WO2017187914A1 - 送信システム、送信装置、及び通信システム - Google Patents

送信システム、送信装置、及び通信システム Download PDF

Info

Publication number
WO2017187914A1
WO2017187914A1 PCT/JP2017/014233 JP2017014233W WO2017187914A1 WO 2017187914 A1 WO2017187914 A1 WO 2017187914A1 JP 2017014233 W JP2017014233 W JP 2017014233W WO 2017187914 A1 WO2017187914 A1 WO 2017187914A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
band
frequency
modulation
modulator
Prior art date
Application number
PCT/JP2017/014233
Other languages
English (en)
French (fr)
Inventor
前畠 貴
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017187914A1 publication Critical patent/WO2017187914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the present invention relates to a transmission system, a transmission device, and a communication system.
  • This application claims priority based on Japanese Patent Application No. 2016-087139 filed on Apr. 25, 2016, and incorporates all the content described in the above Japanese application.
  • a signal obtained by performing ⁇ modulation on an analog transmission signal is wirelessly transmitted.
  • a multicarrier type ⁇ modulator that can input a signal from two input ports may be used (for example, see Patent Document 1). .
  • a transmission system is a transmission system that transmits a ⁇ -modulated signal that is ⁇ -modulated with respect to a communication signal, the receiver that receives the ⁇ -modulated signal, and the ⁇ -modulated signal that is transmitted as a signal
  • a transmission device that transmits to the reception device via a path, the transmission device includes a ⁇ modulator that performs ⁇ modulation on the communication signal and outputs a ⁇ modulation signal, and the ⁇ modulator includes the The ⁇ modulator has a characteristic of blocking quantization noise in a first frequency band including the frequency of a communication signal and blocking quantization noise in a second frequency band that is a frequency band different from the first frequency band.
  • a signal transmission band, and a signal elimination band further includes a band elimination filter including the second frequency band.
  • a transmission apparatus is a transmission apparatus that transmits a ⁇ modulated signal that is ⁇ modulated with respect to a communication signal, via a signal transmission path to a reception apparatus that receives the ⁇ modulation signal.
  • a ⁇ modulator that performs ⁇ modulation on a communication signal and outputs the ⁇ modulation signal; the ⁇ modulator blocks quantization noise in a first frequency band including a frequency of the communication signal; and A second frequency band having a characteristic that blocks quantization noise in a second frequency band that is different from the frequency band, and is disposed between the ⁇ modulator and the signal transmission line, and a signal rejection band is the second frequency band.
  • a band elimination filter is further included.
  • a communication system is a communication system that includes the transmission system and wirelessly transmits the communication signal, disposed between the band elimination filter and the signal transmission path, and the ⁇ modulation.
  • An adder that adds a signal and the input signal of the other frequency, and the reception device has a transmission unit that wirelessly transmits the communication signal, a passband through which the communication signal can pass, and the signal transmission
  • a first bandpass filter to which a signal transmitted by a path is provided; a second bandpass filter having a passband through which the input signal can pass and to which a signal transmitted by the signal transmission path is provided;
  • a frequency mixer to which a signal that has passed through the band-pass filter and a signal that has passed through the second band-pass filter are provided; and an output of the frequency mixer is transmitted wirelessly.
  • the input signal is a local signal used for converting the communication signal into a radio frequency by the frequency mixer.
  • FIG. 6 is a diagram illustrating an example of a communication system including a ⁇ modulator.
  • the communication system 100 includes a multicarrier type ⁇ modulator 101 having two input ports, and a first signal processing unit that applies a first transmission signal to one input port of the ⁇ modulator 101. 102, a second signal processing unit 103 that provides a second transmission signal to the other input port, a signal transmission path 104 to which an output of the ⁇ modulator 101 is provided, a first bandpass filter 105, and a second bandpass filter 106.
  • the ⁇ modulator 101 performs ⁇ modulation on a transmission signal that is an analog signal given from both signal processing units 102 and 103.
  • the output of the ⁇ modulator is transmitted through the signal transmission path 104 and distributed to both bandpass filters 105 and 106.
  • the first band pass filter 105 has a pass band that allows the first transmission signal to pass therethrough. Therefore, the first bandpass filter 105 removes quantization noise included in the output of the ⁇ modulator. Thereby, the first band pass filter 105 outputs the first transmission signal.
  • the second band pass filter 106 has a pass band that allows the second transmission signal to pass therethrough. Therefore, the second band pass filter 106 removes the quantization noise included in the output of the ⁇ modulator while allowing the second transmission signal to pass. As a result, the second band pass filter 106 outputs the second transmission signal.
  • Both transmission signals output from both band-pass filters 105 and 106 are amplified by power amplifiers 107 and 108 at the subsequent stage and transmitted as radio waves from antennas 109 and 110.
  • the transmission signal is transmitted as a ⁇ modulation signal that is a digital signal (pulse signal) output from the ⁇ modulator.
  • ⁇ modulation signal that is a digital signal (pulse signal) output from the ⁇ modulator.
  • both signal processing units 102 and 103 and the ⁇ modulator 101 are unitized as a signal processing device 111, and both bandpass filters 105 and 106, power amplifiers 107 and 108, and antennas 109 and 110 are unitized as a radio device 112. If these are connected to each other through the signal transmission path 104, the signal processing device 111 and the wireless device 112 can be arranged at different positions, and the degree of freedom of the installation mode of the communication system 100 can be ensured. it can. That is, the signal processing device 111 and the wireless device 112 constitute a transmission system that transmits a ⁇ modulation signal output from the ⁇ modulator via the signal transmission path 104.
  • the delta-sigma modulated signal output from the delta-sigma modulator suppresses quantization noise in a band near the frequency of the transmission signal in its frequency component. Therefore, the transmission signals output from both bandpass filters 105 and 106 include suppressed quantization noise. That is, the signal quality of the transmission signals output from the bandpass filters 105 and 106 is ensured by suppressing the quantization noise in the band near the frequency of the transmission signals.
  • the quantization noise in the band near the frequency of the transmission signal is suppressed by the ⁇ modulator, but not completely removed.
  • the present disclosure provides a transmission system that can more effectively suppress the influence of quantization noise on an analog signal when the analog signal is transmitted through a signal transmission path for transmitting a ⁇ modulation signal.
  • the purpose is to do.
  • a transmission system is a transmission system that transmits a ⁇ modulated signal that is ⁇ modulated with respect to a communication signal, the receiving device that receives the ⁇ modulated signal, and the ⁇ modulated signal. Is transmitted to the reception device via a signal transmission path, and the transmission device includes a ⁇ modulator that performs ⁇ modulation on the communication signal and outputs a ⁇ modulation signal, and the ⁇ modulation.
  • the device has a characteristic of blocking quantization noise in a first frequency band including the frequency of the communication signal and blocking quantization noise in a second frequency band that is a frequency band different from the first frequency band,
  • a band rejection filter is further provided between the ⁇ modulator and the signal transmission line, and a signal rejection band including the second frequency band.
  • the quantization noise in the second frequency band suppressed by the ⁇ modulator can be removed by the band elimination filter.
  • the analog signal is input to the ⁇ modulator and the output obtained by performing ⁇ modulation is compared with the case where the output is provided to the signal transmission path.
  • the influence of quantization noise on the analog signal can be more effectively suppressed.
  • the reception device includes a binarizer that binarizes the ⁇ modulation signal given through the signal transmission path.
  • a binarizer that binarizes the ⁇ modulation signal given through the signal transmission path.
  • a transmitting apparatus is a transmitting apparatus that transmits a ⁇ modulated signal that is ⁇ -modulated to a communication signal to a receiving apparatus that receives the ⁇ modulated signal via a signal transmission path.
  • a ⁇ modulator that performs ⁇ modulation on the communication signal and outputs the ⁇ modulation signal, the ⁇ modulator prevents quantization noise in a first frequency band including the frequency of the communication signal, and
  • the second frequency band which is a frequency band different from the first frequency band, has a characteristic of blocking quantization noise, is disposed between the ⁇ modulator and the signal transmission path, and a signal rejection band is the second frequency band.
  • a band elimination filter including a frequency band is further provided.
  • the transmitting apparatus having the above configuration, when an analog signal in the second frequency band is given to the signal transmission path, the analog signal is input to the ⁇ modulator and an output obtained by ⁇ modulation is given to the signal transmission path. In comparison, the influence of quantization noise on the analog signal can be more effectively suppressed.
  • a communication system is a communication system that wirelessly transmits the communication signal, including the transmission system according to (1), wherein the band elimination filter, the signal transmission path, And an adder that adds the ⁇ modulation signal and the input signal of the other frequency, and the receiving device is a transmitter that wirelessly transmits the communication signal, and the communication signal can pass through A first band pass filter having a pass band and a signal transmitted by the signal transmission path, and a signal having a pass band through which the input signal can pass and transmitted by the signal transmission path.
  • a two-band pass filter a frequency mixer to which a signal that has passed through the first band-pass filter and a signal that has passed through the second band-pass filter are provided, and the frequency mixer A transmitter that wirelessly transmits the output of the combiner, and the input signal is a local signal used to convert the communication signal into a radio frequency by the frequency mixer.
  • an input signal with higher signal quality can be transmitted to the receiving device, and the communication signal can be appropriately converted to a radio frequency.
  • FIG. 1 is a block diagram illustrating a configuration of a communication system according to an embodiment.
  • the communication system 1 is a system for performing wireless communication, and includes a signal processing device 2 and a wireless device 3.
  • the wireless device 3 has a function of transmitting and receiving wireless signals.
  • the signal processing device 2 gives a transmission signal to the wireless device 3.
  • the wireless device 3 and the signal processing device 2 are connected to each other by a signal cable 4 as a signal transmission path.
  • the signal processing device 2 provides the wireless device 3 with a transmission signal and a local signal used for frequency conversion of the transmission signal via the signal cable 4.
  • the signal processing device 2 functions as a transmission device that transmits a ⁇ modulation signal that is a digital signal (pulse signal) obtained by performing ⁇ modulation on a transmission signal (communication signal).
  • the wireless device 3 has a function as a receiving device for receiving the ⁇ modulation signal.
  • the signal cable 4 has a function as a signal transmission path through which a ⁇ modulation signal is transmitted between the signal processing device 2 and the wireless device 3. That is, the signal processing device 2, the wireless device 3, and the signal cable 4 constitute a transmission system that transmits a ⁇ modulated signal that is ⁇ modulated with respect to a transmission signal (communication signal).
  • the signal processing device 2 includes an orthogonal modulation unit 10, a modulation device 9, and an adder 13.
  • the quadrature modulation unit 10 performs quadrature modulation on a digital baseband signal (I (In-phase) signal and Q (Quadrature-phase) signal) and up-converts it to an intermediate frequency.
  • the quadrature modulation unit 10 outputs an IF signal (Intermediate Frequency signal) which is a signal having an intermediate frequency.
  • the IF signal output by the quadrature modulation unit 10 is a transmission signal that is wirelessly transmitted by the wireless device 3.
  • the IF signal (transmission signal) output from the quadrature modulation unit 10 is given to the modulation device 9.
  • the modulation device 9 performs ⁇ modulation on the transmission signal output from the quadrature modulation unit 10 and outputs a ⁇ modulation signal.
  • the modulation device 9 includes a ⁇ modulator (DSM) 11 and a first band elimination filter 12.
  • the ⁇ modulator 11 performs ⁇ modulation on the transmission signal output from the quadrature modulation unit 10 and outputs a ⁇ modulation signal including the transmission signal as a frequency component.
  • the ⁇ modulation signal output from the ⁇ modulator 11 is a digital signal (pulse signal).
  • the delta-sigma modulator 11 in this embodiment is comprised by the multicarrier type
  • FIG. 2 is a block diagram illustrating an example of the ⁇ modulator 11 of the present embodiment.
  • ⁇ modulator 11 has a first input port 16 of the first signal U 1 is input, the second signal a second input port 17 U 2 is input, and a single output port 18 for outputting a ⁇ modulation signal I have.
  • the ⁇ modulator 11 includes a plurality of loop filters (first loop filter 19 and second loop filter 20) corresponding to each of the plurality of input ports 16 and 17, an adder 21, and a quantizer 22. Yes.
  • the plurality of loop filters 19 and 20 are connected to the output side of the quantizer 22 via the first input sections 19a and 20a connected to the corresponding input ports 16 and 17 and the feedback paths 23 and 24, respectively. 2nd input part 19b, 20b.
  • Input signals U 1 and U 2 input to corresponding input ports 16 and 17 are input to the first input sections 19a and 20a.
  • the feedback signal V of the output V of the quantizer 22 is input to the second input units 19b and 20b.
  • the plurality of loop filters 19 and 20 include differentiators 19c and 20c, respectively. Connected to the differentiators 19c and 20c are first paths 19d and 20d connected to the first input sections 19a and 20a and second paths 19e and 20e connected to the second input sections 19b and 20b, respectively. Has been.
  • the differentiators 19c and 20c obtain differences U 1 ⁇ V and U 2 ⁇ V between the input signals U 1 and U 2 and the feedback signal V from the quantizer 22, respectively.
  • Differences U 1 ⁇ V and U 2 ⁇ V obtained by the differentiators 19c and 20c are input to internal filters 19f and 20f provided in the loop filters 19 and 20, respectively.
  • the transfer function of the internal filter 19f of the first loop filter 19 is expressed as L 1 (z)
  • the transfer function of the internal filter 20f of the second loop filter 20 is expressed as L 2 (z).
  • the outputs L 1 (z) (U 1 (z) ⁇ V (z)) and L 2 (z) (U 2 (z) ⁇ V (z)) of the internal filters 19f and 20f are respectively connected to the loop filters 19, 20 is provided to adders 19g and 20g.
  • Feed forward paths 19h and 20h for inputting the input signals U 1 and U 2 input to the first input units 19a and 20a to the adders 19g and 20g are connected to the adders 19g and 20g, respectively. Therefore, each adder 19g, 20g has the input signals U 1 , U 2 and the outputs L 1 (z) (U 1 (z) ⁇ V (z)), L 2 (z) ( U 2 and (z) -V (z)) , is added to.
  • Outputs of the adders 19g and 20g (outputs of the loop filters 19 and 20) Y 1 and Y 2 are added by the adder 21.
  • the output Y of the adder 21 is given to the quantizer 22.
  • the quantizer 22 of this embodiment is a two-level quantizer, and outputs a 1-bit pulse train as a quantized signal ( ⁇ modulation signal) V.
  • This quantized signal V becomes an output signal of the ⁇ modulator 11.
  • the output signal V is given to the loop filters 19 and 20 via the feedback paths 23 and 24.
  • Equation (1) STF i (z) is the i-th signal transfer function for the i-th input signal U i (z), and NTF (z) is the noise transfer function for the entire ⁇ modulator 11.
  • E (z) is a noise transfer function.
  • Internal filter 19f of the first loop filter 19 has a transfer function L 1 (z) represented by using the first noise transfer function NTF 1 (z).
  • the first noise transfer function NTF 1 (z) is set to have a characteristic (band stop characteristic) that suppresses quantization noise in a band near the frequency of the first signal U 1 input to the first loop filter 19. The That is, the center frequency of the band (quantization noise stop band) in which the quantization noise in the first noise transfer function NTF 1 (z) can be suppressed is the frequency of the first signal U 1 .
  • the internal filter 20f of the second loop filter 20 has a transfer function L 2 (z) indicated by using the second noise transfer function NTF 2 (z).
  • the second noise transfer function NTF 2 (z) is set to have a characteristic (band stop characteristic) for suppressing quantization noise in a band near the frequency of the second signal U 2 input to the second loop filter 20.
  • the center frequency of the quantization noise stop band in the second noise transfer function NTF 2 (z) is the frequency of the second signal U 2 .
  • the ⁇ modulator 11 having the above configuration simultaneously converts the first signal U 1 input to the first input port 16 and the second signal U 2 input to the second input port 17 into a single output signal V ( z) that is included in the ⁇ modulation signal.
  • a transmission signal output from the quadrature modulation unit 10 as the first signal U 1 is given to the ⁇ modulator 11.
  • the first noise transfer function NTF 1 (z) of the first loop filter 19 is set so that the center frequency of the quantization noise stop band becomes the frequency f 1 of the transmission signal.
  • the signal of the second signal U 2 is not input to the ⁇ modulator 11.
  • the second noise transfer function NTF 2 (z) of the second loop filter 20 has a frequency at which the center frequency of the quantization noise stop band is different from the frequency f 1 of the transmission signal, and the frequency f 2 of the local signal described later. Is set to be
  • FIG. 3 is a diagram illustrating an example of a power spectrum of the output by the ⁇ modulator 11 of the present embodiment.
  • output by .DELTA..SIGMA modulator 11 (.DELTA..SIGMA modulated signal)
  • the band B 2 of band B 1 and the frequency f 2 of the local signal and the center frequency is a center frequency f 1 of the transmission signal .
  • the quantization noise is suppressed (noise shaping).
  • Band B 1 and band B 2 are different frequency bands.
  • the center frequency of the quantization noise stop band in the first noise transfer function NTF 1 (z) is set to be the frequency f 1 of the transmission signal.
  • the center frequency of the quantization noise stop band in the second noise transfer function NTF 2 (z) is set to be the frequency f 2 of the local signal.
  • .DELTA..SIGMA modulator 11 is configured to prevent the quantization noise of the band B 1 includes a frequency f 1 of the transmission signal (first frequency band), band B 2 (second including frequency f 2 of the local signal (Frequency band) to prevent quantization noise.
  • the output by the ⁇ modulator 11 has a transmission signal in a band B 1.
  • the signal of the second signal U 2 in band B 2 is not input to the ⁇ modulator 11, output by the ⁇ modulator 11 has no signal in the band B 2.
  • the transmission signal output from the quadrature modulation unit 10 is given to the first input port 16 of the ⁇ modulator 11.
  • nothing is input to the second input port 17 of the ⁇ modulator 11.
  • the ⁇ modulator 11 outputs a ⁇ modulation signal from the output port 18.
  • the ⁇ modulation signal output from the ⁇ modulator 11 is given to the first band elimination filter 12.
  • the first band elimination filter 12 is connected between the ⁇ modulator 11 and the signal cable 4 and connected between the ⁇ modulator 11 and the adder 13 and includes a signal including the frequency f 2 of the local signal. It has a removal band.
  • the signal removal band of the first band elimination filter 12 of the present embodiment is set to a frequency band including the band B 2 as a frequency band including the frequency f 2 of the local signal, for example.
  • the first band elimination filter 12 the ⁇ modulated signal from the ⁇ modulator 11 is given, among the ⁇ modulated signal to remove quantization noise in the band B 2.
  • Figure 4 is an enlarged view of a portion of the band B 2 at the output of the first band elimination filter 12.
  • the broken line H indicates the noise profile of the band B 2 in the ⁇ modulation signal output from the ⁇ modulator 11.
  • a solid line J indicates a noise profile of the band B 2 in the ⁇ modulation signal after passing through the first band elimination filter 12.
  • Quantization noise band B 2 has been suppressed compared to the quantization noise of the other bands, still present enough to be further suppressed. Therefore, .DELTA..SIGMA modulated signal outputted from the .DELTA..SIGMA modulator 11, passes through the first band elimination filter 12, as shown in FIG. 4, the level of quantization noise in the band B 2 from a broken line H to the solid line J descend. Thus, the first band elimination filter 12 can further reduce the level of the quantization noise in the band B 2 where the quantization noise is suppressed in the ⁇ modulation signal.
  • modulation device 9 has ⁇ modulator 11 that performs ⁇ modulation on a transmission signal, and a signal removal band that includes the output of ⁇ modulator 11 and includes the frequency of the local signal.
  • a first band elimination filter 12 is provided. The modulation device 9 outputs a ⁇ modulation signal after passing through the first band elimination filter 12.
  • the ⁇ modulation signal that has passed through the first band elimination filter 12 is supplied to the adder 13.
  • the adder 13 is supplied with a local signal (local oscillation signal) generated by the local signal oscillator 30.
  • Local signal oscillator 30 oscillates a local signal of frequency f 2 is a radio frequency.
  • the local signal oscillated by the local signal oscillator 30 is a signal used to convert a transmission signal, which is an IF signal, into a radio frequency.
  • the local signal oscillator 30 oscillates a radio frequency sine wave (analog signal) as a local signal.
  • a first band pass filter 31 is connected between the local signal oscillator 30 and the adder 13.
  • the first band pass filter 31 is set so that the signal pass band includes the frequency f 2 of the local signal and the transmission signal is blocked. Therefore, when a local signal is given from the local signal oscillator 30, the first band pass filter 31 passes the local signal and gives the local signal to the adder 13.
  • the adder 13 adds the ⁇ modulation signal output from the modulation device 9 and the local signal output from the local signal oscillator 30. A signal obtained by adding the ⁇ modulation signal and the local signal, which is the output of the adder 13, is given to the signal cable 4 through the connector 33.
  • the connector 33 is exposed outside the housing 34 of the signal processing device 2.
  • the connector 33 connects the signal cable 4 and the adder 13 by inserting one end of the signal cable 4.
  • the housing 34 of the signal processing device 2 accommodates the quadrature modulation unit 10, the modulation device 9, the adder 13, and the like inside.
  • the other end of the signal cable 4 is connected to the wireless device 3.
  • the output of the adder 13 is transmitted to the wireless device 3 via the signal cable 4.
  • the ⁇ modulation signal output from the ⁇ modulator 11 includes quantization noise over a wide band as shown in FIG. For this reason, the local signal added to the ⁇ modulation signal by the adder 13 may be superposed on the quantization noise included in the ⁇ modulation signal.
  • the ⁇ modulated signal output from the ⁇ modulator 11 has suppressed the quantization noise in the band B 2 including the frequency f 2 of the local signal (see FIG. 3). Furthermore, the level B 2 quantization noise suppressed by the ⁇ modulator 11 can be removed by the first band elimination filter 12 by reducing its level (see FIG. 4).
  • the influence of quantization noise can be more effectively suppressed. That is, the influence of the quantization noise suppressed by the ⁇ modulator 11 can be suppressed by the first band elimination filter 12. As a result, it is possible to effectively suppress the deterioration of the signal quality of the local signal obtained through the signal cable 4.
  • ⁇ modulator 11 of the present embodiment is a multi-carrier type ⁇ modulator capable of inputting signals from the two input ports, one for inputting a transmission signal as a first signal U 1, second signal U By not inputting a signal as 2 , a band B 2 in which quantization noise is suppressed but there is no signal component to be output can be provided in the ⁇ modulation signal.
  • the band B 2 in which the quantization noise is suppressed is provided in a part of the band of the ⁇ modulation signal, and the band B 2 is used for signal transmission in the signal cable 4.
  • the analog signal can be transmitted by the signal cable 4.
  • the first band elimination filter 12 included in the modulation device 9 is a band B in which quantization noise is suppressed in the ⁇ modulation signal output from the ⁇ modulator 11. 2 is further reduced, so that the signal quality of the local signal of the frequency f 2 transmitted to the signal cable 4 using the band B 2 can be improved.
  • the ⁇ modulation signal is transmitted between the signal processing device 2 constituting the transmission system that transmits the ⁇ modulation signal obtained by performing ⁇ modulation on the transmission signal and the radio device 3.
  • the local signal which is an analog signal can be appropriately transmitted with high signal quality.
  • the other end of the signal cable 4 is connected to the connector 44 of the wireless device 3.
  • the wireless device 3 includes a second band elimination filter 40, a binarizer 41, a second band pass filter 42, and a third band pass filter 43.
  • the output of the adder 13 given to the signal cable 4 is given to the second band elimination filter 40 and the third band pass filter 43 through the connector 44.
  • the connector 44 is provided so as to be exposed outside the housing 45 of the wireless device 3.
  • the connector 44 connects the signal cable 4 to the second band elimination filter 40 and the third band pass filter 43 by inserting the other end of the signal cable 4.
  • the signal cable 4 connects the signal processing device 2 and the wireless device 3, and transmits the output of the adder 13 to the wireless device 3.
  • housing 45 of the wireless device 3 includes the second band elimination filter 40, the binarizer 41, the second bandpass filter 42, the third bandpass filter 43, and the wireless device 3 described later.
  • the functional part is housed inside.
  • the second band elimination filter 40 has a signal removal band including the band B 2 (FIGS. 3 and 4) as a frequency band including the frequency f 2 of the local signal. .
  • the output of the adder 13 is the sum of the ⁇ modulation signal from the modulation device 9 ( ⁇ modulator 11) and the local signal from the local signal oscillator 30.
  • the second band elimination filter 40, the output of the adder 13 is given, among the output removes the local signal contained in the band B 2. Thereby, it is possible to prevent the influence caused by the local signal from occurring in the processing subsequent to the second band elimination filter 40.
  • the second band elimination filter 40 removes the local signal from the output of the adder 13 and outputs a ⁇ modulation signal from the modulation device 9 ( ⁇ modulator 11).
  • the ⁇ modulation signal output from the second band elimination filter 40 is supplied to the binarizer 41.
  • the binarizer 41 is constituted by a comparator or the like, binarizes the ⁇ modulation signal given by transmitting the signal cable 4 from the signal processing device 2, and outputs a binarized ⁇ modulation signal.
  • the ⁇ modulation signal transmitted to the wireless device 3 through the signal cable 4 is attenuated while being transmitted as compared to when it is output from the modulation device 9.
  • the binarizer 41 binarizes the attenuated ⁇ modulation signal. Even for an attenuated ⁇ modulation signal, the ⁇ modulation signal that is a binary pulse signal is binarized to restore the ⁇ modulation signal before attenuation. As a result, the binarizer 41 can output a ⁇ modulation signal that approximates the ⁇ modulation signal before attenuation, and can obtain a ⁇ modulation signal in which the influence of attenuation is mitigated.
  • the ⁇ modulation signal output from the binarizer 41 is given to the second band pass filter 42.
  • the second band pass filter 42 has a pass band that allows transmission signals that are IF signals to pass therethrough. Thereby, the second band pass filter 42 can remove the quantization noise existing outside the band of the transmission signal in the ⁇ modulation signal and pass the transmission signal. Therefore, the second band pass filter 42 to which the ⁇ modulation signal is given outputs a transmission signal.
  • An output terminal 50 is connected between the binarizer 41 and the second band pass filter 42.
  • the output terminal 50 is provided exposed from the outside of the housing 45.
  • a ⁇ modulation signal output from the binarizer 41 is supplied to the output terminal 50.
  • the output terminal 50 outputs a ⁇ modulation signal output from the binarizer 41. Therefore, by connecting a device for measuring a signal to the output terminal 50 and measuring the output signal, the ⁇ modulation signal output from the binarizer 41 can be confirmed. Thereby, it is possible to confirm whether or not the ⁇ modulation signal from the signal processing device 2 is normally transmitted to the wireless device 3.
  • the third band pass filter 43 has a pass band that allows the local signal to pass therethrough. Thereby, the third band pass filter 43 can remove the quantization noise existing outside the band of the local signal in the ⁇ modulation signal and pass the local signal. Therefore, when the output of the adder 13 is given, the third band pass filter 43 outputs a local signal.
  • the output of the second band pass filter 42 and the output of the third band pass filter 43 are given to a frequency converter (frequency mixer) 49 connected to the subsequent stage.
  • the transmission signal which is an IF signal output from the second bandpass filter 42, is given to the frequency converter 49 to be converted into a radio frequency signal (RF signal) having a frequency f 1 + f 2 .
  • a power amplifier 46 and an antenna 48 are connected to the subsequent stage of the frequency converter 49.
  • the RF signal frequency-converted by the frequency converter 49 is amplified by the power amplifier 46 and the antenna 48 is supplied to the transmission signal output from the second bandpass filter 42.
  • the transmission signal given to the antenna 48 is radiated and transmitted to the space as a radio signal.
  • the ⁇ modulation signal that is disposed between the first band elimination filter 12 and the signal cable 4 and is output by the modulation device 9 ( ⁇ modulator 11), and the frequency f 2 ( An adder 13 that adds a local signal (an input signal) of another frequency) is provided, and the wireless device 3 has a pass band through which a transmission signal of the frequency f 1 can pass and is transmitted by the signal cable 4.
  • a second band-pass filter 42 (first band-pass filter) to which an output of the adder 13 is given, and a adder 13 having a pass band through which a local signal of frequency f 2 can pass and transmitted by the signal cable 4
  • a third bandpass filter 43 (second bandpass filter), a signal that has passed through the second bandpass filter 42, and a third bandpass filter.
  • a frequency converter 49 a signal which has passed through the filter 43 is provided, and a power amplifier 46 and antenna 48 of the output of the frequency converter 49 as a transmission unit that wirelessly transmits the.
  • the local signal is added by the adder 13 disposed between the first band elimination filter 12 and the signal cable 4, the power of the local signal is made relatively to the power of the ⁇ modulation signal. It can be set large, and a local signal with higher signal quality can be transmitted to the radio apparatus 3. As a result, the transmission signal can be appropriately converted to a radio frequency.
  • FIG. 5 is a block diagram illustrating a configuration of a communication system according to a modification. This modification is different from the above embodiment in that the wireless device 3 does not include the second band elimination filter 40 and the binarizer 41.
  • Other configurations of the second bandpass filter 42, the third bandpass filter 43, the frequency converter 49, the power amplifier 46, and the antenna 48 are the same as those in the above embodiment.
  • the output of the adder 13 is given to the second band-pass filter 42 and the third band-pass filter 43. Accordingly, the second band pass filter 42 outputs a transmission signal that is an IF signal, and the third band pass filter 43 outputs a local signal.
  • the transmission signal output from the second band-pass filter 42 is supplied to the frequency converter 49 and thereby converted into a radio frequency signal (RF signal) having a frequency f 1 + f 2 .
  • the case where there is one wireless device 3 is exemplified.
  • the signal processing device 2 includes a distributor and is configured as multiple outputs, When a large number of wireless devices 3 are provided, the number of wireless devices 3 corresponding to the output can be connected.
  • the 2-input ⁇ modulator 11 is used has been illustrated in the above embodiment, a multi-input ⁇ modulator 11 such as a 3-input or 4-input may be used.
  • a multi-input ⁇ modulator 11 such as a 3-input or 4-input may be used.
  • three-input ⁇ modulator 11 is used, three bands where quantization noise is suppressed can be provided in the band of the ⁇ modulation signal.
  • the signal cable 4 can be used to provide two more signals in addition to the local signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Transmitters (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

送信信号に対してΔΣ変調されたΔΣ変調信号を受信する無線装置3と、前記ΔΣ変調信号を、信号ケーブル4を介して無線装置3へ送信する信号処理装置2と、を備えている。信号処理装置2は、前記送信信号にΔΣ変調を行って前記ΔΣ変調信号を出力するΔΣ変調器11を備えている。ΔΣ変調器11は、前記送信信号の周波数を含む第1周波数帯域の量子化雑音を阻止するとともに、前記第1周波数帯域と異なる周波数帯域である第2周波数帯域の量子化雑音を阻止する特性を有し、ΔΣ変調器11と信号ケーブル4との間に配置され、信号除去帯域が前記第2周波数帯域を含む第1バンドエリミネーションフィルタ12をさらに備えている。

Description

送信システム、送信装置、及び通信システム
 本発明は、送信システム、送信装置、及び通信システムに関する。
 本出願は、2016年4月25日出願の日本出願第2016-087139号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 従来から、アナログ送信信号にΔΣ変調を行った信号を無線送信することが行われている。
 このような無線送信に用いられるΔΣ変調器を備えたシステムでは、2つの入力ポートから信号を入力することができるマルチキャリア型のΔΣ変調器を用いられることがある(例えば、特許文献1参照)。
特開2014-165846号公報
 一実施形態である送信システムは、通信信号に対してΔΣ変調されたΔΣ変調信号の送信を行う送信システムであって、前記ΔΣ変調信号を受信する受信装置と、前記ΔΣ変調信号を、信号伝送路を介して前記受信装置へ送信する送信装置と、を備え、前記送信装置は、前記通信信号にΔΣ変調を行ってΔΣ変調信号を出力するΔΣ変調器を備え、前記ΔΣ変調器は、前記通信信号の周波数を含む第1周波数帯域の量子化雑音を阻止するとともに、前記第1周波数帯域と異なる周波数帯域である第2周波数帯域の量子化雑音を阻止する特性を有し、前記ΔΣ変調器と前記信号伝送路との間に配置され、信号除去帯域が前記第2周波数帯域を含む帯域除去フィルタをさらに備えている。
 また、一実施形態である送信装置は、通信信号に対してΔΣ変調されたΔΣ変調信号を、当該ΔΣ変調信号を受信する受信装置へ信号伝送路を介して送信する送信装置であって、前記通信信号にΔΣ変調を行って前記ΔΣ変調信号を出力するΔΣ変調器を備え、前記ΔΣ変調器は、前記通信信号の周波数を含む第1周波数帯域の量子化雑音を阻止するとともに、前記第1周波数帯域と異なる周波数帯域である第2周波数帯域の量子化雑音を阻止する特性を有し、前記ΔΣ変調器と前記信号伝送路との間に配置され、信号除去帯域が前記第2周波数帯域を含む帯域除去フィルタをさらに備えている。
 また、一実施形態である通信システムは、上記送信システムを備えた、前記通信信号を無線送信する通信システムであって、前記帯域除去フィルタと前記信号伝送路との間に配置され、前記ΔΣ変調信号と、前記他の周波数の入力信号とを加算する加算器を備え、前記受信装置は、前記通信信号を無線送信する送信部と、前記通信信号が通過可能な通過帯域を有するとともに前記信号伝送路によって伝送される信号が与えられる第1帯域通過フィルタと、前記入力信号が通過可能な通過帯域を有するとともに前記信号伝送路によって伝送される信号が与えられる第2帯域通過フィルタと、前記第1帯域通過フィルタを通過した信号及び前記第2帯域通過フィルタを通過した信号が与えられる周波数混合器と、前記周波数混合器の出力を無線送信する送信部と、を備え、前記入力信号は、前記周波数混合器によって前記通信信号を無線周波数に変換するために用いられるローカル信号である。
一実施形態による通信システムの構成を示すブロック図である。 本実施形態のΔΣ変調器の一例を示すブロック図である。 本実施形態のΔΣ変調器による出力のパワースペクトラムの一例を示す図である。 第1バンドエリミネーションフィルタの出力における帯域Bの部分を拡大した拡大図である。 変形例に係る通信システムの構成を示すブロック図である。 ΔΣ変調器を備えた通信システムの一例を示す図である。
[本開示が解決しようとする課題]
 図6は、ΔΣ変調器を備えた通信システムの一例を示す図である。図6に示すように、この通信システム100は、2つの入力ポートを有するマルチキャリア型のΔΣ変調器101と、ΔΣ変調器101の一方の入力ポートに第1送信信号を与える第1信号処理部102と、他方の入力ポートに第2送信信号を与える第2信号処理部103と、ΔΣ変調器101の出力が与えられる信号伝送路104と、第1バンドパスフィルタ105と、第2バンドパスフィルタ106とを備えている。
 ΔΣ変調器101は、両信号処理部102、103から与えられるアナログ信号である送信信号にΔΣ変調を行う。ΔΣ変調器の出力は、信号伝送路104を通じて伝送され両バンドパスフィルタ105、106に分配される。
 第1バンドパスフィルタ105は、前記第1送信信号を通過させる通過帯域を有している。よって、第1バンドパスフィルタ105は、ΔΣ変調器の出力に含まれている量子化雑音を除去する。これによって、第1バンドパスフィルタ105は第1送信信号を出力する。
 第2バンドパスフィルタ106は、前記第2送信信号を通過させる通過帯域を有している。よって、第2バンドパスフィルタ106は、前記第2送信信号を通過させつつΔΣ変調器の出力含まれている量子化雑音を除去する。これによって、第2バンドパスフィルタ106は第2送信信号を出力する。
 両バンドパスフィルタ105、106から出力された両送信信号は、後段のパワーアンプ107、108によって増幅され、アンテナ109,110から無線波として送信される。
 図6の通信システム100では、ΔΣ変調器101と両バンドパスフィルタ105、106との間においては、送信信号をΔΣ変調器が出力したデジタル信号(パルス信号)であるΔΣ変調信号として伝送することができる。このため、ΔΣ変調器101と両バンドパスフィルタ105、106とを繋ぐ信号伝送路104を比較的長尺にしたとしても信号の減衰を抑制することができる。
 そこで、両信号処理部102、103、及びΔΣ変調器101を信号処理装置111としてユニット化し、両バンドパスフィルタ105、106、パワーアンプ107,108、及びアンテナ109、110を無線装置112としてユニット化し、これらを互いに信号伝送路104で繋げば、信号処理装置111と、無線装置112とを互いに別々の位置に配置可能とすることができ、通信システム100の設置態様の自由度を確保することができる。
 つまり、信号処理装置111と、無線装置112とは、信号伝送路104を介してΔΣ変調器が出力するΔΣ変調信号の送信を行う送信システムを構成している。
 ΔΣ変調信号の送信を行うシステムにおいて、ΔΣ変調器が出力するΔΣ変調信号は、その周波数成分において送信信号の周波数近傍の帯域における量子化雑音が抑圧されている。よって、両バンドパスフィルタ105、106が出力する送信信号は、抑圧された量子化雑音を含んでいる。
 つまり、バンドパスフィルタ105、106から出力される送信信号は、送信信号の周波数近傍の帯域における量子化雑音が抑圧されることによって、その信号品質が確保されている。
 言い換えると、送信信号の周波数近傍の帯域における量子化雑音はΔΣ変調器によって抑圧されてはいるが、完全に除去されてはいない。
 よって、例えば、ΔΣ変調器の一方の入力ポートに送信信号を入力し、他方の入力ポートに前記送信信号を無線周波数に変換するために用いるアナログ信号であるローカル信号を入力して送信する場合、ΔΣ変調信号を受信する無線装置112では、ローカル信号を通過させる通過帯域を有するバンドパスフィルタによって当該ΔΣ変調信号に含まれるローカル信号の帯域外の量子化雑音が除去される。
 しかし、ローカル信号の帯域には抑圧された量子化雑音が存在しているため、前記バンドパスフィルタを通過した信号には、ローカル信号と、抑圧された量子化雑音とが含まれている。このため、ローカル信号の信号品質については、抑圧された量子化雑音の存在によって、無線送信用のアナログ信号として必要な信号品質を確保することが困難な場合があった。
 そこで、本開示では、ΔΣ変調信号を伝送するための信号伝送路にアナログ信号を伝送させたときに、当該アナログ信号に対する量子化雑音の影響をより効果的に抑制することができる送信システムを提供することを目的とする。
[本開示の効果]
 本開示によれば、ΔΣ変調信号を伝送するための信号伝送路にアナログ信号を伝送させたときに、当該アナログ信号に対する量子化雑音の影響をより効果的に抑制することができる。
[実施形態の説明]
 最初に実施形態の内容を列記して説明する。
(1)一実施形態である送信システムは、通通信信号に対してΔΣ変調されたΔΣ変調信号の送信を行う送信システムであって、前記ΔΣ変調信号を受信する受信装置と、前記ΔΣ変調信号を、信号伝送路を介して前記受信装置へ送信する送信装置と、を備え、前記送信装置は、前記通信信号にΔΣ変調を行ってΔΣ変調信号を出力するΔΣ変調器を備え、前記ΔΣ変調器は、前記通信信号の周波数を含む第1周波数帯域の量子化雑音を阻止するとともに、前記第1周波数帯域と異なる周波数帯域である第2周波数帯域の量子化雑音を阻止する特性を有し、前記ΔΣ変調器と前記信号伝送路との間に配置され、信号除去帯域が前記第2周波数帯域を含む帯域除去フィルタをさらに備えている。
 上記構成の送信システムによれば、ΔΣ変調器によって抑圧された第2周波数帯域の量子化雑音を、帯域除去フィルタによって除去することができる。
 これにより、信号伝送路に第2周波数帯域のアナログ信号を伝送させれば、前記アナログ信号をΔΣ変調器に入力しΔΣ変調することで得た出力を信号伝送路に与える場合と比較して当該アナログ信号に対する量子化雑音の影響をより効果的に抑制することができる。
(2)上記送信システムにおいて、前記受信装置は、前記信号伝送路を通じて与えられる前記ΔΣ変調信号を2値化する2値化器を備えていることが好ましい。
 この場合、信号伝送路を通じて受信装置に与えられるΔΣ変調信号が伝送される間に減衰したとしても、2値のパルス信号であるΔΣ変調信号を2値化器によって2値化することで、減衰の影響が緩和されたΔΣ変調信号を得ることができる。
(3)また、一実施形態である送信装置は、通信信号に対してΔΣ変調されたΔΣ変調信号を、当該ΔΣ変調信号を受信する受信装置へ信号伝送路を介して送信する送信装置であって、前記通信信号にΔΣ変調を行って前記ΔΣ変調信号を出力するΔΣ変調器を備え、前記ΔΣ変調器は、前記通信信号の周波数を含む第1周波数帯域の量子化雑音を阻止するとともに、前記第1周波数帯域と異なる周波数帯域である第2周波数帯域の量子化雑音を阻止する特性を有し、前記ΔΣ変調器と前記信号伝送路との間に配置され、信号除去帯域が前記第2周波数帯域を含む帯域除去フィルタをさらに備えている。
 上記構成の送信装置によれば、信号伝送路に第2周波数帯域のアナログ信号を与えれば、前記アナログ信号をΔΣ変調器に入力しΔΣ変調することで得た出力を信号伝送路に与える場合と比較して当該アナログ信号に対する量子化雑音の影響をより効果的に抑制することができる。
(4)また、一実施形態である通信システムは、上記(1)に記載の送信システムを備えた、前記通信信号を無線送信する通信システムであって、前記帯域除去フィルタと前記信号伝送路との間に配置され、前記ΔΣ変調信号と、前記他の周波数の入力信号とを加算する加算器を備え、前記受信装置は、前記通信信号を無線送信する送信部と、前記通信信号が通過可能な通過帯域を有するとともに前記信号伝送路によって伝送される信号が与えられる第1帯域通過フィルタと、前記入力信号が通過可能な通過帯域を有するとともに前記信号伝送路によって伝送される信号が与えられる第2帯域通過フィルタと、前記第1帯域通過フィルタを通過した信号及び前記第2帯域通過フィルタを通過した信号が与えられる周波数混合器と、前記周波数混合器の出力を無線送信する送信部と、を備え、前記入力信号は、前記周波数混合器によって前記通信信号を無線周波数に変換するために用いられるローカル信号である。
 上記構成の通信システムによれば、より信号品質の高い入力信号を受信装置に伝送することができ、通信信号の無線周波数への変換を適切に行うことができる。
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する各実施形態の少なくとも一部を任意に組み合わせてもよい。
 図1は、一実施形態による通信システムの構成を示すブロック図である。
 この通信システム1は、無線通信を行うためのシステムであり、信号処理装置2と、無線装置3とを備えている。
 無線装置3は、無線信号の送受信を行う機能を有している。
 信号処理装置2は、送信信号を無線装置3に与える。
 無線装置3と、信号処理装置2とは、信号伝送路としての信号ケーブル4によって互いに接続されている。信号処理装置2は、信号ケーブル4を介して、送信信号や、送信信号の周波数変換に用いるローカル信号を無線装置3に与える。
 ここで、信号処理装置2は、後述するように、送信信号(通信信号)に対してΔΣ変調を行って得たデジタル信号(パルス信号)であるΔΣ変調信号を送信する送信装置としての機能を有し、無線装置3は前記ΔΣ変調信号を受信する受信装置としての機能を有している。また、信号ケーブル4は、信号処理装置2と無線装置3との間でΔΣ変調信号が伝送される信号伝送路としての機能を有している。つまり、信号処理装置2と、無線装置3と、信号ケーブル4とは、送信信号(通信信号)に対してΔΣ変調されたΔΣ変調信号の送信を行う送信システムを構成している。
 信号処理装置2は、直交変調部10と、変調装置9と、加算器13とを備えている。
 直交変調部10は、デジタルのベースバンド信号(I(In-phase)信号及びQ(Quadrature-phase)信号)に対して、直交変調を行うとともに、中間周波数にアップコンバートする。直交変調部10は、中間周波数の信号であるIF信号(Intermediate Fequency信号)を出力する。この直交変調部10が出力するIF信号は、無線装置3によって無線送信される送信信号である。
 直交変調部10が出力するIF信号(送信信号)は、変調装置9に与えられる。
 変調装置9は、直交変調部10が出力する送信信号に対してΔΣ変調を行い、ΔΣ変調信号を出力する。変調装置9は、ΔΣ変調器(DSM)11と、第1バンドエリミネーションフィルタ12とを備えている。
 ΔΣ変調器11は、直交変調部10が出力する送信信号に対してΔΣ変調を行い、周波数成分として送信信号を含むΔΣ変調信号を出力する。ΔΣ変調器11が出力するΔΣ変調信号はデジタル信号(パルス信号)である。
 ここで本実施形態におけるΔΣ変調器11は、2つの入力ポートから信号を入力することができるマルチキャリア型のΔΣ変調器によって構成されている。
 図2は、本実施形態のΔΣ変調器11の一例を示すブロック図である。
 ΔΣ変調器11は、第1信号Uが入力される第1入力ポート16、第2信号Uが入力される第2入力ポート17、及びΔΣ変調信号を出力する単一の出力ポート18を備えている。ΔΣ変調器11は、複数の入力ポート16,17それぞれに対応する複数のループフィルタ(第1ループフィルタ19、第2ループフィルタ20)と、加算器21と、量子化器22と、を備えている。
 複数のループフィルタ19,20は、それぞれ、対応する入力ポート16,17に接続された第1入力部19a,20aと、フィードバック経路23,24を介して量子化器22の出力側に接続された第2入力部19b,20bと、を備えている。
 第1入力部19a,20aには、対応する入力ポート16,17に入力された入力信号U,Uが入力される。第2入力部19b,20bには、量子化器22の出力Vのフィードバック信号Vが入力される。
 複数のループフィルタ19,20は、それぞれ、差分器19c,20cを備えている。差分器19c,20cには、それぞれ、第1入力部19a,20aに接続された第1経路19d,20dと、第2入力部19b,20bに接続された第2経路19e,20eと、が接続されている。差分器19c,20cは、それぞれ、入力信号U,Uと、量子化器22からのフィードバック信号Vとの差分U-V,U-Vを求める。
 差分器19c,20cによって求められた差分U-V,U-Vは、各ループフィルタ19,20に設けられた内部フィルタ19f,20fに入力される。なお、第1ループフィルタ19の内部フィルタ19fの伝達関数をL(z)と表現し、第2ループフィルタ20の内部フィルタ20fの伝達関数をL(z)と表現する。
 各内部フィルタ19f,20fの出力L(z)(U(z)-V(z)),L(z)(U(z)-V(z))は、各ループフィルタ19,20に設けられた加算器19g,20gに与えられる。
 各加算器19g,20gには、第1入力部19a,20aに入力される入力信号U,Uを加算器19g,20gに入力させるためのフィードフォワード経路19h,20hが接続されている。したがって、各加算器19g,20gは、入力信号U,Uと、内部フィルタ19f,20fの出力L(z)(U(z)-V(z)),L(z)(U(z)-V(z))と、を加算する。
 各加算器19g,20gの出力(各ループフィルタ19,20の出力)Y,Yは、加算器21によって加算される。
 加算器21の出力Yは、量子化器22に与えられる。本実施形態の量子化器22は、2レベル量子化器であり、1bitのパルス列を量子化信号(ΔΣ変調信号)Vとして出力する。この量子化信号VがΔΣ変調器11の出力信号となる。なお、出力信号Vは、フィードバック経路23,24を介して各ループフィルタ19,20に与えられる。
 ΔΣ変調器11の出力Vは、下記の式(1)のように表される(式(1)においてN=2の場合)。式(1)において、STF(z)は第i入力信号U(z)についての第i信号伝達関数であり、NTF(z)は、ΔΣ変調器11全体での雑音伝達関数であり、E(z)は雑音伝達関数である。
Figure JPOXMLDOC01-appb-M000001
ここで、
Figure JPOXMLDOC01-appb-M000002
 第1ループフィルタ19の内部フィルタ19fは、第1雑音伝達関数NTF(z)を用いて示される伝達関数L(z)を持つ。第1雑音伝達関数NTF(z)は、第1ループフィルタ19に入力される第1信号Uの周波数近傍の帯域における量子化雑音を抑制する特性(バンドストップ特性)を有するように設定される。つまり、第1雑音伝達関数NTF(z)における量子化雑音を抑制しうる帯域(量子化雑音阻止帯域)の中心周波数は、第1信号Uの周波数となる。
 第2ループフィルタ20の内部フィルタ20fは、第2雑音伝達関数NTF(z)を用いて示される伝達関数L(z)を持つ。第2雑音伝達関数NTF(z)は、第2ループフィルタ20に入力される第2信号Uの周波数近傍の帯域における量子化雑音を抑制する特性(バンドストップ特性)を有するように設定される。つまり、第2雑音伝達関数NTF(z)における量子化雑音阻止帯域の中心周波数は、第2信号Uの周波数となる。
 上記構成のΔΣ変調器11は、第1入力ポート16に入力された第1信号Uと、第2入力ポート17に入力された第2信号Uとを、同時に単一の出力信号V(z)であるΔΣ変調信号に含めて出力することができる。
 本実施形態では、後述するように、第1信号Uとして直交変調部10から出力される送信信号がΔΣ変調器11に与えられる。このため、第1ループフィルタ19の第1雑音伝達関数NTF(z)は、量子化雑音阻止帯域の中心周波数が送信信号の周波数fとなるように設定される。
 一方、第2信号Uとしての信号はΔΣ変調器11に入力されない。ただし、第2ループフィルタ20の第2雑音伝達関数NTF(z)は、量子化雑音阻止帯域の中心周波数が送信信号の周波数fとは異なる周波数であって後述するローカル信号の周波数fとなるように設定される。
 図3は、本実施形態のΔΣ変調器11による出力のパワースペクトラムの一例を示す図である。
 図3に示すように、ΔΣ変調器11による出力(ΔΣ変調信号)は、送信信号の周波数fを中心周波数とする帯域B、及びローカル信号の周波数fを中心周波数とする帯域Bにおいて、量子化雑音が抑圧(ノイズシェイピング)されている。帯域Bと、帯域Bとは、互いに異なる周波数帯域とされている。
 上述のように、第1雑音伝達関数NTF(z)における量子化雑音阻止帯域の中心周波数は、送信信号の周波数fとなるように設定されている。また、第2雑音伝達関数NTF(z)における量子化雑音阻止帯域の中心周波数は、ローカル信号の周波数fとなるように設定されている。
 よって、図3に示すように、ΔΣ変調器11による出力には、送信信号の周波数fを中心周波数とする帯域B、及びローカル信号の周波数fを中心周波数とする帯域Bの2箇所に量子化雑音が抑圧されている帯域が表れる。
 このように、ΔΣ変調器11は、送信信号の周波数fを含む帯域B(第1周波数帯域)の量子化雑音を阻止するとともに、ローカル信号の周波数fを含む帯域B(第2周波数帯域)の量子化雑音を阻止する特性を有している。
 なお、ΔΣ変調器11による出力は、帯域Bにおいては送信信号を有している。一方、帯域Bにおいては第2信号Uとしての信号がΔΣ変調器11に入力されないので、ΔΣ変調器11による出力は、帯域Bにおいては信号を有していない。
 図1に戻って、ΔΣ変調器11の第1入力ポート16には直交変調部10が出力する送信信号が与えられる。一方、ΔΣ変調器11の第2入力ポート17には何も入力されない。
 ΔΣ変調器11は、出力ポート18からΔΣ変調信号を出力する。
 ΔΣ変調器11から出力されたΔΣ変調信号は、第1バンドエリミネーションフィルタ12に与えられる。
 第1バンドエリミネーションフィルタ12は、ΔΣ変調器11と信号ケーブル4との間であって、ΔΣ変調器11と加算器13との間に接続されており、ローカル信号の周波数fを含む信号除去帯域を有している。本実施形態の第1バンドエリミネーションフィルタ12の信号除去帯域は、例えば、ローカル信号の周波数fを含む周波数帯域として帯域Bを含む周波数帯域に設定されている。
 よって、第1バンドエリミネーションフィルタ12は、ΔΣ変調器11からΔΣ変調信号が与えられると、前記ΔΣ変調信号の内、帯域Bにおける量子化雑音を除去する。
 図4は、第1バンドエリミネーションフィルタ12の出力における帯域Bの部分を拡大した拡大図である。
 図4中、破線Hは、ΔΣ変調器11から出力されたΔΣ変調信号における帯域Bの雑音のプロファイルを示している。また、実線Jは、第1バンドエリミネーションフィルタ12を通過した後のΔΣ変調信号における帯域Bの雑音のプロファイルを示している。
 帯域Bの量子化雑音は、他の帯域の量子化雑音と比較して抑圧されているが、まださらに抑圧可能な程度に存在している。
 このため、ΔΣ変調器11から出力されたΔΣ変調信号は、第1バンドエリミネーションフィルタ12を通過すると、図4に示すように、帯域Bにおける量子化雑音のレベルが破線Hから実線Jまで低下する。
 このように、第1バンドエリミネーションフィルタ12は、ΔΣ変調信号において量子化雑音が抑圧されている帯域Bの量子化雑音のレベルをさらに低下させることができる。
 図1に戻って、変調装置9は、上述のように、送信信号にΔΣ変調を行うΔΣ変調器11と、ΔΣ変調器11の出力が与えられるとともにローカル信号の周波数を含む信号除去帯域を有する第1バンドエリミネーションフィルタ12とを備えている。変調装置9は、第1バンドエリミネーションフィルタ12を通過した後のΔΣ変調信号を出力する。
 第1バンドエリミネーションフィルタ12を通過したΔΣ変調信号は、加算器13に与えられる。
 また、加算器13には、ローカル信号発振器30が発振したローカル信号(ローカル発振信号)が与えられる。
 ローカル信号発振器30は、無線周波数である周波数fのローカル信号を発振する。ローカル信号発振器30が発振するローカル信号は、IF信号である送信信号を無線周波数に変換するために用いられる信号である。ローカル信号発振器30は、ローカル信号として無線周波数の正弦波(アナログ信号)を発振する。
 ローカル信号発振器30と、加算器13との間には、第1バンドパスフィルタ31が接続されている。第1バンドパスフィルタ31は、信号通過帯域がローカル信号の周波数fを含むとともに、送信信号の通過を阻止するように設定されている。
 よって、第1バンドパスフィルタ31は、ローカル信号発振器30からローカル信号が与えられると、ローカル信号を通過させ、当該ローカル信号を加算器13に与える。
 加算器13は、変調装置9から出力されたΔΣ変調信号と、ローカル信号発振器30から出力されたローカル信号とを加算する。
 加算器13の出力である、ΔΣ変調信号とローカル信号とを加算した信号は、コネクタ33を通じて信号ケーブル4に与えられる。
 コネクタ33は、信号処理装置2の筐体34の外部に露出して設けられている。コネクタ33は、信号ケーブル4の一端が差し込まれることで、当該信号ケーブル4と加算器13とを接続する。
 なお、信号処理装置2の筐体34は、直交変調部10や、変調装置9、加算器13等を内部に収容している。
 信号ケーブル4の他端は、無線装置3に接続されている。加算器13の出力は、信号ケーブル4を介して無線装置3に伝送される。
 ここで、ΔΣ変調器11から出力されたΔΣ変調信号は、図3で示したように、広帯域に亘って量子化雑音を含んでいる。
 このため、加算器13によってΔΣ変調信号に加算されたローカル信号は、ΔΣ変調信号に含まれる量子化雑音と重畳するおそれがある。
 この点、本実施形態では、ΔΣ変調器11から出力されたΔΣ変調信号は、ローカル信号の周波数fを含む帯域Bの量子化雑音が抑圧されている(図3参照)。
 さらに、ΔΣ変調器11によって抑圧された帯域Bの量子化雑音を、第1バンドエリミネーションフィルタ12によってそのレベルを低下させ除去することができる(図4参照)。
 これにより、周波数fであるローカル信号を信号ケーブル4に与えれば、例えば、ローカル信号をΔΣ変調器11の第2入力ポート17に与えてΔΣ変調することで得た出力を信号ケーブル4に与える場合と比較して、量子化雑音の影響をより効果的に抑制することができる。
 つまり、ΔΣ変調器11による抑圧された量子化雑音の影響を、第1バンドエリミネーションフィルタ12によって抑制することができる。
 この結果、信号ケーブル4を通じて得られるローカル信号の信号品質の低下を効果的に抑制できる。
 本実施形態のΔΣ変調器11は2つの入力ポートから信号を入力することができるマルチキャリア型のΔΣ変調器であることから、第1信号Uとして送信信号を入力する一方、第2信号Uとして信号を入力しないことで、量子化雑音が抑制されているが出力すべき信号成分が存在しない帯域BをΔΣ変調信号に設けることができる。
 本実施形態によれば、ΔΣ変調信号の帯域の一部に量子化雑音が抑制されている帯域Bが設けられており、この帯域Bを信号ケーブル4における信号の伝送に利用することで、信号ケーブル4によるアナログ信号の送信を可能としている。
 この結果、一の伝送線路である信号ケーブル4を用いて、デジタル信号であるΔΣ変調信号と、アナログ信号であるローカル信号とを多重化して伝送することができる。
 さらに、図4で示したように、変調装置9が備えている第1バンドエリミネーションフィルタ12が、ΔΣ変調器11が出力するΔΣ変調信号において量子化雑音が抑圧されている帯域である帯域Bの量子化雑音のレベルをさらに低下させるので、帯域Bを用いて信号ケーブル4に伝送される周波数fのローカル信号の信号品質を高めることができる。
 これにより、送信信号に対してΔΣ変調を行って得たΔΣ変調信号の送信を行う送信システムを構成している信号処理装置2と、無線装置3との間で、ΔΣ変調信号を伝送しつつアナログ信号であるローカル信号を高い信号品質で適切に伝送することができる。
 信号ケーブル4の他端は、無線装置3のコネクタ44に接続されている。
 無線装置3は、第2バンドエリミネーションフィルタ40と、2値化器41と、第2バンドパスフィルタ42と、第3バンドパスフィルタ43とを備えている。
 信号ケーブル4に与えられた加算器13の出力は、コネクタ44を通じて第2バンドエリミネーションフィルタ40と、第3バンドパスフィルタ43とに与えられる。
 コネクタ44は、無線装置3の筐体45の外部に露出して設けられている。コネクタ44は、信号ケーブル4の他端が差し込まれることで、当該信号ケーブル4を第2バンドエリミネーションフィルタ40及び第3バンドパスフィルタ43に接続する。
 このように、信号ケーブル4は、信号処理装置2と無線装置3とを接続し、加算器13の出力を無線装置3に伝送する。
 なお、無線装置3の筐体45は、第2バンドエリミネーションフィルタ40や、2値化器41、第2バンドパスフィルタ42、第3バンドパスフィルタ43の他、後述する無線装置3が有する各機能部を内部に収容している。
 第2バンドエリミネーションフィルタ40は、第1バンドエリミネーションフィルタ12と同様、ローカル信号の周波数fを含む周波数帯域として帯域B(図3、図4)を含む信号除去帯域を有している。
 加算器13の出力は、変調装置9(ΔΣ変調器11)からのΔΣ変調信号と、ローカル信号発振器30からのローカル信号とを加算したものである。よって、第2バンドエリミネーションフィルタ40は、加算器13の出力が与えられると、この出力の内、帯域Bに含まれるローカル信号を除去する。
 これにより、第2バンドエリミネーションフィルタ40よりも後段の処理において、ローカル信号に起因する影響が生じるのを防止することができる。
 第2バンドエリミネーションフィルタ40は、加算器13の出力が与えられると、当該加算器13の出力からローカル信号を除去し、変調装置9(ΔΣ変調器11)からのΔΣ変調信号を出力する。
 第2バンドエリミネーションフィルタ40が出力するΔΣ変調信号は、2値化器41に与えられる。
 2値化器41は、コンパレータ等によって構成されており、信号処理装置2から信号ケーブル4を伝送して与えられるΔΣ変調信号を2値化し、2値化したΔΣ変調信号を出力する。
 信号ケーブル4を伝送して無線装置3に与えられるΔΣ変調信号は、変調装置9から出力されたときと比較して伝送される間に減衰する。2値化器41は、このように減衰したΔΣ変調信号を2値化する。減衰したΔΣ変調信号であっても、2値のパルス信号であるΔΣ変調信号を2値化することで、減衰する前のΔΣ変調信号が復元される。これにより、2値化器41は減衰する前のΔΣ変調信号に近似したΔΣ変調信号を出力することができ、減衰の影響が緩和されたΔΣ変調信号を得ることができる。
 2値化器41から出力されるΔΣ変調信号は、第2バンドパスフィルタ42に与えられる。
 第2バンドパスフィルタ42は、IF信号である送信信号を通過させる通過帯域を有している。これにより、第2バンドパスフィルタ42は、ΔΣ変調信号における送信信号の帯域外に存在する量子化雑音を除去し、送信信号を通過させることができる。
 よって、ΔΣ変調信号が与えられた第2バンドパスフィルタ42は、送信信号を出力する。
 2値化器41と第2バンドパスフィルタ42との間には、出力端子50が接続されている。この出力端子50は筐体45の外部から露出して設けられている。出力端子50には、2値化器41が出力するΔΣ変調信号が与えられる。出力端子50は、2値化器41が出力するΔΣ変調信号を出力する。
 よって、出力端子50に信号を計測するための機器を接続し、その出力信号を計測することで、2値化器41が出力するΔΣ変調信号を確認することができる。これにより、信号処理装置2からのΔΣ変調信号が無線装置3に正常に伝送されているか否かを確認することができる。
 第3バンドパスフィルタ43は、ローカル信号を通過させる通過帯域を有している。これにより、第3バンドパスフィルタ43は、ΔΣ変調信号におけるローカル信号の帯域外に存在する量子化雑音を除去し、ローカル信号を通過させることができる。
 よって、加算器13の出力が与えられると、第3バンドパスフィルタ43は、ローカル信号を出力する。
 第2バンドパスフィルタ42の出力及び第3バンドパスフィルタ43の出力は、これらの後段に接続された周波数変換器(周波数混合器)49に与えられる。
 第2バンドパスフィルタ42が出力するIF信号である送信信号は、周波数変換器49に与えられることにより、周波数f+fの無線周波数の信号(RF信号)に変換される。
 周波数変換器49の後段には、パワーアンプ46、及びアンテナ48が接続されている。
 周波数変換器49により周波数変換されたRF信号は、第2バンドパスフィルタ42が出力する送信信号は、パワーアンプ46によって増幅され、アンテナ48に与えられる。アンテナ48に与えられた送信信号は、無線信号として空間に放射され送信される。
 以上のように、本実施形態では、第1バンドエリミネーションフィルタ12と信号ケーブル4との間に配置され、変調装置9(ΔΣ変調器11)により出力されるΔΣ変調信号と、周波数f(他の周波数)のローカル信号(入力信号)とを加算する加算器13を備えており、無線装置3は、周波数fの送信信号が通過可能な通過帯域を有するとともに、信号ケーブル4によって伝送される加算器13の出力が与えられる第2バンドパスフィルタ42(第1帯域通過フィルタ)と、周波数fのローカル信号が通過可能な通過帯域を有するとともに、信号ケーブル4によって伝送される加算器13の出力が与えられる第3バンドパスフィルタ43(第2帯域通過フィルタ)と、第2バンドパスフィルタ42を通過した信号及び第3バンドパスフィルタ43を通過した信号が与えられる周波数変換器49と、周波数変換器49の出力を無線送信する送信部としてのパワーアンプ46及びアンテナ48と、を備えている。
 本実施形態では、第1バンドエリミネーションフィルタ12と信号ケーブル4との間に配置された加算器13によってローカル信号を加算したので、ローカル信号の電力をΔΣ変調信号の電力に対して相対的に大きく設定することができ、より信号品質の高いローカル信号を無線装置3に伝送することができる。この結果、送信信号の無線周波数への変換を適切に行うことができる。
 図5は、変形例に係る通信システムの構成を示すブロック図である。
 この変形例は、無線装置3が、第2バンドエリミネーションフィルタ40と、2値化器41とを備えていない点で、上記実施形態と相違している。その他の構成である第2バンドパスフィルタ42、第3バンドパスフィルタ43、周波数変換器49、パワーアンプ46、及びアンテナ48は、上記実施形態と同様である。
 このように構成した場合も、第2バンドパスフィルタ42及び第3バンドパスフィルタ43には、加算器13の出力が与えられる。
 これによって、第2バンドパスフィルタ42はIF信号である送信信号を出力し、第3バンドパスフィルタ43は、ローカル信号を出力する。
 第2バンドパスフィルタ42が出力する送信信号は、周波数変換器49に与えられることにより、周波数f+fの無線周波数の信号(RF信号)に変換される。
 本変形例では、2つのバンドパスフィルタ42、43によって、簡素な構成とすることができる。
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 上記各実施形態では、信号処理装置2から無線装置3に対してローカル信号を伝送する場合を例示したが、無線装置3から信号処理装置2に対してアナログ信号を伝送するように構成することもできる。
 また、上記各実施形態では、無線装置3が1つの場合を例示したが、例えば、信号処理装置2が分配器を備えていることで多出力として構成されている場合や、信号処理装置2を多数備えている場合等、出力に対応する数の無線装置3を接続することもできる。
 また、上記実施形態では、2入力のΔΣ変調器11を用いた場合を例示したが、3入力、4入力等のより多入力のΔΣ変調器11を用いてもよい。
 例えば、3入力のΔΣ変調器11を用いれば、ΔΣ変調信号の帯域に量子化雑音が抑制される帯域を3箇所設けることができる。この結果、信号ケーブル4を用いて、ローカル信号以外に、さらに2つの信号を与えることができる。
 本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
 1 通信システム
 2 信号処理装置(送信装置)
 3 無線装置(受信装置)
 4 信号ケーブル
 9 変調装置
 10 直交変調部
 11 ΔΣ変調器
 12 第1バンドエリミネーションフィルタ
 13 加算器
 16 第1入力ポート
 17 第2入力ポート
 18 出力ポート
 19 第1ループフィルタ
 19a 第1入力部
 19b 第2入力部
 19c 差分器
 19d 第1経路
 19e 第2経路
 19f 内部フィルタ
 19g 加算器
 19h フィードフォワード経路
 20 第2ループフィルタ
 20a 第1入力部
 20b 第2入力部
 20c 差分器
 20d 第1経路
 20e 第2経路
 20f 内部フィルタ
 20g 加算器
 20h フィードフォワード経路
 21 加算器
 22 量子化器
 23,24 フィードバック経路
 30 ローカル信号発振器
 31 第1バンドパスフィルタ
 33 コネクタ
 34 筐体
 40 第2バンドエリミネーションフィルタ
 41 2値化器
 42 第2バンドパスフィルタ
 43 第3バンドパスフィルタ
 44 コネクタ
 45 筐体
 46 パワーアンプ
 48 アンテナ
 49 周波数変換器
 50 出力端子

Claims (4)

  1.  通信信号に対してΔΣ変調されたΔΣ変調信号の送信を行う送信システムであって、
     前記ΔΣ変調信号を受信する受信装置と、
     前記ΔΣ変調信号を、信号伝送路を介して前記受信装置へ送信する送信装置と、を備え、
     前記送信装置は、前記通信信号にΔΣ変調を行ってΔΣ変調信号を出力するΔΣ変調器を備え、
     前記ΔΣ変調器は、前記通信信号の周波数を含む第1周波数帯域の量子化雑音を阻止するとともに、前記第1周波数帯域と異なる周波数帯域である第2周波数帯域の量子化雑音を阻止する特性を有し、
     前記ΔΣ変調器と前記信号伝送路との間に配置され、信号除去帯域が前記第2周波数帯域を含む帯域除去フィルタをさらに備えている
     送信システム。
  2.  前記受信装置は、
     前記信号伝送路を通じて与えられる前記ΔΣ変調信号を2値化する2値化器を備えている請求項1に記載の送信システム。
  3.  通信信号に対してΔΣ変調されたΔΣ変調信号を、当該ΔΣ変調信号を受信する受信装置へ信号伝送路を介して送信する送信装置であって、
     前記通信信号にΔΣ変調を行って前記ΔΣ変調信号を出力するΔΣ変調器を備え、
     前記ΔΣ変調器は、
     前記通信信号の周波数を含む第1周波数帯域の量子化雑音を阻止するとともに、前記第1周波数帯域と異なる周波数帯域である第2周波数帯域の量子化雑音を阻止する特性を有し、
     前記ΔΣ変調器と前記信号伝送路との間に配置され、信号除去帯域が前記第2周波数帯域を含む帯域除去フィルタをさらに備えている
    送信装置。
  4.  請求項1に記載の送信システムを備えた、前記通信信号を無線送信する通信システムであって、
     前記帯域除去フィルタと前記信号伝送路との間に配置され、前記ΔΣ変調信号と、前記他の周波数の入力信号とを加算する加算器を備え、
     前記受信装置は、
     前記通信信号を無線送信する送信部と、
     前記通信信号が通過可能な通過帯域を有するとともに前記信号伝送路によって伝送される信号が与えられる第1帯域通過フィルタと、
     前記入力信号が通過可能な通過帯域を有するとともに前記信号伝送路によって伝送される信号が与えられる第2帯域通過フィルタと、
     前記第1帯域通過フィルタを通過した信号及び前記第2帯域通過フィルタを通過した信号が与えられる周波数混合器と、
     前記周波数混合器の出力を無線送信する送信部と、を備え、
     前記入力信号は、前記周波数混合器によって前記通信信号を無線周波数に変換するために用いられるローカル信号である
    通信システム。
PCT/JP2017/014233 2016-04-25 2017-04-05 送信システム、送信装置、及び通信システム WO2017187914A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-087139 2016-04-25
JP2016087139A JP6623914B2 (ja) 2016-04-25 2016-04-25 送信システム、送信装置、及び通信システム

Publications (1)

Publication Number Publication Date
WO2017187914A1 true WO2017187914A1 (ja) 2017-11-02

Family

ID=60160464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014233 WO2017187914A1 (ja) 2016-04-25 2017-04-05 送信システム、送信装置、及び通信システム

Country Status (2)

Country Link
JP (1) JP6623914B2 (ja)
WO (1) WO2017187914A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056767A1 (en) * 2010-09-08 2012-03-08 Hsiang-Hui Chang Signal processing apparatus with sigma-delta modulating block collaborating with notch filtering block and related signal processing method thereof
JP2014165846A (ja) * 2013-02-27 2014-09-08 Sumitomo Electric Ind Ltd Δς変調器及び通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056767A1 (en) * 2010-09-08 2012-03-08 Hsiang-Hui Chang Signal processing apparatus with sigma-delta modulating block collaborating with notch filtering block and related signal processing method thereof
JP2014165846A (ja) * 2013-02-27 2014-09-08 Sumitomo Electric Ind Ltd Δς変調器及び通信装置

Also Published As

Publication number Publication date
JP2017199965A (ja) 2017-11-02
JP6623914B2 (ja) 2019-12-25

Similar Documents

Publication Publication Date Title
JP5598561B2 (ja) Δς変調器及び通信装置
US9667368B2 (en) Telecommunication system using multiple nyquist zone operations
US10355769B2 (en) Narrowband signal transport sub-system for distributed antenna system
CN104115406B (zh) 连续时间的mashς‑δ模数转换
CN109845118A (zh) 一种塔顶设备及无源互调消除方法
JP2006140785A (ja) 無線通信装置
WO2017187917A1 (ja) 送信システム、及び無線通信システム
WO2017187914A1 (ja) 送信システム、送信装置、及び通信システム
JP2002271212A5 (ja)
JP6064485B2 (ja) 信号処理装置及び無線機
CN111224681B (zh) 信号处理装置、方法及电子设备
JP6623915B2 (ja) 送信システム、及びアンテナシステム
CN110249540B (zh) 完全集成的射频终端系统
JP2014225922A (ja) Δς変調器及び通信装置
KR102129051B1 (ko) 교체 가능한 통신모듈을 포함하는 이동통신 중계기
WO2018123145A1 (ja) Δς変調器、送信機、半導体集積回路、処理方法、システム、及びコンピュータプログラム
WO2018123250A1 (ja) Δς変調器、送信機、半導体集積回路、処理方法、及びコンピュータプログラム
US10505582B2 (en) Signal compression for serialized signal bandwidth reduction
KR100537551B1 (ko) 광대역 전송시스템 및 신호 전송 방법
JP2017199964A (ja) Δς変調器、送信機、半導体集積回路、処理方法、及びコンピュータプログラム
WO2013183534A1 (ja) 無線送信機、及び信号処理装置
CN113949391A (zh) 一种天线装置、一种电子设备及一种通信方法
WO2015170491A1 (ja) 信号処理装置及び通信装置
JP5487146B2 (ja) ディジタルマイクロ波無線送信装置および信号送信方法
JP4143593B2 (ja) デジタル無線回路、及び該デジタル無線回路が設けられた無線通信機器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789202

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789202

Country of ref document: EP

Kind code of ref document: A1