WO2017186191A1 - 一种高通量制备多组分梯度金属材料的装置 - Google Patents

一种高通量制备多组分梯度金属材料的装置 Download PDF

Info

Publication number
WO2017186191A1
WO2017186191A1 PCT/CN2017/086077 CN2017086077W WO2017186191A1 WO 2017186191 A1 WO2017186191 A1 WO 2017186191A1 CN 2017086077 W CN2017086077 W CN 2017086077W WO 2017186191 A1 WO2017186191 A1 WO 2017186191A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
powder
auger
barrel
disposed
Prior art date
Application number
PCT/CN2017/086077
Other languages
English (en)
French (fr)
Inventor
李静媛
张源
李建兴
谢建新
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2017186191A1 publication Critical patent/WO2017186191A1/zh
Priority to US16/169,570 priority Critical patent/US10913110B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/165Controlling or regulating processes or operations for the supply of casting powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/006Continuous casting of metals, i.e. casting in indefinite lengths of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2061Means for forcing the molten metal into the die using screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/06Special casting characterised by the nature of the product by its physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention belongs to the field of metal preparation and processing, and particularly relates to a multi-component alloy tube, rod, type and other long material forming device with continuous gradient change of chemical composition in the longitudinal direction, which can realize high-throughput preparation of multi-component gradient metal materials.
  • Metal and metal matrix composites have been the most demanding and widely used materials for military and civilian applications due to their high strength, high toughness, ease of formability and fatigue resistance.
  • the development and application of metallic materials often rely on traditional material methods such as scientific intuition, human experience and trial and error.
  • the long cycle and high cost have become the bottleneck restricting economic and social development and technological progress.
  • the key problem that restricts light metal and light metal matrix composites is the strength and corrosion resistance.
  • the alloy element composition and heat treatment process are used to improve the comprehensive performance of the single furnace smelting alloy.
  • the existing one-time smelting method can only prepare an alloy of one component, and has low efficiency, long cycle and high cost. Therefore, material research methods need to be innovated, and new methods and technologies that can accelerate the discovery and application of new materials have received extensive attention at home and abroad.
  • the object of the present invention is to provide a high-throughput preparation device which can greatly shorten the time course of design, preparation, characterization and application of multi-component metal materials, reduce development cost, and has simple process.
  • a high-flux preparation device for multi-component gradient metal materials which comprises an on-line adjustment system for powder flow rate, a rotary feed system, a heating system, an insulation system, a motor drive system, a blank forming system and a control system;
  • the powder flow rate online adjustment system is used to control the supply of various metal powders a feed amount, that is, a composition ratio of the powder, comprising at least 2 metal powder reservoirs, a flow control valve, and a powder mixer; at least 2 of the metal powder reservoirs pass through a feed line and a feed port of the intermediate stocker Connecting, the dynamic flow rate control valve is disposed on the feeding line;
  • the rotary feed system is used to mix powder feeds, including cylindrical barrels and augers.
  • the upper end of the side wall of the cylindrical barrel is provided with a feed port, and the feed port is connected to the intermediate stock discharge port through a pipeline, and the screw rod is disposed on the cylindrical barrel Internally, a bottom of the cylindrical barrel is provided with a conical discharge opening, and the diameter of the auger is equal to the inner diameter of the cylindrical barrel;
  • the heating system is an induction heater for melting mixed metal powder entering the cylindrical barrel, and the induction heater is disposed on a side wall of a lower end of the discharge port of the cylindrical barrel;
  • the thermal insulation system is an insulated jacket disposed on an outer sidewall of the induction heater
  • the motor drive system is configured to drive the auger to rotate.
  • the motor drive system includes a drive motor, a drive shaft, and a drive shaft connector, the drive motor being disposed at an upper end of the cylindrical barrel.
  • the drive motor is coupled to the drive shaft via the drive shaft and the drive shaft connector.
  • the connection between the drive shaft connector and the cylindrical barrel is sealed by a sealing ring.
  • the blank forming system is used for metal material forming, including a mold, a condensing crystallizer, and a drawing apparatus.
  • the mold is disposed at a lower end of the conical discharge opening
  • the condensation crystallizer is disposed at two sides of the conical discharge opening inside the mold
  • the drawing device is disposed at the mold Lower end of the material port;
  • the control system is used to control the entire device, including a host computer and a control signal processor.
  • the upper computer is connected to the drive motor, the dynamic flow rate control valve and the induction heater through a control signal processor.
  • the ratio of the inner diameter D B of the cylindrical barrel to the root diameter D 0 of the auger is 1.5-8:1.
  • the axial distance between the spiral edges of the auger is B;
  • D B is the inner diameter of the barrel
  • the inlet diameter De of the barrel is equal to the discharge port diameter Do.
  • Another object of the present invention is to provide a method for using the above device, and specifically includes the following steps: Step 1: separately adding different metal powders to a powder storage device, the upper computer controls the flow rate adjusting valve, and the metal powder enters the intermediate storage device at a certain flow rate. At the same time, the upper computer 11 drives the auger by the driving motor to rotate at the rotation speed r;
  • Step 2 The mixed powder (raw material) flows into the cylinder through the feed port and flows downwards under the action of its own gravity and the auger.
  • the auger and the barrel are closely matched, and the mixed powder of continuously changing composition is caused by the action of the rotating feeding mechanism.
  • the downward movement process is orderly and controllable, and the component homogenization phenomenon does not occur.
  • the upper machine controls the induction coil to heat the barrel with a certain power P.
  • the mixed powder is melted under the heating of the induction coil, and the molten metal enters the mold through the discharge port at the bottom of the cylinder, solidifies under the cooling action of the cooling crystallizer, and is under the action of the drawing device. Finally, the composition continuously changes the metal bar, and the samples with different alloy compositions can be intercepted at different parts, thereby realizing the high-throughput preparation of the multi-component gradient metal material.
  • the rotation speed r of the auger in the step 1 is obtained by the following formula, and the formula is as follows:
  • the heating power P in the step 2 is obtained by the following formula, and the formula is as follows:
  • P is the heating power
  • r is the rotational speed of the screw
  • B is the axial distance between the spiral edges
  • c is the specific heat capacity of the material
  • is the density of the gradient material after forming
  • V is the transport volume of the material
  • T m is the melting point of the material
  • T 0 is the initial temperature of the material
  • L is the length of the sleeve itself
  • is the heat absorbing efficiency of the material.
  • the invention has the advantages of simple structure, convenient use and easy control.
  • the device realizes high-throughput multi-component metal sample preparation by online control of molten metal composition and continuous casting process, which significantly improves the preparation efficiency and reduces the research and development cost.
  • FIG. 1 is a structural view of a high-throughput multi-component gradient metal material device of the present invention.
  • FIG. 2 is a structural view of a rotary feed mechanism of a high-throughput preparation multi-component gradient metal material forming apparatus.
  • FIG. 1-2 is a structural diagram of a high-throughput preparation multi-component gradient metal material forming apparatus according to the present invention, which comprises an on-line adjustment system for powder flow rate, a rotary feeding system, a heating system, an insulation system, and a motor drive. System, blank forming system and control system;
  • the powder flow rate online adjustment system is for controlling the supply amount of the plurality of metal powders, the at least two metal powder storages, the flow rate adjustment valve and the powder mixer; at least two of the metal powder storages are passed through the feeding tube a road is connected to the feed port of the powder mixer, and a dynamic flow rate adjusting valve is disposed on the feed line;
  • the rotary feed system is used to mix powder feeds, including cylindrical barrels and augers.
  • the upper end of the side wall of the cylindrical barrel is provided with a feed port, and the feed port is connected to the intermediate stock discharge port through a pipeline, and the screw rod is disposed on the cylindrical barrel Internally, a bottom of the cylindrical barrel is provided with a conical discharge opening, and the diameter of the auger is equal to the inner diameter of the cylindrical barrel;
  • the heating system is an induction heater for melting metal powder entering the cylindrical barrel.
  • the induction heater is disposed on a sidewall of a lower end of the discharge port of the cylindrical barrel;
  • the thermal insulation system is an insulated jacket disposed on an outer sidewall of the induction heater
  • the motor drive system is configured to drive the auger to rotate.
  • the motor drive system includes a drive motor, a drive shaft, and a drive shaft connector, the drive motor being disposed at an upper end of the cylindrical barrel.
  • the drive motor is coupled to the drive shaft via the drive shaft and the drive shaft connector.
  • the connection between the drive shaft connector and the cylindrical barrel is sealed by a sealing ring.
  • the blank forming system is used for metal material forming, including a mold, a condensing crystallizer, and a drawing apparatus.
  • the mold is disposed at a lower end of the conical discharge opening
  • the condensation crystallizer is disposed at two sides of the conical discharge opening inside the mold
  • the drawing device is disposed at the mold Lower end of the material port;
  • the control system is used to control the entire device, including a host computer and a control signal processor.
  • the upper computer is connected to the drive motor, the dynamic flow rate control valve and the induction heater through a control signal processor.
  • the ratio of the inner diameter D B of the cylindrical barrel to the root diameter D 0 of the auger is 1.5-8:1.
  • the axial distance between the spiral edges of the auger is B;
  • D B is the inner diameter of the barrel
  • the inlet diameter D e of the barrel is equal to the discharge port diameter D o .
  • the different metal powders in the metal powder storage 1 enter the intermediate feeder 3 under the control of the dynamic flow rate control valve 2 under the control of the upper machine 11 to obtain continuous changes in composition.
  • the upper machine 11 drives the auger 4 through the drive motor 4 to rotate at a rotation speed r.
  • the mixed powder enters the barrel 13 through the feed port 8 and the raw material flows downward by the self-gravity and the screw rod 14.
  • the auger 14 and the barrel 13 are closely matched, and the composition is continuously changed due to the action of the rotary feeding mechanism 14.
  • the downward movement process of the mixed powder is orderly controllable, and the component homogenization phenomenon does not occur, and the upper machine 11 controls the induction coil 15 to heat the cylinder with a certain power p.
  • P is the heating power
  • r is the rotational speed of the screw
  • B is the axial distance between the spiral edges
  • c is the specific heat capacity of the material
  • is the density of the gradient material after forming
  • V is the transport volume of the material
  • T m is the melting point of the material
  • T 0 is the initial temperature of the material
  • L is the length of the sleeve itself
  • is the heat absorbing efficiency of the material.
  • the raw material is melted into a molten metal under the heating of the induction coil 15, and the molten metal reaches the bottom of the cylinder 13 and enters the mold 17 through the discharge port 12, solidifies and forms under the cooling action of the condensing crystallizer 19, and finally forms under the action of the casting system 20.
  • the composition continuously changes the metal bar 21, enabling high-throughput preparation of multi-component gradient metal materials.
  • the dynamic flow rate control valve is controlled by the control system so that the powder flow speeds in the two metal powder reservoirs are different, thereby obtaining a Mg/Zn metal mixed powder having a Zn content ranging from 0% to 6%.
  • the heating power needs to be adjusted depending on the material and the rotation speed of the auger:
  • is the endothermic efficiency of the material and is taken as 0.8.
  • the casting speed is controlled to ensure the same feed rate and discharge speed, so that under the action of the cooling water, a Mg-Zn gradient with a Zn composition ranging from 0% to 6% is formed.
  • Metal bars are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种沿长度方向化学成分连续梯度分布的多组元合金管、棒、型等长材的高通量制备多组分梯度金属材料装置,该装置包括粉末流速在线调节系统、旋转进料系统、加热系统、保温系统、电机驱动系统、坯料成形系统和控制系统。该装置结构简单,使用方便,容易控制,该装置通过控制熔融金属成分的连铸工艺来实现高通量多组分梯度金属材料制备,缩短了材料从成分设计、熔炼、性能制备、应用制备的时间进程,减少了多炉熔炼合金的冶金能耗,降低了开发成本,提高了新金属梯度材料制备质量和效率。

Description

一种高通量制备多组分梯度金属材料的装置 技术领域
本发明属于金属制备加工领域,尤其涉及一种沿长度方向化学成分连续梯度变化的多组元合金管、棒、型等长材的成形装置,可实现多组分梯度金属材料高通量制备。
背景技术
金属及金属基复合材料以高强高韧性、易加工成形性、耐疲劳性等特征,一直是军用和民用上需求量最大、应用最广的材料。但是,金属材料的研发和应用往往是依赖于科学直觉、人为经验及试错法等传统材料方法,周期长和成本高已成为制约经济社会发展和技术进步的瓶颈。目前制约轻金属及轻金属基复合材料的关键问题是强度和耐蚀性问题,一般采用调整合金元素成分及热处理工艺等方法来改善单炉熔炼合金的综合性能。但现有的一次熔炼只能制备一种成分的合金的方法,效率低、周期长、成本高。因此材料研究方法亟需革新,发展可加速新材料从发现到应用的新方法和新技术受到了国内外的广泛关注。
发明内容
针对上述背景,本发明的目的在于提供一种可大大缩短多组分金属材料从设计、制备、表征到应用的时间进程,降低开发成本,且工艺简单的高通量制备装置。
本发明的技术方案是:一种多组分梯度金属材料高通量制备装置,该装置包括粉末流速在线调节系统、旋转进料系统、加热系统、保温系统、电机驱动系统、坯料成形系统和控制系统;
其中,所述粉末流速在线调节系统用于控制多种金属粉末的供 料量,即粉末的组成比,所述包括至少2个金属粉末存储器、流量控制阀和粉末混合器;至少2个所述金属粉末存储器通过送料管路与所述中间存料器的进料口连接,所述动态流速控制阀设置在所述送料管路上;
所述旋转进料系统用于混合粉末送料,包括圆筒状料筒和螺旋杆。所述圆筒状料筒的侧壁上端设有进料口,所述进料口通过管路与所述中间存料器出料口连接,所述螺旋杆设置在所述圆筒状料筒内部,所述圆筒状料筒的底部设有圆锥形出料口,所述螺旋杆直径与所述圆筒状料筒内径相等;
所述加热系统为感应加热器用于融化进入圆筒状料筒内的混合金属粉末,所述感应加热器所述设置在位于所述圆筒状料筒的出料口下端的侧壁上;
所述保温系统为保温套,设置在所述感应加热器的外侧壁上;
所述电机驱动系统用于驱动所述螺旋杆转动。所述电机驱动系统包括驱动电机、驱动轴和驱动轴连接器,所述驱动电机设置在所述圆筒状料筒上端。所述驱动电机通过所述驱动轴、驱动轴连接器与所述螺旋杆的驱动连接。所述驱动轴连接器与所述圆筒状料筒之间的连接处通过密封圈密封。
所述坯料成形系统用于金属材料成形,包括模具、冷凝结晶器和拉坯装置。所述模具设置在所述圆锥形出料口的下端,所述冷凝结晶器设置在所述模具内部的所述圆锥形出料口的两侧,所述拉胚装置设置在所述模具的出料口下端;
所述控制系统用于控制整个装置,包括上位机和控制信号处理器。所述上位机通过控制信号处理器与所述驱动电机、动态流速控制阀和感应加热器控制连接。
进一步,所述圆筒状料筒的内径DB与所述螺旋杆根径D0的比例为1.5-8:1。
进一步,所述螺旋杆的螺棱间的轴向距离为B;
B=DBtanΦ,
式中:DB为料筒的内径,Φ为螺旋杆的螺旋角Φ=30°-60°。
进一步,所述料筒的入料口直径De与出料口直径Do相等。
本发明的另一目的提供上述装置的使用方法,具体包括以下步骤:步骤1:将不同金属粉末分别加入到粉末存储器中,上位机控制流速调节阀,金属粉末以一定流速进入到中间存料器中,同时,上位机11通过驱动电机驱动螺旋杆以转速r进行转动;
步骤2:混合粉末(原料)经进料口进入料筒内在自身重力及螺旋杆带动下向下流动,其中,螺旋杆和料筒紧密配合,由于旋转送料机构的作用使得成分连续变化的混合粉末向下运动过程有序可控,不会产生成分均匀化现象,上位机控制感应线圈以一定的功率P对料筒进行加热,
混合粉末在感应线圈加热下融化,熔融金属通过料筒底部的出料口进入模具,在冷却结晶器的冷却作用下凝固,并在拉坯装置作用下 最终形成成分连续变化金属棒料,可在不同部位截取是有不同合金成分的试样,从而实现了多组分梯度金属材料的高通量制备。
所述步骤1中螺旋杆的转速r通过以下公式求出,公式如下:
r=(veDe 2cosΦ)/{(DB 2-DS 2)·B},
式中,r为螺杆的转速;Φ为螺纹的螺旋角;DS为螺杆的直径;DB为套筒内径;De为物料入口直径;ve为入料和出料速度;B为螺棱间的轴向距离。
所述步骤2中的加热功率P通过以下公式求出,公式如下:
P≥{rBcρV(Tm-T0)}/(L·η),
式中,P为加热功率;r为螺杆的转速;B为螺棱间的轴向距离;c为材料比热容;ρ为成形后梯度材料密度;V为材料单位传输体积;Tm为材料熔点;T0为材料初始温度;L为套筒本身长度;η为材料吸热效率。
本发明:装置具有结构简单,使用方便,控制容易等特点。该装置通过在线控制熔融金属的成分和连铸工艺来实现高通量多组分金属试样制备,显著提高了制备效率降低了研发成本。
附图说明:
图1为本发明的一种高通量制备多组分梯度金属材料装置结构图。
图2为高通量制备多组分梯度金属材料成形装置的旋转送料机构结构图。
图中:
1金属粉末存储器、2动态流速控制阀、3粉末混合器、4驱动电机、5驱动轴、6驱动轴连接器、7固定螺栓、8进料口、9密封圈、10控制信号处理器、11上位机、12出料口、13料筒、14螺旋杆、15感应加热器、16保温套、17模具、18冷凝结晶器、19拉坯装置 20、坯料。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案做进一步说明。
如图1-2所示为本发明的一种高通量制备多组分梯度金属材料成形装置结构图,该装置包括粉末流速在线调节系统、旋转进料系统、加热系统、保温系统、电机驱动系统、坯料成形系统和控制系统;
其中,所述粉末流速在线调节系统用于控制多种金属粉末的供料量,所述包括至少2个金属粉末存储器、流速调节阀和粉末混合器;至少2个所述金属粉末存储器通过送料管路与所述粉末混合器的进料口连接,动态流速调节阀设置在所述送料管路上;
所述旋转进料系统用于混合粉末送料,包括圆筒状料筒和螺旋杆。所述圆筒状料筒的侧壁上端设有进料口,所述进料口通过管路与所述中间存料器出料口连接,所述螺旋杆设置在所述圆筒状料筒内部,所述圆筒状料筒的底部设有圆锥形出料口,所述螺旋杆直径与所述圆筒状料筒内径相等;
所述加热系统为感应加热器用于融化进入所述圆筒状料筒内的金属粉末。所述感应加热器所述设置在位于所述圆筒状料筒的出料口下端的侧壁上;
所述保温系统为保温套,设置在所述感应加热器的外侧壁上;
所述电机驱动系统用于驱动所述螺旋杆转动。所述电机驱动系统包括驱动电机、驱动轴和驱动轴连接器,所述驱动电机设置在所述圆筒状料筒上端。所述驱动电机通过所述驱动轴、驱动轴连接器与所述螺旋杆的驱动连接。所述驱动轴连接器与所述圆筒状料筒之间的连接处通过密封圈密封。
所述坯料成形系统用于金属材料成形,包括模具、冷凝结晶器和拉坯装置。所述模具设置在所述圆锥形出料口的下端,所述冷凝结晶器设置在所述模具内部的所述圆锥形出料口的两侧,所述拉胚装置设置在所述模具的出料口下端;
所述控制系统用于控制整个装置,包括上位机和控制信号处理器。所述上位机通过控制信号处理器与所述驱动电机、动态流速控制阀和感应加热器控制连接。
进一步,所述圆筒状料筒的内径DB与所述螺旋杆根径D0的比例为1.5-8:1。
进一步,所述螺旋杆的螺棱间的轴向距离为B;
B=DBtanΦ,
式中:DB为料筒的内径,Φ为螺旋杆的螺旋角Φ=30°-60°。
进一步,所述料筒的入料口直径De与出料口直径Do相等。
使用时,在金属粉末存储器1中的不同金属粉末在上位机11控制下的动态流速控制阀2的调节下进入中间存料器3得到组分连续变化 的混合粉末,同时,上位机11通过驱动电机4驱动螺旋杆4以转速r进行转动,
r=(veDe 2cosΦ)/{(DB 2-DS 2)·B}
式中,r为螺杆的转速;Φ为螺纹的螺旋角;DS为螺杆的直径;DB为套筒内径;De为物料入口直径;ve为入料和出料速度;B为螺棱间的轴向距离。
混合粉末经进料口8进入料筒13内原料在自身重力及螺旋杆14的带动下向下流动,其中,螺旋杆14和料筒13紧密配合,由于旋转送料机构14的作用使得成分连续变化的混合粉末向下运动过程有序可控,不会发生成分均匀化现象,上位机11控制感应线圈15以一定的功率p对料筒进行加热,
P≥{rBcρV(Tm-T0)}/(L·η)
式中,P为加热功率;r为螺杆的转速;B为螺棱间的轴向距离;c为材料比热容;ρ为成形后梯度材料密度;V为材料单位传输体积;Tm为材料熔点;T0为材料初始温度;L为套筒本身长度;η为材料吸热效率。
原料在感应线圈15加热下融化为金属液,熔融金属到达料筒13底部通过出料口12进入模具17,在冷凝结晶器19的冷却作用下凝固成形,并在拉坯系统20作用下最终形成成分连续变化金属棒料21,实现了多组分梯度金属材料的高通量制备。
实施例
称取1000目5kg金属纯镁粉,同时称取1000目0.3kg金属纯锌粉,将上述原料粉末分别放入不同的金属粉末存储器中备用。
通过控制系统控制动态流速控制阀,从而使两个金属粉末存储器中的粉末流下速度不同,进而得到Zn含量从0%到6%范围内变化的Mg\Zn金属混合粉末。
根据金属粉末入料口的流速,调整螺旋杆的转速:
r=(veDe 2cosΦ)/{(DB 2-DS 2)·B}
本例中入料速度为ve=1×105mm/min;料筒内径为DB=150mm,螺杆根径为DS=50mm;入料口直径为De=20mm;螺棱间的轴向距离为B=50mm;螺杆的螺旋角为Φ=37°,所以通过计算得到螺旋杆转速为r=32转/min。
根据原料的不同及螺旋杆旋转速度的不同,加热功率需要进行调整:
P≥{rBcρV(Tm-T0)}/(L·η)
螺旋杆转速为r=32转/min;
螺棱间的轴向距离为B=50mm;
纯镁的比热容为CMg=1.025J/(g﹒K),纯锌的比热容为CZn=0.38J/(g﹒K),所以这里为了保证加热功率足够大,比热容取c=1.025J/(g﹒K);
因为成形梯度金属材料的密度变化范围为ρ=1.738-2.074g/cm3,为了保证加热功率能达到要求,加热功率取最大值,所以ρ=2.074;
材料单位传输体积=3.14×104cm3
因为纯镁的熔点较高,所以材料的熔点Tm=648℃;材料初始温度为25℃;
圆形料筒长度为L=700mm;
η为材料吸热效率,取为0.8。
所以计算可以得到加热功率为P≥1660KW
在熔化的金属液到达出料口时,控制拉坯速度,保证进料速度与出料速度相同,从而在冷却水的作用下,形成Zn成分变化范围为0%~6%的Mg-Zn梯度金属棒材。

Claims (7)

  1. 一种高通量制备多组分梯度金属材料的装置,其特征在于,该装置包括粉末流速在线调节系统、旋转进料系统、加热系统、保温系统、电机驱动系统、坯料成形系统和控制系统;
    其中,所述粉末流速在线调节系统用于控制多种金属粉末的供料量,即粉末的组成比,所述包括至少2个金属粉末存储器、动态流速控制阀和粉末混合器;至少2个所述金属粉末存储器通过送料管路与所述中间存料器的进料口连接,所述动态流速控制阀设置在所述送料管路上;
    所述旋转进料系统用于混合粉末送料,包括圆筒状料筒和螺旋杆。所述圆筒状料筒的侧壁上端设有进料口,所述进料口通过管路与所述中间存料器出料口连接,所述螺旋杆设置在所述圆筒状料筒内部,所述圆筒状料筒的底部设有圆锥形出料口,所述螺旋杆直径与所述圆筒状料筒内径相等;
    所述加热系统为感应加热器用于融化进入所述圆筒状料筒内的混合金属粉末。所述感应加热器所述设置在位于所述圆筒状料筒的出料口下端的侧壁上;
    所述保温系统为保温套,设置在所述感应加热器的外侧壁上;
    所述电机驱动系统用于驱动所述螺旋杆转动。所述电机驱动系统包括驱动电机、驱动轴和驱动轴连接器,所述驱动电机设置在所述圆筒状料筒上端。所述驱动电机通过所述驱动轴、驱动轴连接器与所述螺旋杆的驱动连接。所述驱动轴连接器与所述圆筒状料筒之间的连接处通过密封圈密封。
    所述坯料成形系统用于金属材料成形,包括模具、冷凝结晶器和拉坯装置。所述模具设置在所述圆锥形出料口的下端,所述冷凝结晶器设置在所述模具内部的所述圆锥形出料口的两侧,所述拉胚装置设置在所述模具的出料口下端;
    所述控制系统用于控制整个装置,包括上位机和控制信号处理器。所述上位机通过控制信号处理器与所述驱动电机、动态流速控制阀和感应加热器控制连接。
  2. 根据权利要求1所述的装置,其特征在于,所述圆筒状料筒的内径DB与所述螺旋杆根径D0的比例为1.5-8:1。
  3. 根据权利要求1所述的装置,其特征在于,所述螺旋杆的螺棱间的轴向距离为B;
    B=DBtanΦ,
    式中:DB为料筒的内径,Φ为螺旋杆的螺旋角Φ=30°-60°。
  4. 根据权利要求1所述的装置,其特征在于,所述料筒的入料口直径De与出料口直径Do相等。
  5. 一种如权利要求1-4任意一项所述的装置的使用方法,其特征在于,具体包括以下步骤:
    步骤1:将不同金属粉末分别加入到粉末存储器(1)中,上位机(11)控制动态流速控制阀(2)金属粉末以一定流速进入到中间存料器(3)中,同时,上位机11通过驱动电机4驱动螺旋杆4以转速r进行转动;
    步骤2:混合粉末(原料)经进料口(8)进入料筒(13)内,在自身重力及螺旋杆(14)带动下向下流动,其中,螺旋杆(14)和料筒(13)紧密配合,由于旋转送料机构(14)的作用使得成分连续变化的混合粉末向下运动过程有序可控,不会产生成分均匀化现象,上位机(11)控制感应线圈(15)以一定的功率P对料筒进行加热,
    混合粉末在感应线圈(15)加热下融化,熔融金属通过料筒(13)底部的出料口(12)进入模具(17),在冷却结晶器(18)的冷却作用下凝固,并在拉坯装置(19)作用下最终形成成分连续变化金属棒料(20)可在不同部位截取具有不同合金成分的试样,从而实现了多组分梯度金属材料试样的高通量制备。
  6. 根据权利要求5所述的方法,其特征在于,所述步骤1中螺旋杆(4)的转速r通过以下公式求出,公式如下:
    r=(veDe 2cosΦ)/{(DB 2-DS 2)·B},
    式中,r为螺杆的转速;Φ为螺纹的螺旋角;DS为螺杆的直径;DB为套筒内径;De为物料入口直径;ve为入料和出料速度;B为螺棱间的轴向距离。
  7. 根据权利要求5所述的方法,其特征在于,所述步骤2中的加热功率P通过以下公式求出,公式如下:
    P≥{rBcρV(Tm-T0)}/(L·η),
    式中,P为加热功率;r为螺杆的转速;B为螺棱间的轴向距离;c为材料比热容;ρ为成形后梯度材料密度;V为材料单位传输体积;Tm 为材料熔点;T0为材料初始温度;L为套筒本身长度;η为材料吸热效率。
PCT/CN2017/086077 2016-04-26 2017-05-26 一种高通量制备多组分梯度金属材料的装置 WO2017186191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/169,570 US10913110B2 (en) 2016-04-26 2018-10-24 Apparatus for high-throughput screw caster of multi-component gradient metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610267117.5 2016-04-26
CN201610267117.5A CN105954074B (zh) 2016-04-26 2016-04-26 一种高通量制备多组分梯度金属材料的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/169,570 Continuation-In-Part US10913110B2 (en) 2016-04-26 2018-10-24 Apparatus for high-throughput screw caster of multi-component gradient metal material

Publications (1)

Publication Number Publication Date
WO2017186191A1 true WO2017186191A1 (zh) 2017-11-02

Family

ID=56916277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086077 WO2017186191A1 (zh) 2016-04-26 2017-05-26 一种高通量制备多组分梯度金属材料的装置

Country Status (3)

Country Link
US (1) US10913110B2 (zh)
CN (1) CN105954074B (zh)
WO (1) WO2017186191A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097956A (zh) * 2018-02-05 2018-06-01 温州大学激光与光电智能制造研究院 大型复杂梯度功能构件激光直接制造粉末配比动态送粉装置及加工设备
CN111825431A (zh) * 2020-05-20 2020-10-27 中国工程物理研究院材料研究所 一种复合材料的高通量一体化制备方法
CN115475967A (zh) * 2022-10-14 2022-12-16 北京航空航天大学 一种粉末搅拌摩擦增材制造设备的增材头
JP2023503873A (ja) * 2020-12-31 2023-02-01 北京科技大学 多成分径方向機能傾斜材料装置の溶融体流速の調整システム及び方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954074B (zh) * 2016-04-26 2018-08-03 北京科技大学 一种高通量制备多组分梯度金属材料的装置
US10287218B2 (en) * 2016-08-09 2019-05-14 Raytheon Company Solid propellant additive manufacturing method and system
CN106825504B (zh) * 2016-11-23 2019-06-28 中国科学院宁波材料技术与工程研究所 一种适用于多卡材料的高通量制备装置及其制备方法
CN107900334B (zh) * 2017-11-17 2020-02-21 北京科技大学 一种基于阵列式布粉的激光高通量制备方法
CN107914021B (zh) * 2017-11-23 2019-09-03 北京科技大学 一种高通量研究制备难熔金属材料样品的装置及方法
WO2019108199A1 (en) 2017-11-30 2019-06-06 Hewlett-Packard Development Company, L.P. Varying the composition of build materials used for a three dimensional part
CN108568502B (zh) * 2018-05-18 2019-09-17 东北大学 一种制备成分梯度铝合金材料的装置及方法
CN109226766B (zh) * 2018-08-07 2020-01-10 北京科技大学 一种高通量制备金属基复合材料的装置和方法
CN109082710B (zh) * 2018-09-17 2020-08-11 中国科学院金属研究所 一种化学成分连续梯度分布的镍基单晶高温合金试棒的制备方法
CN110434982B (zh) * 2019-08-07 2021-06-29 中国科学院理化技术研究所 一种高通量粉体的制备装置及其使用方法
CN110590152A (zh) * 2019-09-24 2019-12-20 南京玻璃纤维研究设计院有限公司 一种多组分玻璃纤维梯度高通量制备方法
CN110538586A (zh) * 2019-09-29 2019-12-06 北京科技大学 高通量制备多组元梯度材料的原料流速的调节系统及方法
CN110899645A (zh) * 2019-11-09 2020-03-24 上海航天设备制造总厂有限公司 一种tlp扩散焊中间层材料制备方法、焊接方法与表征方法
CN110722161B (zh) * 2019-12-10 2023-11-14 南方科技大学 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法
CN111495269B (zh) * 2020-04-22 2021-12-17 东莞理工学院 一种阶梯式合金熔体成分的高通量配置装置和配置方法
CN112762712B (zh) * 2020-12-17 2022-09-23 圣航粉末冶金河北有限公司 一种复合合金制备系统
CN113102862B (zh) * 2021-05-13 2023-06-16 重庆大学 一种超声辅助的电弧增材制造方法
CN113967735B (zh) * 2021-10-20 2023-05-05 广东长信精密设备有限公司 一种金属粉末混合方法
CN113828241B (zh) * 2021-11-26 2022-02-22 北京煜鼎增材制造研究院有限公司 成分调控装置、方法及金属材料高通量制备系统
CN114192752A (zh) * 2021-12-08 2022-03-18 万丰镁瑞丁新材料科技有限公司 一种新型螺杆式压铸结构及其压铸方法
CN114346188B (zh) * 2022-01-14 2023-03-28 华北理工大学 一种超高速连铸结晶器流场控制调节装置
CN114934312A (zh) * 2022-05-18 2022-08-23 中南大学 一种制造高通量样品和梯度功能材料的装置和方法
CN115229217B (zh) * 2022-08-30 2023-06-30 钢研纳克检测技术股份有限公司 一种用于制备多组分小尺寸样品的高通量3d打印系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129059A (ja) * 1997-10-28 1999-05-18 Kawasaki Steel Corp 連鋳用モールドパウダーの加熱供給方法およびその装置
JP2003112255A (ja) * 2001-10-02 2003-04-15 Toshiba Mach Co Ltd 溶解金属供給装置、溶解金属供給方法およびダイカストマシン
JP2004009052A (ja) * 2002-06-03 2004-01-15 Toshiba Mach Co Ltd 溶解金属供給装置及びダイカストマシン
CN101020230A (zh) * 2006-02-14 2007-08-22 丁刚 钢结硬质合金多流连铸工艺及设备
CN104117644A (zh) * 2014-07-17 2014-10-29 江西理工大学 一种可提供压力铸造的金属铸坯连续制造装置和方法
CN104117643A (zh) * 2014-07-17 2014-10-29 江西理工大学 一种锌锡合金杆的连续制造装置和方法
CN104552944A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种可实现在线合金化的3d打印配料挤出装置
CN105328181A (zh) * 2015-12-08 2016-02-17 湖北工业大学 一种TiC-NiMo复合材料构件的激光成形方法
CN105954074A (zh) * 2016-04-26 2016-09-21 北京科技大学 一种高通量制备多组分梯度金属材料的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653534A (en) * 1994-10-12 1997-08-05 Sumitomo Chemical Company, Limited Screw apparatus and method for supplying reinforcing fiber-containing molten resin using the apparatus
CN1120068C (zh) * 2001-02-28 2003-09-03 北京科技大学 一种包复材料一次铸造连续成形设备与工艺
CN2501886Y (zh) * 2001-10-29 2002-07-24 成都中核新材料股份有限公司 真空连续晶化炉
CN100557048C (zh) * 2007-10-18 2009-11-04 中南大学 一种感应加热连续炼镁装置及其连续炼镁工艺
CN202161847U (zh) * 2011-07-21 2012-03-14 无锡荣丰生物工程有限公司 晶浆分离器装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129059A (ja) * 1997-10-28 1999-05-18 Kawasaki Steel Corp 連鋳用モールドパウダーの加熱供給方法およびその装置
JP2003112255A (ja) * 2001-10-02 2003-04-15 Toshiba Mach Co Ltd 溶解金属供給装置、溶解金属供給方法およびダイカストマシン
JP2004009052A (ja) * 2002-06-03 2004-01-15 Toshiba Mach Co Ltd 溶解金属供給装置及びダイカストマシン
CN101020230A (zh) * 2006-02-14 2007-08-22 丁刚 钢结硬质合金多流连铸工艺及设备
CN104117644A (zh) * 2014-07-17 2014-10-29 江西理工大学 一种可提供压力铸造的金属铸坯连续制造装置和方法
CN104117643A (zh) * 2014-07-17 2014-10-29 江西理工大学 一种锌锡合金杆的连续制造装置和方法
CN104552944A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种可实现在线合金化的3d打印配料挤出装置
CN105328181A (zh) * 2015-12-08 2016-02-17 湖北工业大学 一种TiC-NiMo复合材料构件的激光成形方法
CN105954074A (zh) * 2016-04-26 2016-09-21 北京科技大学 一种高通量制备多组分梯度金属材料的装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097956A (zh) * 2018-02-05 2018-06-01 温州大学激光与光电智能制造研究院 大型复杂梯度功能构件激光直接制造粉末配比动态送粉装置及加工设备
CN108097956B (zh) * 2018-02-05 2024-02-23 温州大学激光与光电智能制造研究院 大型复杂梯度功能构件激光直接制造粉末配比动态送粉装置及加工设备
CN111825431A (zh) * 2020-05-20 2020-10-27 中国工程物理研究院材料研究所 一种复合材料的高通量一体化制备方法
JP2023503873A (ja) * 2020-12-31 2023-02-01 北京科技大学 多成分径方向機能傾斜材料装置の溶融体流速の調整システム及び方法
CN115475967A (zh) * 2022-10-14 2022-12-16 北京航空航天大学 一种粉末搅拌摩擦增材制造设备的增材头

Also Published As

Publication number Publication date
US10913110B2 (en) 2021-02-09
US20190054521A1 (en) 2019-02-21
CN105954074A (zh) 2016-09-21
CN105954074B (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2017186191A1 (zh) 一种高通量制备多组分梯度金属材料的装置
CN104988343B (zh) 一种气冷多管搅拌制备轻合金半固态浆料的装置及方法
CN105855498A (zh) 半固态金属浆料制备装置及方法
CN206597539U (zh) 一种自搅拌化学合成反应器
CN206382528U (zh) 制备铝基复合材料用半连续铸造装置
CN106735024A (zh) 制备铝基复合材料用半连续铸造装置
CN202683216U (zh) 一种工业用制备石墨烯的大型反应釜装置
CN204365316U (zh) 聚羧酸反应釜自动控温装置
CN108546837A (zh) 钛及钛合金短流程制备用的连续上料装置与上料方法
CN210833004U (zh) 回转煅烧炉
CN1657201A (zh) 制备半固态合金浆料的方法及其设备
CN211636436U (zh) 一种四氯化锆熔盐提纯熔解装置
CN201697447U (zh) 纳米级WO3/TiO2功能材料煅烧装置
CN208555979U (zh) 一种增材制造装置
WO2022078528A1 (zh) 多组元径向功能梯度材料设备的熔体流速调节系统及方法
CN103464082B (zh) 一种纳米粉体材料制备系统
CN113478781B (zh) 一种高温行星混炼挤出机
CN110538586A (zh) 高通量制备多组元梯度材料的原料流速的调节系统及方法
CN105999757B (zh) 液淬粗馏反应釜
CN2834659Y (zh) 熔融结晶法制备高纯有机物的装置
CN104789760B (zh) 一种还原铁回转筒式冷却机的高效冷却筒体
CN204395957U (zh) 聚羧酸减水剂高效率反应釜
CN208529673U (zh) 一种锥形六螺杆挤出机
CN106433707A (zh) 一种热叶片式电子垃圾热解装置
CN202692633U (zh) 双螺旋蒸汽干燥机

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788843

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788843

Country of ref document: EP

Kind code of ref document: A1