WO2017179414A1 - リレー装置 - Google Patents

リレー装置 Download PDF

Info

Publication number
WO2017179414A1
WO2017179414A1 PCT/JP2017/012658 JP2017012658W WO2017179414A1 WO 2017179414 A1 WO2017179414 A1 WO 2017179414A1 JP 2017012658 W JP2017012658 W JP 2017012658W WO 2017179414 A1 WO2017179414 A1 WO 2017179414A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power storage
state
conductive path
storage unit
Prior art date
Application number
PCT/JP2017/012658
Other languages
English (en)
French (fr)
Inventor
広世 前川
裕通 安則
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US16/093,059 priority Critical patent/US10819099B2/en
Priority to CN201780020139.4A priority patent/CN108886248B/zh
Publication of WO2017179414A1 publication Critical patent/WO2017179414A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/24Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0009AC switches, i.e. delivering AC power to a load

Definitions

  • the present invention relates to a relay device configured as a peripheral device of a power storage unit.
  • Patent Document 1 discloses an example of an in-vehicle power supply device.
  • the power supply device disclosed in Patent Document 1 includes a lead storage battery and a lithium storage battery, and a power supply line is provided as a power path between the lead storage battery and the lithium storage battery.
  • Two MOSFETs for switching between energization and interruption of the power supply line are provided.
  • the SOC is in the optimum range by switching the MOSFET on and off in accordance with the SOC (State of charge) of the lithium storage battery during non-regenerative operation (during idle operation, acceleration traveling, steady traveling, etc.). To control.
  • Patent Document 1 when a ground fault occurs in a power supply line connected to a lead storage battery and a lithium storage battery, a large current flows instantaneously through the power supply line. For this reason, the output voltage of the lead storage battery and the lithium storage battery is instantaneously reduced from the time of the occurrence of the ground fault, and the output voltage is greatly reduced until the two MOSFETs are turned off and the large current is stopped. End up. As described above, when the output of the storage battery is significantly reduced due to the large current, there is a risk of causing problems such as stoppage of the load operation.
  • the present invention has been made based on the above-described circumstances, and can switch on and off the energization path between the power storage units, and can perform a protective operation while suppressing a decrease in output of the power storage unit when an abnormality such as a ground fault occurs.
  • An object of the present invention is to provide a relay device that can be used.
  • the relay device of the present invention is A conductive path serving as a path of a current flowing between the first power storage unit and the second power storage unit; A switch unit that is connected to the conductive path and switches between an on state in which the conductive path is energized and an off state in which the conductive path is in a predetermined non-energized state; An inductance part connected in series with the switch part and having an inductance component; A first voltage detection unit that detects a voltage of the conductive path in a path closer to the first power storage unit than the inductance unit; A second voltage detection unit that detects a voltage of the conductive path in a path closer to the second power storage unit than the inductance unit; A control unit that switches the switch unit to an off state when a detection value of at least one of the first voltage detection unit or the second voltage detection unit indicates a predetermined abnormal value; including.
  • a ground fault or the like occurs in a path (conductive path) of a current flowing between the first power storage unit and the second power storage unit or a part electrically connected to the conductive path, and the conductive path
  • a voltage abnormality occurs, protection can be achieved by switching the switch unit to an off state.
  • the inductance part is connected in series with the switch part, when a current flows from any power storage part through the inductance part and the switch part to the ground fault position, the increase rate of the current is suppressed. be able to. Therefore, it is possible to suppress the voltage drop of the power storage unit until the conductive path is turned off (protection operation) by the switch unit, and it is possible to make it difficult to cause a problem due to the output reduction of the power storage unit.
  • a voltage detection unit (first voltage detection unit, second voltage detection unit) is provided in each of the path closer to the first power storage unit than the inductance unit and the path closer to the second power storage unit than the inductance unit.
  • first voltage detection unit second voltage detection unit
  • the detection value of any voltage detection unit immediately changes to an abnormal value due to the occurrence of a ground fault or the like .
  • the voltage of the conductive path on the first power storage unit side instantaneously decreases, so the first voltage The detection value of the detection unit instantaneously changes to an abnormal value.
  • the control unit can quickly grasp the abnormal state (the state where the voltage detection value has changed to the abnormal value) when a ground fault occurs, and can switch the switch unit to the OFF state earlier.
  • FIG. 1 is a circuit diagram schematically illustrating an in-vehicle power supply system including a relay device according to a first embodiment.
  • 1 is a circuit diagram of a separation relay that forms a part of a relay device according to Embodiment 1.
  • FIG. (A) is the voltage of the sub battery before and after the occurrence of a ground fault when a ground fault occurs on the sub battery (second power storage unit) side in the relay device of the first embodiment, the voltage of the main battery (first power storage unit), It is a timing chart which illustrates the change of the electric current of a separation relay, and
  • (B) is a timing chart of a comparative example.
  • the switch unit includes a first semiconductor switch that includes a first element unit that switches between an on state and an off state, and a first diode unit that is connected in parallel to the first element unit, and an on state and an off state. And a second semiconductor switch that includes a second element unit that switches to the second element unit and a second diode unit that is connected in parallel to the second element unit and disposed in a direction opposite to the first diode unit.
  • bidirectional energization can be cut off in the conductive path. And when a ground fault etc. generate
  • the present invention occurs in the inductance part when the switch part is switched to the off state in the state where current flows in the first direction from one of the first power storage part and the second power storage part to the other side in the conductive path. Protection that suppresses the back electromotive force generated in the inductance part when the switch part is switched to the off state while the current flows in the second direction opposite to the first direction in the conductive path.
  • a circuit portion may be included.
  • the back electromotive force caused by the inductance unit during the switch-off operation is achieved. Electric power can be suppressed by the protection circuit unit. Therefore, it is possible to prevent problems caused by the counter electromotive force (such as destruction of the switch unit).
  • the current flowing through the conductive path can be cut off in either the first direction or the second direction, and the back electromotive force can be suppressed even when the current in any direction is cut off. Problems caused by electromotive force (such as destruction of the switch part) can be prevented more reliably.
  • a plurality of series components in which a switch unit and an inductance unit are connected in series may be connected in parallel between the first power storage unit and the second power storage unit.
  • a configuration that allows a larger current to flow between the first power storage unit and the second power storage unit can be realized in a form in which the sizes of the switch unit and the inductance unit are suppressed.
  • the in-vehicle power supply system 100 shown in FIG. 1 is configured as an in-vehicle power supply system including a plurality of power supplies (first power storage unit 91 and second power storage unit 92).
  • the relay device 1 forms part of the in-vehicle power supply system 100 and switches between the first power storage unit 91 (main battery) and the second power storage unit 92 (sub battery) between an energized state and a non-energized state.
  • a main load 81 that is a first load and a sub load 82 that is a second load are provided, and the main load 81 and the sub load 82 have equivalent functions. Will be described as a representative example. However, this is only a representative example, and the application target of the relay device 1 is not limited to this configuration.
  • the main load 81 is, for example, an electric power steering system, and has a configuration in which an electric component such as a motor operates upon receiving power supply from the first power storage unit 91.
  • the sub load 82 is an electric power steering system having the same configuration and function as the main load 81.
  • the in-vehicle power supply system 100 is a system that can maintain the function of the main load 81 even when the main load 81 is abnormal by operating the sub load 82 instead of the main load 81 when an abnormality occurs in the main load 81. It is configured.
  • the 1st electrical storage part 91 is a power supply part which can supply electric power to the main load 81, for example, is comprised by well-known power supplies, such as a lead battery.
  • the 2nd electrical storage part 92 is a power supply part which can supply electric power to the sub load 82, for example, is comprised by well-known power supplies, such as a lithium ion battery and an electrical double layer capacitor.
  • the first power storage unit 91 and the main load 81 are connected to a wiring 71 provided outside the relay device 1, and a generator (not shown) is connected to the wiring 71.
  • the second power storage unit 92 and the sub load 82 are connected to a wiring 72 provided outside the relay device 1.
  • the wiring 71 is connected to the common conductive path 13 in the conductive path 11 described later, and the wiring 72 is connected to the common conductive path 14 in the conductive path 11 described later.
  • the 1st electrical storage part 91 is charged with the electric power produced
  • second power storage unit 92 is charged with power generated by the power generation of the generator or power from first power storage unit 91.
  • the relay device 1 includes a conductive path 11, a plurality of separation relays 5 (each separation relay 5A, 5B, 5C), a current detection unit 50, a first voltage detection unit 61, a second voltage detection unit 62, and a control. Part 3.
  • the conductive path 11 is a portion serving as a path for a current flowing between the first power storage unit 91 and the second power storage unit 92.
  • the conductive path 11 includes a common conductive path 13 on the first power storage unit 91 side, a common conductive path 14 on the second power storage unit 92 side, and a plurality of parallel conductive paths 12 (between the common conductive paths 13 and 14 ( Individual conductive paths).
  • the conductive path 11 is a power line and serves as an energization path for flowing current from the first power storage unit 91 and a generator (not shown) to the second power storage unit 92. Moreover, depending on the case, it can also become a path
  • the common conductive path 13 is connected to the wiring 71 on the first power storage unit 91 side, and is electrically connected to the first power storage unit 91 via the wiring 71.
  • the common conductive path 14 is connected to the wiring 72 on the second power storage unit 92 side, and is electrically connected to the second power storage unit 92 via the wiring 72.
  • the parallel conductive path 12 is an energization path connected in parallel between the common conductive paths 13 and 14, and is a portion where the current flowing through the conductive path 11 is divided.
  • the three separation relays 5 are connected in parallel between the common conductive path 13 and the common conductive path 14, and each separation relay 5 is configured by a plurality of electronic components associated with the parallel conductive path 12 described above. ing. All of the three separation relays 5 conduct between the common conductive path 13 and the common conductive path 14 when in the on state, and energize between the common conductive path 13 and the common conductive path 14 when in the off state. Has the function of blocking.
  • the first separation relay is denoted by reference numeral 5A
  • the second separation relay is denoted by reference numeral 5B
  • the third separation relay is denoted by reference numeral 5C.
  • FIG. 2 shows a common circuit configuration of the three separation relays 5.
  • the parallel conductive path 12 which comprises a part of 1st isolation
  • the parallel conductive path 12 is indicated by reference numeral 12B, and the parallel conductive path 12 forming a part of the third separation relay 5C is indicated by reference numeral 12C.
  • the separation relay 5 includes a series configuration unit 42 in which the switch unit 20 and the coil 30 (inductance unit) are connected in series, and a protection circuit unit 40 that generates a protective action when the switch unit 20 is switched off. And have.
  • the series configuration unit 42 includes two N-channel MOSFETs 21 and 22 and a coil 30 (inductance unit) disposed between the two MOSFETs 21 and 22. The two MOSFETs 21 and 22 and the coil 30 are connected to each other. It is the part which comprises the structure connected in series. As shown in FIG.
  • the relay device 1 includes a first power storage unit 91, a second power storage unit 92, and a series configuration unit 42 in which a switch unit 20 (two MOSFETs 21 and 22) and a coil 30 are connected in series. Are connected in parallel to form a shunt path.
  • each switch unit 20 is constituted by two MOSFETs 21 and 22 respectively provided in a plurality of separation relays 5. Specifically, when all the switch units 20 are in an off state, that is, when each pair of two MOSFETs 21 and 22 provided in each of the plurality of separation relays 5 is in an off state, the conduction path 11 is energized. Blocked. Thus, the state in which each pair of the two MOSFETs 21 and 22 is in the OFF state corresponds to the OFF state in which the conductive path 11 is in a predetermined non-energized state. In this state, the wiring 71 and the wiring 72 Conduction between them is interrupted.
  • a state in which at least one of the pair of MOSFETs 21 and 22 is on corresponds to an on state in which the conductive path 11 is energized.
  • the wiring 71 and the wiring 72 are electrically connected.
  • the MOSFET 21 includes a first element portion 21A that switches between an on state and an off state, and a body diode 21B (parasitic diode) connected in parallel to the first element portion 21A.
  • the part other than body diode 21B corresponds to first element portion 21A.
  • the ON state of the first element unit 21A is a state in which a current can flow between the drain and source of the MOSFET 21 through the channel, and the OFF state of the first element unit 21A is a state in which no current flows through the channel.
  • the body diode 21B corresponds to an example of a first diode part.
  • the MOSFET 22 includes a second element portion 22A that switches between an on state and an off state, and a body diode 22B (parasitic diode) connected in parallel to the second element portion 22A.
  • a portion other than the body diode 22B corresponds to the second element portion 22A.
  • the ON state of the second element part 22A is a state in which current can flow between the drain and source of the MOSFET 22 through the channel
  • the OFF state of the second element part 22A is a state in which no current flows through the channel.
  • the body diode 22B corresponds to an example of a second diode part.
  • the coil 30 corresponds to an example of an inductance part having an inductance component.
  • the coil 30 (inductance unit) is connected in series with the MOSFETs 21 and 22 between the MOSFET 21 and the MOSFET 22. The operation and function of the coil 30 will be described later.
  • the protection circuit unit 40 shown in FIG. 2 is configured as a circuit that suppresses the back electromotive force generated in the coil 30 (inductance unit) when the switch unit 20 is switched to the off state.
  • the protection circuit unit 40 includes resistance units R1 and R2, diodes D1 and D2, and capacitors C1 and C2, and is configured as a snubber circuit. Specifically, the first circuit unit 40A in which the diode D1 and the resistor unit R1 are connected in series, and the second circuit unit 40B in which the diode D2 and the resistor unit R2 are connected in series are connected in parallel with the coil 30. Yes.
  • a capacitor C1 is connected between one end of the coil 30 and the ground, and a capacitor C2 is connected between the other end of the coil 30 and the ground.
  • the anode of the diode D1 is connected to one end of the coil, and in the second circuit unit 40B, the anode of the diode D2 is connected to the other end of the coil.
  • the MOSFETs 21 and 22 are both maintained in an ON state, and current flows in the direction from the first power storage unit 91 side to the second power storage unit 92 side (first direction) in the parallel conductive path 12.
  • a counter electromotive force is generated in the coil 30 (inductance portion).
  • the back electromotive force can be suppressed by circulating the current of the coil 30 in the second circuit portion 40B.
  • the current detection unit 50 shown in FIG. 1 is configured as a known current detection circuit (current monitor).
  • the current detection unit 50 outputs the value of the current flowing through the common conductive path 14 as a detection value, and the current value detected by the current detection unit 50 is input to the control unit 3.
  • the first voltage detection unit 61 is configured as a known voltage detection circuit (voltage monitor), and is configured to detect the voltage of the conductive path 11 in the path closer to the first power storage unit 91 than all the MOSFETs 21. Specifically, the first voltage detection unit 61 outputs the voltage value of the common conductive path 13 as a detection value, and the voltage value detected by the first voltage detection unit 61 is sent to the control unit 3 by a signal line (not shown). It is designed to be entered.
  • a signal line not shown
  • the second voltage detection unit 62 is configured as a known voltage detection circuit (voltage monitor), and is configured to detect the voltage of the conductive path 11 in the path closer to the second power storage unit 92 than all the MOSFETs 22. Specifically, the second voltage detection unit 62 outputs the voltage value of the common conductive path 14 as a detection value, and the voltage value detected by the second voltage detection unit 62 is input to the control unit 3 through a signal line. It has become so.
  • the control unit 3 includes, for example, a microcomputer provided with a CPU, ROM, RAM, A / D converter, and the like.
  • the control unit 3 includes a detection value of the current detection unit 50 (a current value flowing through the common conductive path 14), a detection value of the first voltage detection unit 61 (a voltage value of the common conductive path 13), and a second voltage detection unit 62. Detection values (voltage values of the common conductive path 14) are respectively input. Each detection value input to the control unit 3 is converted into a digital value by an A / D converter in the control unit 3.
  • the control unit 3 has a function of controlling on / off of the switch unit 20 (MOSFETs 21 and 22) of each separation relay 5, for example, a detection value of at least one of the first voltage detection unit 61 or the second voltage detection unit 62 Function to cut off the energization of the conductive path 11 by switching all the switch sections 20 of the separation relays 5 to the OFF state.
  • each switch unit 20 (specifically, a set of MOSFETs 21 and 22 provided in each separation relay 5) is controlled by the control unit 3.
  • the control unit 3 controls all the sets of the MOSFETs 21 and 22 provided in all the separation relays 5 to be in an on state when a predetermined on condition is satisfied.
  • the first power storage unit 91 and the second power storage unit 92 are electrically connected.
  • the timing at which the control unit 3 controls the plurality of switch units 20 to the ON state is not particularly limited.
  • control unit 3 continuously monitors the output voltage of the second power storage unit 92 and is provided in all the separation relays 5 when the output voltage of the second power storage unit 92 falls below a predetermined voltage threshold.
  • All the switch units 20 may be configured to be turned on. In other words, when the output voltage of the second power storage unit 92 decreases, the conductive path 11 is switched to the conductive state, and the second power storage unit 92 is charged with the power of the generator or the first power storage unit 91. Good.
  • the time for controlling the switch unit 20 to be in the ON state may be other time.
  • the control unit 3 controls all the pairs of MOSFETs 21 and 22 provided in all the separation relays 5 to be in an off state.
  • the condition for the control unit 3 to control all the switch units 20 to the OFF state is not limited to one.
  • the control unit 3 is provided in all the separation relays 5 when the output voltage of the second power storage unit 92 is equal to or higher than a predetermined voltage threshold (that is, when the second power storage unit 92 is sufficiently charged). All the switch units 20 (MOSFETs 21 and 22) may be controlled to be in an off state.
  • the time for controlling the switch unit 20 to be in the OFF state may be other time.
  • the control unit 3 forcibly controls all the switch units 20 (MOSFETs 21 and 22) provided in all the separation relays 5 to be turned off. Specifically, the control unit 3 continuously monitors each detection value (each voltage value) input from the first voltage detection unit 61 and the second voltage detection unit 62, and the first voltage detection unit 61. And a control for switching all the sets of MOSFETs 21 and 22 provided in all the separation relays 5 to the OFF state when the detection value input from at least one of the second voltage detection unit 62 is equal to or lower than a predetermined abnormality threshold Vth. I do.
  • the value of the abnormal threshold value Vth is not particularly limited as long as it is lower than the output voltage when the first power storage unit 91 and the second power storage unit 92 are fully charged.
  • the value is significantly lower than the predetermined voltage threshold described above. Can be set to
  • the voltage value of the common conductive path 14 detected by the second voltage detection unit 62 is the second power storage unit 92 (sub battery). Indicates the output voltage.
  • the voltage value of the wiring 72 and the common conductive path 14 changes to near 0 V (ground potential), and the second voltage
  • the voltage value detected by the detector 62 instantaneously drops to near 0V.
  • the control unit 3 determines that the abnormality is instantaneously immediately after the occurrence of the ground fault. Then, the control unit 3 immediately performs control for switching all the pairs of MOSFETs 21 and 22 provided in all the separation relays 5 to the OFF state, and interrupts the conduction of the conductive path 11.
  • the relay device 1 is provided with a coil 30 in each parallel conductive path 12 (power line) of the plurality of separation relays 5, and an instantaneous current increase at the time of occurrence of a ground fault is suppressed by an inductance component of the coil 30. Therefore, when a ground fault as described above occurs, a large current is not generated instantaneously. Since it is such a configuration, from when the ground fault occurs until the conduction of the conductive path 11 is interrupted (the MOSFETs 21 and 22 provided in all the separation relays 5 are controlled to be off by the control of the control unit 3). The amount of current flowing through the conductive path 11 is greatly suppressed until the switch is made.
  • FIG. 3A the voltage V2 of the second power storage unit 92 (sub battery) when a ground fault occurs in the wiring 72 connected to the second power storage unit 92 (sub battery), and the first power storage unit 91 ( The relationship between the voltage V1 of the main battery) and the current I flowing from the wiring 71 through the conductive path 11 to the wiring 72 (current flowing through the plurality of separation relays 5) is shown.
  • FIG. 3A shows that when all the switch units 20 are turned on before the ground fault occurrence time T1, the wiring 72 on the second power storage unit 92 (sub battery) side is grounded at the time T1. It shows a case where an entanglement occurs.
  • the voltage of the wiring 72 and the common conductive path 14 (that is, the voltage V2 of the second power storage unit 92 (sub-battery)) instantaneously drops below the abnormal threshold value Vth.
  • 3 immediately controls to switch all the switch units 20 to the OFF state, and all the switch units 20 are switched to the OFF state at time T2 when the switching control is completed. That is, in this configuration, immediately after the ground fault occurrence time T1, it is determined that there is an abnormality instantaneously, and the control unit 3 immediately performs control to switch all the switch units 20 to the OFF state.
  • the time period T2 can be shortened. For example, in the circuit of FIG.
  • the current value detected by the current detection unit 50 (the current value of the current flowing through the common conductive path 14) is a predetermined overcurrent threshold Ith (FIG.
  • Ith the overcurrent threshold
  • the control of turning off all the switch units 20 when the above) is reached is also conceivable.
  • the lapse of time until the current I of the separation relay 5 reaches the overcurrent threshold Ith is unavoidable after the ground fault occurrence time T1 shown in FIG. After that, all the switch units 20 are instructed to be turned off, and the switch units 20 are switched. That is, the time until the switch unit 20 is completely cut off is delayed by the elapsed time until the current I of the separation relay 5 reaches the overcurrent threshold Ith.
  • the second power storage that occurs at a time immediately after the ground fault occurrence time T1 reaches the overcurrent threshold Ith in the comparative example.
  • the voltage of the first power storage unit 91 gradually decreases without suddenly decreasing from the ground fault occurrence time T1 to the time T2 when all the switch units 20 are turned off. That is, the voltage of the first power storage unit 91 (main battery) is prevented from suddenly decreasing immediately after the occurrence of the ground fault, and the first power storage unit 91 (main battery) is switched before all the switch units 20 are switched to the off state. It is possible to avoid a situation where the voltage is significantly lowered.
  • the interval between the time T1 and the time T2 can be shortened as described above, the voltage drop of the first power storage unit 91 (main battery) immediately after the occurrence of the ground fault can be further suppressed, and the first power storage Problems (ECU reset, etc.) caused by the voltage of unit 91 (main battery) being significantly reduced can be solved.
  • the coil 30, the protection circuit unit 40, the first voltage detection unit 61, and the second voltage detection unit 62 are omitted from the relay device 1 shown in FIG.
  • the voltage V1 of the first power storage unit 91 (main battery) and the current that flows from the wiring 71 to the wiring 72 through the conductive path 11 The relationship with I is shown.
  • 3B assumes that the control unit 3 turns off the switch unit 20 in response to the occurrence of an overcurrent state in which the current in the conductive path 11 exceeds the overcurrent threshold Ith.
  • Such an action is the same even when a ground fault occurs on the first power storage unit 91 (main battery) side.
  • a ground fault occurs in the wiring 71 connected to the first power storage unit 91 (main battery) when all the sets of the MOSFETs 21 and 22 provided in each separation relay 5 are in the on state, the wiring 71 and the common The voltage value of the conductive path 13 changes to near 0V (ground potential), and the voltage value detected by the first voltage detection unit 61 instantaneously decreases to near 0V.
  • the control unit 3 determines that the abnormality is instantaneously immediately after the occurrence of the ground fault. Then, the control unit 3 immediately performs control for switching all the pairs of MOSFETs 21 and 22 provided in all the separation relays 5 to the OFF state, and interrupts the conduction of the conductive path 11.
  • the second power storage unit 92 (sub-battery) is from the occurrence of the ground fault until all the switch units 20 are completely switched off. Since the current flows from the side toward the ground fault occurrence site of the wiring 71, the current I flowing through the plurality of separation relays 5 (current flowing through the conductive path 11) rises during this period. However, since each coil 30 provided in each parallel conductive path 12 suppresses an instantaneous surge of the current flowing through each parallel conductive path 12, the current I flowing through the plurality of separation relays 5 (current flowing through the conductive path 11). Will rise gradually.
  • the voltage of the second power storage unit 92 (sub-battery) gradually decreases without suddenly decreasing from when the ground fault occurs until all the switch units 20 are turned off. Therefore, the voltage of the second power storage unit 92 (sub-battery) is prevented from suddenly decreasing immediately after the occurrence of the ground fault, and the second power storage unit 92 (sub-battery) is switched before all the switch units 20 are switched to the off state. It is possible to avoid a situation where the voltage is significantly lowered. In addition, since the interval from the occurrence of the ground fault to the completion of switching of all the switch units 20 can be shortened, the voltage drop of the second power storage unit 92 immediately after the occurrence of the ground fault can be further suppressed.
  • the relay device 1 of this configuration is configured such that the current path (conductive path 11) flowing between the first power storage unit 91 and the second power storage unit 92 or a part electrically connected to the conductive path 11 is used.
  • the current path conductive path 11
  • protection can be achieved by switching the switch unit 20 to the off state.
  • the coil 30 inductance part
  • the switch unit 20 since the coil 30 (inductance part) is connected in series with the switch part 20, when the electric current which goes to a ground fault position flows through the coil 30 and the switch part 20 from either electrical storage part, this The rate of increase in current can be suppressed. Therefore, it is possible to suppress the voltage drop of the power storage unit until the switch unit 20 turns off the conductive path 11 (protection operation), and it is possible to make it difficult to cause a problem due to the output reduction of the power storage unit.
  • a voltage detection unit (first voltage detection unit 61, second voltage detection) is provided in each of the path closer to the first power storage unit 91 than the coil 30 (inductance unit) and the path closer to the second power storage unit 92 than the coil 30. 62) is provided, and when a ground fault or the like occurs in the conductive path 11 or a portion electrically connected to the conductive path 11, the detection value of any voltage detection unit Due to this, it immediately changes to an abnormal value. For example, when a ground fault or the like occurs in the conductive path 11 or a part electrically connected to the conductive path 11 on the first power storage unit 91 side, the voltage of the conductive path 11 on the first power storage unit 91 side decreases instantaneously.
  • the detection value of the first voltage detection unit 61 instantaneously changes to an abnormal value.
  • the voltage of the conductive path 11 on the second power storage unit 92 side decreases instantaneously.
  • the detection value of the second voltage detection unit 62 instantaneously changes to an abnormal value. Therefore, the control part 3 can grasp
  • the switch unit 20 can be quickly turned off by the control unit 3 while suppressing a sudden increase in current by the coil 30 (inductance unit).
  • the current flowing through the conductive path 11 before the switch 20 is turned off can be further reduced, and the voltage drop of the power storage unit provided on the side opposite to the side where a ground fault or the like is generated can be suppressed to a smaller level. it can.
  • the switch unit 20 provided in each parallel conductive path 12 constituting the conductive path 11 includes a MOSFET 21 and a MOSFET 22.
  • the MOSFET 21 includes a first element portion 21A that switches between an on state and an off state, and a body diode 21B (first diode portion) connected in parallel to the first element portion 21A.
  • the MOSFET 22 is connected in parallel to the second element portion 22A and the second element portion 22A that are switched between the on state and the off state, and is disposed in a direction opposite to the body diode 21B (first diode portion). 2nd diode part). According to this configuration, bidirectional energization in the conductive path 11 can be interrupted.
  • the increasing rate of the discharge current that tends to flow from the first power storage unit 91 to the ground fault position is the coil 30 (inductance unit). )
  • the rapid voltage drop of the first power storage unit 91 is suppressed.
  • movement) of the conductive path 11 can be suppressed, and the malfunction (for example, ECU) resulting from the output fall of the 1st electrical storage part 91 can be suppressed. Reset, etc.) can be made difficult to occur.
  • the increase rate of the discharge current that tends to flow from the second power storage unit 92 to the ground fault position is caused by the coil 30 (inductance unit). Since it is mitigated, a rapid voltage drop of the second power storage unit 92 is suppressed. In this case, the voltage drop of the second power storage unit 92 until the switch unit 20 is turned off (protection operation) of the conductive path 11 can be suppressed, and problems caused by the output reduction of the second power storage unit 92 are unlikely to occur. can do.
  • the relay device 1 includes a protection circuit unit 40 that suppresses a counter electromotive force generated in the coil 30 (inductance unit) when the switch unit 20 is switched to an off state.
  • the switch unit 20 is turned off in a state in which a current flows in the first direction from either one of the first power storage unit 91 and the second power storage unit 92 in the conductive path 11. It has a function of suppressing back electromotive force generated in the coil 30 (inductance portion) when switched to a state.
  • the protection circuit unit 40 is a reverse circuit that is generated in the coil 30 (inductance unit) when the switch unit 20 is switched to an off state while a current flows in the second direction opposite to the first direction in the conductive path 11. It also has a function of suppressing electromotive force.
  • the coil 30 (inductance unit) is turned off when the switch unit 20 is turned off while the coil 30 (inductance unit) reduces the increase rate of the discharge current flowing from the power storage unit when a ground fault occurs.
  • Back electromotive force generated due to the protection circuit portion 40 can be suppressed. Therefore, it is possible to prevent problems (such as destruction of the switch unit 20) caused by the counter electromotive force.
  • the current flowing through the conductive path 11 can cut off the current in any direction of the first direction and the second direction, and the back electromotive force can be suppressed even when the current in any direction is cut off. Problems caused by the counter electromotive force (destruction of the switch unit 20, etc.) can be prevented more reliably.
  • a plurality of series components 42 in which a switch unit 20 and a coil 30 (inductance unit) are connected in series are connected in parallel between a first power storage unit 91 and a second power storage unit 92.
  • a configuration that allows a larger current to flow between the first power storage unit 91 and the second power storage unit 92 is realized in a form in which the sizes of the switch unit 20 and the coil 30 (inductance unit) are suppressed. be able to.
  • an actuator for example, an electric power steering system
  • the main load 81 may be configured as a sensing device such as a radar, an ultrasonic sensor, or a camera
  • the sub load 82 may be configured as a backup sensing device having the same function.
  • the load connected to the first power storage unit 91 side and the load connected to the second power storage unit 92 side may have different functions.
  • the number of the separation relays 5 is three has been described. However, the number of the separation relays 5 may be one or a plurality other than three.
  • the switch unit 20 disposed in the separation relay 5 is configured by the two MOSFETs 21 and 22 has been shown, but the switch unit 20 may be configured by a semiconductor switch other than the MOSFET. Good.
  • the separation relay 5 is not limited to a configuration in which two semiconductor switch elements are arranged in series with the coil 30, and one semiconductor switch element may be connected in series with the coil 30, and three or more semiconductor switch elements May be connected in series with the coil 30.
  • the switch unit 20 may be a mechanical relay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

蓄電部間の通電経路のオンオフを切り替えることができ、地絡等の異常が発生した場合に蓄電部の出力低下を抑えつつ保護動作を行うことができるリレー装置を提供する。 リレー装置(1)は、導電路(11)と、導電路(11)を通電させるオン状態と導電路(11)を所定の非通電状態にするオフ状態とに切り替わるスイッチ部(20)と、スイッチ部(20)と直列に接続されるコイル(30)(インダクタンス部)と、第1蓄電部(91)側の経路において導電路(11)の電圧を検出する第1電圧検出部(61)と、第2蓄電部(92)側の経路において導電路(11)の電圧を検出する第2電圧検出部(62)と、第1電圧検出部(61)又は第2電圧検出部(62)の少なくともいずれかの検出値が所定の異常値を示す場合にスイッチ部(20)をオフ状態に切り替える制御部(3)とを備える。

Description

リレー装置
 本発明は、蓄電部の周辺装置として構成されるリレー装置に関するものである。
 特許文献1には、車載用の電源装置の一例が開示されている。特許文献1で開示される電源装置は、鉛蓄電池とリチウム蓄電池とを備えており、鉛蓄電池とリチウム蓄電池の間の電力経路として給電線が設けられている。そして、この給電線の通電及び遮断を切り替える2つのMOSFETが設けられている。この電源装置は、例えば非回生時(アイドル運転時、加速走行時、定常走行時等)にリチウム蓄電池のSOC(State of charge)に応じてMOSFETのオンオフを切り替えることで、SOCが最適範囲となるように制御する。
2012-130108号公報
 特許文献1の技術は、例えば鉛蓄電池とリチウム蓄電池に接続された給電線に地絡が発生すると、この給電線には瞬時に大電流が流れることになる。このため、鉛蓄電池及びリチウム蓄電池の出力電圧は地絡発生時から瞬時に低下し、2つのMOSFETをオフ状態に切り替えて大電流を止めるまでの間は出力電圧が大幅に低下した状態となってしまう。このように大電流に起因して蓄電池の出力が大幅に低下してしまうと、負荷の動作停止などの不具合を招く虞がある。
 本発明は上述した事情に基づいてなされたものであり、蓄電部間の通電経路のオンオフを切り替えることができ、地絡等の異常が発生した場合に蓄電部の出力低下を抑えつつ保護動作を行うことができるリレー装置を提供することを目的とするものである。
 本発明のリレー装置は、
 第1蓄電部と第2蓄電部との間で流れる電流の経路となる導電路と、
 前記導電路に接続され、前記導電路を通電させるオン状態と、前記導電路を所定の非通電状態にするオフ状態とに切り替わるスイッチ部と、
 前記スイッチ部と直列に接続され、インダクタンス成分を有するインダクタンス部と、
 前記インダクタンス部よりも前記第1蓄電部側の経路において前記導電路の電圧を検出する第1電圧検出部と、
 前記インダクタンス部よりも前記第2蓄電部側の経路において前記導電路の電圧を検出する第2電圧検出部と、
 前記第1電圧検出部又は前記第2電圧検出部の少なくともいずれかの検出値が所定の異常値を示す場合に前記スイッチ部をオフ状態に切り替える制御部と、
を含む。
 本発明によれば、第1蓄電部と第2蓄電部との間で流れる電流の経路(導電路)又はこの導電路に電気的に接続された部位に地絡等が発生し、導電路に電圧異常が生じた場合に、スイッチ部をオフ状態に切り替えて保護を図ることができる。また、インダクタンス部がスイッチ部と直列に接続されているため、いずれかの蓄電部からインダクタンス部及びスイッチ部を経て地絡位置に向かおうとする電流が流れる場合に、この電流の増加速度を抑えることができる。よって、スイッチ部による導電路のオフ動作(保護動作)までの間の当該蓄電部の電圧低下を抑えることができ、蓄電部の出力低下に起因する不具合を生じにくくすることができる。
 しかも、インダクタンス部よりも第1蓄電部側の経路、及びインダクタンス部よりも第2蓄電部側の経路のそれぞれに電圧検出部(第1電圧検出部、第2電圧検出部)が設けられており、導電路又は導電路に電気的に接続された部位に地絡等が発生した場合、いずれかの電圧検出部の検出値が、地絡等の発生に起因して即座に異常値に変化する。例えば、第1蓄電部側において導電路又は導電路に電気的に接続された部位で地絡等が発生した場合、第1蓄電部側の導電路の電圧は瞬時に低下するため、第1電圧検出部の検出値は瞬時に異常値に変化する。同様に、第2蓄電部側において、導電路又は導電路に接続された部位で地絡等が発生した場合、第2蓄電部側の導電路の電圧は瞬時に低下するため、第2電圧検出部の検出値は瞬時に異常値に変化する。よって、制御部は、地絡発生時に迅速に異常状態(電圧検出値が異常値に変化した状態)を把握することができ、より早期にスイッチ部をオフ状態に切り替えることができる。
 このように、地絡等の発生時には、インダクタンス部によって電流の急上昇を抑えつつ、制御部によって迅速にスイッチ部をオフ動作させることができるため、地絡発生時点からスイッチ部がオフ状態に切り替わるまでに導電路を介して流れ込む電流をより小さく抑えることができ、地絡等の発生側とは反対側に設けられた蓄電部の電圧の低下をより小さく抑えることができる。
実施例1に係るリレー装置を備えた車載用の電源システムを概略的に例示する回路図である。 実施例1に係るリレー装置の一部をなす分離リレーの回路図である。 (A)は、実施例1のリレー装置においてサブバッテリ(第2蓄電部)側に地絡が発生した場合の地絡発生前後のサブバッテリの電圧、メインバッテリ(第1蓄電部)の電圧、分離リレーの電流の変化を例示するタイミングチャートであり、(B)は比較例のタイミングチャートである。
 本発明において、スイッチ部は、オン状態とオフ状態とに切り替わる第1素子部と第1素子部に並列に接続された第1ダイオード部とを備える第1半導体スイッチと、オン状態とオフ状態とに切り替わる第2素子部と第2素子部に並列に接続されるとともに第1ダイオード部とは逆向きで配置される第2ダイオード部とを備える第2半導体スイッチとを有していてもよい。
 この構成によれば、導電路において双方向の通電を遮断することができる。そして、導電路又はこの導電路に電気的に接続された部位のうち、第2蓄電部側の位置で地絡等が発生した場合には、第1蓄電部から地絡位置に流れようとする放電電流の増加速度がインダクタンス部によって緩和されるため、第1蓄電部の急激な電圧低下が抑えられる。この場合、スイッチ部による導電路のオフ動作(保護動作)までの間の第1蓄電部の電圧低下を抑えることができ、第1蓄電部の出力低下に起因する不具合を生じにくくすることができる。また、導電路又はこの導電路に電気的に接続された部位のうち、第1蓄電部側の位置で地絡等が発生した場合、第2蓄電部から地絡位置に流れようとする放電電流の増加速度がインダクタンス部によって緩和されるため、第2蓄電部の急激な電圧低下が抑えられる。この場合、スイッチ部による導電路のオフ動作(保護動作)までの間の第2蓄電部の電圧低下を抑えることができ、第2蓄電部の出力低下に起因する不具合を生じにくくすることができる。
 本発明は、導電路において第1蓄電部及び第2蓄電部のいずれか一方側から他方側に向かう第1方向に電流が流れる状態でスイッチ部がオフ状態に切り替えられたときにインダクタンス部で発生する逆起電力を抑制し、導電路において第1方向とは反対の第2方向に電流が流れる状態でスイッチ部がオフ状態に切り替えられたときにインダクタンス部で発生する逆起電力を抑制する保護回路部を含んでいてもよい。
 この構成によれば、地絡等の発生時に蓄電部から流れる放電電流の増加速度をインダクタンス部によって緩和する構成を実現しつつ、スイッチ部のオフ動作の際にインダクタンス部に起因して生じる逆起電力を保護回路部によって抑制することができる。よって、この逆起電力に起因する不具合(スイッチ部の破壊等)を防ぐことができる。特に、導電路を流れる電流が第1方向及び第2方向のいずれの向きでも電流を遮断することができ、いずれの方向の電流を遮断したときでも逆起電力を抑制することができるため、逆起電力に起因する不具合(スイッチ部の破壊等)をより確実に防ぐことができる。
 本発明は、スイッチ部とインダクタンス部とが直列に接続された直列構成部が、第1蓄電部と第2蓄電部との間に並列に複数接続されていてもよい。
 この構成によれば、第1蓄電部と第2蓄電部の間により大きな電流を流すことができる構成を、スイッチ部やインダクタンス部の各サイズを抑えた形で実現することができる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す車載電源システム100は、複数の電源(第1蓄電部91及び第2蓄電部92)を備えた車載用の電源システムとして構成されている。リレー装置1は、車載電源システム100の一部をなしており、第1蓄電部91(メインバッテリ)と第2蓄電部92(サブバッテリ)との間を通電状態と非通電状態とに切り替える機能を有する。
 以下では、車載電源システム100の例として、第1の負荷であるメイン負荷81と、第2の負荷であるサブ負荷82とを備え、メイン負荷81とサブ負荷82とが同等の機能を有する構成を代表例として説明する。但し、あくまで代表例であり、リレー装置1の適用対象はこの構成のみに限定されない。
 メイン負荷81は、例えば電動式パワーステアリングシステムであり、第1蓄電部91からの電力供給を受けてモータ等の電気部品が動作する構成をなす。サブ負荷82は、メイン負荷81と同等の構成及び機能を有する電動式パワーステアリングシステムである。車載電源システム100は、メイン負荷81に異常が生じた場合に、メイン負荷81に代えてサブ負荷82を動作させることで、メイン負荷81の異常時でもメイン負荷81の機能を維持し得るシステムとして構成されている。
 第1蓄電部91は、メイン負荷81に電力を供給し得る電源部であり、例えば鉛バッテリなどの公知の電源によって構成されている。第2蓄電部92は、サブ負荷82に電力を供給し得る電源部であり、例えばリチウムイオン電池や電気二重層キャパシタなどの公知の電源によって構成されている。
 第1蓄電部91及びメイン負荷81は、リレー装置1の外部に設けられた配線71に接続されており、この配線71には、図示しない発電機が接続されている。第2蓄電部92及びサブ負荷82は、リレー装置1の外部に設けられた配線72に接続されている。配線71は、後述する導電路11における共通導電路13に接続されており、配線72は、後述する導電路11における共通導電路14に接続されている。第1蓄電部91は、発電機での発電によって生じた電力によって充電される。分離リレー5がオン状態(通電可能状態)のときには、発電機の発電によって生じた電力又は第1蓄電部91からの電力によって第2蓄電部92が充電される。
 リレー装置1は、導電路11と、複数の分離リレー5(各分離リレー5A,5B,5C)と、電流検出部50と、第1電圧検出部61と、第2電圧検出部62と、制御部3とを備える。
 導電路11は、第1蓄電部91と第2蓄電部92との間で流れる電流の経路となる部分である。導電路11は、第1蓄電部91側の共通導電路13と、第2蓄電部92側の共通導電路14と、共通導電路13,14の間に接続される複数の並列導電路12(個別導電路)とを備える。導電路11は電力線であり、第1蓄電部91や図示しない発電機からの電流を第2蓄電部92に流すための通電経路となっている。また、場合によっては、第2蓄電部92からの放電電流を配線71側に流す経路にもなり得る。共通導電路13は、第1蓄電部91側の配線71に接続されており、配線71を介して第1蓄電部91に電気的に接続されている。共通導電路14は、第2蓄電部92側の配線72に接続されており、配線72を介して第2蓄電部92に電気的に接続されている。並列導電路12は、共通導電路13,14の間において並列に接続された通電経路であり、導電路11を流れる電流が分流する部分である。
 3つの分離リレー5は、共通導電路13と共通導電路14との間に並列に接続されており、各分離リレー5は、上述した並列導電路12と関連する複数の電子部品とによって構成されている。3つの分離リレー5はいずれも、オン状態のときに共通導電路13と共通導電路14との間を導通させ、オフ状態のときに共通導電路13と共通導電路14との間の通電を遮断する機能を有する。図1では、3つの分離リレー5のうち、第1の分離リレーを符号5Aで示し、第2の分離リレーを符号5Bで示し、第3の分離リレーを符号5Cで示している。これら3つの分離リレー5は同一の回路構成であり、図2には、3つの分離リレー5の共通の回路構成を示している。また、図1では、並列に設けられた並列導電路12のうち、第1の分離リレー5Aの一部をなす並列導電路12を符号12Aで示し、第2の分離リレー5Bの一部をなす並列導電路12を符号12Bで示し、第3の分離リレー5Cの一部をなす並列導電路12を符号12Cで示す。
 図2のように、分離リレー5は、スイッチ部20とコイル30(インダクタンス部)とが直列に接続された直列構成部42と、スイッチ部20のオフ切替時に保護作用を生じさせる保護回路部40とを有する。直列構成部42は、2つのNチャネル型MOSFET21,22と、これら2つのMOSFET21,22の間に配置されるコイル30(インダクタンス部)とを備えており、2つのMOSFET21,22とコイル30とが直列に接続された構成をなす部分である。図1のように、リレー装置1は、スイッチ部20(2つのMOSFET21,22)とコイル30とが直列に接続されてなる直列構成部42が、第1蓄電部91と第2蓄電部92との間に並列に複数接続され、分流経路を構成している。
 図1で示すリレー装置1では、複数の分離リレー5にそれぞれ設けられた2つのMOSFET21,22によって各スイッチ部20が構成されている。具体的には、全てのスイッチ部20がオフ状態のとき、即ち、複数の分離リレー5にそれぞれ設けられた2つのMOSFET21,22の各組が全てオフ状態であるときに導電路11の通電が遮断される。このように、2つのMOSFET21,22の各組が全てオフ動作している状態が、導電路11を所定の非通電状態にするオフ状態に相当し、この状態では、配線71と配線72との間の導通が遮断される。また、少なくともいずれかのMOSFET21,22の組がオン動作している状態、即ち、少なくともいずれかの分離リレー5がオン動作している状態が、導電路11を通電させるオン状態に相当し、この状態では、配線71と配線72との間が導通する。
 図2のように、MOSFET21は、オン状態とオフ状態とに切り替わる第1素子部21Aと、第1素子部21Aに並列に接続されたボディダイオード21B(寄生ダイオード)とを備える。具体的には、MOSFET21において、ボディダイオード21B以外の部分が第1素子部21Aに相当する。第1素子部21Aのオン状態とはチャネルを介してMOSFET21のドレインソース間に電流が流れ得る状態であり、第1素子部21Aのオフ状態とはチャネルを介して電流が流れない状態である。ボディダイオード21Bは、第1ダイオード部の一例に相当する。MOSFET22は、オン状態とオフ状態とに切り替わる第2素子部22Aと、第2素子部22Aに並列に接続されたボディダイオード22B(寄生ダイオード)とを備える。具体的には、MOSFET22において、ボディダイオード22B以外の部分が第2素子部22Aに相当する。第2素子部22Aのオン状態とはチャネルを介してMOSFET22のドレインソース間に電流が流れ得る状態であり、第2素子部22Aのオフ状態とはチャネルを介して電流が流れない状態である。ボディダイオード22Bは、第2ダイオード部の一例に相当する。
 コイル30は、インダクタンス成分を有するインダクタンス部の一例に相当する。コイル30(インダクタンス部)は、MOSFET21とMOSFET22との間においてこれらMOSFET21,22と直列に接続されている。コイル30の作用、機能については後述する。
 図2で示す保護回路部40は、スイッチ部20をオフ状態に切り替える際にコイル30(インダクタンス部)で発生する逆起電力を抑制する回路として構成されている。保護回路部40は、抵抗部R1,R2と、ダイオードD1,D2と、コンデンサC1,C2とを備え、スナバ回路として構成されている。具体的には、ダイオードD1及び抵抗部R1を直列に接続した第1回路部40Aと、ダイオードD2及び抵抗部R2を直列に接続した第2回路部40Bとが、コイル30と並列に接続されている。コイル30の一端部とグランドとの間にはコンデンサC1が接続されており、コイル30の他端部とグランドとの間にコンデンサC2が接続されている。第1回路部40Aは、ダイオードD1のアノードがコイルの一端に接続され、第2回路部40Bは、ダイオードD2のアノードがコイルの他端に接続されている。
 図2で示す分離リレー5において、MOSFET21,22がいずれもオン状態で維持され、並列導電路12において第1蓄電部91側から第2蓄電部92側に向かう方向(第1方向)に電流が流れている状態でMOSFET21,22がいずれもオフ状態に切り替えられると、コイル30(インダクタンス部)には逆起電力が発生する。このとき、第2回路部40Bでコイル30の電流を還流させて逆起電力を抑制することができる。逆に、並列導電路12において第2蓄電部92側から第1蓄電部91側に向かう方向(第2方向)に電流が流れている状態でMOSFET21,22がいずれもオフ状態に切り替えられると、コイル30(インダクタンス部)には逆起電力が発生する。このとき、第1回路部40Aでコイル30の電流を還流させて逆起電力を抑制することができる。
 図1で示す電流検出部50は、公知の電流検出回路(電流モニタ)として構成されている。この電流検出部50は、共通導電路14を流れる電流の値を検出値として出力し、電流検出部50で検出された電流値は、制御部3に入力されるようになっている。
 第1電圧検出部61は、公知の電圧検出回路(電圧モニタ)として構成され、全てのMOSFET21よりも第1蓄電部91側の経路において導電路11の電圧を検出するように構成されている。具体的には、第1電圧検出部61は、共通導電路13の電圧値を検出値として出力し、第1電圧検出部61で検出された電圧値は、図示しない信号線によって制御部3に入力されるようになっている。
 第2電圧検出部62は、公知の電圧検出回路(電圧モニタ)として構成され、全てのMOSFET22よりも第2蓄電部92側の経路において導電路11の電圧を検出するように構成されている。具体的には、第2電圧検出部62は、共通導電路14の電圧値を検出値として出力し、第2電圧検出部62で検出された電圧値は、信号線によって制御部3に入力されるようになっている。
 制御部3は、例えば、CPU、ROM、RAM、A/D変換器などを備えたマイクロコンピュータを有してなる。制御部3には、電流検出部50の検出値(共通導電路14を流れる電流値)、第1電圧検出部61の検出値(共通導電路13の電圧値)、第2電圧検出部62の検出値(共通導電路14の電圧値)がそれぞれ入力される。制御部3に入力された各検出値は、制御部3内のA/D変換器にてデジタル値に変換される。制御部3は、各分離リレー5のスイッチ部20(MOSFET21,22)のオンオフを制御する機能を有し、例えば、第1電圧検出部61又は第2電圧検出部62の少なくともいずれかの検出値が所定の異常値を示す場合に各分離リレー5のスイッチ部20を全てオフ状態に切り替えることで導電路11の通電を遮断するように機能する。
 ここで、通常時におけるリレー装置1の基本動作を説明する。
 リレー装置1では、制御部3によって各スイッチ部20(具体的には、各分離リレー5にそれぞれ設けられたMOSFET21,22の組)のオンオフが制御される。制御部3は、所定のオン条件が成立している場合、全ての分離リレー5に設けられたMOSFET21,22の組を全てオン状態に制御する。このようにオン状態に制御されているときには第1蓄電部91と第2蓄電部92との間が導通する。制御部3が複数のスイッチ部20をオン状態に制御するタイミングは特に限定されない。例えば、制御部3は、第2蓄電部92の出力電圧を継続的に監視し、第2蓄電部92の出力電圧が所定の電圧閾値未満に低下した場合に全ての分離リレー5に設けられた全てのスイッチ部20(MOSFET21,22)をオン状態に制御するように構成されていてもよい。つまり、第2蓄電部92の出力電圧が低下した場合に導電路11を導通状態に切り替え、発電機又は第1蓄電部91の電力によって第2蓄電部92を充電するように制御を行ってもよい。勿論、スイッチ部20をオン状態に制御する時期はこれ以外の時期であってもよい。
 また、制御部3は、所定のオフ条件が成立している場合、全ての分離リレー5に設けられたMOSFET21,22の組を全てオフ状態に制御する。制御部3が全てのスイッチ部20をオフ状態に制御する条件は1つに限定されない。例えば、制御部3は、第2蓄電部92の出力電圧が所定電圧閾値以上である場合(即ち、第2蓄電部92が十分に充電されている場合)に全ての分離リレー5に設けられた全てのスイッチ部20(MOSFET21,22)をオフ状態に制御するように構成されていてもよい。勿論、スイッチ部20をオフ状態に制御する時期はこれ以外の時期であってもよい。
 次に、異常時におけるリレー装置1の動作を説明する。
 制御部3は、所定の異常状態が発生した場合、全ての分離リレー5に設けられた全てのスイッチ部20(MOSFET21,22)を強制的にオフ状態に制御する。具体的には、制御部3は、第1電圧検出部61及び第2電圧検出部62から入力される各検出値(各電圧値)を継続的に監視しており、第1電圧検出部61及び第2電圧検出部62の少なくともいずれかから入力される検出値が所定の異常閾値Vth以下となった場合に全ての分離リレー5に設けられたMOSFET21,22の組を全てオフ状態に切り替える制御を行う。なお、異常閾値Vthの値は第1蓄電部91及び第2蓄電部92の満充電時の出力電圧よりも低い値であれば特に限定されないが、例えば上述の所定電圧閾値よりも大幅に低い値に設定することができる。
 例えば、各分離リレー5に設けられたMOSFET21,22の組が全てオン状態であるとき、第2電圧検出部62で検出される共通導電路14の電圧値は第2蓄電部92(サブバッテリ)の出力電圧を示す。この状態で、第2蓄電部92(サブバッテリ)に接続された配線72において地絡が発生すると、配線72及び共通導電路14の電圧値が0V(グランド電位)近くに変化し、第2電圧検出部62で検出される電圧値は瞬時に0V近くに低下する。つまり、地絡発生直後に第2電圧検出部62で検出される電圧値が瞬時に異常閾値Vth未満となるため、制御部3は、地絡発生直後に瞬時に異常と判定する。そして、制御部3は、全ての分離リレー5に設けられたMOSFET21,22の組を全てオフ状態に切り替える制御を即座に行い、導電路11の通電を遮断する。
 更に、リレー装置1は、複数の分離リレー5の各並列導電路12(電力線)にコイル30が設けられており、このコイル30のインダクタンス成分によって地絡発生時の瞬間的な電流増大を抑えているため、上述したような地絡が発生したときに瞬間的に大きな電流が発生しない構成となっている。このような構成であるため、地絡が発生してから導電路11の通電が遮断されるまでの間(制御部3の制御によって全ての分離リレー5に設けられたMOSFET21,22が全てオフ状態に切り替えられるまでの間)、導電路11を流れる電流量が大幅に抑えられる。
 図3(A)では、第2蓄電部92(サブバッテリ)に接続された配線72に地絡が発生した場合における第2蓄電部92(サブバッテリ)の電圧V2と、第1蓄電部91(メインバッテリ)の電圧V1と、配線71から導電路11を通って配線72へ流れる電流I(複数の分離リレー5を流れる電流)との関係を示している。図3(A)は、地絡発生時間T1よりも前の時期に全てのスイッチ部20がオン状態とされた場合において、時間T1で第2蓄電部92(サブバッテリ)側の配線72に地絡が発生した場合について示している。この場合、地絡発生時間T1の直後に配線72及び共通導電路14の電圧(即ち、第2蓄電部92(サブバッテリ)の電圧V2)が瞬時に異常閾値Vth未満に低下するため、制御部3は全てのスイッチ部20をオフ状態に切り替える制御を即座に行い、この切替制御が完了する時間T2で全てのスイッチ部20がオフ状態に切り替わる。つまり、本構成では、地絡発生時間T1の直後に瞬時に異常と判定し、制御部3が全てのスイッチ部20をオフ状態に切り替える制御を即座に行うため、地絡発生時間T1と切り替え完了時間T2の間を短くすることができる。例えば、図1の回路では、比較例となる制御方法として、電流検出部50によって検出される電流値(共通導電路14を流れる電流の電流値)が所定の過電流閾値Ith(図3(A)参照)に達した場合に全てのスイッチ部20をオフ動作させる制御も考えられる。しかし、この比較例の制御方法では、図3(A)で示す地絡発生時間T1の後、分離リレー5の電流Iが過電流閾値Ithに達するまでの時間経過が避けられず、この時間経過の後に全てのスイッチ部20に対するオフ指示がなされ、スイッチ部20の切り替えが行われることになる。つまり、分離リレー5の電流Iが過電流閾値Ithに達するまでの時間経過の分だけスイッチ部20の遮断完了までの時間が遅れてしまうことになる。これに対し、上述した本構成の制御方法では、地絡発生時間T1の直後の時期(上記比較例において分離リレー5の電流Iが過電流閾値Ithに達するよりも早い時期)に生じる第2蓄電部92(サブバッテリ)の電圧低下を検出して即座にスイッチ部20をオフ状態に切り替える制御を行い得るため、分離リレー5の電流Iのみに基づいてスイッチ部20の遮断動作を行う上記比較例の制御方法と比較して、より迅速にスイッチ部20の遮断動作を行うことができる。
 図3(A)の例では、地絡発生時間T1から全てのスイッチ部20が完全にオフ状態に切り替わる時間T2までの間、第1蓄電部91(メインバッテリ)側から配線72の地絡発生部位に向けて電流が流れ込むため、この期間、複数の分離リレー5を流れる電流I(導電路11を流れる電流)は上昇する。しかし、各並列導電路12に設けられた各コイル30により各並列導電路12を流れる電流の瞬間的な急上昇が抑えられるため、複数の分離リレー5を流れる電流I(導電路11を流れる電流)は徐々に上昇することになる。そして、第1蓄電部91(メインバッテリ)の電圧は地絡発生時間T1から全てのスイッチ部20のオフ動作が完了する時間T2までの間、急低下せずに徐々に低下することになる。つまり、地絡発生直後に第1蓄電部91(メインバッテリ)の電圧が急低下することを抑制し、全てのスイッチ部20がオフ状態に切り替えられる前に第1蓄電部91(メインバッテリ)の電圧が大幅に低くなってしまう事態を回避することができる。しかも、上述したように時間T1と時間T2の間隔を短くすることができるため、地絡発生直後における第1蓄電部91(メインバッテリ)の電圧の低下をより一層抑えることができ、第1蓄電部91(メインバッテリ)の電圧が大幅に低下することに起因する問題(ECUリセット等)を解消することができる。
 なお、図3(B)には、図1で示すリレー装置1からコイル30、保護回路部40、第1電圧検出部61、第2電圧検出部62を省略し、各MOSFET21,22の間を単に直結した構成において、図3(A)と同様の地絡が発生した場合の、第1蓄電部91(メインバッテリ)の電圧V1と、配線71から導電路11を通って配線72へ流れる電流Iとの関係を示している。なお、図3(B)の構成は、導電路11の電流が過電流閾値Ithを超える過電流状態の発生に応じて制御部3がスイッチ部20をオフ動作するものとする。
 図3(B)で示すように、コイル30が存在しない構成では、配線72に地絡が発生した場合、地絡発生時から瞬間的に電流量が急上昇し、第1蓄電部91(メインバッテリ)の電圧V1は瞬間的に急低下する。この構成では、制御部3が過電流を検出してから、全てのスイッチ部20のオフ状態への切り替えが完了する前に第1蓄電部91の電圧が大幅に低下してしまうため、ECUリセットやアクチュエータのパワー低下等の不具合を招く虞がある。このような不具合は、高度運転機能車(例えば自動運転車)などでは特に避けられるべきである。これに対し、本構成のリレー装置1では、図3(A)のような関係となるため、このような問題を解消することができる。
 このような作用は、第1蓄電部91(メインバッテリ)側で地絡が発生した場合でも同様である。例えば、各分離リレー5に設けられたMOSFET21,22の組が全てオン状態であるときに、第1蓄電部91(メインバッテリ)に接続された配線71において地絡が発生すると、配線71及び共通導電路13の電圧値が0V(グランド電位)近くに変化し、第1電圧検出部61で検出される電圧値は瞬時に0V近くに低下する。つまり、地絡発生直後に第1電圧検出部61で検出される電圧値が瞬時に異常閾値Vth未満となるため、制御部3は、地絡発生直後に瞬時に異常と判定する。そして、制御部3は、全ての分離リレー5に設けられたMOSFET21,22の組を全てオフ状態に切り替える制御を即座に行い、導電路11の通電を遮断する。
 このように第1蓄電部91(メインバッテリ)側で地絡が発生した場合、地絡発生から全てのスイッチ部20が完全にオフ状態に切り替わるまでの間、第2蓄電部92(サブバッテリ)側から配線71の地絡発生部位に向けて電流が流れ込むため、この期間、複数の分離リレー5を流れる電流I(導電路11を流れる電流)は上昇する。しかし、各並列導電路12に設けられた各コイル30により各並列導電路12を流れる電流の瞬間的な急上昇が抑えられるため、複数の分離リレー5を流れる電流I(導電路11を流れる電流)は徐々に上昇することになる。そして、第2蓄電部92(サブバッテリ)の電圧は地絡発生時から全てのスイッチ部20のオフ動作が完了するまでの間、急低下せずに徐々に低下することになる。よって、地絡発生直後に第2蓄電部92(サブバッテリ)の電圧が急低下することを抑制し、全てのスイッチ部20がオフ状態に切り替えられる前に第2蓄電部92(サブバッテリ)の電圧が大幅に低くなってしまう事態を回避することができる。しかも、地絡発生から全てのスイッチ部20の切り替え完了までの間隔を短くすることができるため、地絡発生直後における第2蓄電部92の電圧の低下をより一層抑えることができる。
 以上のように、本構成のリレー装置1は、第1蓄電部91と第2蓄電部92との間で流れる電流の経路(導電路11)又はこの導電路11に電気的に接続された部位に地絡等が発生し、導電路11に電圧異常が生じた場合に、スイッチ部20をオフ状態に切り替えて保護を図ることができる。また、コイル30(インダクタンス部)がスイッチ部20と直列に接続されているため、いずれかの蓄電部からコイル30及びスイッチ部20を経て地絡位置に向かおうとする電流が流れる場合に、この電流の増加速度を抑えることができる。よって、スイッチ部20による導電路11のオフ動作(保護動作)までの間の当該蓄電部の電圧低下を抑えることができ、蓄電部の出力低下に起因する不具合を生じにくくすることができる。
 しかも、コイル30(インダクタンス部)よりも第1蓄電部91側の経路、及びコイル30よりも第2蓄電部92側の経路のそれぞれに電圧検出部(第1電圧検出部61、第2電圧検出部62)が設けられており、導電路11又は導電路11に電気的に接続された部位に地絡等が発生した場合、いずれかの電圧検出部の検出値が、地絡等の発生に起因して即座に異常値に変化する。例えば、第1蓄電部91側において導電路11又は導電路11に電気的に接続された部位で地絡等が発生した場合、第1蓄電部91側の導電路11の電圧は瞬時に低下するため、第1電圧検出部61の検出値は瞬時に異常値に変化する。同様に、第2蓄電部92側において、導電路11又は導電路11に接続された部位で地絡等が発生した場合、第2蓄電部92側の導電路11の電圧は瞬時に低下するため、第2電圧検出部62の検出値は瞬時に異常値に変化する。よって、制御部3は、地絡発生時に迅速に異常状態(電圧検出値が異常値に変化した状態)を把握することができ、より早期にスイッチ部20をオフ状態に切り替えることができる。
 このように、地絡等の発生時には、コイル30(インダクタンス部)によって電流の急上昇を抑えつつ、制御部3によって迅速にスイッチ部20をオフ動作させることができるため、地絡発生時点からスイッチ部20がオフ状態に切り替わるまでに導電路11を介して流れ込む電流をより小さく抑えることができ、地絡等の発生側とは反対側に設けられた蓄電部の電圧の低下をより小さく抑えることができる。
 また、導電路11を構成する各並列導電路12に設けられたスイッチ部20は、MOSFET21とMOSFET22とを有する。MOSFET21は、オン状態とオフ状態とに切り替わる第1素子部21Aと第1素子部21Aに並列に接続されたボディダイオード21B(第1ダイオード部)とを備える。MOSFET22は、オン状態とオフ状態とに切り替わる第2素子部22Aと第2素子部22Aに並列に接続されるとともにボディダイオード21B(第1ダイオード部)とは逆向きで配置されるボディダイオード22B(第2ダイオード部)とを備える。この構成によれば、導電路11において双方向の通電を遮断することができる。そして、導電路11において第2蓄電部92側の位置で地絡等が発生した場合には、第1蓄電部91から地絡位置に流れようとする放電電流の増加速度がコイル30(インダクタンス部)によって緩和されるため、第1蓄電部91の急激な電圧低下が抑えられる。この場合、スイッチ部20による導電路11のオフ動作(保護動作)までの間の第1蓄電部91の電圧低下を抑えることができ、第1蓄電部91の出力低下に起因する不具合(例えばECUリセット等)を生じにくくすることができる。また、導電路11において第1蓄電部91側の位置で地絡等が発生した場合、第2蓄電部92から地絡位置に流れようとする放電電流の増加速度がコイル30(インダクタンス部)によって緩和されるため、第2蓄電部92の急激な電圧低下が抑えられる。この場合、スイッチ部20による導電路11のオフ動作(保護動作)までの間の第2蓄電部92の電圧低下を抑えることができ、第2蓄電部92の出力低下に起因する不具合を生じにくくすることができる。
 リレー装置1は、スイッチ部20をオフ状態に切り替える際にコイル30(インダクタンス部)で発生する逆起電力を抑制する保護回路部40を有する。保護回路部40は、具体的には、導電路11において第1蓄電部91及び第2蓄電部92のいずれか一方側から他方側に向かう第1方向に電流が流れる状態でスイッチ部20がオフ状態に切り替えられたときにコイル30(インダクタンス部)で発生する逆起電力を抑制する機能を有する。更に、保護回路部40は、導電路11において第1方向とは反対の第2方向に電流が流れる状態でスイッチ部20がオフ状態に切り替えられたときにコイル30(インダクタンス部)で発生する逆起電力を抑制する機能をも有する。
 この構成によれば、地絡等の発生時に蓄電部から流れる放電電流の増加速度をコイル30(インダクタンス部)によって緩和する構成を実現しつつ、スイッチ部20のオフ動作の際にコイル30(インダクタンス部)に起因して生じる逆起電力を保護回路部40によって抑制することができる。よって、この逆起電力に起因する不具合(スイッチ部20の破壊等)を防ぐことができる。特に、導電路11を流れる電流が第1方向及び第2方向のいずれの向きでも電流を遮断することができ、いずれの方向の電流を遮断したときでも逆起電力を抑制することができるため、逆起電力に起因する不具合(スイッチ部20の破壊等)をより確実に防ぐことができる。
 リレー装置1は、スイッチ部20とコイル30(インダクタンス部)とが直列に接続された直列構成部42が、第1蓄電部91と第2蓄電部92との間に並列に複数接続されている。この構成によれば、第1蓄電部91と第2蓄電部92の間により大きな電流を流すことができる構成を、スイッチ部20やコイル30(インダクタンス部)の各サイズを抑えた形で実現することができる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)実施例1では、メイン負荷81及びサブ負荷82として冗長性が求められるアクチュエータ(例えば電動パワーステアリングシステム)を例示したが、これ以外の例であってもよい。例えば、メイン負荷81が、レーダ、超音波センサ、カメラ等のセンシング装置として構成され、サブ負荷82がこれと同等の機能を有するバックアップ用のセンシング装置として構成されていてもよい。また、第1蓄電部91側に接続される負荷と、第2蓄電部92側に接続される負荷とが異なる機能を有していてもよい。
(2)実施例1では、分離リレー5の数が3である例を示したが、分離リレー5の数は、1であってもよく、3以外の複数であってもよい。
(3)実施例1では、分離リレー5に配置されるスイッチ部20が2つのMOSFET21,22によって構成された例を示したが、スイッチ部20は、MOSFET以外の半導体スイッチで構成されていてもよい。また、分離リレー5は、2つの半導体スイッチ素子をコイル30と直列に配置する構成に限定されず、1つの半導体スイッチ素子がコイル30と直列に接続されていてもよく、3以上の半導体スイッチ素子がコイル30と直列に接続されていてもよい。また、スイッチ部20は、機械式のリレーであってもよい。
 1…リレー装置
 3…制御部
 11…導電路
 20…スイッチ部
 21…MOSFET(第1半導体スイッチ)
 21A…第1素子部
 21B…ボディダイオード(第1ダイオード部)
 22…MOSFET(第2半導体スイッチ)
 22A…第2素子部
 22B…ボディダイオード(第2ダイオード部)
 30…コイル(インダクタンス部)
 40…保護回路部
 42…直列構成部
 61…第1電圧検出部
 62…第2電圧検出部
 91…第1蓄電部
 92…第2蓄電部

Claims (4)

  1.  第1蓄電部と第2蓄電部との間で流れる電流の経路となる導電路と、
     前記導電路に接続され、前記導電路を通電させるオン状態と、前記導電路を所定の非通電状態にするオフ状態とに切り替わるスイッチ部と、
     前記スイッチ部と直列に接続され、インダクタンス成分を有するインダクタンス部と、
     前記インダクタンス部よりも前記第1蓄電部側の経路において前記導電路の電圧を検出する第1電圧検出部と、
     前記インダクタンス部よりも前記第2蓄電部側の経路において前記導電路の電圧を検出する第2電圧検出部と、
     前記第1電圧検出部又は前記第2電圧検出部の少なくともいずれかの検出値が所定の異常値を示す場合に前記スイッチ部をオフ状態に切り替える制御部と、
    を含むリレー装置。
  2.  前記スイッチ部は、オン状態とオフ状態とに切り替わる第1素子部と前記第1素子部に並列に接続された第1ダイオード部とを備える第1半導体スイッチと、オン状態とオフ状態とに切り替わる第2素子部と前記第2素子部に並列に接続されるとともに前記第1ダイオード部とは逆向きで配置される第2ダイオード部とを備える第2半導体スイッチとを有する請求項1に記載のリレー装置。
  3.  前記導電路において前記第1蓄電部及び前記第2蓄電部のいずれか一方側から他方側に向かう第1方向に電流が流れる状態で前記スイッチ部がオフ状態に切り替えられたときに前記インダクタンス部で発生する逆起電力を抑制し、前記導電路において前記第1方向とは反対の第2方向に電流が流れる状態で前記スイッチ部がオフ状態に切り替えられたときに前記インダクタンス部で発生する逆起電力を抑制する保護回路部を含む請求項1又は請求項2に記載のリレー装置。
  4.  前記スイッチ部と前記インダクタンス部とが直列に接続された直列構成部が、前記第1蓄電部と前記第2蓄電部との間に並列に複数接続されている請求項1から請求項3のいずれか一項に記載のリレー装置。
PCT/JP2017/012658 2016-04-15 2017-03-28 リレー装置 WO2017179414A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/093,059 US10819099B2 (en) 2016-04-15 2017-03-28 Relay device
CN201780020139.4A CN108886248B (zh) 2016-04-15 2017-03-28 继电器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016081873A JP6750288B2 (ja) 2016-04-15 2016-04-15 リレー装置
JP2016-081873 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017179414A1 true WO2017179414A1 (ja) 2017-10-19

Family

ID=60041500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012658 WO2017179414A1 (ja) 2016-04-15 2017-03-28 リレー装置

Country Status (4)

Country Link
US (1) US10819099B2 (ja)
JP (1) JP6750288B2 (ja)
CN (1) CN108886248B (ja)
WO (1) WO2017179414A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730349A1 (en) * 2019-04-25 2020-10-28 Yazaki Corporation Power supply system
US11329324B2 (en) 2017-04-05 2022-05-10 Siemens Energy AS Energy storage system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540565B2 (ja) * 2016-03-16 2019-07-10 株式会社オートネットワーク技術研究所 車両用電源供給システム、車両用駆動システム
JP6748906B2 (ja) * 2016-04-15 2020-09-02 株式会社オートネットワーク技術研究所 リレー装置
JP7409206B2 (ja) * 2020-04-09 2024-01-09 株式会社デンソー 電源システム
JP7347313B2 (ja) 2020-04-09 2023-09-20 株式会社デンソー 電源システム
JP7362691B2 (ja) * 2021-04-30 2023-10-17 矢崎総業株式会社 電源システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070928A (ja) * 1983-09-22 1985-04-22 日本電気株式会社 突入電流防止装置
JP2004338577A (ja) * 2003-05-16 2004-12-02 Hitachi Ltd 車両用電力供給装置及び電力供給方法
JP2011229216A (ja) * 2010-04-15 2011-11-10 Auto Network Gijutsu Kenkyusho:Kk 電源制御装置及び故障検知方法
JP2012130108A (ja) * 2010-12-13 2012-07-05 Denso Corp 電源装置
WO2013115034A1 (ja) * 2012-01-31 2013-08-08 三洋電機株式会社 車両用の電源装置及びこの電源装置を備える車両
JP2014036556A (ja) * 2012-08-10 2014-02-24 Gs Yuasa Corp スイッチ故障診断装置、蓄電装置およびスイッチ故障診断プログラム、スイッチ故障診断方法
JP2015076959A (ja) * 2013-10-08 2015-04-20 株式会社オートネットワーク技術研究所 電源システム

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161258A (ja) * 1991-11-29 1993-06-25 Sony Corp サージ電圧吸収回路
JPH08251711A (ja) * 1995-03-09 1996-09-27 Toshiba Corp ハイブリッド自動車用バッテリ装置
JPH09295774A (ja) * 1996-03-06 1997-11-18 Toshiba Corp エレベータのブレーキ装置
DE19645944A1 (de) * 1996-11-07 1998-05-14 Bosch Gmbh Robert Steuergerät für ein Bordnetz
JPH11299013A (ja) * 1998-04-09 1999-10-29 Toyota Autom Loom Works Ltd 電気車両におけるコンタクタ駆動装置、電気車両用制御装置及び電気式フォークリフト
JP2000105615A (ja) * 1998-09-28 2000-04-11 Unisia Jecs Corp 電気機器の電力制御装置
JP3529673B2 (ja) * 1999-08-25 2004-05-24 本田技研工業株式会社 ハイブリッド車両の制御装置
DE10247112B3 (de) * 2002-10-09 2004-08-26 Siemens Ag Verfahren und Vorrichtung zum Einschalten eines zwischen kapazitiven Elementen angeordneten Leistungsschalters
CN101199094B (zh) * 2006-04-11 2011-01-05 三菱电机株式会社 蓄电系统
US7705491B2 (en) * 2008-02-15 2010-04-27 Sv Powertech, Inc Apparatus, system, and method for automatically displacing a faulty in-use battery in a battery-powered electric equipment
JP4802232B2 (ja) * 2008-10-22 2011-10-26 三菱電機株式会社 電力供給装置
JP2011130636A (ja) * 2009-12-21 2011-06-30 Nippon Telegr & Teleph Corp <Ntt> 電流分配装置
JP5234052B2 (ja) * 2010-04-27 2013-07-10 株式会社デンソー 電源装置
JP5456615B2 (ja) * 2010-08-24 2014-04-02 日本電信電話株式会社 半導体遮断回路
JP5743739B2 (ja) * 2011-06-22 2015-07-01 株式会社東芝 蓄電装置
FR2981014B1 (fr) * 2011-10-05 2015-06-26 Valeo Sys Controle Moteur Sas Reseau electrique pour vehicule ayant au moins un composant activable
JP6070928B2 (ja) * 2012-03-02 2017-02-01 住友電気工業株式会社 リアクトル、コンバータ、及び電力変換装置
JP5477409B2 (ja) * 2012-03-12 2014-04-23 株式会社デンソー 電源システム
JP5956330B2 (ja) * 2012-12-28 2016-07-27 株式会社Nttファシリティーズ 系統接続制御装置
JP6134520B2 (ja) * 2013-01-25 2017-05-24 Fdk株式会社 バランス補正装置及び蓄電装置
US9388785B2 (en) * 2013-02-22 2016-07-12 Standard Motor Products Automatic vehicle stop restart system
JP2015144525A (ja) * 2014-01-31 2015-08-06 ダイハツ工業株式会社 車両用電源装置
US9802562B2 (en) * 2014-05-12 2017-10-31 Autonetworks Technologies, Ltd. Automotive power unit
CN104218649B (zh) * 2014-09-28 2017-01-18 湖南金杯新能源发展有限公司 电池充放电装置与管理电路
JP6122412B2 (ja) * 2014-09-29 2017-04-26 矢崎総業株式会社 車両用電源ボックス装置
CN106687337B (zh) * 2014-09-30 2020-03-03 株式会社自动网络技术研究所 汽车用电源装置
JP6398931B2 (ja) * 2015-09-25 2018-10-03 株式会社オートネットワーク技術研究所 車載用電源装置及びその制御方法
JP6418141B2 (ja) * 2015-11-30 2018-11-07 株式会社オートネットワーク技術研究所 電圧測定装置、電圧測定システム
JP6748906B2 (ja) * 2016-04-15 2020-09-02 株式会社オートネットワーク技術研究所 リレー装置
JP6690396B2 (ja) * 2016-05-13 2020-04-28 株式会社オートネットワーク技術研究所 リレー装置
JP6728991B2 (ja) * 2016-05-31 2020-07-22 株式会社オートネットワーク技術研究所 リレー装置及び電源装置
JP6623937B2 (ja) * 2016-05-31 2019-12-25 株式会社オートネットワーク技術研究所 リレー装置及び電源装置
JP6750558B2 (ja) * 2017-05-16 2020-09-02 株式会社オートネットワーク技術研究所 電源ボックス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070928A (ja) * 1983-09-22 1985-04-22 日本電気株式会社 突入電流防止装置
JP2004338577A (ja) * 2003-05-16 2004-12-02 Hitachi Ltd 車両用電力供給装置及び電力供給方法
JP2011229216A (ja) * 2010-04-15 2011-11-10 Auto Network Gijutsu Kenkyusho:Kk 電源制御装置及び故障検知方法
JP2012130108A (ja) * 2010-12-13 2012-07-05 Denso Corp 電源装置
WO2013115034A1 (ja) * 2012-01-31 2013-08-08 三洋電機株式会社 車両用の電源装置及びこの電源装置を備える車両
JP2014036556A (ja) * 2012-08-10 2014-02-24 Gs Yuasa Corp スイッチ故障診断装置、蓄電装置およびスイッチ故障診断プログラム、スイッチ故障診断方法
JP2015076959A (ja) * 2013-10-08 2015-04-20 株式会社オートネットワーク技術研究所 電源システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329324B2 (en) 2017-04-05 2022-05-10 Siemens Energy AS Energy storage system
EP3730349A1 (en) * 2019-04-25 2020-10-28 Yazaki Corporation Power supply system

Also Published As

Publication number Publication date
CN108886248A (zh) 2018-11-23
JP6750288B2 (ja) 2020-09-02
CN108886248B (zh) 2019-10-18
US10819099B2 (en) 2020-10-27
JP2017192251A (ja) 2017-10-19
US20190123545A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2017179414A1 (ja) リレー装置
WO2017179413A1 (ja) リレー装置
JP6623937B2 (ja) リレー装置及び電源装置
JP6610439B2 (ja) 電源装置
JP6728991B2 (ja) リレー装置及び電源装置
JP5492849B2 (ja) 車載用制御装置
CN108886266B (zh) 继电器装置及车载系统
US11011903B2 (en) Disconnecting device
TWI787216B (zh) 控制裝置、平衡修正系統以及蓄電系統
JP6748935B2 (ja) 電流センス付き半導体スイッチの保護回路
US9640978B2 (en) Protection circuit for an inverter as well as inverter system
JP5611302B2 (ja) 電源装置および電源装置の異常判定方法
US20170187179A1 (en) Junction box
JP2015047035A (ja) 電源遮断装置および電動機駆動装置
JP6506020B2 (ja) 降圧チョッパ
JP2017212805A (ja) 車両用電圧変換装置
JP6624339B2 (ja) 電源装置
US20150130383A1 (en) Method for discharging energy stored in a stator of an electric motor
JP2017103961A (ja) 電圧変換回路
EP3503394B1 (en) Discharge circuit for capacitor
KR20160096449A (ko) 전동식 조향장치의 전자제어장치 및 그 전원제어방법
JP2019205255A (ja) 電圧均等化装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782232

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782232

Country of ref document: EP

Kind code of ref document: A1