WO2016208514A1 - シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システム - Google Patents

シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システム Download PDF

Info

Publication number
WO2016208514A1
WO2016208514A1 PCT/JP2016/068161 JP2016068161W WO2016208514A1 WO 2016208514 A1 WO2016208514 A1 WO 2016208514A1 JP 2016068161 W JP2016068161 W JP 2016068161W WO 2016208514 A1 WO2016208514 A1 WO 2016208514A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
sheet
fine particles
molded body
transparent molded
Prior art date
Application number
PCT/JP2016/068161
Other languages
English (en)
French (fr)
Inventor
彰 松尾
孝介 八牧
啓文 相園
咲耶子 内澤
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Priority to JP2017508127A priority Critical patent/JP6334055B2/ja
Publication of WO2016208514A1 publication Critical patent/WO2016208514A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the present invention is a sheet-like transparent molded article that has both the visibility of the projection light and the visibility of the transmitted light by anisotropically scattering and reflecting the projection light, and further having an infrared shielding effect, and a transparent body including the same
  • the present invention relates to a screen and a video projection system including the screen.
  • Patent Documents 1 to 3 have the following technical problems.
  • the reflective screen described in Patent Document 2 contains a scaly aluminum paste at a high concentration of 10 to 80 weight as a light reflecting agent, and there is a technical problem that the obtained film cannot be seen through.
  • anisotropic transparent particles dispersed in a dispersion layer are non-metallic particles of mica, talc, and montmorillonite.
  • the present invention has been made in view of the above technical problems, and its purpose is excellent in the visibility of projection light and transmitted light, wide viewing angle, excellent visibility, and the effect of shielding heat and ultraviolet rays. It is providing the sheet-like transparent molding which has this.
  • Another object of the present invention is to provide a transparent screen provided with the sheet-like transparent molded body, a sheet-like transparent molded body, or an image projection system provided with the transparent screen and a projection device.
  • the transparent screen here may be a transmissive screen or a reflective screen.
  • a transmissive screen is a screen on which a projection device is provided on the opposite side of the viewer from the screen so that an image can be seen.
  • a reflective screen is visually recognized as shown in FIG.
  • the present inventors have found that at least one of infrared shielding fine particles and ultraviolet shielding agents, at least one of glittering flaky fine particles and substantially spherical fine particles. It was found that by dispersing one of them in a resin to form a transparent light scattering layer, the above technical problem was solved, and a sheet-like transparent molded body that can be suitably used for a transparent screen was obtained.
  • the present invention has been completed based on such findings.
  • a sheet comprising a transparent light scattering layer comprising a resin, at least one of infrared shielding fine particles and ultraviolet shielding agent, and at least one of glittering flaky fine particles and substantially spherical fine particles A transparent molded body is provided.
  • the infrared shielding fine particles are at least one selected from the group consisting of lanthanum hexaboride, cesium tungsten oxide, indium tin oxide, tin antimony oxide, titanium oxide, zinc oxide, and palladium. Preferably there is.
  • the average primary particle diameter of the infrared shielding fine particles is 1 nm to 10 ⁇ m, and the content of the infrared shielding fine particles is 0.0001 to 5.0 with respect to the resin. It is preferable that it is mass%.
  • the ultraviolet shielding agent is preferably a metal ultraviolet shielding agent or an organic ultraviolet shielding agent.
  • the organic ultraviolet shielding agent is preferably at least one selected from the group consisting of a benzotriazole ultraviolet absorber, a triazine ultraviolet absorber, and a benzophenone ultraviolet absorber.
  • the content of the ultraviolet shielding agent is preferably 0.0001 to 5.0% by mass with respect to the resin.
  • the glittering flaky fine particles are selected from the group consisting of aluminum, silver, platinum, gold, titanium, nickel, tin, tin-cobalt alloy, indium, chromium, aluminum oxide, and zinc sulfide.
  • the content of the glittering flaky fine particles is 0.0001 to 5.0% by mass with respect to the resin, and the average diameter of the primary particles of the glittering flaky fine particles is The thickness is preferably 0.01 nm to 100 ⁇ m.
  • the specular reflectance of the glittering flaky fine particles is preferably 12% or more.
  • the substantially spherical fine particles are at least one selected from the group consisting of zirconium oxide, cerium oxide, barium titanate, strontium titanate, diamond, a crosslinked acrylic resin, a crosslinked styrene resin, and silica. Preferably there is.
  • the median diameter of the primary particles of the substantially spherical fine particles is 0.1 to 100 nm, and the content of the substantially spherical fine particles is 0.0001 to 2.0 with respect to the resin. It is preferable that it is mass%.
  • the sheet-like transparent molded body preferably has a haze of 37% or less.
  • the sheet-like transparent molded body preferably has a shielding coefficient of 0.90 or less.
  • the sheet-like transparent molded body has a image clarity of 70% or more.
  • a building member provided with the above sheet-like transparent molded body.
  • a vehicle member provided with the above sheet-like transparent molded body.
  • a transmission type transparent screen provided with the above sheet-like transparent molded body.
  • a reflective transparent screen provided with the above sheet-like transparent molded body.
  • a video projection system including the sheet-like transparent molded body or the transmissive transparent screen, and a projection device.
  • a video projection system including the sheet-like transparent molded body or the reflective transparent screen, and a projection device.
  • the sheet-like transparent molded product according to the present invention When used as a transparent screen, the sheet-like transparent molded product according to the present invention can project a clear image on the transparent screen by anisotropically reflecting and reflecting the projection light without impairing the transparency. Excellent viewing angle. That is, the sheet-like transparent molded body according to the present invention can achieve both the visibility of the projected light and the visibility of the transmitted light, and can be suitably used as a transmissive transparent screen, and also suitably used as a reflective transparent screen. Can do.
  • the sheet-like transparent molded body according to the present invention reflects an infrared ray to cause an internal temperature rise or a thermal crack of the glass when it is pasted and used in a place where sunlight is incident, such as a building or a car window glass. Further, yellowing due to deterioration of the resin, generation of cracks, reduction in strength, and the like can be suppressed.
  • FIG. 1 is a schematic diagram illustrating an embodiment of a transparent screen and a video projection system according to the present invention.
  • the sheet-like transparent molded body according to the present invention includes a transparent light scattering layer, and may further include other layers such as a protective layer, a base material layer, an adhesive layer, and an antireflection layer.
  • the sheet-like transparent molded body according to the present invention can be seen through and can be suitably used as a transparent screen.
  • the sheet-like transparent molded body according to the present invention has excellent visibility of projection light by anisotropically reflecting and reflecting the projection light, wide viewing angle, high transparency, and excellent visibility of transmitted light. It is.
  • a sheet-like transparent molded object can also suppress the indoor temperature rise and the thermal crack of glass by containing infrared shielding fine particles.
  • the sheet-like transparent molded body can prevent yellowing due to deterioration of the resin as a base material, generation of cracks, and reduction in strength by containing an ultraviolet shielding agent.
  • a sheet-like transparent molded body can be suitably used as a reflective screen used for a head-up display, a wearable display, and the like.
  • the term “transparent” is sufficient as long as the transparency can be realized according to the application, and includes “translucent”.
  • FIG. 1 shows a schematic cross-sectional view in the thickness direction of an embodiment of a sheet-like transparent molded body according to the present invention.
  • the transparent sheet-like molded body includes a transparent light scattering layer 14 in which infrared shielding fine particles 13, glittering flaky fine particles 11, and substantially spherical fine particles 12 are dispersed in a resin 10.
  • the viewer 15 can visually recognize the scattered light 17 by anisotropically scattering the projection light 16.
  • 13 may be an ultraviolet shielding agent, and may contain both infrared shielding fine particles and an ultraviolet shielding agent.
  • FIG. 2 shows a schematic cross-sectional view in the thickness direction of an embodiment of a sheet-like transparent molded body according to the present invention.
  • the sheet-like transparent molded body is provided with a transparent light scattering layer 26 in which infrared shielding fine particles 23, bright flaky fine particles 21 and substantially spherical fine particles 22 are dispersed in a resin 20, and transparent light scattering.
  • the adhesive layer 24 and the base material layer 25 are provided on both surfaces of the layer 26.
  • the viewer 29 can visually recognize the scattered light 28 by anisotropically scattering the projection light 27.
  • 23 may be an ultraviolet shielding agent and may contain both infrared shielding fine particles and an ultraviolet shielding agent.
  • the sheet-like transparent molded body preferably has a haze value of 50% or less, more preferably 1% or more and 40% or less, more preferably 1.3% or more and 30% or less, and even more preferably 1. 5% or more and 20% or less.
  • the total light transmittance is preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, and even more preferably 85% or more.
  • the sheet-like transparent molded body preferably has a diffuse transmittance of 1.5% to 60%, more preferably 1.7% to 55%, and more preferably 1.9% to 50%. Or even more preferably 2.0% or more and 45% or less. If the haze value and the total light transmittance are within the above ranges, the transparency is high and transmission visibility can be further improved.
  • the haze value, the total light transmittance and the diffuse transmittance of the sheet-like transparent molded product are JIS-K using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., product number: NDH-5000). It can be measured according to -7361 and JIS-K-7136.
  • the sheet-like transparent molded body preferably has a reflected front luminous intensity of 3 or more and 60 or less, more preferably 4 or more and 50 or less, and further preferably 4.5 or more and 40 or less.
  • the sheet-like transparent molded article has a transmission front luminous intensity ( ⁇ 1000) of preferably 1.5 or more, more preferably 2.0 or more, and even more preferably 3.0 or more and 50 or less. .
  • the reflection front luminous intensity and transmission front luminous intensity ( ⁇ 1000) of the sheet-like transparent molded body are within the above ranges, the brightness of the reflected light is high and the performance as a reflective screen is excellent.
  • the reflected light intensity and the reflected light intensity improvement rate of the sheet-like transparent molded body are values measured as follows.
  • the measurement was performed using a variable angle photometer (Nippon Denshoku Industries Co., Ltd., product number: GC5000L).
  • the incident angle of the light source was set to 45 degrees, and the reflected light intensity in the 0 degree direction when a standard white plate with a whiteness of 95.77 was placed on the measurement stage was set to 100.
  • the incident angle of the light source was set to 15 degrees, and the intensity of reflected light in the 0 degree direction was measured.
  • the measurement was performed using a variable angle photometer (Nippon Denshoku Industries Co., Ltd., product number: GC5000L).
  • the incident angle of the light source was set to 0 degree, and the transmitted light intensity in the 0 degree direction when nothing was placed on the measurement stage was set to 100.
  • the incident angle of the light source was set to 15 degrees, and the intensity of transmitted light in the 0 degree direction was measured.
  • the sheet-like transparent molded body preferably has a shielding coefficient of 0.40 or more and 0.90 or less, more preferably 0.50 or more and 0.80 or less, and further preferably 0.65 or more and 0.80 or less. It is.
  • the shielding coefficient is an index of the difficulty of heating the glass with the film attached, and is a relative value when the raw glass is set to 1. Therefore, the smaller the numerical value of the shielding coefficient, the harder it is to crack.
  • the shielding coefficient of the sheet-like transparent molded body is a value measured as follows. (Shielding coefficient) The measurement was performed according to JIS A5759 using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation, model number UV-2600).
  • the said sheet-like transparent molded object has the outstanding light resistance by including a ultraviolet-ray shielding agent.
  • Light resistance can be evaluated by the amount of change in film property values before and after light irradiation.
  • b * value that is an index of yellowness
  • MIT folding resistance number that is an index of mechanical strength, and the like are used.
  • the b * value which is an index of yellowishness
  • the number of MIT folding resistances are values measured as follows.
  • MIT folding resistance times The number of MIT folding resistances can be determined using a BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd. as follows.
  • the BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd. is also called an MIT folding resistance tester.
  • the measurement conditions are a load of 200 g, a bending point tip R of 0.38, a bending speed of 175 times / minute, a bending angle of 135 ° on the left and right, and a width of the film sample of 15 mm.
  • the average value of the number of times of bending until it is broken when it is repeatedly bent in the conveying direction of the sheet-like transparent molded body and the number of times of bending until it is broken when it is repeatedly bent in the width direction is the number of times of MIT folding resistance.
  • the sheet-like transparent molded product has a yellowish subtraction value ⁇ b * before and after light irradiation at an irradiance of 60 W / m 2 for 600 hours, preferably 0.10 or less, more preferably 0.08 or less. More preferably, it is 0.05 or less.
  • the sheet-like transparent molded body has an MIT folding resistance number subtraction value ⁇ MIT before and after light irradiation at an irradiance of 60 W / m 2 for 600 hours, preferably 2000 or less, more preferably 1500 or less, More preferably, it is 1000 or less.
  • ⁇ b * and ⁇ MIT are smaller, there is no deterioration due to light irradiation and the light resistance is superior.
  • the sheet-like transparent molded body preferably has an image clarity of 70% or more, more preferably 75% or more, still more preferably 80% or more, still more preferably 85% or more, and particularly preferably. Is 90% or more. If the image clarity of the transparent screen film is within the above range, the image seen through the transparent screen becomes very clear. In the present invention, the image clarity is a value of image definition (%) when measured with an optical comb width of 0.125 mm in accordance with JIS K7374.
  • the thickness of the sheet-like transparent molded body is not particularly limited, but is preferably from 0.1 ⁇ m to 20 mm, more preferably from the viewpoint of application, productivity, handleability, and transportability.
  • the thickness is 5 ⁇ m to 15 mm, more preferably 1 ⁇ m to 10 mm.
  • the “sheet-like transparent molded article” refers to a molded article having various thicknesses such as a film, a sheet, a coating film formed by coating on a substrate, and a plate (plate-like molded article). Include.
  • the transparent light scattering layer comprises a resin, at least one of infrared shielding fine particles and an ultraviolet shielding agent, and at least one of glittering flaky fine particles and substantially spherical fine particles.
  • the thickness of the transparent light scattering layer is not particularly limited, but is preferably 0.1 ⁇ m to 20 mm, more preferably 0.2 ⁇ m to 20 mm from the viewpoints of application, productivity, handleability, and transportability. It is 15 mm, more preferably 1 ⁇ m to 10 mm.
  • the transparent light scattering layer may be a sheet-like transparent molded body or a coating film formed on a substrate made of glass or resin.
  • the transparent light scattering layer may have a single-layer structure, and a multilayer structure in which two or more layers are laminated by coating or the like, or two or more sheet-like transparent molded bodies are bonded together with an adhesive or the like. It may be.
  • the resin for forming the transparent light scattering layer it is preferable to use a highly transparent resin in order to obtain a highly transparent sheet-like transparent molded body.
  • Highly transparent resins include acrylic resins, acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, polyester resins, polyolefin resins, urethane resins, epoxy resins, and polycarbonate resins.
  • thermoplastic resin such as vinyl resins, polysulfone resins, and fluorine resins, thermosetting resins, ionizing radiation curable resins, and the like can be used.
  • a thermoplastic resin is preferable from the viewpoint of the moldability of the sheet-like transparent molded body, but is not particularly limited.
  • thermoplastic resin acrylic resins, polyester resins, polyolefin resins, vinyl resins, polycarbonate resins, and polystyrene resins are preferably used.
  • the ionizing radiation curable resin include acrylic, urethane, acrylic urethane, epoxy, and silicone resins.
  • those having an acrylate-based functional group such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, many Monofunctional monomers such as (meth) allylate oligomers or prepolymers of polyfunctional compounds such as monohydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone
  • polyfunctional monomers such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate Preferred are those containing a
  • the ionizing radiation curable resin may be mixed with a thermoplastic resin and a solvent.
  • thermosetting resins include phenolic resins, epoxy resins, silicone resins, melamine resins, urethane resins, urea resins, and the like. Among these, epoxy resins and silicone resins are preferable.
  • Infrared shielding fine particles for example, lanthanum hexaboride, cesium tungsten oxide, indium tin oxide, tin antimony oxide, titanium oxide, zinc oxide and palladium can be preferably used. From the viewpoint of heat ray shielding, particles that reflect heat rays without re-radiation are preferable to heat ray absorption types that have re-radiation of absorbed light into the room (about 1/3 of the absorbed solar radiation energy). By adding the infrared shielding fine particles, infrared rays can be reflected and the temperature rise in the room can be suppressed.
  • the infrared shielding fine particles have an average primary particle diameter of preferably 1 nm to 10 ⁇ m, more preferably 5 nm to 5 ⁇ m, still more preferably 10 nm to 1 ⁇ m, and even more preferably 15 nm to 0.5 ⁇ m.
  • the average diameter of the infrared shielding fine particles is within the above range, when the sheet-like transparent molded product is used for a transparent screen, a sufficient infrared reflection effect can be obtained without impairing the transmission visibility, so that it is clear. An image can be projected to suppress an increase in indoor temperature.
  • the average diameter of the infrared shielding fine particles was measured using a laser diffraction type particle size distribution measuring apparatus (manufactured by Shimadzu Corporation, product number: SALD-2300).
  • the average aspect ratio was calculated from an SEM (trade name: SU-1500, manufactured by Hitachi High-Technologies Corporation) image.
  • infrared shielding fine particles may be used, for example, trade name JR-1000 manufactured by Teika Co., Ltd., trade names manufactured by Sumitomo Metal Mining Co., Ltd .: YMF-02A, KHF-7AH, YMDS-874. , KHDS-06 and the like can be preferably used.
  • the content of the infrared shielding fine particles in the transparent light scattering layer can be appropriately adjusted according to the type of the infrared shielding fine particles, and is preferably 0.0001 to 5.0% by mass with respect to the resin.
  • the amount is preferably 0.0005 to 2% by mass, and more preferably 0.001 to 1% by mass.
  • the ultraviolet shielding agent a metallic ultraviolet shielding agent or an organic ultraviolet shielding agent can be suitably used. By adding an ultraviolet shielding agent, ultraviolet rays can be blocked and deterioration of the sheet-like transparent molded product can be suppressed.
  • the metallic ultraviolet shielding agent at least one metallic fine particle selected from the group consisting of zinc oxide, titanium oxide, and barium sulfate can be suitably used.
  • the metal-based fine particles of the ultraviolet shielding agent preferably have an average primary particle diameter of 1 nm to 10 ⁇ m, more preferably 5 nm to 5 ⁇ m, still more preferably 10 nm to 1 ⁇ m, and even more preferably 15 nm to 0.5 ⁇ m.
  • the average diameter of the metallic fine particles of the ultraviolet shielding agent is within the above range, a sufficient ultraviolet shielding effect can be obtained without impairing transmission visibility when the sheet-like transparent molded product is used for a transparent screen.
  • the average diameter of the ultraviolet screening agent was measured using a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, product number: SALD-2300).
  • the average aspect ratio was calculated from an SEM (trade name: SU-1500, manufactured by Hitachi High-Technologies Corporation) image.
  • the organic ultraviolet shielding agent at least one selected from the group consisting of benzotriazole ultraviolet absorbers, triazine ultraviolet absorbers, and benzophenone ultraviolet absorbers can be suitably used.
  • benzotriazole ultraviolet absorber examples include 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate, 2- [5 -Chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-di-tert-pentylphenol 2- (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol, 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H- Benzotriazol-2-yl) phenol), 2- (2'
  • triazine ultraviolet absorber examples include 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine, 2, 4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3-dodecyloxypropyl) ) Oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3- (2′-ethyl) ) Hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, and 2- [4-[(2-hydroxy-3-tridecyl) Oxip Ropyl)
  • benzophenone-based ultraviolet absorbers examples include 2-hydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, hydroxymethoxybenzophenone sulfonic acid, and Examples include sodium hydroxymethoxybenzophenone sulfonate.
  • UV screening agents examples include zinc oxide (trade name: FZO) and titanium oxide (trade name: TTO-51 (A) manufactured by Ishihara Sangyo Co., Ltd. )),
  • a benzotriazole ultraviolet absorber (trade name: ADK STAB LA-31) manufactured by ADEKA Corporation, a triazine ultraviolet absorber (trade name: ADK STAB LA-46), BASF Japan
  • a benzotriazole ultraviolet absorber (trade name: Tinuvin 234), a triazine ultraviolet absorber (trade names: Tinuvin 1577, Tinuvin 1600), a benzophenone ultraviolet absorber (trade name: ADK STAB 1413), and the like are preferably used. be able to.
  • the content of the ultraviolet shielding agent in the transparent light scattering layer can be appropriately adjusted according to the type of the ultraviolet shielding agent, and is preferably 0.0001 to 5.0% by mass with respect to the resin, preferably The content is 0.0005 to 2% by mass, and more preferably 0.001 to 1% by mass.
  • the regular reflectance of the glittering flaky fine particles is preferably 12.0% or more, more preferably 15.0% or more, and further preferably 20.0% or more and 80.0% or less.
  • the regular reflectance of the glittering flaky fine particles is a value measured as follows. (Regular reflectance) Measurement was performed using a spectrocolorimeter (manufactured by Konica Minolta Co., Ltd., product number: CM-3500d).
  • Bright flaky fine particles dispersed in an appropriate solvent were formed on a slide glass with a film thickness of 0.00.
  • the coated glass plate was coated and dried so that the thickness was 5 mm or more.
  • the glittering flaky fine particles depending on the type of resin to be dispersed, for example, metallic fine particles such as aluminum, silver, platinum, gold, titanium, nickel, tin, tin-cobalt alloy, indium and chromium, or A metallic fine particle composed of aluminum oxide and zinc sulfide, a glittering material in which a metal or a metal oxide is coated on glass, or a glittering material in which a natural mica or a synthetic mica is coated with a metal or a metal oxide can be used.
  • metallic fine particles such as aluminum, silver, platinum, gold, titanium, nickel, tin, tin-cobalt alloy, indium and chromium
  • the metal material used for the metal-based fine particles a metal material having excellent projection light reflectivity is used.
  • the metal material has a reflectance R at a measurement wavelength of 550 nm of preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and even more preferably 70% or more.
  • reflectance R refers to the reflectance when light is incident on a metal material from the vertical direction.
  • the reflectance R can be calculated by the following formula (1) using the refractive index n and the extinction coefficient k, which are intrinsic values of the metal material.
  • n and k are, for example, in Handbook of Optical Constants of Solids: Volume 1 (by Edward D.
  • the reflectance R (550) at a measurement wavelength of 550 nm can be calculated from n and k measured at a wavelength of 550 nm.
  • the metal material has an absolute value of the difference between the reflectance R (450) at the measurement wavelength 450 nm and the reflectance R (650) at the measurement wavelength 650 nm within 25% of the reflectance R (650) at the measurement wavelength 550 nm. Yes, preferably within 20%, more preferably within 15%, and even more preferably within 10%.
  • the real term ⁇ ′ of the dielectric constant is preferably ⁇ 60 to 0, and more preferably ⁇ 50 to ⁇ 10.
  • the real term ⁇ ′ of the dielectric constant can be calculated by the following formula (2) using the values of the refractive index n and the extinction coefficient k.
  • ⁇ ′ n 2 ⁇ k 2 formula (2)
  • the present invention is not bound by any theory, when the real term ⁇ ′ of the dielectric constant of the metal material satisfies the above numerical range, the following action occurs, and the transparent light scatterer is used as a reflective transparent screen. It is thought that it can be used suitably.
  • any metal material satisfying the above-described reflectance R, preferably further satisfying the dielectric constant may be used, and a pure metal or an alloy can also be used.
  • the pure metal is preferably selected from the group consisting of aluminum, silver, platinum, titanium, nickel, and chromium.
  • the metal-based fine particles fine particles made of these metal materials, or fine particles obtained by coating these metal materials with resin, glass, natural mica, or synthetic mica can be used.
  • the shape of the metal-based fine particles is not particularly limited, and flaky fine particles, substantially spherical fine particles, and the like can be used.
  • the refractive index n and extinction coefficient k at each measurement wavelength are summarized in Table 1, and the reflectances R and ⁇ ′ calculated using the values are summarized in Table 2.
  • the glittering flaky fine particles preferably have an average primary particle diameter of 0.01 to 100 ⁇ m, more preferably 0.05 to 80 ⁇ m, still more preferably 0.1 to 50 ⁇ m, and still more preferably 0.5 to 30 ⁇ m.
  • the average diameter of the glittering flaky fine particles was measured using a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, product number: SALD-2300).
  • the average aspect ratio was calculated from an SEM (trade name: SU-1500, manufactured by Hitachi High-Technologies Corporation) image.
  • glittering flaky fine particles commercially available ones may be used.
  • aluminum powder manufactured by Daiwa Metal Powder Co., Ltd. metal-coated glass (trade name: Metashine) manufactured by Matsuo Sangyo Co., Ltd. is preferably used. be able to.
  • the content of the glittering flaky fine particles in the transparent light scattering layer can be appropriately adjusted according to the regular reflectance of the glittering flaky fine particles, and is preferably 0.0001 to 5.0 mass relative to the resin. %, Preferably 0.0005 to 3.0 mass%, more preferably 0.001 to 1.0 mass%.
  • Projection light is produced by anisotropically scattering and reflecting the projection light emitted from the light source by dispersing the glittering flaky fine particles in the resin at a low concentration within the above range to form a transparent light scattering layer. And the visibility of transmitted light can be improved.
  • the substantially spherical fine particles may include true spherical particles, or may include spherical particles having irregularities and protrusions.
  • Refractive index n 1 and the refractive index n 2 of the substantially spherical fine particles of the resin is represented by the following equation (1):
  • the refractive index n 2 is preferably 1.80 to 3.55, more preferably 1.9 to 3.3, and further preferably 2.0 to 3.5. It is possible to use an inorganic particle obtained by atomizing an inorganic substance, or a metal particle obtained by atomizing a metal oxide or a metal salt, which is 3.0.
  • examples of the organic substantially spherical fine particles having a low refractive index include acrylic particles and polystyrene particles. These substantially spherical fine particles can be used singly or in combination of two or more.
  • the median diameter of the primary particles of the substantially spherical fine particles is preferably 0.1 to 100 nm, more preferably 0.2 to 70 nm, and still more preferably 0.5 to 50 nm.
  • the median diameter of the primary particles of substantially spherical fine particles is within the above range, when used as a transparent sheet, a sufficient diffusion effect of projected light can be obtained without impairing transmission visibility, so that the transparent screen is clear. Video can be projected.
  • the median diameter (D 50 ) of the primary particles of the inorganic fine particles was measured by a dynamic light scattering method using a particle size distribution analyzer (trade name: DLS-8000, manufactured by Otsuka Electronics Co., Ltd.). It can be determined from the particle size distribution.
  • the content of the substantially spherical fine particles can be appropriately adjusted according to the thickness of the transparent light scattering layer and the refractive index of the fine particles.
  • the content of fine particles in the transparent light scattering layer is preferably 0.0001 to 2.0% by mass, more preferably 0.001 to 1.0% by mass, and still more preferably 0% with respect to the resin. 0.005 to 0.5% by mass, and still more preferably 0.01 to 0.3% by mass. If the content of substantially spherical fine particles in the transparent light scattering layer is within the above range, the projection light emitted from the projection device is sufficiently diffused anisotropically while ensuring the transparency of the transparent light scattering layer. Thus, the visibility of diffused light and the visibility of transmitted light can be compatible.
  • a base material layer is a layer for supporting a sheet-like transparent molding by sticking together on both surfaces or one side of a sheet-like transparent molding, and can improve the intensity
  • the base material layer is preferably made of a highly transparent resin or glass that does not impair the transmission visibility and desired optical properties of the sheet-like transparent molded body.
  • a resin for example, a highly transparent resin similar to the above transparent light scattering layer can be used.
  • Acrylic resins acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, polyester resins, polyolefin resins, urethane resins, epoxy resins, polycarbonate resins, cellulose resins, Acetal resin, vinyl resin, polystyrene resin, polyamide resin, polyimide resin, melamine resin, phenol resin, silicone resin, polyarylate resin, polyvinyl alcohol resin, polyvinyl chloride resin, polysulfone resin Resins, thermoplastic resins such as fluorine resins, thermosetting resins, ionizing radiation curable resins, and the like can be suitably used.
  • seat which laminated
  • the thickness of a base material layer can be suitably changed according to a use and material so that the intensity
  • the protective layer may be laminated on the surface side (viewer side) and / or the back surface side of the sheet-like transparent molded body, such as light resistance, scratch resistance, substrate adhesion, and antifouling property. This is a layer for providing the function.
  • the protective layer is preferably formed using a resin that does not impair the transmission visibility and desired optical properties of the sheet-like transparent molded body.
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose resins such as diacetyl cellulose and triacetyl cellulose
  • acrylic resins such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymers, and the like.
  • styrene resins such as (AS resin), polycarbonate resins, and the like.
  • polyolefin resins such as polyethylene, polypropylene, ethylene / propylene copolymers, olefin resins having cycloolefin or norbornene structures, vinyl chloride resins, amide resins such as nylon and aromatic polyamide, imide resins, Sulfone resin, polyether sulfone resin, polyether ether ketone resin, polyphenylene sulfide resin, vinyl alcohol resin, vinylidene chloride resin, vinyl butyral resin, arylate resin, polyoxymethylene resin, epoxy resin Or the blend of the said resin etc. are mentioned as an example of resin which forms a protective film.
  • ionizing radiation curable resins such as acrylics, urethanes, acrylic urethanes, epoxies, and silicones, mixtures of thermoplastic resins and solvents in ionizing radiation curable resins, and thermosetting resins.
  • the film forming component of the ionizing radiation curable resin composition is preferably one having an acrylate functional group, such as a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, Spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers or prepolymers such as (meth) arylate of polyfunctional compounds such as polyhydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, Monofunctional and polyfunctional monomers such as methylstyrene and N-vinylpyrrolidone, such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate Of diethyl methacrylate, diethylene glycol di
  • acetophenones, benzophenones, Michler benzoyl benzoate, ⁇ -amyloxime ester, tetramethylchuram mono are used as photopolymerization initiators.
  • a mixture of sulfide, thioxanthone, n-butylamine, triethylamine, poly-n-butylphosphine, or the like as a photosensitizer can be used.
  • the ionizing radiation curable resin composition can be cured by a normal curing method, that is, by irradiation with electron beams or ultraviolet rays.
  • a normal curing method that is, by irradiation with electron beams or ultraviolet rays.
  • electron beam curing 50 to 50 emitted from various electron beam accelerators such as Cockloft Walton type, bandegraph type, resonant transformation type, insulated core transformer type, linear type, dynamitron type, high frequency type, etc.
  • An electron beam having an energy of 1000 KeV, preferably 100 to 300 KeV is used.
  • ultraviolet rays emitted from rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. Available.
  • the protective layer is formed by applying the coating liquid of the ionizing radiation (ultraviolet ray) radiation curable resin composition by a method such as spin coating, die coating, dip coating, bar coating, flow coating, roll coating, gravure coating, or the like. It can be formed by applying to the front side (viewer side) and / or the back side of the sheet-like transparent molded product for use, and curing the coating solution by the means described above.
  • a method such as spin coating, die coating, dip coating, bar coating, flow coating, roll coating, gravure coating, or the like. It can be formed by applying to the front side (viewer side) and / or the back side of the sheet-like transparent molded product for use, and curing the coating solution by the means described above.
  • An adhesion layer is a layer for sticking a base material layer, an antireflection layer, etc. to at least one side of a sheet-like transparent molding. It is also possible to produce a laminated structure in which an adhesive layer is provided on both surfaces of a sheet-like transparent molded body, and the sheet-like transparent molded body is sandwiched between base material layers.
  • the pressure-sensitive adhesive layer is preferably formed using a pressure-sensitive adhesive composition that does not impair the transmission visibility and desired optical properties of the sheet-like transparent molded body. Examples of the pressure-sensitive adhesive composition include natural rubber, synthetic rubber, poly (meth) acrylic, polyvinyl ether, polyurethane, polysilicon, polyvinyl alcohol, and the like.
  • polystyrene-butadiene rubber examples include styrene-butadiene rubber, acrylonitrile-butadiene rubber, polyisobutylene rubber, isobutylene-isoprene rubber, styrene-isoprene block copolymer, styrene-butadiene block copolymer, styrene-ethylene-butylene block.
  • a copolymer is mentioned.
  • polyvinyl alcohol examples include polyvinyl butyral and ethylene-vinyl acetate resin.
  • Specific examples of the polysilicone-based material include dimethylpolysiloxane. Among these, a polyvinyl alcohol adhesive and an acrylic adhesive are preferable. These pressure-sensitive adhesives can be used singly or in combination of two or more.
  • the acrylic resin pressure-sensitive adhesive is a polymer containing at least a (meth) acrylic acid alkyl ester monomer. Generally, it is a copolymer of a (meth) acrylic acid alkyl ester monomer having an alkyl group having about 1 to 18 carbon atoms and a monomer having a carboxyl group.
  • (meth) acrylic acid means at least any one of acrylic acid or methacrylic acid.
  • Examples of (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, sec-propyl (meth) acrylate, (meth) acrylic acid n-butyl, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid Examples include n-octyl, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, undecyl (meth) acrylate, and lauryl (meth) acrylate. Further, the above (meth) acrylic acid alkyl ester is usually copolymerized at a ratio of 30 to 99.5
  • Examples of the monomer having a carboxyl group that forms the acrylic resin pressure-sensitive adhesive include monomers containing a carboxyl group such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, monobutyl maleate and ⁇ -carboxyethyl acrylate. Can be mentioned.
  • the acrylic resin pressure-sensitive adhesive may be copolymerized with a monomer having another functional group within a range not impairing the characteristics of the acrylic resin pressure-sensitive adhesive.
  • monomers having other functional groups include monomers containing hydroxyl groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and allyl alcohol; (meth) acrylamide, N-methyl Monomers containing amide groups such as (meth) acrylamide and N-ethyl (meth) acrylamide; Monomers containing amide groups and methylol groups such as N-methylol (meth) acrylamide and dimethylol (meth) acrylamide; Monomers having functional groups such as monomers containing amino groups such as meth) acrylate, dimethylaminoethyl (meth) acrylate and vinylpyridine; ⁇ ⁇ ⁇ ⁇ epoxy group-containing monomers such as allyl glycidyl ether and (meth)
  • fluorine-substituted (meth) acrylic acid alkyl ester, (meth) acrylonitrile and the like, vinyl group-containing aromatic compounds such as styrene and methylstyrene, vinyl acetate, and vinyl halide compounds can be used.
  • the acrylic resin pressure-sensitive adhesive in addition to the monomer having another functional group as described above, another monomer having an ethylenic double bond can be used.
  • monomers having an ethylenic double bond include diesters of ⁇ , ⁇ -unsaturated dibasic acids such as dibutyl maleate, dioctyl maleate and dibutyl fumarate; vinyl esters such as vinyl oxalate and vinyl propionate; vinyl ether And vinyl aromatic compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; (meth) acrylonitrile and the like.
  • a compound having two or more ethylenic double bonds may be used in combination.
  • examples of such compounds include divinylbenzene, diallyl malate, diallyl phthalate, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, methylene bis (meth) acrylamide, and the like.
  • monomers having an alkoxyalkyl chain can be used.
  • (meth) acrylic acid alkoxyalkyl esters include 2-methoxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, and 3-methoxypropyl (meth) acrylate.
  • the pressure-sensitive adhesive composition may be a homopolymer of (meth) acrylic acid alkyl ester monomer in addition to the above acrylic resin pressure-sensitive adhesive.
  • (meth) acrylic acid ester homopolymers include poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, poly (meth) Examples include octyl acrylate.
  • Copolymers containing two or more acrylate units include methyl (meth) acrylate- (meth) ethyl acrylate copolymer, methyl (meth) acrylate-butyl (meth) acrylate copolymer, ( Examples thereof include methyl (meth) acrylate- (meth) acrylic acid 2-hydroxyethyl copolymer, methyl (meth) acrylate- (meth) acrylic acid 2-hydroxy3-phenyloxypropyl copolymer, and the like.
  • Copolymers of (meth) acrylic acid esters and other functional monomers include (meth) methyl acrylate-styrene copolymers, (meth) methyl acrylate-ethylene copolymers, (meth) acrylic. Examples include methyl acid- (meth) acrylate 2-hydroxyethyl-styrene copolymer.
  • adhesives such as SK Dyne 2094, SK Dyne 2147, SK Dyne 1811L, SK Dyne 1442, SK Dyne 1435, and SK Dyne 1415 (above, manufactured by Soken Chemical Co., Ltd.), Olivain EG-655, Olivevine BPS5896 (above, manufactured by Toyo Ink Co., Ltd.), etc. (above, trade name) can be suitably used.
  • the antireflection layer is a layer for preventing reflection on the surface of the sheet-like transparent molded body and the outermost surface of the laminate and reflection of external light.
  • the antireflection layer may be laminated only on one side on the viewer side or on the opposite side of the sheet-like transparent molded article or the laminate, or may be laminated on both sides. In particular, when used as a reflective screen, it is preferably laminated on the viewer side.
  • the antireflection layer is preferably formed using a resin that does not impair the transmission visibility and desired optical characteristics of the sheet-like transparent molded body or the laminate.
  • a resin curable by ultraviolet rays or an electron beam that is, an ionizing radiation curable resin, a mixture of an ionizing radiation curable resin and a thermoplastic resin and a solvent, and a thermosetting resin are used.
  • ionizing radiation curable resins are particularly preferable.
  • the method for forming the antireflection layer is not particularly limited, but is a method of pasting a coating film, a method of dry coating directly on a film substrate by vapor deposition or sputtering, gravure coating, micro gravure coating, bar coating, slide die coating. Methods such as wet coating such as coating, slot die coating, and dip coating can be used.
  • the method for producing a sheet-like transparent molded body according to the present invention includes a step of forming a transparent light scattering layer, and further laminates other layers such as a protective layer, a base material layer, an adhesive layer, and an antireflection layer. In the case, it may further include a step of forming another layer including a stacking step.
  • the process of forming the transparent light scattering layer is an extrusion molding method consisting of a kneading step and a film forming step, a cast film forming method, gravure coating, micro gravure coating, bar coating, slide die coating, slot die coating, Dip coat, coating method including spraying, injection molding method, calender molding method, blow molding method, compression molding method, encapsulate the monomer liquid between two glass plates, perform bulk polymerization in it, polymerize and solidify Molding can be performed by a known method such as a cell casting method for obtaining a plate-shaped molded body, and an extrusion molding method or an injection molding method can be suitably used because of the wide range of film thickness that can be formed.
  • a known method such as a cell casting method for obtaining a plate-shaped molded body
  • an extrusion molding method or an injection molding method can be suitably used because of the wide range of film thickness that can be formed.
  • mixing process is a process of forming a transparent light-scattering layer using an extruder.
  • the extruder a single-screw or twin-screw kneading extruder can be used.
  • the average value over the entire screw length of the twin-screw kneading extruder is preferably 3 to 1800 KPa, more preferably Is a step of kneading the above resin and fine particles while applying a shearing stress of 6 to 1400 KPa to obtain a resin composition.
  • the fine particles can be sufficiently dispersed in the resin.
  • the shear stress is 3 KPa or more, the dispersion uniformity of the fine particles can be further improved, and if it is 1800 KPa or less, decomposition of the resin is prevented and bubbles are prevented from being mixed in the transparent light scattering layer. be able to.
  • the shear stress can be set in a desired range by adjusting the twin-screw kneading extruder.
  • a resin composition obtained by adding a resin (master batch) to which fine particles have been added in advance and a resin to which fine particles have not been added is kneaded using a twin-screw kneading extruder to obtain a resin composition. Also good.
  • a resin (masterbatch) to which fine particles have been added in advance using a single screw kneading extruder may be prepared. May be produced.
  • additives may be added to the resin composition as long as the transmission visibility and desired optical performance of the sheet-like transparent molded body are not impaired.
  • the additive include an antioxidant, a lubricant, a light stabilizer, a compatibilizer, a nucleating agent, and a stabilizer.
  • the resin and the fine particles are as described above.
  • the twin-screw kneading extruder used in the kneading process is one in which two screws are inserted into a cylinder, and is configured by combining screw elements.
  • a flight screw including at least a conveying element and a kneading element can be suitably used.
  • the kneading element preferably contains at least one selected from the group consisting of a kneading element, a mixing element, and a rotary element.
  • the film forming step is a step of forming a film of the resin composition obtained in the kneading step.
  • the film forming method is not particularly limited, and a sheet-like transparent molded body made of the resin composition can be formed by a conventionally known method.
  • the resin composition obtained in the kneading step is supplied to a melt extruder heated to a temperature equal to or higher than the melting point (Tm to Tm + 70 ° C.) to melt the resin composition.
  • a melt extruder a single screw kneading extruder, a twin screw kneading extruder, a vent extruder, a tandem extruder, or the like can be used depending on the purpose.
  • the molten resin composition is extruded into a sheet shape by a die such as a T die, and the extruded sheet material is rapidly cooled and solidified by a rotating cooling drum or the like to form a sheet-shaped molded body.
  • a die such as a T die
  • the extruded sheet material is rapidly cooled and solidified by a rotating cooling drum or the like to form a sheet-shaped molded body.
  • the resin composition obtained in the kneading process is directly extruded from a die in a molten state to form a sheet-like transparent light scattering layer. You can also.
  • the sheet-like transparent light scattering layer obtained by the film forming step may be further uniaxially or biaxially stretched by a conventionally known method.
  • the mechanical strength can be improved by stretching the transparent light scattering layer.
  • the lamination step when other layers such as a protective layer, a base material layer, an adhesive layer, and an antireflection layer are provided, another layer is further added on the sheet-like transparent light scattering layer obtained in the film forming step. It is a process of laminating.
  • the method for laminating other layers is not particularly limited, and can be performed by a conventionally known method.
  • the transparent screen according to the present invention comprises the above sheet-like transparent molded body.
  • a transparent screen may consist only of said sheet-like transparent molded object, and may further be equipped with support bodies, such as a transparent partition.
  • the transparent screen may be a flat surface, a curved surface, or an uneven surface.
  • the transparent screen according to the present invention may be a rear projection screen (transmission screen) or a front projection screen (reflection screen). That is, in the video display device including the transparent screen according to the present invention, the position of the light source may be on the side opposite to the viewer (transmission type screen) or on the viewer side (reflection type). screen). Moreover, when using as a reflection type screen, the aspect in which a viewer visually recognizes an image from the transparent light-scattering layer side of the said sheet-like transparent molding is preferable. Such a transparent screen is excellent in the visibility of the projection light by anisotropically reflecting the projection light emitted from the light source, has a wide viewing angle, and is excellent in the visibility of the transmitted light.
  • the support is for supporting the sheet-like transparent molded body.
  • the support may be any material that does not impair the transmission visibility and desired optical characteristics of the reflective screen. Examples thereof include a transparent partition, a glass window, a head-up display for a passenger car, and a wearable display.
  • the building member according to the present invention comprises the above-mentioned sheet-like transparent molded body or the above-described transparent screen.
  • the building member include a window glass of a house, a glass wall of a convenience store, a road surface store, and the like.
  • the vehicle member according to the present invention includes the above-described sheet-like transparent molded body or the above-described transparent screen.
  • Examples of the vehicle member include a windshield and a side glass.
  • a video projection system includes the above sheet-like transparent molded body or transparent screen, and a projection device.
  • the position of the projection device may be on the viewer side with respect to the screen, or may be on the opposite side of the viewer.
  • the projection device is not particularly limited as long as it can project an image on a screen. For example, a commercially available front projector can be used.
  • FIG. 3 shows a schematic diagram of an embodiment of a transparent screen and a video projection system according to the present invention.
  • the transparent screen 33 includes a transparent partition (support) 32 and a sheet-like transparent molded body 31 on the viewer 34 side on the transparent partition 32.
  • the sheet-like transparent molded body 31 may include an adhesive layer in order to stick to the transparent partition 32.
  • the video projection system includes a transparent screen 33 and a projection device 35 ⁇ / b> A installed on the opposite side (back side) of the viewer 34 with respect to the transparent partition 32.
  • Projection light 36A emitted from the projection device 35A enters from the back side of the transparent screen 33 and is anisotropically scattered by the transparent screen 33, so that the viewer 34 can visually recognize the scattered light 37A.
  • the video projection system includes a transparent screen 33 and a projection device 35 ⁇ / b> B installed on the same side (front side) as the viewer 34 with respect to the transparent partition 32.
  • the projection light 36 ⁇ / b> B emitted from the projection device 35 ⁇ / b> B enters from the front side of the transparent screen 33 and is anisotropically scattered by the transparent screen 33, so that the viewer 34 can visually recognize the scattered light 37 ⁇ / b> B.
  • Reflected frontal light intensity Measured using a variable angle photometer (manufactured by Nippon Denshoku Industries Co., Ltd., product number: GC5000L).
  • the incident angle of the light source was set to 45 degrees, and the reflected light intensity in the 0 degree direction when a standard white plate with a whiteness of 95.77 was placed on the measurement stage was set to 100.
  • the incident angle of the light source was set to 15 degrees, and the intensity of reflected light in the 0 degree direction was measured.
  • Transmitted frontal light intensity Measured using a variable angle photometer (manufactured by Nippon Denshoku Industries Co., Ltd., product number: GC5000L).
  • the incident angle of the light source was set to 0 degree, and the transmitted light intensity in the 0 degree direction when nothing was placed on the measurement stage was set to 100.
  • the incident angle of the light source was set to 15 degrees, and the intensity of transmitted light in the 0 degree direction was measured.
  • the incident angle of the light source was set to 0 degree, and the transmitted light intensity in the 0 degree direction when nothing was placed on the measurement stage was set to 100.
  • the transmitted light intensity from ⁇ 85 degrees to +85 degrees was measured in steps of 1 degree with the incident angle of the light source kept at 0 degrees.
  • the viewing angle was defined as a range where the transmitted light intensity was 0.001 or more in the measurement range.
  • Image clarity Image clarity (%) measured using an image clarity measuring instrument (Suga Test Instruments Co., Ltd., product number: ICM-1T) in accordance with JIS K7374 with an optical comb width of 0.125 mm. The value of) was defined as image clarity. The larger the image sharpness value, the higher the transmission image clarity. (9) Shielding coefficient The shielding coefficient was measured in accordance with JIS A5759 using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation, model number UV-2600).
  • the number of MIT folding resistances was measured using a BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd., with a load of 200 g, a bending point tip R of 0.38, a bending speed of 175 times / minute, and a bending angle of left and right 135 °, the width of the film sample is 15 mm, under the measurement conditions of the sheet-like transparent molded body, the number of times of bending when it is repeatedly bent in the conveying direction, and the number of times of bending when it is repeatedly bent in the width direction It was measured by determining the average value.
  • ⁇ MIT was calculated as a subtracted value of the number of MIT folding resistances before and after light irradiation (MIT before light irradiation ⁇ MIT after light irradiation).
  • the performance as a reflective transparent screen can be evaluated by observation from the front, and the performance as a transmissive transparent screen can be evaluated by observation from the rear.
  • thermoplastic resin pellets to which fine particles have been added (hereinafter referred to as “pellet production process”)
  • PET polyethylene terephthalate
  • IP121B manufactured by Bell Polyester Products Co., Ltd.
  • sheet production process Production of transparent light scattering layer (sheet-like transparent molded product) (hereinafter referred to as “sheet production process”)
  • the obtained fine particle-added PET pellets were put into a hopper of a screw type biaxial kneading extruder (trade name: KZW-30MG, manufactured by Technobel Co., Ltd.), and a transparent light scattering layer (sheet-like transparent molding) having a thickness of 80 ⁇ m. Body).
  • the screw diameter of the twin-screw kneading extruder was 20 mm, and the screw effective length (L / D) was 30.
  • a hanger coat type T-die was installed in the twin-screw kneading extruder through an adapter.
  • the extrusion temperature was 270 ° C.
  • the screw rotation speed was 500 rpm
  • the shear stress was 300 KPa.
  • the used screw has a total length of 670 mm, including a mixing element between 160 mm and 185 mm from the hopper side of the screw, and a kneading element between 185 mm and 285 mm, and the other parts are flight It was a shape.
  • (3) Evaluation of Transparent Screen When the produced transparent light scattering layer (sheet-like transparent molded product) was used as it was for a transparent screen, the haze value was 4.8%, the diffuse transmittance was 4.1%, and the total light transmittance. Was 86.0% and had high transparency.
  • the transmission front luminous intensity ( ⁇ 1000) measured with a goniophotometer was 1.00, and it was found that the transmission front luminous intensity was excellent.
  • the reflected front brightness measured with a goniophotometer was 9.8, and it was found that the reflected front brightness was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 18 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument is 89%, and as a result of visual evaluation of the visibility, it is possible to clearly see the image during both the front observation and the rear observation. I was able to see clear images.
  • the shielding coefficient was 0.85 and had an excellent heat ray shielding effect.
  • Example A2 In Example 1 (1) pellet preparation step, the addition amount of cesium tungsten oxide fine particles was 0.010% by mass, and zirconium oxide particles (manufactured by Kanto Denka Kogyo Co., Ltd., refractive index 2.40) as substantially spherical fine particles.
  • a transparent light scattering layer (sheet-like transparent molded body) having a thickness of 100 ⁇ m was produced in the same manner as in Example A1, except that 0.15% by mass of the median diameter of primary particles (10 nm) was added.
  • the produced transparent light scattering layer sheet-like transparent molding
  • the haze value was 13.9%
  • the diffuse transmittance was 10.1%
  • the total light transmittance was 72.4%.
  • the transmission front luminous intensity ( ⁇ 1000) measured with a goniophotometer was 11.29, and it was found that the transmission front luminous intensity was excellent.
  • the reflected front light intensity measured with a goniophotometer was 5.1, and it was found that the reflected front light intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 32 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument was 85%, and as a result of visual evaluation of the visibility, it was possible to visually recognize the image very clearly during both the front observation and the rear observation. Further, the shielding coefficient was 0.68, and it was found that it has an excellent heat ray shielding effect.
  • Example A3 In the step (1) pellet preparation of Example A1, the amount of flaky aluminum fine particles A added was 0.042% by mass, and lanthanum hexaboride instead of cesium tungsten oxide as infrared shielding fine particles (Sumitomo Metal Mining Co., Ltd.) A transparent light scattering layer (sheet-like transparent molded product) having a film thickness of 80 ⁇ m was produced in the same manner as in Example A1, except that 0.001% by mass (trade name: KHF-7AH, average diameter: 80 nm) was used. .
  • the transparent light scattering layer contains 0.0015% by mass of zirconium oxide. Yes.
  • the produced transparent light scattering layer sheet-like transparent molded product
  • the haze value was 18.1%
  • the diffuse transmittance was 12.9%
  • the total light transmittance was 71.0%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 3.11, and it was found that the transmission front light intensity ( ⁇ 1000) was excellent.
  • the reflected front light intensity measured with a goniophotometer was 38.2, and it was found that the reflected front light intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 33 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring device was 91%, and as a result of visual evaluation of the visibility, it was possible to visually recognize the image very clearly during both the front observation and the rear observation.
  • the shielding coefficient was 0.88 and had an excellent heat ray shielding effect.
  • Example A4 In the step (1) pellet preparation of Example A1, flaky aluminum fine particles B (average primary particle diameter of 7 ⁇ m, aspect ratio of 40, regular reflectance of 24.6%) as glittering flaky fine particles were 0 for PET pellets. .014 mass% was added, and 0.005 mass% of titanium oxide (trade name: JR-1000, average diameter 1 ⁇ m) manufactured by Teika Co., Ltd. was added instead of cesium tungsten oxide as infrared shielding fine particles. A transparent light scattering layer (sheet-like transparent molded body) having a film thickness of 100 ⁇ m was produced in the same manner as in Example A1.
  • the haze value was 5.1%
  • the diffuse transmittance was 4.4%
  • the total light transmittance was 86.4%.
  • the transmission front luminous intensity ( ⁇ 1000) measured with a goniophotometer was 0.80, and it was found that the transmission front luminous intensity was excellent.
  • the reflected front luminous intensity measured with a goniophotometer was 6.3, and it was found that the reflected front luminous intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 18 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument was 91%, and as a result of visual evaluation of the visibility, it was possible to clearly see the image both during the front observation and during the rear observation. I was able to see clear images. Moreover, it was found that the shielding coefficient was 0.87, and it had an excellent heat ray shielding effect.
  • Example A5 In Example 1 (1) pellet preparation step, titanium oxide (TiO 2 ) -coated mica (manufactured by Topy Industries Co., Ltd., trade name: Helios R10S, average particle diameter of 12 ⁇ m, aspect ratio 80) as bright flaky fine particles
  • TiO 2 titanium oxide
  • HOAs R10S Helios R10S, average particle diameter of 12 ⁇ m, aspect ratio 80
  • a transparent light scattering layer sheet-like transparent molded product having a film thickness of 100 ⁇ m was prepared in the same manner as in Example A1, except that 0.1% by mass of regular reflectance 16.5%) was used.
  • the produced transparent light scattering layer sheet-like transparent molded product
  • the haze value was 2.8%
  • the diffuse transmittance was 2.6%
  • the total light transmittance was 91.2%. And had high transparency.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 1.45, and it was found that the transmission front light intensity was excellent.
  • the reflected front luminous intensity measured with a goniophotometer was 8.2, indicating that the reflected front luminous intensity is excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 15 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument is 88%, and as a result of visual evaluation of the visibility, it is possible to clearly see the image during both the front observation and the rear observation. I was able to see clear images.
  • the shielding coefficient was 0.86 and had an excellent heat ray shielding effect.
  • Example A6 Except that 0.001 mass% of aluminum C (average diameter of primary particles 1 ⁇ m, aspect ratio 25, regular reflectance 16.8%) was used as the glittering flaky fine particles in the pellet preparation step of Example A1 (1).
  • the transmission front luminous intensity ( ⁇ 1000) measured with a goniophotometer was 0.65, and it was found that the transmission front luminous intensity was excellent.
  • the reflected front brightness measured with a goniophotometer was 2.9, and it was found that the reflected front brightness was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 15 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument is 92%, and as a result of visual evaluation of the visibility, it is possible to clearly see the image both during the front observation and during the rear observation. I was able to see clear images.
  • the shielding coefficient was 0.88 and had an excellent heat ray shielding effect.
  • Example A7 A transparent light scattering layer (sheet-like transparent molded body) having a thickness of 100 ⁇ m was prepared in the same manner as in Example A2 except that the glittering flaky fine particles were not added in the (1) pellet preparation step of Example A2.
  • the produced transparent light scattering layer sheet-like transparent molding
  • the haze value was 13.2%
  • the diffuse transmittance was 10.7%
  • the total light transmittance was 81.3%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 3.8, and it was found that the transmission front light intensity was excellent.
  • the reflected front light intensity measured with a goniophotometer was 1.9, and it was found that the reflected front light intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 28 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument is 88%, and as a result of visual evaluation of the visibility, it is possible to clearly see the image during both the front observation and the rear observation, and particularly during the rear observation. I was able to see clear images.
  • the shielding coefficient was 0.69, which had an excellent heat ray shielding effect.
  • Example A8 In Example 1 (1) pellet preparation step, the addition amount of cesium tungsten oxide was 0.0001% by mass, and instead of flaky aluminum fine particles A as bright flaky fine particles, silver particles (average diameter of primary particles 1 ⁇ m, Except that the aspect ratio was 200 and the regular reflectance was 32.8%, 0.001% by mass, a pellet having cesium tungsten oxide and silver particles adhered thereto was obtained in the same manner as in Example A1. Using the obtained pellets, a transparent light scattering layer (sheet-like transparent molded body) having a film thickness of 1000 ⁇ m was produced by an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., trade name: FNX-III).
  • the haze value was 6.4%
  • the diffuse transmittance was 4.5%
  • the total light transmittance was 70.1%.
  • the transmission front luminous intensity ( ⁇ 1000) measured with a goniophotometer was 1.42, indicating that the transmission front luminous intensity was excellent.
  • the reflected front brightness measured with a goniophotometer was 14.8, and it was found that the reflected front brightness was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 18 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by a image clarity measuring instrument is 74%, and as a result of visual assessment of visibility, it is possible to clearly see the image both during the front observation and the rear observation, particularly during the front observation. I was able to see clear images. Moreover, it was found that the shielding coefficient was 0.87, and it had an excellent heat ray shielding effect.
  • Example A1 A transparent light scattering layer (sheet-like transparent molded product) having a thickness of 100 ⁇ m was produced in the same manner as in Example A1, except that in the (1) pellet production step of Example A1, infrared shielding fine particles were not added.
  • the produced transparent light scattering layer sheet-like transparent molding
  • the haze value was 4.0%
  • the diffuse transmittance was 3.6%
  • the total light transmittance was 89.1%.
  • the image clarity measured with a image clarity measuring device was 92%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 1.06
  • the reflection front light intensity was 9.2.
  • the viewing angle measured with a goniophotometer was ⁇ 14 degrees, and as a result of visual evaluation of visibility, a clear image was able to be seen particularly during forward observation, but the shielding coefficient was 0.95. Yes, the heat ray shielding effect was poor.
  • Example A2 Mica particles (manufactured by Yamaguchi Mica Co., Ltd., trade name: A-21S, primary particles) were used as the flaky fine particles having no glitter in the (1) pellet preparation step of Example A1.
  • a transparent light scattering layer (sheet-like transparent molded product) having a film thickness of 100 ⁇ m in the same manner as in Comparative Example A1 except that 0.2 mass% of an average diameter of 23 ⁇ m, an aspect ratio of 70, and a regular reflectance of 9.8% were added was made.
  • the produced transparent light scattering layer (sheet-like transparent molded product) was used as it was for a transparent screen, the haze value was 9.0%, the diffuse transmittance was 8.1%, and the total light transmittance was 90.0%.
  • the image clarity measured with a image clarity measuring instrument was 87%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 2.63, the reflection front light intensity was 1.0, and the reflection front light intensity was inferior.
  • the viewing angle measured with a goniophotometer is ⁇ 20 degrees and the viewing angle characteristics are excellent, the visibility was visually evaluated. As a result, it was possible to see the image both during forward observation and during backward observation. There wasn't. Moreover, the shielding coefficient was 0.93 and the heat ray shielding effect was inferior.
  • Table 3 shows details of the transparent light scattering layers used in Examples A1 to A7 and Comparative Examples A1 and A2.
  • Table 4 shows the results of various physical properties and performance evaluations of the sheet-like transparent molded bodies used in Examples A1 to A7 and Comparative Examples A1 and A2.
  • thermoplastic resin pellets to which fine particles have been added (hereinafter referred to as “pellet production process”)
  • PET Polyethylene terephthalate
  • IP121B manufactured by Bell Polyester Products Co., Ltd.
  • FZO average particle size of primary particles: 0.021 ⁇ m
  • flaky fine particles 0.0085% by mass of flaky aluminum fine particles A (average primary particle diameter 10 ⁇ m, aspect ratio 300, regular reflectance 62.8%) with respect to the PET pellets are added.
  • the screw diameter of the twin-screw kneading extruder was 20 mm, and the screw effective length (L / D) was 30.
  • a hanger coat type T-die was installed in the twin-screw kneading extruder through an adapter.
  • the extrusion temperature was 270 ° C.
  • the screw rotation speed was 500 rpm
  • the shear stress was 300 KPa.
  • the used screw has a total length of 670 mm, including a mixing element between 160 mm and 185 mm from the hopper side of the screw, and a kneading element between 185 mm and 285 mm, and the other parts are flight It was a shape.
  • the image clarity measured by the image clarity measuring instrument is 89%, and as a result of visual evaluation of the visibility, it is possible to clearly see the image during both the front observation and the rear observation. I was able to see clear images.
  • Example B2 In Example B1 (1) pellet preparation step, the addition amount of zinc oxide fine particles was 0.010 mass%, and zirconium oxide (ZrO 2 , manufactured by Kanto Denka Kogyo Co., Ltd., refractive index 2.40, A transparent light scattering layer (sheet-like transparent molded product) having a thickness of 80 ⁇ m was prepared in the same manner as in Example B1, except that 0.15% by mass of the median diameter of primary particles (10 nm) was added. When the produced transparent light scattering layer (sheet-like transparent molding) was used as it was for a transparent screen, the haze value was 15.7%, the diffuse transmittance was 11.4%, and the total light transmittance was 72.9%. And had high transparency.
  • the transmission front luminous intensity ( ⁇ 1000) measured with a goniophotometer was 11.29, and it was found that the transmission front luminous intensity was excellent.
  • the reflected front light intensity measured with a goniophotometer was 5.1, and it was found that the reflected front light intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 32 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument was 85%, and as a result of visual evaluation of the visibility, it was possible to visually recognize the image very clearly during both the front observation and the rear observation.
  • Example B3 In Example 1 (1) pellet preparation process, instead of zinc oxide fine particles, titanium oxide (TiO 2 , manufactured by Ishihara Sangyo Co., Ltd., trade name: TTO-51 (A) Example B1 except that 0.001% by mass of an average diameter of 0.01 to 0.03 ⁇ m), 0.042% by mass of flaky aluminum fine particles A, and 0.0015% by mass of zirconium oxide fine particles were added. A transparent light scattering layer (sheet-like transparent molded body) having a thickness of 80 ⁇ m was prepared.
  • the haze value was 15.5%
  • the diffuse transmittance was 11.0%
  • the total light transmittance was 71.2%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 4.11, indicating that the transmission front light intensity ( ⁇ 1000) was excellent.
  • the reflected front brightness measured with a goniophotometer was 33.1, and it was found that the reflected front brightness was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 33 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument was 90%, and as a result of visual evaluation of the visibility, it was possible to visually recognize the image very clearly during both the front observation and the rear observation.
  • Example B4 In Example B1 (1) pellet preparation step, 0.10% by mass of triazine-based ultraviolet absorber (manufactured by BASF Japan, trade name: Tinuvin 1577) as an ultraviolet shielding agent instead of zinc oxide fine particles, and glitter Except for the addition of 0.014% by mass of flaky aluminum fine particles B (average primary particle diameter of 7 ⁇ m, aspect ratio of 40, regular reflectance of 24.6%) as flaky fine particles, the film thickness was 100 ⁇ m. A transparent light scattering layer (sheet-like transparent molded body) was produced.
  • triazine-based ultraviolet absorber manufactured by BASF Japan, trade name: Tinuvin 1577
  • glitter except for the addition of 0.014% by mass of flaky aluminum fine particles B (average primary particle diameter of 7 ⁇ m, aspect ratio of 40, regular reflectance of 24.6%) as flaky fine particles, the film thickness was 100 ⁇ m.
  • a transparent light scattering layer (sheet-like transparent molded body) was produced.
  • the haze value was 4.6%
  • the diffuse transmittance was 4.1%
  • the total light transmittance was 89.4%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 1.01, and it was found that the transmission front light intensity was excellent.
  • the reflected front light intensity measured with a goniophotometer was 7.7, and it was found that the reflected front light intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 18 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument is 89%, and as a result of visual evaluation of the visibility, it is possible to clearly see the image during both the front observation and the rear observation. I was able to see clear images.
  • Example B5 In the step (1) pellet preparation of Example B1, titanium oxide (TiO 2 ) -coated mica (made by Topy Industries Co., Ltd., trade name: Helios R10S, average particle diameter of primary particles: 12 ⁇ m, aspect ratio: 80 as bright flaky fine particles , Regular reflectance 16.5%) 0.1% by mass, and benzotriazole ultraviolet absorber (trade name: Adeka Stab LA-31, manufactured by ADEKA Co., Ltd.) instead of zinc oxide as an ultraviolet shielding agent is 0.00.
  • a transparent light scattering layer (sheet-like transparent molded product) having a thickness of 100 ⁇ m was produced in the same manner as in Example B1 except that 20% by mass was used.
  • the haze value was 2.4%
  • the diffuse transmittance was 2.2%
  • the total light transmittance was 92.9%. And had high transparency.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 0.50, and it was found that the transmission front light intensity was excellent.
  • the reflected front light intensity measured with a goniophotometer was 5.3, and it was found that the reflected front light intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 15 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument was 92%, and as a result of visual evaluation of the visibility, it was possible to clearly see the image both during the front observation and during the rear observation.
  • Example B6 Example B1 (1) In the pellet preparation step, except that 0.15% by mass of a benzotriazole ultraviolet absorber (trade name: Tinuvin 234, manufactured by BASF Japan Ltd.) was used instead of zinc oxide as an ultraviolet shielding agent.
  • a transparent light scattering layer sheet-like transparent molded product having a thickness of 100 ⁇ m was produced.
  • the haze value was 4.5%
  • the diffuse transmittance was 4.0%
  • the total light transmittance was 89.1%. And had high transparency.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 1.06, and it was found that the transmission front light intensity was excellent.
  • the reflected front light intensity measured with a goniophotometer was 9.2, and it was found that the reflected front light intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 18 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument is 92%, and as a result of visual evaluation of the visibility, it is possible to clearly see the image both during the front observation and during the rear observation. I was able to see clear images.
  • Example B7 In the (1) pellet preparation step of Example B4, the addition amount of tinuvin 1577 was changed to 0.01% by mass, and instead of flaky aluminum fine particles B as bright flaky fine particles, silver particles (average diameter of primary particles 1 ⁇ m) ), Except that 0.001% by mass of an aspect ratio of 200 and a regular reflectance of 32.8% was used to obtain a pellet with tinuvin 1577 and silver particles attached thereto in the same manner as in Example B4. Using the obtained pellets, a transparent light scattering layer (sheet-like transparent molded body) having a film thickness of 1000 ⁇ m was produced by an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., trade name: FNX-III).
  • the haze value was 5.6%
  • the diffuse transmittance was 4.1%
  • the total light transmittance was 73.2%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 1.32, and it was found that the transmission front light intensity was excellent.
  • the reflected front luminous intensity measured with a goniophotometer was 13.8, and it was found that the reflected front luminous intensity was excellent.
  • the viewing angle measured with a goniophotometer was ⁇ 21 degrees, and it was found that the viewing angle characteristics were excellent.
  • the image clarity measured by the image clarity measuring instrument is 75%, and as a result of visual evaluation of the visibility, it is possible to clearly see the image both during the front observation and during the rear observation. I was able to see clear images.
  • the transparent light-scattering layer of a present Example is a board with a thickness of 1000 micrometers, (DELTA) MIT cannot be measured.
  • Example B1 A transparent light scattering layer (sheet-like transparent molded product) having a thickness of 80 ⁇ m was produced in the same manner as in Example B1, except that the ultraviolet shielding agent was not added in the (1) pellet production step of Example B1.
  • the haze value was 4.0%
  • the diffuse transmittance was 3.6%
  • the total light transmittance was 89.1%.
  • the image clarity measured with a image clarity measuring device was 92%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 1.06
  • the reflection front light intensity was 9.2.
  • the viewing angle measured with a goniophotometer is ⁇ 14 degrees, and as a result of visual evaluation of visibility, it is possible to clearly see the image during both the front observation and the rear observation, especially during the front observation. I was able to see the correct image.
  • Example B2 Mica particles (manufactured by Yamaguchi Mica Co., Ltd., trade name: A-21S, primary particles) were prepared as flaky fine particles having no glitter, without adding glittering flaky fine particles in the pellet preparation step of Example B3.
  • the average diameter was 23 ⁇ m
  • the aspect ratio was 70
  • the regular reflectance was 9.8%
  • 0.2 mass% was added.
  • the film thickness was 80 ⁇ m except that no ultraviolet shielding agent was added.
  • a transparent light scattering layer (sheet-like transparent molded body) was produced.
  • the haze value was 9.0%
  • the diffuse transmittance was 8.1%
  • the total light transmittance was 90.0%.
  • the image clarity measured with a image clarity measuring instrument was 87%.
  • the transmission front light intensity ( ⁇ 1000) measured with a goniophotometer was 2.63
  • the reflection front light intensity was 1.0
  • the reflection front light intensity was inferior.
  • the viewing angle measured with a goniophotometer is ⁇ 20 degrees and the viewing angle characteristics are excellent, the visibility is visually evaluated. As a result, the outline and hue of the image are slightly blurred during forward observation.
  • Table 5 shows the details of the transparent light scattering layers used in Examples B1 to B6 and Comparative Examples B1 and B2.
  • Table 6 shows the results of various physical properties and performance evaluations of the sheet-like transparent molded bodies used in Examples B1 to B6 and Comparative B1-2.

Abstract

【課題】透明スクリーンとして用いた場合に、光源から出射される投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを両立し、さらに熱遮蔽効果を有するシート状透明成型体の提供。 【解決手段】本発明によるシート状透明成型体は、樹脂と、赤外線遮蔽性微粒子および紫外線遮蔽剤の少なくともいずれか一方と、光輝性薄片状微粒子および略球状微粒子の少なくともいずれか一方と、を含んでなる透明光散乱層を備えてなる。

Description

シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
 本発明は、投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを両立し、さらに赤外線遮蔽効果に優れたシート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システムに関する。
 従来、プロジェクター用スクリーンとして、フレネルレンズシートとレンチキュラーレンズシートとを組み合わせたものが用いられてきた。近年、デパート等のショウウィンドウやイベントスペースの透明パーティション等にその透明性を維持したまま商品情報や広告等を投射表示する要望が高まってきている。また、将来的には、ヘッドアップディスプレイやウェアラブルディスプレイ等に用いられる透明スクリーンの需要は、ますます高まると言われている。
 しかし、従来のプロジェクター用スクリーンは透明性が低いため、透明パーティション等に適用できないという技術的課題があった。そこで、高透明性を実現できる様々なスクリーンが提案されている。例えば、プラスチックフィルムまたはシート上に、アルミニウム鱗片7重量部及び、雲母を母体として二酸化チタンをコーティングしたパール顔料鱗片25重量部を混合したものをフィラーとしたインキを印刷またはコーティングし、光反射層としたことを特徴とする反射型スクリーンが提案されている(特許文献1参照)。また、基板上に、バインダー樹脂100重量部に対し光反射剤としてノンリーフィーリングタイプの鱗片状アルミペースト10~80重量を含み、さらに光拡散剤に対し50重量%以上の光拡散剤を含む光拡散層を設けることを特徴とするプロジェクター用反射型スクリーンが提案されている(特許文献2参照)。さらに、光反射基材の上に、透明樹脂で構成された連続層と、異方性透明粒子で構成された分散層とで形成された光拡散層を積層した反射型スクリーンが提案されている(特許文献3参照)。
特開平3-119334号公報 特開平10-186521号公報 特開2004-54132号公報
 しかしながら、本発明者らは、特許文献1~3には、以下の技術的課題が存在することを知見した。特許文献1に記載の反射型スクリーンは、鱗片粒子を高濃度で基板表面にコーティングしているため、コーティング膜のぎらつきにより画像が鮮明に視認できず、また、基板に白色塩化ビニルフィルムを用いているため透視は不可能であるという技術的課題がある。特許文献2に記載の反射型スクリーンは、光反射剤として鱗片状アルミペーストを10~80重量と高濃度で含んでおり、得られたフィルムは透視不可能であるという技術的課題がある。特許文献3に記載の反射スクリーンは、分散層に分散された異方性透明粒子が、雲母、タルク、モンモリロナイトの非金属粒子であり、特にタルク、モンモリロナイトは粘土系の粒子であるため正反射率が低く、反射型透明スクリーンとしては好適に使用できないという技術的課題がある。さらに、特許文献1~3に記載のスクリーンは、例えば車や住宅の窓ガラス等に使用した場合、太陽光が当たる場所と当たらない場所で温度上昇が異なるため、ガラスが割れる(熱割れ)等の問題が生じたり、また長期間太陽光が当たることで樹脂の劣化による黄変、クラックの発生および強度の低下等が生じたりするおそれがある。また、赤外線が透過することにより、車内または室内の温度が上昇し、省エネルギーの観点から好ましくない。
 本発明は上記の技術的課題に鑑みてなされたものであり、その目的は、投影光と透過光の視認性に優れ、視野角が広く、視認性に優れるとともに、熱や紫外線を遮蔽する効果を有するシート状透明成型体を提供することにある。また、本発明の目的は、該シート状透明成型体を備えた透明スクリーンや、該シート状透明成型体、または該透明スクリーンと投射装置とを備えた映像投影システムを提供することにある。なお、ここでいう透明スクリーンとは、透過型スクリーンであってもよく、反射型スクリーンであってもよい。透過型スクリーンとは、図3で示すように、スクリーンに対して視認者と反対側に投射装置を設けて画像を視認できるスクリーンをいい、反射型スクリーンとは、図3で示すように、視認者側(スクリーンに対して視認者と同じ側)に投射装置を設けて画像を視認できるスクリーンをいう。
 本発明者らは、上記の技術的課題を解決するため、鋭意検討した結果、赤外線遮蔽性微粒子および紫外線遮蔽性剤の少なくともいずれか一方と、光輝性薄片状微粒子および略球状微粒子の少なくともいずれか一方とを樹脂中に分散させて透明光散乱層を形成することによって、上記の技術的課題を解決し、透明スクリーンに好適に使用できるシート状透明成型体が得られることを知見した。本発明は、かかる知見に基づいて完成されたものである。
 すなわち、本発明の一態様によれば、
 樹脂と、赤外線遮蔽性微粒子および紫外線遮蔽性剤の少なくともいずれか一方と、光輝性薄片状微粒子および略球状微粒子の少なくともいずれか一方と、を含んでなる透明光散乱層を備えてなる、シート状透明成型体が提供される。
 本発明の態様においては、前記赤外線遮蔽性微粒子が、六ホウ化ランタン、セシウム酸化タングステン、スズ酸化インジウム、アンチモン酸化スズ、酸化チタン、酸化亜鉛、およびパラジウムからなる群から選択される少なくとも1種であることが好ましい。
 本発明の態様においては、前記赤外線遮蔽性微粒子の一次粒子の平均径が、1nm~10μmであり、かつ、前記赤外線遮蔽性微粒子の含有量が、前記樹脂に対して0.0001~5.0質量%であることが好ましい。
 本発明の態様においては、前記紫外線遮蔽性剤が、金属系紫外線遮蔽剤または有機系紫外線遮蔽剤であることが好ましい。
 本発明の態様においては、前記有機系紫外線遮蔽剤が、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、およびベンゾフェノン系紫外線吸収剤からなる群から選択される少なくとも1種であることが好ましい。
 本発明の態様においては、前記紫外線遮蔽剤の含有量が、前記樹脂に対して0.0001~5.0質量%であることが好ましい。
 本発明の態様においては、前記光輝性薄片状微粒子が、アルミニウム、銀、白金、金、チタン、ニッケル、スズ、スズ‐コバルト合金、インジウム、クロム、酸化アルミニウム、および硫化亜鉛からなる群から選択される金属系粒子、ガラスに金属または金属酸化物を被覆した光輝性材料、または天然雲母もしくは合成雲母に金属または金属酸化物を被覆した光輝性材料からなる群から選択される少なくとも1種であることが好ましい。
 本発明の態様においては、前記光輝性薄片状微粒子の含有量が、前記樹脂に対して0.0001~5.0質量%であり、かつ、前記光輝性薄片状微粒子の一次粒子の平均径が、0.01nm~100μmであることが好ましい。
 本発明の態様においては、前記光輝性薄片状微粒子の正反射率が、12%以上であることが好ましい。
 本発明の態様においては、前記略球状微粒子は、酸化ジルコニウム、酸化セリウム、チタン酸バリウム、チタン酸ストロンチウム、ダイヤモンド、架橋アクリル樹脂、架橋スチレン樹脂、およびシリカからなる群より選択される少なくとも1種であることが好ましい。 
 本発明の態様においては、前記略球状微粒子の一次粒子のメジアン径が、0.1~100nmであり、かつ、前記略球状微粒子の含有量が、前記樹脂に対して0.0001~2.0質量%であることが好ましい。
 本発明の態様においては、前記シート状透明成型体は、ヘイズが37%以下であることが好ましい。
 本発明の態様においては、前記シート状透明成型体は、遮蔽係数が0.90以下であることが好ましい。
 本発明の態様においては、前記シート状透明成型体は、写像性が70%以上であることが好ましい。
 本発明の他の態様によれば、上記のシート状透明成型体を備えた、建物用部材が提供される。
 本発明の他の態様によれば、上記のシート状透明成型体を備えた、車両用部材が提供される。
 本発明の他の態様によれば、上記のシート状透明成型体を備えた、透過型透明スクリーンが提供される。
 本発明の他の態様によれば、上記のシート状透明成型体を備えた、反射型透明スクリーンが提供される。
 本発明の他の態様によれば、上記のシート状透明成型体または上記の透過型透明スクリーンと、投射装置とを備えた、映像投影システムが提供される。
 本発明の他の態様によれば、上記のシート状透明成型体または上記の反射型透明スクリーンと、投射装置とを備えた、映像投影システムが提供される。
 本発明によるシート状透明成型体は、透明スクリーンとして用いた場合、透明性を損なわずに投影光を異方的に散乱反射させることで、透明スクリーンに鮮明な映像を投影することができ、さらに視野角に優れる。すなわち、本発明によるシート状透明成型体は、投影光の視認性と透過光の視認性とを両立でき、透過型透明スクリーンとして好適に用いることができ、反射型透明スクリーンとしても好適に用いることができる。また、本発明によるシート状透明成型体は、建築物や車の窓ガラス等、太陽光が入射する場所に貼って使用する際、赤外線を反射することによって内部の温度上昇やガラスの熱割れを抑制でき、さらに、樹脂の劣化による黄変、クラックの発生および強度の低下等も抑制できる。
本発明によるシート状透明成型体の一実施形態の厚さ方向の断面模式図である。 本発明によるシート状透明成型体の一実施形態の厚さ方向の断面模式図である。 本発明による透明スクリーンおよび映像投影システムの一実施形態を示した模式図である。
<シート状透明成型体>
 本発明によるシート状透明成型体は、透明光散乱層を備えてなり、保護層、基材層、粘着層、および反射防止層等の他の層をさらに備えてもよい。本発明によるシート状透明成型体は透視可能であり、透明スクリーンとして好適に用いることができる。本発明によるシート状透明成型体は、投影光を異方的に散乱反射することにより投影光の視認性に優れ、視野角が広く、さらに、透明性が高く、透過光の視認性に優れるものである。また、シート状透明成型体は赤外線遮蔽性微粒子を含有することで、室内の温度上昇やガラスの熱割れを抑制することもできる。さらに、シート状透明成型体は紫外線遮蔽剤を含有することで、基材となる樹脂の劣化による黄変、クラックの発生、強度の低下を防ぐことができる。このようなシート状透明成型体は、ヘッドアップディスプレイやウェアラブルディスプレイ等に用いられる反射型スクリーンとしても好適に用いることができる。なお、本発明において、「透明」とは、用途に応じた透過視認性を実現できる程度の透明性があれば良く、半透明であることも含まれる。
 本発明によるシート状透明成型体の一実施形態の厚さ方向の断面模式図を図1に示す。透明シート状成型体は、樹脂10中に赤外線遮蔽性微粒子13と、光輝性薄片状微粒子11と、略球状微粒子12と、が分散されてなる透明光散乱層14を備える。このようなシート状透明成型体は、投影光16を異方的に散乱することで、視認者15は散乱光17を視認できる。なお、13は、紫外線遮蔽剤であってもよく、赤外線遮蔽性微粒子と紫外線遮蔽剤の両方が含まれていてもよい。
 本発明によるシート状透明成型体の一実施形態の厚さ方向の断面模式図を図2に示す。シート状透明成型体は、樹脂20中に赤外線遮蔽性微粒子23と、光輝性薄片状微粒子21と、略球状微粒子22と、が分散されてなる透明光散乱層26を備えてなり、透明光散乱層26の両面に粘着層24および基材層25を備えてなる。このようなシート状透明成型体は、投影光27を異方的に散乱することで、視認者29は散乱光28を視認できる。なお、23は、紫外線遮蔽剤であってもよく、赤外線遮蔽性微粒子と紫外線遮蔽剤の両方が含まれていてもよい。
 当該シート状透明成型体は、ヘイズ値が、好ましくは50%以下、より好ましくは1%以上40%以下であり、より好ましくは1.3%以上30%以下であり、さらにより好ましくは1.5%以上20%以下である。全光線透過率が、好ましくは70%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上であり、さらにより好ましくは85%以上である。また、当該シート状透明成型体は、拡散透過率が、好ましくは1.5%以上60%以下、より好ましくは1.7%以上55%以下であり、より好ましくは1.9%以上50%以下であり、さらにより好ましくは2.0%以上45%以下である。ヘイズ値、および全光線透過率が上記範囲内であれば、透明性が高く、透過視認性をより向上させることができ、拡散透過率が上記範囲内であれば、入射光を効率よく拡散させ、視野角をより向上させることができるため、スクリーンとしての性能に優れる。なお、本発明において、シート状透明成型体のヘイズ値、全光線透過率および拡散透過率は、濁度計(日本電色工業(株)製、品番:NDH-5000)を用いてJIS-K-7361およびJIS-K-7136に準拠して測定することができる。
 当該シート状透明成型体は、反射正面光度が、好ましくは3以上60以下であり、より好ましくは4以上50以下であり、さらに好ましくは4.5以上40以下である。また、当該シート状透明成型体は、透過正面光度(×1000)が、好ましくは1.5以上であり、より好ましくは2.0以上であり、さらにより好ましくは3.0以上50以下である。シート状透明成型体の反射正面光度および透過正面光度(×1000)が上記範囲内であれば、反射光の輝度が高く、反射型スクリーンとしての性能に優れる。なお、本発明において、シート状透明成型体の反射光度および反射光度向上率は、以下のようにして測定した値である。
(反射正面光度)
 変角光度計(日本電色工業(株)製、品番:GC5000L)を用いて測定した。光源の入射角を45度にセットし、測定ステージに白色度95.77の標準白色板を載せたときの0度方向への反射光強度を100とした。サンプル測定時は、光源の入射角を15度にセットし、0度方向への反射光の強度を測定した。
(透過正面光度)
 変角光度計(日本電色工業(株)製、品番:GC5000L)を用いて測定した。光源の入射角を0度にセットし、測定ステージに何も置かない状態での0度方向への透過光強度を100とした。サンプル測定は、光源の入射角を15度にセットし、0度方向への透過光の強度を測定した。
 当該シート状透明成型体は、遮蔽係数が、好ましくは0.40以上0.90以下であり、より好ましくは0.50以上0.80以下であり、さらに好ましくは0.65以上0.80以下である。遮蔽係数が上記範囲内であれば、赤外線遮蔽効果、内部温度上昇抑制効果に優れ、かつシート状透明成型体の透明性も実現できる。遮蔽係数とは、フィルムを貼ったガラスの帯熱しにくさの指標であり、素ガラスを1としたときの相対値なので、遮蔽係数の数値が小さくなるほど熱割れしにくい。なお、本発明において、シート状透明成型体の遮蔽係数は、以下のようにして測定した値である。
(遮蔽係数)
 紫外可視近赤外分光光度計((株)島津製作所製、型番UV-2600)を用い、JIS A5759に準拠して測定した。
 当該シート状透明成型体は、紫外線遮蔽剤を含むことで、優れた耐光性を有する。耐光性は、光照射前後でのフィルム物性値の変化量によって評価することができる。フィルム物性値としては、黄色味の指標であるb値および機械強度の指標であるMIT耐折度回数などが用いられる。例えば、キセノンウェザーメーター(東洋精機製作所 アトラスCi4000)を用いて、シート状透明成型体に光を照射し、下記のようにして耐光性を評価することができる。なお、黄色味の指標であるb値とMIT耐折度回数は以下のようにして測定した値である。
 (b値)
 日本電色工業(株)製Spectrophotometer SD6000を用いて測定した。
 (MIT耐折度回数)
 MIT耐折度回数は、以下のようにしてテスター産業株式会社製のBE-201 MIT耐屈度試験機を使用して求めることができる。なお、テスター産業株式会社製のBE-201 MIT耐屈度試験機は、MIT耐折度試験機とも呼ばれている。測定条件は加重200g、折り曲げ点先端Rは0.38、屈曲速度は175回/分、屈曲角度は左右135°とし、フィルムサンプルの幅は15mmとする。そして、シート状透明成型体の搬送方向に繰り返し屈曲させたときの破断するまでの屈曲回数と、幅方向に繰り返し屈曲させたときの破断するまでの屈曲回数との平均値をMIT耐折度回数とする。
 耐光性は、光照射後のb値を光照射前のb値(b*1)から差し引きした値Δb(=b*1-b)および光照射前後におけるMIT耐折度回数の差し引き値ΔMIT(=光照射前MIT-光照射後MIT)から評価できる。当該シート状透明成型体は、放射照度60W/mで600時間光照射の前後における黄色味の差し引き値Δbが、好ましくは0.10以下であり、より好ましくは0.08以下であり、さらに好ましくは0.05以下である。また、当該シート状透明成型体は、放射照度60W/mで600時間光照射の前後におけるMIT耐折度回数の差し引き値ΔMITが、好ましくは2000以下であり、より好ましくは1500以下であり、さらに好ましくは1000以下である。ΔbおよびΔMITの値が小さいほど、光照射による劣化がなく、耐光性に優れている。
 当該シート状透明成型体は、写像性が、好ましくは70%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上であり、さらにより好ましくは85%以上であり、特に好ましくは90%以上である。当該透明スクリーン用フィルムの写像性が上記範囲内であれば、透明スクリーンを透過して見える像が極めて鮮明となる。なお、本発明において、写像性とは、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値である。
 当該シート状透明成型体の厚さは、特に限定されるものではないが、用途、生産性、取扱い性、および搬送性の観点から、好ましくは0.1μm~20mmであり、より好ましくは0.5μm~15mmであり、さらに好ましくは1μm~10mmである。なお、本発明において「シート状透明成型体」とは、いわゆるフィルム、シート、基板上に塗布することで形成される塗膜体、プレート(板状成形物)等の様々な厚みの成形物を包含する。
(透明光散乱層)
 透明光散乱層は、樹脂と、赤外線遮蔽性微粒子および紫外線遮蔽剤の少なくともいずれか一方と、光輝性薄片状微粒子および略球状微粒子の少なくともいずれか一方とを含んでなる。下記の光輝性薄片状微粒子および略球状微粒子の少なくともいずれか一方を用いることで、透明光散乱層内で光を異方的に散乱反射させて、視野角および輝度を向上させることができる。
 透明光散乱層の厚さは、特に限定されるものではないが、用途、生産性、取扱い性、および搬送性の観点から、好ましくは0.1μm~20mmであり、より好ましくは0.2μm~15mmであり、さらに好ましくは1μm~10mmである。透明光散乱層はシート状透明成型体であってもよく、ガラスや樹脂等からなる基板に形成した塗膜であってもよい。透明光散乱層は単層構成であってもよく、塗布等で2種以上の層を積層させる、または2種以上のシート状透明成型体を粘着剤等で貼り合わせた複層構成の積層体であってもよい。
(樹脂)
 透明光散乱層を形成する樹脂としては、透明性の高いシート状透明成型体を得るために、透明性の高い樹脂を用いることが好ましい。透明性の高い樹脂としては、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ビニル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリアリレート系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリスルホン系樹脂、およびフッ素系樹脂等の熱可塑性樹脂、熱硬化性樹脂、ならびに電離放射線硬化性樹脂等を用いることができる。これらの中でも、熱可塑性樹脂を用いることが、シート状透明成型体の成形性の観点から好ましいが、特に制限されるものではない。熱可塑性樹脂としては、アクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、ポリカーボネート系樹脂、およびポリスチレン系樹脂を用いることが好ましく、ポリメタクリル酸メチル樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリプロピレン樹脂、シクロオレフィンポリマー樹脂、セルロースアセテートプロピオネート樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、およびポリスチレン樹脂を用いることがより好ましい。これらの樹脂は、1種単独または2種以上を組み合わせて用いることができる。電離放射線硬化型樹脂としては、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系樹脂等が挙げられる。これらの中でも、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが好ましい。また、電離放射線硬化型樹脂は熱可塑性樹脂および溶剤と混合されたものであってもよい。熱硬化型樹脂としては、フェノール系樹脂、エポキシ系樹脂、シリコーン系樹脂、メラミン樹脂、ウレタン系樹脂、尿素樹脂等が挙げられる。これらの中でも、エポキシ系樹脂、シリコーン系樹脂が好ましい。
(赤外線遮蔽性微粒子)
 赤外線遮蔽性微粒子としては、例えば、六ホウ化ランタン、セシウム酸化タングステン、スズ酸化インジウム、アンチモン酸化スズ、酸化チタン、酸化亜鉛およびパラジウムを好適に用いることができる。熱線遮蔽の観点からは、吸収した光の室内への再放射(吸収した日射エネルギーの約1/3量)がある熱線吸収型より、再放射がない熱線を反射する粒子が好ましい。赤外線遮蔽性微粒子を添加することで、赤外線を反射し、室内の温度上昇を抑制することができる。
 赤外線遮蔽性微粒子は、一次粒子の平均径が好ましくは1nm~10μm、より好ましくは5nm~5μm、さらに好ましくは10nm~1μm、さらにより好ましくは15nm~0.5μmである。赤外線遮蔽性微粒子の平均径が上記範囲内であると、シート状透明成型体を透明スクリーン用として使用した場合に、透過視認性を損なわずに十分な赤外線反射効果が得られることで、鮮明な映像を投影し、室内の温度上昇を抑制することができる。なお、本発明において、赤外線遮蔽性微粒子の平均径は、レーザー回折式粒子径分布測定装置((株)島津製作所製、品番:SALD-2300)を用いて測定した。平均アスペクト比は、SEM((株)日立ハイテクノロジーズ製、商品名:SU-1500)画像より算出した。
 赤外線遮蔽性微粒子は、市販のものを使用してもよく、例えば、テイカ株式会社製の商品名JR-1000、住友金属鉱山株式会社製の商品名:YMF-02A、KHF-7AH、YMDS-874、KHDS-06等を好適に使用することができる。
 透明光散乱層中の赤外線遮蔽性微粒子の含有量は、赤外線遮蔽性微粒子の種類に応じて適宜調節することができ、樹脂に対して、好ましくは0.0001~5.0質量%であり、好ましくは0.0005~2質量%であり、より好ましくは0.001~1質量%である。赤外線遮蔽性微粒子を上記範囲のように低濃度で樹脂中に分散させて透明光散乱層を形成することによって、透過視認性を損なわずに十分な赤外線反射効果を得ることができる。   
(紫線遮蔽剤)
 紫外線遮蔽剤としては、金属系紫外線遮蔽剤または有機系紫外線遮蔽剤を好適に用いることができる。紫外線遮蔽性剤を添加することで、紫外線を遮蔽でき、シート状透明成型体の劣化を抑制することができる。
 金属系紫外線遮蔽剤としては、酸化亜鉛、酸化チタン、および硫酸バリウムからなる群から選択される少なくとも1種の金属系微粒子を好適に用いることができる。紫外線遮蔽剤の金属系微粒子は、一次粒子の平均径が好ましくは1nm~10μm、より好ましくは5nm~5μm、さらに好ましくは10nm~1μm、さらにより好ましくは15nm~0.5μmである。紫外線遮蔽剤の金属系微粒子の平均径が上記範囲内であると、シート状透明成型体を透明スクリーン用として使用した場合に、透過視認性を損なわずに十分な紫外線遮蔽効果が得られることで、鮮明な映像を投影するとともに、機械強度低下や黄変等の光劣化を抑制することができる。なお、本発明において、紫外線遮蔽剤の平均径は、レーザー回折式粒子径分布測定装置((株)島津製作所製、品番:SALD-2300)を用いて測定した。平均アスペクト比は、SEM((株)日立ハイテクノロジーズ製、商品名:SU-1500)画像より算出した。
 有機系紫外線遮蔽剤としては、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、およびベンゾフェノン系紫外線吸収剤からなる群から選択される少なくとも1種を好適に用いることができる。ベンゾトリアゾール系紫外線吸収剤としては、2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネート、2-〔5-クロロ(2H)-ベンゾトリアゾール-2-イル〕-4-メチル-6-(tert-ブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、および2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール等が挙げられる。トリアジン系紫外線吸収剤としては、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2'-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、および2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等が挙げられる。ベンゾフェノン系紫外線吸収剤としては、2-ヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、ヒドロキシメトキシベンゾフェノンスルホン酸、およびヒドロキシメトキシベンゾフェノンスルホン酸ナトリウム等が挙げられる。
 紫外線遮蔽剤は、市販のものを使用してもよく、金属系紫外線遮蔽剤としては、例えば、石原産業社製の酸化亜鉛(商品名:FZO)および酸化チタン(商品名:TTO-51(A))、有機系紫外線遮蔽剤としては、株式会社ADEKA製のベンゾトリアゾール系紫外線吸収剤(商品名:アデカスタブLA-31)、トリアジン系紫外線吸収剤(商品名:アデカスタブLA-46)、BASFジャパン社製のベンゾトリアゾール系紫外線吸収剤(商品名:チヌビン234)、トリアジン系紫外線吸収剤(商品名:チヌビン1577、チヌビン1600)、ベンゾフェノン系紫外線吸収剤(商品名:アデカスタブ1413)等を好適に使用することができる。
 透明光散乱層中の紫外線遮蔽剤の含有量は、紫外線遮蔽剤の種類に応じて適宜調節することができ、樹脂に対して、好ましくは0.0001~5.0質量%であり、好ましくは0.0005~2質量%であり、より好ましくは0.001~1質量%である。紫外線遮蔽剤を上記範囲のように低濃度で樹脂中に分散させて透明光散乱層を形成することによって、透過視認性を損なわずに十分な紫外線遮蔽効果を得ることができる。
(光輝性薄片状微粒子)
 光輝性薄片状微粒子としては、薄片状に加工できる光輝性材料を好適に用いることができる。光輝性薄片状微粒子の正反射率は、好ましくは12.0%以上であり、より好ましくは15.0%以上であり、さらに好ましくは20.0%以上80.0%以下である。なお、本発明において、光輝性薄片状微粒子の正反射率は、以下のようにして測定した値である。
(正反射率)
 分光測色計(コニカミノルタ(株)製、品番:CM-3500dを用いて測定した。適切な溶媒(水またはメチルエチルケトン)に分散させた光輝性薄片状微粒子をスライドガラス上に膜厚が0.5mm以上になるように塗布、乾燥させた。得られた塗膜付きガラス板について、ガラス面の法線に対して45度の角度でガラス面から塗膜部へ光を入射したときの正反射率を測定した。光輝性薄片状微粒子を塗膜としたときの正反射率を測定することで、微粒子表面の酸化状態等を考慮した光輝性薄片状微粒子の反射性能を把握することができる。
 光輝性薄片状微粒子としては、分散させる樹脂の種類にもよるが、例えば、アルミニウム、銀、白金、金、チタン、ニッケル、スズ、スズ‐コバルト合金、インジウムおよびクロム等の金属系微粒子、または、酸化アルミニウムおよび硫化亜鉛からなる金属系微粒子、ガラスに金属または金属酸化物を被覆した光輝性材料、または天然雲母もしくは合成雲母に金属または金属酸化物を被覆した光輝性材料を用いることができる。
 金属系微粒子に用いる金属材料には、投影光の反射性に優れる金属材料が用いられる。具体的には、金属材料は、測定波長550nmにおける反射率Rが好ましくは50%以上、より好ましくは55%以上であり、さらに好ましくは60%以上であり、さらにより好ましくは70%以上である。以下、本発明において、「反射率R」とは、金属材料に対して光を垂直方向から入射させたときの反射率を指す。反射率Rは金属材料固有値である屈折率nと消衰係数kの値を用いて下記式(1)により算出することができる。nおよびkは、例えばHandbook of Optical Constants of Solids: Volume 1(Edward D.Palik著)や、P.B. Johnson and R.W Christy, PHYSICAL REVIEW B, Vol.6, No.12, 4370-4379(1972)等に記載されている。
     R={(1-n)+k}/{(1+n)+k}   式(1)
 すなわち、測定波長550nmにおける反射率R(550)は、波長550nmで測定したときのnおよびkより算出できる。金属材料は、測定波長450nmにおける反射率R(450)と、測定波長650nmにおける反射率R(650)の差の絶対値が、測定波長550nmにおける反射率R(650)に対して25%以内であり、好ましくは20%以内であり、より好ましくは15%以内であり、さらに好ましくは10%以内である。このような金属材料を用いることで、反射型透明スクリーンとして用いた場合、投影光の反射性および色再現性に優れ、スクリーンとしての性能に優れる。
 金属系微粒子に用いる金属材料は、誘電率の実数項ε’が、好ましくは-60~0であり、より好ましくは-50~-10である。なお、誘電率の実数項ε’は、屈折率nと消衰係数kの値を用いて下記式(2)により算出することができる。
   ε’=n-k   式(2)
 本発明はいかなる理論にも束縛されるものではないが、金属材料の誘電率の実数項ε’が上記数値範囲を満たすことで、以下の作用が生じ、透明光散乱体が反射型透明スクリーンとして好適に使用できると考えられる。すなわち、光が金属系微粒子の中に入ると、金属系微粒子中には光による振動電界が生じるが、同時に金属系微粒子の自由電子によって逆向きの電気分極が生じ電界を遮蔽してしまう。誘電率の実数光ε’が0以下であるとき、光が完全に遮蔽され金属系微粒子の中に光が入って行けない、すなわち、表面凹凸による拡散や金属系微粒子による光の吸収が無いという理想状態を仮定すると、光は全て金属系微粒子表面で反射されることになるため、光の反射性は強い。ε’が0より大きいとき、金属系微粒子の自由電子の振動は光の振動に追随出来ないため光による振動電界を完全には打ち消すことが出来ず、光は金属系微粒子の中に入ったり、透過したりする。その結果、金属系微粒子表面で反射されるのは一部の光だけになり、光の反射性は低くなる。
 金属材料としては、上記の反射率R、好ましくはさらに誘電率を満たす金属材料を用いたものであればよく、純金属や合金も用いることができる。純金属としてはアルミニウム、銀、白金、チタン、ニッケル、およびクロムからなる群から選択されるものが好ましい。金属系微粒子としては、これらの金属材料からなる微粒子や、これらの金属材料を樹脂、ガラス、天然雲母もしくは合成雲母等に被覆した微粒子を用いることができる。また、金属系微粒子の形状は、特に限定されず、薄片状微粒子や略球状微粒子等を用いることができる。各種の金属材料について、各測定波長における屈折率nおよび消衰係数kを表1に、その値を用いて算出した反射率Rおよびε’を表2にまとめる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 光輝性薄片状微粒子は、一次粒子の平均径が好ましくは0.01~100μm、より好ましくは0.05~80μm、さらに好ましくは0.1~50μm、さらにより好ましくは0.5~30μmである。さらに、光輝性薄片状微粒子は、平均アスペクト比(=光輝性薄片状微粒子の平均径/平均厚み)が好ましくは3~800、より好ましくは4~700、さらに好ましくは5~600、さらにより好ましくは10~500である。光輝性薄片状微粒子の平均径および平均アスペクト比が上記範囲内であると、シート状透明成型体を透明スクリーン用として使用した場合に、透過視認性を損なわずに投影光の十分な散乱効果が得られることで、鮮明な映像を投影することができる。なお、本発明において、光輝性薄片状微粒子の平均径は、レーザー回折式粒子径分布測定装置((株)島津製作所製、品番:SALD-2300)を用いて測定した。平均アスペクト比は、SEM((株)日立ハイテクノロジーズ製、商品名:SU-1500)画像より算出した。
 光輝性薄片状微粒子は、市販のものを使用してもよく、例えば、大和金属粉工業株式会社製アルミニウムパウダー、松尾産業株式会社製の金属被覆ガラス(商品名:メタシャイン)を好適に使用することができる。
 透明光散乱層中の光輝性薄片状微粒子の含有量は、光輝性薄片状微粒子の正反射率に応じて適宜調節することができ、樹脂に対して、好ましくは0.0001~5.0質量%であり、好ましくは0.0005~3.0質量%であり、より好ましくは0.001~1.0質量%である。光輝性薄片状微粒子を上記範囲のように低濃度で樹脂中に分散させて透明光散乱層を形成することによって、光源から出射される投影光を異方的に散乱反射することにより、投影光の視認性と透過光の視認性とを向上することができる。
(略球状微粒子)
 略球状微粒子とは、真球状粒子を含んでいてもよく、凹凸や突起のある球状粒子を含んでいてもよい。樹脂の屈折率nと略球状微粒子の屈折率nは、下記数式(1):
 |n-n|≧0.1  ・・・(1)
を満たすことが好ましく、下記数式(2):
 |n-n|≧0.15  ・・・(2)
を満たすことがより好ましく、下記数式(3):
 3.0≧|n-n|≧0.2  ・・・(3)
を満たすことがさらに好ましい。透明光散乱層を形成する樹脂と略球状微粒子の屈折率が上記数式を満たすことで、透明光散乱層内で光を異方的に散乱させ、視野角を向上させることができる。また、略球状の微粒子を用いることで、光を全方位的に散乱させ、輝度を向上させることができる。
 高屈折率を有する略球状微粒子としては、例えば、屈折率nが好ましくは1.80~3.55であり、より好ましくは1.9~3.3であり、さらに好ましくは2.0~3.0である、無機物を微粒化した無機系粒子または金属酸化物や金属塩を微粒化した金属系粒子を用いることができる。無機系粒子としては、ダイヤモンド(n=2.42)を挙げることができる。金属酸化物としては、例えば、酸化ジルコニウム(n=2.40)、および酸化セリウム(n=2.20)等を挙げることができる。金属塩としては、例えば、チタン酸バリウム(n=2.40)およびチタン酸ストロンチウム(n=2.37)等を挙げることができる。また、低屈折率を有する無機系略球状微粒子としては、例えば、屈折率nが好ましくは1.35~1.80であり、より好ましくは1.4~1.75であり、さらに好ましくは1.45~1.7であり、シリカ(酸化ケイ素、n=1.45)等を微粒子化した粒子が挙げられる。さらに低屈折率を有する有機系略球状微粒子としては、例えば、アクリル系粒子、ポリスチレン系粒子が挙げられる。これらの略球状微粒子は、1種単独または2種以上を組み合わせて用いることができる。
 略球状微粒子の一次粒子のメジアン径は好ましくは0.1~100nmであり、より好ましくは0.2~70nmであり、さらに好ましくは0.5~50nmである。略球状微粒子の一次粒子のメジアン径が上記範囲内であると、透明シートとして使用した場合に、透過視認性を損なわずに投影光の十分な拡散効果が得られることで、透明スクリーンに鮮明な映像を投影することができる。なお、本発明において、無機微粒子の一次粒子のメジアン径(D50)は、動的光散乱法により粒度分布測定装置(大塚電子(株)製、商品名:DLS-8000)を用いて測定した粒度分布から求めることができる。
 略球状微粒子の含有量は、透明光散乱層の厚さや微粒子の屈折率に応じて適宜調節することができる。透明光散乱層中の微粒子の含有量は、樹脂に対して、好ましくは0.0001~2.0質量%であり、より好ましくは0.001~1.0質量%であり、さらに好ましくは0.005~0.5質量%であり、さらにより好ましくは0.01~0.3質量%である。透明光散乱層中の略球状微粒子の含有量が上記範囲内であれば、透明光散乱層の透明性を確保しながら、投射装置から出射される投影光を異方的に十分に拡散させることで、拡散光の視認性と透過光の視認性とを両立することができる。
(基材層)
 基材層は、シート状透明成型体の両面または片面に貼り合わせることでシート状透明成型体を支持するための層であり、シート状透明成型体の強度を向上させることができる。基材層は、シート状透明成型体の透過視認性や所望の光学特性を損なわないような透明性の高い樹脂またはガラスからなることが好ましい。このような樹脂としては、例えば、上記の透明光散乱層と同様の透明性の高い樹脂を用いることができる。すなわち、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ビニル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリアリレート系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリスルホン系樹脂、およびフッ素系樹脂等の熱可塑性樹脂、熱硬化性樹脂、ならびに電離放射線硬化性樹脂等を好適に用いることができる。また、上記した樹脂を2種以上積層した積層体またはシートを使用してもよい。なお、基材層の厚さは、その強度が適切になるように用途・材料に応じて適宜変更することができる。例えば、10μm~1mm(1000μm)の範囲としてもよく、1mm以上の厚板であってもよい。
(保護層)
 保護層は、シート状透明成型体の表面側(視認者側)および裏面側の両面またはいずれか一方の面に積層してもよく、耐光性、耐傷性、基材密着性および防汚性等の機能を付与するための層である。保護層は、シート状透明成型体の透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。
 保護層の材料としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂、ジアセチルセルロースやトリアセチルセルロース等のセルロース系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系樹脂、ポリカーボネート系樹脂などが挙げられる。また、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体の如きポリオレフィン系樹脂、シクロオレフィン系ないしはノルボルネン構造を有するオレフィン系樹脂、塩化ビニル系樹脂、ナイロンや芳香族ポリアミド等のアミド系樹脂、イミド系樹脂、スルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンスルフィド系樹脂、ビニルアルコール系樹脂、塩化ビニリデン系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、ポリオキシメチレン系樹脂、エポキシ系樹脂、あるいは前記樹脂のブレンド物などが保護フィルムを形成する樹脂の例として挙げられる。その他、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系等の電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤を混合したもの、および熱硬化型樹脂などが挙げられる。
 電離放射線硬化型樹脂組成物の被膜形成成分は、好ましくは、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが使用できる。
 上記電離放射線硬化型樹脂組成物を紫外線硬化型樹脂組成物とするには、この中に光重合開始剤としてアセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、チオキサントン類や、光増感剤としてn-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等を混合して用いることができる。特に本発明では、オリゴマーとしてウレタンアクリレート、モノマーとしてジペンタエリスリトールヘキサ(メタ)アクリレート等を混合するのが好ましい。
 電離放射線硬化型樹脂組成物の硬化方法としては、前記電離放射線硬化型樹脂組成物の硬化方法は通常の硬化方法、即ち、電子線又は紫外線の照射によって硬化することができる。例えば、電子線硬化の場合には、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速機から放出される50~1000KeV、好ましくは100~300KeVのエネルギーを有する電子線等が使用され、紫外線硬化の場合には超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。
 保護層は、上記電離放射(紫外線)線硬化型樹脂組成物の塗工液をスピンコート、ダイコート、ディップコート、バーコート、フローコート、ロールコート、グラビアコート等の方法で、上記の反射型スクリーン用シート状透明成型体の表面側(視認者側)および裏面側の両面またはいずれか一方の面に塗布し、上記のような手段で塗工液を硬化させることにより形成することができる。
(粘着層)
 粘着層は、シート状透明成型体の少なくとも片面に基材層や反射防止層等を貼付するための層である。シート状透明成型体の両面に粘着層を設け、基材層でシート状透明成型体を挟んだ積層構造を作製することも可能である。粘着層は、シート状透明成型体の透過視認性や所望の光学特性を損なわないような粘着剤組成物を用いて形成することが好ましい。粘着剤組成物としては、例えば、天然ゴム系、合成ゴム系、ポリ(メタ)アクリル系、ポリビニルエーテル系、ポリウレタン系、ポリシリコーン系、ポリビニルアルコール系等が挙げられる。合成ゴム系の具体例としては、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、ポリイソブチレンゴム、イソブチレン-イソプレンゴム、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンブロック共重合体、スチレン-エチレン-ブチレンブロック共重合体が挙げられる。ポリビニルアルコール系の具体例としてはポリビニルブチラール、エチレン-酢酸ビニル樹脂が挙げられる。ポリシリコーン系の具体例としては、ジメチルポリシロキサン等が挙げられる。これらの中でも、ポリビニルアルコール系粘着剤、アクリル系粘着剤が好ましい。これらの粘着剤は、1種単独または2種以上を組み合わせて用いることができる。
 アクリル系樹脂粘着剤は、少なくとも(メタ)アクリル酸アルキルエステルモノマーを含んで重合させたものである。炭素原子数1~18程度のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーとカルボキシル基を有するモノマーとの共重合体であるのが一般的である。なお、(メタ)アクリル酸とは、アクリル酸またはメタクリル酸の少なくともいずれか一方をいう。(メタ)アクリル酸アルキルエステルモノマーの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸sec-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ウンデシルおよび(メタ)アクリル酸ラウリル等を挙げることができる。また、上記(メタ)アクリル酸アルキルエステルは、通常は、アクリル系粘着剤中に30~99.5質量部の割合で共重合されている。
 また、アクリル系樹脂粘着剤を形成するカルボキシル基を有するモノマーとしては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、マレイン酸モノブチルおよびβ-カルボキシエチルアクリレート等のカルボキシル基を含有するモノマーを挙げることができる。
 アクリル系樹脂粘着剤には、上記の他に、アクリル系樹脂粘着剤の特性を損なわない範囲内で他の官能基を有するモノマーが共重合されていても良い。他の官能基を有するモノマーの例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピルおよびアリルアルコール等の水酸基を含有するモノマー;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミドおよびN-エチル(メタ)アクリルアミド等のアミド基を含有するモノマー;N-メチロール(メタ)アクリルアミドおよびジメチロール(メタ)アクリルアミド等のアミド基とメチロール基とを含有するモノマー;アミノメチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートおよびビニルピリジン等のアミノ基を含有するモノマーのような官能基を有するモノマー; アリルグリシジルエーテル、(メタ)アクリル酸グリシジルエーテルなどのエポキシ基含有モノマーなどが挙げられる。この他にもフッ素置換(メタ)アクリル酸アルキルエステル、(メタ)アクリロニトリルなどのほか、スチレンおよびメチルスチレンなどのビニル基含有芳香族化合物、酢酸ビニル、ハロゲン化ビニル化合物などを挙げることができる。
 アクリル系樹脂粘着剤には、上記のような他の官能基を有するモノマーの他に、他のエチレン性二重結合を有するモノマーを使用することができる。エチレン性二重結合を有するモノマーの例としては、マレイン酸ジブチル、マレイン酸ジオクチルおよびフマル酸ジブチル等のα,β-不飽和二塩基酸のジエステル; 酢酸ビニル、プロピオン酸ビニル等のビニルエステル;ビニルエーテル;スチレン、α-メチルスチレンおよびビニルトルエン等のビニル芳香族化合物;(メタ)アクリロニトリル等を挙げることができる。また、上記のようなエチレン性二重結合を有するモノマーの他に、エチレン性二重結合を2個以上有する化合物を併用することもできる。このような化合物の例としては、ジビニルベンゼン、ジアリルマレート、ジアリルフタレート、エチレングリコールジ(メタ)アクリレ-ト、トリメチロールプロパントリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド等を挙げることができる。
 さらに、上記のようなモノマーの他に、アルコキシアルキル鎖を有するモノマー等を使用することができる。(メタ)アクリル酸アルコキシアルキルエステルの例としては、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸2-メトキシプロピル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸2-メトキシブチル、(メタ)アクリル酸4-メトキシブチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸4-エトキシブチルなどを挙げることができる。
 粘着剤組成物としては、上記したアクリル系樹脂粘着剤の他、(メタ)アクリル酸アルキルエステルモノマーの単独重合体であっても良い。例えば、(メタ)アクリル酸エステル単独重合体としては、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸オクチル等が挙げられる。 アクリル酸エステル単位2種以上を含む共重合体としては、(メタ)アクリル酸メチル-(メタ)アクリル酸エチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシエチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシ3-フェニルオキシプロピル共重合体等が挙げられる。(メタ)アクリル酸エステルと他の官能性単量体との共重合体としては、(メタ)アクリル酸メチル-スチレン共重合体、(メタ)アクリル酸メチル-エチレン共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシエチル-スチレン共重合体が挙げられる。
 粘着剤は市販のものを使用してもよく、例えば、SKダイン2094、SKダイン2147、SKダイン1811L、SKダイン1442、SKダイン1435、およびSKダイン1415(以上、綜研化学(株)製)、オリバインEG-655、およびオリバインBPS5896(以上、東洋インキ(株)製)等(以上、商品名)を好適に使用することができる。
(反射防止層)
 反射防止層は、シート状透明成型体表面やその積層体の最表面での反射や、外光の映りこみを防止するための層である。反射防止層は、シート状透明成型体やその積層体の視認者側または反対側の片面にのみ積層されるものであってもよく、両面に積層されるものであってもよい。特に反射型スクリーンとして用いる際には視認者側に積層するのが好ましい。反射防止層は、シート状透明成型体やその積層体の透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。このような樹脂としては、例えば、紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤を混合したもの、および熱硬化型樹脂を用いることができるが、これらの中でも電離放射線硬化型樹脂が特に好ましい。
 反射防止層の形成方法としては、特に限定されないが、コーティングフィルムの貼合、フィルム基板に直接蒸着またはスパッタリング等でドライコートする方式、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコート等のウェットコート処理などの方式を用いることができる。
<シート状透明成型体の製造方法>
 本発明によるシート状透明成型体の製造方法は、透明光散乱層を形成する工程を含むものであり、保護層、基材層、粘着層、および反射防止層等の他の層をさらに積層する場合は、積層工程を含む他の層の形成工程をさらに含んでもよい。透明光散乱層を形成する工程は、混練工程と製膜工程からなる押出成型法、キャスト成膜法、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコート、噴霧等を含む塗布法、射出成型法、カレンダー成型法、ブロー成型法、圧縮成型法、2枚のガラス板の間にモノマー液を封入し、その中で塊状重合を行い、重合固化させて板状成型体を得るセルキャスト法など公知の方法により成型加工でき、成膜可能な膜厚範囲の広さから、押出成型法、射出成型法を好適に用いることができる。以下、製造方法の各工程について詳述する。
(混練工程)
 混練工程は、押出機を用いて透明光散乱層を形成する工程である。押出機としては単軸または二軸混練押出機を用いることができ、二軸混錬押出機を用いて、二軸混錬押出機のスクリュー全長にわたる平均値として、好ましくは3~1800KPa、より好ましくは6~1400KPaのせん断応力をかけながら、上記の樹脂と微粒子とを混錬して、樹脂組成物を得る工程である。せん断応力が上記範囲内であれば、微粒子を樹脂中に十分に分散させることができる。特に、せん断応力が3KPa以上であれば、微粒子の分散均一性をより向上させることができ、1800KPa以下であれば、樹脂の分解を防ぎ、透明光散乱層内に気泡が混入するのを防止することができる。せん断応力は、二軸混錬押出機を調節することで、所望の範囲に設定することができる。本発明においては、微粒子を予め添加した樹脂(マスターバッチ)と、微粒子を添加していない樹脂とを混合したものを、二軸混錬押出機を用いて混練して、樹脂組成物を得てもよい。上記は混練工程の一例であり、単軸混錬押出機を用いて微粒子を予め添加した樹脂(マスターバッチ)を作製しても良く、一般的に知られている分散剤を添加してマスターバッチを作製しても良い。
 樹脂組成物には、上記の樹脂と微粒子以外にも、シート状透明成型体の透過視認性や所望の光学性能を損なわない範囲で、従来公知の添加剤を加えてもよい。添加剤としては、例えば、酸化防止剤、滑剤、光安定剤、相溶化剤、核剤および安定剤等が挙げられる。なお、樹脂と微粒子は、上記で説明したとおりである。
 混練工程に用いる二軸混錬押出機は、シリンダー内に2本のスクリューが挿入されたものであり、スクリューエレメントを組み合わせて構成される。スクリューは、少なくとも、搬送エレメントと、混練エレメントとを含むフライトスクリューを好適に用いることができる。混練エレメントは、ニーディングエレメント、ミキシングエレメント、およびロータリーエレメントからなる群から選択される少なくとも1種を含むことが好ましい。このような混練エレメントを含むフライトスクリューを用いることで、所望のせん断応力をかけながら、微粒子を樹脂中に十分に分散させることができる。
(製膜工程)
 製膜工程は、混練工程で得られた樹脂組成物を製膜する工程である。製膜方法は、特に限定されず、従来公知の方法により、樹脂組成物からなるシート状透明成型体を製膜することができる。例えば、混練工程で得られた樹脂組成物を、融点以上の温度(Tm~Tm+70℃)に加熱された溶融押出機に供給して、樹脂組成物を溶融する。溶融押出機としては、単軸混練押出機、二軸混練押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。
 続いて、溶融した樹脂組成物を、例えばTダイ等のダイによりシート状に押し出し、押し出されたシート状物を、回転している冷却ドラムなどで急冷固化することによりシート状の成型体を成型することができる。なお、上記の混練工程と連続して製膜工程を行う場合には、混練工程で得られた樹脂組成物を溶融状態のまま直接、ダイより押出してシート状の透明光散乱層を成型することもできる。
 製膜工程により得られたシート状の透明光散乱層は、従来公知の方法により、さらに一軸延伸または二軸延伸してもよい。上記の透明光散乱層を延伸することで、機械強度を向上させることができる。
(積層工程)
 積層工程は、保護層、基材層、粘着層、および反射防止層等の他の層を設ける場合に、製膜工程で得られたシート状の透明光散乱層上に、他の層をさらに積層する工程である。他の層の積層方法は、特に限定されず、従来公知の方法により行うことができる。
<透明スクリーン>
 本発明による透明スクリーンは、上記のシート状透明成型体を備えてなる。透明スクリーンは、上記のシート状透明成型体のみからなるものでもよく、透明パーティション等の支持体をさらに備えるものでもよい。透明スクリーンは、平面であってもよく、曲面であってもよく、凹凸面を有していてもよい。 
 本発明による透明スクリーンは、背面投射型スクリーン(透過型スクリーン)であってもよく、前面投射型スクリーン(反射型スクリーン)であってもよい。すなわち、本発明による透明スクリーンを備える映像表示装置においては、光源の位置がスクリーンに対して視認者と反対側にあってもよく(透過型スクリーン)、視認者側にあってもよい(反射型スクリーン)。また、反射型スクリーンとして用いた場合、視認者は上記シート状透明成型体の透明光散乱層側から画像を視認する態様が好ましい。このような透明スクリーンは、光源ら出射される投影光を異方的に散乱反射することにより投影光の視認性に優れ、さらに視野角が広く、かつ透過光の視認性に優れるものである。
(支持体)
 支持体は、シート状透明成型体を支持するためのものである。支持体は、反射型スクリーンの透過視認性や所望の光学特性を損なわないものであればよく、例えば、透明パーティション、ガラスウィンドウ、乗用車のヘッドアップディスプレイ、およびウェアラブルディスプレイ等が挙げられる。
<建物用部材>
 本発明による建物用部材は、上記のシート状透明成型体または上記の透明スクリーンを備えてなる。建物用部材としては、住宅の窓ガラス、コンビニや路面店のガラス壁等を挙げることができる。建物用部材は上記のシート状透明成型体または上記の透明スクリーンを備えることで、別途のスクリーンを設けなくても、建物用部材上に鮮明な画像を表示させることができる。
<車両用部材>
 本発明による車両用部材は、上記のシート状透明成型体または上記の透明スクリーンを備えてなる。車両用部材としては、フロントガラスやサイドガラス等が挙げられる。車両用部材は上記のシート状透明成型体または上記の透明スクリーンを備えることで、別途のスクリーンを設けなくても、車両用部材上に鮮明な画像を表示させることができる。
<映像投影システム>
 本発明による映像投影システムは、上記のシート状透明成型体または透明スクリーンと、投射装置とを備えてなる。当該画像表示装置においては、投射装置(光源)の位置がスクリーンに対して視認者側にあってもよく、視認者の反対側にあってもよい。投射装置とは、スクリーン上に映像を投射できるものであれば特に限定されず、例えば、市販のフロントプロジェクタを用いることができる。
 本発明による透明スクリーンおよび映像投影システムの一実施形態の模式図を図3に示す。透明スクリーン33は、透明パーティション(支持体)32と、透明パーティション32上の視認者34側にシート状透明成型体31とを備えてなる。シート状透明成型体31は、透明パーティション32に貼付するために、粘着層を含んでもよい。透過型スクリーンである場合、映像投影システムは、透明スクリーン33と、透明パーティション32に対して視認者34と反対側(背面側)に設置された投射装置35Aとを備えてなる。投射装置35Aから出射された投影光36Aは、透明スクリーン33の背面側から入射し、透明スクリーン33により異方的に散乱することで、視認者34は散乱光37Aを視認できる。また、反射型スクリーンである場合、映像投影システムは、透明スクリーン33と、透明パーティション32に対して視認者34と同じ側(前面側)に設置された投射装置35Bとを備えてなる。投射装置35Bから出射された投影光36Bは、透明スクリーン33の前面側から入射し、透明スクリーン33により異方的に散乱することで、視認者34は散乱光37Bを視認できる。
 以下、実施例と比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定解釈されるものではない。
 実施例および比較例において、各種物性および性能評価の測定方法は次のとおりである。
(1)ヘイズ
 濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7136に準拠して測定した。
(2)全光線透過率
 濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7361-1に準拠して測定した。
(3)拡散透過率
 濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7361-1に準拠して測定した。
(4)反射正面光度
 変角光度計(日本電色工業(株)製、品番:GC5000L)を用いて測定した。光源の入射角を45度にセットし、測定ステージに白色度95.77の標準白色板を載せたときの0度方向への反射光強度を100とした。サンプル測定時は、光源の入射角を15度にセットし、0度方向への反射光の強度を測定した。
(5)透過正面光度
 変角光度計(日本電色工業(株)製、品番:GC5000L)を用いて測定した。光源の入射角を0度にセットし、測定ステージに何も置かない状態での0度方向への透過光強度を100とした。サンプル測定は、光源の入射角を15度にセットし、0度方向への透過光の強度を測定した。
(6)視野角
 変角光度計(日本電色工業(株)製、品番:GC5000L)を用いて測定した。光源の入射角を0度にセットし、測定ステージに何も置かない状態での0度方向への透過光強度を100とした。サンプル測定時は、光源の入射角は0度のまま、-85度から+85度までの透過光強度を1度刻みで測定した。測定範囲の中で、透過光強度が0.001以上ある範囲を視野角とした。
(7)正反射率
 分光測色計(コニカミノルタ(株)製、品番:CM-3500dを用いて測定した。適切な溶媒(水またはメチルエチルケトン)に分散させた光輝性薄片状微粒子をスライドガラス上に膜厚が0.5mm以上になるように塗布、乾燥させた。得られた塗膜付きガラス板について、ガラス面の法線に対して45度の角度でガラス面から塗膜へ光を入射したときの正反射率を測定した。
(8)写像性
 写像性測定器(スガ試験機(株)製、品番:ICM-1T)を用い、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値を写像性とした。像鮮明度の値が大きい程、透過写像性が高いことを示す。
(9)遮蔽係数
 紫外可視近赤外分光光度計((株)島津製作所製、型番UV-2600)を用い、JIS A5759に準拠して測定した。
(10)耐光性:b値、MIT耐折度回数
 耐光性の評価には、キセノンウェザーメーター〔東洋精機製作所 アトラスCi4000〕を用いて、二軸延伸フィルムに、放射照度60W/m、ブラックパネル温度63±3℃、湿度50%RH、600時間光照射して行った。光照射後のb値を光照射前のb値(b*1)から差し引きした値Δb(=b*1-b)、および光照射前後におけるMIT耐折度回数の差し引き値ΔMIT(=光照射前MIT-光照射後MIT)を求め、耐光性を評価した。bは日本電色工業(株)製Spectrophotometer SD6000を用いて5回測定して平均値を算出し、Δb(=b*1-b)は、光照射後のb値を光照射前のb値(b*1)から差し引きして算出した。MIT耐折度回数は、テスター産業株式会社製のBE-201 MIT耐屈度試験機を使用し、加重200g、折り曲げ点先端Rは0.38、屈曲速度は175回/分、屈曲角度は左右135°、フィルムサンプルの幅は15mmの測定条件下、シート状透明成型体の搬送方向に繰り返し屈曲させたときに破断した屈曲回数と、幅方向に繰り返し屈曲させたときに破断した屈曲回数との平均値を求めることで測定した。ΔMITは、光照射前後におけるMIT耐折度回数の差し引き値(光照射前MIT-光照射後MIT)として算出した。
(11)スクリーン性能
 透明スクリ-ンとして下記で作製したシート状透明成型体に、シート状透明成型体の法線方向に対して角度15度で50cm離れた位置から、オンキョーデジタルソリューションズ(株)製のモバイルLEDミニプロジェクターPP-D1Sを用いて画像を投影した。次に、スクリ-ンの面上に焦点が合うようにプロジェクターの焦点つまみを調整した後、スクリ-ンの前方1mおよび後方1mの2ヶ所からスクリ-ンに映し出された画像を目視で観察し、下記の基準に基づいて目視で評価した。前方からの観察により反射型透明スクリーンとしての性能が評価でき、後方からの観察により透過型透明スクリーンとしての性能が評価できる。
 [評価基準]
 ◎:極めて鮮明に映像を視認することができた。
 ○:鮮明に映像を視認することができた。
 △:映像の輪郭、色相がややぼやけて視認された。
 ×:映像の輪郭がぼやけ、スクリーンとして使用するには不適であった。
[実施例A1]
(1)微粒子を添加した熱可塑性樹脂ペレットの作製(以下、「ペレット作製工程」という)
 熱可塑性樹脂としてポリエチレンテレフタレート(PET)ペレット((株)ベルポリエステルプロダクツ製、商品名:IP121B)を用意した。該PETペレットに、赤外線遮蔽性微粒子として、PETペレットに対して0.001質量%のセシウム酸化タングステン微粒子(住友金属鉱山(株)社製、商品名:YMF-02A、一次粒子の平均径15nm、屈折率1.66)、光輝性薄片状微粒子として、PETペレットに対して0.0085質量%の薄片状アルミニウム微粒子A(一次粒子の平均径10μm、アスペクト比300、正反射率62.8%)を加えて、回転型混合器にて混合することでPETペレット表面に均一にセシウム酸化タングステン微粒子および薄片状アルミニウム微粒子が付着したPETペレットを得た。
(2)透明光散乱層(シート状透明成型体)の作製(以下、「シート作製工程」という)
 得られた微粒子添加PETペレットをスクリュー式の二軸混練押出機(テクノベル(株)製、商品名:KZW-30MG)のホッパーに投入し、80μmの厚さの透明光散乱層(シート状透明成型体)を作製した。なお、二軸混練押出機のスクリュー径は20mmであり、スクリュー有効長(L/D)は30であった。また、二軸混練押出機にはアダプタを介し、ハンガーコートタイプのTダイを設置した。押出温度は270℃とし、スクリュー回転数は500rpmとし、せん断応力は300KPaとした。使用したスクリューは全長670mmであり、スクリューのホッパー側から160mmの位置から185mmの位置までの間にミキシングエレメントを含み、かつ185mmから285mmの位置の間にニーディングエレメントを含み、その他の部分はフライト形状であった。
(3)透明スクリーンの評価
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は4.8%、拡散透過率は4.1%、全光線透過率は86.0%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、1.00であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、9.8であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±18度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は89%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時に極めて鮮明な映像を視認することができた。また、遮蔽係数は0.85であり、優れた熱線遮蔽効果を有することが分かった。
[実施例A2]
 実施例A1の(1)ペレット作製工程において、セシウム酸化タングステン微粒子の添加量を0.010質量%とし、さらに略球状微粒子として酸化ジルコニウム粒子(関東電化工業(株)製、屈折率2.40、一次粒子のメジアン径10nm)を0.15質量%添加した以外は実施例A1と同様にして、膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は13.9%、拡散透過率は10.1%、全光線透過率は72.4%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は11.29であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、5.1であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±32度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は85%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに極めて鮮明に映像を視認することができた。また、遮蔽係数は0.68であり、優れた熱線遮蔽効果を有することが分かった。
[実施例A3]
 実施例A1の(1)ペレット作製工程において、薄片状アルミニウム微粒子Aの添加量を0.042質量%とし、赤外線遮蔽性微粒子としてセシウム酸化タングステンの代わりに六ホウ化ランタン(住友金属鉱山(株)社製、商品名:KHF-7AH、平均径80nm)を0.001質量%用いた以外は実施例A1と同様にして、膜厚80μmの透明光散乱層(シート状透明成型体)を作製した。なお、KHF-7AH(六ホウ化ランタン)はセシウム酸化タングステン含有量の1.5倍量の酸化ジルコニウムを含有しているため、透明光散乱層は0.0015質量%の酸化ジルコニウムを含有している。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は18.1%、拡散透過率は12.9%、全光線透過率は71.0%であり、実施例A2と比較するとやや劣るものの、十分な透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、3.11であり、透過正面光度(×1000)に優れることが分かった。変角光度計にて測定した反射正面光度は、38.2であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±33度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は91%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに極めて鮮明に映像を視認することができた。また、遮蔽係数は0.88であり、優れた熱線遮蔽効果を有することが分かった。
[実施例A4]
 実施例A1の(1)ペレット作製工程において、光輝性薄片状微粒子として薄片状アルミニウム微粒子B(一次粒子の平均径7μm、アスペクト比40、正反射率24.6%)をPETペレットに対して0.014質量%を添加し、赤外線遮蔽性微粒子としてセシウム酸化タングステンの代わりに酸化チタン(テイカ(株)社製、商品名:JR-1000、平均径1μm)を0.005質量%添加した以外は実施例A1と同様にして膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は5.1%、拡散透過率は4.4%、全光線透過率は86.4%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、0.80であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、6.3であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±18度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は91%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時に極めて鮮明な映像を視認することができた。また、遮蔽係数は0.87であり、優れた熱線遮蔽効果を有することが分かった。
[実施例A5]
 実施例A1の(1)ペレット作製工程において、光輝性薄片状微粒子として酸化チタン(TiO)被覆雲母(トピー工業(株)製、商品名:Helios R10S、一次粒子の平均径12μm、アスペクト比80、正反射率16.5%)を0.1質量%用いた以外は実施例A1と同様にして膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は2.8%、拡散透過率は2.6%、全光線透過率は91.2%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、1.45であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、8.2であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±15度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は88%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時に極めて鮮明な映像を視認することができた。また、遮蔽係数は0.86であり、優れた熱線遮蔽効果を有することが分かった。
[実施例A6]
 実施例A1の(1)ペレット作製工程において、光輝性薄片状微粒子としてアルミニウムC(一次粒子の平均径1μm、アスペクト比25、正反射率16.8%)を0.001質量%用いた以外は実施例A1と同様にして膜厚80μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は1.8%、拡散透過率は1.7%、全光線透過率は92.1%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、0.65であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、2.9であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±15度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は92%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時に極めて鮮明な映像を視認することができた。また、遮蔽係数は0.88であり、優れた熱線遮蔽効果を有することが分かった。
[実施例A7]
 実施例A2の(1)ペレット作製工程において、光輝性薄片状微粒子を添加しなかった以外は実施例A2と同様にして膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は13.2%、拡散透過率は10.7%、全光線透過率は81.3%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、3.8であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、1.9であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±28度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は88%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に後方観察時に極めて鮮明な映像を視認することができた。また、遮蔽係数は0.69であり、優れた熱線遮蔽効果を有することが分かった。
[実施例A8]
 実施例A1の(1)ペレット作製工程において、セシウム酸化タングステンの添加量を0.0001質量%とし、光輝性薄片状微粒子として薄片状アルミニウム微粒子Aの代わりに銀粒子(一次粒子の平均径1μm、アスペクト比200、正反射率32.8%)を0.001質量%とした以外は実施例A1と同様にしてセシウム酸化タングステンおよび銀粒子が付着したペレットを得た。得られたペレットを用い、射出成形機(日精樹脂工業(株)製、商品名:FNX-III)にて膜厚1000μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は6.4%、拡散透過率は4.5%、全光線透過率は70.1%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、1.42であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、14.8であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±18度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は74%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時に極めて鮮明な映像を視認することができた。また、遮蔽係数は0.87であり、優れた熱線遮蔽効果を有することが分かった。
[比較例A1]
 実施例A1の(1)ペレット作製工程において、赤外線遮蔽性微粒子を添加しなかった以外は実施例A1と同様にして、膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は4.0%、拡散透過率は3.6%、全光線透過率は89.1%であり、写像性測定器にて測定した写像性は92%であった。
 変角光度計にて測定した透過正面光度(×1000)は、1.06であり、反射正面光度は、9.2であった。変角光度計にて測定した視野角は±14度であり、視認性を目視で評価した結果、特に前方観察時において鮮明な画像を視認することができたが、遮蔽係数は0.95であり、熱線遮蔽効果が劣っていた。
[比較例A2]
 実施例A1の(1)ペレット作製工程において、光輝性薄片状微粒子を添加せず、光輝性の無い薄片状微粒子として、雲母粒子((株)ヤマグチマイカ製、商品名:A-21S、一次粒子の平均径23μm、アスペクト比70、正反射率9.8%)を0.2質量%添加した以外は比較例A1と同様にして、膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は9.0%、拡散透過率は8.1%、全光線透過率は90.0%であり、写像性測定器にて測定した写像性は87%であった。
 変角光度計にて測定した透過正面光度(×1000)は2.63であり、反射正面光度は1.0であり、反射正面光度が劣っていた。変角光度計にて測定した視野角は±20度であり、視野角特性は優れているものの、視認性を目視で評価した結果、前方観察時、後方観察時ともに映像を視認することができなかった。また、遮蔽係数は0.93であり、熱線遮蔽効果が劣っていた。
 実施例A1~7および比較例A1~2で用いた透明光散乱層の詳細を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例A1~7および比較例A1~2で用いたシート状透明成型体の各種物性および性能評価の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
[実施例B1]
(1)微粒子を添加した熱可塑性樹脂ペレットの作製(以下、「ペレット作製工程」という)
 熱可塑性樹脂としてポリエチレンテレフタレート(PET)ペレット((株)ベルポリエステルプロダクツ製、商品名:IP121B)を用意した。該PETペレットに、紫外線遮蔽剤として、PETペレットに対して0.001質量%の酸化亜鉛(ZnO、石原産業(株)社製、商品名:FZO、一次粒子の平均径0.021μm)と、光輝性薄片状微粒子として、PETペレットに対して0.0085質量%の薄片状アルミニウム微粒子A(一次粒子の平均径10μm、アスペクト比300、正反射率62.8%)とを加えて、回転型混合器にて混合することでPETペレット表面に均一に酸化亜鉛微粒子および薄片状アルミニウム微粒子が付着したPETペレットを得た。
(2)透明光散乱層(シート状透明成型体)の作製(以下、「シート作製工程」という)
 得られた微粒子添加PETペレットをスクリュー式二軸混練押出機(テクノベル(株)製、商品名:KZW-30MG)のホッパーに投入し、80μmの厚さの透明光散乱層(シート状透明成型体)を作製した。なお、二軸混練押出機のスクリュー径は20mmであり、スクリュー有効長(L/D)は30であった。また、二軸式混練押出機にはアダプタを介し、ハンガーコートタイプのTダイを設置した。押出温度は270℃とし、スクリュー回転数は500rpmとし、せん断応力は300KPaとした。使用したスクリューは全長670mmであり、スクリューのホッパー側から160mmの位置から185mmの位置までの間にミキシングエレメントを含み、かつ185mmから285mmの位置の間にニーディングエレメントを含み、その他の部分はフライト形状であった。
(3)透明スクリーンの評価
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は4.8%、拡散透過率は4.3%、全光線透過率は88.7%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、1.21であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、10.2であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±18度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は89%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時に極めて鮮明な映像を視認することができた。また、Δbは0.03(紫外線照射前b値=0.53、紫外線照射後b*1値=0.58)、ΔMITは1151(紫外線照射前MIT=12020、紫外線照射後MIT=10869)であり、優れた耐光性を有することが分かった。
[実施例B2]
 実施例B1の(1)ペレット作製工程において、酸化亜鉛微粒子の添加量を0.010質量%とし、略球状微粒子として酸化ジルコニウム(ZrO、関東電化工業(株)製、屈折率2.40、一次粒子のメジアン径10nm)を0.15質量%添加した以外は実施例B1と同様にして、膜厚80μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は15.7%、拡散透過率は11.4%、全光線透過率は72.9%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は11.29であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、5.1であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±32度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は85%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに極めて鮮明に映像を視認することができた。また、Δbは0.02(紫外線照射前b値=0.61、紫外線照射後b*1値=0.63)、ΔMITは633(紫外線照射前MIT=9013、紫外線照射後MIT=8380)であり、優れた耐光性を有することが分かった。
[実施例B3]
 実施例B1の(1)ペレット作製工程において、酸化亜鉛微粒子の代わりに、紫外線遮蔽剤として酸化チタン(TiO、石原産業(株)社製、商品名:TTO-51(A)、一次粒子の平均径0.01~0.03μm)を0.001質量%、薄片状アルミニウム微粒子Aを0.042質量%、および酸化ジルコニウム微粒子を0.0015質量%加えた以外は実施例B1と同様にして、膜厚80μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は15.5%、拡散透過率は11.0%、全光線透過率は71.2%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、4.11であり、透過正面光度(×1000)に優れることが分かった。変角光度計にて測定した反射正面光度は、33.1であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±33度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は90%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに極めて鮮明に映像を視認することができ、た。また、Δbは0.03(紫外線照射前b値=0.52、紫外線照射後b*1値=0.55)、ΔMITは889(紫外線照射前MIT=11363、紫外線照射後MIT=10474)であり、優れた耐光性を有することが分かった。
[実施例B4]
 実施例B1の(1)ペレット作製工程において、酸化亜鉛微粒子の代わりに、紫外線遮蔽剤としてトリアジン系紫外線吸収剤(BASFジャパン社製、商品名:チヌビン1577)を0.10質量%、および光輝性薄片状微粒子として薄片状アルミニウム微粒子B(一次粒子の平均径7μm、アスペクト比40、正反射率24.6%)を0.014質量%添加した以外は実施例B1と同様にして膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は4.6%、拡散透過率は4.1%、全光線透過率は89.4%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、1.01であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、7.7であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±18度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は89%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時に極めて鮮明な映像を視認することができた。また、Δbは0.01(紫外線照射前b値=0.62、紫外線照射後b*1値=0.63)、ΔMITは965(紫外線照射前MIT=12451、紫外線照射後MIT=11486)であり、優れた耐光性を有することが分かった。
[実施例B5]
 実施例B1の(1)ペレット作製工程において、光輝性薄片状微粒子として酸化チタン(TiO)被覆雲母(トピー工業(株)製、商品名:Helios R10S、一次粒子の平均径12μm、アスペクト比80、正反射率16.5%)を0.1質量%、および紫外線遮蔽剤として酸化亜鉛の代わりにベンゾトリアゾール系紫外線吸収剤((株)ADEKA製、商品名:アデカスタブLA-31)を0.20質量%用いた以外は実施例B1と同様にして膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は2.4%、拡散透過率は2.2%、全光線透過率は92.9%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、0.50であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、5.3であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±15度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は92%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができた。また、Δbは0.01(紫外線照射前b値=0.62、紫外線照射後b*1値=0.63)、ΔMITは768(紫外線照射前MIT=8242、紫外線照射後MIT=7474)であり、優れた耐光性を有することが分かった。
[実施例B6]
 実施例B1の(1)ペレット作製工程において、紫外線遮蔽剤として酸化亜鉛の代わりにベンゾトリアゾール系紫外線吸収剤(BASFジャパン社製、商品名:チヌビン234)を0.15質量%用いた以外は実施例B1と同様にして膜厚100μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は4.5%、拡散透過率は4.0%、全光線透過率は89.1%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、1.06であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、9.2であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±18度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は92%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時に極めて鮮明な映像を視認することができた。また、Δbは0.01(紫外線照射前b値=0.59、紫外線照射後b*1値=0.60)、ΔMITは1312(紫外線照射前MIT=11038、紫外線照射後MIT=9726)であり、優れた耐光性を有することが分かった。
[実施例B7]
 実施例B4の(1)ペレット作製工程において、チヌビン1577の添加量を0.01質量%に変更し、光輝性薄片状微粒子として薄片状アルミニウム微粒子Bの代わりに銀粒子(一次粒子の平均径1μm、アスペクト比200、正反射率32.8%)を0.001質量%用いた以外は実施例B4と同様にしてチヌビン1577および銀粒子が付着したペレットを得た。得られたペレットを用い、射出成形機(日精樹脂工業(株)製、商品名:FNX-III)にて膜厚1000μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は5.6%、拡散透過率は4.1%、全光線透過率は73.2%であり、高い透明性を有していた。
 変角光度計にて測定した透過正面光度(×1000)は、1.32であり、透過正面光度に優れることが分かった。変角光度計にて測定した反射正面光度は、13.8であり、反射正面光度に優れることが分かった。変角光度計にて測定した視野角は±21度であり、視野角特性に優れることが分かった。また、写像性測定器にて測定した写像性は75%であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に後方観察時に極めて鮮明な映像を視認することができた。また、Δbは0.02(紫外線照射前b値=0.62、紫外線照射後b*1値=0.64)であった。なお、本実施例の透明光散乱層は厚みが1000μmの板であるため、ΔMITは測定不能である。
[比較例B1]
 実施例B1の(1)ペレット作製工程において、紫外線遮蔽剤を添加しなかった以外は実施例B1と同様にして、膜厚80μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は4.0%、拡散透過率は3.6%、全光線透過率は89.1%であり、写像性測定器にて測定した写像性は92%であった。変角光度計にて測定した透過正面光度(×1000)は、1.06であり、反射正面光度は、9.2であった。変角光度計にて測定した視野角は±14度であり、視認性を目視で評価した結果、前方観察時、後方観察時ともに鮮明に映像を視認することができ、特に前方観察時において鮮明な画像を視認することができた。また、Δbは0.15(紫外線照射前b値=0.52、紫外線照射後b*1値=0.67)、ΔMITは3242(紫外線照射前MIT=14532、紫外線照射後MIT=11290)であり、耐光性が劣っていた。
[比較例B2]
 実施例B3の(1)ペレット作製工程において、光輝性薄片状微粒子を添加せず、光輝性の無い薄片状微粒子として、雲母粒子((株)ヤマグチマイカ製、商品名:A-21S、一次粒子の平均径23μm、アスペクト比70、正反射率9.8%)を0.2質量%添加し、さらに、紫外線遮蔽剤を添加しなかった以外は実施例B3と同様にして、膜厚80μmの透明光散乱層(シート状透明成型体)を作製した。
 作製した透明光散乱層(シート状透明成型体)をそのまま透明スクリーンに用いたところ、ヘイズ値は9.0%、拡散透過率は8.1%、全光線透過率は90.0%であり、写像性測定器にて測定した写像性は87%であった。変角光度計にて測定した透過正面光度(×1000)は2.63であり、反射正面光度は1.0であり、反射正面光度が劣っていた。変角光度計にて測定した視野角は±20度であり、視野角特性は優れているものの、視認性を目視で評価した結果、前方観察時は映像の輪郭、色相がややぼやけて視認され、後方観察時には映像の輪郭がぼやけ、スクリーンとして使用するには不適であった。また、Δbは0.12(紫外線照射前b値=0.53、紫外線照射後b*1値=0.65)、ΔMITは4140(紫外線照射前MIT=9269、紫外線照射後MIT=5129)であり、耐光性が劣っていた。
 実施例B1~6および比較例B1~2で用いた透明光散乱層の詳細を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施B1~6および比較B1~2で用いたシート状透明成型体の各種物性および性能評価の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 10、20 樹脂
 11、21 光輝性薄片状微粒子
 12、22 略球状微粒子
 13、23 赤外線遮蔽性微粒子および紫外線遮蔽剤の少なくともいずれか一方
 14、26 透明光散乱層
 15、29、34 視認者
 16、27、36A、36B 投影光
 17、28、37A、37B 散乱光
 24 粘着層
 25 基材層
 31 シート状透明成型体
 32 透明パーティション(支持体)
 33 透明スクリーン
 35A、35B 投射装置

Claims (20)

  1.  樹脂と、赤外線遮蔽性微粒子および紫外線遮蔽剤の少なくともいずれか一方と、光輝性薄片状微粒子および略球状微粒子の少なくともいずれか一方と、を含んでなる透明光散乱層を備えてなる、シート状透明成型体。
  2.  前記赤外線遮蔽性微粒子が、六ホウ化ランタン、セシウム酸化タングステン、スズ酸化インジウム、アンチモン酸化スズ、酸化チタン、酸化亜鉛、およびパラジウムからなる群から選択される少なくとも1種である、請求項1に記載のシート状透明成型体。
  3.  前記赤外線遮蔽性微粒子の一次粒子の平均径が、1nm~10μmであり、かつ、前記赤外線遮蔽性微粒子の含有量が、前記樹脂に対して0.0001~5.0質量%である、請求項1または2に記載のシート状透明成型体。
  4.  前記紫外線遮蔽剤が、金属系紫外線遮蔽剤または有機系紫外線遮蔽剤である、請求項1~3のいずれか一項に記載のシート状透明成型体。
  5.  前記有機系紫外線遮蔽剤が、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、およびベンゾフェノン系紫外線吸収剤からなる群から選択される少なくとも1種である、請求項4に記載のシート状透明成型体。
  6.  前記紫外線遮蔽剤の含有量が、前記樹脂に対して0.0001~5.0質量%である、請求項1~5のいずれか一項に記載のシート状透明成型体。
  7.  前記光輝性薄片状微粒子が、アルミニウム、銀、白金、金、チタン、ニッケル、スズ、スズ‐コバルト合金、インジウム、クロム、酸化アルミニウム、および硫化亜鉛からなる群から選択される金属系粒子、ガラスに金属または金属酸化物を被覆した光輝性材料、または天然雲母もしくは合成雲母に金属または金属酸化物を被覆した光輝性材料である、請求項1~6のいずれか一項に記載のシート状透明成型体。
  8.  前記光輝性薄片状微粒子の含有量が、前記樹脂に対して0.0001~5.0質量%であり、かつ、前記光輝性薄片状微粒子の一次粒子の平均径が、0.01~100μmである、請求項1~7のいずれか一項に記載のシート状透明成型体。
  9.  前記光輝性薄片状微粒子の正反射率が、12%以上である、請求項1~8のいずれか一項に記載のシート状透明成型体。
  10.  前記略球状微粒子が、酸化ジルコニウム、酸化セリウム、チタン酸バリウム、チタン酸ストロンチウム、ダイヤモンド、架橋アクリル樹脂、架橋スチレン樹脂、およびシリカからなる群より選択された少なくとも1種である、請求項1~9のいずれか一項に記載のシート状透明成型体。
  11.  前記略球状微粒子の一次粒子のメジアン径が、0.1~100nmであり、かつ、前記略球状微粒子の一次粒子の含有量が、前記樹脂に対して0.0001~2.0質量%である、請求項1~10のいずれか一項に記載のシート状透明成型体。
  12.  前記シート状透明成型体のヘイズが30%以下である、請求項1~11のいずれか一項に記載のシート状透明成型体。
  13.  前記シート状透明成型体の遮蔽係数が0.90以下である、請求項1~12のいずれか一項に記載のシート状透明成型体。
  14.  前記シート状透明成型体の写像性が70%以上である、請求項1~13のいずれか一項に記載のシート状透明成型体。
  15.  請求項1~14のいずれか一項に記載のシート状透明成型体を備えた、建物用部材。
  16.  請求項1~14のいずれか一項に記載のシート状透明成型体を備えた、車両用部材。
  17.  請求項1~14のいずれか一項に記載のシート状透明成型体を備えた、透過型透明スクリーン。
  18.  請求項1~14のいずれか一項に記載のシート状透明成型体を備えた、反射型透明スクリーン。
  19.  請求項1~14のいずれか一項に記載のシート状透明成型体または請求項17に記載の透過型透明スクリーンと、投射装置とを備えた、映像投影システム。
  20.  請求項1~14のいずれか一項に記載のシート状透明成型体または請求項18に記載の反射型透明スクリーンと、投射装置とを備えた、映像投影システム。
PCT/JP2016/068161 2015-06-24 2016-06-17 シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システム WO2016208514A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017508127A JP6334055B2 (ja) 2015-06-24 2016-06-17 シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015126969 2015-06-24
JP2015-126969 2015-06-24
JP2015137076 2015-07-08
JP2015-137076 2015-07-08

Publications (1)

Publication Number Publication Date
WO2016208514A1 true WO2016208514A1 (ja) 2016-12-29

Family

ID=57584929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068161 WO2016208514A1 (ja) 2015-06-24 2016-06-17 シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システム

Country Status (2)

Country Link
JP (1) JP6334055B2 (ja)
WO (1) WO2016208514A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144327A (ja) * 2018-02-16 2019-08-29 住友ベークライト株式会社 光学シートおよび光学部品
JPWO2019004289A1 (ja) * 2017-06-30 2020-04-30 Agc株式会社 反射型スクリーン
JPWO2021045185A1 (ja) * 2019-09-06 2021-03-11
KR102225791B1 (ko) * 2019-10-31 2021-03-11 고려대학교 산학협력단 백색 복사 냉각 소자
WO2021085895A1 (ko) * 2019-10-31 2021-05-06 고려대학교 산학협력단 복사 냉각 소자 및 이의 제조방법
WO2022255392A1 (ja) * 2021-06-01 2022-12-08 積水化学工業株式会社 樹脂フィルム、合わせガラス、及びスクリーン
JP2022184685A (ja) * 2021-06-01 2022-12-13 積水化学工業株式会社 樹脂フィルム、合わせガラス、及びスクリーン
JP2022189700A (ja) * 2021-06-11 2022-12-22 積水化学工業株式会社 樹脂フィルム、合わせガラス及びスクリーン

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054132A (ja) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd 反射スクリーン
JP2004155984A (ja) * 2002-11-08 2004-06-03 Teijin Chem Ltd 光拡散性ポリカーボネート樹脂組成物および光拡散板
JP2006259028A (ja) * 2005-03-16 2006-09-28 Mizuno Corp 透過型スクリーンとその製造法
JP2013037013A (ja) * 2010-11-22 2013-02-21 Fujifilm Corp 熱線遮蔽材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674891B2 (ja) * 1996-12-24 2005-07-27 株式会社きもと プロジェクタ用反射型スクリーン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054132A (ja) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd 反射スクリーン
JP2004155984A (ja) * 2002-11-08 2004-06-03 Teijin Chem Ltd 光拡散性ポリカーボネート樹脂組成物および光拡散板
JP2006259028A (ja) * 2005-03-16 2006-09-28 Mizuno Corp 透過型スクリーンとその製造法
JP2013037013A (ja) * 2010-11-22 2013-02-21 Fujifilm Corp 熱線遮蔽材

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019004289A1 (ja) * 2017-06-30 2020-04-30 Agc株式会社 反射型スクリーン
JP2019144327A (ja) * 2018-02-16 2019-08-29 住友ベークライト株式会社 光学シートおよび光学部品
JP7187780B2 (ja) 2018-02-16 2022-12-13 住友ベークライト株式会社 光学シートおよび光学部品
JPWO2021045185A1 (ja) * 2019-09-06 2021-03-11
WO2021045185A1 (ja) * 2019-09-06 2021-03-11 パナソニックIpマネジメント株式会社 遮熱フィルム
CN114364725A (zh) * 2019-09-06 2022-04-15 松下知识产权经营株式会社 隔热膜
CN114364725B (zh) * 2019-09-06 2023-10-24 松下知识产权经营株式会社 隔热膜
JP7241324B2 (ja) 2019-09-06 2023-03-17 パナソニックIpマネジメント株式会社 遮熱フィルム
US11543157B2 (en) 2019-10-31 2023-01-03 Korea University Research And Business Foundation Radiative cooling device and method of manufacturing the same
KR102225791B1 (ko) * 2019-10-31 2021-03-11 고려대학교 산학협력단 백색 복사 냉각 소자
WO2021085895A1 (ko) * 2019-10-31 2021-05-06 고려대학교 산학협력단 복사 냉각 소자 및 이의 제조방법
CN113068406A (zh) * 2019-10-31 2021-07-02 高丽大学校产学协力团 辐射冷却元件及其制作方法
WO2022255392A1 (ja) * 2021-06-01 2022-12-08 積水化学工業株式会社 樹脂フィルム、合わせガラス、及びスクリーン
JP2022184685A (ja) * 2021-06-01 2022-12-13 積水化学工業株式会社 樹脂フィルム、合わせガラス、及びスクリーン
WO2022255393A1 (ja) * 2021-06-01 2022-12-08 積水化学工業株式会社 樹脂フィルム、合わせガラス及びスクリーン
JP2022189700A (ja) * 2021-06-11 2022-12-22 積水化学工業株式会社 樹脂フィルム、合わせガラス及びスクリーン

Also Published As

Publication number Publication date
JPWO2016208514A1 (ja) 2017-08-17
JP6334055B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6138363B2 (ja) シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた画像投影装置
JP6334055B2 (ja) シート状透明成型体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
JP6815952B2 (ja) 反射型透明スクリーンの製造方法
JP6133522B1 (ja) 透明スクリーンおよびそれを備えた映像投影システム
JP6266844B2 (ja) シート状透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
KR20160143670A (ko) 투명 스크린용 필름 및 그 제조방법과 그것을 구비한 투명 스크린
WO2016093181A1 (ja) 透明シート、それを備えた透明スクリーン、およびそれを備えた画像投影装置
WO2016190137A1 (ja) 透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
JP2017015824A (ja) シート状透明積層体、それを備えた透明スクリーン、およびそれを備えた画像投影装置
JP6313919B2 (ja) 透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム
JP6707462B2 (ja) 透視可能な積層体、それを備えた反射型スクリーン、およびそれを備えた画像投影装置
JP2017026759A (ja) スクリーンおよびそれを備えた画像投影装置
JP6691815B2 (ja) 映像投影システム
JP6765912B2 (ja) 映像を投影可能な積層体、およびそれを備えた映像投影システム
JP7134123B2 (ja) 映像投影システム
JP6691809B2 (ja) 映像投影システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017508127

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814285

Country of ref document: EP

Kind code of ref document: A1