulverizer manufactured by Nisshin Engineering Co., Ltd.) The powder of nickel fine particles A was obtained by pulverization according to model number: SJ-100C).
  • a transparent light scatterer was produced in the same manner as in Example 1 except that 0.0005 mass% of the above nickel fine particles A were added to the PET pellets instead of the aluminum fine particles A.
  • the average secondary particle diameter of the nickel fine particles A in the obtained transparent light scatterer was measured and found to be 1000 nm.
  • the transparent light scatterer has a haze value of 6.5%, a total light transmittance of 80.2%, a color index of a * of 0.49, and b * of 1.90, which is highly transparent. Had sex. Further, the image clarity was 92%, and the image seen through the transparent light scatterer was clear. Furthermore, using the transparent light scatterer as it is as a transparent screen, the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer, which was 0.005, and the image was projected with an ultra-short focus projector. Although the sharpness was inferior to Example 1, the background image and the projected image could be visually recognized at the same time.
  • Example 5 Transparent light scattering in the same manner as in Example 1 except that 0.004% by mass of aluminum fine particles C (produced by Daiwa Metal Powder Industry Co., Ltd., aluminum powder) was added instead of the aluminum fine particles A. The body was made.
  • aluminum fine particles C produced by Daiwa Metal Powder Industry Co., Ltd., aluminum powder
  • the transparent light scatterer has a haze value of 3.7%, a total light transmittance of 86.1%, a color index of a * of 0.17, and b * of 1.38, which is highly transparent. Had sex. Further, the image clarity was 91%, and the image seen through the transparent light scatterer was clear. Furthermore, the transparent light scatterer was directly used as a transparent screen, and the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer. As a result, it was 0.007. A clear background image and a clear projected image could be seen at the same time.
  • Example 6 Similarly to Example 4, a nickel thin film having a thickness of 300 nm was prepared using a sputtering apparatus, and the obtained nickel thin film was pulverized by a pulverizer to obtain a powder of nickel fine particles B.
  • a transparent light scatterer was produced in the same manner as in Example 1 except that 0.02% by mass of the nickel fine particles B was added to the PET pellets instead of the aluminum fine particles A.
  • the transparent light scatterer has a haze value of 9.2%, a total light transmittance of 71.6%, a color index of a * of 0.62, and b * of 2.35, which is highly transparent. Had sex. Further, the image clarity was 93%, and the image seen through the transparent light scatterer was clear. Furthermore, the transparent light scatterer was used as it was as a transparent screen, and the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer. As a result, it was 0.002. A clear background image and a clear projected image could be seen at the same time.
  • Example 7 A transparent light scatterer was produced in the same manner as in Example 1 except that 0.001% by mass of platinum fine particles (manufactured by Core Front Co., 9410DX) was added in place of the aluminum fine particles A.
  • the transparent light scatterer has a haze value of 5.4%, a total light transmittance of 88.3%, a color index of a * of 0.33, and b * of 2.42, which is highly transparent. Had sex. Further, the image clarity was 89%, and the image seen through the transparent light scatterer was clear. Furthermore, using the transparent light scatterer as it is as a transparent screen, the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer, which was 0.009, and the image was projected with an ultra-short focus type projector. A clear background image and a clear projected image could be seen at the same time.
  • Example 1 A transparent light scatterer was prepared in the same manner as in Example 1 except that 0.004% by mass of aluminum fine particles D (manufactured by Nippon Ion Co., Ltd., aluminum powder) was added in place of the aluminum fine particles A. Produced.
  • aluminum fine particles D manufactured by Nippon Ion Co., Ltd., aluminum powder
  • the transparent light scatterer had a haze value of 7.7%, a total light transmittance of 82.5%, a *, which is a color index, of 0.23, and b * of 1.18.
  • the image clarity was 82%.
  • the transparent light scatterer was used as it was as a transparent screen, and the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer. As a result, it was 0.0002, and the image was projected with an ultra-short focus projector. A clear background image and a clear projected image could not be seen at the same time.
  • Example 2 Transparent in the same manner as in Example 1 except that 0.10% by mass of titanium oxide fine particles (made by Ishihara Sangyo Co., Ltd., trade name: CR / EL) was added to the PET pellets instead of the aluminum fine particles A. A light scatterer was prepared.
  • titanium oxide fine particles made by Ishihara Sangyo Co., Ltd., trade name: CR / EL
  • the transparent light scatterer has a haze value of 7.3%, a total light transmittance of 82.8%, a color index of a * of ⁇ 1.66, and b * of ⁇ 12.90. It was opaque. Further, the image clarity was 83%, and the image seen through the transparent light scatterer was clear, but the color looked bluish as a whole, and the color reproducibility was poor. Further, the transparent light scatterer was used as it was as a transparent screen, and the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer, which was 0.010. A clear background image and a clear projected image could not be seen at the same time.
  • a copper thin film having a thickness of 30 nm was prepared by a DC magnetron sputtering method using a sputtering apparatus, and the obtained copper thin film was pulverized by a pulverizer to obtain copper fine particles.
  • a transparent light scatterer was produced in the same manner as in Example 1 except that 0.05% by mass of the above copper fine particles were added to the PET pellets instead of the aluminum fine particles A.
  • the transparent light scatterer has a haze value of 32.2%, a total light transmittance of 45.0%, a color index of a * of 13.87, and b * of 17.50.
  • the scatterer was opaque and inferior in color reproducibility. Further, the image clarity was 58%, and the image seen through the transparent light scatterer was clear.
  • the transparent light scatterer was used as it was as a transparent screen and the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer, it was 0.14, and a clear image could be visually recognized. When the image was projected by the focus type projector, a clear background image and a clear projection image could not be seen at the same time.
  • a gold thin film having a thickness of about 1000 ⁇ m was produced by a DC magnetron sputtering method using a sputtering apparatus, and the obtained gold thin film was pulverized by a pulverizer to obtain gold fine particles.
  • a transparent light scatterer was produced in the same manner as in Example 1 except that 0.0001% by mass of the above gold fine particles were added to the PET pellets instead of the aluminum fine particles A.
  • the average secondary particle diameter of the gold fine particles in the obtained transparent light scatterer was measured and found to be 3000 nm.
  • the transparent light scatterer has a haze value of 0.4%, a total light transmittance of 89.2%, a color index of a * of ⁇ 1.25, and b * of ⁇ 8.27.
  • the transparent light scatterer was transparent, but the color reproducibility was poor. Further, the image clarity was 92%, and the image seen through the transparent light scatterer was clear.
  • the transparent light scatterer was used as it was as a transparent screen, and the diffuse reflected light relative luminance was measured with a variable angle spectrophotometer. As a result, it was 0.0001. A clear background image and a clear projected image could not be seen at the same time.
  • Table 3 shows details and evaluation results of the transparent light scatterers used in Examples and Comparative Examples.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】透明性および色再現性に優れ、かつ高輝度であり、画像を鮮明に視認できる反射型透明スクリーンを実現できる透明光散乱体の提供。 【解決手段】本発明による透明光散乱体は、透明バインダと、金属系微粒子とを含んでなり、金属系微粒子の金属材料は、測定波長550nmにおける反射率Rが50%以上であり、かつ測定波長450nmにおける反射率Rと測定波長650nmにおける反射率Rの差の絶対値が、測定波長550nmにおける反射率Rに対して25%以内であり、透明光散乱体中における前記金属系微粒子の平均二次粒子径が100nm~2000nmであることを特徴とする。

Description

透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム
 本発明は、透明性および色再現性に優れ、かつ高輝度であり、画像を鮮明に視認できる反射型透明スクリーン反射型透明スクリーンを実現できる透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システムに関する。
 従来、プロジェクター用スクリーンとして、フレネルレンズシートとレンチキュラーレンズシートとを組み合わせたものが用いられてきた。近年、デパート等のショウウィンドウやイベントスペースの透明パーティション等にその透明性を維持したまま商品情報や広告等を投射表示する要望が高まってきている。また、将来的には、ヘッドアップディスプレイやウェアラブルディスプレイ等に用いられる透明スクリーンの需要は、ますます高まると言われている。
 しかし、従来のプロジェクター用スクリーンは透明性が低いため、透明パーティション等に適用できないという技術的課題があった。そこで、高透明性を実現できる様々なスクリーンが提案されている。例えば、プラスチックフィルムまたはシート上に、アルミニウム鱗片7重量部及び、雲母を母体として二酸化チタンをコーティングしたパール顔料鱗片25重量部を混合したものをフィラーとしたインキを印刷またはコーティングし、光反射層としたことを特徴とする反射型スクリーンが提案されている(特許文献1参照)。また、基板上に、バインダ樹脂100重量部に対し光反射剤としてノンリーフィーリングタイプの鱗片状アルミペースト10~80重量を含み、さらに光拡散剤に対し50重量%以上の光拡散剤を含む光拡散層を設けることを特徴とするプロジェクター用反射型スクリーンが提案されている(特許文献2参照)。さらに、光反射基材の上に、透明樹脂で構成された連続層と、異方性透明粒子で構成された分散層とで形成された光拡散層を積層した反射型スクリーンが提案されている(特許文献3参照)。
特開平3-119334号公報 特開平10-186521号公報 特開2004-54132号公報
 しかしながら、本発明者らは、特許文献1~3には、以下の技術的課題が存在することを知見した。特許文献1に記載の反射型スクリーンは、平均粒径5μm~200μmの鱗片粒子を高濃度で基板表面にコーティングしているため、コーティング膜のぎらつきにより画像が鮮明に視認できず、また、基板に白色塩化ビニルフィルムを用いているため透視は不可能であり、透明スクリーンとしては好適に使用できないという技術的課題がある。特許文献2に記載の反射型スクリーンは、光反射剤として平均粒径4μm~60μmの鱗片状アルミペーストを10~80重量と高濃度で含んでおり、得られたフィルムは透視不可能であり、透明スクリーンとしては好適に使用できないという技術的課題がある。特許文献3に記載の反射スクリーンは、分散層に分散された異方性透明粒子が、雲母、タルク、モンモリロナイトの非金属粒子であり、特にタルク、モンモリロナイトは粘土系の粒子であるため正反射率が低く、反射型透明スクリーンとしては好適に使用できないという技術的課題がある。
 本発明は上記の技術的課題に鑑みてなされたものであり、その目的は、透明性および色再現性に優れ、かつ高輝度であり、画像を鮮明に視認できる反射型透明スクリーンを実現できる透明光散乱体を提供することにある。また、本発明の目的は、該透明光散乱体を備えた透明スクリーンを提供することや、該透明光散乱体または該透明スクリーンと、映像投射装置とを備えた映像投影システムを提供することにある。
 本発明者らは、上記の技術的課題を解決するため、鋭意検討した結果、特定の金属系微粒子を透明バインダ中に分散させて透明光散乱体を形成することによって、上記の技術的課題を解決し、反射型透明スクリーンに好適に使用できる透明光散乱体が得られることを知見した。本発明は、かかる知見に基づいて完成されたものである。 
 すなわち、本発明の一態様によれば、
 透明バインダと、金属系微粒子とを含んでなる透明光散乱体であって、
 前記金属系微粒子の金属材料は、測定波長550nmにおける反射率Rが50%以上であり、かつ測定波長450nmにおける反射率Rと測定波長650nmにおける反射率Rの差の絶対値が、測定波長550nmにおける反射率Rに対して25%以内であり、
 前記透明光散乱体中における前記金属系微粒子の平均二次粒子径が100nm~2000nmであることを特徴とする、透明光散乱体が提供される。
 本発明の態様においては、前記金属系微粒子の含有量が、前記透明バインダに対して0.0001~0.020質量%であることが好ましい。
 本発明の態様においては、前記金属材料の波長550nmにおける誘電率の実数項ε’が、-60~0であることが好ましい。
 本発明の態様においては、前記金属材料が、アルミニウム、銀、白金、チタン、ニッケル、およびクロムからなる群から選択される少なくとも1種であることが好ましい。
 本発明の態様においては、前記透明光散乱体のヘイズ値が35%以下であることが好ましい。
 本発明の態様においては、前記透明光散乱体の全光線透過率が70%以上であることが好ましい。
 本発明の態様においては、前記透明光散乱体の写像性が70%以上であることが好ましい。
 本発明の態様においては、前記透明光散乱体が反射型透明スクリーン用であることが好ましい。
 本発明の他の態様によれば、上記の透明光散乱体を備えた、反射型透明スクリーンが提供される。
 本発明の態様においては、前記反射型透明スクリーンは、変角分光光度計で測定した拡散反射光相対輝度が、下記の条件Aを満たすことが好ましい。
 条件A:反射型透明スクリーン面の平行方向に対して45度の角度で光を入射し、正反射方向である135度の輝度を100としたときに、90度の拡散反射光相対輝度が0.001以上である。
 本発明の他の態様によれば、上記の透明光散乱体または上記の反射型透明スクリーンを備えた、車両用部材が提供される。
 本発明の他の態様によれば、上記の透明光散乱体または上記の反射型透明スクリーンを備えた、建物用部材が提供される。
 本発明の他の態様によれば、上記の透明光散乱体または上記の反射型透明スクリーンと、映像投射装置とを備えた、映像投影システムが提供される。
 本発明による透明光散乱体は、透明性および色再現性に優れ、かつ高輝度であり、画像を鮮明に視認できる反射型透明スクリーンを実現することができる。さらに、本発明による透明光散乱体は、車両用部材や建物用部材にも好適に用いることができる。また、本発明による透明光散乱体は、画像表示装置、画像投影装置、スキャナー用光源等で使用される導光板としても好適に用いることができる。
本発明による透明光散乱体の一実施形態の厚さ方向の断面模式図である。 本発明による透明スクリーンおよび画像投影システムの一実施形態を示した模式図である。 拡散反射光相対輝度の測定条件の概略図である。
<透明光散乱体>
 本発明による透明光散乱体は、透明バインダと、金属系微粒子とを含んでなる。透明光散乱体の中では、透明バインダに分散された金属系微粒子が適度なサイズで凝集し、透明性を維持しながら、映像投射装置から出射される投影光を異方的に散乱反射させて結像させることができる。本発明による透明光散乱体を反射型透明スクリーンとして用いた場合、透明性および色再現性に優れ、かつ高輝度であり、画像を鮮明に視認することができる。このような透明光散乱体は、ヘッドアップディスプレイやウェアラブルディスプレイ等に用いられる反射型スクリーンとしても好適に用いることができる。なお、本発明において、「透明」とは、用途に応じた透過視認性を実現できる程度の透明性があれば良く、半透明であることも含まれる。
 本発明による透明光散乱体の一実施形態の厚さ方向の断面模式図を図1に示す。透明光散乱体10は、透明バインダ11中に金属系微粒子12が分散されてなる。当該透明光散乱体は、保護層、基材層、粘着層、および反射防止層等の他の層をさらに備える複層構成の積層体であってもよい。
 当該透明光散乱体は、ヘイズ値が、好ましくは35%以下、より好ましくは1~25%であり、より好ましくは1.5~20%であり、さらにより好ましくは2~15%であり、特に好ましくは2.5~10%である。全光線透過率は、好ましくは70%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上であり、さらにより好ましくは85%以上であり、また好ましくは99%以下であり、より好ましくは97%以下であり、さらに好ましくは95%以下であり、さらにより好ましくは90%以下である。色味は、例えばCIE1976(L*,a*,b*)色空間におけるa*、b*の値で評価することが出来る。白色光を入射させた時の散乱光の色味としては、好ましくはa*、b*ともに-20~+20であり、より好ましくはa*、b*ともに-10~+10であり、さらに好ましくはa*、b*ともに-5~+5である。ヘイズ値および全光線透過率が上記範囲内であれば、透明性が高く、透過視認性をより向上させることができ、a*、b*の値が上記範囲内であれば、色再現性に優れ、スクリーンとしての性能に優れる。なお、本発明において、透明光散乱体のヘイズ値および全光線透過率は、濁度計(日本電色工業(株)製、品番:NDH-5000)を用いてJIS-K-7361およびJIS-K-7136に準拠して測定することができる。また、透明光散乱体の色味は、変角光度計(日本電色工業(株)製、品番:GC5000L、D65光源)を用いて、入射角を45度にセットした時の0度方向への反射光のCIE1976色空間で表したときのa*、b*の値により評価することが出来る。
 当該透明光散乱体は、写像性が、好ましくは70%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上であり、さらにより好ましくは85%以上であり、特に好ましくは90%以上であり、また好ましくは99%以下であり、より好ましくは98%以下であり、さらに好ましくは97%以下であり、さらにより好ましくは95%以下である。当該透明光散乱体の写像性が上記範囲内であれば、透明スクリーンを透過して見える像が極めて鮮明となる。なお、本発明において、写像性とは、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値である。
 当該透明光散乱体の厚さは、特に限定されるものではないが、用途、生産性、取扱い性、および搬送性の観点から、好ましくは0.1μm~20mmであり、より好ましくは0.5μm~15mmであり、さらに好ましくは1μm~10mmである。なお、本発明において「透明光散乱体」とは、いわゆるフィルム、シート、基板上に塗布することで形成される塗膜体、プレート(板状成形物)等の様々な厚みの成形体を包含する。
(透明バインダ)
 本発明においては、透明性の高い透明光散乱体を得るために、透明バインダを用いる。透明バインダとしては、有機系バインダや無機系バインダがある。有機系バインダとしては熱可塑性樹脂や、熱硬化性樹脂及び電離放射線硬化性樹脂等の自己架橋性樹脂を用いることができる。
 熱可塑性樹脂としては、アクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、セルロース系樹脂、ビニル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、フッ素系樹脂、およびポリイミド系樹脂等が挙げられる。これらの中でも、ポリメタクリル酸メチル樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリプロピレン樹脂、シクロオレフィンポリマー樹脂、セルロースアセテートプロピオネート樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、ニトロセルロース樹脂、およびポリスチレン樹脂を用いることがより好ましい。これらの樹脂は、1種単独または2種以上を組み合わせて用いることができる。
 電離放射線硬化型樹脂としては、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系樹脂等が挙げられる。これらの中でも、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが好ましい。また、電離放射線硬化型樹脂は熱可塑性樹脂および溶媒と混合されたものであってもよい。
 熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、シリコーン系樹脂、メラミン樹脂、ウレタン系樹脂、および尿素樹脂等が挙げられる。これらの中でも、エポキシ系樹脂、シリコーン系樹脂が好ましい。
 透明性の高い無機系バインダとしては、例えば、水ガラス、低軟化点を有するガラス材料、またはゾルゲル材料を挙げることができる。水ガラスとは、アルカリ珪酸塩の濃厚水溶液をいい、アルカリ金属としては通常ナトリウムが含まれている。代表的な水ガラスは、NaO・nSiO(n:正の任意の数)により示すことができ、市販品としては富士化学(株)社製珪酸ソーダを用いることができる。
 低軟化点を有するガラス材料は、軟化温度が好ましくは150~620℃の範囲にあるガラスであり、さらに好ましくは軟化温度が200~600℃の範囲であり、最も好ましくは軟化温度が250~550℃の範囲である。このようなガラス材料としては、PbO-B系、PbO-B-SiO系、PbO-ZnO-B系、酸成分及び金属塩化物を含む混合物を熱処理することにより得られる鉛フリー低軟化点ガラス等を挙げることができる。低軟化点ガラス材料には、微粒子の分散性および成形性向上のために、溶媒および高沸点有機溶媒等を混合することができる。
 ゾルゲル材料は、熱や光、触媒などの作用により、加水分解重縮合が進行し、硬化する化合物群である。例えば、金属アルコキシド(金属アルコラート)、金属キレート化合物、ハロゲン化金属、液状ガラス、スピンオングラス、またはこれらの反応物であり、これらに硬化を促進させる触媒を含ませたものであってもよい。また、金属アルコキシド官能基の一部にアクリル基などの光反応性の官能基を有するものであってもよい。これらは、要求される物性に応じて、単独で用いても良いし、複数種類を組み合わせて用いても良い。ゾルゲル材料の硬化体とは、ゾルゲル材料の重合反応が十分に進行した状態を指す。ゾルゲル材料は、重合反応の過程において無機基板の表面と化学的に結合して、強く接着する。そのため、硬化物層としてゾルゲル材料の硬化体を用いることで、安定した硬化物層を形成することができる。
 金属アルコキシドとは、加水分解触媒などによって任意の金属種を、水や有機溶媒と反応させて得られる化合物群であり、任意の金属種と、ヒドロキシ基、メトキシ基、エトキシ基、プロピル基、イソプロピル基等の官能基とが結合した化合物群である。金属アルコキシドの金属種としては、シリコン、チタン、アルミニウム、ゲルマニウム、ボロン、ジルコニウム、タングステン、ナトリウム、カリウム、リチウム、マグネシウム、スズなどが挙げられる。
 例えば、金属種がシリコンの金属アルコキシドとしては、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、フェニルトリエトキシシラン、メチルトリエトキシシラン(MTES)、ビニルトリエトキシシラン、p-スチリルトリエトキシシラン、メチルフェニルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-メルカプトプロピルトリエトキシシラン、トリエトキシシラン、ジフェニルシランジオール、ジメチルシランジオールなどや、これら化合物群のエトキシ基が、メトキシ基、プロピル基、イソプロピル基、ヒドロキシ基などに置き換わった化合物群などが挙げられる。これらのなかでも、トリエトキシシラン(TEOS)、TEOSのエトキシ基をメトキシ基に置き換えたテトラメトキシシラン(TMOS)が特に好ましい。これらは単独で用いても良く、複数種類を組み合わせて用いることもできる。
(溶媒)
 これらの有機系バインダ、無機系バインダは必要に応じて溶媒をさらに含むものであって良い。溶媒としては、有機溶媒に限定されず、一般の塗料組成物に用いられる溶媒が使用可能である。例えば、水をはじめとする親水性溶媒も使用可能である。また、本発明のバインダが液体である場合は溶媒を含有しなくてもよい。
 溶媒の具体例としては、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)、n-プロパノール、ブタノール、2-ブタノール、エチレングリコール、プロピレングリコール等のアルコール類、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、テトラメチルベンゼン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、イソホロン、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン等のケトン類、ブトキシエチルエーテル、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノール、ベンジルオキシエタノール等のエーテルアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン等のエステル類、フェノール、クロロフェノール等のフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、クロロホルム、塩化メチレン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒、2硫化炭素等の含ヘテロ元素化合物、水、およびこれらの混合溶媒が挙げられる。溶媒の添加量は、バインダや微粒子の種類や後述する製造工程に好適な粘度範囲等に応じて、適宜調節することができる。
(金属系微粒子)
 金属系微粒子に用いる金属材料は、投影光の反射性および色再現性に優れる金属が用いられる。具体的には、金属材料は、測定波長550nmにおける反射率Rが50%以上、好ましくは55%以上であり、さらに好ましくは60%以上であり、さらにより好ましくは70%以上であり、また好ましくは99%以下であり、より好ましくは98%以下であり、さらに好ましくは97%以下であり、さらにより好ましくは95%以下である。以下、本発明において、「反射率R」とは、金属材料に対して光を垂直方向から入射させたときの反射率を指す。反射率Rは金属材料固有値である屈折率nと消衰係数kの値を用いて下記式(1)により算出することができる。nおよびkは、例えばHandbook of Optical Constants of Solids: Volume 1(Edward D.Palik著)や、P.B. Johnson and R.W Christy, PHYSICAL REVIEW B, Vol.6, No.12, 4370-4379(1972)等に記載されている。
   R={(1-n)+k}/{(1+n)+k}  式(1)
 すなわち、測定波長550nmにおける反射率R(550)は、波長550nmで測定したときのnおよびkより算出できる。金属材料は、測定波長450nmにおける反射率R(450)と、測定波長650nmにおける反射率R(650)の差の絶対値が、測定波長550nmにおける反射率R(650)に対して25%以内であり、好ましくは20%以内であり、より好ましくは15%以内であり、さらに好ましくは10%以内であり、また好ましくは0%以上であり、さらに好ましくは0.5%以上であり、さらにより好ましくは1%以上である。このような金属材料を用いることで、反射型透明スクリーンとして用いた場合、投影光の反射性および色再現性に優れ、スクリーンとしての性能に優れる。
 金属系微粒子に用いる金属材料は、550nmにおける誘電率の実数項ε’(550)が、好ましくは-60~0であり、より好ましくは-50~-5、さらに好ましくは-47~-8、さらにより好ましくは-45~-10である。なお、誘電率の実数項ε’は、屈折率nと消衰係数kの値を用いて下記式(2)により算出することができる。
   ε’=n-k   式(2)
 本発明はいかなる理論にも束縛されるものではないが、金属材料の誘電率の実数項ε’が上記数値範囲を満たすことで、以下の作用が生じ、透明光散乱体が反射型透明スクリーンとして好適に使用できると考えられる。すなわち、光が金属系微粒子の中に入ると、金属系微粒子中には光による振動電界が生じるが、同時に金属系微粒子の自由電子によって逆向きの電気分極が生じ電界を遮蔽してしまう。表面凹凸による拡散や金属系微粒子による光の吸収が無いという理想状態を仮定すると、金属材料の誘電率の実数光ε’が0以下であるとき、光が完全に遮蔽され金属系微粒子の中に光が入って行けない、すなわち、全ての光が金属系微粒子表面で反射されるため、光の反射性は強くなる。ε’が0より大きいとき、金属系微粒子の自由電子の振動は光の振動に追随出来ないため、光による振動電界を完全には打ち消すことが出来ず、光は金属系微粒子の中に入ったり、透過したりする。その結果、金属系微粒子表面で反射されるのは一部の光だけになり、光の反射性は低くなる。また、酸化物等は振動に寄与できる自由電子が少ないため光の反射性が低い。
 金属材料としては、上記の反射率R、好ましくはさらに誘電率の実数項を満たす金属材料を用いたものであればよく、純金属や合金も用いることができる。純金属としてはアルミニウム、銀、白金、チタン、ニッケル、およびクロムからなる群から選択されるものが好ましい。金属系微粒子としては、これらの金属材料からなる微粒子や、これらの金属材料を樹脂、ガラス、天然雲母もしくは合成雲母等に被覆した微粒子を用いることができる。また、金属系微粒子の形状は、特に限定されず、薄片状微粒子や略球状微粒子等を用いることができる。各種の金属材料について、各測定波長における屈折率nおよび消衰係数kを表1に、その値を用いて算出した反射率Rおよびε’を表2にまとめる。ここで、n(450)は測定波長450nmにおける屈折率を表し、n(550)は、測定波長550nmにおける屈折率を表し、n(650)は測定波長650nmにおける屈折率を表す。また、k(450)は測定波長450nmにおける消衰係数を表し、k(550)は、測定波長550nmにおける消衰係数を表し、k(650)は測定波長650nmにおける消衰係数を表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 金属系微粒子は、透明光散乱体中において、透明性と反射性を両立できる適度なサイズに凝集している。具体的には、透明光散乱体中における金属系微粒子の平均二次粒子径は、100nm~2000nmであり、好ましくは200nm~1800nmであり、より好ましくは300nm~1500nmである。平均二次粒子径が小さ過ぎると、レイリー散乱が生じて、青い光が反射されるようになるため、視認される映像光は青味がかってしまう。さらに平均二次粒子径が小さすぎると、プロジェクターから出射された投影光を結像するために微粒子を大量に添加する必要が生じ、透明性に劣る光散乱体となってしまう。平均二次粒子径が100nm以上であれば、視認される映像光が青味がかるのを防ぐことができる。一方、平均二次粒子径が大き過ぎると、投影光の前方散乱が増えるのでヘイズが高くなり、光散乱体の透明性が低下する。平均二次粒子径が2000nm以下であれば、特に優れた透明性を実現することができる。なお、平均二次粒子径は、走査型電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製、商品名:SU-1500)で測定した画像に基づき、粒子径=(長軸方向の粒子径+短軸方向の粒子径)/2とした時の粒子径の平均値を算出することによって求めた値である。
 透明光散乱体中の金属系微粒子の含有量は、透明バインダに対して、好ましくは0.0001~0.020質量%であり、より好ましくは0.0005~0.015質量%であり、さらに好ましくは0.001~0.01質量%である。金属系微粒子の含有量が0.0001%以上の場合、投射光をより鮮明に結像させることができ、0.020質量%以下の場合、フィルムの透明性低下を十分に抑制することができる。金属系微粒子を上記範囲のように極低濃度で樹脂中に分散させて透明光散乱体を形成することによって、透明性を維持しながら、投影光を十分に散乱反射させて結像させることができる。
(基材層)
 基材層は、透明光散乱体を支持するための層であり、透明光散乱体の強度を向上させることができる。基材層は、透明光散乱体の透過視認性や所望の光学特性を損なわないような透明性の高い樹脂またはガラスからなることが好ましい。このような樹脂としては、例えば、上記の透明光散乱体と同様の透明性の高い樹脂を用いることができる。すなわち、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ビニル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリアリレート系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリスルホン系樹脂、およびフッ素系樹脂等の熱可塑性樹脂、熱硬化性樹脂、ならびに電離放射線硬化性樹脂等を好適に用いることができる。また、上記した樹脂を2種以上積層した積層体またはシートを使用してもよい。なお、基材層の厚さは、その強度が適切になるように用途・材料に応じて適宜変更することができる。例えば、10μm~1mm(1000μm)の範囲としてもよく、1mm以上の厚板であってもよい。
(保護層)
 保護層は、透明光散乱体の表面側(観察者側)および裏面側の両面またはいずれか一方の面に積層してもよく、耐光性、耐傷性、基材密着性および防汚性等の機能を付与するための層である。保護層は、透明光散乱体の透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。
 保護層の材料としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂、ジアセチルセルロースやトリアセチルセルロース等のセルロース系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系樹脂、ポリカーボネート系樹脂などが挙げられる。また、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体の如きポリオレフィン系樹脂、シクロオレフィン系ないしはノルボルネン構造を有するオレフィン系樹脂、塩化ビニル系樹脂、ナイロンや芳香族ポリアミド等のアミド系樹脂、イミド系樹脂、スルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンスルフィド系樹脂、ビニルアルコール系樹脂、塩化ビニリデン系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、ポリオキシメチレン系樹脂、エポキシ系樹脂、あるいは前記樹脂のブレンド物などが保護フィルムを形成する樹脂の例として挙げられる。その他、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系等の電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶媒を混合したもの、および熱硬化型樹脂などが挙げられる。
 電離放射線硬化型樹脂組成物の被膜形成成分は、好ましくは、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが使用できる。
 上記電離放射線硬化型樹脂組成物を紫外線硬化型樹脂組成物とするには、この中に光重合開始剤としてアセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、チオキサントン類や、光増感剤としてn-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等を混合して用いることができる。特に本発明では、オリゴマーとしてウレタンアクリレート、モノマーとしてジペンタエリスリトールヘキサ(メタ)アクリレート等を混合するのが好ましい。
 電離放射線硬化型樹脂組成物の硬化方法としては、前記電離放射線硬化型樹脂組成物の硬化方法は通常の硬化方法、即ち、電子線又は紫外線の照射によって硬化することができる。例えば、電子線硬化の場合には、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速機から放出される50~1000KeV、好ましくは100~300KeVのエネルギーを有する電子線等が使用され、紫外線硬化の場合には超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。
 保護層は、上記電離放射(紫外線)線硬化型樹脂組成物の塗工液をスピンコート、ダイコート、ディップコート、バーコート、フローコート、ロールコート、グラビアコート等の方法で、上記の反射型スクリーン用透明光散乱体の表面側(観察者側)および裏面側の両面またはいずれか一方の面に塗布し、上記のような手段で塗工液を硬化させることにより形成することができる。また、保護層の表面には、目的に応じて、凹凸構造、プリズム構造、マイクロレンズ構造等の微細構造を付与することもできる。
(粘着層)
 粘着層は、支持体に透明光散乱体を貼付するための層である。粘着層は、透明光散乱体の透過視認性や所望の光学特性を損なわないような粘着剤組成物を用いて形成することが好ましい。粘着剤組成物としては、例えば、天然ゴム系、合成ゴム系、アクリル樹脂系、ポリビニルエーテル樹脂系、ウレタン樹脂系、シリコーン樹脂系等が挙げられる。合成ゴム系の具体例としては、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、ポリイソブチレンゴム、イソブチレン-イソプレンゴム、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンブロック共重合体、スチレン-エチレン-ブチレンブロック共重合体が挙げられる。シリコーン樹脂系の具体例としては、ジメチルポリシロキサン等が挙げられる。これらの粘着剤は、1種単独または2種以上を組み合わせて用いることができる。これらの中でも、アクリル系粘着剤が好ましい。
 アクリル系樹脂粘着剤は、少なくとも(メタ)アクリル酸アルキルエステルモノマーを含んで重合させたものである。炭素原子数1~18程度のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーとカルボキシル基を有するモノマーとの共重合体であるのが一般的である。なお、(メタ)アクリル酸とは、アクリル酸および/またはメタクリル酸をいう。(メタ)アクリル酸アルキルエステルモノマーの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸sec-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ウンデシルおよび(メタ)アクリル酸ラウリル等を挙げることができる。また、上記(メタ)アクリル酸アルキルエステルは、通常は、アクリル系粘着剤中に30~99.5質量部の割合で共重合されている。
 また、アクリル系樹脂粘着剤を形成するカルボキシル基を有するモノマーとしては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、マレイン酸モノブチルおよびβ-カルボキシエチルアクリレート等のカルボキシル基を含有するモノマーを挙げることができる。
 アクリル系樹脂粘着剤には、上記の他に、アクリル系樹脂粘着剤の特性を損なわない範囲内で他の官能基を有するモノマーが共重合されていても良い。他の官能基を有するモノマーの例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピルおよびアリルアルコール等の水酸基を含有するモノマー;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミドおよびN-エチル(メタ)アクリルアミド等のアミド基を含有するモノマー;N-メチロール(メタ)アクリルアミドおよびジメチロール(メタ)アクリルアミド等のアミド基とメチロール基とを含有するモノマー;アミノメチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートおよびビニルピリジン等のアミノ基を含有するモノマーのような官能基を有するモノマー; アリルグリシジルエーテル、(メタ)アクリル酸グリシジルエーテルなどのエポキシ基含有モノマーなどが挙げられる。この他にもフッ素置換(メタ)アクリル酸アルキルエステル、(メタ)アクリロニトリルなどのほか、スチレンおよびメチルスチレンなどのビニル基含有芳香族化合物、酢酸ビニル、ハロゲン化ビニル化合物などを挙げることができる。
 粘着剤は市販のものを使用してもよく、例えば、SKダイン2094、SKダイン2147、SKダイン1811L、SKダイン1442、SKダイン1435、およびSKダイン1415(以上、綜研化学(株)製)、オリバインEG-655、およびオリバインBPS5896(以上、東洋インキ(株)製)等(以上、商品名)を好適に使用することができる。
(反射防止層)
 反射防止層は、透明光散乱体表面または、透明光散乱体が支持体等との積層体である場合はその積層体の最表面における反射や、外光からの映りこみを防止するための層である。反射防止層は、透明光散乱体やその積層体の観察者側または反対側の片面にのみ積層されるものであってもよく、両面に積層されるものであってもよい。特に反射型スクリーンとして用いる際には観察者側に積層するのが好ましい。反射防止層は、透明光散乱体やその積層体の透過視認性や所望の光学特性を損なわないような樹脂や金属を用いて形成することが好ましい。このような樹脂としては、例えば、紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶媒を混合したもの、および熱硬化型樹脂を用いることができるが、これらの中でも電離放射線硬化型樹脂が特に好ましい。
 反射防止層の形成方法としては、特に限定されないが、コーティングフィルムの貼合、フィルム基板に直接蒸着またはスパッタリング等でドライコートする方式、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコート等のウェットコート処理などの方式を用いることができる。
<透明光散乱体の製造方法>
 本発明による透明光散乱体の製造方法は、透明光散乱体を形成する工程を含むものである。透明光散乱体を形成する工程は、混練工程と製膜工程からなる押出成型法、キャスト成膜法、スピンコート、ダイコート、ディップコート、バーコート、フローコート、ロールコート、グラビアコート、スプレーコート等の塗布法、射出成型法、カレンダー成型法、ブロー成型法、圧縮成型法、セルキャスト法など公知の方法により成型加工でき、成膜可能な膜厚範囲の広さから、押出成型法、射出成型法を好適に用いることができる。以下、押出成型法の各工程について詳述する。
(混練工程)
 混練工程は、混錬押出機を用いて、上記の透明バインダとして樹脂と金属系微粒子とを混錬して、樹脂組成物を得る工程である。混練押出機としては、単軸混練押出機であってよく、二軸混練押出機を用いてもよい。二軸混練装置を用いる場合、二軸混錬押出機のスクリュー全長にわたる平均値として、好ましくは3~1800KPa、より好ましくは6~1400KPaのせん断応力をかけながら、上記の樹脂と金属系微粒子とを混錬して、樹脂組成物を得る工程であることが好ましい。せん断応力が上記範囲内であれば、微粒子を樹脂中に十分に分散させることができる。特に、せん断応力が3KPa以上であれば、微粒子の分散均一性をより向上させることができ、1800KPa以下であれば、樹脂の分解を防ぎ、透明光散乱体内に気泡が混入するのを防止することができる。せん断応力は、二軸混錬押出機を調節することで、所望の範囲に設定することができる。本発明においては、微粒子を予め添加した樹脂(マスターバッチ)と、微粒子を添加していない樹脂とを混合したものを、単軸混練押出機または二軸混錬押出機を用いて混練して、樹脂組成物を得てもよい。上記は混練工程の一例であり、単軸混練押出機を用いてマスターバッチを作製しても良く、一般的に知られている分散剤を添加してマスターバッチを作製しても良い。
 樹脂組成物には、上記の樹脂と微粒子以外にも、透明光散乱体の透過視認性や所望の光学性能を損なわない範囲で、従来公知の添加剤を加えてもよい。添加剤としては、例えば、酸化防止剤、滑剤、紫外線吸収剤、相溶化剤、核剤および安定剤等が挙げられる。なお、樹脂と微粒子は、上記で説明したとおりである。
 混練工程に用いる二軸混錬押出機は、シリンダー内に2本のスクリューが挿入されたものであり、スクリューエレメントを組み合わせて構成される。スクリューは、少なくとも、搬送エレメントと、混練エレメントとを含むフライトスクリューを好適に用いることができる。混練エレメントは、ニーディングエレメント、ミキシングエレメント、およびロータリーエレメントからなる群から選択される少なくとも1種を含むことが好ましい。このような混練エレメントを含むフライトスクリューを用いることで、所望のせん断応力をかけながら、微粒子を樹脂中に十分に分散させることができる。
(製膜工程)
 製膜工程は、混練工程で得られた樹脂組成物を製膜する工程である。製膜方法は、特に限定されず、従来公知の方法により、樹脂組成物からなる透明光散乱体を製膜することができる。例えば、混練工程で得られた樹脂組成物を、融点以上の温度(Tm~Tm+70℃)に加熱された溶融押出機に供給して、樹脂組成物を溶融する。溶融押出機としては、単軸混錬押出機、二軸混錬押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。
 続いて、溶融した樹脂組成物を、例えばTダイ等のダイによりシート状に押出し、押出されたシート状物を回転している冷却ドラムなどで急冷固化することによりシート状の成型体を成形することができる。なお、上記の混練工程と連続して製膜工程を行う場合には、混練工程で得られた樹脂組成物を溶融状態のまま直接、ダイより押し出してシート状の透明光散乱体を成型することもできる。
 製膜工程により得られたシート状の透明光散乱体は、従来公知の方法により、さらに一軸延伸または二軸延伸してもよい。上記の透明光散乱体を延伸することで、機械強度を向上させることができる。
<反射型透明スクリーン>
 本発明による反射型透明スクリーンは、上記の透明光散乱体を備えてなる。反射型透明スクリーンは、上記の透明光散乱体のみからなるものでもよく、透明パーティション等の支持体をさらに備えるものでもよい。反射型透明スクリーンは、平面であってもよく、曲面であってもよく、凹凸面を有していてもよい。
(支持体)
 支持体は、透明光散乱体を支持するためのものである。支持体は、反射型透明スクリーンの透過視認性や所望の光学特性を損なわないものであればよく、例えば、透明パーティション、ガラスウィンドウ、乗用車のヘッドアップディスプレイ、およびウェアラブルディスプレイ等が挙げられる。
 当該反射型透明スクリーンは、変角分光光度計で測定した拡散反射光相対輝度が、下記の条件Aを満たす。条件Aを満たすことで、スクリーン面の平行方向に対して45度の角度で光を入射したとき、90度の角度で拡散反射する光の輝度が好適な範囲内にあるため、鮮明な映像を表示することができる。
 条件A:スクリーン面の平行方向に対して45度の角度で光を入射し、正反射方向135度の輝度を100としたときに、90度の拡散反射光の相対輝度が0.001以上であり、好ましくは0.002以上1以下であり、さらに好ましくは0.004以上0.5以下である。
<車両用部材>
 本発明による車両用部材は、上記の透明光散乱体または反射型透明スクリーンを備えてなり、反射防止層等をさらに備えるものであってもよい。車両用部材としては、フロントガラスやサイドガラス等が挙げられる。車両用部材は上記の透明光散乱体または反射型透明スクリーンを備えることで、別途のスクリーンを設けなくても、車両用部材上に鮮明な画像を表示させることができる。
<建物用部材>
 本発明による建物用部材は、上記の透明光散乱体または反射型透明スクリーンを備えてなり、反射防止層等をさらに備えるものであってもよい。建物用部材としては、住宅の窓ガラス、コンビニや路面店のガラス壁等を挙げることができる。建物用部材は上記の透明光散乱体または反射型透明スクリーンを備えることで、別途のスクリーンを設けなくても、建物用部材上に鮮明な画像を表示させることができる。
<映像投影システム>
 本発明による映像投影システムは、上記の透明光散乱体または反射型透明スクリーンと、映像投射装置とを備えてなる。映像投射装置とは、スクリーン上に映像を投射できるものであれば特に限定されず、例えば、市販のフロントプロジェクターを用いることができる。
 本発明による反射型透明スクリーンおよび映像投影システムの一実施形態の模式図を図2に示す。反射型透明スクリーン20は、透明パーティション(支持体)21と、透明パーティション21上の観察者22側に配置された透明光散乱体10とを備えてなる。透明光散乱体10は、透明パーティション21に貼付するために、粘着層を含んでもよい。映像投影システムは、反射型透明スクリーン20と、反射型透明スクリーン20に対して観察者22と同じ側(前面側)に設置された映像投射装置23とを備えてなる。映像投射装置23から出射された投影光24は、透明スクリーン20の前面側から入射し、透明光散乱体10により異方的に散乱することで、観察者22は散乱光25を視認できる。
 以下、実施例と比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定解釈されるものではない。
<測定方法>
 実施例および比較例において、各種物性および性能評価の測定方法は次のとおりである。
(1)平均二次粒子径
 透明光散乱体中における金属系微粒子の平均二次粒子径を、走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ(株)製、商品名:SU-1500)を用いて取得した画像に基づき、粒子径=(長軸方向の粒子径+短軸方向の粒子径)/2とした時の粒子径の平均値を算出することで測定した。
(2)ヘイズ
 透明光散乱体のヘイズ値を、濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7136に準拠して測定した。
(3)全光線透過率
 透明光散乱体の全光線透過率を、濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7361-1に準拠して測定した。
(4)色味
 変角光度計(日本電色工業(株)製、品番:GC5000L、D65光源)を用い、入射角を45度とした時の0度方向への反射光をCIE1976色空間で表したときのa*、b*の値を測定することにより色味を評価した。
(5)写像性
 写像性測定器(スガ試験機(株)製、品番:ICM-1T)を用い、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値を写像性とした。像鮮明度の値が大きい程写像性が高く、透明スクリーンを透過して見える像が鮮明である。
(6)拡散反射光相対輝度
 変角分光光度計((株)村上色彩技術研究所製、型番:GSP-2)を用い、反射型透明スクリーン面の平行方向に対して45度の角度で光を入射して、測定角を変化させて拡散反射光相対輝度を測定し、正反射方向135度の輝度を100としたときの90度における拡散反射光相対輝度を算出した。拡散反射光相対輝度の測定方法の概略図を図3に示した。
(7)背景像と投射映像の同時視認性評価
 透明スクリ-ンの法線方向に対して下側に45度の角度で50cm離れた位置から、超短焦点型プロジェクター(セイコーエプソン(株)製、型番:EB-535W)を用いて画像を投影した。次に、スクリ-ンの面上に焦点が合うようにプロジェクターの焦点つまみを調整した後、スクリ-ンの前方1mの箇所(スクリーンを挟んでプロジェクターと同じ側)から、スクリ-ン上の投射映像の視認性と、スクリーンを透過して見える背景像の視認性とを同時に下記の評価基準により評価した。
 [評価基準]
 ◎:極めて鮮明な背景像と極めて鮮明な投影画像を同時に視認することができた。
 ○:鮮明な背景像と鮮明な投影画像を同時に視認することができた。
 △:○評価のスクリーンより鮮明さは劣るが、背景像と投影画像を同時に視認することができ、反射型透明スクリーンとして使用できるものであった。
 ×:背景像が不鮮明であったか、投影画像が不鮮明であったため、反射型透明スクリーンとして使用するには不適であった。
<透明光散乱体の作製>
[実施例1] 
 ポリエチレンテレフタレート(PET)ペレット((株)ベルポリエステル製、銘柄IFG8L)と、PETペレットに対して0.004質量%のアルミニウム微粒子A(日本イオン(株)製アルミニウムナノパウダー)とを、タンブラー混合器にて30分間混合して、表面に均一にアルミニウム微粒子Aが付着したPETペレットを得た。得られたペレットを、ストランドダイスを備えた二軸混練押出機のホッパーへ供給し、押出温度250℃でアルミニウム微粒子Aが練り込まれたPETペレットを得た。得られたアルミニウム微粒子A含有PETペレットを、Tダイを備えた単軸押出機のホッパーに投入し、250℃で押し出して、厚み100μmのフィルムを製膜して、透明光散乱体を得た。
 得られた透明光散乱体中におけるアルミニウム微粒子Aの平均二次粒子径を測定したところ、100nmであった。透明光散乱体は、ヘイズ値が2.7%、全光線透過率が89.1%であり、色味の指標であるa*は0.12、b*は3.15であり、高い透明性を有していた。また、写像性は93%であり、透明光散乱体を透過して見える像が鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.118であり、超短焦点型プロジェクターにて映像を投映したところ、極めて鮮明な背景像と極めて鮮明な投影画像を同時に視認することができた。
[実施例2]
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.015質量%のアルミニウム微粒子B(大和金属粉工業(株)製アルミニウムパウダー)を添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中におけるアルミニウム微粒子Bの平均二次粒子径を測定したところ、1800nmであった。透明光散乱体は、ヘイズ値が13.7%、全光線透過率が76.1%であり、色味の指標であるa*は0.15、b*は2.72であり、高い透明性を有していた。また、写像性は85%であり、透明光散乱体を透過して見える像が鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.025であり、超短焦点型プロジェクターにて映像を投映したところ、鮮明な背景像と鮮明な投影画像を同時に視認することができた。
[実施例3]
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.01質量%の銀微粒子((株)新光化学社製アルミニウムパウダー)を添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中における銀微粒子の平均二次粒子径を測定したところ、500nmであった。透明光散乱体は、ヘイズ値が4.1%、全光線透過率が83.6%であり、色味の指標であるa*は-0.06、b*は3.43であり、高い透明性を有していた。また、写像性は87%であり、透明光散乱体を透過して見える像が鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.007であり、超短焦点型プロジェクターにて映像を投映したところ、極めて鮮明な背景像と極めて鮮明な投影画像を同時に視認することができた。
[実施例4]
 スパッタリング装置((株)ULVAC社製、型番:MLH-2304)を用いて、DCマグネトロンスパッタ法により厚み500nmのニッケル薄膜を作製し、得られたニッケル薄膜を粉砕機(日新エンジニアリング社製粉砕機、型番:SJ-100C)によって粉砕することで、ニッケル微粒子Aの紛体を得た。
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.0005質量%の上記のニッケル微粒子Aを添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中におけるニッケル微粒子Aの平均二次粒子径を測定したところ、1000nmであった。透明光散乱体は、ヘイズ値が6.5%、全光線透過率が80.2%であり、色味の指標であるa*は0.49、b*は1.90であり、高い透明性を有していた。また、写像性は92%であり、透明光散乱体を透過して見える像が鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.005であり、超短焦点型プロジェクターにて映像を投映したところ、実施例1には鮮明さは劣るが、背景像と投影画像を同時に視認することができた。
[実施例5]
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.004質量%のアルミニウム微粒子C(大和金属粉工業(株)製、アルミニウムパウダー)を添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中におけるアルミニウム微粒子Cの平均二次粒子径を測定したところ、1200nmであった。透明光散乱体は、ヘイズ値が3.7%、全光線透過率が86.1%であり、色味の指標であるa*は0.17、b*は1.38であり、高い透明性を有していた。また、写像性は91%であり、透明光散乱体を透過して見える像が鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.007であり、超短焦点型プロジェクターにて映像を投映したところ、鮮明な背景像と鮮明な投影画像を同時に視認することができた。
[実施例6]
 実施例4と同様に、スパッタリング装置を用いて厚み300nmのニッケル薄膜を作製し、得られたニッケル薄膜を粉砕機によって粉砕することで、ニッケル微粒子Bの紛体を得た。
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.02質量%の上記のニッケル微粒子Bを添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中におけるニッケル微粒子Bの平均二次粒子径を測定したところ、200nmであった。透明光散乱体は、ヘイズ値が9.2%、全光線透過率が71.6%であり、色味の指標であるa*は0.62、b*は2.35であり、高い透明性を有していた。また、写像性は93%であり、透明光散乱体を透過して見える像が鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.002であり、超短焦点型プロジェクターにて映像を投映したところ、鮮明な背景像と鮮明な投影画像を同時に視認することができた。
[実施例7]
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.001質量%の白金微粒子(コア・フロント社製、9410DX)を添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中における白金微粒子の平均二次粒子径を測定したところ、300nmであった。透明光散乱体は、ヘイズ値が5.4%、全光線透過率が88.3%であり、色味の指標であるa*は0.33、b*は2.42であり、高い透明性を有していた。また、写像性は89%であり、透明光散乱体を透過して見える像が鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.009であり、超短焦点型プロジェクターにて映像を投映したところ、鮮明な背景像と鮮明な投影画像を同時に視認することができた。
[比較例1]
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.004質量%のアルミニウム微粒子D(日本イオン(株)製、アルミニウムパウダー)を添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中におけるアルミニウム微粒子Dの平均二次粒子径を測定したところ、3000nmであった。透明光散乱体は、ヘイズ値が7.7%、全光線透過率が82.5%であり、色味の指標であるa*は0.23、b*は1.18であった。また、写像性は82%であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.0002であり、超短焦点型プロジェクターにて映像を投映したところ、鮮明な背景像と鮮明な投影画像を同時に視認することができなかった。
[比較例2]
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.10質量%の酸化チタン微粒子(石原産業(株)製、商品名:CR・EL)を添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中における酸化チタン微粒子の平均二次粒子径を測定したところ、500nmであった。透明光散乱体は、ヘイズ値が7.3%、全光線透過率が82.8%であり、色味の指標であるa*は-1.66、b*は-12.90であり、不透明であった。また、写像性は83%であり、透明光散乱体を透過して見える像は鮮明であったが、色味は全体的に青味がかって見え、色再現性に劣っていた。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.010であり、超短焦点型プロジェクターにて映像を投映したところ、鮮明な背景像と鮮明な投影画像を同時に視認することができなかった。
[比較例3]
 スパッタリング装置を用いて、DCマグネトロンスパッタ法により厚み30nmの銅薄膜を作製し、得られた銅薄膜を粉砕機によって粉砕することで銅微粒子を得た。
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.05質量%の上記の銅微粒子を添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中における銅微粒子の平均二次粒子径を測定したところ、80nmであった。透明光散乱体は、ヘイズ値が32.2%、全光線透過率が45.0%であり、色味の指標であるa*は13.87、b*は17.50であり、透明光散乱体は不透明であり、色再現性にも劣っていた。また、写像性は58%であり、透明光散乱体を透過して見える像は鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.14であり、鮮明な画像を視認することができたが、超短焦点型プロジェクターにて映像を投映したところ、鮮明な背景像と鮮明な投影画像を同時に視認することができなかった。
[比較例4]
 スパッタリング装置を用いて、DCマグネトロンスパッタ法により厚み約1000umの金薄膜を作製し、得られた金薄膜を粉砕機によって粉砕することで金微粒子を得た。
 アルミニウム微粒子Aの代わりに、PETペレットに対して0.0001質量%の上記の金微粒子を添加した以外は、実施例1と同様にして透明光散乱体を作製した。
 得られた透明光散乱体中における金微粒子の平均二次粒子径を測定したところ、3000nmであった。透明光散乱体は、ヘイズ値が0.4%、全光線透過率が89.2%であり、色味の指標であるa*は-1.25、b*は-8.27であり、透明光散乱体は透明であったが、色再現性が劣っていた。また、写像性は92%であり、透明光散乱体を透過して見える像が鮮明であった。
 さらに、透明光散乱体をそのまま透明スクリーンとして用いて、拡散反射光相対輝度を変角分光光度計で測定したところ、0.0001であり、超短焦点型プロジェクターにて映像を投映したところ、鮮明な背景像と鮮明な投影画像を同時に視認することができなかった。
 実施例および比較例で用いた透明光散乱体の詳細および評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 10 透明光散乱体
 11 透明バインダ
 12 金属系微粒子
 20 反射型透明スクリーン
 21 透明パーティション(支持体)
 22 観察者
 23 映像投射装置
 24 投影光
 25 散乱光

Claims (13)

  1.  透明バインダと、金属系微粒子とを含んでなる透明光散乱体であって、
     前記金属系微粒子の金属材料は、測定波長550nmにおける反射率Rが50%以上であり、かつ測定波長450nmにおける反射率Rと測定波長650nmにおける反射率Rの差の絶対値が、測定波長550nmにおける反射率Rに対して25%以内であり、
     前記透明光散乱体中における前記金属系微粒子の平均二次粒子径が100nm~2000nmであることを特徴とする、透明光散乱体。
  2.  前記金属系微粒子の含有量が、前記透明バインダに対して0.0001~0.020質量%である、請求項1に記載の透明光散乱体。
  3.  前記金属材料の波長550nmにおける誘電率の実数項ε’が、-60~0である、請求項1または2に記載の透明光散乱体。
  4.  前記金属材料が、アルミニウム、銀、白金、チタン、ニッケル、およびクロムからなる群から選択される少なくとも1種である、請求項1~3のいずれか一項に記載の透明光散乱体。
  5.  前記透明光散乱体のヘイズ値が35%以下である、請求項1~4のいずれか一項に記載の透明光散乱体。
  6.  前記透明光散乱体の全光線透過率が70%以上である、請求項1~5のいずれか一項に記載の透明光散乱体。
  7.  前記透明光散乱体の写像性が70%以上である、請求項1~6のいずれか一項に記載の透明光散乱体。
  8.  前記透明光散乱体が反射型透明スクリーン用である、請求項1~7のいずれか一項に記載の透明光散乱体。
  9.  請求項1~8のいずれか一項に記載の透明光散乱体を備えた、反射型透明スクリーン。
  10.  変角分光光度計で測定した拡散反射光相対輝度が、下記の条件Aを満たすことを特徴とする、請求項9に記載の反射型透明スクリーン。
     条件A:反射型透明スクリーン面の平行方向に対して45度の角度で光を入射し、正反射方向である135度の輝度を100としたときに、90度の拡散反射光相対輝度が0.001以上である。
  11.  請求項1~8のいずれか一項に記載の透明光散乱体または請求項9もしくは10に記載の反射型透明スクリーンを備えた、車両用部材。
  12.  請求項1~8のいずれか一項に記載の透明光散乱体または請求項9もしくは10に記載の反射型透明スクリーンを備えた、建物用部材。
  13.  請求項1~8のいずれか一項に記載の透明光散乱体または請求項9もしくは10に記載の反射型透明スクリーンと、映像投射装置とを備えた、画像投影システム。
PCT/JP2017/015035 2016-04-25 2017-04-12 透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム WO2017187990A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17789277.5A EP3451058A4 (en) 2016-04-25 2017-04-12 TRANSPARENT LIGHT-DIFFUSING BODY, TRANSPARENT REFLECTIVE SCREEN EQUIPPED WITH SAID BODY, AND IMAGE PROJECTION SYSTEM EQUIPPED WITH SAID SCREEN
CN201780023633.6A CN109073963B (zh) 2016-04-25 2017-04-12 透明光散射体、反射型透明屏幕和图像投影系统
KR1020187030867A KR102013094B1 (ko) 2016-04-25 2017-04-12 투명광 산란체, 그것을 구비한 반사형 투명 스크린, 및 그것을 구비한 영상 투영 시스템
JP2018503677A JP6313919B2 (ja) 2016-04-25 2017-04-12 透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム
US16/096,192 US10641933B2 (en) 2016-04-25 2017-04-12 Transparent light scattering body, reflective transparent screen comprising same, and video image projection system comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016087322 2016-04-25
JP2016-087322 2016-04-25

Publications (1)

Publication Number Publication Date
WO2017187990A1 true WO2017187990A1 (ja) 2017-11-02

Family

ID=60160499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015035 WO2017187990A1 (ja) 2016-04-25 2017-04-12 透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム

Country Status (6)

Country Link
US (1) US10641933B2 (ja)
EP (1) EP3451058A4 (ja)
JP (1) JP6313919B2 (ja)
KR (1) KR102013094B1 (ja)
CN (1) CN109073963B (ja)
WO (1) WO2017187990A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200075816A1 (en) * 2018-08-30 2020-03-05 Oregon State University Micro-led apparatus with enhanced illumination, and method for forming such
CN112949411B (zh) * 2021-02-04 2024-02-09 南京大学 一种光谱图像校正方法及装置
KR20230164323A (ko) * 2022-05-25 2023-12-04 한국기계연구원 나노 클러스터를 이용한 대면적 투명 반사 패널 및 이의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237628A (ja) * 2010-05-11 2011-11-24 Seiko Epson Corp スクリーンおよびプロジェクションシステム
WO2015159829A1 (ja) * 2014-04-14 2015-10-22 国立大学法人東京工業大学 透明スクリーン用フィルムおよびその製造方法ならびにそれを備えた透明スクリーン
JP2016509685A (ja) * 2013-01-02 2016-03-31 マサチューセッツ インスティテュート オブ テクノロジー 散乱ナノ粒子を用いた透明ディスプレイのための方法および装置
WO2016203915A1 (ja) * 2015-06-15 2016-12-22 Jxエネルギー株式会社 透明スクリーンおよびそれを備えた映像投影システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151573A (ja) * 1974-10-30 1976-05-07 Kanegafuchi Chemical Ind Biseibutsubaiyoho
EP0281436A1 (fr) * 1987-02-12 1988-09-07 Martine Harraca-Roehl Matériau composite et écrans réalisés dans ce matériau
JPH0795186B2 (ja) 1989-10-03 1995-10-11 凸版印刷株式会社 反射型スクリーン
JP3674891B2 (ja) 1996-12-24 2005-07-27 株式会社きもと プロジェクタ用反射型スクリーン
JP4123939B2 (ja) * 2001-12-13 2008-07-23 ソニー株式会社 スクリーンおよびその製造方法ならびに画像表示システム
JP4111011B2 (ja) * 2002-03-14 2008-07-02 ソニー株式会社 投影用スクリーン
JP2004054132A (ja) 2002-07-23 2004-02-19 Daicel Chem Ind Ltd 反射スクリーン
KR100754165B1 (ko) * 2003-11-06 2007-09-03 삼성전자주식회사 반사형 액정표시소자 및 이를 이용한 프로젝터
JP4793113B2 (ja) * 2005-06-28 2011-10-12 ソニー株式会社 反射型スクリーン
CN101118291B (zh) * 2006-08-04 2010-04-14 鸿富锦精密工业(深圳)有限公司 扩散片
US7911692B2 (en) 2009-07-03 2011-03-22 Seiko Epson Corporation Screen and projection system
WO2013129290A1 (ja) * 2012-03-02 2013-09-06 三菱製紙株式会社 透過型スクリーン
JP5752834B1 (ja) * 2014-04-14 2015-07-22 国立大学法人東京工業大学 透明スクリーン用フィルムおよびその製造方法ならびにそれを備えた透明スクリーン
EP3223046A4 (en) * 2014-12-22 2018-11-14 JXTG Nippon Oil & Energy Corporation Sheet-shaped, transparent molding, transparent screen provided with same, and image projection device provided with same
EP3314821A1 (en) * 2015-06-30 2018-05-02 K4Connect Inc. Home automation system including cloud and home message queue synchronization and related methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237628A (ja) * 2010-05-11 2011-11-24 Seiko Epson Corp スクリーンおよびプロジェクションシステム
JP2016509685A (ja) * 2013-01-02 2016-03-31 マサチューセッツ インスティテュート オブ テクノロジー 散乱ナノ粒子を用いた透明ディスプレイのための方法および装置
WO2015159829A1 (ja) * 2014-04-14 2015-10-22 国立大学法人東京工業大学 透明スクリーン用フィルムおよびその製造方法ならびにそれを備えた透明スクリーン
WO2016203915A1 (ja) * 2015-06-15 2016-12-22 Jxエネルギー株式会社 透明スクリーンおよびそれを備えた映像投影システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3451058A4 *

Also Published As

Publication number Publication date
CN109073963B (zh) 2020-06-23
KR102013094B1 (ko) 2019-08-21
JP6313919B2 (ja) 2018-04-18
JPWO2017187990A1 (ja) 2018-06-28
US10641933B2 (en) 2020-05-05
EP3451058A4 (en) 2019-12-25
KR20180120278A (ko) 2018-11-05
CN109073963A (zh) 2018-12-21
EP3451058A1 (en) 2019-03-06
US20190146127A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6199530B1 (ja) 反射型透明スクリーンおよびそれを備えた画像投影装置
JP6133522B1 (ja) 透明スクリーンおよびそれを備えた映像投影システム
JP6480081B2 (ja) 視認性向上フィルム、およびそれを備えた積層体、およびそれを備えた画像表示装置
JP6266844B2 (ja) シート状透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
US10488565B2 (en) Dispersion liquid for forming transparent light scattering layer of transparent screen, transparent screen, and method for manufacture of transparent screen
WO2016190137A1 (ja) 透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
WO2016208514A1 (ja) シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
JP6313919B2 (ja) 透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム
WO2017150408A1 (ja) 映像投影システム
JP6691815B2 (ja) 映像投影システム
WO2019159529A1 (ja) 映像投影システム
JP6765912B2 (ja) 映像を投影可能な積層体、およびそれを備えた映像投影システム
JP7134123B2 (ja) 映像投影システム
JP6691809B2 (ja) 映像投影システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503677

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187030867

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017789277

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017789277

Country of ref document: EP

Effective date: 20181126