WO2017179551A1 - ボイラーの運転方法及びボイラー設備 - Google Patents

ボイラーの運転方法及びボイラー設備 Download PDF

Info

Publication number
WO2017179551A1
WO2017179551A1 PCT/JP2017/014719 JP2017014719W WO2017179551A1 WO 2017179551 A1 WO2017179551 A1 WO 2017179551A1 JP 2017014719 W JP2017014719 W JP 2017014719W WO 2017179551 A1 WO2017179551 A1 WO 2017179551A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fuel
boiler
ash
content
types
Prior art date
Application number
PCT/JP2017/014719
Other languages
English (en)
French (fr)
Inventor
勝哉 秋山
知朗 松宮
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201780023129.6A priority Critical patent/CN109073220B/zh
Publication of WO2017179551A1 publication Critical patent/WO2017179551A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion

Definitions

  • the present invention relates to a boiler operating method and boiler equipment.
  • a boiler that burns solid fuel such as coal generally includes a furnace that burns solid fuel using, for example, a burner, and a plurality of heat transfer tubes that are arranged in the furnace in the vertical direction to exchange heat.
  • the heat transfer tube is disposed in the primary heater, the primary reheater, and the economizer in the lower part of the furnace, and in the upper part of the furnace.
  • a secondary heater, a tertiary heater, a final heater, and an upper heat transfer section that exchange heat in the secondary reheater.
  • the upper heat transfer section has a structure in which the combustion gas flows between the heat transfer tubes arranged at a narrower interval than the lower heat transfer section to exchange heat, so that ash is formed in the upper heat transfer section. If it adheres, a large fluctuation of the furnace pressure and a blockage of the gas flow path are likely to occur, and the stable operation of the boiler is hindered. Further, in the vicinity of the burner, the temperature in the vicinity of the furnace wall becomes high due to the radiant heat of the pulverized coal combustion flame, so that ash tends to melt and adhere to a relatively low temperature heat transfer tube, and the heat recovery rate of the furnace tends to decrease.
  • This invention is made
  • the present inventors pay attention to the fact that the degree of reduction in the heat recovery rate varies depending on the composition of the ash even if the mass of the ash adhering to the heat transfer tube is the same. As a result, it was confirmed that as the ash mullite content increases, the porous ash adheres and the reduction in the heat recovery rate increases. And based on this knowledge, the inventors determined the mixing ratio of multiple types of solid fuel so that the mullite content of the generated ash is below the reference value, thereby suppressing the decrease in furnace heat recovery rate. As a result, it was found that the boiler can be stably operated, and the present invention was completed.
  • the invention made in order to solve the above-mentioned problems is a boiler operating method for mixing and burning a plurality of types of solid fuels, wherein the ash content in the plurality of types of solid fuels and the mullite in the ash content Based on the ash content and the mullite content of each of the multiple types of solid fuel obtained in the acquisition step, and the ash content of the entire mixture of the multiple types of solid fuel And a step of determining a mixing ratio of the plurality of types of solid fuels so that the content of mullite is not more than a reference value.
  • the boiler operating method includes the steps of acquiring the ash content in the plurality of types of solid fuel and the mullite content in the ash, and each of the plurality of types of solid fuel obtained in the acquisition step. Based on the ash content and the mullite content, the mixing ratio of the multiple types of solid fuel is determined so that the mullite content in the ash content of the mixture of the multiple types of solid fuel is below the reference value. Therefore, it is possible to suppress the mullite content of the ash generated by the combustion of the solid fuel to a certain value or less, and to suppress the adhesion of the porous ash to the heat transfer tube. Thereby, since the heat insulation property of adhesion ash is reduced, the operation method of the said boiler can suppress the fall of a furnace heat recovery rate.
  • the reference value is preferably 33% by mass. Thus, the fall of the furnace heat recovery rate can be suppressed more reliably by setting the reference value to 33% by mass.
  • the solid fuel may be coal.
  • the furnace heat recovery rate tends to decrease. For this reason, the operating method of the said boiler which can suppress the fall of a furnace heat recovery rate can be used suitably.
  • the operation method of the boiler may be used for a thermal power plant.
  • the operation method of the boiler for the thermal power plant, it is possible to suppress the decrease in the furnace heat recovery rate and supply power stably.
  • Another invention made to solve the above problems is a boiler facility for mixing and burning a plurality of types of solid fuels, each of which includes a plurality of mechanisms for supplying different types of the solid fuels, and A mechanism for mixing a plurality of types of solid fuel supplied from the supply mechanism, a mechanism for pulverizing the solid fuel mixed by the mixing mechanism, a boiler for burning the solid fuel pulverized by the pulverization mechanism, and the plurality of Based on the ash content of each type of solid fuel and the content of mullite in the ash, the mullite content in the ash of the mixture of the multiple types of solid fuel is less than the reference value.
  • a mechanism for determining the mixing ratio of the different types of solid fuel and the above-mentioned mechanism that is introduced from the supply mechanism to the mixing mechanism so that the mixing ratio of the plurality of types of solid fuels determined by the determination mechanism
  • a boiler equipment characterized in that it comprises a mechanism for adjusting the supply amount of each several solid fuel.
  • the boiler equipment includes a mechanism for determining the mixing ratio of the plurality of types of solid fuel so that the content of the mullite in the ash content of the mixture of the plurality of types of solid fuel is equal to or less than a reference value, Ash adhesion can be suppressed. Thereby, since the heat insulation of adhesion ash is reduced, the said boiler installation can suppress the fall of a furnace heat recovery rate.
  • the “ash content” is a value measured in accordance with JIS-M8812 (2006).
  • “Mullite” means an aluminosilicate (Al 6 Si 2 O 13 ) having a single chain structure.
  • the “content of mullite in the ash” refers to the ash obtained in the measurement of the ash content, that is, the solid fuel ashed in an electric furnace according to JIS-K0131 (1996). It is a value quantified by analyzing by line diffraction analysis.
  • the boiler operating method and the boiler equipment of the present invention can suppress a decrease in the furnace heat recovery rate.
  • the thermal power plant is equipped with the boiler equipment, steam turbine generator equipment and condensate water supply equipment.
  • the boiler facility shown in FIG. 1 is a boiler facility that mixes and burns a plurality of types of solid fuels.
  • the boiler equipment includes a hopper 1, a mixer 2, a pulverizer 3, a boiler 4, a calculator 5, and a supply amount adjusting device 6.
  • the hopper 1 is a mechanism that supplies solid fuel.
  • the boiler facility includes a plurality of hoppers 1 for supplying different types of solid fuel to supply a plurality of types of solid fuel.
  • FIG. 1 shows a case where two hoppers 1 are provided, three or more kinds of solid fuels may be used. In that case, the boiler equipment includes the same number of hoppers 1 as the type of solid fuel.
  • the hopper 1 has a storage tank for storing the solid fuel, and the solid fuel can be dropped and taken out from a bottom-open funnel-shaped mouth at the bottom of the storage tank.
  • the mixer 2 is a mechanism for mixing the solid fuel supplied from the hopper 1.
  • a known drum mixer or the like can be used as the mixer 2, for example, a known drum mixer or the like.
  • the pulverizer 3 is a mechanism for pulverizing the solid fuel mixed in the mixer 2.
  • a known vertical roller mill or the like can be used as the pulverizer 3.
  • the particle size of the solid fuel after pulverization is not particularly limited, and for example, the solid fuel can be pulverized so that the proportion of the solid fuel having a particle size of 75 ⁇ m or less is 75% by mass or more and 90% by mass or less.
  • the boiler 4 burns the solid fuel pulverized by the pulverizer 3.
  • the boiler 4 mainly includes a burner 7, a furnace, a heat transfer tube, and a chimney.
  • the boiler 4 burns solid fuel blown together with air in a furnace by means of a burner 7, and performs heat exchange using a large number of heat transfer tubes arranged in the vertical direction in the furnace. By this heat exchange, water supplied to the heat transfer tube is heated and pressurized to generate steam. Moreover, the combustion gas generated by the combustion is discharged from the chimney.
  • the heat transfer tube is appropriately configured according to the required steam temperature and pressure, for example, a lower heater including a primary heater, a primary reheater, and a economizer disposed in the lower part of the furnace, It can comprise with the upper heat-transfer part provided with the secondary heater, the tertiary heater, the final heater, and the secondary reheater which are arrange
  • the lower heat transfer section mainly preheats the feed water supplied to the boiler 4, and the upper heat transfer section mainly generates high-temperature and high-pressure steam.
  • the reheater reheats the steam that has worked in the steam turbine or the like, and creates steam that rotates the reheat cycle turbine.
  • the economizer preheats the feed water of the boiler 4 with the heat of the exhausted combustion gas.
  • the calculator 5 is a mechanism that determines the mixing ratio of the above-described plural types of solid fuels. Specifically, based on the ash content of each of the plurality of types of solid fuels and the mullite content in the ash (hereinafter sometimes referred to simply as mullite content), a mixture of the plurality of types of solid fuels The mixing ratio of the plurality of types of solid fuels is determined so that the content of mullite in the ash in the entire ash is equal to or less than the reference value.
  • the computing unit 5 calculates a mixing ratio of a plurality of types of solid fuels by a mixing ratio determining step (S2) of a boiler operation method described later. In addition, the calculator 5 controls the supply amount adjusting device 6 based on the calculated mixing ratio.
  • the supply amount adjusting device 6 adjusts the supply amount of each of the plurality of types of solid fuel introduced from the hopper 1 to the mixer 2 so that the mixing ratio of the plurality of types of solid fuel determined by the calculator 5 is obtained. It is a mechanism to do. That is, the boiler equipment includes a supply amount adjusting device 6 having the same number as the type of solid fuel, one for each pipe connected to the mixer 2 from each of the same number of hoppers 1 as the type of solid fuel.
  • the supply amount adjusting device 6 is not particularly limited, and for example, a chain conveyor that conveys solid fuel from the hopper 1 to the mixer 2 can be used. In this case, the supply amount is adjusted by adjusting the moving speed of the conveyor.
  • FIG. 2 shows a procedure of a boiler operating method using the boiler apparatus.
  • the boiler operation method is a boiler operation method in which a plurality of types of solid fuels are mixed and burned.
  • the boiler operating method includes the step of acquiring the ash content in the plurality of types of solid fuel and the mullite content in the ash (S1: content acquisition step) and the above obtained in the acquisition step. Based on the ash content and the mullite content of each of a plurality of types of solid fuel, the plurality of types of solids so that the mullite content in the ash content of the entire mixture of the plurality of types of solid fuel is less than or equal to a reference value.
  • a step of determining a mixing ratio of fuel S2: mixing ratio determining step
  • S3 mixing supply step
  • the solid fuel used in the operation method of the boiler is not particularly limited as long as it is a fuel used in the boiler, and examples thereof include coal, sludge carbide, and biomass fuel. Among them, coal that generates a large amount of heat and is preferably used in a thermal power plant or the like is preferable.
  • the type of coal is not particularly limited.
  • the boiler operation method since the mixing ratio of the plurality of types of solid fuels is determined so that the mullite content is less than or equal to a reference value, it is possible to suppress a decrease in furnace heat recovery rate caused by adhesion of porous ash.
  • the boiler operation method uses a solid fuel having a relatively large mullite content and easily reducing the furnace heat recovery rate mixed with a solid fuel having a relatively small mullite content and hardly reducing the furnace heat recovery rate. Therefore, it is possible to suppress a decrease in the furnace heat recovery rate.
  • the operation method of the boiler can use coal having a relatively high mullite content as part of the solid fuel.
  • coal having a relatively high mullite content include anthracite, bituminous coal, subbituminous coal, lignite, high silica coal, and high calcium coal.
  • the ash content of each of the plurality of types of solid fuel and the mullite content in the ash are acquired.
  • the acquisition of the ash content in the content acquisition step and the mullite content in the ash does not necessarily require analysis of solid fuel, but the ash content measured in advance and the ash content in the ash
  • the content rate of mullite may be referred to or input by an operator from a storage device or the like.
  • the method for measuring the ash content of each solid fuel is not particularly limited, and for example, a measuring method based on JIS-M8812 (2006) can be used.
  • the ash content may be the same base value as the mixing ratio described later, and may be an anhydrous base or a water-containing base, but is preferably an anhydrous base that facilitates calculation of the mixing ratio.
  • the method for measuring the mullite content is not particularly limited.
  • solid fuel ashed in an electric furnace or the like is measured by, for example, an X-ray diffraction analysis method based on JIS-K0131 (1996). Can do.
  • an external standard method is used to calculate from the peak ratio of the solid fuel ash spectrum obtained under the same conditions by an X-ray diffractometer and the spectrum of a mullite standard material (for example, JCRM-R041 certified by the Japan Ceramic Society) It can be used to quantify the content of mullite in ash.
  • a mullite standard material for example, JCRM-R041 certified by the Japan Ceramic Society
  • the calorific value of the solid fuel is a value measured by burning the solid fuel in accordance with, for example, a measurement method based on JIS-M8814 (2003).
  • the ash content of each solid fuel, the mullite content, the calorific value of the solid fuel, and the like are preferably recorded and stored as data in, for example, a storage device. By storing the data in this way, the data can be used thereafter.
  • the mass content of ash in each solid fuel is Wi
  • the mass content of mullite in the ash is Mi
  • the mass ratio to the entire fuel is Xi
  • the content M of mullite in the ash of the entire mixture is It can be calculated by equation (1).
  • the unit of the said ash content rate Wi, the mullite content rate Mi, and the mass ratio Xi should just be unified between fuels, and as shown to following formula (1), the unit of the mullite content rate M is each solid. The unit is the same as the content ratio Mi of mullite in the ash content of the fuel.
  • the mixing ratio of the plurality of types of solid fuels is determined so that the mullite content M is not more than a reference value.
  • the operation method of the boiler can suppress the reduction in the furnace heat recovery rate by setting the mullite content M to a reference value or less.
  • the component that generates mullite at the time of ashing (combustion) contains crystal water, and it is considered that ash is made porous by releasing crystal water when generating mullite. . For this reason, the porous ash with a high mullite content adheres to the heat transfer tube of the boiler, thereby inhibiting the heat transfer and lowering the furnace heat recovery rate.
  • the mullite content M is set to a reference value or less, the heat insulating property of the attached ash is reduced, so that it is considered that the reduction in the furnace heat recovery rate can be suppressed.
  • the reference value of the mullite content M of the mixed fuel is preferably 33% by mass, more preferably 30% by mass, further preferably 28% by mass, and particularly preferably 26% by mass.
  • the lower limit of the mullite content M of the blended solid fuel is preferably 15% by mass, more preferably 18% by mass, and even more preferably 20% by mass.
  • the mullite content M is less than the above lower limit, the solid fuel that can be used is limited, so that the fuel cost may increase unnecessarily.
  • the mixing and supplying step (S3) the plurality of types of solid fuels are mixed and pulverized based on the mixing rate determined in the mixing rate determining step (S2), and then supplied to the furnace.
  • the supply amount adjusting device 6 is controlled by the calculator 5 of the boiler facility to adjust the amount of solid fuel sent from the hopper 1 to the mixer 2.
  • the mixed solid fuel is pulverized by the pulverizer 3 and then blown into the boiler 4 together with air to be burned.
  • the operation method of the boiler determines the mixing ratio of a plurality of types of solid fuel so that the mullite content M is not more than the reference value, the heat insulation property of the ash adhering to the heat transfer tube is reduced. A decrease in heat rate can be suppressed.
  • the steam turbine generator facility mainly includes a steam turbine and a generator.
  • the steam turbine is an external combustion engine that converts steam energy into rotational motion via a turbine (impeller) and a shaft, and is driven by steam generated by the boiler equipment.
  • the steam turbine is not particularly limited, and can be constituted by, for example, a high-temperature high-pressure turbine, a high-temperature reheat turbine, and a low-pressure turbine.
  • the steam generated in the boiler facility first drives the high temperature and high pressure turbine.
  • the high-temperature reheat turbine is driven by the high-temperature steam heated by the reheater. Further, the steam whose temperature and pressure have been lost due to the driving of the high-temperature reheat turbine is guided to the condensate water supply facility after driving the low-pressure turbine.
  • the power of the high-temperature high-pressure turbine, high-temperature reheat turbine, and low-pressure turbine driven by this steam drives the generator to obtain electrical output.
  • the condensate water supply facility mainly includes a condenser, a pump, a heater, and a deaerator.
  • Condensate water supply equipment cools the steam that drives the steam turbine with a condenser and collects it as condensate.
  • This condensate is pressurized by a pump, heated by a heater, and deaerated by a deaerator.
  • the pressurized and heated condensate is supplied to the economizer of the boiler facility as water supply for the boiler facility.
  • the boiler equipment and the operation method of the boiler equipment may be applied to boiler equipment used other than the thermal power plant.
  • the configuration of the boiler may be different from that in the above embodiment.
  • Solid fuel First, three types of coal were prepared as solid fuels, and a small amount of each was sampled to measure the content of ash and the content of mullite in the ash.
  • the ash content of coal was measured by a measuring method based on JIS-M8812 (2006), and the water content value was calculated.
  • the mullite content was determined by an X-ray diffraction analysis method based on JIS-K0131 (1996). The results are shown in Table 1.
  • the furnace heat recovery rate is No. It is the value normalized in terms of the ratio of 1 to the furnace heat recovery rate.
  • the boiler operating method of the present invention can suppress a decrease in the furnace heat recovery rate. Therefore, the boiler equipment using the boiler operating method is easy to operate stably. Moreover, the boiler using the operating method of the said boiler is used suitably for a thermal power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

複数種類の固体燃料中の灰分の含有率及びその灰分中のムライトの含有率を取得する工程と、取得工程で得られた複数種類の固体燃料それぞれの灰分の含有率及びムライトの含有率に基づき、複数種類の固体燃料の混合体全体の灰分中のムライトの含有率が基準値以下となるように複数種類の固体燃料の混合割合を決定する工程とを備える。

Description

ボイラーの運転方法及びボイラー設備
 本発明は、ボイラーの運転方法及びボイラー設備に関する。
 例えば石炭等の固体燃料を燃焼させるボイラーは、一般に、例えばバーナー等により固体燃料を燃焼させる火炉及びこの火炉内に上下方向に複数配設され熱交換を行う伝熱管を備える。例えば火力発電所等で用いられるボイラーでは、上記伝熱管は、火炉下部に配設される一次加熱器、一次再熱器及び節炭器において熱交換する下部伝熱部と、火炉上部に配設される二次加熱器、三次加熱器、最終加熱器及び二次再熱器において熱交換する上部伝熱部とを有する。
 このようなボイラーのうち、例えば石炭を固体燃料とする微粉炭ボイラーでは、石炭の燃焼によって生じる燃焼ガス中の灰分が火炉の炉壁や伝熱管に付着し堆積するスラッギングやファウリングが発生し、灰付着層が形成される場合がある。このような灰付着が生じると、伝熱管の伝熱面での収熱率が大幅に低下し易い。また、炉壁に付着した灰(クリンカ)が巨大化すると、炉壁等から落下し、炉内圧の大幅な変動、伝熱管の損傷、ガス流路の閉塞等が発生する場合がある。
 特に上部伝熱部は、下部伝熱部に比べて狭い間隔で配設した伝熱管の間を燃焼ガスが流動して熱交換を行う構造を有しているため、上部伝熱部に灰が付着すると、炉内圧の大幅な変動やガス流路の閉塞が発生し易く、ボイラーの安定した運転が阻害される。また、バーナー近傍では微粉炭の燃焼火炎の放射熱により炉壁近傍の温度が高くなるため、比較的低温な伝熱管に灰が溶融付着し易くなり、火炉の収熱率が低下し易い。
 そこで、この灰付着が発生する可能性を指標として表し、その指標に基づいて灰付着を抑制するボイラーの運転方法が提案されている(日本国特許第5342355号公報)。この従来の運転方法では、炉壁や伝熱管群に付着する成分であるスラグに着目し、各固体燃料について算出したスラグ割合と灰成分の組成とに基づいて、複数種類の固体燃料の混合比率を決定している。具体的には、従来のボイラーの運転方法は、灰付着率が低くなるようにスラグ割合の基準値を決定し、スラグ割合がこの基準値以下になるように複数種類の固体燃料の混合比率を決定することにより、灰の付着を抑制している。
 しかしながら、上記従来のボイラーの運転方法では、灰の付着が抑制されているにも関わらず火炉の収熱率が低下する場合がある。このため、火炉の収熱率の低下を抑制できる新たなボイラーの運転方法が望まれている。
日本国特許第5342355号公報
 本発明は、上述のような事情に基づいてなされたものであり、火炉の収熱率の低下を抑制できるボイラーの運転方法及びボイラー設備を提供することを課題とする。
 本発明者らは、伝熱管に付着する灰の質量が同じであっても、灰の組成によって収熱率が低下する度合いが異なることに着目し、灰の成分を詳細に分析して鋭意研究を行った結果、灰のムライトの含有率が大きいほど、ポーラス状の灰が付着して、収熱率の低下が大きくなることを確認した。そして、本発明者らは、この知見を元に、発生する灰のムライト含有率が基準値以下となるように複数種類の固体燃料の混合割合を決定することで火炉収熱率の低下を抑制してボイラーを安定運用し易くできることを見出し、本発明を完成させた。
 上記課題を解決するためになされた発明は、複数種類の固体燃料を混合して燃焼させるボイラーの運転方法であって、上記複数種類の固体燃料中の灰分の含有率及びその灰分中のムライトの含有率を取得する工程と、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記ムライトの含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記ムライトの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程とを備えることを特徴とするボイラーの運転方法である。
 当該ボイラーの運転方法は、上記複数種類の固体燃料中の灰分の含有率及びその灰分中のムライトの含有率を取得する工程と、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記ムライトの含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記ムライトの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程とを備えるので、固体燃料の燃焼によって生じる灰のムライト含有率を一定の値以下に抑制して、伝熱管へのポーラス状の灰の付着を抑制できる。これにより付着灰の断熱性が低減されるため、当該ボイラーの運転方法は、火炉収熱率の低下を抑制することができる。
 上記基準値としては、33質量%が好ましい。このように、上記基準値を33質量%とすることによって、火炉収熱率の低下をより確実に抑制することができる。
 上記固体燃料が石炭であるとよい。固体燃料を石炭とするボイラーでは特に火炉収熱率の低下が発生し易い。このため、火炉収熱率の低下を抑制できる当該ボイラーの運転方法を好適に用いることができる。
 当該ボイラーの運転方法は、火力発電プラントに用いられるとよい。このように、当該ボイラーの運転方法を火力発電プラントに用いることによって、火炉収熱率の低下を抑制して、安定的に電力を供給することができる。
 また、上記課題を解決するためになされた別の発明は、複数種類の固体燃料を混合して燃焼させるボイラー設備であって、異なる種類の上記固体燃料をそれぞれ供給する複数の機構と、上記複数の供給機構から供給される複数種類の固体燃料を混合する機構と、上記混合機構で混合された固体燃料を粉砕する機構と、上記粉砕機構で粉砕された固体燃料を燃焼するボイラーと、上記複数種類の固体燃料それぞれの灰分の含有率及びその灰分中のムライトの含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記ムライトの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決する機構と、上記決定機構で決定された上記複数種類の固体燃料の混合割合になるよう上記供給機構から混合機構に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構とを備えることを特徴とするボイラー設備である。
 当該ボイラー設備は、上記複数種類の固体燃料の混合体全体の灰分中の上記ムライトの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決する機構を備えるので、ポーラス状の灰の付着を抑制できる。これにより付着灰の断熱性が低減されるため、当該ボイラー設備は、火炉収熱率の低下を抑制することができる。
 ここで、「灰分の含有率」とは、JIS-M8812(2006)に準拠して測定される値である。また、「ムライト」とは、単鎖構造を持つアルミノケイ酸塩(AlSi13)を意味する。また、「その灰分中のムライトの含有率」とは、上記灰分の含有率の測定において取得される灰分、つまり固体燃料を電気炉で灰化したものをJIS-K0131(1996)に準拠したX線回折分析法によって分析することで定量される値である。
 以上説明したように、本発明のボイラーの運転方法及びボイラー設備は、火炉収熱率の低下を抑制できる。
本発明の一実施形態のボイラー設備を示す概念図である。 本発明の一実施形態のボイラーの運転方法の手順を示すフロー図である。 灰分中のムライト含有率と火炉収熱率との関係を示すグラフである。
 以下、本発明に係るボイラーの運転方法及びボイラー設備の実施形態について、火力発電プラントを用いて説明する。
 上記火力発電プラントは、当該ボイラー設備、蒸気タービン発電機設備及び復水給水設備を備える。
<ボイラー設備>
 図1に示すボイラー設備は、複数種類の固体燃料を混合して燃焼させるボイラー設備である。当該ボイラー設備は、ホッパー1、混合機2、粉砕機3、ボイラー4、演算機5、及び供給量調整装置6を備える。
(ホッパー)
 ホッパー1は、固体燃料を供給する機構である。当該ボイラー設備は、複数種類の固体燃料を供給するために、互いに異なる種類の固体燃料を供給する複数のホッパー1を備える。なお、図1では2基のホッパー1を備える場合を示しているが、固体燃料は3種類以上であってもよい。その場合、当該ボイラー設備は固体燃料の種類と同数のホッパー1を備える。
 ホッパー1は上記固体燃料を貯蔵する貯蔵槽を有し、この貯蔵槽の底部にある底開式のじょうご型の口から固体燃料を落下させて取り出すことができる。
(混合機)
 混合機2は、上記ホッパー1から供給される固体燃料を混合する機構である。混合機2としては、例えば公知のドラムミキサ等を用いることができる。
(粉砕機)
 粉砕機3は、混合機2で混合された固体燃料を粉砕する機構である。粉砕機3としては、公知の竪型ローラーミル等を用いることができる。
 粉砕後の固体燃料の粒子径は特に制限されるものではなく、例えば粒子径が75μm以下となる固体燃料の割合が75質量%以上90質量%以下となるように粉砕することができる。
(ボイラー)
 ボイラー4は、上記粉砕機3で粉砕された固体燃料を燃焼する。上記ボイラー4はバーナー7、火炉、伝熱管及び煙突を主に備える。上記ボイラー4は、空気と共に吹き込まれた固体燃料をバーナー7により火炉で燃焼し、この火炉内に上下方向に多数配設された伝熱管により熱交換を行う。この熱交換により上記伝熱管に供給される給水が加熱及び加圧され、蒸気が発生する。また、燃焼により発生した燃焼ガスは煙突から排出される。
 上記伝熱管は、必要とする蒸気の温度及び圧力に応じて適宜構成されるが、例えば火炉下部に配設される一次加熱器、一次再熱器及び節炭器を備える下部伝熱部と、火炉上部に配設される二次加熱器、三次加熱器、最終加熱器及び二次再熱器を備える上部伝熱部とにより構成できる。下部伝熱部は主にボイラー4に供給される給水を予熱し、上部伝熱部は主に高温高圧の蒸気を生成する。また、再熱器は蒸気タービン等で仕事をした蒸気を再び加熱し、再熱サイクルタービンを回す蒸気を作る。また、節炭器は排出される燃焼ガスの熱でボイラー4の給水を予熱する。
(演算機)
 演算機5は、上記複数種類の固体燃料の混合割合を決定する機構である。具体的には、上記複数種類の固体燃料それぞれの灰分の含有率及びその灰分中のムライトの含有率(以下、単にムライト含有率ということがある)に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記灰分中のムライトの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する。
 演算機5は、後述するボイラーの運転方法の混合割合決定工程(S2)により、複数種類の固体燃料の混合割合を算出する。また、演算機5は算出した混合割合に基づき供給量調整装置6を制御する。
(供給量調整装置)
 供給量調整装置6は、上記演算機5で決定された上記複数種類の固体燃料の混合割合になるよう上記ホッパー1から混合機2に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構である。つまり、当該ボイラー設備は、固体燃料の種類と同数のホッパー1それぞれから混合機2に接続される配管それぞれに1基ずつ、合計で固体燃料の種類と同数の供給量調整装置6を備える。この供給量調整装置6は特に限定されないが、例えばホッパー1から混合機2へ固体燃料を運搬するチェーンコンベアを用いることができる。この場合、供給量の調整は、このコンベアの移動速度を調整することで行う。
<ボイラーの運転方法>
 図2に当該ボイラー装置を用いたボイラーの運転方法の手順を示す。当該ボイラーの運転方法は、複数種類の固体燃料を混合して燃焼させるボイラーの運転方法である。当該ボイラーの運転方法は、上記複数種類の固体燃料中の灰分の含有率及びその灰分中のムライトの含有率を取得する工程(S1:含有率取得工程)と、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記ムライト含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記ムライト含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程(S2:混合割合決定工程)と、決定した上記混合割合に基づいて上記複数種類の固体燃料の混合及び火炉への供給を行う工程(S3:混合供給工程)とを備える。
 当該ボイラーの運転方法に用いられる固体燃料は、ボイラーに使用される燃料であれば特に限定されないが、例えば石炭、汚泥炭化物、バイオマス燃料等を挙げることができる。中でも発熱量が大きく、火力発電プラント等に好適に用いられる石炭が好ましい。
 上記石炭の種類は、特に限定されない。当該ボイラーの運転方法では、上記ムライト含有率を基準値以下となるよう上記複数種類の固体燃料の混合割合を決定するので、ポーラス状の灰の付着によって生じる火炉収熱率の低下を抑制できる。つまり、当該ボイラーの運転方法は、ムライト含有率が比較的大きく火炉収熱率を低下させ易い固体燃料を、ムライト含有率が比較的小さく火炉収熱率を低下させ難い固体燃料と混合して使用するため、火炉収熱率の低下を抑制することができる。
 従って、当該ボイラーの運転方法は、ムライト含有率が比較的大きい石炭等を固体燃料の一部として使用することができる。このようなムライト含有率が比較的大きい石炭としては、例えば無煙炭、瀝青炭、亜瀝青炭、褐炭、高シリカ炭、高カルシウム炭等を挙げることができる。
(含有率取得工程)
 含有率取得工程(S1)では、複数種類の固体燃料それぞれの灰分の含有率及びその灰分中のムライトの含有率を取得する。なお、この含有率取得工程における灰分の含有率及びその灰分中のムライトの含有率の取得とは、固体燃料の分析を必須とするものではなく、予め測定された灰分の含有率及びその灰分中のムライトの含有率を記憶装置等から参照又はオペレーターが入力するものであってもよい。
 固体燃料それぞれの灰分の含有率の測定方法としては、特に限定されないが、例えばJIS-M8812(2006)に準拠した測定方法を用いることができる。また、灰分の含有率は、後述する混合割合と同じベースの値であればよく、無水ベースでも含水ベースでもよいが、混合比の計算が容易となる無水ベースとすることが好ましい。
 また、上記ムライト含有率の測定方法としては、特に限定されないが、固体燃料を例えば電気炉等で灰化したものを、例えばJIS-K0131(1996)に準拠したX線回折分析法によって測定することができる。具体的には、X線回折装置によって同一条件で得られる固体燃料の灰のスペクトルとムライト標準物質(例えば日本セラミックス協会認証標準物質JCRM―R041)のスペクトルとのピーク比から算出する外部標準法を用いて灰分中のムライトの含有率を定量することができる。
 また、含有率取得工程(S1)では、上記灰分の測定に加えて、固体燃料それぞれの発熱量の測定値を取得しておくとよい。このように固体燃料それぞれの発熱量を取得しておくことで、後述する混合供給工程(S3)において、ボイラーに投入される混合された固体燃料の熱量が所望量となるように固体燃料の供給量を調整し易いため、ボイラーの運転を効率よく行える。ここで、固体燃料の発熱量とは、例えばJIS-M8814(2003)に準拠した測定方法に従って固体燃料を燃焼させて測定される値である。
 また、固体燃料それぞれの灰分の含有率、上記ムライト含有率及び固体燃料の発熱量等は、データとして例えば記憶装置等に記録して保存しておくことが好ましい。このようにデータを保存しておくことで、以後このデータを利用できる。
(混合割合決定工程)
 混合割合決定工程(S2)では、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記ムライト含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記ムライト含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する。この工程は当該ボイラー設備の演算機5により行われる。
 各固体燃料の灰分の質量含有率をWi、その灰分中のムライトの質量含有率をMi、燃料全体に対する質量割合をXiとするとき、混合体全体の灰分中のムライトの含有率Mは、下記式(1)により算出できる。なお、上記灰分含有率Wi、ムライト含有率Mi及び質量割合Xiの単位は燃料間で統一されていればよく、下記式(1)に示すように、ムライトの含有率Mの単位は、各固体燃料の灰分中のムライトの含有率Miと同じ単位となる。
Figure JPOXMLDOC01-appb-M000001
 混合割合決定工程(S2)では、上記ムライト含有率Mが基準値以下となるよう、上記複数種類の固体燃料の混合割合を決定する。当該ボイラーの運転方法は、上記ムライト含有率Mを基準値以下とすることで、火炉収熱率の低下を抑制できる。
 ここで、上記ムライト含有率Mを基準値以下とすることで、火炉収熱率の低下を抑制できる理由についてより詳しく説明する。
 固体燃料の成分のうち、灰化(燃焼)時にムライトを生成する成分は、結晶水を含有しており、ムライトを生成する際に結晶水を放出することで、灰をポーラス状にすると考えられる。このため、ムライトの含有量が大きいポーラス状の灰は、ボイラーの伝熱管に付着することで伝熱を阻害し火炉収熱率を低下させる。これに対し、上記ムライト含有率Mを基準値以下とすれば、この付着灰の断熱性が低減されるので、火炉収熱率の低下を抑制できると考えられる。
 上記混炭した固体燃料のムライト含有率Mの基準値としては、33質量%が好ましく、30質量%がより好ましく、28質量%がさらに好ましく、26質量%が特に好ましい。上記基準値を上記値より大きくする場合、火炉収熱率が下がり過ぎるため、火炉収熱率の低下が十分に抑制できないおそれがある。
 一方、上記混炭した固体燃料のムライト含有率Mの下限としては、15質量%が好ましく、18質量%がより好ましく、20質量%がさらに好ましい。ムライト含有率Mが上記下限に満たない場合、使用できる固体燃料が限られるので燃料コストが不必要に増大するおそれがある。
(混合供給工程)
 混合供給工程(S3)では、上記混合割合決定工程(S2)で決定した上記混合割合に基づいて上記複数種類の固体燃料を混合し、粉砕した後に火炉への供給を行う。具体的には、当該ボイラー設備の演算機5により供給量調整装置6を制御し、ホッパー1から混合機2に送られる固体燃料の量をそれぞれ調整する。混合された固体燃料は、粉砕機3で粉砕された後、空気と共にボイラー4に吹き込まれ、燃焼される。
(利点)
 当該ボイラーの運転方法は、上記ムライト含有率Mを基準値以下となるように複数種類の固体燃料の混合割合を決定するので、伝熱管への付着灰の断熱性が低減されるため、火炉収熱率の低下を抑制することができる。
<蒸気タービン発電機設備>
 蒸気タービン発電機設備は、蒸気タービン及び発電機を主に備える。
 上記蒸気タービンは、蒸気のもつエネルギーを、タービン(羽根車)と軸とを介して回転運動へと変換する外燃機関であり、当該ボイラー設備で生成された蒸気により駆動される。
 上記蒸気タービンは、特に限定されないが、例えば高温高圧タービン、高温再熱タービン及び低圧タービンにより構成することができる。この場合、当該ボイラー設備で生成された蒸気は、まず高温高圧タービンを駆動する。高温高圧タービンの駆動により、そのエネルギーを失い温度及び圧力の下がった蒸気は、再び当該ボイラー設備の再熱器により加熱される。この再熱器により加熱された高温蒸気により高温再熱タービンが駆動される。さらに、高温再熱タービンの駆動により、そのエネルギーを失い温度及び圧力の下がった蒸気は、低圧タービンを駆動した後、復水給水設備に導かれる。
 この蒸気により駆動された高温高圧タービン、高温再熱タービン及び低圧タービンの動力が発電機を駆動し、電気出力を得る。
<復水給水設備>
 復水給水設備は、復水器、ポンプ、加熱器、及び脱気器を主に備える。
 復水給水設備は、蒸気タービンを駆動した蒸気を復水器により冷却し、復水として回収する。この復水は、ポンプで加圧され、加熱器で加熱され、脱気器で脱気される。この加圧及び加熱された復水は、当該ボイラー設備の給水として当該ボイラー設備の節炭器に供給される。
<利点>
 当該ボイラー設備を用いた火力発電プラントは、当該ボイラーの運転方法を用いるので、火炉収熱率が低下し難い。このため、当該ボイラー設備を用いた火力発電プラントは、安定運用し易い。
[その他の実施形態]
 上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
 当該ボイラー設備及び当該ボイラー設備の運転方法は、火力発電プラント以外に用いられるボイラー設備に適用されてもよい。
 また、当該ボイラー設備において、ボイラーの構成は、上記実施形態とは異なるものであってもよい。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(固体燃料)
 まず、固体燃料として3種類の石炭を準備し、それぞれ少量をサンプリングして、灰分の含有率及びその灰分中のムライトの含有率を測定した。なお、石炭の灰分の含有率はJIS-M8812(2006)に準拠した測定方法により行って含水ベースの値を算出した。また、ムライト含有率はJIS-K0131(1996)に準拠したX線回折分析法により行った。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
(No.1~No.7)
 次に、これらの3種類の石炭のうち2種類又は3種類の石炭を用い、表2に示すNo.1~No.7の石炭の混合割合(含水ベース)を選定し、灰分中のムライトの含有率を算出した。また、表2の混合割合になるように石炭を混合した混炭を用いて、発電容量700MWの火力発電プラントの火力ボイラーを一定期間運用し、その期間内の火炉収熱率の平均値を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、表2において火炉収熱率は、No.1の火炉収熱率に対する比率に換算して規格化した値である。
 また、図3に、表2の結果をグラフに示す。図示するように、混合する石炭の種類によらず灰分中のムライト含有率と火炉収熱率とは相関が高く、ムライト含有率を基準値以下とすることで火炉収熱率の低下を抑制できることが分かる。
 また、灰分中のムライト含有率が33質量%以下であるNo.1~No.6は火炉収熱率が0.95を超えるのに対し、ムライト含有率が33質量%を超えるNo.7では火炉収熱率が0.95を下回る。このことから、ムライト含有率の基準値を33質量%とすることで、0.95以上の高い火炉収熱率が得られることが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年4月14日出願の日本特許出願(特願2016-080739)に基づくものであり、その内容はここに参照として取り込まれる。
 以上説明したように、本発明のボイラーの運転方法は、火炉収熱率の低下を抑制できる。従って、当該ボイラーの運転方法を用いたボイラー設備は安定運用し易い。また、当該ボイラーの運転方法を用いたボイラーは火力発電プラントに好適に用いられる。
1 ホッパー
2 混合機
3 粉砕機
4 ボイラー
5 演算機
6 供給量調整装置
7 バーナー

Claims (5)

  1.  複数種類の固体燃料を混合して燃焼させるボイラーの運転方法であって、
     上記複数種類の固体燃料中の灰分の含有率及びその灰分中のムライトの含有率を取得する工程と、
     上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記ムライトの含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記ムライトの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程とを備えることを特徴とするボイラーの運転方法。
  2.  上記基準値が33質量%である請求項1に記載のボイラーの運転方法。
  3.  上記固体燃料が石炭である請求項1又は請求項2に記載のボイラーの運転方法。
  4.  火力発電プラントに用いられる請求項1に記載のボイラーの運転方法。
  5.  複数種類の固体燃料を混合して燃焼させるボイラー設備であって、
     異なる種類の上記固体燃料をそれぞれ供給する複数の機構と、
     上記複数の供給機構から供給される複数種類の固体燃料を混合する機構と、
     上記混合機構で混合された固体燃料を粉砕する機構と、
     上記粉砕機構で粉砕された固体燃料を燃焼するボイラーと、
     上記複数種類の固体燃料それぞれの灰分の含有率及びその灰分中のムライトの含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記ムライトの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する機構と、
     上記決定機構で決定された上記複数種類の固体燃料の混合割合になるよう上記供給機構から混合機構に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構と
    を備えることを特徴とするボイラー設備。
PCT/JP2017/014719 2016-04-14 2017-04-10 ボイラーの運転方法及びボイラー設備 WO2017179551A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780023129.6A CN109073220B (zh) 2016-04-14 2017-04-10 锅炉的运转方法和锅炉设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-080739 2016-04-14
JP2016080739A JP6577405B2 (ja) 2016-04-14 2016-04-14 ボイラーの運転方法及びボイラー設備

Publications (1)

Publication Number Publication Date
WO2017179551A1 true WO2017179551A1 (ja) 2017-10-19

Family

ID=60041575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014719 WO2017179551A1 (ja) 2016-04-14 2017-04-10 ボイラーの運転方法及びボイラー設備

Country Status (3)

Country Link
JP (1) JP6577405B2 (ja)
CN (1) CN109073220B (ja)
WO (1) WO2017179551A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250708A (ja) * 1996-03-14 1997-09-22 Babcock Hitachi Kk 微粉炭焚ボイラの運転方法
JP2006084062A (ja) * 2004-09-14 2006-03-30 Babcock Hitachi Kk 石炭焚き火炉の運用方法と装置
JP2011013197A (ja) * 2009-07-06 2011-01-20 Central Res Inst Of Electric Power Ind 石炭灰性状の評価方法及び評価システム
JP2011027281A (ja) * 2009-07-22 2011-02-10 Kobe Steel Ltd ボイラの灰付着抑制方法及び灰付着抑制装置
JP2011080727A (ja) * 2009-10-09 2011-04-21 Kobe Steel Ltd ボイラの灰付着抑制方法及び灰付着抑制装置
JP2011226756A (ja) * 2010-03-31 2011-11-10 Kobe Steel Ltd ボイラの灰付着抑制方法及び灰付着抑制装置
WO2013054903A1 (ja) * 2011-10-13 2013-04-18 株式会社神戸製鋼所 石炭混合燃料、その燃焼方法、及び石炭混合燃料に用いられる石炭燃料
JP2013156228A (ja) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd 低品位燃料のスラッギングを回避する燃料評価方法及び燃料調整方法
JP2016006363A (ja) * 2014-06-20 2016-01-14 株式会社神戸製鋼所 ボイラの灰付着抑制方法、およびボイラの灰付着抑制装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638600B (zh) * 2008-08-01 2011-06-15 中国神华能源股份有限公司 一种降低燃煤结渣性能的配煤方法
CN103566815A (zh) * 2012-08-09 2014-02-12 北京华德创业环保设备有限公司 一种高效精准的配煤系统
CN104180384B (zh) * 2014-08-14 2016-08-24 西安西热锅炉环保工程有限公司 燃煤电站锅炉掺烧低灰熔点煤种的系统与方法
CN104569283A (zh) * 2015-01-06 2015-04-29 华中科技大学 一种对煤炭和污泥混合燃烧后灰熔点变化趋势的预测方法
CN104807030B (zh) * 2015-04-14 2017-02-22 西安热工研究院有限公司 一种降低燃煤锅炉微细颗粒物的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250708A (ja) * 1996-03-14 1997-09-22 Babcock Hitachi Kk 微粉炭焚ボイラの運転方法
JP2006084062A (ja) * 2004-09-14 2006-03-30 Babcock Hitachi Kk 石炭焚き火炉の運用方法と装置
JP2011013197A (ja) * 2009-07-06 2011-01-20 Central Res Inst Of Electric Power Ind 石炭灰性状の評価方法及び評価システム
JP2011027281A (ja) * 2009-07-22 2011-02-10 Kobe Steel Ltd ボイラの灰付着抑制方法及び灰付着抑制装置
JP2011080727A (ja) * 2009-10-09 2011-04-21 Kobe Steel Ltd ボイラの灰付着抑制方法及び灰付着抑制装置
JP2011226756A (ja) * 2010-03-31 2011-11-10 Kobe Steel Ltd ボイラの灰付着抑制方法及び灰付着抑制装置
WO2013054903A1 (ja) * 2011-10-13 2013-04-18 株式会社神戸製鋼所 石炭混合燃料、その燃焼方法、及び石炭混合燃料に用いられる石炭燃料
JP2013087135A (ja) * 2011-10-13 2013-05-13 Kobe Steel Ltd 石炭混合燃料、その燃焼方法、及び石炭混合燃料に用いられる石炭燃料
JP2013156228A (ja) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd 低品位燃料のスラッギングを回避する燃料評価方法及び燃料調整方法
JP2016006363A (ja) * 2014-06-20 2016-01-14 株式会社神戸製鋼所 ボイラの灰付着抑制方法、およびボイラの灰付着抑制装置

Also Published As

Publication number Publication date
CN109073220B (zh) 2019-11-26
CN109073220A (zh) 2018-12-21
JP6577405B2 (ja) 2019-09-18
JP2017190908A (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
KR101257201B1 (ko) 보일러의 회분 부착 억제 방법 및 회분 부착 억제 장치
RU2245446C2 (ru) Парогазовая энергетическая установка и способ действия такой установки
JP5374453B2 (ja) ボイラの灰付着抑制方法及び灰付着抑制装置
US20120174836A1 (en) Method for reducing adhesion of ash in boiler and device for the same
WO2017183529A1 (ja) ボイラーの運転方法及びボイラー設備
CN102506412B (zh) 一种流化床锅炉排渣热能回用的系统和方法
JP2010285564A (ja) 石炭ガス化炉及びその制御方法並びにプログラム、及びこれを備えた石炭ガス化複合発電装置
CN102985756A (zh) 加热炉的灰附着抑制方法及灰附着抑制装置
JP6577405B2 (ja) ボイラーの運転方法及びボイラー設備
JP6568420B2 (ja) ボイラの運転方法及びボイラ設備
WO2023095579A1 (ja) 燃焼制御方法、燃焼制御装置及び燃焼制御プログラム
KR101735989B1 (ko) 가스화 발전 플랜트의 제어 장치, 가스화 발전 플랜트, 및 가스화 발전 플랜트의 제어 방법
JP2012117680A (ja) 発電システム
JP2011149658A (ja) 循環流動層ボイラの運転制御方法
CN105308197A (zh) 废物处理
JP5619674B2 (ja) 加熱炉の灰付着抑制方法及び灰付着抑制装置
EP3415816B1 (en) A method and a system for extending the load range of a power plant comprising a boiler supplying steam to a steam turbine
Ryabov et al. Application of the technology of combustion of solid fuels in a circulating fluidized bed
JP2006084062A (ja) 石炭焚き火炉の運用方法と装置
CN101639226B (zh) 一种在锅炉中燃烧煤炭的方法
JP7286871B2 (ja) 相関関係導出方法、および、相関関係導出装置
TW202309391A (zh) 氨燃料供應單元、發電廠、以及鍋爐之運轉方法
JP2006023024A (ja) 有機化合物の加熱方法および加熱装置
CN101251250A (zh) 双炉膛结构的循环流化床锅炉
JP2007248026A (ja) 高炉ガス焚発電設備の燃料制御方法および燃料制御装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782364

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782364

Country of ref document: EP

Kind code of ref document: A1