WO2022078528A1 - 多组元径向功能梯度材料设备的熔体流速调节系统及方法 - Google Patents

多组元径向功能梯度材料设备的熔体流速调节系统及方法 Download PDF

Info

Publication number
WO2022078528A1
WO2022078528A1 PCT/CN2021/133274 CN2021133274W WO2022078528A1 WO 2022078528 A1 WO2022078528 A1 WO 2022078528A1 CN 2021133274 W CN2021133274 W CN 2021133274W WO 2022078528 A1 WO2022078528 A1 WO 2022078528A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
screw
flow rate
gradient
machine
Prior art date
Application number
PCT/CN2021/133274
Other languages
English (en)
French (fr)
Inventor
李静媛
戴尚
蔡晨
祁明凡
谷金波
谢建新
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to JP2022529072A priority Critical patent/JP2023503873A/ja
Priority to US17/639,901 priority patent/US11752543B2/en
Publication of WO2022078528A1 publication Critical patent/WO2022078528A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/107Means for feeding molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/04Centrifugal casting; Casting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/12Controlling, supervising, specially adapted to centrifugal casting, e.g. for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/04Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles using movable moulds not applied
    • B29C39/08Introducing the material into the mould by centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/04Other methods of shaping glass by centrifuging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/021Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/04Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of material processing and preparation, and in particular relates to a large-sized multi-component alloy, resin, glass and other materials whose chemical composition varies continuously along the radial direction. Melt flow rate adjustment system and method for element radial functionally graded material equipment.
  • functionally graded materials are mainly prepared by methods such as vapor deposition, plasma spraying, magnetron sputtering, powder metallurgy, laser cladding, and additive manufacturing. Problems such as macro cracking and inability to design components on demand.
  • the present invention discloses a melt flow rate adjustment system and method for a multi-component radial functionally graded material equipment, so as to solve any of the above and other potential problems of the prior art.
  • the present invention discloses a melt flow rate adjustment system for a multi-component radial functionally graded material equipment.
  • the adjustment system includes: a raw material storage tank, a mixing funnel, a screw smelting machine, a centrifugal casting machine, Temperature sensor and control platform;
  • the raw material storage tank is used for storing raw materials for preparing multi-component radial gradient materials
  • the feeding mechanism in the raw material storage tank can control the rotation speed of the feeding mechanism through the control platform, and change the ratio of the raw materials entering the funnel by controlling the rotation speed of the feeding mechanism.
  • the mixing funnel is used to mix the materials entering from the storage tank and control the raw materials to enter the screw smelting machine at different speeds; one end of the mixing funnel is connected to the raw material storage tank;
  • the screw smelting machine is used to melt the raw materials of different chemical ratios in the mixing funnel successively in the feeding order to prevent the long-range diffusion of the melt, and control the outflow at a suitable speed; one end of the screw smelting machine is mixed with the The outlet of the funnel is connected;
  • the screw in the screw smelting machine is close to the inner wall of the melting cavity and rotates vertically downward, which can effectively avoid the long-range diffusion of the melt with continuous change of the composition gradient and the occurrence of mixed melting phenomenon;
  • the centrifugal casting machine is used to solidify the melt with gradient change into a pipe material by centrifugal casting; one end of the centrifugal casting machine is connected with the discharge port of the screw smelting machine; the discharge port at the tail end of the screw smelting machine Set the flow control valve to adjust the melt flow rate.
  • the temperature sensor is used to monitor the outer surface temperature of the centrifugal casting centrifuge cavity and send it to the control platform; the temperature sensor is placed outside the centrifugal casting melting cavity;
  • the control platform is used to obtain the optimal flow rate of the melt at the end of the screw and feed it back to the feed according to the composition gradient of the radial gradient pipe and the thickness of each component gradient material, combined with the real-time data fed back by the temperature sensor. end;
  • Another object of the present invention is to provide a method for preparing a large-size multi-component radially functionally graded material using the above-mentioned adjustment system, the method specifically comprises the following steps:
  • control platform will obtain the flow velocity V of the melt by means of the mathematical model according to the required composition of the multi-component radial functionally graded material and the thickness of the tube wall, and the melt will condense immediately under this flow velocity;
  • the mixing funnel receives and receives the control platform instruction according to the composition of the multi-component radial functionally graded material and the thickness of the pipe wall, and mixes it uniformly, and then transports the raw material to the screw smelting machine;
  • the raw material After the raw material enters the melting cavity of the screw smelting machine, it is subjected to gradient melting by the separation of the screw that is close to the inner wall of the melting cavity and rotates vertically downward, and the melting temperature and the rotating speed R of the screw are regulated by the control platform to make the melt with composition.
  • the continuously changing melt is sent to the centrifugal casting machine at the optimal centrifugal casting speed, that is, the melt flow rate V;
  • b i and b j are the heat storage coefficients of the mold (including the solidified layer casting) and the casting, respectively, T i0 and T j0 are the initial temperature of the mold (transmitted in real time by the temperature sensor) and the initial temperature of the casting (approximately pouring temperature for castings);
  • b s represents the heat storage coefficient of the environment in the centrifuge chamber
  • T s0 represents the initial temperature of the environment in the centrifuge chamber
  • C j ', L j ' are the actual specific heat capacity and latent heat of crystallization
  • T jS is the actual liquidus temperature of each component melt
  • A( ⁇ ) is the inner surface area of the pipe wall at the time ⁇
  • a runner is the cross-sectional area of the runner
  • T ij is given by formula (1)
  • the screw rotation speed R in the described S4) is obtained by the following formula, and the formula is as follows:
  • a large-size multi-component radially functionally graded material is prepared by the above method.
  • the beneficial effects of the present invention are: due to the adoption of the above technical solutions, the present invention has the advantages of real-time feedback, flexible control, and easy operation.
  • the device controls the raw material storage by the system to continuously send the raw materials to the mixer. After mixing the raw materials in different proportions, the raw materials are uniformly mixed, and the flow rate is controlled to continuously send them into the screw smelting furnace for sequential melting, and the control platform controls the melt. Enter the centrifugal casting machine at the optimal flow rate, and under the action of centrifugal force, the mold is quickly filled and solidified, so as to realize the instant transformation of the melt with continuously changing components along the axial direction into the radial gradient material.
  • This method can realize the preparation of pipes, rods, solid/hollow discs, and discs with different compositions of alloys, resins, glass and other materials with large-size components radially continuously changing gradients, which simplifies the preparation process, reduces the time cost, and improves the finished product. quality and production efficiency.
  • Fig. 1 is a schematic diagram of a melt flow rate adjustment system of a radial composition gradient material of the present invention.
  • FIG. 2 is a front cross-sectional view of a melt flow rate adjustment system for a radial composition gradient material of the present invention.
  • FIG 3 is a side sectional view of a melt flow rate adjustment system for a radial composition gradient material according to the present invention.
  • the present invention is a method for adjusting the melt flow rate of radial composition gradient materials.
  • the adjusting system includes: a raw material storage tank, a mixing funnel, a screw smelting machine, a centrifugal casting machine, and a temperature sensor. and control platform;
  • the raw material storage tank is used for storing raw materials for preparing multi-component radial gradient materials
  • the feeding mechanism 1 in the raw material storage tank can control the rotation speed of the feeding mechanism through the control platform, and change the ratio of the raw materials entering the funnel by controlling the rotation speed of the feeding mechanism.
  • the mixing funnel is used to mix the materials entering from the storage tank through the stirring mechanism 2, and control the raw materials to enter the screw smelting machine at different speeds through the feeding valve 5; one end of the mixing funnel is connected to the raw material storage tank. connect;
  • the screw smelting machine is used to melt the raw materials of different chemical ratios in the mixing funnel successively according to the feeding sequence to prevent the melt from spreading over a long distance, and control the melt to flow out at a suitable speed through the lifting module 4; the screw smelting One end of the machine is connected with the material pipe 6;
  • the raw material is melted under the induction heating of the heating coil 18, and the screw rod 16 is close to the inner wall of the melting cavity and rotates vertically downward, which can effectively avoid the long-range diffusion of the melt with continuous change of composition gradient and the occurrence of mixed melting.
  • the centrifugal casting machine includes a mold front cover 22, a centrifuge cavity 24, and a centrifugal casting mold 25; it is used to solidify the melt with gradient changes into a pipe through centrifugal casting; the centrifugal casting machine includes one end Connected with the upper conduit 26 and the lower conduit 27;
  • the centrifuge cavity 24 includes a water spray device 21. Under the action of the water spray device 21, the outer wall of the centrifugal casting mold 25 is rapidly cooled, and the temperature gradient between the casting and the mold is increased to provide a driving force for the solidification of the casting.
  • the platform effectively controls the water spray speed to adjust the casting solidification speed.
  • the temperature sensor 23 is used to monitor the outer surface temperature of the centrifugal casting mold 25 and send it to the control platform; the temperature sensor is placed in the centrifuge cavity 24;
  • the control platform includes a lift module 4, a feed valve 5, a control panel 9, and a flow rate control valve 19; it is used to prepare the composition gradient of the composition radial gradient pipe and the thickness of each component gradient material according to the required composition, combined with a temperature sensor. Feedback real-time data, the best flow rate of the melt at the end of the screw will be calculated and fed back to the feeding end;
  • control platform controls the lifting module 4, the feeding valve 5, and the flow rate control valve 19 according to the mathematical model and the real-time data fed back by the temperature sensor 23 to make the melt enter the centrifugal casting machine with the optimal flow rate calculated by the mathematical model, so as to ensure the composition Continuous solidification of gradient continuously changing materials.
  • Another object of the present invention is to provide a method for preparing a large-size multi-component radially functionally graded material using the above-mentioned adjustment system, the method specifically comprises the following steps:
  • control platform will obtain the flow velocity V of the melt by means of the mathematical model according to the required composition of the multi-component radial functionally graded material and the thickness of the tube wall, and the melt will condense immediately under this flow velocity;
  • the mixing funnel receives and receives the control platform instruction according to the composition of the multi-component radial functionally graded material and the thickness of the pipe wall, and mixes it uniformly, and then transports the raw material to the screw smelting machine;
  • the raw material After the raw material enters the melting cavity of the screw smelting machine, it is subjected to gradient melting by the separation of the screw that is close to the inner wall of the melting cavity and rotates vertically downward, and the melting temperature and the rotating speed R of the screw are regulated by the control platform to make the melt with composition.
  • the continuously changing melt is sent to the centrifugal casting machine at the optimal centrifugal casting speed, that is, the melt flow rate V;
  • b i and b j are the heat storage coefficients of the mold (including the solidified layer casting) and the casting, respectively, T i0 and T j0 are the initial temperature of the mold (transmitted in real time by the temperature sensor) and the initial temperature of the casting (approximately pouring temperature for castings);
  • b s represents the heat storage coefficient of the environment in the centrifuge chamber
  • T s0 represents the initial temperature of the environment in the centrifuge chamber
  • C j ', L j ' are the actual specific heat capacity and latent heat of crystallization
  • T jS is the actual liquidus temperature of each component melt
  • d ⁇ is the solidification thickness
  • A( ⁇ ) is the inner surface area of the pipe wall at the time ⁇
  • a runner is the cross-sectional area of the runner
  • T ij is given by formula (1)
  • the screw rotation speed R in the described S4) is obtained by the following formula, and the formula is as follows:
  • R is the rotational speed of the screw
  • is the helix angle of the thread
  • D S is the diameter of the screw
  • D B is the diameter of the sleeve
  • B is the axial distance between the screw edges
  • De is the diameter of the material inlet.
  • a large-size multi-component radially functionally graded material is prepared by the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Centrifugal Separators (AREA)
  • Continuous Casting (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

本发明属于材料制备领域,公开了一种多组元径向功能梯度材料设备的熔体流速调节系统及方法,该调节系统包括:原料存储罐、混合漏斗、螺旋杆熔炼机、离心铸造机、温度传感器及控制平台。方法通过控制梯度熔炼得到的成分多组元连续变化的熔体并建立熔体流速与变化组元间的数学关系模型,结合实时反馈数据以适合的速度连续不断将熔体送入离心铸造旋转铸型中,熔体迅速充型并快速凝固,得到成分沿径向连续变化熔体的顺序凝固。本发明具有实时反馈、控制灵活、易于操作,且通过该方法可以实现不同成分合金、树脂、玻璃等材料的径向成分梯度变化大尺寸管材、棒材、实/空心碟、盘的制备,简化了制备流程,降低了时间成本,提高了成品质量及制备效率。

Description

多组元径向功能梯度材料设备的熔体流速调节系统及方法 技术领域
本发明属于材料加工制备领域,尤其涉及一种用于化学成分沿径向连续梯度变化的大尺寸多组元合金、树脂、玻璃等材料的管材、棒材、实/空心碟、盘的多组元径向功能梯度材料设备的熔体流速调节系统及方法。
背景技术
航天、核聚变等苛刻服役条件下成分均一的材料以无法满足需求,为克服环境骤变对材料性能的变化需求,复合材料应运而生。传统的复合材料通过热压、焊接等手段制备,由于材料各部分间差异较大,存在着易产生缺陷性能较差等问题。功能梯度材料是指材料的组成、结构、孔隙率等要素由一侧向另一侧连续变化,使材料的物理、化学、力学等性能发生连续变化,从而适应不同环境要求的具有特殊功能的一类新型复合材料。一般认为,功能梯度材料及零部件无法通过常规冶金方法制备。目前,功能梯度材料主要通过气相沉积、等离子喷涂、磁控溅射、粉末冶金、激光熔覆、增材制造等方法制备,然而现存技术存在着制备材料尺寸受限、生产成本高效率低、易产生宏观开裂、无法按需设计成分等问题。
发明内容
本发明公开了多组元径向功能梯度材料设备的熔体流速调节系统及方法,以解决现有技术的上述以及其他潜在问题中任一问题。
为了解决上述问题,本发明的公开了一种多组元径向功能梯度材料设备的熔体流速调节系统,所述调节系统包括:原料存储罐、混合漏斗、螺旋杆熔炼机、离心铸造机、温度传感器及控制平台;
所述原料存储罐,用于存储制备多组元径向梯度材料的原料;
其中,原料储存罐中的进料机构,可以通过控制平台对进料机构的旋 转速度进行调控,通过控制进料机构的旋转速度改变进入漏斗的原料配比。
所述混合漏斗,用于对从存储罐中进入的物料进行混合并控制原料以不同速度进入螺旋杆熔炼机;所述混合漏斗一端与所述原料储存罐连接;
所述螺旋杆熔炼机,用于将混合漏斗中不同化学配比的原料按进料顺序先后融化防止熔体长程扩散,并控制以适合速度控制流出;所述螺旋杆熔炼机一端与所述混合漏斗的出料口连接;
其中,所述螺旋杆熔炼机中螺杆紧贴熔腔内壁且垂直向下旋转,可有效避免成分梯度连续变化熔体的长程扩散作用而发生混熔现象;
所述离心铸造机,用于将成分梯度变化的熔体通过离心铸造方式凝固成为管材;所述离心铸造机一端与螺旋杆熔炼机出料口连接;所述螺旋杆熔炼机尾端出料口设置流速控制阀,以调节熔体流速。
所述温度传感器,用于监控离心铸造离心机腔体的外表面温度,并发送给控制平台;所述温度传感器置于离心铸造熔腔外侧;
所述控制平台,用于根据所需制备成分径向梯度管材的成分梯度以及各组元梯度材料厚度,结合温度传感器反馈的实时数据,将求出螺杆末端熔体的最佳流速并反馈给送料端;
本发明的另一目的是提供一种采用上述的调节系统制备大尺寸多组元径向功能梯度材料的方法,该方法具体包括以下步骤:
S1)按照设计所需制备多组元径向功能梯度材料的成分以及管壁厚度选取所需原料,并将各个原料分别置于各个原料存储罐中备用;
S2)控制平台根据所需制备多组元径向功能梯度材料的成分以及管壁厚度,将借助数学模型求出熔体的流速V,在该流速下熔体即入即凝;
S3)混合漏斗收到接收到控制平台指令按照多组元径向功能梯度材料的成分以及管壁厚度配料并均匀混合后向螺旋杆熔炼机输送原料;
S4)原料进入螺旋杆熔炼机的熔腔后受紧贴熔腔内壁且垂直向下旋转的螺旋杆的分隔作用进行梯度熔化,并由控制平台调控熔炼温度及螺旋杆转速R使熔体以成分连续变化的熔体以最佳离心浇注速度即熔体流速V送至离心铸造机;
S5)熔体以流速V进入离心浇注机后受到离心力的作用在熔腔内迅速充型,并配合铸腔外的水冷装置以实现即入即凝的高效生产模式防止熔体 混熔,制备出成分连续变化的功能梯度管材。
进一步的,所述S2)中的数学模型及具体算法为:
S2.1)根据各个原料的密度ρ,得到各个原理的堆积密度ρ j’,j=A、B、C……N,单位:g/cm 3
S2.2)根据固体内热传导理论的基本方程即傅里叶方程,可确定铸腔内不稳定导热过程中铸型与铸件界面、各个不同成分铸件界面的界面及铸件与离心机腔体内环境界面温度T ij,ij=OA、AB、BC……NS(表示铸件与铸型及各铸型的界面)O为铸型材料,公式如下所示:
Figure PCTCN2021133274-appb-000001
式中,b i和b j分别为铸型(包含已凝固层铸件)和铸件的蓄热系数,T i0和T j0分别是铸型初始温度(由温度传感器实时传输)及铸件初始温度(近似为铸件浇注温度);
S2.3)根据热交换过程热流量关系及能量守恒关系,求出凝固厚度与浇注时间的关系,公式如下所示:
Figure PCTCN2021133274-appb-000002
式中,b s表示离心机腔体内环境的蓄热系数,T s0表示离心机腔体内环境的初始温度,C j’、L j’为各层多组元梯度材料混合后的实际比热容和实际结晶潜热,T jS为各成分熔体的实际液相线温度;
S2.4)对进入离心机腔体的熔体作如下假设:(1)熔体进入熔腔后瞬间充型且完成充型后不与型壁发生相对流动,即忽略对流换热条件;(2)计算熔体流速时按照熔体即入即凝模型,即浇注速度恰好满足凝固条件,凝固材料因新进入材料释放的结晶潜热而部分熔化。综上所述计算出熔体流速与成分梯度连续变化材料及时间的关系,公式如下所示:
Figure PCTCN2021133274-appb-000003
式中,A(τ)为τ时刻的管壁内表面积,A 浇道为浇道截面面积,T ij由公式(1)给出;
所述S4)中的螺旋杆转速R通过以下公式求出,公式如下:
Figure PCTCN2021133274-appb-000004
式中,R为螺杆的转速;Φ为螺纹的螺旋角;D S为螺杆的直径;D B为套口直径;B为螺棱间的轴向距离。
一种大尺寸多组元径向功能梯度材料,所述多组元径向功能梯度材料采用上述方法制备得到。
本发明的有益效果是:由于采用上述技术方案,本发明具有实时反馈、控制灵活、易于操作等优点。该装置通过系统控制原料存储器以连续不断的将原料送至混合器中,在混合其中原料以不同配比均匀混合后,控制流速的不断送入螺旋杆熔炼炉中顺序熔炼,控制平台控制熔体以最佳流速进入离心铸造机,在离心力的作用下迅速充型完成凝固,从而实现将沿轴向成分连续变化的熔体即入即凝地转化为径向梯度材料。通过该方法可以实现不同成分合金、树脂、玻璃等材料的大尺寸成分径向连续梯度变化的管材、棒材、实/空心碟、盘制备,简化了制备流程,降低了时间成本,提高了成品质量及制备效率。
附图说明
图1为本发明一种径向成分梯度材料的熔体流速调节系统的示意图。
图2为本发明一种径向成分梯度材料的熔体流速调节系统的正面剖视图。
图3为本发明一种径向成分梯度材料的熔体流速调节系统的侧剖视图。
图中:
1.进料机构、2.搅拌机构、3.混合漏斗、4.升降模组、5.进料阀、6.料管、7.压力表、8.水冷炉门、9.控制面板、10.水冷炉门观察孔、11.真空密封机构、12.离心铸造炉门观察窗、13.离心铸造炉门、14.电动机、15.抽真空机、16.螺旋杆、17.双层水冷真空腔体、18.加热线圈、19.流速控制阀、20.坩埚、21.喷水装置、22.铸型前盖板、23.温度传感器、24.离心机腔体、25.离心铸造铸型、26.上导管、27.下导管。
具体实施方式
下面结合附图对本发明的原理、技术方案以及优点进一步详细、完整地阐明。
如图1-图3所示,本发明为一种径向成分梯度材料的熔体流速调节方法,所述调节系统包括:原料存储罐、混合漏斗、螺旋杆熔炼机、离心铸造机、温度传感器及控制平台;
所述原料存储罐,用于存储制备多组元径向梯度材料的原料;
其中,原料储存罐中的进料机构1,可以通过控制平台对进料机构的旋转速度进行调控,通过控制进料机构的旋转速度改变进入漏斗的原料配比。
所述混合漏斗,用于对从存储罐中进入的物料通过搅拌机构2进行混合,并通过进料阀5控制原料以不同速度进入螺旋杆熔炼机;所述混合漏斗一端与所述原料储存罐连接;
所述螺旋杆熔炼机,用于将混合漏斗中不同化学配比的原料按进料顺序先后融化防止熔体长程扩散,并通过升降模组4控制熔体以适合速度流出;所述螺旋杆熔炼机一端与料管6连接;
其中,所述原料在加热线圈18的感应加热下熔化,螺旋杆16紧贴熔腔内壁且垂直向下旋转,可有效避免成分梯度连续变化熔体的长程扩散作用而发生混熔现象。
所述离心铸造机,包括铸型前盖板22、离心机腔体24、离心铸造铸型25;用于将成分梯度变化的熔体通过离心铸造方式凝固成为管材;所述离心铸造机包括一端与上导管26和下导管27连接;
其中在离心机腔体24中包含喷水装置21,在喷水装置21的作用下离心铸造铸型25外型壁快速冷却,增加铸件与铸型温度梯度为铸件凝固提供驱动力,另外通过控制平台有效控制喷水速度以调节铸件凝固速度。
所述温度传感器23,用于监控离心铸造铸型25的外表面温度,并发送给控制平台;所述温度传感器置于离心机腔体24中;
所述控制平台,包括升降模组4、进料阀5、控制面板9、流速控制阀19;用于根据所需制备成分径向梯度管材的成分梯度以及各组元梯度材料厚度,结合温度传感器反馈的实时数据,将求出螺杆末端熔体的最佳 流速并反馈给送料端;
其中,控制平台依据数学模型及温度传感器23反馈的实时数据,控制升降模组4、进料阀5、流速控制阀19以数学模型计算得到的最佳流速使熔体进入离心铸造机,保证成分梯度连续变化材料的连续凝固。
本发明的另一目的是提供一种采用上述的调节系统制备大尺寸多组元径向功能梯度材料的方法,该方法具体包括以下步骤:
S1)按照设计所需制备多组元径向功能梯度材料的成分以及管壁厚度选取所需原料,并将各个原料分别置于各个原料存储罐中备用;
S2)控制平台根据所需制备多组元径向功能梯度材料的成分以及管壁厚度,将借助数学模型求出熔体的流速V,在该流速下熔体即入即凝;
S3)混合漏斗收到接收到控制平台指令按照多组元径向功能梯度材料的成分以及管壁厚度配料并均匀混合后向螺旋杆熔炼机输送原料;
S4)原料进入螺旋杆熔炼机的熔腔后受紧贴熔腔内壁且垂直向下旋转的螺旋杆的分隔作用进行梯度熔化,并由控制平台调控熔炼温度及螺旋杆转速R使熔体以成分连续变化的熔体以最佳离心浇注速度即熔体流速V送至离心铸造机;
S5)熔体以流速V进入离心浇注机后受到离心力的作用在熔腔内迅速充型,并配合铸腔外的水冷装置以实现即入即凝的高效生产模式防止熔体混熔,制备出成分连续变化的功能梯度管材。
所述S2)中的数学模型及具体算法为:
S2.1)根据各个原料的密度ρ,得到各个原理的堆积密度ρ j’,j=A、B、C……N,单位:g/cm 3
S2.2)根据固体内热传导理论的基本方程即傅里叶方程,可确定铸腔内不稳定导热过程中铸型与铸件界面、各个不同成分铸件界面的界面及铸件与离心机腔体内环境界面温度T ij,ij=OA、AB、BC……NS(表示铸件与铸型及各铸型的界面),公式如下所示:
Figure PCTCN2021133274-appb-000005
式中,b i和b j分别为铸型(包含已凝固层铸件)和铸件的蓄热系数,T i0和T j0分别是铸型初始温度(由温度传感器实时传输)及铸件初始温度 (近似为铸件浇注温度);
S2.3)根据热交换过程热流量关系及能量守恒关系,求出凝固厚度与浇注时间的关系,公式如下所示:
Figure PCTCN2021133274-appb-000006
式中,b s表示离心机腔体内环境的蓄热系数,T s0表示离心机腔体内环境的初始温度,C j’、L j’为各层多组元梯度材料混合后的实际比热容和实际结晶潜热,T jS为各成分熔体的实际液相线温度,dξ为凝固厚度;
S2.4)对进入离心机腔体的熔体作如下假设:(1)熔体进入熔腔后瞬间充型且完成充型后不与型壁发生相对流动,即忽略对流换热条件;(2)计算熔体流速时按照熔体即入即凝模型,即浇注速度恰好满足凝固条件,凝固材料因新进入材料释放的结晶潜热而部分熔化。综上所述计算出熔体流速与成分梯度连续变化材料及时间的关系,公式如下所示:
Figure PCTCN2021133274-appb-000007
式中,A(τ)为τ时刻的管壁内表面积,A 浇道为浇道截面面积,T ij由公式(1)给出;
所述S4)中的螺旋杆转速R通过以下公式求出,公式如下:
Figure PCTCN2021133274-appb-000008
式中,R为螺杆的转速;Φ为螺纹的螺旋角;D S为螺杆的直径;D B为套口直径;B为螺棱间的轴向距离,De为物料入口直径。
一种大尺寸多组元径向功能梯度材料,所述多组元径向功能梯度材料采用上述方法制备得到。
以上对本申请实施例所提供的一种多组元径向功能梯度材料设备的熔体流速调节系统及方法,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领 域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。

Claims (9)

  1. 一种多组元径向功能梯度材料设备的熔体流速调节系统,其特征在于,所述调节系统包括:原料存储罐、混合漏斗、螺旋杆熔炼机、离心铸造机、温度传感器和控制平台,
    其中,所述原料存储罐,用于存储制备多组元径向梯度材料的原料;
    所述混合漏斗,用于对从存储罐中进入的物料进行混合并控制原料以不同速度进入螺旋杆熔炼机;
    所述螺旋杆熔炼机,用于将混合漏斗中不同化学配比的原料按进料顺序先后融化防止熔体长程扩散,并控制以适合速度控制流出;所述离心铸造机,用于将成分梯度变化的熔体通过离心铸造方式凝固成为径向成分梯度材料;
    所述温度传感器,用于监控离心铸造离心铸造机离心机腔体的外表面温度,并发送给控制平台;
    所述控制平台,用于根据所需制备成分径向梯度管材的成分梯度以及各组元梯度材料厚度,结合温度传感器反馈的实时数据,求出螺杆末端熔体的最佳流速并反馈给送料端。
  2. 根据权利要求1所述的调节系统,其特征在于,所述原料存储罐与所述混合漏斗密封连接,所述混合漏斗通过管路与所述螺旋杆熔炼机的入料口连接,所述螺旋杆熔炼机的出料口与所述离心铸造机的入料口连接,
    所述温度传感器设置在离心铸造机的离心机腔体内,并与所述控制平台连接。
  3. 根据权利要求1所述的调节系统,其特征在于,所述控制平台包括升降模组、进料阀、工控机和流速控制阀;
    其中,所述升降模组设置在所述螺旋杆熔炼机的顶部,并与所述螺旋杆熔炼机的螺旋杆连接,
    所述进料阀设置在所述混合漏斗与所述螺旋杆熔炼机的入料口之间的管路上,
    所述流速控制阀设置在所述螺旋杆熔炼机的出料口处,
    所述升降模组、进料阀、和流速控制阀与所述工控机控制连接。
  4. 一种采用如权利要求1-3任意一项所述的多组元径向功能梯度材料设备的熔体流速调节系统的调节方法,其特征在于,该方法具体包括以下步骤:
    S1)按照设计所需制备多组元径向功能梯度材料的成分以及管壁厚度选取所需原料,并将各个原料分别置于各个原料存储罐中备用;
    S2)控制平台根据所需制备多组元径向功能梯度管材的成分以及管壁厚度,求出熔体的流速V,并将流速V发送混合漏斗、螺旋杆熔炼机和离心铸造机;
    S3)混合漏斗接收到控制平台指令按照多组元径向功能梯度管材的成分以及管壁厚度配料并均匀混合后向螺旋杆熔炼机输送原料;
    S4)原料进入螺旋杆熔炼机的熔腔后受紧贴熔腔内壁且垂直向下旋转的螺旋杆的分隔作用进行梯度熔化,并由控制平台调控熔炼温度及螺旋杆转速R,使熔体以成分连续变化的熔体以最佳离心浇注速度即熔体流速V送至离心铸造机;
    S5)熔体以流速V进入离心浇注机后受到离心力的作用在熔腔内迅速充型,并配合铸腔外的水冷装置以实现即入即凝的高效生产模式防止熔体混熔,制备出成分连续变化的多组元径向功能梯度材料。
  5. 根据权利要求4所述的方法,其特征在于,所述S1)中原料为金属、合金、树脂或玻璃,粒径的尺寸为20mm以下的颗粒,数量为多种。
  6. 根据权利要求4所述的方法,其特征在于,所述多组元径向功能梯度材料为管材、棒材、实/空心的碟或盘。
  7. 根据权利要求4所述的方法,其特征在于,所述S2)中具体步骤为:
    S2.1)根据各个原料的密度ρ,测算得到各个原料的堆积密度ρ j’,j=A、B、C……N,单位:g/cm 3
    S2.2)根据固体内热传导理论的基本方程即傅里叶方程,确定铸腔内不稳定导热过程中铸型与铸件界面、各个不同成分铸件界面的界面及铸件与离心机腔体内环境界面温度T ij,ij=OA、AB、BC……NS(表示铸件与铸型及各铸型的界面),公式如下所示:
    Figure PCTCN2021133274-appb-100001
    式中,b i和b j分别为铸型和铸件的蓄热系数,T i0和T j0分别是铸型初始温度及铸件初始温度;
    S2.3)根据热交换过程热流量关系及能量守恒关系,求出凝固厚度与浇注时间的关系,公式如下所示:
    Figure PCTCN2021133274-appb-100002
    式中,b s为离心机腔体内环境的蓄热系数,T s0为离心机腔体内环境的初始温度,C j’和L j’为各层多组元梯度材料混合后的实际比热容和实际结晶潜热值,T jS为各成分熔体的实际液相线温度,dξ为示凝固层厚度;
    S2.4)将S2.2)得到环境界面温度T ij和S2.3)得到代入公式(3),求出熔体的流速V:
    Figure PCTCN2021133274-appb-100003
    式中,A(τ)为τ时刻的管壁内表面积,A 浇道为浇道截面面积。
  8. 根据权利要求4所述的方法,其特征在于,所述S4)中螺旋杆转速R通过以下公式(4)求出,公式如下:
    Figure PCTCN2021133274-appb-100004
    式中,R为螺杆的转速;Φ为螺纹的螺旋角;D S为螺杆的直径;D B为套口直径;B为螺棱间的轴向距离,De为加料口直径。
  9. 一种大尺寸多组元径向功能梯度材料,其特征在于,所述多组元径向功能梯度材料采用如权利要求4-8任一项所述方法制备得到。
PCT/CN2021/133274 2020-12-31 2021-11-25 多组元径向功能梯度材料设备的熔体流速调节系统及方法 WO2022078528A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022529072A JP2023503873A (ja) 2020-12-31 2021-11-25 多成分径方向機能傾斜材料装置の溶融体流速の調整システム及び方法
US17/639,901 US11752543B2 (en) 2020-12-31 2021-11-25 Melt flow rate adjustment system and method of multi-component radial functional-gradient-material equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011635952.2 2020-12-31
CN202011635952.2A CN112846126B (zh) 2020-12-31 2020-12-31 多组元径向功能梯度材料设备的熔体流速调节系统及方法

Publications (1)

Publication Number Publication Date
WO2022078528A1 true WO2022078528A1 (zh) 2022-04-21

Family

ID=76000363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133274 WO2022078528A1 (zh) 2020-12-31 2021-11-25 多组元径向功能梯度材料设备的熔体流速调节系统及方法

Country Status (4)

Country Link
US (1) US11752543B2 (zh)
JP (1) JP2023503873A (zh)
CN (1) CN112846126B (zh)
WO (1) WO2022078528A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112846126B (zh) * 2020-12-31 2022-05-17 北京科技大学 多组元径向功能梯度材料设备的熔体流速调节系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685357A (en) * 1994-04-28 1997-11-11 The Japan Steel Works, Ltd. Process for producing shaped parts of metals
CN1381322A (zh) * 2001-04-13 2002-11-27 中国科学院金属研究所 颗粒增强铝合金基功能负梯度复合管的制备方法
US20080096043A1 (en) * 2004-07-27 2008-04-24 Universidade Do Minho Process and Equipment For Obtaining Metal Or Metal Matrix Components With A Varying Chemical Composition Along The Height Of The Component And Components Thus Obtained
CN105954074A (zh) * 2016-04-26 2016-09-21 北京科技大学 一种高通量制备多组分梯度金属材料的装置
CN110538586A (zh) * 2019-09-29 2019-12-06 北京科技大学 高通量制备多组元梯度材料的原料流速的调节系统及方法
CN111283175A (zh) * 2020-03-30 2020-06-16 南京理工大学 一种铸造异构金属棒材的装置及方法
CN112846126A (zh) * 2020-12-31 2021-05-28 北京科技大学 多组元径向功能梯度材料设备的熔体流速调节系统及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919792A (ja) * 1982-07-26 1984-02-01 日揮株式会社 炭素析出防止性遠心力鋳造二層管
JPH08257738A (ja) * 1995-03-20 1996-10-08 Masao Kubota 傾斜機能材料の製造方法及び製造装置
DE19639514C1 (de) * 1996-09-26 1997-12-18 Ald Vacuum Techn Gmbh Verfahren und Vorrichtung zum Herstellen von gesteuert erstarrten Präzisionsgußteilen durch Schleudergießen
CN1077471C (zh) * 1999-06-30 2002-01-09 昆明理工大学 一种用泡沫金属中间层制备梯度功能材料的方法
DE10321391B3 (de) * 2003-05-12 2004-10-14 M. Jürgensen GmbH & Co. KG Verfahren zum Schleuderguss
CN101905501A (zh) * 2009-06-02 2010-12-08 嘉峪关市海特机械设备制造有限责任公司 一种调整浇注聚氨酯弹性体制品颜色的调色系统
CN101709414B (zh) * 2009-11-10 2011-09-28 中国兵器工业第五二研究所 高硅梯度复合铝合金缸套材料及其制备方法
CN102581247A (zh) * 2011-09-13 2012-07-18 山西省高平市泫氏铸业有限公司 一种离心铸造生产设备
JP6315761B2 (ja) * 2012-11-30 2018-04-25 国立大学法人 名古屋工業大学 強度、潤滑性および耐摩耗性に優れた自己潤滑性金属複合材料および自己潤滑性金属基複合材料、ならびに当該金属複合材料および金属基複合材料の製造方法
CN103418767A (zh) * 2013-08-30 2013-12-04 西南大学 一种离心铸造颗粒增强复合材料的方法
CN104552944B (zh) * 2014-12-19 2017-03-01 机械科学研究总院先进制造技术研究中心 一种可实现在线合金化的3d打印配料挤出装置
WO2018042929A1 (ja) * 2016-09-02 2018-03-08 Jfeスチール株式会社 圧延用ロール外層材および圧延用複合ロール
JP6304466B1 (ja) * 2016-09-02 2018-04-04 Jfeスチール株式会社 圧延用ロール外層材および圧延用複合ロール
CN106825504B (zh) * 2016-11-23 2019-06-28 中国科学院宁波材料技术与工程研究所 一种适用于多卡材料的高通量制备装置及其制备方法
CN109371264A (zh) * 2018-09-05 2019-02-22 北京科技大学 一种化学成分含量不断变化的合金样品高通量制备方法
CN110548846A (zh) * 2019-09-19 2019-12-10 北京科技大学 一种径向功能梯度复合材料铸造设备和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685357A (en) * 1994-04-28 1997-11-11 The Japan Steel Works, Ltd. Process for producing shaped parts of metals
CN1381322A (zh) * 2001-04-13 2002-11-27 中国科学院金属研究所 颗粒增强铝合金基功能负梯度复合管的制备方法
US20080096043A1 (en) * 2004-07-27 2008-04-24 Universidade Do Minho Process and Equipment For Obtaining Metal Or Metal Matrix Components With A Varying Chemical Composition Along The Height Of The Component And Components Thus Obtained
CN105954074A (zh) * 2016-04-26 2016-09-21 北京科技大学 一种高通量制备多组分梯度金属材料的装置
CN110538586A (zh) * 2019-09-29 2019-12-06 北京科技大学 高通量制备多组元梯度材料的原料流速的调节系统及方法
CN111283175A (zh) * 2020-03-30 2020-06-16 南京理工大学 一种铸造异构金属棒材的装置及方法
CN112846126A (zh) * 2020-12-31 2021-05-28 北京科技大学 多组元径向功能梯度材料设备的熔体流速调节系统及方法

Also Published As

Publication number Publication date
CN112846126A (zh) 2021-05-28
US20220362839A1 (en) 2022-11-17
CN112846126B (zh) 2022-05-17
JP2023503873A (ja) 2023-02-01
US11752543B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
CN105954074B (zh) 一种高通量制备多组分梯度金属材料的装置
CN103031463B (zh) 一种制备纳米陶瓷颗粒增强铝基复合材料的装置及方法
CN105755299B (zh) 一种低成本颗粒增强铝基复合材料的制备装置及方法
WO2022078528A1 (zh) 多组元径向功能梯度材料设备的熔体流速调节系统及方法
CN204898039U (zh) 一种气冷多管搅拌制备轻合金半固态浆料的装置
CN104190883B (zh) 一种电炉出铁自动随流孕育装置及自动随流孕育方法
CN109877299B (zh) 一种甩铸装置及甩铸离心盘
CN110814305B (zh) 一种Cu-Fe复合材料双熔体混合铸造装备与工艺
CN102409188B (zh) 离心激冷制备半固态合金的方法
CN102909322B (zh) 一种连续制备半固态浆料装置
CN101041184A (zh) 一种强制均匀凝固连续制备金属浆料的方法
CN107243643B (zh) 雾化室、用于制备金属粉末的装置
WO2019233130A1 (zh) 一种半固态浆料的制浆装置
CN104232954B (zh) 一种半固态搅拌制备复合材料的制备装置及制备方法
CN104567367B (zh) 双电源底注离心真空感应熔铸炉
CN100574939C (zh) 一种半固态合金浆料的制备与成型装置
CN105665657A (zh) 一种制备均质化铸锭的离散铸造方法
US20230100782A1 (en) Method for preparing amorphous particle-modified magnesium alloy surface-gradient composites
CN105014027B (zh) 一种用于高速连铸机的钢水预冷却装置
CN104148620A (zh) 一种黄铜合金的晶粒细化方法及其装置
CN102925723A (zh) 制备颗粒增强铝基复合材料的方法
CN115094392A (zh) 一种细晶高致密镍铬铝钇硅合金靶材的制备方法
CN113134580B (zh) 金属半固态非枝晶浆料的制备方法以及制备装置
CN102888649B (zh) 一种制备Si-TaSi2共晶自生复合材料的方法
CN202322960U (zh) 一种轻合金半固态浆料制备装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022529072

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879569

Country of ref document: EP

Kind code of ref document: A1