WO2017181913A1 - 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法 - Google Patents

一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法 Download PDF

Info

Publication number
WO2017181913A1
WO2017181913A1 PCT/CN2017/080696 CN2017080696W WO2017181913A1 WO 2017181913 A1 WO2017181913 A1 WO 2017181913A1 CN 2017080696 W CN2017080696 W CN 2017080696W WO 2017181913 A1 WO2017181913 A1 WO 2017181913A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
titanium dioxide
shell structure
shell
composite photocatalyst
Prior art date
Application number
PCT/CN2017/080696
Other languages
English (en)
French (fr)
Inventor
朱黎
Original Assignee
江苏朗逸环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏朗逸环保科技有限公司 filed Critical 江苏朗逸环保科技有限公司
Priority to DE212017000106.2U priority Critical patent/DE212017000106U1/de
Publication of WO2017181913A1 publication Critical patent/WO2017181913A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • B01J35/39
    • B01J35/396
    • B01J35/397
    • B01J35/615
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the invention relates to a composite photocatalyst, in particular to a composite photocatalyst based on nano titanium dioxide and cyclized polyacrylonitrile; and the invention also relates to a preparation method of a composite photocatalyst.
  • Photocatalytic technology has broad application prospects in the field of environmental protection.
  • researchers have developed a series of high-efficiency visible light photocatalytic materials, which greatly improved the utilization efficiency of solar energy, reduced the cost increase and operational risk caused by the necessity of ultraviolet irradiation, and facilitated the practical application of photocatalysis technology.
  • the existing high-efficiency visible light photocatalytic materials will not be able to generate electron-hole pairs after losing the energy supply of the external light source, thereby failing to generate active groups, and the reactivity is rapidly lost, and the environmental pollutants cannot be continuously processed. .
  • the existing high-efficiency visible light photocatalytic materials cannot continuously use solar energy to continuously treat pollutants in the environment, and an auxiliary light source must be disposed outside the solar energy to be continuously reactive in the night. This will bring about two problems.
  • the auxiliary light source system necessarily increases cost and energy consumption.
  • many environmental pollution treatments are not suitable for uninterrupted lighting conditions.
  • Feed system - precious metal palladium oxide nanoparticles modified nitrogen-doped titanium dioxide (Advanced Materials, 2008, 20, 3717; Ournal of Materials Chemistry, 2010, 20, 1068), released photo-generated electrons stored on palladium oxide nanoparticles by light shutdown
  • the generation of superoxide and hydroxyl reactive groups successfully achieved continuous and effective removal of various environmental pollutants in the dark.
  • One of the objects of the present invention is to provide a composite photocatalyst based on nano-titanium dioxide and cyclized polyacrylonitrile, which has superior photocatalytic properties.
  • Another object of the present invention is to provide a preparation method of a composite photocatalyst based on nano titanium dioxide and cyclized polyacrylonitrile, which is simple, inexpensive, and reproducible.
  • the composite photocatalyst based on nano titanium dioxide and cyclized polyacrylonitrile has a core-shell structure, the core is titanium dioxide, and the shell is cyclized polyacrylonitrile; the titanium dioxide is a core-shell structure titanium dioxide.
  • the core-shell structure titanium dioxide includes a shell and a core, and a cavity is formed between the shell and the core, the shell being self-assembled by nanosheets.
  • the core-shell structure titanium dioxide has a diameter of 1100 to 1400 nm, preferably 1120 to 1360 nm, more preferably 1200 to 1350 nm, still more preferably 1250 to 1300 nm; and a core having a width of 350 to 450 nm, preferably 380 to 420 nm.
  • the thickness is preferably 390 to 410 nm; the thickness of the outer shell is 220 to 260 nm, preferably 230 to 250 nm, more preferably 235 to 245 nm, still more preferably 230 to 245 nm.
  • the nanoflakes have a thickness of 3 to 4.5 nm and the crystal form is an anatase phase.
  • the preparation method of the composite photocatalyst of the invention comprises the following steps:
  • the volume ratio of the titanium source is 0.15 to 0.2:3;
  • the mixed liquid is transferred to a high pressure reaction vessel, placed at 190 to 210 ° C for 10 to 15 hours, cooled to room temperature, and the obtained product is washed, centrifuged, dried, and calcined.
  • a core-shell structure of titanium dioxide is obtained.
  • the surfactant is tetraethylene pentamine
  • the titanium source is one or more of tetraisopropyl titanate, tetrabutyl titanate or tetraethyl titanate;
  • the calcination temperature is 260 to 300 ° C, and the calcination time is 1.5 to 3 h.
  • the preparation process of the cyclized polyacrylonitrile comprises the following steps:
  • the operation of the step (2a) is: the acrylonitrile monomer is dissolved in distilled water, stirred, to obtain a mixed solution A, the weight ratio of acrylonitrile monomer: distilled water is 1: 0.5 ⁇ 4;
  • the redox initiator Dissolving the redox initiator in water and stirring to prepare a mixed solution B, the redox initiator comprising an oxidizing agent and a reducing agent, and the weight ratio of the oxidizing agent: reducing agent is 1:1.5 to 5, the redox initiation
  • the agent accounts for 1 to 1.5% of the mass fraction of the acrylonitrile monomer
  • the mixed solution B was added dropwise to the mixed solution A under a nitrogen atmosphere at 40 to 50 ° C, stirred until a white precipitate formed, and the obtained white precipitate was washed and dried to obtain a polyacrylonitrile.
  • the drying temperature is 40 to 60 ° C;
  • the oxidizing agent is K 2 S 2 O 8 ;
  • the reducing agent is NaHSO 3 .
  • the concentration of the sodium hydroxide solution is 6 to 15 mol / L, preferably 8 to 12 mol / L, further preferably 8 to 10 mol / L;
  • the ratio of the core-shell structure titanium dioxide: sodium hydroxide solution 0.2 to 0.8 g: 25 to 40 mL;
  • the weight ratio of sodium dodecyl sulfate: core-shell structure titanium dioxide is 1:2 to 10.
  • the invention has the advantages that the core of the composite photocatalyst is titanium dioxide and the shell is cyclized polyacrylonitrile, wherein the cyclized polyacrylonitrile has a remarkable visible light catalysis effect; in addition, the titanium dioxide itself has The special "nuclear-cavity-shell" structure has a high specific surface area and a specific surface area of up to 280 m 2 g -1 .
  • the sheet-like shell structure of titanium dioxide is not only beneficial to increase the monodispersity of titanium dioxide, but also beneficial to Increasing the structural stability of the material also helps to improve the utilization of light, thereby providing its photocatalytic or photolytic properties.
  • the composite photocatalyst combines the characteristics of the core-shell structure of titanium dioxide and cyclized polyacrylonitrile, and thus exhibits better photocatalytic properties, and the degradation rate of the model pollutant rhodamine B can reach 120 minutes after visible light irradiation. 97%.
  • the preparation method of the photocatalyst is simple and easy, low in price and good in repeatability, does not require complicated and expensive equipment, and has mild synthesis conditions, which is favorable for large-scale promotion.
  • the composite photocatalyst based on nano titanium dioxide and cyclized polyacrylonitrile of the present embodiment has a core-shell structure, the core is titanium dioxide, the shell is cyclized polyacrylonitrile; the titanium dioxide is a core-shell structure titanium dioxide, and the core-shell structure titanium dioxide includes an outer shell and The core, the cavity and the core have a cavity, and the outer casing is self-assembled by nanosheets.
  • the core-shell structure titanium dioxide has a diameter of 1100 nm, a core width of 350 nm, and a shell thickness of 220 nm.
  • the nanoflakes have a thickness of 3 nm and the crystal form is an anatase phase.
  • the surfactant is tetraethylene pentamine; the titanium source is tetraisopropyl titanate; the calcination temperature is 260 ° C, and the calcination time is 3 h.
  • the acrylonitrile monomer is dissolved in distilled water and stirred to obtain a mixed solution A, and the weight ratio of acrylonitrile monomer: distilled water is 1:0.5;
  • the redox initiator is dissolved in water and stirred to prepare a mixed solution B.
  • the redox initiator comprises an oxidizing agent K 2 S 2 O 8 and a reducing agent NaHSO 3 , and the weight ratio of the oxidizing agent: reducing agent is 1:1.5, and the redox is initiated.
  • the agent accounts for 1% of the mass fraction of the acrylonitrile monomer;
  • the mixed solution B was added dropwise to the mixed solution A under a nitrogen atmosphere at 40 ° C, stirred until a white precipitate formed, and the obtained white precipitate was washed and dried at 40 ° C to obtain a polyacrylonitrile;
  • the composite photocatalyst prepared in this embodiment is not only used for photocatalytic reduction of carbon dioxide and water to produce methane and hydrogen, but also for photocatalytic degradation of contaminant Rhodamine B in water.
  • the test methods and required instruments of the two refer to related technologies.
  • the composite photocatalyst based on nano titanium dioxide and cyclized polyacrylonitrile of the present embodiment has a core-shell structure, the core is titanium dioxide, the shell is cyclized polyacrylonitrile; the titanium dioxide is a core-shell structure titanium dioxide, and the core-shell structure titanium dioxide includes an outer shell and The core, the cavity and the core have a cavity, and the outer casing is self-assembled by nanosheets.
  • the core-shell structure titanium dioxide has a diameter of 1250 nm, a core width of 400 nm, and a shell thickness of 240 nm.
  • the nanoflakes have a thickness of 4 nm and the crystal form is an anatase phase.
  • the surfactant is tetraethylene pentamine
  • the titanium source is a mixture of tetraisopropyl titanate and tetrabutyl titanate
  • the calcination temperature is 280 ° C
  • the calcination time is 2.0 h.
  • the acrylonitrile monomer is dissolved in distilled water and stirred to obtain a mixed solution A, and the weight ratio of acrylonitrile monomer: distilled water is 1:2.5;
  • the redox initiator is dissolved in water and stirred to prepare a mixed solution B.
  • the redox initiator comprises an oxidant k 2 S 2 O 8 and a reducing agent NaHSO 3 , and the weight ratio of the oxidizing agent: reducing agent is 1:3, redox initiation
  • the agent accounts for 1.2% of the mass fraction of the acrylonitrile monomer;
  • the mixed solution B was added dropwise to the mixed solution A under a nitrogen atmosphere at 45 ° C, stirred until a white precipitate formed, and the obtained white precipitate was washed and dried at 45 ° C to obtain a polyacrylonitrile;
  • the photocatalyst prepared in this example has been tested not only for photocatalytic reduction of carbon dioxide and water to produce methane and hydrogen, but also for photocatalytic degradation of contaminant Rhodamine B in water.
  • the test methods and required instruments of the two refer to related technologies.
  • the composite photocatalyst based on nano titanium dioxide and cyclized polyacrylonitrile of the present embodiment has a core-shell structure, the core is titanium dioxide, the shell is cyclized polyacrylonitrile; the titanium dioxide is a core-shell structure titanium dioxide, and the core-shell structure titanium dioxide includes an outer shell and The core, the cavity and the core have a cavity, and the outer casing is self-assembled by nanosheets.
  • the core-shell structure titanium dioxide has a diameter of 1400 nm, a core width of 450 nm, and a shell thickness of 260 nm.
  • the nanoflakes have a thickness of 4.5 nm and the crystal form is an anatase phase.
  • the surfactant is tetraethylene pentamine; the titanium source is tetraethyl titanate; the baking temperature is 300 ° C, and the baking time is 3 h.
  • the acrylonitrile monomer is dissolved in distilled water and stirred to obtain a mixed solution A, the weight ratio of acrylonitrile monomer: distilled water is 1:4;
  • the redox initiator is dissolved in water and stirred to prepare a mixed solution B.
  • the redox initiator comprises an oxidizing agent K 2 S 2 O 8 and a reducing agent NaHSO 3 , and the weight ratio of the oxidizing agent: reducing agent is 1:5, and the redox is initiated.
  • the agent accounts for 1.5% of the mass fraction of the acrylonitrile monomer;
  • the mixed solution B was added dropwise to the mixed solution A under a nitrogen atmosphere at 50 ° C, stirred until a white precipitate formed, and the obtained white precipitate was washed and dried at 60 ° C to obtain a polyacrylonitrile;
  • the photocatalyst prepared in this example has been tested not only for photocatalytic reduction of carbon dioxide and water to produce methane and hydrogen, but also for photocatalytic degradation of contaminant Rhodamine B in water.
  • the test methods and required instruments of the two refer to related technologies.

Abstract

一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂,该复合光催化剂具有核壳结构,核为二氧化钛,壳为环化聚丙烯腈;二氧化钛为核壳结构二氧化钛,该核壳结构二氧化钛包括外壳和内核,外壳和内核之间具有空腔,外壳由纳米薄片自组装而成。本复合光催化剂集核壳结构二氧化钛与环化聚丙烯腈的特性于一身,进而表现出更优的光催化等性能,其在可见光照射120min对模型污染物罗丹明B的降解率可达97%。

Description

一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法 技术领域
本发明涉及一种复合光催化剂,尤其涉及一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂;本发明还涉及一种复合光催化剂的制备方法。
背景技术
光催化技术在环境保护领域具有广阔的应用前景。近年来,科研工作者发展出系列高效可见光光催化材料,大大提高了对太阳光能的利用效率,降低由于必须采用紫外照射带来的成本增加和运行风险,有利于光催化技术进入实际应用。然而,现有的高效可见光光催化材料在失去外界光源的能量供应之后将不能产生电子-空穴对,从而无法生成活性基团,其反应活性迅速丧失,无法继续对环境中的污染物进行处理。因此,现有的高效可见光光催化材料无法仅利用太阳能来持续处理环境中的污染物,必须在太阳光能之外配置辅助光源才能在黑夜中持续具有反应活性。这就会带来两方面的问题。一方面,辅助光源系统必然增加成本与能耗。另一方面,很多环境污染的处理并不适宜无间断光照条件。
针对此问题,中国科学院在高效可见光光催化材料研究的基础上提出通过一种光催化“记忆”效应储存其在光照条件下产生的高能光生电子,在光照关闭后通过释放这些储存电子产生活性基团,从而使其能在无光条件下较长时间保持活性。这将能够充分利用太阳光能与一般照明光源全天候地对环境中的污染物进行无间断的处理,大大增强光催化技术对环境污染的处理效果,降低处理成本和能耗,使光催化技术在更广泛的环境保护领域获得新的应用,具有重要的意义。在此思路指导下,他们发展出第一代具有“记忆”效应的光催化材 料体系——贵金属氧化钯纳米颗粒修饰氮掺杂二氧化钛(Advanced Materials,2008,20,3717;ournal of Materials Chemistry,2010,20,1068),通过光照关闭后释放氧化钯纳米颗粒上存储的光生电子产生超氧与羟基活性基团,成功实现了在黑暗中对多种环境污染物的持续有效去除。
目前研究最多的半导体光催化剂是TiO2,但是其带隙较大(3.2eV),只有在紫外光下才有响应,不能充分利用太阳能,很大程度上限制了其实际应用。因此研究具有可见光响应性能的光催化剂具有重要意义。
发明内容
本发明的目的之一是提供一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂,其具有较优的光催化性能。
本发明的目的之二是提供一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂的制备方法,其简单易行、价格低廉且重复性好。
本发明所述的基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂,所述复合光催化剂具有核壳结构,核为二氧化钛,壳为环化聚丙烯腈;所述二氧化钛为核壳结构二氧化钛,所述核壳结构二氧化钛包括外壳和内核,所述外壳和内核之间具有空腔,所述外壳由纳米薄片自组装而成。
优选的,所述核壳结构二氧化钛的直径为1100~1400nm,优选1120~1360nm,进一步优选为1200~1350nm,更进一步优选为1250~1300nm;其内核的宽度为350~450nm,优选为380~420nm,进一步优选为390~410nm;外壳的厚度为220~260nm,优选为230~250nm,进一步优选为235~245nm,更进一步优选为230~245nm。
优选的,所述纳米薄片的厚度为3~4.5nm,晶型为锐钛矿相。
本发明所述复合光催化剂的制备方法,包括如下步骤:
(1)制备核壳结构二氧化钛;
(2)制备环化聚丙烯腈;
(3)制备复合光催化剂;将步骤(1)制备的核壳结构二氧化钛超声分散于氢氧化钠溶液中,制得混合溶液;分别将十二烷基磺酸钠、步骤(2)制备的环化聚丙烯腈加入至所述混合溶液中,搅拌,制得混合液;将所述混合液转至热反应容器内,于80~95℃下反应6~8h,所得产物经抽滤、洗涤、干燥,制得复合光催化剂。
优选的,步骤(1)的操作步骤为:将表面活性剂、异丙醇、钛源混合,制得混合液,钛源∶异丙醇的体积比=1~25∶30,表面活性剂∶钛源的体积比=0.15~0.2∶3;将所述混合液转移至高压反应容器内,于190~210℃下放置10~15h,冷却至室温,所得产物经洗涤、离心、干燥、焙烧,制得核壳结构二氧化钛。
优选的,所述表面活性剂为四乙烯五胺;
优选的,所述钛源为钛酸四异丙酯、钛酸四丁酯或钛酸四乙酯中的一种或两种以上;
优选的,所述焙烧温度为260~300℃,焙烧时间为1.5~3h。
优选的,步骤(2)中,所述环化聚丙烯腈的制备过程包括如下步骤:
(2a)水相沉淀法制备聚丙烯腈;
(2b)制备环化聚丙烯腈;将步骤(2a)制备的聚丙烯腈研磨后,置于210~225℃下热处理2~3.5h,再次研磨,制得环化聚丙烯腈。
优选的,步骤(2a)的操作过程为:将丙烯腈单体溶于蒸馏水中,搅拌,制得混合溶液A,丙烯腈单体∶蒸馏水的重量比为1∶0.5~4;
将氧化还原引发剂溶于水中,搅拌,制得混合溶液B,所述氧化还原引发剂包括氧化剂和还原剂,氧化剂∶还原剂的重量比=1∶1.5~5,所述氧化还原引发 剂占丙烯腈单体的质量分数为1~1.5%;
在40~50℃的氮气气氛下,将混合溶液B滴加至混合溶液A中,搅拌直至白色沉淀生成,获得的白色沉淀经洗涤、烘干后,制得聚丙烯腈。
优选的,烘干温度为40~60℃;
优选的,所述氧化剂为K2S2O8
优选的,所述还原剂为NaHSO3
优选的,步骤(3)中,所述氢氧化钠溶液的浓度为6~15mol/L,优选为8~12mol/L,进一步优选为8~10mol/L;
优选的,步骤(3)中,核壳结构二氧化钛∶氢氧化钠溶液的比例=0.2~0.8g∶25~40mL;
优选的,步骤(3)中,环化聚丙烯腈∶核壳结构二氧化钛的重量比=5~12∶1;
优选的,步骤(3)中,十二烷基磺酸钠∶核壳结构二氧化钛的重量比=1∶2~10。
与现有技术相比,本发明的优点在于:本复合光催化剂的核为二氧化钛,壳为环化聚丙烯腈,其中,环化聚丙烯腈具有较为显著地可见光催化效果;另外,二氧化钛本身具有特殊的“核-空腔-壳”结构,具有较高的比表面积,比表面积可达280m2g-1左右,二氧化钛的片状壳层结构不仅有利于提高二氧化钛的单分散性,而且有利于提高材料的结构稳定性,还有利于提高光线的利用率,进而提供其光催化或光解水性能。
因此,本复合光催化剂集核壳结构二氧化钛与环化聚丙烯腈的特性于一身,进而表现出更优的光催化等性能,其在可见光照射120min对模型污染物罗丹明B的降解率可达97%。
此外,本光催化剂的制备方法简单易行、价格低廉且重复性好,不需要复杂昂贵的设备,合成条件温和,有利于大规模推广。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例1
本实施例的基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂,其具有核壳结构,核为二氧化钛,壳为环化聚丙烯腈;二氧化钛为核壳结构二氧化钛,核壳结构二氧化钛包括外壳和内核,外壳和内核之间具有空腔,外壳由纳米薄片自组装而成。
核壳结构二氧化钛的直径为1100nm,其内核的宽度为350nm,外壳的厚度为220nm。纳米薄片的厚度为3nm,晶型为锐钛矿相。
本实施例复合光催化剂的制备方法,包括如下步骤:
(1)制备核壳结构二氧化钛;
将表面活性剂、异丙醇、钛源混合,制得混合液,钛源∶异丙醇的体积比=1∶30,表面活性剂∶钛源的体积比=0.15∶3;将所述混合液转移至高压反应容器——高压釜内,于190℃下放置15h,冷却至室温,所得产物经洗涤、离心、干燥、焙烧,制得核壳结构二氧化钛。
其中,表面活性剂为四乙烯五胺;钛源为钛酸四异丙酯;焙烧温度为260℃,焙烧时间为3h。
(2)制备环化聚丙烯腈,具体包括如下步骤:
(2a)水相沉淀法制备聚丙烯腈;
将丙烯腈单体溶于蒸馏水中,搅拌,制得混合溶液A,丙烯腈单体∶蒸馏水的重量比为1∶0.5;
将氧化还原引发剂溶于水中,搅拌,制得混合溶液B,氧化还原引发剂包括氧化剂K2S2O8和还原剂NaHSO3,氧化剂∶还原剂的重量比=1∶1.5,氧化还原 引发剂占丙烯腈单体的质量分数为1%;
在40℃的氮气气氛下,将混合溶液B滴加至混合溶液A中,搅拌直至白色沉淀生成,获得的白色沉淀经洗涤、于40℃烘干后,制得聚丙烯腈;
(2b)制备环化聚丙烯腈;将步骤(2a)制备的聚丙烯腈研磨后,置于210℃下热处理3.5h,再次研磨,制得环化聚丙烯腈。
(3)制备复合光催化剂;将步骤(1)制备的核壳结构二氧化钛超声分散于浓度为6mol/L的氢氧化钠溶液中,制得混合溶液;分别将十二烷基磺酸钠、步骤(2)制备的环化聚丙烯腈加入至混合溶液中,搅拌,制得混合液;将所述混合液转至热反应容器内,于80℃下反应6h,所得产物经抽滤、洗涤、干燥,制得复合光催化剂;
其中,核壳结构二氧化钛∶氢氧化钠溶液的比例=0.2g∶25mL;环化聚丙烯腈∶核壳结构二氧化钛的重量比=5∶1;十二烷基磺酸钠∶核壳结构二氧化钛的重量比=1∶2。
经测试,本实施例制备的复合光催化剂不仅用于光催化还原二氧化碳和水制甲烷和氢气,还可用于光催化降解水中的污染物罗丹明B。两者的测试方法及所需仪器参照相关技术。
实施例2
本实施例的基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂,其具有核壳结构,核为二氧化钛,壳为环化聚丙烯腈;二氧化钛为核壳结构二氧化钛,核壳结构二氧化钛包括外壳和内核,外壳和内核之间具有空腔,外壳由纳米薄片自组装而成。
核壳结构二氧化钛的直径为1250nm,其内核的宽度为400nm,外壳的厚度为240nm。纳米薄片的厚度为4nm,晶型为锐钛矿相。
本实施例复合光催化剂的制备方法,包括如下步骤:
(1)制备核壳结构二氧化钛;
将表面活性剂、异丙醇、钛源混合,制得混合液,钛源∶异丙醇的体积比=18∶30,表面活性剂∶钛源的体积比=0.15∶3;将所述混合液转移至高压反应容器——高压釜内,于200℃下放置13h,冷却至室温,所得产物经洗涤、离心、干燥、焙烧,制得核壳结构二氧化钛。
其中,表面活性剂为四乙烯五胺;钛源为钛酸四异丙酯与钛酸四丁酯的混合物;焙烧温度为280℃,焙烧时间为2.0h。
(2)制备环化聚丙烯腈,具体包括如下步骤:
(2a)水相沉淀法制备聚丙烯腈;
将丙烯腈单体溶于蒸馏水中,搅拌,制得混合溶液A,丙烯腈单体∶蒸馏水的重量比为1∶2.5;
将氧化还原引发剂溶于水中,搅拌,制得混合溶液B,氧化还原引发剂包括氧化剂k2S2O8和还原剂NaHSO3,氧化剂∶还原剂的重量比=1∶3,氧化还原引发剂占丙烯腈单体的质量分数为1.2%;
在45℃的氮气气氛下,将混合溶液B滴加至混合溶液A中,搅拌直至白色沉淀生成,获得的白色沉淀经洗涤、于45℃烘干后,制得聚丙烯腈;
(2b)制备环化聚丙烯腈;将步骤(2a)制备的聚丙烯腈研磨后,置于220℃下热处理3h,再次研磨,制得环化聚丙烯腈。
(3)制备复合光催化剂;将步骤(1)制备的核壳结构二氧化钛超声分散于浓度为12mol/L的氢氧化钠溶液中,制得混合溶液;分别将十二烷基磺酸钠、步骤(2)制备的环化聚丙烯腈加入至混合溶液中,搅拌,制得混合液;将所述混合液转至热反应容器内,于90℃下反应7h,所得产物经抽滤、洗涤、干燥,制得复 合光催化剂;
其中,核壳结构二氧化钛∶氢氧化钠溶液的比例=0.5g∶33mL;环化聚丙烯腈∶核壳结构二氧化钛的重量比=8∶1;十二烷基磺酸钠∶核壳结构二氧化钛的重量比=1∶7。
经测试,本实施例制备的光催化剂不仅用于光催化还原二氧化碳和水制甲烷和氢气,还可用于光催化降解水中的污染物罗丹明B。两者的测试方法及所需仪器参照相关技术。
实施例3
本实施例的基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂,其具有核壳结构,核为二氧化钛,壳为环化聚丙烯腈;二氧化钛为核壳结构二氧化钛,核壳结构二氧化钛包括外壳和内核,外壳和内核之间具有空腔,外壳由纳米薄片自组装而成。
核壳结构二氧化钛的直径为1400nm,其内核的宽度为450nm,外壳的厚度为260nm。纳米薄片的厚度为4.5nm,晶型为锐钛矿相。
本实施例复合光催化剂的制备方法,包括如下步骤:
(1)制备核壳结构二氧化钛;
将表面活性剂、异丙醇、钛源混合,制得混合液,钛源∶异丙醇的体积比=25∶30,表面活性剂∶钛源的体积比=0.2∶3;将所述混合液转移至高压反应容器——高压釜内,于210℃下放置15h,冷却至室温,所得产物经洗涤、离心、干燥、焙烧,制得核壳结构二氧化钛。
其中,表面活性剂为四乙烯五胺;钛源为钛酸四乙酯;焙烧温度为300℃,焙烧时间为3h。
(2)制备环化聚丙烯腈,具体包括如下步骤:
(2a)水相沉淀法制备聚丙烯腈;
将丙烯腈单体溶于蒸馏水中,搅拌,制得混合溶液A,丙烯腈单体∶蒸馏水的重量比为1∶4;
将氧化还原引发剂溶于水中,搅拌,制得混合溶液B,氧化还原引发剂包括氧化剂K2S2O8和还原剂NaHSO3,氧化剂∶还原剂的重量比=1∶5,氧化还原引发剂占丙烯腈单体的质量分数为1.5%;
在50℃的氮气气氛下,将混合溶液B滴加至混合溶液A中,搅拌直至白色沉淀生成,获得的白色沉淀经洗涤、于60℃烘干后,制得聚丙烯腈;
(2b)制备环化聚丙烯腈;将步骤(2a)制备的聚丙烯腈研磨后,置于225℃下热处理3.5h,再次研磨,制得环化聚丙烯腈。
(3)制备复合光催化剂;将步骤(1)制备的核壳结构二氧化钛超声分散于浓度为15mol/L的氢氧化钠溶液中,制得混合溶液;分别将十二烷基磺酸钠、步骤(2)制备的环化聚丙烯腈加入至混合溶液中,搅拌,制得混合液;将所述混合液转至热反应容器内,于95℃下反应8h,所得产物经抽滤、洗涤、干燥,制得复合光催化剂;
其中,核壳结构二氧化钛∶氢氧化钠溶液的比例=0.8g∶40mL;环化聚丙烯腈∶核壳结构二氧化钛的重量比=12∶1;十二烷基磺酸钠∶核壳结构二氧化钛的重量比=1∶10。
经测试,本实施例制备的光催化剂不仅用于光催化还原二氧化碳和水制甲烷和氢气,还可用于光催化降解水中的污染物罗丹明B。两者的测试方法及所需仪器参照相关技术。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不 应理解为对本发明的限制。

Claims (12)

  1. 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂,其特征在于:所述复合光催化剂具有核壳结构,核为二氧化钛,壳为环化聚丙烯腈;所述二氧化钛为核壳结构二氧化钛,所述核壳结构二氧化钛包括外壳和内核,所述外壳和内核之间具有空腔,所述外壳由纳米薄片自组装而成。
  2. 如权利要求1所述的复合光催化剂,其特征在于:所述核壳结构二氧化钛的直径为1100~1400nm。
  3. 如权利要求1或2所述的复合光催化剂,其特征在于:所述核壳结构二氧化钛的内核宽度为350~450nm,所述核壳结构二氧化钛的外壳厚度为220~260nm。
  4. 如权利要求1-3任一项所述的复合光催化剂,其特征在于:所述核壳结构二氧化钛的直径为1120~1360nm,优选为1200~1350nm,进一步优选为1250~1300nm;
    优选的,所述核壳结构二氧化钛的内核宽度为380~420nm,进一步优选为390~410nm;
    优选的,所述核壳结构二氧化钛的外壳厚度为230~250nm,进一步优选为235~245nm,更进一步优选为230~245nm。
  5. 如权利要求1所述的复合光催化剂,其特征在于:所述纳米薄片的厚度为3~4.5nm,晶型为锐钛矿相。
  6. 一种如权利要求1至5任一项所述复合光催化剂的制备方法,其特征在于,包括如下步骤:
    (1)制备核壳结构二氧化钛;
    (2)制备环化聚丙烯腈;
    (3)制备复合光催化剂;将步骤(1)制备的核壳结构二氧化钛超声分散于氢氧 化钠溶液中,制得混合溶液;分别将十二烷基磺酸钠、步骤(2)制备的环化聚丙烯腈加入至所述混合溶液中,搅拌,制得混合液;将所述混合液转至热反应容器内,于80~95℃下反应6~8h,所得产物经抽滤、洗涤、干燥,制得复合光催化剂。
  7. 如权利要求6所述的制备方法,其特征在于,步骤(1)的操作步骤为:将表面活性剂、异丙醇、钛源混合,制得混合液,钛源∶异丙醇的体积比=1~25∶30,表面活性剂∶钛源的体积比=0.15~0.2∶3;将所述混合液转移至高压反应容器内,于190~210℃下放置10~15h,冷却至室温,所得产物经洗涤、离心、干燥、焙烧,制得核壳结构二氧化钛。
  8. 如权利要求7所述的制备方法,其特征在于:所述表面活性剂为四乙烯五胺;
    优选的,所述钛源为钛酸四异丙酯、钛酸四丁酯或钛酸四乙酯中的一种或两种以上;
    优选的,所述焙烧温度为260~300℃,焙烧时间为1.5~3h。
  9. 如权利要求6所述的制备方法,其特征在于,步骤(2)中,所述环化聚丙烯腈的制备过程包括如下步骤:
    (2a)水相沉淀法制备聚丙烯腈;
    (2b)制备环化聚丙烯腈;将步骤(2a)制备的聚丙烯腈研磨后,置于210~225℃下热处理2~3.5h,再次研磨,制得环化聚丙烯腈。
  10. 如权利要求9所述的制备方法,其特征在于,步骤(2a)的操作过程为:将丙烯腈单体溶于蒸馏水中,搅拌,制得混合溶液A,丙烯腈单体∶蒸馏水的重量比为1∶0.5~4;
    将氧化还原引发剂溶于水中,搅拌,制得混合溶液B,所述氧化还原引发 剂包括氧化剂和还原剂,氧化剂∶还原剂的重量比=1∶1.5~5,所述氧化还原引发剂占丙烯腈单体的质量分数为1~1.5%;
    在40~50℃的氮气气氛下,将混合溶液B滴加至混合溶液A中,搅拌直至白色沉淀生成,获得的白色沉淀经洗涤、烘干后,制得聚丙烯腈。
  11. 如权利要求10所述的制备方法,其特征在于:烘干温度为40~60℃;
    优选的,所述氧化剂为K2S2O8
    优选的,所述还原剂为NaHSO3
  12. 如权利要求6所述的制备方法,其特征在于:步骤(3)中,所述氢氧化钠溶液的浓度为6~15mol/L;
    优选的,步骤(3)中,核壳结构二氧化钛∶氢氧化钠溶液的比例=0.2~0.8g∶25~40mL;
    优选的,步骤(3)中,环化聚丙烯腈∶核壳结构二氧化钛的重量比=5~12∶1;
    优选的,步骤(3)中,十二烷基磺酸钠∶核壳结构二氧化钛的重量比=1∶2~10。
PCT/CN2017/080696 2016-04-21 2017-04-17 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法 WO2017181913A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212017000106.2U DE212017000106U1 (de) 2016-04-21 2017-04-17 Verband-Fotokatalysator auf der Basis des Nano-Titandioxids und von cyclisiertem Polyacrylnitril

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610250810.1A CN105772104B (zh) 2016-04-21 2016-04-21 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法
CN201610250810.1 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017181913A1 true WO2017181913A1 (zh) 2017-10-26

Family

ID=56397270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080696 WO2017181913A1 (zh) 2016-04-21 2017-04-17 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法

Country Status (3)

Country Link
CN (1) CN105772104B (zh)
DE (1) DE212017000106U1 (zh)
WO (1) WO2017181913A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112246280A (zh) * 2020-10-20 2021-01-22 中国科学院金属研究所 一种有机半导体可见光光催化材料及其制备方法和应用
CN112371151A (zh) * 2019-12-31 2021-02-19 刘奇 一种具有高效光催化活性的复合光催化材料
CN112694121A (zh) * 2020-12-30 2021-04-23 程承 一种多孔碳微球原位复合纳米TiO2的制备方法和应用
CN113441182A (zh) * 2021-06-29 2021-09-28 安徽农业大学 一种核壳型二氧化钛@羧基壳聚糖纳米微粒的制备方法
CN113600214A (zh) * 2021-09-02 2021-11-05 广州大学 一种核壳型Fe2O3@TixOy-Pz光催化剂的制备方法及应用
CN113683115A (zh) * 2021-09-01 2021-11-23 深圳市动盈先进材料有限公司 一种5g信号传输用半导体材料的制备方法
CN114957703A (zh) * 2022-06-16 2022-08-30 河北国阳农业发展集团有限公司 一种黄腐殖酸钾制备方法
CN115722264A (zh) * 2022-11-18 2023-03-03 昆明理工大学 一种二氧化钛/PFNBr复合光催化剂、制备方法及其应用
CN115888817A (zh) * 2022-11-03 2023-04-04 山东欧蓝素汽车环保科技有限公司 一种飞絮-聚多巴胺-二氧化钛多孔光催化剂的制备方法
CN115888817B (zh) * 2022-11-03 2024-04-30 山东欧蓝素汽车环保科技有限公司 一种飞絮-聚多巴胺-二氧化钛多孔光催化剂的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772104B (zh) * 2016-04-21 2018-11-13 江苏朗逸环保科技有限公司 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法
CN108219394B (zh) * 2017-12-22 2020-09-18 东莞市基烁实业有限公司 一种消黄、增白、增亮母粒及聚酯再生料和制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860348A (zh) * 2015-04-22 2015-08-26 武汉理工大学 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用
CN105772104A (zh) * 2016-04-21 2016-07-20 江苏朗逸环保科技有限公司 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336584C (zh) * 2004-12-02 2007-09-12 同济大学 一种三氧化钨/聚合物纳米核壳微球及其制备方法
CN101537349B (zh) * 2009-04-22 2011-04-27 东华大学 核/壳结构的聚苯乙烯/二氧化钛复合光催化剂的制备
CN101857267B (zh) * 2010-06-13 2012-11-28 上海海洋大学 一种具有核壳结构的二氧化钛纳米材料的制备方法
CN101890370B (zh) * 2010-08-05 2012-05-30 上海交通大学 基于纳米二氧化钛和聚膦腈的复合光催化剂及其制备方法
CN102189268A (zh) * 2011-04-27 2011-09-21 黑龙江大学 核-壳型纳米铜/聚丙烯腈复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860348A (zh) * 2015-04-22 2015-08-26 武汉理工大学 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用
CN105772104A (zh) * 2016-04-21 2016-07-20 江苏朗逸环保科技有限公司 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, XUEYAN ET AL.: "Effect of Conditions for Preparation of Cyclized Polyacr-Ylonitrile Sensitized Tio2 Nanoparticles On Visible-Light Photocatalysis and Photo Absorbance Property", AICHE, vol. 34, 31 December 2015 (2015-12-31), pages 32, XP055433389, ISSN: 0001-1541 *
ZHANG, JIE: "Preparation and Characterization of Pan/Tio2 Composite Articles", JOURNAL OF SYNTHETIC CRYSTALS, vol. 43, no. 11, 30 November 2014 (2014-11-30), pages 2995, ISSN: 1000-985X *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112371151A (zh) * 2019-12-31 2021-02-19 刘奇 一种具有高效光催化活性的复合光催化材料
CN112246280A (zh) * 2020-10-20 2021-01-22 中国科学院金属研究所 一种有机半导体可见光光催化材料及其制备方法和应用
CN112246280B (zh) * 2020-10-20 2022-05-06 中国科学院金属研究所 一种有机半导体可见光光催化材料及其制备方法和应用
CN112694121A (zh) * 2020-12-30 2021-04-23 程承 一种多孔碳微球原位复合纳米TiO2的制备方法和应用
CN113441182A (zh) * 2021-06-29 2021-09-28 安徽农业大学 一种核壳型二氧化钛@羧基壳聚糖纳米微粒的制备方法
CN113683115A (zh) * 2021-09-01 2021-11-23 深圳市动盈先进材料有限公司 一种5g信号传输用半导体材料的制备方法
CN113600214A (zh) * 2021-09-02 2021-11-05 广州大学 一种核壳型Fe2O3@TixOy-Pz光催化剂的制备方法及应用
CN113600214B (zh) * 2021-09-02 2023-10-24 广州大学 一种核壳型Fe2O3@TixOy-Pz光催化剂的制备方法及应用
CN114957703A (zh) * 2022-06-16 2022-08-30 河北国阳农业发展集团有限公司 一种黄腐殖酸钾制备方法
CN115888817A (zh) * 2022-11-03 2023-04-04 山东欧蓝素汽车环保科技有限公司 一种飞絮-聚多巴胺-二氧化钛多孔光催化剂的制备方法
CN115888817B (zh) * 2022-11-03 2024-04-30 山东欧蓝素汽车环保科技有限公司 一种飞絮-聚多巴胺-二氧化钛多孔光催化剂的制备方法
CN115722264A (zh) * 2022-11-18 2023-03-03 昆明理工大学 一种二氧化钛/PFNBr复合光催化剂、制备方法及其应用

Also Published As

Publication number Publication date
DE212017000106U1 (de) 2019-01-08
CN105772104A (zh) 2016-07-20
CN105772104B (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2017181913A1 (zh) 一种基于纳米二氧化钛和环化聚丙烯腈的复合光催化剂及其制备方法
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
Qiu et al. Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er3+-Bi2WO6 photocatalyst
CN103990485B (zh) 氮化碳纳米粒子修饰钒酸铋复合光催化剂及其制备方法
CN107115884B (zh) 一种g-C3N4/TiO2纳米线组装结构光催化剂
CN107159313A (zh) 一种核壳结构TiO2纳米管@Ti‑MOF催化剂的制备方法
CN104001504A (zh) 银和石墨烯共修饰TiO2纳米线的制备方法与光催化降解废水中污染物的作用
CN111821966A (zh) 一种黑色TiO2纳米片光催化剂的制备方法
CN111437867A (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
CN105771948A (zh) 具有高光催化制氢性能的双壳二氧化钛催化剂及其制备方法
CN101229514B (zh) 复合型钛酸盐纳米管光催化剂的制备方法及应用
Qi et al. Synergistic effects of holey nanosheet and sulfur-doping on the photocatalytic activity of carbon nitride towards NO removal
CN103769072B (zh) 二氧化钛纳米管-碳复合材料及其制备方法和用途
CN105797762A (zh) 一种光催化陶粒及制备方法和应用
Li et al. Preparation and photocatalytic water splitting hydrogen production of titanium dioxide nanosheets
CN106000370B (zh) 一种光致Ti3+自掺杂TiO2光催化剂的制备方法
CN109174096B (zh) 一种Au@CeO2/HATP复合光催化剂的制备方法及其应用
CN102631909A (zh) 表面氢化的二氧化钛纳米线微球光催化材料及其制备方法
CN109012718B (zh) 一种高性能复合光催化材料的制备方法
CN108479812B (zh) 一种AgInS2/Bi2WO6异质结纳米片的制备方法和应用
CN104324743A (zh) 一种氮掺杂TiO2纳米管复合Fe2O3催化剂的制备方法
CN101152626A (zh) 阳离子S和阴离子N双掺杂一维纳米结构TiO2光催化剂及其制备方法
Yang et al. Synergistic effect of diatomite and Bi self-doping Bi2MoO6 on visible light photodegradation of formaldehyde
CN110038641B (zh) 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用
CN108246306B (zh) 一锅法合成具有可见光响应的光催化剂CuBi2O4/Bi2WO6纳米球及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785398

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785398

Country of ref document: EP

Kind code of ref document: A1