WO2017177467A1 - 减震机构及使用该减震机构的无人飞行器和可移动设备 - Google Patents

减震机构及使用该减震机构的无人飞行器和可移动设备 Download PDF

Info

Publication number
WO2017177467A1
WO2017177467A1 PCT/CN2016/079509 CN2016079509W WO2017177467A1 WO 2017177467 A1 WO2017177467 A1 WO 2017177467A1 CN 2016079509 W CN2016079509 W CN 2016079509W WO 2017177467 A1 WO2017177467 A1 WO 2017177467A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
piston
outer casing
disposed
damper mechanism
Prior art date
Application number
PCT/CN2016/079509
Other languages
English (en)
French (fr)
Inventor
梁贵彬
陈星元
张永生
肖文龙
王佳迪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/079509 priority Critical patent/WO2017177467A1/zh
Priority to CN201680004578.1A priority patent/CN107110279B/zh
Publication of WO2017177467A1 publication Critical patent/WO2017177467A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/002Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising at least one fluid spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3228Constructional features of connections between pistons and piston rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance

Definitions

  • the present invention relates to a shock absorbing mechanism and an unmanned aerial vehicle and a movable device using the same.
  • the unmanned aerial vehicle flies in the air, the operation of the rotor mechanism as the power source of the unmanned aerial vehicle causes the unmanned aerial vehicle to generate a large vibration, which will inevitably adversely affect the precision instruments such as sensors mounted on the unmanned aerial vehicle.
  • the electronic device is shaken to affect the photographing screen of the electronic device.
  • the unmanned aerial vehicle is usually provided with a shock absorbing mechanism to slow the vibration caused by the unmanned aerial vehicle vibration to the external load.
  • the conventional shock absorbing mechanism is realized by a shock absorbing ball.
  • the shock absorbing ball has a low hardness and is easily elastically deformed.
  • a shock absorbing mechanism includes a housing and a piston, the piston being slidably disposed at one end and slidable within the housing.
  • the damper mechanism further includes: an axial damper structure disposed along an axial direction of the piston; and a radial damper structure disposed along a radial direction of the piston.
  • portion of the outer casing that is adjacent the end of the piston from the outer casing is a rigid material.
  • the radial damper structure includes a damper ring disposed on the piston and elastically contacting the side wall of the outer casing; and the axial damper structure includes an elastic member disposed at the An elastic resisting action is formed between the piston and the outer casing and between the piston and the outer casing along the axial direction of the outer casing.
  • the piston includes a piston rod portion and a piston end at one end of the piston rod portion, the damping ring being disposed between the piston end and a side wall of the outer casing.
  • the elastic member is sleeved on the piston rod portion and has one end abutting against the piston end or the damping ring.
  • the axial shock absorbing structure further includes a damping damper disposed at an end of the outer casing away from the end of the piston, the other end of the elastic member abutting against the damper damper or the outer casing.
  • an end of the piston rod portion away from the end of the piston protrudes from the outer casing, and the damping damper is disposed between the piston rod portion and the outer casing.
  • piston end and the piston rod portion are of a unitary structure.
  • piston end portion and the piston rod portion are of a split structure, and one end of the piston rod portion is received in the piston end portion.
  • a damping element is disposed between the inner wall of the piston end and the piston rod portion.
  • the axial shock absorbing structure further includes a cushioning member disposed between the end portion of the piston and a portion of the outer casing that is abutted by the end portion of the piston.
  • the buffer member is at least one of the following: a buffer foam body, a coil spring, an elastic sleeve, a spring piece, and a rubber body.
  • the outer casing is formed into a receiving cavity
  • the shock absorbing mechanism further comprises a buffering medium disposed in the receiving cavity.
  • the buffer medium is at least one of a liquid, a solid, and a gas.
  • the damper mechanism further includes a mounting member at a free end of the piston and a connecting member connected to the outer casing and away from the mounting member.
  • An unmanned aerial vehicle includes a fuselage and a shock absorbing mechanism, and the shock absorbing mechanism is disposed on the fuselage.
  • the damper mechanism includes: a casing connected to the fuselage; a piston, one end of the piston slidably disposed in the casing and capable of sliding within the casing; an axial shock absorbing structure along the An axial arrangement of the piston; and a radial damping structure disposed along a radial direction of the piston.
  • the outer casing of the damper mechanism is disposed on the fuselage, and the unmanned aerial vehicle further includes a pan/tilt mount, the pan mount assembly is connected to the free end of the piston, and is used for loading Set up a cloud platform.
  • the UAV further includes a pan/tilt head disposed on the pan/tilt mount.
  • the UAV further includes an image acquisition device disposed on the pan/tilt.
  • the damper mechanism is a plurality of, and the plurality of damper mechanisms are disposed on the body in a center symmetrical or axisymmetric manner.
  • portion of the outer casing that is adjacent the end of the piston from the outer casing is a rigid material.
  • the radial damper structure includes a damper ring disposed on the piston and elastically contacting the side wall of the outer casing; and the axial damper structure includes an elastic member disposed at the An elastic resisting action is formed between the piston and the outer casing and between the piston and the outer casing along the axial direction of the outer casing.
  • the piston includes a piston rod portion and a piston end at one end of the piston rod portion, the damping ring being disposed between the piston end and a side wall of the outer casing.
  • the elastic member is sleeved on the piston rod portion and has one end abutting against the piston end or the damping ring.
  • the axial shock absorbing structure further includes a damping damper disposed at an end of the outer casing away from the end of the piston, the other end of the elastic member abutting against the damper damper or the outer casing.
  • an end of the piston rod portion away from the end of the piston protrudes from the outer casing, and the damping damper is disposed between the piston rod portion and the outer casing.
  • piston end and the piston rod portion are of a unitary structure.
  • piston end portion and the piston rod portion are of a split structure, and one end of the piston rod portion is received in the piston end portion.
  • a damping element is disposed between the inner wall of the piston end and the piston rod portion.
  • the axial shock absorbing structure further includes a cushioning member disposed between the end portion of the piston and a portion of the outer casing that is abutted by the end portion of the piston.
  • the buffer member is at least one of the following: a buffer foam body, a coil spring, an elastic sleeve, a spring piece, and a rubber body.
  • the outer casing is formed into a receiving cavity
  • the shock absorbing mechanism further comprises a buffering medium disposed in the receiving cavity.
  • the buffer medium is at least one of a liquid, a solid, and a gas.
  • the damper mechanism further includes a mounting member at a free end of the piston and a connecting member connected to the outer casing and away from the mounting member.
  • a shock absorbing mechanism includes a housing and a movable member, one end of the movable member being slidably disposed in the housing and capable of sliding in an axial direction of the housing within the housing.
  • the damper mechanism further includes: a damper ring disposed on the movable member and elastically contacting the side wall of the outer casing; and an elastic member disposed between the movable member and the outer casing, and The movable member and the outer casing form an elastic abutting action along an axial direction of the outer casing.
  • a portion of the outer casing that extends from the movable member to an end of the outer casing is a rigid material.
  • the damper ring is sleeved on the outer circumference of the movable member, and forms an elastic abutting action between the outer casing and the movable member along a radial direction of the outer casing, so that the movable member is in the While sliding inside the casing, it is also possible to oscillate in the radial direction of the casing.
  • the damper ring is an elastic ring made of an elastic material.
  • the damper mechanism further includes a sleeve, the sleeve is disposed between the movable member and the damper ring, and holds the damper ring.
  • the damper mechanism is a piston type damper mechanism
  • the outer casing is a piston cylinder
  • the movable member is a piston rod portion
  • the sleeve member is a piston end portion
  • the damper ring is at the piston
  • a radial elastic abutting action is formed between the end portion and the cylinder barrel, and the elastic member forms an axial elastic resistance between the piston end portion and the piston barrel.
  • an outer circumference of the sleeve is provided with a mounting groove, and the damping ring is fixed in the mounting groove.
  • the sleeve and the movable member are integrally formed.
  • the damper mechanism further includes a damper element disposed between the movable member and the sleeve and holding the sleeve.
  • the damping element is an elastic body made of an elastic material.
  • the damper member includes a latching portion
  • the sleeve member includes a fastening portion
  • the latching portion is engaged with the latching portion to fix the sleeve member to the On the shock absorbing element.
  • the damper mechanism further includes a damper damper disposed between the outer casing and the movable member.
  • the damper ring is disposed at one end of the movable member, and the movable member is movably passed through the damper damper from an end of the damper ring and protrudes beyond the outer casing .
  • the damping damper is an elastic body made of an elastic material.
  • the outer casing includes a cylindrical peripheral wall and a bottom wall disposed at one end of the peripheral wall, and the damping damper is disposed on the bottom wall.
  • the elastic member forms an elastic abutting action between the movable member and the bottom wall; or the elastic member forms an elastic resisting force between the receiving member and the damper damper member.
  • the outer casing is formed into a receiving cavity
  • the shock absorbing mechanism further comprises a buffering medium disposed in the receiving cavity.
  • the buffer medium is at least one of a liquid, a solid, and a gas.
  • the damper mechanism further includes a mounting member, the mounting member is disposed at the other end of the movable member, and is configured to mount an external object.
  • the outer casing is a rigid element.
  • the elastic member is at least one of the following: a buffer foam body, a coil spring, an elastic sleeve, and a spring piece.
  • the end of the outer casing corresponding to the movable member is further provided with a buffering member for buffering the impact of the movable member on the outer casing when sliding in the outer casing.
  • the damper mechanism further includes a connecting member disposed at one end of the outer casing and disposed adjacent to the damper ring.
  • the cushioning member is disposed on a side of the connecting member facing the inner cavity of the outer casing.
  • the cushioning member is an elastic body made of an elastic material.
  • the buffer member is at least one of the following: a buffer foam body, a coil spring, an elastic sleeve, a spring piece, and a rubber body.
  • An unmanned aerial vehicle comprising a fuselage and a shock absorbing mechanism according to any of the above, wherein the shock absorbing mechanism is disposed on the fuselage.
  • a movable device comprising a body and a damper mechanism according to any one of the above, wherein the damper mechanism is disposed on the body, and the damper mechanism is configured to connect a load.
  • the above-described damper mechanism includes an axial damper structure disposed along an axial direction of the outer casing, and a radial damper structure disposed along a radial direction of the outer casing, enabling the damper mechanism to buffer a plurality of directions
  • the shock shock, the buffer damping effect is relatively good.
  • FIG. 1 is a schematic view of a shock absorbing mechanism according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the damper mechanism shown in FIG. 1.
  • FIG. 3 is a cross-sectional view of a shock absorbing mechanism according to another embodiment of the present invention.
  • a component when referred to as being “fixed” to another component, it can be directly on the other component or the component can be present.
  • a component When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • a component When a component is considered to be “set to” another component, it can be placed directly on another component or possibly with a centered component.
  • the terms “vertical,” “horizontal,” “left,” “right,” and the like, as used herein, are for illustrative purposes only.
  • the present invention provides a shock absorbing mechanism comprising a housing and a piston, one end of the piston being slidably disposed within the housing and slidable within the housing.
  • the damper mechanism further includes: an axial damper structure disposed along an axial direction of the piston; and a radial damper structure disposed along a radial direction of the piston.
  • the outer casing is a rigid element.
  • the radial damper structure includes a damper ring disposed on the piston and elastically contacting the side wall of the outer casing; and the axial damper structure includes an elastic member disposed at the An elastic resisting action is formed between the piston and the outer casing and between the piston and the outer casing along the axial direction of the outer casing.
  • the present invention also provides a shock absorbing mechanism including a housing and a movable member, one end of the movable member being slidably disposed in the housing and being slidable in the housing in the axial direction of the housing.
  • the damper mechanism further includes: a damper ring disposed on the movable member and elastically contacting the side wall of the outer casing; and an elastic member disposed between the movable member and the outer casing, and The movable member and the outer casing form an elastic abutting action along an axial direction of the outer casing.
  • a first embodiment of the present invention provides a damper mechanism 100 for use in an unmanned aerial vehicle (not shown) and disposed on the unmanned aerial vehicle and the unmanned aerial vehicle. Between the loads, to mitigate the vibration of the UAV caused by the UAV during flight.
  • the shock absorbing mechanism 100 includes a housing 10, a shock absorbing assembly 50, and an assembly 70.
  • the shock absorbing assembly 50 is at least partially movably disposed within the outer casing 10, and the mounting member 70 is coupled to the shock absorbing assembly 50.
  • the outer casing 10 includes a connecting member 20 and a receiving member 30 , and the receiving member 30 is disposed on the connecting member 20 .
  • the connecting member 20 is configured to connect the airframe of the UAV to integrally mount the shock absorbing mechanism 100 on the body of the UAV.
  • the receiving member 30 is fixedly connected to the connecting member 20 for partially accommodating the shock absorbing assembly 50 .
  • the receiving member 30 is substantially in the form of a hollow cylinder having a bottom wall, and includes a peripheral wall 32 and a bottom wall 34 disposed on the peripheral wall 32.
  • One end of the peripheral wall 32 is connected to the connecting member 20, and the bottom wall 34 is disposed at an end of the peripheral wall away from the connecting member 20.
  • the bottom wall 34 is disposed opposite the connecting member 20.
  • the bottom wall 34 is provided with a mounting hole 341 extending through the bottom wall 34 and for accommodating a part of the structure of the shock absorbing assembly 50.
  • the shock absorbing assembly 50 includes a movable member 51, a damper member 52, a damper damper member 53, a sleeve member 54, a damper ring 55, an elastic member 56, and a cushioning member 57.
  • one end of the movable member 51 is disposed in the receiving member 30, and the other end protrudes out of the receiving member 30, and the damping member 52 is disposed on the movable member.
  • the sleeve member 54 is disposed on the damper member 52
  • the damper ring 55 is disposed on the sleeve member 54
  • the damper damper member 53 is disposed at the accommodating member 30 On the bottom wall 34.
  • the portion of the outer casing 10 that extends from the movable member 51 to the one end of the outer casing 10 is a rigid material.
  • the bottom wall 34 of the receiving portion 30 is a rigid material.
  • the movable member 51 is partially housed in the receiving member 30 and is slidable along the longitudinal direction of the receiving member 30.
  • the movable member 51 includes a rod portion 511 and a flange portion 513 provided on the rod portion 511.
  • the stem portion 511 is substantially cylindrical in shape and includes a mounting end (not shown). The mounting end is received in the receiving member 30 and configured to mount the damping component 52. An end of the rod portion 511 away from the mounting end passes through the mounting hole 341 of the bottom wall 34 and protrudes out of the receiving member 30.
  • the flange portion 513 is disposed on the mounting end of the rod portion 511, and the diameter of the flange portion 513 is larger than the diameter of the rod portion 511.
  • the flange portion 513 is for defining a mounting position of the damper element 52 with respect to the rod portion 511.
  • the damper element 52 is sleeved on the mounting end of the rod portion 511 and is abutted against the flange portion 513.
  • the damper member 52 is an elastic body made of an elastic material for absorbing the vibration energy generated by the unmanned aerial vehicle.
  • the elastic material may be: buffer foam, buffer foam, rubber, silica gel or the like.
  • the damper member 52 is provided with a holding portion 521 for holding the sleeve 54 .
  • the holding portion 521 is a holding groove provided on the outer circumference of the damper element 52.
  • the sleeve member 54 is sleeved on the damper member 52 and partially clamped in the latching portion 521 .
  • the sleeve 54 includes a ring portion 541 and a fastening portion 543 disposed on the ring portion 541 .
  • the ring portion 541 has a cylindrical shape and is sleeved outside the damping element 52.
  • the ring portion 541 is provided with a mounting groove 5411 for holding the damper ring 55.
  • the mounting groove 5411 is disposed on the outer circumference of the ring portion 541, and the mounting groove 5411 is an annular groove disposed along the circumferential direction of the ring portion 541.
  • the engaging portion 543 is disposed at one end of the ring portion 541 and protrudes into the engaging portion 521 to engage the sleeve 54 . Since the damper member 52 has a certain elasticity, it is disposed between the sleeve member 54 and the movable member 51, and the sleeve member 54 passes through the fastening portion 543 and the damper member 52.
  • the damper member 52 is configured to enable the damper member 52 to buffer the impact force of the sleeve member 54 and the movable member 51 along the radial direction of the accommodating member 30, and at the same time, can buffer the sleeve member 54 The impact force along the axial direction of the receiving member 30.
  • the above-mentioned axial direction is understood to be substantially parallel to the direction of the longitudinal direction of the receiving member 30, that is, the axial direction of the movable member 51; the above-described radial direction is understood to be substantially parallel to The direction of the width direction of the accommodating member 30, that is, the diameter direction of the movable member 51.
  • the damper ring 55 is sleeved outside the ring portion 541 and elastically abuts against the side wall of the accommodating member 30.
  • the damper ring 55 is an elastic ring made of an elastic material.
  • the elastic material may be: buffer foam, buffer foam, rubber, silica gel or the like.
  • the damper ring 55 is elastically abutted against the side wall of the accommodating member 30, and the damper ring 55 is movable relative to the accommodating member 30 by the movable member 21.
  • the damper ring 55 is used to buffer the sleeve member 54, the damper member 52, and the impact force of the sleeve member along the radial direction of the accommodating member 30.
  • the damper ring 55 has a certain elasticity, so that the movable member 51 can swing a predetermined degree in the radial direction around the central axis of the accommodating member 30 under the action of an external force, causing the damper ring to be caused.
  • the elastic deformation is generated in the radial direction of the self-locking member 55 to buffer the shock caused by the damper member 52, the sleeve member 54, and the damper ring 55 when the movable member 51 swings.
  • the presence of the damper element 52 further buffers the above-described vibration, thereby improving the cushioning and damping effect of the damper mechanism 100.
  • the damping damper 53 is disposed on the bottom wall 34.
  • the damping damper 53 includes an abutting top 531 and a protrusion 533 disposed on the abutting top 531.
  • the abutting top 531 is received in the receiving member 30 and stacked on the bottom wall 34.
  • the protruding portion 533 is disposed on a side of the abutting top portion 531 facing away from the damper member 52 and is disposed in the mounting hole 341 such that the abutting top portion 531 abuts against the bottom wall 34 .
  • the damping damper 53 is an elastic body made of an elastic material, and the elastic material may be: buffer foam, cushion foam, rubber, silica gel, or the like.
  • the damper damper 53 is used to buffer the impact force of the rod portion 511 in the radial direction of the accommodating member 30.
  • the damper ring 55 has a certain elasticity, so that the movable member 51 can swing with a predetermined degree relative to the axial direction of the accommodating member 30 under the action of an external force, causing the damper ring 55 to generate an edge.
  • the elastic deformation of the self-radial member is used to buffer the shock caused by the damper member 52, the sleeve member 54 and the damper ring 55 when the movable member 51 swings.
  • the movable member 51 surrounds the receiving member 30.
  • the amplitude of the swing can be limited to achieve controllable in the swing direction.
  • the magnitude of the specific swing amplitude can also be achieved by adjusting the aperture size of the mounting hole 341 and/or the damping damper 53 having different spring constants. Avoid excessive shaking of the shock-absorbing components for fast shock absorption and positioning.
  • the entire receiving member 30 or even the entire outer casing 10 can also be a rigid material, so as to better ensure that the amplitude of the swinging of the movable member 51 in the radial direction is controlled within a predetermined range, thereby achieving rapid shock absorption. And positioning.
  • the swinging angle of the movable member 51 with respect to the longitudinal direction of the receiving member 30 can be controlled by selecting the elastic coefficient of the damping damper 53.
  • the elastic member 56 is disposed in the receiving member 30 and elastically resists along the longitudinal direction of the receiving member 30 between the movable member 51 and the receiving member 30.
  • the elastic member 56 is made of a material having a certain elasticity, and is used for buffering the movable member 51, the damper member 52, the sleeve member 54, and the damper ring 55.
  • Piece 30 axial impact force Specifically in the illustrated embodiment, the resilient member 56 is a coil spring.
  • the elastic member 56 is sleeved outside the movable member 51, and one end thereof is abutted on the sleeve member 54 or the damper ring 55, and the other end is abutted on the damper damper 53 to
  • the sleeve member 54 and the damper damper 53 form an elastic abutting and resisting action along the axial direction of the accommodating member 30.
  • the elastic member 56 may be an elastic structure such as a buffer foam, an elastic sleeve, and a spring.
  • one end of the elastic member 56 can be resisted on the sleeve member 54 or the damper ring 55, and the other end can be abutted against the bottom wall of the accommodating member 30.
  • an elastically resisting action is formed between the sleeve member 54 and the bottom wall 34 along the axial direction of the receiving member 30.
  • the cushioning member 57 is disposed on a side of the connecting member 20 facing the inner cavity of the receiving member 30.
  • the cushioning member 57 is an elastic body made of an elastic material, and the elastic material may be: buffer foam, cushion foam, rubber, silica gel, or the like.
  • the cushioning member 57 is disposed on the connecting member 20 by the movable member 51 or/and the sleeve member 54 and is used for buffering the movable member 51 or/and the sleeve member. The shock vibration caused by the connecting member 20 when the receiving member 30 moves.
  • the cushioning member 57 may be disposed at other positions between the connecting member 20 and the movable member 51, for example, on the movable member 51; A cushioning member 57 may also be disposed between the connecting member 20 and the sleeve member 54, for example, on the sleeve member 54.
  • the mounting member 70 is disposed on an end of the movable member 51 away from the flange portion 513 for mounting an external device to connect the external device to the UAV.
  • the external device may be an image acquisition device such as a camera or a video camera, or a pan/tilt or the like for mounting the image acquisition device.
  • the present invention also provides an unmanned aerial vehicle (not shown) including a fuselage and the above-described shock absorbing mechanism 100.
  • the UAV is used to mount a load such as an image acquisition device to perform an aerial shooting operation.
  • the damper mechanism 100 is mounted on the body through the connecting member 20, and the load is disposed on the mounting member 70 of the damper mechanism 100, and The shock mechanism 100 slows down the shock caused to the load by the UAV when it is flying.
  • the unmanned aerial vehicle may further include a pan/tilt head, and the pan/tilt head is disposed between the damper mechanism and the load.
  • the image acquisition device is an electronic device, which can be a camera, a camera, a camera or a portable communication device or the like.
  • One or more of the shock absorbing mechanisms 100 may be disposed on the body.
  • the number of the shock absorbing mechanisms 100 may be one, two, three, four, five, . . . or even more. .
  • a plurality of the damper mechanisms 100 are evenly distributed on the body.
  • the plurality of the damper mechanisms 100 are evenly distributed along the circumferential direction of the same circumference. It will be appreciated that a plurality of said shock absorbing mechanisms 100 may be disposed on the body in a centrally symmetric or axisymmetric manner.
  • the damper member 52 can be omitted, and the sleeve member 54 can be directly disposed on the rod portion 511 of the movable member 51, or the sleeve member 54 and the movable member 51 can be omitted. It is a one-piece structure.
  • the sleeve member 54 can be omitted, and the damper ring 55 is directly disposed on the rod portion 511 of the movable member 51 and elastically resists the side wall of the accommodating member 30.
  • the damper ring 55 forms an elastic abutting action between the movable member 51 and the accommodating member 30 in the radial direction of the accommodating member 30.
  • the damper damper 53 can be omitted, and the rod portion 511 of the movable member 51 can be movably passed through the mounting hole 341 and protrudes out of the accommodating member 30.
  • the size of the mounting hole 341 formed in the receiving member 30 is larger than the shaft diameter of the rod portion 511, so that the movable member 51 can be allowed to swing to a certain extent along the width direction of the receiving member 30, and this
  • the amplitude of the swing may be larger than the amplitude of the swing when the damping damper 53 is added between the outer side of the rod portion 511 and the inner wall of the mounting hole 341.
  • the size of the mounting hole 341 and the shaft diameter of the rod portion 511 can also be matched, and the movement of the movable member 51 along the width direction of the receiving member 30 will be restricted.
  • FIG. 3 shows a damper mechanism 200 according to a second embodiment of the present invention.
  • the damper mechanism 200 of the second embodiment is substantially the same as the damper mechanism 100 of the first embodiment, and is different.
  • the damper assembly 250 of the damper mechanism 200 of the second embodiment omits the damper member 52 and the ferrule 54 of the damper assembly 250 of the first embodiment.
  • the damper assembly 250 of the damper mechanism 200 of the second embodiment includes a movable member 251, a damper damper 253, a damper ring 255, an elastic member 526, and a cushioning member 257.
  • a holding groove 2511 for holding the damper ring 255 is disposed on the movable member 251, and the damper ring 255 is disposed in the holding groove 2511.
  • the damper mechanism is a piston type damper mechanism
  • the outer casing is a piston cylinder
  • the movable member is a piston rod portion
  • the sleeve member is a piston end portion, thereby the activity
  • the sleeve and the sleeve together constitute a piston
  • the damping ring forms an elastic resisting action in a radial direction of the piston cylinder between the piston end and the piston barrel
  • the elastic member is in the An elastic abutting action is formed between the end of the piston and the piston barrel in the axial direction of the piston barrel.
  • the piston rod portion and the piston end portion may be an integrally formed structure.
  • a receiving cavity may be formed in the piston cylinder, and a buffering medium may be disposed or filled in the receiving cavity to further improve the shock absorbing effect of the shock absorbing mechanism.
  • the buffer medium may be at least one of a liquid, a solid, and a gas.
  • the damper mechanism elastically abuts against the side wall of the accommodating member to form a width direction/diameter along the accommodating member between the movable member and the accommodating member
  • An elastic bearing force to enable the movable member to generate a swing in the width direction/radial direction of the receiving member or to generate a movement along the longitudinal direction/axial direction of the receiving member, thereby causing the reduction
  • the shock mechanism is subjected to an external force in the width direction/radial direction of the accommodating member, the shock generated between the accommodating member and the movable member can be buffered.
  • the elastic member forms a resisting force along the longitudinal direction/axial direction of the receiving member between the movable member and the receiving member to buffer and absorb the sliding member of the movable member relative to the receiving member.
  • the vibration between the two can buffer shock shocks in multiple directions, and the cushioning and damping effect is relatively good.
  • the above-mentioned damper mechanism has an elastic member, a damper damper member and a cushioning member disposed on the outer casing to form an axial damper structure disposed along an axial direction of the outer casing, the axial reduction
  • the shock structure forms an elastic abutting action along the length direction/axial direction of the outer casing between the movable member and the outer casing;
  • the shock absorbing ring is disposed on the sleeve and forms along the a radially disposed radial damping structure of the outer casing, the sleeve forming an elastic abutment between the movable member and the outer casing along a width direction/radial direction of the outer casing;
  • the presence of the shock absorbing structure and the radial damper structure enables the damper mechanism to buffer shock shocks in multiple directions, and the cushioning damping effect is relatively good.
  • a portion of the outer casing that protrudes from an end of the movable member and protrudes from the outer casing is a rigid material, and the swinging width of the movable member along the width direction/radial direction of the outer casing is limited to a predetermined range, thereby realizing Rapid positioning and stabilization of components connected to the shock absorbing mechanism.
  • the damping force of the shock absorbing mechanism can be controlled by setting the elastic coefficient of the damping damper, the damper ring, the elastic member or/and the cushioning member, and the impact force capable of carrying and cushioning relatively bigger. In the case where the UAV has a large load, the shock absorbing mechanism can still effectively absorb shock.
  • the unmanned aerial vehicle is a rotor unmanned aerial vehicle, and is used for carrying an aerial photography operation by a camera, a camera, or the like. It can be understood that the UAV can also be used for map mapping, disaster investigation and rescue, air monitoring, transmission line inspection and the like. It will also be appreciated that the UAV may also be a fixed wing unmanned aerial vehicle.
  • shock absorbing mechanism is not limited to the application in the unmanned aerial vehicle, and can also be applied to other mobile devices or remote control mobile devices such as unmanned vehicles and unmanned ships. A narrative.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种减震机构(100)及使用该减震机构(100)的无人飞行器和可移动设备。所述减震机构(100)包括外壳(10)以及活塞,所述活塞一端可滑动地设置于所述外壳(10)内,并能够在所述外壳(10)内滑动。所述减震机构(100)还包括:沿所述活塞的轴向设置的轴向减震结构,以及沿所述活塞的径向设置的径向减震结构。

Description

减震机构及使用该减震机构的无人飞行器和可移动设备 技术领域
本发明涉及一种减震机构及使用该减震机构的无人飞行器和可移动设备。
背景技术
在航拍作业过程中,常需要使用设置在无人飞行器上的云台架设摄影机、照相机等电子装置进行拍摄。无人飞行器在空中飞行时,由于作为无人飞行器动力源的旋翼机构的运转,使无人飞行器产生较大的震动,必然会对无人飞行器上搭载的传感器等精密仪器造成不良影响,且会使电子装置发生抖动,影响所述电子装置的拍摄画面。为了解决上述问题,无人飞行器上通常设置有减震机构以减缓无人飞行器震动对外部负载造成的震动。传统的减震机构通过减震球来实现,然而,所述减震球由于制造材料以及结构的限制,其硬度较低,极易产生弹性变形,当所述无人飞行器的负载较大时,所述减震球无法有效减缓无人飞行器对外部负载造成的震动。
发明内容
鉴于上述状况,有必要提供一种减震效果相对较好的减震机构,还有必要提供一种使用该减震机构的无人飞行器和可移动设备。
一种减震机构,包括外壳以及活塞,所述活塞一端可滑动地设置于所述外壳内,并能够在所述外壳内滑动。所述减震机构还包括:沿所述活塞的轴向设置的轴向减震结构;以及沿所述活塞的径向设置的径向减震结构。
进一步地,所述外壳靠近所述活塞伸出所述外壳的一端的部分为刚性材料。
进一步地,所述径向减震结构包括减震环,套设在所述活塞上,并与所述外壳的侧壁弹性接触;以及所述轴向减震结构包括弹性件,设置在所述活塞及所述外壳之间,并在所述活塞及所述外壳之间沿所述外壳的轴向形成弹性抵持作用。
进一步地,所述活塞包括活塞杆部和位于所述活塞杆部的一端的活塞端部,所述减震环设置于所述活塞端部和所述外壳的侧壁之间。
进一步地,所述弹性件套设于所述活塞杆部上并一端抵持于所述活塞端部或所述减震环。
进一步地,所述轴向减震结构还包括设置于所述外壳远离所述活塞端部的一端的阻尼减震件,所述弹性件的另一端抵持于所述阻尼减震件或外壳。
进一步地,所述活塞杆部远离所述活塞端部的一端从所述外壳伸出,且所述阻尼减震件设置于所述活塞杆部和所述外壳之间。
进一步地,所述活塞端部和所述活塞杆部为一体结构。
进一步地,所述活塞端部和所述活塞杆部为分体式结构,所述活塞杆部的一端收容于所述活塞端部内。
进一步地,所述活塞端部的内壁和所述活塞杆部之间设置减震元件。
进一步地,所述轴向减震结构还包括设置于所述活塞端部和所述外壳上被所述活塞端部所抵持的部位之间的缓冲件。
进一步地,所述缓冲件为以下几种中的至少一种:缓冲泡棉体、螺旋弹簧、弹性套筒、弹片、橡胶体。
进一步地,所述外壳形内成收容腔,所述减震机构还包括设置于所述收容腔内的缓冲介质。
进一步地,所述缓冲介质为液体、固体及气体中的至少一种。
进一步地,所述减震机构还包括位于所述活塞自由端的装设件以及连接于所述外壳并远离所述装设件的连接件。
一种无人飞行器,包括机身及减震机构,所述减震机构设置在所述机身上。所述减震机构包括:外壳,连接于所述机身上;活塞,所述活塞一端可滑动地设置于所述外壳内,并能够在所述外壳内滑动;轴向减震结构,沿所述活塞的轴向设置;以及径向减震结构,沿所述活塞的径向设置。
进一步地,所述减震机构的外壳设置在所述机身上,所述无人飞行器还包括云台装设件,所述云台装设件连接在所述活塞的自由端,并用于装设一云台。
进一步地,所述无人飞行器还包括设置于所述云台装设件上的云台。
进一步地,所述无人飞行器还包括设置于所述云台上的图像获取装置。
进一步地,所述减震机构为多个,多个所述减震机构在所述机身上以中心对称或轴对称的方式设置。
进一步地,所述外壳靠近所述活塞伸出所述外壳的一端的部分为刚性材料。
进一步地,所述径向减震结构包括减震环,套设在所述活塞上,并与所述外壳的侧壁弹性接触;以及所述轴向减震结构包括弹性件,设置在所述活塞及所述外壳之间,并在所述活塞及所述外壳之间沿所述外壳的轴向形成弹性抵持作用。
进一步地,所述活塞包括活塞杆部和位于所述活塞杆部的一端的活塞端部,所述减震环设置于所述活塞端部和所述外壳的侧壁之间。
进一步地,所述弹性件套设于所述活塞杆部上并一端抵持于所述活塞端部或所述减震环。
进一步地,所述轴向减震结构还包括设置于所述外壳远离所述活塞端部的一端的阻尼减震件,所述弹性件的另一端抵持于所述阻尼减震件或外壳。
进一步地,所述活塞杆部远离所述活塞端部的一端从所述外壳伸出,且所述阻尼减震件设置于所述活塞杆部和所述外壳之间。
进一步地,所述活塞端部和所述活塞杆部为一体结构。
进一步地,所述活塞端部和所述活塞杆部为分体式结构,所述活塞杆部的一端收容于所述活塞端部内。
进一步地,所述活塞端部的内壁和所述活塞杆部之间设置减震元件。
进一步地,所述轴向减震结构还包括设置于所述活塞端部和所述外壳上被所述活塞端部所抵持的部位之间的缓冲件。
进一步地,所述缓冲件为以下几种中的至少一种:缓冲泡棉体、螺旋弹簧、弹性套筒、弹片、橡胶体。
进一步地,所述外壳形内成收容腔,所述减震机构还包括设置于所述收容腔内的缓冲介质。
进一步地,所述缓冲介质为液体、固体及气体中的至少一种。
进一步地,所述减震机构还包括位于所述活塞自由端的装设件以及连接于所述外壳并远离所述装设件的连接件。
一种减震机构,包括外壳以及活动件,所述活动件的一端可滑动地设置于所述外壳内,并能够在所述外壳内沿所述外壳的轴向滑动。所述减震机构还包括:减震环,设置在所述活动件上,并与所述外壳的侧壁弹性接触;以及弹性件,设置在所述活动件及所述外壳之间,并在所述活动件及所述外壳之间沿所述外壳的轴向形成弹性抵持作用。
进一步地,所述外壳靠近所述活动件伸出所述外壳的一端的部分为刚性材料。
进一步地,所述减震环套设在所述活动件外周,并在所述外壳与所述活动件之间沿所述外壳的径向形成弹性抵持作用,使所述活动件在所述外壳内滑动的同时,还能够沿所述外壳的径向摆动。
进一步地,所述减震环为由弹性材料制成的弹性环。
进一步地,所述减震机构还包括套设件,所述套设件设置在所述活动件与所述减震环之间,并固持所述减震环。
进一步地,所述减震机构为活塞式减震机构,所述外壳为活塞筒,所述活动件为活塞杆部,所述套设件为活塞端部,所述减震环在所述活塞端部与所述活塞筒之间形成径向的弹性抵持作用,所述弹性件在所述活塞端部与所述活塞筒之间形成轴向的弹性抵持作用。
进一步地,所述套设件外周设置有安装槽,所述减震环固定于所述安装槽中。
进一步地,所述套设件与所述活动件为一体成型结构。
进一步地,所述减震机构还包括减震元件,所述减震元件设置在所述活动件与所述套设件之间,并固持所述套设件。
进一步地,所述减震元件为由弹性材料制成的弹性体。
进一步地,所述减震元件包括卡持部,所述套设件包括扣合部,所述扣合部与所述卡持部相卡持配合,以将所述套设件固定于所述减震元件上。
进一步地,所述活动件的另一端凸伸出所述外壳之外,所述减震机构还包括阻尼减震件,所述阻尼减震件设置在所述外壳与所述活动件之间。
进一步地,所述减震环设置在所述活动件的一端,所述活动件远离所述减震环的一端可活动地穿过所述阻尼减震件,并凸伸出所述外壳之外。
进一步地,所述阻尼减震件为由弹性材料制成的弹性体。
进一步地,所述外壳包括筒状的周壁以及设置于所述周壁一端的底壁,所述阻尼减震件设置于所述底壁上。
进一步地,所述弹性件在所述活动件与所述底壁之间形成弹性抵持作用;或者,所述弹性件在所述收容件与所述阻尼减震件之间形成弹性抵持作用。
进一步地,所述外壳形内成收容腔,所述减震机构还包括设置于所述收容腔内的缓冲介质。
进一步地,所述缓冲介质为液体、固体及气体中的至少一种。
进一步地,所述减震机构还包括装设件,所述装设件设置于所述活动件的另一端,并用于装设外部物件。
进一步地,所述外壳为刚性元件。
进一步地,所述弹性件为以下几种中的至少一种:缓冲泡棉体、螺旋弹簧、弹性套筒、弹片。
进一步地,所述外壳上对应所述活动件的端部还设置有缓冲件,所述缓冲件用于缓冲所述活动件在所述外壳内滑动时对所述外壳造成的冲击。
进一步地,所述减震机构还包括连接件,所述连接件设置于所述外壳的一端,并邻近所述减震环设置。
进一步地,所述缓冲件设置在所述连接件上朝向所述外壳内腔的一侧。
进一步地,所述缓冲件为由弹性材料制成的弹性体。
进一步地,所述缓冲件为以下几种中的至少一种:缓冲泡棉体、螺旋弹簧、弹性套筒、弹片、橡胶体。
一种无人飞行器,包括机身及如上任一项所述的减震机构,所述减震机构设置在所述机身上。
一种可移动设备,包括机身及如上任一项所述的减震机构,所述减震机构设置在所述机身上,所述减震机构用于连接负载。
上述的减震机构,其包括沿所述外壳的轴向设置的轴向减震结构,以及沿所述外壳的径向设置的径向减震结构,使所述减震机构能够缓冲多个方向的震动冲击,其缓冲减震效果相对较好。
附图说明
图1为本发明第一实施例提供的减震机构的示意图。
图2为图1所示的减震机构的剖面示意图。
图3为本发明另一实施例提供的减震机构的剖面示意图。
主要元件符号说明
减震机构 100,200
外壳 10
连接件 20
收容件 30
周壁 32
底壁 34
安装孔 341
减震组件 50,250
活动件 51,251
杆部 511
凸缘部 513
减震元件 52
卡持部 521
阻尼减震件 53,253
抵顶部 531
凸伸部 533
套设件 54
环部 541
装设槽 5411
扣合部 543
减震环 55,255
弹性件 56,256
缓冲件 57,257
装设件 70
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供一种减震机构,包括外壳以及活塞,所述活塞一端可滑动地设置于所述外壳内,并能够在所述外壳内滑动。所述减震机构还包括:沿所述活塞的轴向设置的轴向减震结构;以及沿所述活塞的径向设置的径向减震结构。进一步地,所述外壳为刚性元件。进一步地,所述径向减震结构包括减震环,套设在所述活塞上,并与所述外壳的侧壁弹性接触;以及所述轴向减震结构包括弹性件,设置在所述活塞及所述外壳之间,并在所述活塞及所述外壳之间沿所述外壳的轴向形成弹性抵持作用。
本发明还提供一种减震机构,包括外壳以及活动件,所述活动件的一端可滑动地设置于所述外壳内,并能够在所述外壳内沿所述外壳的轴向滑动。所述减震机构还包括:减震环,设置在所述活动件上,并与所述外壳的侧壁弹性接触;以及弹性件,设置在所述活动件及所述外壳之间,并在所述活动件及所述外壳之间沿所述外壳的轴向形成弹性抵持作用。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本发明的第一实施方式提供的减震机构100,其应用于无人飞行器(图未示出)中,并设置在所述无人飞行器与所述无人飞行器所搭载的负载之间,用以减缓所述无人飞行器在飞行时对所述负载造成的震动。
所述减震机构100包括外壳10、减震组件50以及装设件70。具体在图示的实施例中,所述减震组件50至少部分可活动地设置在所述外壳10内,所述装设件70与所述减震组件50连接。
在本实施方式中,所述外壳10包括连接件20及收容件30,所述收容件30设置在所述连接件20上。
所述连接件20用于连接所述无人飞行器的机身,以将所述减震机构100整体装设于所述无人飞行器的机身上。
请同时参阅图2,所述收容件30与所述连接件20固定连接,其用于部分收容所述减震组件50。在本实施方式中,所述收容件30大致呈具有底壁的空心筒状,其包括周壁32以及设置于所述周壁32上的底壁34。所述周壁32的一端连接于所述连接件20上,所述底壁34设置于所述周壁远离所述连接件20的一端。所述底壁34与所述连接件20相对设置。所述底壁34上设置有安装孔341,所述安装孔341贯通所述底壁34,并用于收容所述减震组件50的部分结构。
所述减震组件50包括活动件51、减震元件52、阻尼减震件53、套设件54、减震环55、弹性件56以及缓冲件57。具体在图示的实施例中,所述活动件51的一端设置在所述收容件30内,另一端凸伸出所述收容件30之外,所述减震元件52设置在所述活动件51上,所述套设件54设置在所述减震元件52上,所述减震环55设置在所述套设件54上,所述阻尼减震件53设置在所述收容件30的底壁34上。所述外壳10靠近所述活动件51伸出所述外壳10的一端的部位为刚性材料,本实施例中,即所述收容部30的底壁34为刚性材料。
所述活动件51部分地收容于所述收容件30中,并能够沿所述收容件30的长度方向滑动。所述活动件51包括杆部511以及设置于杆部511上的凸缘部513。在本实施例中,所述杆部511大致呈圆柱杆状,其包括安装端(图中未标出)。所述安装端收容于所述收容件30中,并用于装设所述减震元件52。所述杆部511远离所述安装端的一端穿过所述底壁34的所述安装孔341,并凸伸至所述收容件30之外。所述凸缘部513设置于所述杆部511的所述安装端上,且所述凸缘部513的直径大于所述杆部511的直径。所述凸缘部513用于限定所述减震元件52相对所述杆部511的装设位置。
所述减震元件52套设在所述杆部511的所述安装端上,并与所述凸缘部513相抵持。在本实施例中,所述减震元件52为由弹性材料制成的弹性体,其用于吸收所述无人飞行器产生的震动能量。所述弹性材料可以为:缓冲泡棉、缓冲泡沫、橡胶、硅胶等。所述减震元件52上设置有卡持部521,所述卡持部521用于固持所述套设件54。具体在图示的实施例中,所述卡持部521为设置在所述减震元件52外周的卡持槽。
所述套设件54套设在所述减震元件52上,并部分卡持于所述卡持部521中。具体在图示的实施例中,所述套设件54包括环部541以及设置于所述环部541上的扣合部543。所述环部541为圆柱筒状,其套设于所述减震元件52之外。所述环部541上设置有装设槽5411,所述装设槽5411用于固持所述减震环55。具体在图示的实施例中,所述装设槽5411设置于所述环部541外周,且所述装设槽5411为沿所述环部541的周向设置的环形槽。所述扣合部543设置于所述环部541的一端,并凸伸入所述卡持部521中,以使所述套设件54相卡持配合。由于所述减震元件52具有一定弹性,其设置在所述套设件54及所述活动件51之间,且所述套设件54通过所述扣合部543与所述减震元件52相嵌合,使所述减震元件52能够缓冲所述套设件54及所述活动件51受到的沿所述收容件30径向的冲击力,同时能够缓冲所述套设件54受到的沿所述收容件30轴向的冲击力。在本实施方式中,上述的轴向应当理解为,大致平行于所述收容件30的长度方向的方向,也即所述活动件51的轴线方向;上述的径向应当理解为,大致平行于所述收容件30的宽度方向的方向,也即所述活动件51的直径方向。
所述减震环55套设在所述环部541之外,并弹性地抵持于所述收容件30的侧壁上。在本实施方式中,所述减震环55为由弹性材料制成的弹性环。所述弹性材料可以为:缓冲泡棉、缓冲泡沫、橡胶、硅胶等。所述减震环55与所述收容件30的侧壁相弹性抵持,且所述减震环55能够在所述活动件21的带动下相对所述收容件30运动。所述减震环55用于缓冲所述套设件54、所述减震元件52以及所述套设件受到的沿所述收容件30径向的冲击力。具体而言,由于所述减震环55具有一定弹性,使得所述活动件51在外力作用下能够绕所述收容件30的中心轴沿径向发生预定程度的摆动,引起所述减震环55产生沿自身径向的弹性形变,以缓冲所述活动件51摆动时通过所述减震元件52、所述套设件54及所述减震环55对所述收容件30造成的震动。同样地,所述减震元件52的存在,进一步缓冲了上述的震动,提高了所述减震机构100的缓冲减震效果。
所述阻尼减震件53设置在所述底壁34上。具体在图示的实施例中,所述阻尼减震件53包括抵顶部531以及设置于所述抵顶部531上的凸伸部533。所述抵顶部531收容于所述收容件30内,并叠置于所述底壁34上。所述凸伸部533设置于所述抵顶部531背离所述减震元件52的一侧,并穿设于所述安装孔341中,使得所述抵顶部531抵持于所述底壁34上。所述活动件51杆部511远离所述凸缘部513的一端可活动地穿过所述阻尼减震件53,并凸伸至所述收容件30之外。在本实施方式中,所述阻尼减震件53为由弹性材料制成的弹性体,所述弹性材料可以为:缓冲泡棉、缓冲泡沫、橡胶、硅胶等。所述阻尼减震件53用于缓冲所述杆部511受到的沿所述收容件30径向的冲击力。具体而言,由于所述减震环55具有一定弹性,使得所述活动件51在外力作用下能够相对所述收容件30的轴向发生预定程度的摆动,引起所述减震环55产生沿自身径向的弹性形变,以缓冲所述活动件51摆动时通过所述减震元件52、所述套设件54及所述减震环55对所述收容件30造成的震动。
由于所述外壳10,尤其是收容件30靠近所述活动件51伸出所述收容件30的一端,即所述底壁34为刚性材料,则在所述活动件51绕所述收容件30中心轴沿径向摆动时,可限制其摆动的幅度,实现在摆动方向上的可控。具体的摆动幅度的大小,还可通过调节所述安装孔341的孔径大小和/或装设不同弹性系数的阻尼减震件53而实现。避免被减震的元件的过度晃动,实现快速减震及定位。
可以理解,所述整个收容件30甚至所述整个外壳10也可均为刚性材料,从而更好地保证将所述活动件51沿径向摆动的幅度控制在预定范围之内,实现快速减震及定位。
进一步地,所述活动件51相对所述收容件30的长度方向摆动角度,可以通过选择所述阻尼减震件53的弹性系数来控制。例如,所述阻尼减震件53的弹性系数越小,其越容易产生弹性形变,则所述活动件51相对所述收容件30的长度方向摆动角度也越大。
所述弹性件56设置于所述收容件30内,并在所述活动件51及所述收容件30之间沿所述收容件30的长度方向形成弹性抵持作用。所述弹性件56有具有一定弹性的材料制成,其用于缓冲所述活动件51、所述减震元件52、所述套设件54以及所述减震环55受到的沿所述收容件30轴向的冲击力。具体在图示的实施例中,所述弹性件56为螺旋弹簧。所述弹性件56套设在所述活动件51之外,其一端抵持在所述套设件54或减震环55上,另一端抵持在所述阻尼减震件53上,以在所述套设件54与所述阻尼减震件53之间形成沿所述收容件30轴向的弹性抵持抵持作用。可以理解,在其他的实施例中,所述弹性件56可以为缓冲泡棉、弹性套筒、弹片等弹性结构。可以理解,在其他的实施例中,所述弹性件56的一端可以抵持在所述套设件54或减震环55上,另一端可以抵持在所述收容件30的所述底壁34上,以在所述套设件54与所述底壁34之间形成沿所述收容件30轴向的弹性抵持作用。
所述缓冲件57设置在所述连接件20上朝向所述收容件30内腔的一侧。在本实施方式中,所述缓冲件57为弹性材料制成的弹性体,所述弹性材料可以为:缓冲泡棉、缓冲泡沫、橡胶、硅胶等。所述缓冲件57设置在所述连接件20上被所述活动件51或/及所述套设件54所抵持的部分,并用于缓冲所述活动件51或/及所述套设件54相对所述收容件30运动时对所述连接件20造成的冲击震动。可以理解,在其他的实施方式中,所述缓冲件57可以设置在所述连接件20与所述活动件51之间的其他位置,如,设置在所述活动件51上;同样,所述缓冲件57也可以设置在所述连接件20与所述套设件54之间,如,设置在所述套设件54上。
所述装设件70设置于所述活动件51上远离所述凸缘部513的一端,其用于装设外部设备,以将该外部设备与所述无人飞行器连接。所述外部设备可以为照相机、摄像机等图像获取装置,或者为用于搭载所述图像获取装置的云台等。
本发明还提供一种无人飞行器(图未示出),所述无人飞行器包括机身以及上述的减震机构100。所述无人飞行器用于搭载图像获取装置等负载进行航拍作业。具体而言,所述减震机构100通过所述连接件20装设于所述机身上,所述负载设置于所述减震机构100的所述装设件70上,并通过所述减震机构100减缓所述无人飞行器飞行时对所述负载造成的震动。为了进一步地保证所述负载的平稳,所述无人飞行器还可以包括云台,所述云台设置在所述减震机构及所述负载之间。
可以理解,所述图像获取装置为电子装置,其可以为摄像头、摄影机、照相机或者便携式通讯装置等。
所述机身上可以设置一个或多个所述减震机构100,如,所述减震机构100的数量可以为一个,两个,三个,四个,五个,…..甚至更多。当所述减震机构100的数量为多个时,多个所述减震机构100在所述机身上为均匀分布。在本实施方式中,多个所述减震机构100沿同一圆周的周向均匀分布。可以理解,多个所述减震机构100在所述机身上可以以中心对称或轴对称的方式设置。
可以理解,所述减震元件52可以省略,而直接将所述套设件54设置于所述活动件51的所述杆部511上,或者,所述套设件54与所述活动件51为一体成型结构。甚至,所述套设件54也可以省略,而降所述减震环55直接设置于所述活动件51的上述杆部511上,并弹性抵持于所述收容件30的侧壁,使所述减震环55在所述活动件51与所述收容件30之间沿所述收容件30的径向形成弹性抵持作用。
可以理解,所述阻尼减震件53可以省略,而将所述活动件51的所述杆部511可活动地穿设于所述安装孔341并凸伸出所述收容件30之外。此时可使所述收容件30上开设的安装孔341的尺寸大于所述杆部511的轴径,则可允许所述活动件51沿所述收容件30的宽度方向摆动一定程度,且此摆动幅度可大于在所述杆部511的外侧和所述安装孔341的内壁之间添加阻尼减震件53时的摆动幅度。也可使所述安装孔341的尺寸和所述杆部511的轴径相吻合,则所述活动件51沿所述收容件30的宽度方向的活动将被限制。
请同时参阅图3,图3示出了本发明第二实施方式提供的减震机构200,第二实施方式的所述减震机构200与第一实施方式的减震机构100大致相同,其不同在于:第二实施方式的所述减震机构200的减震组件250省略了第一实施方式的减震组件250的减震元件52以及套设件54。具体而言,第二实施方式的所述减震机构200的减震组件250包括活动件251、阻尼减震件253、减震环255、弹性件526以及缓冲件257。所述活动件251上设置有用于固持所述减震环255的固持槽2511,所述减震环255设置在所述固持槽2511内。
在本发明的实施例中,所述减震机构为活塞式减震机构,所述外壳为活塞筒,所述活动件为活塞杆部,所述套设件为活塞端部,从而所述活动件和所述套设件共同组成活塞,所述减震环在所述活塞端部与所述活塞筒之间形成沿所述活塞筒径向的弹性抵持作用,所述弹性件在所述活塞端部与所述活塞筒之间形成沿所述活塞筒轴向的弹性抵持作用。可以理解,在其他的实施方式中,所述活塞杆部与所述活塞端部可以为一体成型结构。可以理解,在其他的实施方式中,所述活塞筒内可以形成收容腔,所述收容腔内可以设置或填充有缓冲介质,以进一步提高所述减震机构的减震效果。所述缓冲介质可以为液体、固体及气体中的至少一种。
上述的减震机构,采用所述减震环弹性地抵持在所述收容件的侧壁上,以在所述活动件与所述收容件之间形成沿所述收容件的宽度方向/径向的弹性抵持力,以使所述活动件能够产生沿所述收容件的宽度方向/径向的摆动,或产生沿所述收容件的长度方向/轴向发生运动,从而使所述减震机构在受到沿所述收容件宽度方向/径向的外力冲击时,能够缓冲所述收容件及所述活动件之间产生的震动。同时,同时,所述弹性件在所述活动件及所述收容件之间形成沿所述收容件长度方向/轴向的抵持力,以缓冲吸收所述活动件相对所述收容件滑动时二者之间的震动。综上所述,上述的减震机构,能够缓冲多个方向的震动冲击,其缓冲减震效果相对较好。
综上所述,上述的减震机构,其弹性件、阻尼减震件以及缓冲件设置在所述外壳上,形成沿所述外壳的轴向设置的轴向减震结构,所述轴向减震结构在所述活动件与所述外壳之间形成沿所述外壳的长度方向/轴向的弹性抵持作用;同时,所述减震环设置在所述套设件上,并形成沿所述外壳的径向设置的径向减震结构,所述套设件在所述活动件与所述外壳之间形成沿所述外壳的宽度方向/径向的弹性抵持作用;由于所述轴向减震结构与所述径向减震结构的存在,使所述减震机构能够缓冲多个方向的震动冲击,其缓冲减震效果相对较好。且所述外壳靠近所述活动件伸出所述外壳的一端的部分为刚性材料,可将所述活动件沿所述外壳的宽度方向/径向的摆动幅度限定在预定范围之内,从而实现与所述减震机构连接的部件的快速定位及稳定。
另外,上述减震机构的缓冲力度能够通过设置所述阻尼减震件、所述减震环、所述弹性件或/及所述缓冲件的弹性系数来控制,其能够承载并缓冲的冲击力相对较大。在所述无人飞行器具有较大负载的情况下,所述减震机构依然能够有效减震。
在本发明实施方式中,所述无人飞行器为旋翼无人飞行器,其用于搭载照相机、摄像机等拍摄装置进行航拍作业。可以理解,所述无人飞行器还可以用于地图测绘、灾情调查和救援、空中监控、输电线路巡检等工作。同样可以理解的是,所述无人飞行器还可以为固定翼无人飞行器。
可以理解,所述减震机构不局限于在所述无人飞行器中应用,其还可以应用于其他的可移动设备或遥控移动装置如无人驾驶车辆、无人驾驶船舶中,本说明书不作一一赘述。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。本领域技术人员还可在本发明精神内做其它变化等用在本发明的设计,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (62)

  1. 一种减震机构,其特征在于,包括外壳以及活塞,所述活塞一端可滑动地设置于所述外壳内,并能够在所述外壳内滑动;所述减震机构还包括:
    沿所述活塞的轴向设置的轴向减震结构;以及
    沿所述活塞的径向设置的径向减震结构。
  2. 如权利要求1所述的减震机构,其特征在于:所述外壳靠近所述活塞伸出所述外壳的一端的部分为刚性材料。
  3. 如权利要求1或2所述的减震机构,其特征在于:所述径向减震结构包括减震环,套设在所述活塞上,并与所述外壳的侧壁弹性接触;以及
    所述轴向减震结构包括弹性件,设置在所述活塞及所述外壳之间,并在所述活塞及所述外壳之间沿所述外壳的轴向形成弹性抵持作用。
  4. 如权利要求3所述的减震机构,其特征在于:所述活塞包括活塞杆部和位于所述活塞杆部的一端的活塞端部,所述减震环设置于所述活塞端部和所述外壳的侧壁之间。
  5. 如权利要求4所述的减震机构,其特征在于:所述弹性件套设于所述活塞杆部上并一端抵持于所述活塞端部或所述减震环。
  6. 如权利要求5所述的减震机构,其特征在于:所述轴向减震结构还包括设置于所述外壳远离所述活塞端部的一端的阻尼减震件,所述弹性件的另一端抵持于所述阻尼减震件或外壳。
  7. 如权利要求6所述的减震机构,其特征在于:所述活塞杆部远离所述活塞端部的一端从所述外壳伸出,且所述阻尼减震件设置于所述活塞杆部和所述外壳之间。
  8. 如权利要求4所述的减震机构,其特征在于:所述活塞端部和所述活塞杆部为一体结构。
  9. 如权利要求4所述的减震机构,其特征在于:所述活塞端部和所述活塞杆部为分体式结构,所述活塞杆部的一端收容于所述活塞端部内。
  10. 如权利要求9所述的减震机构,其特征在于:所述活塞端部的内壁和所述活塞杆部之间设置减震元件。
  11. 如权利要求4所述的减震机构,其特征在于:所述轴向减震结构还包括设置于所述活塞端部和所述外壳上被所述活塞端部所抵持的部位之间的缓冲件。
  12. 如权利要求11所述的减震机构,其特征在于:所述缓冲件为以下几种中的至少一种:缓冲泡棉体、螺旋弹簧、弹性套筒、弹片、橡胶体。
  13. 如权利要求1或2所述的减震机构,其特征在于:所述外壳形内成收容腔,所述减震机构还包括设置于所述收容腔内的缓冲介质。
  14. 如权利要求13所述的减震机构,其特征在于:所述缓冲介质为液体、固体及气体中的至少一种。
  15. 如权利要求1或2所述的减震机构,其特征在于:所述减震机构还包括位于所述活塞自由端的装设件以及连接于所述外壳并远离所述装设件的连接件。
  16. 一种无人飞行器,包括机身,其特征在于:所述无人飞行器还包括至少一个减震机构,所述减震机构设置在所述机身上;所述减震机构包括:
    外壳,连接于所述机身上;
    活塞,所述活塞一端可滑动地设置于所述外壳内,并能够在所述外壳内滑动;
    轴向减震结构,沿所述活塞的轴向设置;以及
    径向减震结构,沿所述活塞的径向设置。
  17. 如权利要求16所述的无人飞行器,其特征在于:所述减震机构的外壳设置在所述机身上,所述无人飞行器还包括云台装设件,所述云台装设件连接在所述活塞的自由端,并用于装设一云台。
  18. 如权利要求17所述的无人飞行器,其特征在于:所述无人飞行器还包括设置于所述云台装设件上的云台。
  19. 如权利要求18所述的无人飞行器,其特征在于:所述无人飞行器还包括设置于所述云台上的图像获取装置。
  20. 如权利要求16所述的无人飞行器,其特征在于:所述减震机构为多个,多个所述减震机构在所述机身上以中心对称或轴对称的方式设置。
  21. 如权利要求16所述的无人飞行器,其特征在于:所述外壳靠近所述活塞伸出所述外壳的一端的部分为刚性材料。
  22. 如权利要求16或21所述的无人飞行器,其特征在于:所述径向减震结构包括减震环,套设在所述活塞上,并与所述外壳的侧壁弹性接触;以及
    所述轴向减震结构包括弹性件,设置在所述活塞及所述外壳之间,并在所述活塞及所述外壳之间沿所述外壳的轴向形成弹性抵持作用。
  23. 如权利要求22所述的无人飞行器,其特征在于:所述活塞包括活塞杆部和位于所述活塞杆部的一端的活塞端部,所述减震环设置于所述活塞端部和所述外壳的侧壁之间。
  24. 如权利要求23所述的无人飞行器,其特征在于:所述弹性件套设于所述活塞杆部上并一端抵持于所述活塞端部或所述减震环。
  25. 如权利要求24所述的无人飞行器,其特征在于:所述轴向减震结构还包括设置于所述外壳远离所述活塞端部的一端的阻尼减震件,所述弹性件的另一端抵持于所述阻尼减震件或外壳。
  26. 如权利要求25所述的无人飞行器,其特征在于:所述活塞杆部远离所述活塞端部的一端从所述外壳伸出,且所述阻尼减震件设置于所述活塞杆部和所述外壳之间。
  27. 如权利要求23所述的无人飞行器,其特征在于:所述活塞端部和所述活塞杆部为一体结构。
  28. 如权利要求23所述的无人飞行器,其特征在于:所述活塞端部和所述活塞杆部为分体式结构,所述活塞杆部的一端收容于所述活塞端部内。
  29. 如权利要求28所述的无人飞行器,其特征在于:所述活塞端部的内壁和所述活塞杆部之间设置减震元件。
  30. 如权利要求23所述的无人飞行器,其特征在于:所述轴向减震结构还包括设置于所述活塞端部和所述外壳上被所述活塞端部所抵持的部位之间的缓冲件。
  31. 如权利要求30所述的无人飞行器,其特征在于:所述缓冲件为以下几种中的至少一种:缓冲泡棉体、螺旋弹簧、弹性套筒、弹片、橡胶体。
  32. 如权利要求16或21所述的无人飞行器,其特征在于:所述外壳形内成收容腔,所述减震机构还包括设置于所述收容腔内的缓冲介质。
  33. 如权利要求32所述的无人飞行器,其特征在于:所述缓冲介质为液体、固体及气体中的至少一种。
  34. 如权利要求16或21所述的无人飞行器,其特征在于:所述减震机构还包括位于所述活塞自由端的装设件以及连接于所述外壳并远离所述装设件的连接件。
  35. 一种减震机构,其特征在于,包括外壳以及活动件,所述活动件的一端可滑动地设置于所述外壳内,并能够在所述外壳内沿所述外壳的轴向滑动;所述减震机构还包括:
    减震环,设置在所述活动件上,并与所述外壳的侧壁弹性接触;以及
    弹性件,设置在所述活动件及所述外壳之间,并在所述活动件及所述外壳之间沿所述外壳的轴向形成弹性抵持作用。
  36. 如权利要求35所述的减震机构,其特征在于:所述外壳靠近所述活动件伸出所述外壳的一端的部分为刚性材料。
  37. 如权利要求35或36所述的减震机构,其特征在于:所述减震环套设在所述活动件外周,并在所述外壳与所述活动件之间沿所述外壳的径向形成弹性抵持作用,使所述活动件在所述外壳内滑动的同时,还能够沿所述外壳的径向摆动。
  38. 如权利要求37所述的减震机构,其特征在于:所述减震环为由弹性材料制成的弹性环。
  39. 如权利要求35或36所述的减震机构,其特征在于:所述减震机构还包括套设件,所述套设件设置在所述活动件与所述减震环之间,并固持所述减震环。
  40. 如权利要求39所述的减震机构,其特征在于:所述减震机构为活塞式减震机构,所述外壳为活塞筒,所述活动件为活塞杆部,所述套设件为活塞端部,所述减震环在所述活塞端部与所述活塞筒之间形成径向的弹性抵持作用,所述弹性件在所述活塞端部与所述活塞筒之间形成轴向的弹性抵持作用。
  41. 如权利要求39所述的减震机构,其特征在于:所述套设件外周设置有安装槽,所述减震环固定于所述安装槽中。
  42. 如权利要求39所述的减震机构,其特征在于:所述套设件与所述活动件为一体成型结构。
  43. 如权利要求39所述的减震机构,其特征在于:所述减震机构还包括减震元件,所述减震元件设置在所述活动件与所述套设件之间,并固持所述套设件。
  44. 如权利要求43所述的减震机构,其特征在于:所述减震元件为由弹性材料制成的弹性体。
  45. 如权利要求43所述的减震机构,其特征在于:所述减震元件包括卡持部,所述套设件包括扣合部,所述扣合部与所述卡持部相卡持配合,以将所述套设件固定于所述减震元件上。
  46. 如权利要求35或36所述的减震机构,其特征在于:所述活动件的另一端凸伸出所述外壳之外,所述减震机构还包括阻尼减震件,所述阻尼减震件设置在所述外壳与所述活动件之间。
  47. 如权利要求46所述的减震机构,其特征在于:所述减震环设置在所述活动件的一端,所述活动件远离所述减震环的一端可活动地穿过所述阻尼减震件,并凸伸出所述外壳之外。
  48. 如权利要求46所述的减震机构,其特征在于:所述阻尼减震件为由弹性材料制成的弹性体。
  49. 如权利要求46所述的减震机构,其特征在于:所述外壳包括筒状的周壁以及设置于所述周壁一端的底壁,所述阻尼减震件设置于所述底壁上。
  50. 如权利要求49所述的减震机构,其特征在于:所述弹性件在所述活动件与所述底壁之间形成弹性抵持作用;或者,所述弹性件在所述收容件与所述阻尼减震件之间形成弹性抵持作用。
  51. 如权利要求35或36所述的减震机构,其特征在于:所述外壳形内成收容腔,所述减震机构还包括设置于所述收容腔内的缓冲介质。
  52. 如权利要求51所述的减震机构,其特征在于:所述缓冲介质为液体、固体及气体中的至少一种。
  53. 如权利要求35所述的减震机构,其特征在于:所述减震机构还包括装设件,所述装设件设置于所述活动件的另一端,并用于装设外部物件。
  54. 如权利要求35所述的减震机构,其特征在于:,所述外壳为刚性元件。
  55. 如权利要求35所述的减震机构,其特征在于:所述弹性件为以下几种中的至少一种:缓冲泡棉体、螺旋弹簧、弹性套筒、弹片。
  56. 如权利要求35或36所述的减震机构,其特征在于:所述外壳上对应所述活动件的端部还设置有缓冲件,所述缓冲件用于缓冲所述活动件在所述外壳内滑动时对所述外壳造成的冲击。
  57. 如权利要求56所述的减震机构,其特征在于:所述减震机构还包括连接件,所述连接件设置于所述外壳的一端,并邻近所述减震环设置。
  58. 如权利要求57所述的减震机构,其特征在于:所述缓冲件设置在所述连接件上朝向所述外壳内腔的一侧。
  59. 如权利要求57所述的减震机构,其特征在于:所述缓冲件为由弹性材料制成的弹性体。
  60. 如权利要求57所述的减震机构,其特征在于:所述缓冲件为以下几种中的至少一种:缓冲泡棉体、螺旋弹簧、弹性套筒、弹片、橡胶体。
  61. 一种无人飞行器,包括机身,其特征在于:所述无人飞行器还包括至少一个权利要求35~60中任一项所述的减震机构,所述减震机构设置在所述机身上。
  62. 一种可移动设备,包括机身,其特征在于:所述可移动设备还包括至少一个权利要求1~15中任一项所述的减震机构,所述减震机构设置在所述机身上,所述减震机构用于连接负载。
PCT/CN2016/079509 2016-04-15 2016-04-15 减震机构及使用该减震机构的无人飞行器和可移动设备 WO2017177467A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/079509 WO2017177467A1 (zh) 2016-04-15 2016-04-15 减震机构及使用该减震机构的无人飞行器和可移动设备
CN201680004578.1A CN107110279B (zh) 2016-04-15 2016-04-15 减震机构及使用该减震机构的无人飞行器和可移动设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079509 WO2017177467A1 (zh) 2016-04-15 2016-04-15 减震机构及使用该减震机构的无人飞行器和可移动设备

Publications (1)

Publication Number Publication Date
WO2017177467A1 true WO2017177467A1 (zh) 2017-10-19

Family

ID=59676399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079509 WO2017177467A1 (zh) 2016-04-15 2016-04-15 减震机构及使用该减震机构的无人飞行器和可移动设备

Country Status (2)

Country Link
CN (1) CN107110279B (zh)
WO (1) WO2017177467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112678195A (zh) * 2020-12-31 2021-04-20 王小燕 一种无人机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109018404B (zh) * 2018-08-30 2024-06-04 上海歌尔泰克机器人有限公司 减震模组和无人机
CN109398700A (zh) * 2018-09-28 2019-03-01 庄志斌 用于无人机航拍中摄像机安装的缓冲阻力稳定连接机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038174A1 (en) * 2000-05-04 2001-11-08 Itw Automotive Products Gmbh & Co. Kg Air damper for a movably supported structural part, in particular in automobiles
CN2665452Y (zh) * 2003-12-10 2004-12-22 中国船舶重工集团公司第七一九研究所 油阻尼弹簧吊架
CN103758907A (zh) * 2014-01-10 2014-04-30 江苏艾锐泰克无人飞行器科技有限公司 无人飞行器的减震装置
KR20140124881A (ko) * 2011-03-17 2014-10-28 재단법인 국방기술품질원 전방관측 적외선장비용 센서 구동기의 장착장치
CN203926580U (zh) * 2014-06-17 2014-11-05 常州容大结构减振设备有限公司 一种具备抗振功能的串补机构
CN204802092U (zh) * 2015-05-19 2015-11-25 深圳市大疆创新科技有限公司 减振装置、云台及应用该云台的无人飞行器
CN205559664U (zh) * 2016-04-15 2016-09-07 深圳市大疆创新科技有限公司 减震机构及使用该减震机构的无人飞行器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB672593A (en) * 1949-10-07 1952-05-21 Gomma Antivibranti Applic Improvements relating to shock absorbers for motor vehicles
GB772419A (en) * 1955-01-17 1957-04-10 Barry Controls Inc Improvements in or relating to vibration isolators
JPS5854295B2 (ja) * 1978-03-22 1983-12-03 三菱電機株式会社 ダンパ
US20030183994A1 (en) * 2002-03-27 2003-10-02 Atwater D. Stuart Damper spring strut
RU2361135C1 (ru) * 2007-12-27 2009-07-10 Олег Савельевич Кочетов Пружинный виброизолятор с нелинейным демпфированием
CN201170284Y (zh) * 2008-04-08 2008-12-24 中国航天时代电子公司第十六研究所 金属橡胶减振器及减振系统
CN202402540U (zh) * 2011-12-20 2012-08-29 中国飞机强度研究所 一种金属丝网三向隔振器
CN203702979U (zh) * 2013-12-04 2014-07-09 中国飞机强度研究所 一种独立阻尼金属丝网隔振器
WO2015125075A1 (en) * 2014-02-18 2015-08-27 Suspa Gmbh Ventilated damper
CN104455195B (zh) * 2014-12-16 2016-06-15 中国电子科技集团公司第十研究所 全金属多向隔振器
CN104930100B (zh) * 2015-06-14 2017-05-31 中国电子科技集团公司第十研究所 高效能干摩擦阻尼弹簧隔振器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038174A1 (en) * 2000-05-04 2001-11-08 Itw Automotive Products Gmbh & Co. Kg Air damper for a movably supported structural part, in particular in automobiles
CN2665452Y (zh) * 2003-12-10 2004-12-22 中国船舶重工集团公司第七一九研究所 油阻尼弹簧吊架
KR20140124881A (ko) * 2011-03-17 2014-10-28 재단법인 국방기술품질원 전방관측 적외선장비용 센서 구동기의 장착장치
CN103758907A (zh) * 2014-01-10 2014-04-30 江苏艾锐泰克无人飞行器科技有限公司 无人飞行器的减震装置
CN203926580U (zh) * 2014-06-17 2014-11-05 常州容大结构减振设备有限公司 一种具备抗振功能的串补机构
CN204802092U (zh) * 2015-05-19 2015-11-25 深圳市大疆创新科技有限公司 减振装置、云台及应用该云台的无人飞行器
CN205559664U (zh) * 2016-04-15 2016-09-07 深圳市大疆创新科技有限公司 减震机构及使用该减震机构的无人飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112678195A (zh) * 2020-12-31 2021-04-20 王小燕 一种无人机

Also Published As

Publication number Publication date
CN107110279A (zh) 2017-08-29
CN107110279B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2017177467A1 (zh) 减震机构及使用该减震机构的无人飞行器和可移动设备
WO2017132813A1 (zh) 竖向增稳机构、云台装置及拍摄设备
WO2017041466A1 (zh) 拍摄设备及无人机
WO2016183734A1 (zh) 云台
WO2017128062A1 (en) A stabilizing platform and camera
WO2016153148A1 (ko) 실시간 진동 피드백을 제공하는 휴대단말용 보호케이스
WO2017143643A1 (zh) 无人飞行器的机架、无人飞行器及其使用方法
WO2016045009A1 (zh) 云台及其使用的成像装置、以及无人机
WO2017128061A1 (zh) 减震结构及使用该减震结构的云台组件、无人机
WO2016082204A1 (zh) 紧固组件、固持机构、使用该固持机构的支架以及遥控器
WO2016082166A1 (zh) 减震装置及采用该减震装置的车载云台
CN107207098A (zh) 云台、成像装置及无人飞行器
WO2017177406A1 (zh) 桨夹、折叠桨、动力套装及无人机
WO2017000299A1 (zh) 限位装置及具有该限位装置的无人飞行器
WO2018076255A1 (zh) 电池固定装置、电池及无人飞行器
US10194061B2 (en) Pan-tilt-zoom camera and unmanned aerial vehicle
WO2016086346A1 (zh) 拨杆结构及采用该拨杆结构的遥控器
WO2016192018A1 (en) Uav having barometric sensor and method of isolating disposing barometric sensor within uav
WO2016165115A1 (zh) 旋钮结构及使用该旋钮结构的跟焦遥控器
WO2016155250A1 (zh) 无人机系统、无人机及该无人机系统的控制方法
WO2020180058A1 (ko) 펼침 상태 유지가 가능한 보호케이스
CA2385922A1 (en) Shock and vibration isolation system
WO2017024476A1 (zh) 夹持结构及具有该夹持结构的云台
JPH0651172A (ja) 宇宙航行体搭載用光学系の撮像素子位置調整装置
WO2016183833A1 (zh) 主机结构总成及使用该主机结构总成的遥控移动装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898285

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898285

Country of ref document: EP

Kind code of ref document: A1