WO2017176096A1 - 무선 통신 시스템에서 v2x 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하는 방법 및 상기 방법을 이용하는 단말 - Google Patents

무선 통신 시스템에서 v2x 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하는 방법 및 상기 방법을 이용하는 단말 Download PDF

Info

Publication number
WO2017176096A1
WO2017176096A1 PCT/KR2017/003843 KR2017003843W WO2017176096A1 WO 2017176096 A1 WO2017176096 A1 WO 2017176096A1 KR 2017003843 W KR2017003843 W KR 2017003843W WO 2017176096 A1 WO2017176096 A1 WO 2017176096A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
value
transmission
terminal
subframe
Prior art date
Application number
PCT/KR2017/003843
Other languages
English (en)
French (fr)
Inventor
이승민
서한별
채혁진
김영태
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112019004649A priority Critical patent/BR112019004649A2/pt
Priority to AU2017248062A priority patent/AU2017248062A1/en
Priority to CA3036351A priority patent/CA3036351C/en
Priority to CN201780055658.4A priority patent/CN109792640B/zh
Priority to SG11201901833YA priority patent/SG11201901833YA/en
Priority to EP17779396.5A priority patent/EP3512246B1/en
Priority to JP2019513780A priority patent/JP6820407B2/ja
Priority to KR1020187037553A priority patent/KR102139642B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to RU2019110454A priority patent/RU2721010C1/ru
Priority to MX2019002663A priority patent/MX2019002663A/es
Publication of WO2017176096A1 publication Critical patent/WO2017176096A1/ko
Priority to US16/283,167 priority patent/US10694347B2/en
Priority to PH12019500472A priority patent/PH12019500472A1/en
Priority to US16/787,776 priority patent/US11240646B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to a V2X transmission resource selection method performed by a terminal in a wireless communication system and a terminal using the method.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-A LTE-Advanced
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • D2D Device-to-Device
  • D2D is drawing attention as a communication technology for a public safety network.
  • Commercial communication networks are rapidly changing to LTE, but current public safety networks are mainly based on 2G technology in terms of cost and conflict with existing communication standards. This gap in technology and the need for improved services have led to efforts to improve public safety networks.
  • V2X VEHICLE-TO-EVERYTHING
  • PEDESTRIAN COMPUNICATION BETWEEN A VEHICLE AND A DEVICE CARRIED BY AN INDIVIDUAL (e.g., HANDHELD TERMINAL CARRIED BY A PEDESTRIAN, CYCLIST, DRIVER OR PASSENGER)
  • VEHICLE COMPUNICATION BETWEEN VEHICLES
  • INFRASTRUCTURE / NETWORK COMMUNICATION BETWEEN A VEHICLE AND A ROADSIDE UNIT (RSU) / NETWORK (e.g.) OR A STATIONARY UE)) (V2I / N).
  • a device possessed by a pedestrian (or person) is named "P-UE", and a device installed in a vehicle VEHICLE (V2X communication) is named "V-UE”.
  • V-UE a device installed in a vehicle VEHICLE (V2X communication)
  • the term 'entity' may be interpreted as at least one of P-UE, V-UE, and RSU (/ NETWORK / INFRASTRUCTURE).
  • V2X communication it may be a question of how and what resource to select when the P-UE tries to transmit the V2X signal.
  • P-UE has a feature that is sensitive to battery consumption, unlike the terminal installed in the vehicle.
  • V2X communication it may be important to transmit a signal periodically and not to interfere with other terminals. In view of these points, it is necessary to determine a transmission resource selection method of the P-UE.
  • the technical problem to be solved by the present invention is to provide a V2X transmission resource selection method performed by a terminal in a wireless communication system and a terminal using the same.
  • a reservation for a finite number of resources for which V2X communication is performed and reservation is performed.
  • a method is provided for performing the V2X communication on the finite number of resources.
  • the finite number may be proportional to a counter value randomly selected by the V2X terminal, and the counter value may have a positive integer.
  • the counter value may have a value of 5 or more, and the counter value may have a value of 15 or less.
  • the finite number may have a value 10 times a counter value arbitrarily selected by the V2X terminal.
  • the V2X terminal may perform resource reselection in a selection window.
  • resource reselection may be performed in a selection window.
  • resource reselection may be performed in a selection window.
  • a method in a V2X operation method performed by a vehicle-to-X (V2X) terminal in a wireless communication system, it is determined whether a resource reselection condition is satisfied, and the resource reselection condition is If satisfied, a method is provided, characterized in that re-selection of a resource for which vehicle-to-X communication is performed and the V2X communication is performed based on the selected resource.
  • the V2X terminal may perform resource reselection in a selection window.
  • resource reselection may be performed in a selection window.
  • resource reselection may be performed in a selection window.
  • the preset number may have a value of 1 to 9.
  • a user equipment includes a Radio Frequency (RF) unit for transmitting and receiving a radio signal and a processor operating in conjunction with the RF unit, wherein the processor, It provides a terminal for performing a reservation for a finite number of resources for V2X (Vehicle-to-X) communication is performed, and performing the V2X communication on the reserved number of resources.
  • RF Radio Frequency
  • the terminal when the terminal performs the V2X communication, it is possible to efficiently reserve resources for the V2X communication. Accordingly, since the terminal according to the present invention can efficiently use the radio resources, the occupation of unnecessary radio resources is minimized, thereby maximizing the efficiency of radio communication.
  • FIG. 1 illustrates a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG 5 shows examples of arrangement of terminals and cell coverage for ProSe direct communication.
  • FIG. 6 shows a user plane protocol stack for ProSe direct communication.
  • FIG. 8 is a flowchart illustrating a method of performing V2X communication based on a terminal specific sensing interval according to an embodiment of the present invention.
  • FIG. 9 illustrates a schematic example of a terminal specific sensing window.
  • FIG. 10 is a flowchart illustrating a method of configuring a selection window according to an embodiment of the present invention.
  • 13 and 14 illustrate re-scheduled (/ selected) resource determination and (V2X MESSAGE) transmission immediately based on the rescheduled (/ selected) resource.
  • 15 and 16 illustrate 'control (/ scheduling) information' and 'data (associated with the corresponding control (/ scheduling) information)' (in terms of 'SINGLE V2X UE') transmitted in the form of 'FDM' on the same SF. An example of the case is shown.
  • FIG. 17 shows an example of a case where the 'control (/ scheduling) information transmission pool' and the 'data transmission pool' are set (/ configured) in the 'FDM' form (from a system perspective).
  • FIG. 18 is a flowchart illustrating a method of performing sensing when a number of subchannels used for V2X message transmission is plural, according to an embodiment of the present invention.
  • FIG. 19 illustrates an example of ENERGY MEASUREMET (ie, sensing) performed with a subchannel size of data to be transmitted by a UE.
  • 20 and 21 illustrate an example of a form of 'PARTIALLY OVERLAPPED REGION BASED SENSING' (or 'SLIDING WINDOW BASED SENSING').
  • FIG. 22 schematically illustrates an example in which the problem of “SFN (SYSTEM FRAME NUMBER) WRAP AROUND” occurs.
  • 23 is a flowchart of a method for reserving a finite number of resources according to an embodiment of the present invention.
  • 24 is a flowchart illustrating a method for reselecting a resource by a terminal according to an embodiment of the present invention.
  • 25 is an example of a method of performing resource reservation in consideration of the above-mentioned proposal.
  • FIG. 26 is a flowchart of a method of excluding a subframe (in a selection window) related to a subframe in which a terminal does not perform sensing according to an embodiment of the present invention.
  • FIG. 27 illustrates an example of excluding a subframe (in a selection window) related to a subframe in which the terminal has not performed sensing.
  • Figure 31 shows an example of the case of increasing the (old) "DFN RANGE” value (for example, "10240" or "10176").
  • FIG. 34 is a flowchart of a method of performing V2X communication on an allocated V2X resource pool according to an embodiment of the present invention.
  • 35 schematically illustrates an example in which an SLSS subframe is excluded from a V2X transmission.
  • FIG. 36 schematically illustrates an example in which DL and S (SPECIAL) subframes are excluded from a V2X transmission.
  • FIG. 37 is a flowchart illustrating a method for performing reservation for a V2X transmission resource when resource reservation of a short period is set according to an embodiment of the present invention.
  • 38 is a flowchart illustrating a method for performing sensing in a relatively short period when resource reservation of a short period is set according to an embodiment of the present invention.
  • 39 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • ProSe proximity based services
  • ProSe has ProSe communication and ProSe direct discovery.
  • ProSe direct communication refers to communication performed between two or more neighboring terminals.
  • the terminals may perform communication using a user plane protocol.
  • ProSe-enabled UE refers to a terminal that supports a procedure related to the requirements of ProSe.
  • ProSe capable terminals include both public safety UEs and non-public safety UEs.
  • the public safety terminal is a terminal that supports both a public safety-specific function and a ProSe process.
  • a non-public safety terminal is a terminal that supports a ProSe process but does not support a function specific to public safety.
  • ProSe direct discovery is a process for ProSe capable terminals to discover other ProSe capable terminals that are adjacent to each other, using only the capabilities of the two ProSe capable terminals.
  • EPC-level ProSe discovery refers to a process in which an EPC determines whether two ProSe capable terminals are in proximity and informs the two ProSe capable terminals of their proximity.
  • ProSe direct communication may be referred to as D2D communication
  • ProSe direct discovery may be referred to as D2D discovery.
  • a reference structure for ProSe includes a plurality of terminals including an E-UTRAN, an EPC, a ProSe application program, a ProSe application server, and a ProSe function.
  • EPC represents the E-UTRAN core network structure.
  • the EPC may include MME, S-GW, P-GW, policy and charging rules function (PCRF), home subscriber server (HSS), and the like.
  • PCRF policy and charging rules function
  • HSS home subscriber server
  • ProSe application server is a user of ProSe ability to create application functions.
  • the ProSe application server may communicate with an application program in the terminal.
  • An application program in the terminal may use a ProSe capability for creating an application function.
  • the ProSe function may include at least one of the following, but is not necessarily limited thereto.
  • PC1 This is a reference point between a ProSe application in a terminal and a ProSe application in a ProSe application server. This is used to define signaling requirements at the application level.
  • PC2 Reference point between ProSe application server and ProSe function. This is used to define the interaction between the ProSe application server and ProSe functionality. An application data update of the ProSe database of the ProSe function may be an example of the interaction.
  • PC3 Reference point between the terminal and the ProSe function. Used to define the interaction between the UE and the ProSe function.
  • the setting for ProSe discovery and communication may be an example of the interaction.
  • PC4 Reference point between the EPC and ProSe functions. It is used to define the interaction between the EPC and ProSe functions. The interaction may exemplify when establishing a path for 1: 1 communication between terminals, or when authenticating a ProSe service for real time session management or mobility management.
  • PC5 Reference point for using the control / user plane for discovery and communication, relay, and 1: 1 communication between terminals.
  • PC6 Reference point for using features such as ProSe discovery among users belonging to different PLMNs.
  • SGi can be used for application data and application level control information exchange.
  • ProSe direct communication is a communication mode that allows two public safety terminals to communicate directly through the PC 5 interface. This communication mode may be supported both in the case where the terminal receives service within the coverage of the E-UTRAN or in the case of leaving the coverage of the E-UTRAN.
  • FIG 5 shows examples of arrangement of terminals and cell coverage for ProSe direct communication.
  • UEs A and B may be located outside cell coverage.
  • UE A may be located within cell coverage and UE B may be located outside cell coverage.
  • UEs A and B may both be located within a single cell coverage.
  • UE A may be located within the coverage of the first cell and UE B may be located within the coverage of the second cell.
  • ProSe direct communication may be performed between terminals in various locations as shown in FIG.
  • IDs may be used for ProSe direct communication.
  • Source Layer-2 ID This ID identifies the sender of the packet on the PC 5 interface.
  • Destination Layer-2 ID This ID identifies the target of the packet on the PC 5 interface.
  • SA L1 ID This ID is the ID in the scheduling assignment (SA) in the PC 5 interface.
  • FIG. 6 shows a user plane protocol stack for ProSe direct communication.
  • the PC 5 interface is composed of a PDCH, RLC, MAC, and PHY layers.
  • the MAC header may include a source layer-2 ID and a destination layer-2 ID.
  • a ProSe capable terminal can use the following two modes for resource allocation for ProSe direct communication.
  • Mode 1 is a mode for scheduling resources for ProSe direct communication from a base station.
  • the UE In order to transmit data in mode 1, the UE must be in an RRC_CONNECTED state.
  • the terminal requests the base station for transmission resources, and the base station schedules resources for scheduling allocation and data transmission.
  • the terminal may transmit a scheduling request to the base station and may transmit a ProSe BSR (Buffer Status Report). Based on the ProSe BSR, the base station determines that the terminal has data for ProSe direct communication and needs resources for this transmission.
  • ProSe BSR Buffer Status Report
  • Mode 2 is a mode in which the terminal directly selects a resource.
  • the terminal selects a resource for direct ProSe direct communication from a resource pool.
  • the resource pool may be set or predetermined by the network.
  • the terminal when the terminal has a serving cell, that is, the terminal is in the RRC_CONNECTED state with the base station or located in a specific cell in the RRC_IDLE state, the terminal is considered to be within the coverage of the base station.
  • mode 2 may be applied. If the terminal is in coverage, mode 1 or mode 2 may be used depending on the configuration of the base station.
  • the terminal may change the mode from mode 1 to mode 2 or from mode 2 to mode 1 only when the base station is configured.
  • ProSe direct discovery refers to a procedure used by a ProSe capable terminal to discover other ProSe capable terminals, and may also be referred to as D2D direct discovery or D2D discovery. At this time, the E-UTRA radio signal through the PC 5 interface may be used. Information used for ProSe direct discovery is referred to as discovery information hereinafter.
  • the PC 5 interface is composed of a MAC layer, a PHY layer, and a higher layer, ProSe Protocol layer.
  • the upper layer deals with the permission for the announcement and monitoring of discovery information, and the content of the discovery information is transparent to the access stratum (AS). )Do.
  • the ProSe Protocol ensures that only valid discovery information is sent to the AS for the announcement.
  • the MAC layer receives discovery information from a higher layer (ProSe Protocol).
  • the IP layer is not used for sending discovery information.
  • the MAC layer determines the resources used to announce the discovery information received from the upper layer.
  • the MAC layer creates a MAC protocol data unit (PDU) that carries discovery information and sends it to the physical layer.
  • PDU MAC protocol data unit
  • the base station provides the UEs with a resource pool configuration for discovery information announcement.
  • This configuration may be included in a system information block (SIB) and signaled in a broadcast manner.
  • SIB system information block
  • the configuration may be provided included in a terminal specific RRC message.
  • the configuration may be broadcast signaling or terminal specific signaling of another layer besides the RRC message.
  • the terminal selects a resource from the indicated resource pool by itself and announces the discovery information using the selected resource.
  • the terminal may announce the discovery information through a randomly selected resource during each discovery period.
  • the UE in the RRC_CONNECTED state may request a resource for discovery signal announcement from the base station through the RRC signal.
  • the base station may allocate resources for discovery signal announcement with the RRC signal.
  • the UE may be allocated a resource for monitoring the discovery signal within the configured resource pool.
  • the base station 1) may inform the SIB of the type 1 resource pool for discovery information announcement.
  • ProSe direct UEs are allowed to use the Type 1 resource pool for discovery information announcement in the RRC_IDLE state.
  • the base station may indicate that the base station supports ProSe direct discovery through 2) SIB, but may not provide a resource for discovery information announcement. In this case, the terminal must enter the RRC_CONNECTED state for the discovery information announcement.
  • the base station may set whether the terminal uses a type 1 resource pool or type 2 resource for discovery information announcement through an RRC signal.
  • the D2D operation may have various advantages in that it transmits and receives signals between adjacent devices.
  • the D2D user equipment has a high data rate and low delay and can perform data communication.
  • the D2D operation may distribute traffic that is driven to the base station, and may also serve to extend the coverage of the base station if the terminal performing the D2D operation serves as a relay.
  • the above-mentioned extension of D2D communication, including the transmission and reception of signals between vehicles, is particularly referred to as V2X (VEHICLE-TO-X) communication.
  • V2X V2X
  • PEDESTRIAN COMPUNICATION BETWEEN A VEHICLE AND A DEVICE CARRIED BY AN INDIVIDUAL (example) HANDHELD TERMINAL CARRIED BY A PEDESTRIAN, CYCLIST, DRIVER OR PASSENGER)
  • V2P VEHICLE
  • V2V VEHICLE
  • INFRASTRUCTURE / NETWORK COMPIT
  • RSU ROADSIDE UNIT
  • RSU ROADSIDE UNIT
  • NETWORK example
  • a device (related to V2P communication) possessed by a pedestrian (or person) is called “P-UE", and a device (related to V2X communication) installed in VEHICLE is " V-UE ".
  • the term 'ENTITY' may be interpreted as P-UE and / or V-UE and / or RSU (/ NETWORK / INFRASTRUCTURE).
  • the V2X terminal may perform message (or channel) transmission on a predefined (or signaled) resource pool (RESOURCE POOL).
  • the resource pool may mean a predefined resource (s) to perform the V2X operation (or to perform the V2X operation).
  • the resource pool may be defined in terms of time-frequency, for example.
  • V2X transmission resource pool there may be various types of V2X transmission resource pool.
  • FIG. 6 illustrates the type of V2X transmission resource pool.
  • the V2X transmission resource pool #A may be a resource pool in which only (partial) sensing is allowed.
  • the terminal should select the V2X transmission resource after performing (partial) sensing, and random selection may not be allowed.
  • the V2X transmission resources selected by the (partial) sensing are held semi-statically at regular intervals as shown in FIG.
  • the base station may be configured to perform (partly) a sensing operation (based on scheduling allocation decoding / energy measurement). This may be interpreted as 'random selection' of transmission resources not allowed on the V2X transmission resource pool #A, and '(partial) sensing' based transmission resource selection (only) is performed (/ allowed). Can be interpreted as The setting may be made by the base station.
  • the V2X transmission resource pool #B may be a resource pool in which only random selection is allowed.
  • the UE may randomly select the V2X transmission resource in the selection window without performing (partial) sensing.
  • the selected resource may be set (/ signaled) so as not to be reserved semi-statically.
  • the base station may be configured such that the terminal does not perform a sensing operation (based on scheduling allocation decoding / energy measurement) to perform a V2X message transmission operation on the V2X transmission resource pool #B. This may be interpreted as transmission resource 'random selection' (only) is performed (/ allowed) and / or '(partial) sensing' based transmission resource selection is not allowed on the V2X transmission resource pool #B.
  • a resource pool capable of both (partial) sensing and random selection may also exist.
  • the base station may inform that it is possible to select V2X resources in this resource pool by either of the partial sensing and the random selection (by terminal implementation).
  • FIG. 7 illustrates a V2X transmission resource (re) selection (/ reservation) method according to a partial sensing operation.
  • a terminal may be determined (/ triggered) of (re) selecting (/ reserving) a resource for V2X signal transmission (according to whether a predefined condition is satisfied).
  • the UE may (re) select (reserve) a resource for V2X signal transmission in the subframe period from subframe # m + T1 to # m + T2.
  • the subframe section from the subframes # m + T1 to # m + T2 is hereinafter referred to as a selection window.
  • the selection window may consist of, for example, 100 consecutive subframes.
  • the UE may select at least Y subframes as candidate resources within the selection window. That is, the terminal may consider at least Y subframes as candidate resources in the selection window.
  • the Y value may be a preset value or a value set by a network.
  • how to select the Y subframes in the selection window may be a problem of the terminal implementation. That is, when the Y value is, for example, 50, the UE may select which 50 subframes from 100 subframes constituting the selection window. For example, the UE may select 50 subframes having an odd subframe number from the 100 subframes or select 50 subframes having an even subframe number. Alternatively, 50 subframes may be selected by an arbitrary rule.
  • the UE in order to (re) select (/ reserve) a specific subframe, for example, subframe #N (SF # N) from among the Y subframes as a V2X transmission subframe capable of transmitting a V2X signal, the UE It may be necessary to sense at least one subframe linked to or associated with subframe #N.
  • the (whole) subframe period defined for sensing is called a sensing window, and may be composed of, for example, 1000 subframes. That is, the sensing window may consist of 1000 milliseconds (ms) or 1 second.
  • the terminal may be a set of elements in the subframe # N-100 * k (where k is a range of [1, 10], and may be a value preset or set by a network). ) May sense subframes.
  • the k value is ⁇ 1, 3, 5, 7, 10 ⁇ . That is, the UE senses subframes # N-1000, # N-700, # N-500, # N-300, and # N-100 to determine whether subframe #N is being used by another V2X terminal (and / Alternatively, it is possible to estimate / determine whether there is a relatively high interference (or above a preset (/ signaled) threshold) on subframe #N) and select (finally) subframe #N accordingly. have. Since the walking terminal is more sensitive to battery consumption than the vehicle terminal, instead of sensing all subframes in the sensing window, only the partial subframes are sensed, that is, partial sensing.
  • STEP 1 With regard to PSSCH resource (re) selection, when all PSCCH / PSSCH transmissions have the same priority, priority may be considered as a selectable resource.
  • STEP 2 Meanwhile, the terminal may exclude resources based on at least one of SA decoding and additional conditions.
  • the terminal selects a V2X transmission resource after excluding a specific resource based on scheduling assignment and additional conditions.
  • a method of excluding resources based on the DM-RS received power of the PSSCH may be supported. That is, it excludes resources indicated or reserved (reserved) by the decoded scheduling assignment and resources whose PSSCH RSRP (reference signal received power) received from data resources associated with the scheduling assignment is greater than or equal to a threshold.
  • the PSSCH RSRP may be defined as a linear average of power distributions of resource elements (REs) carrying DM-RSs associated with the PSSCH in the physical resource blocks (PRBs) indicated by the PSCCH.
  • the PSSCH RSRP may be measured as a reference point for the antenna connection of the terminal.
  • the scheduling assignment may include a 3-bit PPPP field.
  • the threshold may be given in the form of a function for priority information.
  • the information may be dependent on the priority information of the transport block and the priority information of the decoded scheduling assignment.
  • the threshold may be given in units of [2 dBm] in the range of [ ⁇ 128 dBm] to [0 dBm]. A total of 64 thresholds can be preset.
  • the UE decodes the scheduling assignment in subframe # m + c within the sensing interval, and may assume that the same frequency resource is reserved (reserved) by the scheduling assignment in subframe # m + d + P * i.
  • P may be a value fixed to 100.
  • i may be selected in the range of [0, 1, ..., 10], which may be set or predetermined by a carrier specific network.
  • i 0 means no intention to reserve (reserve) frequency resources.
  • i may be set by a 10-bit bitmap or a 4-bit field within the scheduling assignment.
  • the terminal may exclude the candidate semi-static resource X.
  • I is the value of i signaled by the scheduling assignment.
  • the terminal increases the threshold (for example, 3 dB), and then excludes the resources again This process may be performed until the remaining resources are greater than 20% of the total resources in the selection window.
  • the total resources in the selection window mean resources that the terminal should consider as possible candidate resources.
  • the terminal may maintain the current resource with a probability p and reset the counter. That is, the resource may be reselected with probability 1-p.
  • the carrier-specific parameter p may be preset and may be set in the range of [0, 0.2, 0.4, 0.6, 0.8].
  • the UE measures the remaining PSSCH resources except for a specific resource and ranks based on the total received energy, and then selects a subset.
  • the subset may be a collection of candidate resources with the lowest received energy.
  • the size of the subset may be 20% of the total resources in the selection window.
  • the terminal may randomly select one resource from the subset.
  • the UE may select contiguous M subchannels, and an average of energy measured in each subchannel may be an energy measurement value of each resource.
  • one resource may be selected in which a mechanism defined for the case of TB transmitted in one subframe is used.
  • the selected resource must not be the same subframe as the first resource and must not be a subframe excluded from the resource selection.
  • the SCI should be able to indicate the time gap between two selected resources.
  • the TB may be transmitted using only the first resource.
  • STEP 3 The UE may select a V2X transmission resource among the resources not excluded.
  • the UE is not predicted that the mixed PSCCH is transmitted in different subframes.
  • the subchannel having the lowest index among those selected for data transmission may be used for SA transmission.
  • the number of SA candidate resources in the SA pool may be the same as the number of subchannels in the associated data pool. .
  • the SA resource associated with the lowest index among those selected for data transmission may be used for SA transmission.
  • TTI m may mean the reception time of the corresponding TB.
  • the terminal should consider possible candidate resources in the [m + T1, m + T2] interval.
  • the selected T2 must satisfy the latency requirement.
  • the resource pool may consist of one or a plurality of subchannels in the frequency domain.
  • the subchannel may be configured as a group of adjacent RBs in the same subframe.
  • the size of the subchannel in the resource pool may be set by the base station (e.g. eNB) or may have a preset value.
  • the candidate resource of the subchannel may mean ⁇ 5, 6, 10, 15, 20, 25, 50, 75, 100 ⁇ .
  • the resource pool may consist of one or a plurality of subchannels in the frequency domain.
  • the subchannel may be formed of a group of adjacent RBs in the same subframe.
  • the size of the subchannel in the resource pool may be set by the base station (e.g. eNB) or may have a preset value.
  • the number of subchannels may be up to 20, and the minimum candidate size may not have a value less than four.
  • the UE may select an integer number of adjacent subchannels for transmission, and the UE may not decode more than [100] RBs in one subframe. In addition, the UE may not decode more than [10] PSSCHs in one subframe.
  • SA pools and associated data pools may overlap.
  • SA pools and unassociated data pools may also overlap.
  • the resource pool may be configured of N consecutive PRBs in the frequency domain.
  • N may be equal to (size of subchannels * number of subchannels).
  • the V2V pool may be defined such that the bitmap is repeatedly mapped for all subframes except the skipped SLSS subframe.
  • the length of the bitmap may mean 16, 20, or 100.
  • the bitmap may mean defining which subframes are allowed for V2V SA / data transmission and / or reception for the pool.
  • the terminal may reselect resources related to all transmissions corresponding to the TB.
  • the SA may schedule transmission corresponding to one TB. It is also possible to apply the PSSCH-RSRP measured at the TTI that occurred prior to reception of the successfully decoded associated SA.
  • the transmission number of TB may mean 1 or 2.
  • each SA may indicate time / frequency resources of all data transmissions corresponding to the same TB.
  • the wording of “sensing” in the present invention is an RSRP measurement (eg, on a PSSCH scheduled by a PSCCH that successfully decodes) an RSRP measurement (eg, a predefined signal) (REFERENCE SIGNAL ( RS ))
  • an S-RSRP operation and / or an energy measurement (e.g., S-RSSI) operation for a (sub) channel may be interpreted as a predefined (/ signaled) channel (e.g., PSCCH ( PHYSICAL SIDELINK CONTROL CHANNEL)).
  • the wording "DURATION" (and / or “section") may be extended to "RANGE (/ WINDOW)" (and / or "range”).
  • the boundary (/ position) of the time domain (/ section) in which the sensing operation is performed indicates the form (/ characteristic) of “UE-SPECIFIC ((TIME) BOUNDARY)”.
  • the boundary (/ location) of the time domain (/ section) in which a sensing operation (related to resource (re) reservation (/ selection)) of a specific V2X UE is performed is (V2X MESSAGE TX TIME) of the corresponding V2X UE. ( SF # K ) ”.
  • the V2X UE is a resource interval from "SF # (KD) to SF # K (or SF # (K-1-D) to SF # (K-1)) (here, one example) “ D ” stands for 'SENSING DURATION', which is predefined (/ signaled) ”, at (resource) time points other than (resource) time point at which the (real) V2X MESSAGE TX operation is performed. After performing the sensing operation, the V2X MESSAGE TX related resource (s) will be (re) reserved (/ selected) in the future.
  • the V2X UE skips (/ suspends) its (V2X MESSAGE) (last) transmission on 'SF # K' (if necessary) (according to predefined rules) and uses it Sensing (/ measure) up to (or previously reserved) resource (SF # K), determining optimal rescheduling (/ selecting) resources and / or based on rescheduling (/ selecting) resources (V2X MESSAGE) transmission) can be performed immediately.
  • the boundary of the time domain in which the sensing operation is performed (per V2X UE (S)) in the proposed rule # 1 is (shape / characteristic) of “UE-SPECIFIC (TIME) BOUNDARY”. This is described below.
  • FIG. 8 is a flowchart illustrating a method of performing V2X communication based on a terminal specific sensing interval according to an embodiment of the present invention.
  • the terminal may select a resource for performing V2X communication by performing sensing during a terminal specific sensing period (S810).
  • selecting a resource for V2X communication by performing a sensing during a specific period may include (A) a period in which the terminal performs sensing ( That is, the sensing window) is terminal specific, (B) the interval in which the terminal performs sensing is 1 second (that is, the interval corresponding to 1000 subframes, each subframe is 1MS interval).
  • One second may be described based on the viewpoint that the maximum SPS PERIOD (or maximum resource reservation (possible) period) length corresponds to the length (ie [N-1000, N-1]).
  • the terminal may select a resource for performing V2X communication by sensing, where the sensing interval may have a different sensing interval (ie, a terminal-specific sensing interval) for each terminal.
  • a different sensing interval ie, a terminal-specific sensing interval
  • having different sensing intervals for each terminal does not mean that the sensing time itself is different for each terminal, but may mean that the position of the sensing interval (that is, the sensing window) is different for each terminal.
  • the boundary of the time domain in which the sensing operation is performed may have a form (/ characteristic) of “UE-SPECIFIC (TIME) BOUNDARY”.
  • UE-SPECIFIC TIME
  • N value UE-SPECIFIC
  • FIG. 9 illustrates a schematic example of a terminal specific sensing window.
  • each of the terminals 'UE 1' and 'UE 2' may have a sensing window at different times, and there may be a sensing window for each terminal at different times.
  • subframe N when a request from a higher layer of the UE occurs in a specific subframe (hereinafter, subframe N), the UE determines a set of resources to be transmitted to the higher layer with respect to V2X message transmission (eg, PSSCH transmission). Can be.
  • V2X message transmission eg, PSSCH transmission
  • the terminal monitors a specific sensing period (except subframes N-1000, N-999, N-998, ..., N-1) (except for subframes in which transmission by the terminal occurs).
  • the UE monitors a specific sensing period (for example, subframes N-1000, N-999, ..., N-1) based on the subframe N determined by the upper layer of the UE itself. This means that a sensing window, which is a section in which a terminal performs monitoring, is determined by each terminal.
  • a sensing period ie, a sensing window
  • UE 1 may mean up to subframes N _UE1 -1000, N _UE1 -999, ..., N _UE1 -1, and the sensing window at this time is shown in FIG. Specific to UE 1 as shown in FIG. 9.
  • UE 2 it may be assumed that a request from an upper layer of UE 2 has occurred in N_UE2 .
  • a sensing period (ie, a sensing window) in UE 2 may mean up to subframes N_UE2 -1000, N_UE2 -999, ..., N_UE2 -1, and the sensing window at this time is shown in FIG. Specific to UE 2 as shown in FIG. 9.
  • the UE performs V2X communication based on the decoded PSCCH and the S-RSSI measured in the aforementioned subframes, that is, the subframes N-1000, N-999, N-998, ..., N-1.
  • a specific example of selecting a resource for the terminal to perform V2X communication is as described above.
  • the interval in which the UE performs sensing is 1 second (ie, 1000 subframe intervals), and the 1 second is the maximum SPS (SEMI-PERSISTENT SCHEDULING) PERIOD (or maximum resource reservation (possible) period) length (ie [N-1000, N-1]) will be described below.
  • a V2X UE is a group called 'SF # (N-A), SF # (N-A + 1),... , SF # (NB) (or SC PERIOD # (NA), SC PERIOD # (N-A + 1),..., SC PERIOD # (NB)) (A ⁇ B (e.g., 'B' (Result may be a positive integer greater than '0' in consideration of processing time for selection)) and the sensing result obtained by monitoring the interval of ('SF # N' where resource rescheduling (/ selection) is triggered).
  • V2X MESSAGE TX When used for resource (re) reservation (/ selection), “MONITORING WINDOW SIZE (ie '(AB)')” means resource (re) reservation It can also be set at the maximum of the time (/ selection) takes place (for example, interpreted as the interval of reserved resources (/ INTERVAL)).
  • the V2X UE is a 'SF # (N + C), SF # (N + C + 1), ...
  • SF # (N + D) (or SC PERIOD # (N + C), SC PERIOD # (N + C + 1),..., SC PERIOD # (N + D)) (D ⁇ C (e.g., 'C' value may be a positive integer greater than '0' in consideration of the processing time related to PSCCH / PSSCH generation) and selects its own transmission resource.
  • D ⁇ C e.g., 'C' value may be a positive integer greater than '0' in consideration of the processing time related to PSCCH / PSSCH generation
  • the '( AB) ' is interpreted as' 400MS' (for example, '400MS' minus one pre-defined (/ signaled) 'SC PERIOD (100MS)' (/ LATENCY REQUIREMENT) minus' 500MS '.
  • the '400MS' section may be interpreted as a section from 'SF # (N-500MS)' to 'SF # (N-100MS)'.
  • 'SENSING DURATION' can be a function of a predefined (/ set) 'resource (re) reservation (/ selection) period' (or 'resource (re))' It can be interpreted as performing a 'SENSING operation' during a time derived from the 'reservation (/ selection) period'.
  • a predefined (/ set) 'resource (re) reservation (/ selection) period' (or 'resource (re))' It can be interpreted as performing a 'SENSING operation' during a time derived from the 'reservation (/ selection) period'.
  • we will select (/ use) the same resource until 'rebooking' (/ selecting) the resource, so the sense of sensing the previous resource transfer ('rebooking (/ selecting)')
  • such a rule may be particularly useful when SA / DATA (POOL) is implemented in
  • the V2X UE (S) is linked to 'DATA (/ PSSCH) on' SF # (N + D) '(eg,' D ⁇ C ') in' SF # (N + C) '.
  • 'SF # N' refers to when the 'RESOURCE (RE) SELECTION' operation is performed (in accordance with a predefined rule (/ signaling)) and / or from 'SF # (NA)' to 'SF #'.
  • NB (e.g.,'A>B> 0 ') means' (SA (/ PSCCH) (' SF # (N + C) ') and / or DATA (/ PSSCH) (' SF # (N + D) '))
  • SA / PSCCH
  • DATA / PSSCH
  • RE RESOURCE
  • SELECTION' The sensing result referenced when performing RESOURCE (RE) SELECTION' may be assumed (/ interpreted) as an area in which (or sensing) is performed.
  • the field in which the 'value) is transmitted may be (newly) defined.
  • the '(EC)' value ( E_ CGAP ) (or the '(ED)' value ( E_ DGAP )) (or the 'E' value ( E_GAP )) is' SA (/ PSCCH) '(' SF # (N + C) ') Scheduling from the interval (or' SA (/ PSCCH) '(' SF # (N + C) ') between the transmission point and the' NEXT TB 'related (POTENTIAL) DATA (/ PSSCH)' transmission point Interval between 'DATA (/ PSSCH)' transmission time and 'NEXT TB' related (POTENTIAL) DATA (/ PSSCH) 'transmission time) or' V2X MESSAGE GENERATION (/
  • 'SENSING WINDOW SIZE' (eg, '(BA)') of the V2X UE may be determined (/ set) according to the below (some) rules.
  • the (maximum (/ minimum)) value related to 'E_CGAP' (or E_DGAP or E_GAP) is (from the network (or (serving) base station)) ('UE-COMMON' or 'UE-SPECIFIC') SINGLE VALUE 'or' MULTIPLE VALUE (S) '(/ signaled) or the V2X UE can be considered (/ assumed) to be the same as its (max (/ min))' MESSAGE GENERATION (/ TX) PERIODICITY '. have.
  • the 'SENSING WINDOW SIZE' is (A) 'E_CGAP' (or E_DGAP or E_GAP) related (maximum (/ minimum)) value and / or (B) (maximum (/ minimum)) 'MESSAGE GENERATION (/ Regardless of the value of TX) PERIODICITY ', it can be set to a predetermined value (/ signaled) in advance.
  • the (preset (/ signaled)) (relative) setting is performed even when the V2X UE performs a (relatively) long 'V2X MESSAGE' transmission of 'MESSAGE GENERATION (/ TX) PERIODICITY'.
  • 'SENSING WINDOW SIZE' may be set to 'UE-COMMON' (or 'UE-SPECIFIC').
  • (Rule #B) 'SENSING WINDOW SIZE' may be considered (/ determined) as a '(V2X) SPS PERIODICITY' value that has been previously set (/ signaled).
  • 'SPS CONFIGURATION (/ PROCESS)' having different 'SPS PERIODICITY' is set (/ signaled)
  • 'SENSING by' SPS CONFIGURATION (/ PROCESS) ' WINDOW SIZE ' may be interpreted as something else.
  • the SPS period may be determined as a resource reservation field in Sidelink Control Information (SCI) format 1, as shown in Table 1 below.
  • SCI Sidelink Control Information
  • the receiving terminal may determine the resource reservation period of the last transmission terminal (TX UE) based on the values that can be signaled in the RESOURCE RESERVATION field on the SCI FORMAT shown in Table 1.
  • the RX UE may determine the "resource reservation period candidate value" that the TX UE can set by multiplying the value of the resource reservation field by 100. For example, when the value of the resource reservation field is '0001', the resource reservation period value may be 100MS, and when the value of the resource reservation field is '0010', the resource reservation period value may be 200MS. Similarly, when the value of the resource reservation field is '1010', the resource reservation period value may be 1000MS.
  • the RX UE multiplies the value of the resource reservation field by 100 so that the “reservation period candidate value” that the TX UE can set is “20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000MS ”, and accordingly, the maximum value of the SPS period PERIOD may have a value of 1000MS (ie, 1s).
  • the interval in which the terminal performs sensing may have a maximum SPS (SEMI-PERSISTENT SCHEDULING) PERIOD (or maximum resource reservation (possible) period) length, and thus, the terminal
  • the interval for performing this sensing ie, the sensing window
  • the terminal may perform V2X communication based on the selected resource (S820). As described above (or described later), the terminal may select a subframe within a selection window based on the sensing result performed during the terminal specific sensing interval, and the terminal determines transmission reservation resources based on the selected subframe. And V2X communication on the reserved resource. Specific examples of performing V2X communication based on the resource selected by the terminal are as described above (or described later), and thus, detailed descriptions thereof will be omitted.
  • the end-to-end latency (LATENCY) must be considered. That is, when the terminal transmits the packet generated in the upper layer, not only the time for sending down the packet generated in the upper layer to the physical layer but also the time for the receiving terminal to receive the packet and then upload it to the upper layer of the receiving terminal. Should be. Accordingly, it is a matter of whether the terminal selects a resource for V2X message transmission, that is, how to configure the selection window (SELECTION WINDOW) to select the transmission resource.
  • SELECTION WINDOW selection window
  • FIG. 10 is a flowchart illustrating a method of configuring a selection window according to an embodiment of the present invention.
  • the UE may select a resource (or subframe, hereinafter, may be used to mix resources and subframes) for V2X communication within a range satisfying a latency request (LATENCY REQUIREMENT) (S1010). ).
  • the terminal may select the resource by configuring a selection window within a range that satisfies the latency request, the V2X communication is performed in units of a plurality of subchannels, the size of the plurality of subchannels
  • a resource for performing the V2X communication may be selected based on sensing performed in units of subchannels having a size corresponding to.
  • the sensing area used when the sensing is performed may be an area having a size corresponding to the sizes of the plurality of subchannels.
  • the terminal may perform sensing by using an energy measurement average value of the subchannels included in the plurality of subchannels.
  • the UE may select the resource by configuring a selection window within a range that satisfies the latency request, and when the V2X communication is performed in a plurality of subchannel units, a plurality of subchannel units Sensing may also be performed.
  • a plurality of subchannel units Sensing may also be performed.
  • the V2X communication is performed in units of a plurality of subchannels, a specific example of sensing in units of a plurality of subchannels will be described later.
  • the terminal selects a transmission resource within a range that satisfies the latency request.
  • the terminal may select a transmission resource (or subframe) (configuring SLECTION WINDOW) within a range that satisfies a latency request (LATENCY REQUIREMENT).
  • the UE has one set of contiguous subchannels (eg, L subCH ) in a V2X resource pool (eg, PSSCH resource pool) included within a specific interval (eg, [n + T 1 , n + T 2 ]). It can be assumed that it corresponds to the candidate subframe (resource) of.
  • the selection of the information (eg, T 1 and T 2) for determining the specific section may depend on the terminal implementation.
  • T 1 may have a value of 4 or less
  • T 2 may have a value of 20 or more and 100 or less.
  • the terminal selection of T 2 should satisfy the latency requirement.
  • 'SENSING DURATION (D)' and / or 'TX RESOURCE (RE) SELECTION DURATION (R)' are (implicitly) identical to 'V2X MESSAGE GENERATION PERIOD' (and / or '(SERVICE) LATENCY REQUIREMENT').
  • Assumptions (and / or 'V2X MESSAGE GENERATION PERIOD' (and / or '(SERVICE) LATENCY REQUIREMENT' and / or '(V2X MESSAGE (/ TB)) PPPP' e.g.
  • V2X MESSAGE GENERATION TIME the boundary of the time domain in which a sensing operation (related to resource (re) reservation (/ selection)) of a specific V2X UE is performed.
  • the above-described boundary criteria of a time domain in which a sensing operation is performed (regarding resource (re) reservation (/ selection)) (eg, For example, the point of time (V2X MESSAGE TX TIME, V2X MESSAGE GENERATION TIME) plus (or minus) a predetermined offset (/ signaled) in advance is based on the boundary of the time domain where the final 'sensing operation is performed. 'Can also be.
  • the V2X UE is a resource interval from “SF # (KDS) to SF # (KS) (or SF # (K-1-DS) to SF # (K-1-S)) (here, for example , “D” and “ S ” respectively represent 'SENSING DURATION' (previous / signaled), '(TX) PROCESSING TIME' (of V2X UE) ”, and you are (real) V2X MESSAGE TX After the sensing operation is performed at the remaining (resource) time points other than the (resource) time point at which the operation is performed, (“SF # (K + 1) to SF # (K + 1 + R) (or SF # K to SF Resource intervals up to # (K + R)), where, for example, “R” stands for 'TX RESOURCE (RE) SELECTION DURATION', which is previously defined (/ signaled) ”in future V2X MESSAGE (Re) reserving
  • the terminal may perform V2X communication based on the selected resource (S1020).
  • the selected resource may mean a resource determined on the basis of (SELECTION WINDOW) configured to satisfy a LATENCY REQUIREMENT (ie, a resource on a selection window that satisfies a latency request).
  • the terminal may select a subframe within a selection window based on a sensing result performed during the terminal-specific sensing interval, and the terminal may select a transmission reservation resource based on the selected subframe. And V2X communication on the reserved resource.
  • Specific examples of performing V2X communication based on the resource selected by the terminal are as described above (or described later), and thus, detailed descriptions thereof will be omitted.
  • V2X MESSAGE is periodically generated (for example, '100MS') (for each V2X UE (S)).
  • 'SENSING DURATION (/ TX RESOURCE (RE) SELECTION DURATION)' and 'REPETITION NUMBER related to V2X MESSAGE TX' are set to '100MS' and '1', respectively.
  • FIG. 11 shows the remaining (resource) time points except for (resource) time point at which the user performs a (actual) V2X MESSAGE TX operation on “resource section from SF # (K-100) to SF # K”.
  • 12 shows the (resource) time points except for (resource) time point at which the user performs a (actual) V2X MESSAGE TX operation on the “resource section from SF # (K-1) to SF # (K-101)”
  • FIG. Reschedules its own V2X MESSAGE TX related resource (s) on “Resource section from SF # (K + 1) to SF # (K + 101)” based on the sensing result Shows the case of (/ selection). For example, in FIG. 11 and FIG. 12, 'transmission of the (N + 1) th V2X MESSAGE' is performed through a reselection resource (eg, SF # (K + Z + 100)).
  • a reselection resource eg,
  • 13 and 14 illustrate re-scheduled (/ selected) resource determination and (V2X MESSAGE) transmission immediately based on the rescheduled (/ selected) resource.
  • FIG. 13 and FIG. 14 show that the V2X UE omits (V2X MESSAGE) transmission on 'SF # K' (according to a predefined rule) under the same situation as FIGS. 11 and 12, respectively. And then detect (/ measure) the resource (SF # K) that was used (or previously reserved (/ selected)) and determine the optimal rescheduled (/ selected) resource and rescheduled (/ selected) Shows the case of performing (V2X MESSAGE) transmission immediately based on the resource.
  • 'transmission of the (N + 1) th V2X MESSAGE' is performed through the reselection resource (for example, SF # (K + Z + 100)).
  • V2X MESSAGE transmission (/ suspended) for the purpose of sensing (/ measurement) of the used (or previously reserved (/ selected)) resource (in [Suggested Rule # 1] above)
  • 'N-th V2X MESSAGE transmission' may be retransmitted according to the following (some) rule.
  • the '(SERVICE) LATENCY REQUIREMENT' cannot be satisfied when retransmission of the 'omitted (/ suspended) V2X MESSAGE' via the rescheduled (/ selected) resource is performed, It may be defined such that retransmission of 'omitted (/ suspended) V2X MESSAGE' is not performed based on (/ selected) resources.
  • retransmission of the omitted (/ suspended) V2X MESSAGE (SF # K) is performed through the rescheduled (/ selected) resource (SF # (K + Z)).
  • '(SERVICE) LATENCY REQUIREMENT (100MS)' can be satisfied when the V2X MESSAGE is immediately (via rescheduled (/ selected) resource (SF # (K + Z))). Retransmission of is performed.
  • a V2X UE causes a resource rescheduling to take into account only 'candidate resources' whose retransmission of 'omitted (/ interrupted) V2X MESSAGE' can satisfy '(SERVICE) LATENCY REQUIREMENT'. / Optional).
  • the V2X UE finally rescheduls (/ selects) an optimal resource that meets a predefined (rebooking (/ selection)) criterion (/ rule) among its 'candidate resources'.
  • the rule may, for example, guarantee a high probability of retransmission of 'omitted (/ interrupted) V2X MESSAGE'.
  • the area of 'TX RESOURCE (RE) SELECT DURATION (R)' may be reduced.
  • Example # 2-3 (Previous) Resource (/ POOL) for retransmission (only) of 'Omitted (/ interrupted) V2X MESSAGE' is set (/ signaled) independently (/ signaled), or V2X
  • the UE may further select resources for retransmission of the 'omitted (/ interrupted) V2X MESSAGE' according to the below (some) rule (/ reference) previously defined (/ signaled).
  • the additionally selected corresponding resource in the latter case
  • Example # 2-3-1 Selecting additional (retransmission) resources, considering only the 'candidate resources' that retransmission of 'omitted (stopped) V2X MESSAGE' can satisfy '(SERVICE) LATENCY REQUIREMENT' Do it.
  • resource rescheduling (/ selection) for transmission of future (occurring) V2X MESSAGE (S), rather than retransmission of 'omitted (/ interrupted) V2X MESSAGE' is predefined (/ signaling). It can be performed in the 'TX RESOURCE (RE) SELECTION DURATION'.
  • a resource that has been rescheduled (/ selected) for this purpose (even though it may satisfy '(SERVICE) LATENCY REQUIREMENT' when a retransmission of the 'omitted / stopped V2X MESSAGE' is performed) It can be excluded from candidate resources for retransmission of 'omitted (/ interrupted) V2X MESSAGE'. That is, for example, it is interpreted that a resource for transmission of a future (generated) V2X MESSAGE (S) has a (relatively) higher priority than a resource for retransmission of a 'omitted (/ suspended) V2X MESSAGE'. (Or, the transmission of future V2X MESSAGE (S) is interpreted as being performed through the (most) optimal resource that satisfies the predefined (rebooking (/ selection)) criteria (/ rules).) Can be.
  • first (or last) ' Repetitive transmission timing '(or' SF ') may be defined as a boundary of a time domain in which a sensing operation (related to resource (re) reservation (/ selection)) is performed.
  • the V2X UE may indicate “SF #.
  • the V2X UE may indicate “SF”. Resource interval from # (N + K2-D) to SF # (N + K2) (or SF # (N + K2-1-D) to SF # (N + K2-1)) ”, After performing the sensing operation at the remaining (resource) time points except for the (resource) time point at which the V2X MESSAGE TX operation is performed, the user may (re) reserve (/ select) the V2X MESSAGE TX related resource (s) in the future. do.
  • Example # 3-2 was the case (or the previous reservation (/ Select) to one) to be sensed (/ measurement) for resource purposes, some are omitted during one 'Q' repeated transmission (/ down) used first ( Or lastly, the omitted transmission timing (or 'SF') may be defined as a boundary of a time domain in which a sensing operation (regarding resource (re) reservation (/ selection)) is performed.
  • each transmission or a different 'RV (REDUNDANCY VERSION)' transfer) (or initial (INITIAL) transmission and retransmission (RETRANSMISSION)
  • the (some) parameters below may be defined (/ operated) differently (or independently).
  • different MESSAGE 'sizes (/ types)' and / or 'transmission (/ occurrences)' and / or 'PRIORITY's or pre-defined (/ signaling)' SECURITY information '
  • the following (some) parameters may be defined (or operated differently) independently (or differently) depending on whether or not is included and transmitted.
  • a low (or high) priority MESSAGE-related 'SENSING DURATION value' is set long to reduce resource rebooking (/ selection) frequency, and a high (or low) priority MESSAGE-related 'SENSING DURATION'
  • a short value can be set to make the resource rescheduling (/ selection) frequency high.
  • Example # 3-3-1 'SENSING DURATION value' (and / or 'probability value related to resource rescheduling (/ selection)' and / or 'backoff value related to resource rescheduling (/ selection)' and // Or 'MAXIMUM RESERVATION TIME' and / or 'MUTING (/ SILENCING / transmission skipping) probability (/ cycle / pattern / whether)')
  • the following (some) rules, 'resource (re-) reserving (/ selection) related) sensing operation' and / or 'resource rescheduling (/ selection)' can be defined to be performed.
  • the corresponding (hopping) pattern may be '(SOURCE) UE ID' (and / or 'POOL (/ resource) cycle index (where V2X MESSAGE TX operation is performed)' and / or 'SA PERIOD index'). It may be randomized based on the input parameter (s) of.
  • the probability of '(RANDOM) MUTING (/ SILENCING / sending) / Pattern) ' may be defined differently (or independently).
  • such a rule is that the (RANDOM) MUTING (/ SILENCING / sending skipping) probability (/ cycle / pattern) 'between' RV 0 '(initial transmission) and another' RV '(retransmission).
  • the (RANDOM) MUTING (/ SILENCING / sending skipping) probability (/ cycle / pattern) 'between' RV 0 '(initial transmission) and another' RV '(retransmission).
  • 'RV 0' (initial transmission) may be set to be “(RANDOM) MUTING (/ SILENCING / transmitting / stopping)” with a smaller probability than other 'RV' (retransmission).
  • the (hopping) pattern may include '(SOURCE) UE ID' (and / or 'POOL (/ resource) cycle index (where V2X MESSAGE TX operation is performed)' and / or 'SA PERIOD index'). It may be randomized based on the input parameter (s) of.
  • (all) resource rescheduling (/ selection) can mitigate the drastic change in the interference environment.
  • a channel in which (semi-static) (re) reservation (/ selection) of V2X MESSAGE TX related resource (s) is performed and a "sensing operation" is predefined (/ signaled).
  • the decoding operation of 'DATA (or PSSCH (PHYSICAL SIDELINK SHARED CHANNEL))' may be performed according to the following (some) rules.
  • the 'boundary of time domain in which a sensing operation is performed' (relative to resource (re) reservation (/ selection)) of a specific V2X UE is selected based on a predefined (/ signal) rule. (Or REFERENCE SF) ”( SF #P ).
  • D means 'SENSING DURATION' defined in advance (/ signal)
  • 'CEILING (X)' and 'FLOOR (X)' are 'functions that derive the minimum integer greater than or equal to X', respectively.
  • 'A function that derives the largest integer less than or equal to X'.
  • the "PIVOT SF (or REFERENCE SF)" is ('(SOURCE) UE ID' (and / or 'POOL (/ resource) period index (where the V2X MESSAGE TX operation is performed)' and / or ' Based on an input parameter (s) such as SA PERIOD index ').
  • the proposed rule may be based on the (previous) interval of the length (or pre-defined (/ signaled) length) when an initial (INITIAL) sensing operation is performed after (V2X UE) power on and / or at a previous point in time. (In Windows) only if V2X MESSAGE transmission is not performed (never).
  • the V2X UE (S) is linked to 'DATA (/ PSSCH) on' SF # (N + D) '(eg,' D ⁇ C ') in' SF # (N + C) '.
  • 'DATA / PSSCH
  • V2X UE # X when performing other 'TB' related 'POTENTIAL DATA (/ PSSCH)' transmission on 'SF # (N + E)') Name '(frequency)' indicated as '/ signaled' as ' UN-BOOKING RESOURCE '.
  • V2X UE # Y performs a sensing operation based on 'ENERGY MEASUREMENT (and / or SA DECODING)', (currently (for example, 'SF # (N + D)') or a sensing interval
  • '(frequency) resources' indicated as 'UN-BOOKING RESOURCE' by V2X UE # X where high energy is measured (when own resource selection (/ reservation)) according to (some) rules below ( Can be processed.
  • the corresponding '(frequency) resource' indicated by the V2X UE # X as 'UN-BOOKING RESOURCE' will be (for some time) in the future (including 'SF # (N + E)').
  • V2X UE # Y Although it is unlikely to be used, it is selected (/ reserved) by V2X UE # Y due to the high energy currently measured (eg within 'SF # (N + D)' or within the sensing interval). Because it will not be.
  • the following rules are named as 'UN-BOOKING RESOURCE' resources that the V2X UE (S) has reserved (/ selected) in a previous (resource (re) selecting (/ reserving) cycle) from a certain point in time. ) Channel (e.g. 'SA (/ PSCCH)' (or 'DATA (/ PSSCH)') that has been defined (/ signaled) in advance (to another V2X UE (S)) It can also be extended when notified.
  • the following rules are applied only when the V2X UE (S) performs a sensing operation based on 'ENERGY MEASUREMENT ONLY' or a sensing operation based on 'COMBINATION OF ENERGY MEASUREMENT AND SA DECODING'. For example, it may not be applied when performing a sensing operation based on 'SA DECODING ONLY'.
  • the energy measurement for '(frequency) resource' indicated by 'UN-BOOKING RESOURCE' is obtained by subtracting 'RSRP measurement' (from the energy value measured on that '(frequency) resource'). It is regarded as a value (or a value other than a preset offset value (/ signaled)), and 'RANKING' is performed for energy measured values for each resource.
  • the 'RSRP measurement' is a reference signal (eg, 'DM-' on a pre-set (/ signaled) channel (eg, 'PSBCH' (/ 'PSCCH' / 'PSSCH')). RS ').
  • 'SA (/ PSCCH)' and 'DATA (/ PSSCH)' are 'FDM', '(frequency) resource' (or 'SA (/ PSCCH)' or 'DATA (/ PSSCH)' )
  • the final final 'RSRP (measurement) value' is (differently depending on the separation distance (in frequency domain) between 'SA (/ PSCCH)' and 'DATA (/ PSSCH)'.
  • the final derived (/ assumed) may be compensated for (or added to) the applied (preset (/ signaled)) 'MPR value').
  • 'Energy Measure Value' or 'RANKING Value' for '(Frequency) Resource' indicated by 'UN-BOOKING RESOURCE' shall be regarded as a pre-set (/ signaled) value. Can be.
  • the 'RANKING value' for the '(frequency) resource' indicated by 'UN-BOOKING RESOURCE' is the lowest probability (eg, the '(frequency) resource') is selected (/ reserved). (Or the highest probability (eg, the probability that the corresponding '(frequency) resource' is selected (/ reserved)) may be set (/ signaled).
  • a rule may be defined such that a '(frequency) resource' indicated as 'UN-BOOKING RESOURCE' is always excluded (or (preferred) selected) at the time of resource selection (/ reservation).
  • the sensing operation of the V2X UE (S) may be performed as follows.
  • the following schemes suggest a (efficient) 'sensing method' for the V2X UE (S) to select 'resource resources related to V2X MESSAGE transmission ( TX )'.
  • V2X MESSAGE transmission TX
  • the wording of 'sensing' may be interpreted as (A) an energy (or power) measurement operation and / or (B) a predefined (/ signaled) channel (e.g., PSCCH (PHYSICAL SIDELINK CONTROL CHANNEL).
  • the 'energy (or power) measurement' is (A) ' RSI (RECEIVED SIGNAL STRENGTH INDICATOR) form (e.g. (the' DM-RS 'of the predefined (/ signaled) antenna port is transmitted) Average value of received powers measured in symbols) or (B) ' RSRP (REFERENCE SIGNAL RECEIVED POWER) (e.g. (of a predefined (/ signaled) antenna port)).
  • A ' RSI (RECEIVED SIGNAL STRENGTH INDICATOR) form (e.g. (the' DM-RS 'of the predefined (/ signaled) antenna port is transmitted) Average value of received powers measured in symbols) or (B) ' RSRP (REFERENCE SIGNAL RECEIVED POWER) (e.g. (of a predefined (/ signaled) antenna port)).
  • 15 and 16 illustrate 'control (/ scheduling) information' and 'data (associated with the corresponding control (/ scheduling) information)' (in terms of 'SINGLE V2X UE') transmitted in the form of 'FDM' on the same SF. An example of the case is shown.
  • FIG. 15 and FIG. 16 respectively indicate 'when data linked with control (/ scheduling) information is transmitted on a continuous resource RB (RESOURCE BLOCK))', 'When data linked with control (/ scheduling) information is transmitted.
  • RB continuous resource
  • FIG. 15 and FIG. 16 respectively indicate 'when data linked with control (/ scheduling) information is transmitted on a continuous resource RB (RESOURCE BLOCK))', 'When data linked with control (/ scheduling) information is transmitted.
  • 'LINK BUDGET' of 'control (/ scheduling) information' in terms of 'SINGLE V2X UE'
  • 'control (/ scheduling) information' and '(corresponding control (/ scheduling) information It may be considered that the 'interlocked data' is transmitted in the form of ' TDM (TIME DIVISION MULTIPLEXING)' on another SF.
  • FIG. 17 shows an example of a case where the 'control (/ scheduling) information transmission pool' and the 'data transmission pool' are set (/ configured) in the 'FDM' form (from a system perspective).
  • 'Control (scheduling) information transfer pool' and 'data transfer pool' can be set (/ configured) in the form of 'FDM'. 17 shows an example of such a case.
  • the 'data transmission pool' associated with a specific 'control (/ scheduling) information transmission pool' is 'TDM'.
  • the terminal performs sensing in each (sub) channel unit, but the actual V2X message transmission may be performed in a plurality of subchannel units. If the UE has a plurality of subchannels actually used for V2X message transmission (that is, V2X message transmission is performed in units of a plurality of subchannels), it is a question of how to perform sensing. In the following description, a method of performing sensing when a plurality of subchannels are used for V2X message transmission will be described.
  • a rule may be defined to cause the V2X UE S to perform a sensing operation in 'resource size units' to be used for (they) 'V2X MESSAGE TX'.
  • the 'sensing resource unit size' of the V2X UE becomes equal to the 'resource size' (used by the corresponding V2X UE) for the 'V2X MESSAGE TX'.
  • the terminal performs the energy measurement by the sensing operation, it may be a question of which resource unit / size to perform the energy measurement.
  • the unit / size of energy measurement can be a resource unit / size that the terminal uses for data transmission, for example, a subchannel size.
  • a resource unit / size that the terminal uses for data transmission for example, a subchannel size.
  • energy measurement for the sensing operation may be performed in a resource unit of the specific subchannel size.
  • FIG. 18 is a flowchart illustrating a method of performing sensing when a number of subchannels used for V2X message transmission is plural, according to an embodiment of the present invention.
  • the UE selects a resource for V2X message transmission by sensing in units of subchannels having a size corresponding to the size of a subchannel used for V2X message transmission (S1810).
  • the terminal may select the resource by configuring a selection window within a range that satisfies a latency request, and the V2X message transmission is performed in units of a plurality of subchannels, and sizes of the plurality of subchannels.
  • a resource for performing the V2X communication may be selected based on sensing performed in units of subchannels having a size corresponding to.
  • the sensing area used when the sensing is performed may be an area having a size corresponding to the sizes of the plurality of subchannels.
  • the terminal may perform sensing by using an energy measurement average value of the subchannels included in the plurality of subchannels.
  • the terminal may not only perform sensing in units of a plurality of subchannels, but also configure a selection window within a range that satisfies the latency request.
  • the resource may be selected.
  • an example of selecting the resource by configuring a selection window within a range that satisfies the latency request is as described above.
  • V2X message transmission is performed in units of a plurality of subchannels
  • the terminal performs sensing in units of a plurality of subchannels
  • the terminal may perform sensing in units of subchannels having a size corresponding to the size of a subchannel used for V2X message transmission, and the terminal may select a resource for V2X message transmission based on the sensing result.
  • the sensing eg, ENERGY MEASUREMET
  • the sensing may be performed with a subchannel size of data to be transmitted by the terminal.
  • a linear average value of the subchannels may be used. More specifically, for the candidate single subframe resource R x, y remaining in set S A (which is a collection of all candidate single subframe resources), the sensing region (eg, the metric E x, y ) is subchannels x + k It can be defined as the linear average of the S-RSSI measured at.
  • K 0, ..., L subCH -1 can be defined as, L subCH may mean the number of sub-channels required when the actual packet is sent.
  • FIG. 19 illustrates an example of ENERGY MEASUREMET (ie, sensing) performed with a subchannel size of data to be transmitted by a UE.
  • the subchannel size of the V2X message eg, V2X data
  • L subCH 2
  • ENERGY MEASUREMET may be performed in units of two subchannels corresponding to the subchannel size of data transmitted by the terminal.
  • the terminal may first determine a sensing value for the sensing region # 1 by using an average of energy sensing values in the sensing region # 1, that is, the subchannel # 1 and the subchannel # 2.
  • the terminal may determine the sensing value for the sensing region # 2 by using the average of the energy sensing values in the sensing region # 2, that is, the subchannel # 2 and the subchannel # 3.
  • the terminal may determine the sensing value for the sensing region # 3 by using the average of the energy sensing values in the sensing region # 3, that is, the subchannel # 3 and the subchannel # 4.
  • the subchannel size of data to be transmitted by the terminal may have three or more values.
  • the UE determines a sensing value for the sensing area by using an average of energy sensing values in the subchannels # 1 to # 3. It may be.
  • the terminal may transmit a V2X message based on the selected resource (S1820).
  • the terminal may select a subframe within a selection window based on the sensing result performed during the terminal specific sensing interval, and the terminal determines transmission reservation resources based on the selected subframe. And V2X communication on the reserved resource.
  • Specific examples of performing V2X communication based on the resource selected by the terminal are as described above (or described later), and thus, detailed descriptions thereof will be omitted.
  • 20 and 21 illustrate an example of a form of 'PARTIALLY OVERLAPPED REGION BASED SENSING' (or 'SLIDING WINDOW BASED SENSING').
  • the sensing operation is in the form of (A) 'NON-OVERLAPPED REGION BASED SENSING' (see FIG. 20) and / or (B) 'PARTIALLY OVERLAPPED REGION BASED SENSING' (or 'SLIDING WINDOW BASED SENSING') (see FIG. 21). ) Can be implemented.
  • the regions where the sensing operation is performed do not overlap each other (for example, '(sensing region # 1)', ' (Sensing area # 2) 'and' (sensing area # 3) 'do not overlap each other).
  • 'Area' (3) and 'sensing area # 4', '(sensing area # 4) and (sensing area # 5)' are defined in advance (/ signaling), respectively (or 'amount of resources (/ size)').
  • the electronic rule '(A)' may lower the 'complexity of performing the sensing operation' of the V2X UE, as compared to the latter rule ('(B)').
  • the total number of sensing required for the same sized resource pool may be less than the former rule '(A)' compared to the latter rule ('(B)').
  • the latter rule ('(B)') is more than the former rule ('(A)') (although there may be more 'total number of sensings' required in the same sized resource pool).
  • MESSAGE TX 'related' available resource candidate locations' can be relatively (or closely) searched (/ selected).
  • V2X UE (S) after causing the V2X UE (S) to perform a sensing operation (priority) with a preset (/ signaled) 'resource unit (/ size)' (eg, '1RB') , '(Weighted) mean' (or 'SUM') (or multiple sensing (/ measures) of multiple sensing (/ measurement) values corresponding to 'resource size (/ unit)' to be used for 'V2X MESSAGE TX'
  • the maximum value (or minimum value or median value) may be regarded as a representative sensing value for each resource size (/ unit) (to be used for V2X MESSAGE TX).
  • a V2X UE uses a plurality of resources of discontinuous location on a frequency (resource) region to transmit (V2X) channel / signal (e.g., MULTI-
  • V2X channel / signal
  • the previously set (/ signaled) 'sensing resource unit unit (/ size)' for example, 'K''RB' (or ' RBG (RESOURCE BLOCK GROUP) ') (' NON-OVERLAPPED REGION BASED SENSING 'or' PARTIALLY OVERLAPPED REGION BASED SENSING '(/' SLIDING WINDOW BASED SENSING ')
  • It is possible to select (finally) its own 'V2X MESSAGE TX' related resources (among the resources of the (energy) measurement that are smaller (or larger) than the preset (/ signaled) threshold).
  • V2X UE transmits' (SINGLE) V2X TB (/ MESSAGE) '
  • repeated transmission of' K times' for example, 'K' values are 'initial transmission' and '
  • 'K' the number of "retransmissions" is included (all).
  • the value 'K' is '4'.
  • 'SA (/ PSCCH)' transmission is performed in 'SF # (N + C)', and coordinated ('4' times) 'DATA (/ PSSCH)' transmissions are respectively 'SF # (N' + D) ',' SF # (N + D + K1) ',' SF # (N + D + K2) ',' SF # (N + D + K3) '(for example,' C ⁇ D ',' 0 ⁇ K1 ⁇ K2 ⁇ K3 ').
  • a field may be defined to indicate 'resource locations', and the following (some) rules may be applied.
  • the corresponding field is' time resource location 'related to' the remaining ('(K-1)') except 'initial (/ first) transmission' And / or 'initial (/ first) transmission' is performed (always) on the same time resource (location) as 'SA (/ PSCCH)' ('SF # (N + C)').
  • / or the 'time resource location' associated with the 'initial (/ first) transmission' is defined as the 'SA (/ PSCCH)' ('SF # (N + C)') transmission time and the 'initial' It can be interpreted that the signal is signaled to the (other) field indicating the interval between the (first) transmission's time points.
  • 'Time Resource Location' related to 'Initial (/ First) Transmission' means the 'SA (/ PSCCH)'('SF# (N + C)') transmission time and the 'Initial ( 'First) Transmit' signaled to (another) ' FIELD # F ' indicating the interval between ('SF # (N + D)') and 'transmissions (of' (K-1) ')' Related 'time resource locations' (e.g.
  • 'SF # S' The maximum interval ( MAX_GAP) between the 'first transmission'('SF# (N + D)') and the 'Kth transmission'('SF# (N + D + K3)') It can be signaled with (new) ' FIELD # S ' of the same size (/ size).
  • 'FIELD # S' may be implemented in the form of 'bitmap'.
  • the 'bitmap' related to 'FIELD # S' refers to the initial (/ first) (DATA (/ PSSCH)) transmission '(' SF # (N + D) ') as a reference point (/ starting point). Can be applied.
  • the 'MAX_GAP' value is set (/ signaling) to '10'
  • 'FIELD # S' is signaled (set / set) to '0100100100', 'second transmission', 'third transmission'
  • the 'fourth transfer' is performed on 'SF # (N + D + 2)', 'SF # (N + D + 5)' and 'SF # (N + D + 8)', respectively.
  • repeated transmissions of 'K times' is the pre-set (/ signaled) 'SA (/ PSCCH)'('SF# (N + C)') transmission point and it may also be signaled to 'K-th transmission' ( 'SF # (N + D + K3)') 'FIELD # Q' ( new) of the maximum distance the same size as (MAX_ TVAL) (/ size) between the point in time.
  • 'FIELD # Q' may be implemented in the form of 'bitmap'.
  • the 'bitmap' related to 'FIELD # Q' may be applied as a reference (/ starting point) based on a time point of 'SA (/ PSCCH)'('SF# (N + C)').
  • V2X communication-related 'CONGESTION (/ LOAD / MEASUREMENT) CONTROL results' can be a' pattern (shape / form) that 'FIELD # S' (or 'FIELD # Q' (or 'FIELD # F')) can have.
  • the (limitation) information is determined by the V2X UE (S) by reporting the 'CONGESTION (/ LOAD / MEASUREMENT)' situation (according to a predefined rule (/ signaling)) or ( Based on the 'CONGESTION (/ LOAD / MEASUREMENT)' information reported or measured by the V2X UE (S), the (serving) base station may set (/ signal) the UE.
  • 'MAX_GAP' (or 'MAX_TVAL') may have as 'CONGESTION (/ LOAD / MEASUREMENT) CONTROL result' related to V2X communication. It can happen (as well).
  • Example #B Repetitive transmissions of 'K' (eg 'SF # (N + D)', 'SF # (N + D + K1)', 'SF # (N + D + K2) ',' SF # (N + D + K3) ') related' time resource locations' is defined as' K 'defined on' SA (/ PSCCH) '(' SF # (N + C) ') FIELD # F '(' (example # A) ') (e.g.,' (X th) FIELD # F 'means' SA (/ PSCCH)'('SF# (N + C)') and Signaled to an interval (on the time domain) between the X th transmission 'time points.
  • 'K' eg 'SF # (N + D)', 'SF # (N + D + K1)', 'SF # (N + D + K2) ',' SF # (N + D + K3) ') related'
  • Example #C (under circumstances where the (some) rules above (eg, (example #A), (example #B)) apply) ('K times'(eg,' SF # (N + D) ',' SF # (N + D + K1) ',' SF # (N + D + K2) ',' SF # (N + D + K3) '))' DATA (/ PSSCH) '
  • 'SA (/ PSCCH)' transmission is performed per transmission (each)
  • the following (some) rules may apply.
  • the following (some) rules may be limitedly applied only when '(DATA / (PSSCH)) FREQUENCY HOPPING' is performed.
  • Example # 1 'SF PATTERN' information on 'SA (/ PSCCH)' ('SF # (N + C)') related to 'initial (/ first) transmission' ('SF # (N + D)') / Field) and / or 'frequency resource (location)' information (/ field) and / or some of the 'MCS' information (/ field) are related to 'transmission of the rest (of' (K-1) ') The same may be transmitted on (/ PSCCH) '.
  • 'frequency resource (location)' related information ('remaining (of' (K-1) ')' is directly applied on the relevant 'SA (/ PSCCH)' (directly).
  • Is not transmitted (/ signaled) and / or 'FIELD # F' values are equal to the interval between the 'SA (/ PSCCH)' transmission time and the 'initial (/ first) transmission' time point associated with the 'initial (/ first) transmission'.
  • V2X UE (S) successfully receives (/ decodes) 'SA (/ PSCCH)' for 'send after' even if it fails to receive (/ decode) 'SA (/ PSCCH)' for 'previous transmission'.
  • the number of times "DATA (/ PSCCH) transmission" is Information (or 'RV' information related to 'DATA (/ PSCCH) transmission') can be combined to identify (or deduce) the data.
  • 'time resource (location) information' related to 'post transmission' may be identified (/ derived) through 'FIELD # F' on 'SA (/ PSCCH)' related to 'post transmission'.
  • 'SA (/ PSCCH)' reception related to 'initial (/ first) transmission' (/ The V2X UE (S) that has successfully decoded may not attempt (partly) to decode (/ receive) the 'SA (/ PSCCH)' related to the 'transmission (of' (K-1) ')'.
  • 'TIMING GAP' between a transmission time of 'FIELD # F' (for example, 'SA (/ PSCCH)') and a transmission time of 'associated data (PSSCH)' (in the proposal rule).
  • a transmission time of 'FIELD # F' for example, 'SA (/ PSCCH)'
  • a transmission time of 'associated data (PSSCH)' in the proposal rule.
  • PSSCH 'associated data
  • a field indicating an intention may be set (/ signaled) independently (or (all) equally) for each 'SA (/ PSCCH)' transmission.
  • the V2X UE S may attempt to decode (/ receive) all of the 'SA (/ PSCCH)' related to transmission 'K'.
  • the V2X TX UE in case of transmitting one 'TB' in several SF (S)), (in the middle) a preset (/ signaled) rule (e.g.
  • Example # 2 when sending 'SA (/ PSCCH)' related to 'X th transmission' (eg 'X> 1'), 'FIELD # S' (or 'FIELD #' Q ') may assume that the' Xth transmission 'is' initial (/ first) transmission' and set 'FIELD # S' (or 'FIELD # Q').
  • 'frequency resource (location)' information (/ field) is defined on 'SA (/ PSCCH)' and '(DATA / (PSSCH)) FREQUENCY HOPPING' operation is performed
  • 'frequency resource ( Location) 'information (/ field) value itself may be set differently (in consideration of the' (DATA / (PSSCH)) FREQUENCY HOPPING pattern ') for each' SA (/ PSCCH) 'transmission.
  • 'SA (/ PSCCH)' related to '(N + 1) th transmission' means '(DATA resource (location))' scheduled by 'SA (/ PSCCH)' related to 'Nth transmission'. This is because it is necessary to designate (/ signal) the changed 'frequency resource (location)' after applying / (PSSCH)) FREQUENCY HOPPING '.
  • the V2X UE (S) each time a condition that is set in advance (/ signaled) the (transmission) resources reserved (/ selected) resources (for a certain period (/ period)) is satisfied Can be reselected.
  • the counter is '0' (or '0' When a small value '), it can be made to reselect the (transfer) resources reserved (/ selected) it (for a period (/ period)).
  • the counter may be (A) a (new) TB transfer (e.g., the wording of the 'TB transfer' is interpreted as 'the actual (successfully) performed TB transfer' only and / or ('sensing result' And / or pre-defined (/ signaling) per 'conflict with omitted TB transmissions' due to 'conflicts with relatively high-priority message transmissions (of other V2X UE (s)'). ) Or (B) a predefined (period) value (e.g. '100MS'), which is reduced (or increased) to a value (e.g.
  • '1' It may be allowed to decrease (or increase) to a signaled value (eg, '1').
  • the operation of (re) selecting the counter value (or 'RESET' the counter value) in a predefined (/ signaling) range is related to '(ALL) SEMI-PERSISTENTLY SELECTED RESOURCE (S)'. It may be defined as '(RESOURCE (S)) RESELECTION' triggered.
  • the 'C_RANGE' value may be set (/ assumed) differently (partly) according to the following (partial) parameter.
  • the 'C_RANGE' value (according to the range of (specific) parameters) may be predefined or signaled from the network.
  • Example # 1 'V2X UE VELOCITY'.
  • a (relatively) long (or short) 'C_RANGE' value may be applied.
  • Example # 2 '(TRANSMISSION) SYNCHRONIZATION REFERENCE TYPE' (e.g. 'eNB', 'GNSS', 'UE').
  • '(TRANSMISSION) SYNCHRONIZATION REFERENCE TYPE' is GNSS (or eNB or UE), (relative to ('(TRANSMISSION) SYNCHRONIZATION REFERENCE TYPE' is eNB (or UE or GNSS)) (relatively) Long (or short) 'C_RANGE' values may apply.
  • Example # 3 'V2X MESSAGE TRANSMISSION (and / or GENERATION) PERIODICITY'.
  • PERIODICITY' For example, for a 'V2X MESSAGE TRANSMISSION (and / or GENERATION) PERIODICITY' that is long (relatively or above a pre-set (/ signaled) threshold), the (relatively) long (or short) 'C_RANGE' value This may apply.
  • Example # 4 'V2X MESSAGE (and / or SERVICE) TYPE' (e.g. 'EVENT-TRIGGERED MESSAGE', 'PERIODIC MESSAGE' (or '(relatively) small LATENCY REQUIREMENT (and / or (relatively)) High Reliability (/ QOS) REQUIREMENT and / or (relatively high priority) messages ',' (relatively) long LATENCY REQUIREMENT (and / or (relatively) low reliability (/ QOS) REQUIREMENT and / or (relative) Low priority) '), where, for example, for' EVENT-TRIGGERED MESSAGE ', a (relatively) long (or short)' C_RANGE 'value is applied (relative to' PERIODIC MESSAGE '). May be.
  • TYPE' e.g. 'EVENT-TRIGGERED MESSAGE', 'PERIODIC
  • Example # 5 'V2X MESSAGE (and / or SERVICE) PRIORITY (and / or LATENCY REQUIREMENT and / or RELIABILITY REQUIREMENT and / or QOS REQUIREMENT).
  • (relatively) low 'V2X MESSAGE (and / or SERVICE) PRIORITY (and / or LATENCY REQUIREMENT and / or RELIABILITY REQUIREMENT and / or QOS REQUIREMENT)' (relatively) long (or short) 'C_RANGE' value may apply.
  • the V2X TX UE (S) may be configured to perform (V2X MESSAGE) transmission resource (re) reservation (/ selection) operation according to the following (some or all) rules.
  • the (re) transmission resource (re) reservation (/ selection) operation may be performed randomly within a range (eg, "5 to 15") previously set (/ signaled) by the V2X TX UE (S). It can be triggered (at least) when the selected (transmit resource (re) reserved) counter value ( SEL _ CNTVAL ) reaches "0" (and / or "negative integer value").
  • the (selected) counter value is the (real) TRANSPORT BLOCK ( TB ) (/ packet) transmission (and / or (regardless of the ((real)) TB (/ packet) transmission) (selected) counter value (/ Number of transmission resources (of resource reservation (interval) period “P”) (and / or number) derived from (and / or (selected) counter value (/ number) are considered reserved (/ selected).
  • P resource reservation
  • the term “(re) reservation (/ selection)” refers to (A) the probability value ( KEEP_P ) (eg, “V2X TX UE (S) pre-set (/ signaling)” If you decide not to retain (/ reuse) the previously selected (transfer) resource based on the aforementioned STEP 3 ”) (for example, a randomly chosen value between“ 0 ”and“ 1 ”may be less than or equal to KEEP_P).
  • Maintaining (/ reusing) resources (and / or (C) the same finite number of existing (or preconfigured (/ signaled) dogs) (E.g., interpret the SEL_CNTVAL value (and / or interpret it as a value derived from the SEL_CNTVAL value) greater than (or greater than or equal to))) (or a resource such as (old)) to reserve (again) Can be interpreted as (generally).
  • Example # 1 As an example, when the V2X TX UE (S) performs transmission resource (re) reservation (/ selection), an infinite number of subframes (of resource reservation (interval) period "P") (/ resource) After (priority) is reserved (/ selected), it is possible to use the reserved (/ selected) resource until the transmission resource (re) reserved (/ selected) operation is triggered.
  • a problem of “ SFN (SYSTEM FRAME NUMBER) WRAP AROUND” may occur.
  • FIG. 22 schematically illustrates an example in which the problem of “SFN (SYSTEM FRAME NUMBER) WRAP AROUND” occurs.
  • V2X TX UE # X that intends to perform transmission resource (re) reservation (/ selection) at a resource reservation (interval) period of “100MS” at the time of SUBFRAME # 0.
  • V2X TX UE # X is SUBFRAME # 0, SUBFRAME # 100,... If SUBFRAME # 10200 and SUBFRAME # 10300 should be selected, SUBFRAME # 60 will be selected (due to the limitation of SFN).
  • a second transmission opportunity occurs before SUBFRAME # 100.
  • 23 is a flowchart of a method for reserving a finite number of resources according to an embodiment of the present invention.
  • the terminal may make a reservation for a finite number of resources on which V2X communication is performed (S2310).
  • the terminal may select a resource on the selection window and perform a reservation for resources that are repeated based on a specific period from the selected resource, wherein the reserved resource (s) may be a finite number.
  • the finite number may be proportional to a value of a counter (eg, SL_RESOURCE_RESELECTION_COUNTE) that is arbitrarily selected (or determined) by the terminal, and the counter value may have a positive integer.
  • the counter value may have a value of 5 or more, and the counter value may have a value of 15 or less.
  • the finite number may have a value 10 times a counter value arbitrarily selected by the terminal.
  • the terminal may reserve a plurality of resources for which V2X communication is performed, and the plurality of reserved resources may have a finite number.
  • a predefined rule e.g. 10 * SL_RESOURCE_RESELECTION_COUNTER
  • the number of subframes in one set of time and frequency resources regarding transmission opportunities of the PSSCH may be given as a specific value (eg, C resel ).
  • C resel may be defined as 10 * SL_RESOURCE_RESELECTION_COUNTER (when a specific counter (eg, SL_RESOURCE_RESELECTION_COUNTER) is set), otherwise C resel may be set to 1 (ie, when SL_RESOURCE_RESELECTION_COUNTER is not set).
  • SL_RESOURCE_RESELECTION_COUNTER may be set to a random value of 5 or more, 15 or less.
  • SL_RESOURCE_RESELECTION_COUNTER when SL_RESOURCE_RESELECTION_COUNTER is 5, a total of 50 subframes may be reserved for transmission of PSSCH. For example, when SL_RESOURCE_RESELECTION_COUNTER is 15, a total of 150 subframes may be reserved for transmission of PSSCH.
  • the (appropriate) finite number (and / or TNUM_V2XSF value) is interpreted as (and / or equal to) greater than (or greater than or equal to) the SEL_CNTVAL value (and / or the value derived from the SEL_CNTVAL value).
  • One number (and / or TNUM_V2XSF value) may be interpreted as the maximum number of (possibly) reserved (/ selected) subframes (/ resources).
  • the (selected) counter value is a positive integer value state, all of the reserved (/ selected) subframes (/ resources) pass (on the time domain) Can be mitigated.
  • the V2X TX UE defines a (appropriate) finite number (e.g., can be interpreted as (the kind of) the maximum number of subframes (/ resources) that can be reserved (/ selected)), If the SEL_CNTVAL value (and / or the value derived from the SEL_CNTVAL value) is less than (the corresponding) finite number, (exceptionally) SEL_CNTVAL (and / or the number derived from the SEL_CNTVAL value (/ number) and / or smaller) A subframe (/ resource) of a value (/ count) may be reserved (/ selected).
  • a finite number e.g., can be interpreted as (the kind of) the maximum number of subframes (/ resources) that can be reserved (/ selected)
  • the terminal may perform V2X communication on the reserved number of resources (S2320). As described above, the terminal performs V2X communication on the reserved resource.
  • the terminal does not infinitely perform V2X transmission on the reserved resource. That is, the terminal may reselect the reserved transmission resource, and as described above, the (re) transmission resource (re) reservation (/ selection) operation is a range previously set (/ signaled) by the V2X TX UE (S). Triggering (at least) when a randomly selected (transmission resource (re) reservation) counter value (SEL_CNTVAL ) within (eg, "5-15") becomes "0" (and / or "negative integer value”) Can be.
  • SEL_CNTVAL randomly selected (transmission resource (re) reservation) counter value
  • the V2X terminal may perform resource reselection in a selection window.
  • resource reselection may be performed in a selection window, and the V2X terminal may not continuously perform V2X transmission during a preset number of transmission opportunities. If not, the resource reselection in the selection window may be performed.
  • (applicable) a finite number of (and / or TNUM_V2XSF) reserved (/ selected) subframes (/ resources) are (all in the time domain) passing (and / or preconfigured (/ signaling)).
  • V2X TX when the (selected) counter value is not “0” (and / or “negative integer value”) despite the subframe index (e.g., 10240 (or TNUM_V2XSF)) has passed. Allow the UE (S) to perform a transmission resource (re) reservation (/ selection) operation, but select (randomly) a new (random) transmission value of the (transmission resource (re) reservation) counter (or (transmission resource (re) reservation)) It is possible to inherit (/ hold / apply) the existing value (SEL_CNTVAL) (or the rest of the value (or a preset (/ signaled) value)) without selecting a counter value (newly). There is also.
  • SEL_CNTVAL the existing value
  • the term "transfer resource (re) reservation (/ selection) operation” is (A) V2X TX UE (S) is based on the existing (based on the pre-set (/ signaling) probability value (KEEP_P) If you decide not to retain (/ reuse) the selected (transmit) resource (or regardless of the corresponding probability value (KEEP_P)), then the (re) Reservation (/ selection) and / or (B) the V2X TX UE (S) is based on (or based on a pre-set (/ signaled) probability value (KEEP_P) (or regardless of the corresponding probability value (KEEP_P))) To maintain (/ reuse) the selected (transmit) resource (and / or (C) the same finite number as the existing (or pre-set (/ signaled) number) (e.g.
  • SEL_CNTVAL Subframes (or resources (such as)) of a value (and / or a value derived from the SEL_CNTVAL value) that is greater than (or greater than or equal to) the value) It can be interpreted as to (re) scheduling (/ Select)).
  • V2X TX UE # X (e.g., resource reservation (interval) period "P_X") causes another V2X TX (identified by PSCCH decoding) Determining whether there is a collision (/ overlapping) between the transmission resource of UE #Y reserved (/ selected) resource reservation (interval) period "P_Y" and its own reserved (/ selected) candidate resource (for example, "STEP” 2 ”) assumes (on the candidate resource) that the (finite) number ( NUM_EXTX ) of transfers it assumes (/ remembers ) is performed (or assumes (resources) the resources it reserves / selects).
  • NUM_EXTX the (finite) number of transfers it assumes (/ remembers ) is performed (or assumes (resources) the resources it reserves / selects).
  • V2X TX UE # Y (with (SUBFRAME # (N-10)) PSCCH decoding) is set to SUBFRAME # (N-10 with a resource reservation (interval) period of “1000MS”.
  • V2X TX UE # X (resource reservation (interval) cycle of “100MS”) causes SUBFRAME # N (current time point).
  • this type of monitoring is the same (frequency) that V2X TX UE # X is reserved (/ selected) by V2X TX UE # Y (in a pre-set (/ RE) TX RESOURCE) SELECTION WINDOW).
  • V2X TX UE (S) collides with the number of resources (for example, (Example # 1)) reserved (/ selected) (/ It can be interpreted that the number of resources (eg, (Example # 2)) that need to look into the future to determine the overlap may be different.
  • V2X TX UE # Y (with (SUBFRAME # (N-10)) PSCCH decoding) is set to SUBFRAME # (N with a resource reservation (interval) period of “1000MS”.
  • V2X TX UE # X resource reservation (interval) cycle of “100MS” causes SUBFRAME # N (currently When performing (re) reserving (/ selecting) a transmission resource at a time point), a candidate resource (of the same (frequency) position as V2X TX UE # Y) on SUBFRAME # (N + 90) is assumed to Finite) count (e.g., “9”) (e.g., the corresponding (finite) count is the reserved (/ selected) transmission resource of V2X TX UE # Y (e.g., SUBFRAME # (N + 990 )) Transmissions (e.g.
  • SUBFRAME # (N + 90), SUBFRAME # (N + 190)) of transmissions (which can be set to a (maximum) (integer) value where the maximum value of the monitoring subframe index does not become larger than the time point)
  • the reserved (/ selected) transmission resource of V2X TX UE # Y e.g., SUBFRAME # Whether or not (N + 990) collides with (or overlaps) may be determined.
  • the NUM_EXTX value and the FINI_SFNUM value may be set (/ signaled) independently (/ differently) (or identically).
  • the FINI_SFNUM value is set (/ signaling) (and / or independent) to a common value (or independent value) between the V2X UEs (GROUP) (which share the V2X resource pool) on the same carrier (/ frequency).
  • the NUM_EXTX value is set to an independent value (e.g., set by the upper layer of the terminal) (or common value) between V2X UEs (GROUP) (sharing the V2X resource pool) on the same carrier (/ frequency) ( / Signaling)).
  • GROUP common value between V2X UEs (GROUP) (sharing the V2X resource pool) on the same carrier (/ frequency) ( / Signaling)).
  • Example # 3 As an example, if the (selected) counter value is decremented per (actual) TB (/ packet) transmission by a pre-set (/ signaled) value (eg, “1”), If there is no TB (/ packet) to send to V2X TX UE # M (for long time) (on (LOW LAYER) buffer (and / or PDCP LAYER)) (and / or no (real) TB (/ packet) transmission) , The decrement of the (selected) counter value will cease, and when the TB (/ packet) to be sent (after a long time) reappears (and / or when (actual) TB (/ packet) transfer is performed), (applicable) V2X TX UE # M assumes that it still has (previously) reserved (/ selected) resources (since the (selected) counter value is a positive integer) and uses the (incorrectly) resources incorrectly. .
  • a pre-set (/ signaled) value eg, “
  • the terminal may reselect the reserved transmission resource, and the (re) transmission resource (re) reservation (/ selection) operation may be performed by the V2X TX UE (S) in a preset range (/ signaling) (for example, “5”. ⁇ 15 ”) can be triggered (at least) when a randomly selected (transmission resource (re) reservation) counter value ( SEL _ CNTVAL ) reaches" 0 "(and / or” negative integer value ").
  • the counter value may be decreased by '1', and when the counter value is 0, the UE may perform the resource rescheduling operation. In other words, in this case, transmission resource re-reservation may occur (triggered) only when the terminal actually performs transmission (on a previously reserved resource).
  • the value of the counter (which triggers resource re-reservation) is reduced only if the actual packet transmission by the terminal (on the pre-reserved resource) has to be performed, if (pre-reserved) If the counter value does not become “0” (and / or “negative integer value”) even though the number of resources has passed (on the time domain) (forever, resource rebooking has not been triggered). Deadlock problems can occur.
  • 24 is a flowchart illustrating a method for reselecting a resource by a terminal according to an embodiment of the present invention.
  • the terminal determines whether a resource reselection condition is satisfied (S2410).
  • the terminal may perform resource reselection if at least one of the plurality of resource reselection conditions is satisfied.
  • a V2X TX UE # M (where the (selected) counter value is a positive integer value state) causes a threshold (time) value above a preset (/ signaled) value.
  • the resource reselection condition of the UE is (A) when there are no more resources for V2X transmission (for example, as described above, the subframe (/ resource) reserved by itself (/ resource) (Both) '(B) if the UE has not performed packet transmission for a continuous 1 second (e.g., as described above,' before the pre-set (/ signaled) threshold time value ( (Continued) TB (/ packet) transmission is not performed '), (C) when the UE skips a predetermined number of consecutive transmission opportunities (for example, as described above,' pre-set (/ May be present when TB (/ packet) transmission is not performed (continuously) above the signaled threshold).
  • a predetermined number of consecutive transmission opportunities for example, as described above,' pre-set (/ May be present when TB (/ packet) transmission is not performed (continuously) above the signaled threshold.
  • the terminal may perform resource reselection when there are no more resources associated with the configured sidelink grant. That is, when the UE no longer has resources associated with the configured sidelink grant and there is a new MAC PDU to be transmitted to the UE, resource reselection may be triggered. (Ie, in the above-described case, the UE may perform resource reselection.)
  • a finite number of (and / or TNUM_V2XSF) reserved (/ selected) subframes (/ resources) are (all in the time domain) passing (and / or preconfigured (/ signaling)).
  • the terminal may perform resource reselection. That is, when the terminal does not perform transmission or retransmission on a continuous transmission opportunity of 1 second, resource reselection may be triggered.
  • the UE may perform resource reselection.
  • the terminal may perform resource reselection.
  • N is set to the terminal, and N may have a value of [1, 2, 3, 4, 5, 6, 7, 8, 9].
  • the terminal when skipping '5' consecutive transmission opportunities to the terminal, when the terminal is configured to perform the resource reselection, the terminal reselects the resources when the transmission does not perform for five consecutive transmission opportunities Can be performed.
  • the terminal may perform reselection for a resource on which V2X communication is performed (S2420).
  • the terminal may reselect a resource on which V2X communication is performed, and then the terminal may perform V2X communication on the selected resource.
  • the terminal if the resources for the V2X transmission no longer remains (for example, as described above, the 'subframe (/ resources) reserved by itself (/ resources) is ( All)), (B) if the UE has not performed packet transmission for a continuous 1 second (e.g., as described above, 'more than the preset (/ signaled) threshold time value (continuous) TB (/ packet) transmission is not performed '), or (C) the terminal skips a predetermined number of consecutive transmission opportunities (for example, as described above, When TB (/ packet) transmission is not performed (continuously) above the signaled threshold value '), V2X communication may be performed on the selected resource by reselecting a resource on which V2X communication is performed.
  • the resources for the V2X transmission no longer remains for example, as described above, the 'subframe (/ resources) reserved by itself (/ resources) is ( All)
  • the terminal if the UE has not performed packet transmission for a continuous 1 second (e.g., as described
  • the terminal may perform the V2X communication based on the selected resource (S2430).
  • the selected resource may mean a resource determined on the basis of a SELECTION WINDOW configured to satisfy a LATENCY REQUIREMENT (that is, a resource on a selection window that satisfies a latency request).
  • the terminal may select a subframe within a selection window based on a sensing result performed during the terminal-specific sensing interval, and the terminal may select a transmission reservation resource based on the selected subframe. And V2X communication on the reserved resource. Specific examples of performing V2X communication based on the resource selected by the terminal are as described above (or described later), and thus, detailed descriptions thereof will be omitted.
  • the term "transfer resource (re) reservation (/ selection) operation” is (A) V2X TX UE (S) is based on the existing (based on the pre-set (/ signaling) probability value (KEEP_P) If you decide not to retain (/ reuse) the selected (transmit) resource (or regardless of the corresponding probability value (KEEP_P)), then the (re) Reservation (/ selection) and / or (B) the V2X TX UE (S) is based on (or based on a pre-set (/ signaled) probability value (KEEP_P) (or regardless of the corresponding probability value (KEEP_P))) To maintain (/ reuse) the selected (transmit) resource (and / or (C) the same finite number as the existing (or pre-set (/ signaled) number) (e.g.
  • SEL_CNTVAL Subframes (or resources (such as)) of a value (and / or a value derived from the SEL_CNTVAL value) that is greater than (or greater than or equal to) the value) It can be interpreted as to (re) scheduling (/ Select)).
  • a V2X TX UE # U may be configured to perform a (selected / reserved) subframe of (or select) a transmission resource (re) reservation and / or another V2X TX UE # Z.
  • MOD (X, Y) represents a function that derives the remaining values when X is divided by Y.
  • X resource reservation
  • interval period“ P ”from the subframe (Subframes / resource) can be considered to be reserved.
  • Example # 5 As an example, ((Example # 1) and / or (Example # 2) and / or (Example # 3) and / or (Example # 4)) (let V2X UE (S)) (Finite (/ infinite) number of subframes (/ resource)))
  • the reservation (/ selection) itself is outside the SFN range (or TNUM_V2XSF range) (by SFN WRAP AROUND), but the V2X UE (S) Resource Reservation (Interval) Period (P), while keeping the odd (time) subframe (/ resources) excluded (SKIP) (and / or (finite (/ infinite)) ) Number of subframes (/ resources)) reservation (/ selection) can be operated by itself in the form of increasing the SFN range (or TNUM_V2XSF range).
  • Example # 7 shows a method for supporting an efficient (V2X message (/ TB)) transmission operation of a V2X TX UE (S).
  • the UE reserves 10 * C subframes at a resource reservation period P interval, where C may mean SL_RESOURCE_RESELECTION_COUNTER determined by MAC.
  • the UE reserves a finite number of subframes, but SL_RESOURCE_RESELECTION_COUNTER can be reduced only when the MAC PDU is transmitted. Therefore, when the upper layer stops packet generation for a specific time interval, and skips transmission in many reserved subframes, the UE no longer reserves the reserved resources and more resources for the transmission of newly arrived packets. It may not be left anymore.
  • the subframe in the second DFN range may not be divided by 100 (ie, division by 100 may result in the remainder).
  • the UE reserves a subframe for the index ⁇ 0, 100, ..., 10200, 10300, ..., 14900 ⁇ .
  • the subframe numbers from 10300 to 14900 correspond to a range beyond the DFN range, subframes for ⁇ 0, 100, ..., 10200, 60, 160, ..., 3660 ⁇ are actually reserved. Can be.
  • the terminal may extend the resource reservation.
  • the number of reserved subframes can be set independently of the number of counters.
  • the number of reserved subframes may be set smaller than the counter value.
  • the terminal may reserve a set of subframes up to the boundary of the current DFN range when resource reservation is triggered.
  • 25 is an example of a method of performing resource reservation in consideration of the above-mentioned proposal.
  • the UE may first determine a set of subframes ending before the DFN boundary and repeat resource reservation at the same resource reservation interval if more resources are needed. .
  • Proposal 1 If the terminal no longer has a reserved resource, but the SL_RESOURCE_RESELECTION_COUNTER is still greater than zero, the terminal can extend the resource reservation.
  • Proposal 2 When resource reservation is triggered, the UE can reserve a set of subframes up to the boundary of the current DFN range.
  • a V2X TX UE is configured to transmit (re) reserve (/ select) transmission resources according to Table 2 (e.g., "STEP 2/3" described above (or described later)).
  • Table 2 e.g., "STEP 2/3" described above (or described later)
  • the I_VALUE value may be set (/ signaled) in the range of (maximum) “1 ⁇ I_VALUE ⁇ 10”.
  • whether or not a particular I_VALUE value can be selected (/ allowed) is in the form of “CARRIER (/ POOL) -SPECIFIC NETWORK (PRE) CONFIGURATION” (predefined signaling (e.g. X on 10-BIT BITMAP). Bit may indicate whether the Xth I_VALUE value is selectable (/ allowed).
  • the selection restriction of a particular I_VALUE value may include (A) failing to set (/ signal) the RR_INV value of the (I_RESVAL * P_STEP ”value (by the terminal) and / or (B). ) Can be interpreted as requiring (/ signaling) another I_VALUE value (rather than I_RESVAL) that can represent the (closest) (terminal) value closest to (in fact) the desired RR_INV value.
  • the UE when transmission is performed while the UE performs sensing (in the sensing window), that is, the UE may not perform sensing (due to a half duplex problem) for a subframe in which V2X transmission is performed in the sensing window. have.
  • the UE transmits a V2X message on a subframe in which the UE cannot perform sensing and a subframe corresponding to specific periods
  • the UE transmits a V2X message based on the subframe in which the UE does not perform sensing. Will result.
  • FIG. 26 is a flowchart of a method of excluding a subframe (in a selection window) related to a subframe in which a terminal does not perform sensing according to an embodiment of the present invention.
  • the terminal selects a subframe (in a selection window) except for a subframe (in a selection window) related to the subframe in which a transmission is performed during the sensing period (S2610).
  • the terminal may select a plurality of subframes other than the subframes in the excluded selection window except for the subframes in the selection window related to the subframe in which the transmission is performed during the sensing period among the plurality of subframes in the selection window. You can select from subframes.
  • the subframe according to the resource reservation period of the selected subframe is detected by the UE. It may mean a subframe that may not be performed and a subframe that overlaps with a subframe corresponding to specific periods. For convenience of explanation, the present contents will be described below with reference to the drawings.
  • FIG. 27 illustrates an example of excluding a subframe (in a selection window) related to a subframe in which the terminal has not performed sensing.
  • the first subframe may mean a subframe in which the terminal has not performed sensing. It may be assumed that the first subframe and the subframe corresponding to the specific period are the third subframes.
  • the terminal may not select the second subframe in the selection window (that is, the selection may be excluded).
  • the terminal may exclude subframe #y within the selection window from resource reservation selection.
  • the subframe #k may correspond to a subframe in which the terminal does not perform sensing
  • the subframe #y may mean a subframe within the selection window.
  • P may mean a resource reservation period of the terminal, for example, P may have a value of 100ms.
  • J may mean a value of 0, 1, 2, ..., C _ resel -1, and C _ resel, as described above, is a value of a specific counter value (for example, 10 * SL_RESOURCE_RESELECTION_COUNTER) It may mean. Since the contents of the specific counter (that is, SL_RESOURCE_RESELECTION_COUNTER) are as described above, a detailed description thereof will be omitted.
  • i can mean an element in the set that is limited by the carrier specific setting.
  • V2X TX UE (S) if in STEP 2 Is not monitored by your own V2X message transfer behavior (and / or your own V2X message transfer behavior If no other V2X TX UE (S) related PSCCH decoding and (interlinked) PSSCH DM-RS RSRP (and / or S-RSSI) measurement operations have been performed), R X in R X, Y belonging to S A , Y + RR_ INVTX * j is (And / or If it overlaps with (some) resource (s) that may be selected (/ reserved) by another V2X TX UE (S) on Rx , Y may be (additionally) excluded from the S A set.
  • RR_INVTX means its own (RESOURCE RESERVATION INTERVAL) value (set (/ signaled) from the upper layer), and “I_CANVAL” (before) “CARRIER (/ POOL) -SPECIFIC NETWORK ( It can be interpreted (limitedly) as value (s) belonging to the selectable (/ allowable) "I_VALUE SET” specified in the form PRE) CONFIGURATION ".
  • resources for example, the V2X TX UE (S) is not monitored by its V2X message transmission operation in STEP 2 (eg, Is generated) , and when determining whether to exclude (addition) of R X, Y from the set of S A , the (real) selectable (/ permissible) (I / VALUE SET) (and / or It can be interpreted as considering only “RESOURCE RESERVATION INTERVAL”).
  • the terminal may perform V2X communication based on the selected subframe (S2620).
  • the selected subframe means a resource determined on the basis of (SLECTION WINDOW) configured within a range that satisfies LATENCY REQUIREMENT (ie, a resource on a selection window that satisfies the latency request). can do.
  • the terminal may select a subframe within a selection window based on a sensing result performed during the terminal-specific sensing interval, and the terminal may select a transmission reservation resource based on the selected subframe. And V2X communication on the reserved resource.
  • the UE performing V2X communication on the selected subframe may mean that the UE performs V2X communication on the reserved subframe in association with the selected subframe.
  • Specific examples of performing V2X communication based on the resource selected by the terminal are as described above (or described later), and thus, detailed descriptions thereof will be omitted.
  • V2X TX UE (S) if in STEP 2 Is not monitored by your own V2X message transfer behavior (and / or your own V2X message transfer behavior If no other V2X TX UE (S) related PSCCH decoding and (interlinked) PSSCH DM-RS RSRP (and / or S-RSSI) measurement operations have been performed), R X in R X, Y belonging to S A , Y + RR_ INVTX * J (And / or If it overlaps with (some) resource (s) that may be selected (/ reserved) by another V2X TX UE (S) on Rx , Y may be (additionally) excluded from the S A set.
  • I_CANVAL_X is (pre-) the maximum value (s) belonging to the selectable (/ allowable) “I_VALUE SET” specified in the form “CARRIER (/ POOL) -SPECIFIC NETWORK (PRE) CONFIGURATION”. Or a minimum value or a specific value).
  • the V2X TX UE (S) if you are not monitored in STEP 2 with your own V2X message transfer behavior (and / or with your V2X message transfer behavior) From other V2X TX UE (S) related PSCCH decoding and (interlocked) PSSCH DM-RS RSRP (and / or S-RSSI) did not perform a measurement operation side), R X, Y to S A set on the (further) You can exclude it.
  • the V2X TX UE (S) if you are not monitored in STEP 2 with your own V2X message transfer behavior (and / or with your V2X message transfer behavior) From other V2X TX UE (S) related PSCCH decoding and (interlocked) PSSCH DM-RS RSRP (and / or S-RSSI) did not perform a measurement operation side), R X, Y to S A set on the (further) You can exclude it.
  • I_CANVAL_Q is a value (s) belonging to the selectable (/ allowable) “I_VALUE SET” (specified in the form “CARRIER (/ POOL) -SPECIFIC NETWORK (PRE) CONFIGURATION”) (and / Or can be set (/ signaled) to the minimum (or maximum or specific value) of the value (s) belonging to the selectable (/ permissible) "I_VALUE SET”.
  • a J value equal to the maximum possible (or minimum) “RESOURCE RESERVATION INTERVAL” (or a specific “RESOURCE RESERVATION INTERVAL” pre-set (/ signaled)) (or less than (or greater than or equal to) the derived J value.
  • the proposed method is a message (/ packet) related priority value (and / or (corresponding) carrier (/ full) related CONGESTION LEVEL value) that the V2X TX UE (S) to transmit in advance (/ signaling It may be limited to apply only if it is smaller (or larger) than the threshold.
  • V2X UE (S) effectively reflects resources (/ subframes) that are not monitored (/ sensed) by its own transmission operation in “RESOURCE EXCLUSION PROCEDURE (BASED ON PSSCH-RSRP MEASUREMENT)”. Here's how.
  • the terminal #A excludes the subframe #k existing within the selection window of the terminal.
  • P may mean a resource reservation interval of the terminal
  • j may mean 0, 1, ..., 10 * SL_RESOURCE_RESELECTION_COUNTER-1.
  • I may also mean (possible) elements in the set which are limited by carrier specific network (pre) configuration.
  • terminal #A may exclude all resources (in the terminal's selection window) that overlap with the transmission of another terminal that may be scheduled from the skipped subframe #k.
  • the set of i may be limited as ⁇ 2, 4 ⁇ , and P and SL_RESOURCE_RESELECTION_COUNTER may be set to 200 ms and 5, respectively.
  • Frame #k may be excluded from the selection.
  • the subtraction in the selection may not include the subframe in the selection window.
  • UE #a may need to exclude subframe #y within its selection window if subframe # (y + P * j) may overlap with subframe # (k + 100 * i).
  • P may refer to the resource reservation interval of the terminal, j is 0, 1, ..., (10 * SL_RESOURCE_RESELECTION_COUNTER-1), i is all (use) of the set limited by the carrier-specific network (pre) configuration Element).
  • the (increased) “(max) DFN RANGE” value is “10240 (/ 10176) * H_VAL” (or “10240 (/ 10176) * H_MAXVAL”) (and / or “MAX DFN RANGE * H_VAL” (Or “MAX DFN RANGE * H_MAXVAL”).
  • H_VAL value (/ index) (/)
  • B Setable (/ usable) H_VAL (index) range and / or
  • C Maximum value of H_VAL (/ maxindex) ( H_ MAXVAL) (and / or minimum value (Min / index) (H_ MINVAL)), such as a network (or serving cell) is defined in advance (the upper (/ physical) layer) signaling (and / or (SYNCH.
  • SOURCE terminal Via the (newly defined) field (or predefined D2D channel / signal) on the PSBCH (“CARRIER (/ POOL / CELL) -SPECIFIC (PRE) CONFIGURATION” type and / or “V2X POOL (PRE) CONFIGURATION”).
  • CARRIER / POOL / CELL
  • PRE SPECIFIC
  • V2X POOL PRE
  • Figure 31 shows an example of the case of increasing the (old) "DFN RANGE” value (for example, "10240" or “10176").
  • H_VAL and / or H_MAXVAL
  • the (incremented) “(max) DFN RANGE” value can be divided (and / or remaining) by the bitmap length (specified / signaled) relative to the V2X resource pool configuration (and / or (V2X resource)).
  • the V2X UE (S) advances the H_VAL value whenever the (existing) “(max) DFN RANGE” value (eg, “1024 (/ 10240)”) passes. Increment by the value set (/ signaled) to (for example, “1”), but from (V2X) subframe of relatively small index within (V2X) subframe (set) based on the same H_VAL value Message) transmission (and / or V2X communication).
  • “SUBFRAME INDEX” uses “LOGICAL INDEX” in a (V2X) resource pool.
  • the physical time interval may be relatively large.
  • the V2X TX UE (S) may be made to use the "RESOURCE RESERVATION INTERVAL" value as a smaller value.
  • V2X communication can be performed as follows.
  • V2V may be multiplexed with other signals / channels.
  • Tmax which means the DFN range for V2V, that is, the number of subframes that can be allocated to V2V, may be 10240 or 10176 depending on the SLSS resource configuration.
  • the length of the bitmap representing the V2V subframe for the resource pool may be 16, 20, or 100. Accordingly, as described above (eg, in case of FIG. 22), a case may occur in which the DFN range is not divided by the bitmap length unit.
  • a fundamental solution to this problem may be to change the DFN range (ie, Tmax) so that it is always divided by the bitmap length. This may mean increasing the DFN range to be a multiple of the bitmap length.
  • H-SFN hyper SFN
  • the modification period may be set by the system information.
  • An eDRX acquisition cycle may be defined to enable notification of system information update for an RRC_IDLE terminal that uses an eDRX cycle longer than or equal to the modification cycle.
  • the network may first notify the terminals about this change.
  • the network can send updated system information.
  • the terminal can immediately acquire new system information from the start of the next modification cycle using a DRX cycle less than or equal to the modification cycle.
  • SystemInformationBlockType1 may be defined as shown in Table 3 below.
  • 'hyperSFN' indicates a hyper SFN that increases by one when the SFN is wrapped, and with respect to 'eDRX-Allowed', the presence of this field indicates whether idle mode extended DRX is allowed in the cell. If there is no eDRX permission, the terminal should stop using extended DRX in idle mode.
  • V2V subframe index in the logical domain ie, excluding the SLSS subframe
  • Tmax + DFN the number of DFNs in the logical domain
  • Hmax the maximum value of H-DFN, can be configured such that the total number of potential V2V subframes Hmax * Tmax in the hyper DFN range is divided by the configured bitmap length.
  • Hmax may be set to five. (I.e. H-DFN # 5 is reset to H-DFN # 0).
  • the current H-DFN index needs to be synchronized between the eNB and the terminals as well as the terminals sharing the same resource pool. This may be signaled as part of the resource pool configuration between the eNB and the UE and may also be signaled via the PSBCH. If GNSS is a synchronization reference, the H-DFN index can be derived from the current UTC value.
  • Hyper DFN may be proposed as follows to handle the discontinuity of subframe bitmap iteration.
  • Hyper DFN can be defined to increase DFN range by Hmax time.
  • Hmax can be set as the value obtained by dividing Hmax * Tmax by the length of the V2V subframe bitmap of the resource pool.
  • the current H-DFN may be signaled as part of the resource pool configuration from the eNB. And may also be signaled via PSBCH.
  • the H max value may be fixed (on the spec) to a predefined value (without the need for additional signaling).
  • the H max value may be fixed to "25" (or “multiple of 25").
  • Table 4, Table 5, and Table 6 are the analysis data for the above.
  • (A) a preset bitmap of (specific) length (/ signaled) is repeatedly applied to specify a V2X resource pool and / or (B) ((terminal) set from a higher layer (/ signaling)
  • (periodical) transmission resource (s) based on “RESOURCE RESERVATION INTERVAL” are reserved (/ selected), (some) V2X resources and / or (V2X TX UE (S) (Some) (periodic) transmission resources reserved (/ selected) by the DL (time (/ frequency)) resources (e.g., “DL SF” and / or “(TDD) SPECIAL SF) (And / or “DWPTS”)).
  • the UE when the UE performs V2X message transmission on a specific carrier, the UE may not perform V2X message transmission using all subframes on the carrier. Accordingly, an example of a method of transmitting a V2X message in consideration of a subframe in which the terminal does not perform a V2X message transmission will be described with reference to the accompanying drawings.
  • FIG. 34 is a flowchart of a method of performing V2X communication on an allocated V2X resource pool according to an embodiment of the present invention.
  • the UE may allocate a V2X resource pool to remaining subframes other than a specific subframe (S3410).
  • the specific subframe may mean (A) SLSS subframe, (B) TDD shared carrier, DL and S (SPECIAL) subframe, or (C) reserved subframes.
  • the UE may allocate a V2X resource pool for the remaining subframes other than the SLSS subframe.
  • the SLSS subframe may be excluded from the mapping according to the (repeated) V2V full bitmap (ie, a bitmap (or information) indicating a subframe to which the V2X pool may be allocated), wherein the bitmap The length may mean 16, 20, or 100.
  • the bitmap may define which subframe is a subframe that allows V2V SA and / or data transmission and / or reception.
  • 35 schematically illustrates an example in which an SLSS subframe is excluded from a V2X transmission.
  • subframe numbers may have 0, 1, ..., 10239 (that is, 10240 subframes in total), and the V2X bitmap is repeated in units of 10 subframes. It is assumed that the V2X bitmap is [0110101101].
  • the UE may allocate the V2X logical index to subframes other than the SLSS subframe. For example, when it is assumed that subframe indexes # 3 and # 163 correspond to SLSS subframes (assuming that the SLSS subframes are repeated in units of 160 subframes), the V2X UE is assigned to subframe indexes # 3 and # 163, etc. V2X logical indexes may be allocated to the remaining subframes (that is, the remaining subframes except the SLSS subframe) (S3510).
  • the UE may assume that the V2X resource is allocated according to the V2X bitmap for the subframe allocated by the V2X logical index.
  • the V2X logical index derived through the foregoing may not correspond to an integer multiple of the V2X bitmap.
  • the V2X logical indexes are 10176 corresponding to 10240-64. May be assigned to a subframe.
  • V2X logical index may be allocated to 10176 subframes and 10 V2X bitmap periods are assumed, the logical index and the V2X bitmap period are not divided. That is, when a V2X bitmap having a period of 10 is allocated to 10176 subframes, bits may not be allocated to six subframes.
  • the UE may exclude the aforementioned number of unassigned subframes from the V2X logical index allocation (S3520).
  • the unassigned subframes may be evenly distributed (EVENLY DISTRIBUTED).
  • DL and / or S (SPECIAL) subframes may be excluded from the mapping according to the (repeated) V2V full bitmap.
  • An example in which DL and / or S (SPECIAL) subframes are excluded from V2X transmission will be described below with reference to the accompanying drawings.
  • FIG. 36 schematically illustrates an example in which DL and S (SPECIAL) subframes are excluded from a V2X transmission.
  • subframe numbers may have 0, 1, ..., 10239 (that is, 10240 subframes in total), and the V2X bitmap is repeated in units of 10 subframes. It is assumed that the V2X bitmap is [0110101101].
  • the UE may allocate a V2X logical index for subframes other than DL and / or S (SPECIAL) subframes (and / or SLSS subframes). For example, assuming that subframe index # 7 (etc.) corresponds to DL and S (SPECIAL) subframes, the V2X UE may allocate a V2X logical index to the remaining subframes except subframe index # 7 (etc.). It may be (S3610).
  • the UE may allocate V2X resources according to the V2X bitmap for the subframe allocated by the V2X logical index.
  • the UE may additionally exclude as many subframes as the number not allocated to the V2X logical index allocation (S3520).
  • the unassigned subframes may be evenly distributed (EVENLY DISTRIBUTED).
  • the resource pool is composed of several reserved subframes such that the bitmap is repeated with integers within a specific range (eg, D2D Frame Number (DFN) range).
  • a specific range eg, D2D Frame Number (DFN) range.
  • the V2X (eg, V2V) logical subframe index may not be assigned to the reserved subframe.
  • the position of the reserved subframe may be displayed in an implicit manner.
  • V2X SYNCH preset (signaled)
  • bitmap associated with the V2X resource pool configuration.
  • SIGNAL applies without distinction to DL / UL (time / frequency) resources related to WAN communication, except for transmission-related (time (/ frequency)) resources (e.g. V2X SYNCH. SUBFRAME (S)). (And / or because of the DFN WRAP AROUND problem).
  • V2X TX UE (S) (A) (part) V2X resources (specified by the bitmap) on the DL (time (/ frequency)) resources related to WAN communication is Make assumptions that are invalid (in terms of “LOGICAL INDEXING” (in terms of V2X pools)) and / or (B) reserve (by V2X TX UE (S)) on DL (time (/ frequency)) resources related to WAN communication.
  • the "LOGICAL INDEXING" (relative to the V2X pool) includes the invalid resource (eg, DL (time (/ frequency)) resource) (eg, "LOGICAL INDEX").
  • a DL (time (/ frequency)) resource eg, “DL SF” and / or “WAN communication related resource”.
  • the terminal may perform V2X communication on the allocated V2X resource pool (S2420).
  • V2X communication on the allocated V2X resource pool (S2420).
  • a specific example of the UE performing V2X communication is as described above.
  • the rule may be that a (partial) V2X resource (specified by a bitmap) and / or a (partial) (periodic) transmission resource (reserved / selected) by the V2X TX UE (S) is WAN. Not only is it located on a communication-related DL (time (/ frequency)) resource but also is not suitable for performing (pre-set (/ signaled)) V2X communication (eg, “UL SF” (and / or “UPPTS).
  • a V2X UE (S) (in base station coverage) may be configured to pre-define a "offset value for GNSS-based DFN # 0" signaled / set in advance (from a (serving) base station).
  • a channel eg, PSBCH
  • PSBCH PSBCH
  • selectable (/ allowable) I_VALUE values and / or “RESOURCE RESERVATION INTERVAL” values on the V2X resource pool (and / or (V2X) carrier) are (“CARRIER (/ POOL)-).
  • SPECIFIC NETWORK (PRE) CONFIGURATION ”) allows the V2X TX UE (S) to: (A) the minimum value of I_VALUE (or I_ MINVAL ) (or on the corresponding V2X resource pool (and / or (V2X) carrier). Maximum value) (or a preset (/ signaled) (specific) I_VALUE value) which can be derived (/ calculated) (e.g.
  • I_MINVAL * P_STEP and / or (B) “RESOURCE RESERVATION INTERVAL ”sensing operation (eg, STEP 5 in Table 2) (and / or based on a minimum (or maximum) period value (or a pre-set (/ signaled) (RESOURCE RESERVATION INTERVAL) value).
  • Energy measurement operation e.g., STEP 8 of Table 2.
  • a specific V2X resource pool is set only for P-UE (S) which performs V2X message transmission in a relatively long period (for example, “500MS”) (relative to V-UE (S)). If allowed) and the rule is applied, the P-UE (S) will perform a sensing operation (and / or energy measurement operation) based on the (applicable) period (eg, "500MS").
  • the terminal for example, in a relatively long resource reservation period (for example, 100ms or more resource reservation period) (named as "L_PER") to select a random value in the interval of 5 or more and 15 or less, You can reserve resources by multiplying by 10.
  • L_PER resource reservation period
  • S_PER resource reservation method described above in the case of a relatively short resource reservation period (for example, 20 ms and 50 ms (less than 100 ms) (named “S_PER”) may apply to L_PER coexisting on the same resource pool.
  • the terminal may not be suitable for sensing the S_PER terminal.
  • V2X UE S
  • SHORTER RESOURCE RESERVATION PERIOD / INTERVAL
  • V2X UE (S) SHORTP _ UE (S) ) which performs short period V2X message (/ traffic) transmission and V2X UE (S) of “(RELATIVELY) LONGER RESOURCE RESERVATION PERIOD (/ INTERVAL)” (and / Or (relatively) V2X UE (S) ( LONGP_UE (S) ) performing long period V2X message (/ traffic) transmission coexists)
  • FIG. 37 is a flowchart of a method for performing reservation for V2X transmission resources when resource reservation of a relatively short period (eg, 20 ms, 50 ms (less than 100 ms)) is set according to an embodiment of the present invention. .
  • a relatively short period eg, 20 ms, 50 ms (less than 100 ms)
  • the terminal may perform reservation for a relatively large number of V2X transmission resources (S3710).
  • the terminal does not reserve the resources by multiplying the selected value by multiplying the random value in the interval of 5 or more and 15 or less, 10. This means that a random value is drawn at intervals of 5 * K (where K is a positive integer of 2 or more) and 15 * K or less, and the resource is reserved by multiplying the selected value by 10.
  • the above-described counter value (value of 5 or more and 15 or less) is multiplied by, for example, 5 or 2, and then additionally multiplied by 10 to reserve resources. can do.
  • the terminal selects a random value in the interval [5 * 5,15 * 5] (that is, 5 * 2 or more and 15 * 5 or less), and multiplies by an additional 10 You can reserve as many resources.
  • the terminal may reserve more than 250 resources and not more than 750 resources.
  • the terminal may extract a random value in the interval [5 * 2, 15 * 2], and reserves additional resources multiplied by 10. According to the present example, the terminal may reserve 100 or more resources and 300 or less resources.
  • Example # 1 A finite number of subframes (of a resource reservation (interval) period) assumed (/ used) when performing transmission resource (re) reservation (/ selection) and / or C resel values in Table 2 (e.g. For example, “[10 * SL_RESOURCE_RESELECTION_COUNTER]”)).
  • the finite number of subframes (and / or C resel value) (of resource reservation (interval) period) is set relatively small.
  • (/ Signaling) e.g., has the effect of preventing excessive resource reservation (/ selection) (within a short time period)).
  • the terminal may perform V2X communication on the reserved V2X transmission resource (S3720).
  • V2X communication on the reserved V2X transmission resource S3720.
  • a detailed example of the UE performing V2X communication on the reserved V2X transmission resource is as described above.
  • 38 is a flowchart illustrating a method for performing sensing in a relatively short period when resource reservation of a short period is set according to an embodiment of the present invention.
  • the UE may determine a resource for performing V2X communication by sensing in a relatively short period in the sensing period (S3810). That is, as described above, when the terminal has a resource reservation of a short period is set (for example, resource reservation is set in intervals shorter than 100ms), the sensing (that is, S-RSSI measurement) interval is used for transmission of the terminal The resource reservation interval may be set. In other words, when the terminal is configured for a short period of resource reservation, the terminal may perform the sensing according to the short period used for the resource reservation. This will be described in more detail below.
  • V2X message priority (e.g. can be set / signaled to a relatively low (or high) priority) and / or the “PSSCH-RSRP MEASUREMENT” threshold in Table 2 STEP 5 ( And / or “0.2 * M total ” related coefficient (/ ratio) values in Table 2 STEP 6 (/ 8) (e.g. (in total (candidate) resources) after performing STEP 5 in Table 2 (within the S A set).
  • PSSCH-RSRP MEASUREMENT increase value applied when the number of resources is not met (eg , “3DB”) and / or the periodic value used for the sensing operation (eg STEP 5 in Table 2) and / or the periodic value used for the energy measurement operation (eg STEP 8 in Table 2)
  • the “100MS” value can be changed (to a relatively short (or long) value))).
  • Example # 3 I_VALUE (range) value and / or P_STEP value selectable (/ allowed) on the V2X resource pool (and / or (V2X) carrier).
  • Transmission power related (OPEN-LOOP) parameters (/ values) (eg “P O “, “ALPHA”, etc.) and / or V2X resource pools (/ carriers).
  • the V2X UE (S) may perform (transmission) resource (re) selection as follows.
  • the V2X terminal may select a transmission resource in the following manner.
  • the terminal selects resources by itself.
  • the terminal performs sensing and selects / reselects a resource based on the sensing.
  • the terminal may transmit a scheduling assignment (SA) indicating the selected / reselected resource.
  • SA scheduling assignment
  • resource selection / reselection may be triggered to the UE in subframe # (also referred to as TTI, hereinafter same) #n. Then, the terminal performs sensing between the subframe #na and the subframe #nb (a> b> 0, where a and b are integers), and selects a resource for V2X message transmission based on the result. Can be reselected.
  • subframe # also referred to as TTI, hereinafter same
  • the terminal performs sensing between the subframe #na and the subframe #nb (a> b> 0, where a and b are integers), and selects a resource for V2X message transmission based on the result. Can be reselected.
  • the a and b may be values that are set in common to the V2X terminals, or may be values that are set independently for each V2X terminals.
  • the UE may consider all of the decoded SA transmissions in the period from subframe # n-a to subframe # n-b.
  • the decoded SA may be related to data transmission in a period from subframe # n-a to subframe # n-b, and the decoded SA may be considered to be transmitted before subframe # n-a.
  • the UE that fails to perform the sensing operation in subframe #m selects subframes # (m + 100 * k) in resource selection / reselection. Can be excluded. Meanwhile, the UE may skip without performing a sensing operation in subframes used to transmit a signal.
  • the terminal After performing the sensing, the terminal selects a time / frequency resource for the PSSCH, that is, the sidelink data channel.
  • the UE may transmit a scheduling assignment (SA) in subframe # n + c.
  • C is an integer greater than or equal to 0, and may be a fixed value or a variable.
  • the UE may not require scheduling allocation transmission (ie, PSCCH transmission) in subframes whose c value is less than c min .
  • the c min may be a fixed value or a value set by a network.
  • the scheduling assignment SA transmitted in subframe # n + c may indicate associated data transmitted in subframe # n + d.
  • d may be an integer greater than or equal to c (d ⁇ c).
  • c and d may both be values of 100 or less.
  • V2X resources may be triggered.
  • the counter is decremented every transmission block transmission, and may be reset if reselection is triggered for all semi-statically selected resources.
  • the value to be reset can be chosen randomly with equal probability between a certain range, for example between 5 and 15.
  • the transport block does not match the current resource allocation even when the maximum allowed modulation and coding scheme (MCS) is used.
  • MCS modulation and coding scheme
  • selection / reselection of PSSCH resources may be selected through the following process.
  • Scheduling allocation decoding and excluding certain resources based on additional conditions may select one of the following two options.
  • the first option is to exclude those resources indicated or reserved (reserved) by the decoded scheduling assignment and resources whose DM-RS power is received above the threshold in data resources associated with the scheduling assignment.
  • the second option is to exclude those resources indicated or reserved by the decoded scheduling assignment and those whose energy measured at the data resources associated with the scheduling assignment is above a threshold.
  • the terminal may select a V2X transmission resource among the resources that are not excluded.
  • the UE may select and subset the PSSCH resources after the remaining PSSCH resources are measured and ranked based on the total received energy.
  • the terminal compares the energy in the currently selected resources with the energy in the subset, and if the energy in the currently selected resources is greater than a threshold relative to the energy in the subset, may select one of the subsets. .
  • the terminal may randomly select one resource from the subset.
  • the UE can select and subset after measuring and ranking the remaining PSSCH resources based on the total received energy.
  • the terminal may randomly select one resource from the subset.
  • the UE can select and subset after measuring and ranking the remaining PSSCH resources based on the total received energy.
  • the terminal may select a resource that minimizes fragmentation of frequency resources in the subset.
  • the '(D (/ C ) -M) '((max (/ min)))) range for example, can be interpreted as' TX RESOURCE (RE) SELECTION DURATION (/ RANGE / WINDOW)') (for example, the value 'M'
  • TX RESOURCE (RE) SELECTION DURATION (/ RANGE / WINDOW)' for example, the value 'M'
  • 'D (/ C)' wording is (exceptionally) (initially) after the resource (re) selection (/ reservation) action is triggered (e.g. SUBFRAME # N) )
  • the data (PSSCH) (which may be interpreted as the transmission time / control information (PSCCH)) may be set (/ signaled) differently.
  • the value 'C' and / or 'D' ((maximum (/ min))) range (for example, can be interpreted as 'TX RESOURCE (RE) SELECTION DURATION (/ RANGE / WINDOW)') Should be determined to satisfy (or consider) the 'LATENCY (/ QOS) REQUIREMENT', which may differ depending on the 'SERVICE TYPE' (and / or 'PRIORITY LEVEL').
  • 'UPPER LIMIT (/ LOWER BOUND)' of 'C' and / or 'D' values may not be fixed.
  • the 'UPPER LIMIT (/ LOWER BOUND)' may be set (/ signaled) differently according to 'PRIORITY LEVEL' (and / or 'SERVICE TYPE' and / or 'LATENCY (/ QOS) REQUIREMENT'). Can be.
  • the (transmit) resource (re) selection operation may be triggered.
  • the maximum (and / or minimum) or range eg 'TX RESOURCE (RE) SELECTION DURATION (/ RANGE / WINDOW)
  • Possible) is the time (or packet (/ message)) at which a packet (/ message) arrives (or receives) (or transmitted) on a 'LOW LAYER) buffer' (and / or 'PDCP LAYER').
  • Point in time ('M') and / or (where the predefined (/ signaling) condition is met) point at which the (transfer) resource (re) selection action is triggered ('N') and / or 'LATENCY REQUIREMENT' ( 'L') (e.g. '100MS') and / or 'part of PPPP' (e.g.) different (partly) by 'PPPP' (e.g.
  • 'LATENCY REQUIREMENT' packets Can be determined in consideration of the setting (if allowed).
  • the maximum value (and / or minimum value) of the value 'D' (and / or 'C') is determined as '(L-ABS (MN))' or 'MIN (L, (L').
  • ABS (MN))) (where, for example,' MIN (X, Y) 'and' ABS (Z) 'are functions that derive the minimum value among' X 'and' Y ', respectively, the absolute value of' Z ' Value, or 'D' (and / or 'C') ranges from '(L-ABS (MN)) ⁇ D (/ C) ⁇ 100 (/' LATENCY REQUIREMENT ')' (or '(L-ABS (MN)) ⁇ D (/ C) ⁇ 100 (/' LATENCY REQUIREMENT ')').
  • the maximum (and / or minimum) value of the 'D' (and / or 'C') value is calculated (/ determined), taking into account the retransmission of a particular (one) 'TB (/ packet / message)'. ), You may need to subtract the predefined 'MARGIN (/ OFFSET)' value (' MAG_VAL ') from the 'L' value.
  • the maximum value (and / or minimum value) of the value 'D' (and / or 'C') is' ((L-MAG_VAL)-ABS (MN)) 'or' MIN ((L-MAG_VAL), ((L-MAG_VAL)-ABS (MN))) '.
  • the 'MAG_VAL' value may have a 'DEPENDENCY' (eg, the 'MAG_VAL' value increases as the number of retransmissions increases).
  • the rule may be triggered by a '(transmit) resource (re) selection operation' triggered (as a pre-defined (/ signaled) condition is met)) and the '(LOW LAYER) buffer' (and / or It may be limitedly applied only when there is a packet (/ message) (or transmitted / generated) on PDCP LAYER (or when a packet (/ message) is generated).
  • the maximum value of the 'D' (and / or 'C') value (described above) (eg, '(L-ABS (MN))', '100 (/' LATENCY REQUIREMENT ')' Subsequent resources, including (or not including) time points corresponding to), are assumed to be unavailable and excluded (from (re) selectable candidate resources (on 'STEP 3 (/ 2)')). You can do that.
  • the 'C' (and / or 'D') value e.g., the 'C' time point is the (first) control (/ after the (transmit) resource (re) selection action is triggered ('N').
  • the minimum value ( C_MIN ) (for example, 'minimum value') of the information (PSCCH) which can be interpreted as the time point at which transmission is performed is determined in consideration of the 'PROCESSING TIME' of the terminal (for example, '4MS').
  • the sensing operation and / or (transmission) resource (re) selection (/ reservation) operation (and / or V2X message transmission)
  • the sensing operation and / or (transmission) resource (re) selection (/ reservation) operation (and / or V2X message transmission)
  • the (applicable) condition is (A) when transmitting a V2X message of 'LATENCY REQUIREMENT' shorter (or longer) than a preset (/ signaled) threshold (and / or pre-set (/ signaling).
  • PPPP value (/ range) for V2X message
  • the transmission may be protected by selecting a relatively high (or low) PPPP value (/ range), where, for example, a transmission based on a high (or low) PPPP value (/ range) may be performed by another terminal.
  • Selectable ((max / min)) section (/ range) (/ SELECTTION WINDOW) and / or (re) selected (or reserved) range to select a random value (or draw) (And / or coefficients multiplied by the corresponding random value (to derive the C_RESEL value [1/2/3])) and / or the candidate (transmit) resource exclusion based on the resource reservation period and / or the PSSCH-RSRP threshold.
  • '(TIMER) EXPIRATION CONDITION' relating to (transmission) resource (re) selection may be defined when the following (some) conditions are met (simultaneously).
  • the V2X UE causes (actually) (assuming (transmit) resource (re) selection operation has been triggered) only when (sometimes) the following (some) conditions are satisfied (simultaneously): Transmit) resource (re) selection operation.
  • the counter value (which is decremented by a preset value (e.g., '1') for every TB transmission) is changed to 'EXPIRATION CONDITION' (eg, the counter value is '0' ( And / or changed to 'negative value') (and / or '(transmitted) resource (re) select action' was triggered (as a pre-defined (/ signaled) condition is met)).
  • the V2X UE (S) may be allowed to perform (transmit) resource (re) reservation.
  • d may be a value less than or equal to d max .
  • d max may be determined depending on the priority (priority) such as the terminal / data / service type.
  • the UE may inform whether to reuse frequency resources for signals transmitted in subframe # n + d for potential transmission of other transport blocks in subframe # n + e.
  • e is an integer and has a relationship of d ⁇ e.
  • the terminal may explicitly or implicitly inform the reuse.
  • the e value may be one value or a plurality of values.
  • it may be informed that frequency resources for signals transmitted in subframe # n + d are not used.
  • the receiving terminal receiving the V2X signal decodes the scheduling assignment (SA) transmitted by the transmitting terminal transmitting the V2X signal.
  • SA scheduling assignment
  • P may be 100.
  • the J value may be explicitly signaled by the scheduling assignment or may be a fixed value (eg, 1).
  • the i value may be explicitly signaled by the scheduling assignment, or may be a preset value or a fixed value. Alternatively, the i value may be an integer between 0 and 10.
  • the value “I” is set in advance (/ signaled) “[0, 1,... , 10] ”is assumed to be selected (4 bits) and / or the value of“ J ”(see J above) is fixed to“ 1 ”.
  • the V2X MESSAGE generation period is changed according to a predefined parameter (for example, speed / (going) direction change amount, etc.), so that the V2X TX UE (S) generates a (own) V2X MESSAGE generation period. If it is difficult to predict accurately, it may not be efficient to reserve (future) resources according to the above method.
  • the V2X RX UE (S) if a particular V2X TX UE (S) signaled the "I" value (on the SA field) to "2""
  • the same frequency resource ( HARD_RSC ) assigned (/ scheduled) via SA (on the corresponding T) in TTI # (N + D) ”,“ TTI # (N + D + 2 * P) ” is called“ EXPLICIT ”(or HARD).
  • the rule (And / or SOFT_RSC reservations) are pre-set (/ signaled) features Only applicable to RESOURCE ALLOCATION MODE (e.g., RANDOM RESOURCE SELECTION of MODE 1 and / or P-UE (not applicable to RESOURCE SELECTION based on / PARTIAL SENSING)). If this is applied, the V2X TX UE (S) may select a candidate according to the “DM-RS POWER / ENERGY MEASUREMENT” value for HARD_RSC and SOFT_RSC of another V2X TX UE (S) (determined based on SA decoding).
  • HARD_RSC related threshold HARD_ TH
  • SOFT_RSC SOFT_ TH
  • signaling e.g., HARD_RSC can be interpreted to be protected with a higher priority than SOFT_RSC. Can be).
  • SOFT_RSC relevant threshold is set to form an offset value (HARD_ THOFF) about the HARD_RSC (/ signaling) (and / or HARD_TH relevant threshold is set to the offset value (SOFT_ THOFF) form about a SOFT_RSC ( / Signaling)).
  • HARD_THOFF the offset value
  • SOFT_ THOFF the offset value
  • V2X TX UE (S) is to determine the ((applicable) SA on the point of time based on all“ I ”values).
  • HARD_THOFF value is set (/ signaled) to “infinity (or relatively large)”
  • SOFT_RSC of the corresponding V2X TX UE (S)
  • V2X MESSAGE PRIORITY (and / or V2X MESSAGE PRIORITY to be transmitted by the other V2X TX UE (S) identified based on SA decoding) and / or (B) (measured) “CONGESTION LEVEL
  • Different thresholds e.g., HARD_TH, SOFT_TH
  • offset values e.g., HARD_THOFF (or SOFT_THOFF)
  • V2X MESSAGE PRIORITY and / or the V2X MESSAGE PRIORITY you wish to transmit
  • D the (measured) “CONGESTION LEVEL” of the other V2X TX UE (S) identified by the For example, HARD_TH, SOFT_TH) (or an offset value (eg, HARD_THOFF (or SOFT_THOFF))) may be adjusted.
  • the V2X TX UE (S) is set in advance to the (DM-RS POWER / ENERGY MEASUREMENT) value associated with the HARD_RSC and SOFT_RSC of the other V2X TX UE (S determined based on the SA decoding) (/ signaling
  • the different offset values may be applied to determine whether the candidate resource is a selectable resource or a resource to be excluded (Step 2 of Table 2).
  • the HARD_RSC related offset value (eg, assumed to be “negative value”) is set larger (or smaller) than that of SOFT_RSC (/ signaling) (eg, HARD_RSC is relatively higher than SOFT_RSC). May be interpreted as being protected by priority).
  • V2X MESSAGE PRIORITY and / or V2X MESSAGE PRIORITY to be transmitted by the other V2X TX UE (S) identified based on SA decoding) and / or (B) (measured) “CONGESTION LEVEL V2X MESSAGE PRIORITY (and / or V2X MESSAGE PRIORITY of other V2X TX UE (S) identified based on (/ signaling) (and / or (C) SA decoding) ) And / or (D) the (measured) offset value may be adjusted depending on the (measured) “CONGESTION LEVEL”.
  • the V2X TX UE (S) selects (reserves) SA TX related resources, it is linked with data transmission (s) on HARD_RSC and SOFT_RSC of another V2X TX UE (S) (determined based on SA decoding).
  • SA transmission resource (s) it is a (SA) candidate resource that is selectable by applying different “DM-RS POWER / ENERGY MEASUREMENT” thresholds (or offset values) that have been (preferably) pre-set (/ signaled). You may want to determine if it is a resource to be excluded (SA).
  • the "TIME GAP" (range) value between the SA transmission time and the interworking data transmission time is different depending on which resource type (eg, HARD_RSC, SOFT_RSC) the data is transmitted.
  • the V2X message transmission period (eg, “1000MS”) of the PEDESTRIAN UE ( P- UE ) is that of the VEHICLE UE ( V- UE ) (when considering the relatively slow travel speed and / or the need for battery saving). It can be set (/ signaled) relatively long compared to (eg, “100MS”).
  • the value of the "I" on the SA field points to a specific value (or "RESERVED STATE") that has been previously set (/ signaled), so that another V2X RX UE ( S) allows (A) (applicable) SA (and / or interlocked data) transmissions to be interpreted as being performed by the P-UE and / or (B) (scheduled) SA-based (scheduled) resources It can be interpreted as being reserved at a predetermined (/ signaled) (relatively long) period (relative to V-UE).
  • V2X TX UE allows (A) if multiple (SIDELINK ( SL )) SPS PROCESS (/ CONFIGURATION) are simultaneously associated with different service types and / or V2X MESSAGE PRIORITY.
  • V2X TX UE S
  • S V2X TX UE
  • V2X TX UE changes its "SYNCHRONIZATION SOURCE"
  • (A) (if the remaining "LATENCY" value is less than the preset (/ signaled) threshold) transmission resources Define for random selection (/ reservation) (e.g., randomly selected resources should only be used for transmission of a preset (/ signaling) number of "TRANSPORT BLOCK ( TB )", and then sensing-based selection (/ reservation) And / or (B) select a transmission resource (/ reserve) after performing a sensing operation during a pre-set (/ signaled) time period. It can be defined to.
  • a V2X TX UE may cause a plurality of (other) “SYNCHRONIZATION SOURCE” related communications (including the current “SYNCHRONIZATION SOURCE”) (based on a preset (/ signaled) value). If the SYNCHRONIZATION SOURCE is changed to one of them, the sensing result value (related to the changed SYNCHRONIZATION SOURCE) may be used to select (/ reserve) a transmission resource.
  • a V2X UE may be configured to (A) pre-set (/ signal) the same (or (time (/ frequency))) synchronization difference with the same (or (time (/ frequency))) synchronization. Define to report how many carriers are capable of simultaneous receive (/ transmit) less than the threshold and / or (time (/ frequency)) synchronization differences with different (or (time (frequency))) synchronization It can be defined to report (independently) how many carriers are capable of simultaneous reception (/ transmission) for how many carriers greater than the set (/ signaled) threshold.
  • the (serving) base station that has received such (capability) information sets the appropriate number of carriers for V2X communication (receive / transmit) in consideration of the capability of the V2X UE (S). / Signaling).
  • the (serving) base station may determine different MCS (range) values according to the absolute speed of the V2X UE (S) and / or “SYNCHRONIZATION SOURCE TYPE (eg, GNSS, ENB)” and The relevant information may be signaled (to the V2X UE (S)) so that the V2X TX operation of the number of RESOURCE BLOCKs (RBs) and / or the number of (HARQ) retransmissions is performed.
  • the (serving) base station may adjust the “location based pool size” based on the speed (/ location) information reported from the V2X UE (S) (in its coverage).
  • the (serving) base station sets (/ signals) the “location based pool size” information for each speed (range) to the V2X UE S (in its own coverage), and the V2X UE S It is possible to apply (/ use) "location based pool size” information corresponding to its speed to perform V2X communication.
  • the V2X TX UE (S) operate the sensing-based resource (re) selection (eg, STEP 2/3 in Table 2) according to the following (some) method.
  • the LIM_TIMEWIN value is (A) V2X MESSAGE PRIORITY which V2X TX UE (S) wants to transmit and / or (B) (measured) CONGESTION LEVEL and / or (C) V2X MESSAGE (/ SERVICE) related TARGET LATENCY (/ RELIABILITY) It can be adjusted (or set differently) depending on the REQUIREMENT etc.
  • Example # 17-1 NUM_RETX (relative to a specific TB) of (non-excluded) resources ( NOEX _RSC ) derived as a result of performing STEP 2 (eg, OPTION 2-1).
  • CS INDEX 0
  • S V2X TX UEs
  • the V2X TX UE may be configured to define a predefined rule (eg, in a pre-set (/ signaled) CS SET (and / or OCC SET). It is possible to select a (one) CS (and / or OCC) value according to the random selection method).
  • the CS (INDEX) SET may be set (/ signaling) to "CS INDEX 0, 3, 6, 9".
  • the V2X RX UE (S) is (all) CS (and / or OCC) in the corresponding CS SET (and / or OCC SET) (because it does not know exactly which value the V2X TX UE (S) chose). It performs a blind detection ( BD ) operation for.
  • the CS (and / or OCC) value that the V2X TX UE (S) selects in the CS SET (and / or OCC SET) is (A) (V2V) subframe (/ slot) index and / Or (B) a V2X TX UE ID (or (TARGET) V2X RX UE ID) and / or (C) an ID (x bit) transmitted on the PSCCH as an input parameter (/ seed value) Is defined to be randomized (or hopped) by the (and / or the CS SET (and / or OCC SET) (configuration) of the V2X TX UE (S) is (D) (V2V) subframe (/ slot) index and / Or (E) a V2X TX UE ID (or (TARGET) V2X RX UE ID) and / or (F) an ID (x bit) transmitted on the PSCCH as an input parameter (/ seed value) )
  • the CS SET (and / or OCC SET) (configuration) is set differently according to the V2X MESSAGE PRIORITY (to be transmitted by the V2X TX UE (S)) and / or the (measured) CONGESTION LEVEL, etc.
  • V2X MESSAGE PRIORITY to be transmitted by the V2X TX UE (S)
  • the V2X TX UE (S) the V2X TX UE (S)
  • the V2X TX UE (S) the V2X TX UE (S)
  • the V2X RX UE (S) when the above rule is applied
  • one sub from (serving) base station
  • the maximum number of BDs to be performed (by the V2X RX UE (S)) within a frame may be set (/ signaled).
  • the V2X UE (S) may allow the BD number information that it can perform to the maximum in one subframe through the predefined signaling (to the (serving) base station) through the predefined signaling.
  • a CS field (eg, “3 bits”) may be defined on the PSCCH (when applicable rule is applied), and the corresponding CS field value is previously set by the V2X TX UE (S) (/ Predefined with an input parameter (and / or SELCS_VAL value) by the selected (one) CS value ( SELCS _VAL ) according to a predefined rule (e.g. random selection method) within the signaled CS SET PSSCH DM-RS CS (in conjunction with PSCCH) according to the corresponding (specified) CS field value, by means of derived (/ calculated) values based on randomized (randomized / hopping) functions The value can be set (/ determined).
  • a predefined rule e.g. random selection method
  • the PSSCH DM-RS CS value in conjunction with the PSCCH (when the rule is applied) does not further define a CS field (eg, “3 bits”) on the PSCCH.
  • SELCS_VAL PSCCH DM-RS CS value selected according to a predefined rule (e.g.
  • the PSSCH SCRAMBLING SEQUENCE GENERATOR sets the CS field value (on the PSCCH) and / or the V2X TX UE ID (or (TARGET) V2X RX UE ID (or X bit ID)) and / or ( V2V) can be initialized according to the subframe (/ slot) index).
  • PSCCH and / or (interlocked) PSSCH related (A) (DM-RS) SEQUENCE GENERATION RULE and / or (B) (DM-RS) CS (/ OCC) INDEX SELECTION (/ DETERMINATION ) RULE and / or (C) GROUP / SEQUENCE HOPPING RULE can be defined as shown in Table 7 and Table 8.
  • DM-RS proposed schemes
  • SEQUENCE SEQUENCE (/ CS (/ OCC) INDEX) (and / or interference) when PSCCH and / or PSSCH transmission resources (some or all) overlap between different terminals
  • the PSCCH and / or (linked) PSSCH related (A) (DM-RS) SEQUENCE GENERATION RULE and / or (B) (DM-RS) CS (/ An example of OCC) INDEX SELECTION (/ DETERMINATION) RULE and / or (C) GROUP / SEQUENCE HOPPING RULE will be described.
  • A (DM-RS) SEQUENCE GENERATION RULE and / or (B) (DM-RS) CS (/ An example of OCC) INDEX SELECTION (/ DETERMINATION) RULE and / or (C) GROUP / SEQUENCE HOPPING RULE
  • the normal CP may be supported in the V2V WI, and the destination ID may not be transmitted through the SA.
  • 16 CRC bits from the SA may be used to generate the PSSCH DMRS sequence and the data scrambling sequence.
  • N x may mean X bits in the SA used to generate the PSSCH DMRS sequence.
  • a bit (field) used for (linked) PSSCH DM-RS CS index (/ value) determination eg, 16-bit CRC (C 0 , C 1 ,... C 15 ), 2 bits that are preset (/ signaled) (or randomly selected) among (3) bit values of “C 12 , C 13 , C 14 ” are selected from the selected PSCCH CS index (/ value) (eg , “2 bits”) can be used for SCRAMBLING.
  • (A) the (final) 16-bit CRC of the PSCCH is “C 0 , C 1 ,...
  • the LSB (for example, the PSSCH DM-RS OCC index (/ value) may be changed if the corresponding rule is applied) among the 16-bit CRCs (C 0 , C 1 ,..., C 15 ) of the PSCCH ( Or MSB) 2 bits (and / or 2 bits of a preset (/ signaled) (or randomly selected) specific position) to be SCRAMBLING to the selected PSCCH CS index (/ value) (eg, “2 bits”).
  • the PSSCH DM-RS OCC index may be changed if the corresponding rule is applied
  • the PSCCH Or MSB 2 bits (and / or 2 bits of a preset (/ signaled) (or randomly selected) specific position) to be SCRAMBLING to the selected PSCCH CS index (/ value) (eg, “2 bits”).
  • the (some) modified 16-bit CRC with (partly) the SCRAMBLING operation will be the (final) CRC of the PSCCH and / or (B) the (final) of the PSCCH.
  • the 16-bit CRC indicates “C 0 , C 1 ,... , Keep (/ apply) a C 15 ”value (for example, only the CRC (and / or / or bit (field)) used to determine the (linked) PSSCH DM-RS CS index (/ value) It can be considered as changed by the SCRAMBLING operation.
  • 16 bits (different) for SCRAMBLING use are pre-set (/ signaled) for each PSCCH CS index (/ value) (for example, “2 bits”), and the terminal causes (A) the selected PSCCH CS index.
  • the FRA_INRETX field may have a RESOURCE INDICATION VALUE ( RIV ) value (similar to the LVRB type of the existing LTE system) (related to PSSCH transmission)
  • RIV RESOURCE INDICATION VALUE
  • SUB_START Starting subchannel index (/ location) information
  • SUB_LENGTH subchannel length (/ number) information
  • SECDATA _ SUBST and / or (B) SUB_LENGTH may be interpreted as subchannel length (/ number) information ( SFDATA _ SUBLN ) used for first and second PSSCH transmissions.
  • the start index (/ location) information ( FIRDATA _ SUBST ) of the subchannel on which the first PSSCH transmission is performed is defined in advance by the receiving terminal (rather than being directly signaled through the FRA_INRETX field).
  • the following describes an example of the SCI FOMRAT configuration field (s) used in the MODE2_SCH operation and / or (B) the DCI FORMAT configuration field (s) used in the MODE1_DYN operation.
  • SCI has 1) PRIORITY: 3 bits, 2) Resource reservation: 4 bits, 3) MCS: 5 bits, 4) CRC: 16 bits 5) Retransmission index (RETX_INDEX): 1 bit, 6) Time gap between transmission initiation and retransmission (TGAP_INIRETX): 4 bits, 7) Frequency resource location (FRA_INRETX) of transmission start and retransmission: 8 bits, 8) Reserved bit (RSV_BIT): 7 bits may be set.
  • DCI is: 1) CIF: 3 bits, 2) lowest index of subchannel allocated to start of transmission (PSCCH_RA): 5 bits, 3) time gap between start of transmission and retransmission (as SA content): 4 bits, 4) start of transmission And frequency resource location (FRA_INRETX) of retransmission: 8 bits.
  • the remaining bits of “(Q-5)” (and / or “(Q-CEILING (LOG 2 (K)))”) can be interpreted as (/) considered unnecessary information bits.
  • Example # 20-2 As an example, when two PSSCH transmissions are configured (/ signaled) for a particular (one) TB transmission, (actually) assuming that the (necessary) FRA_INRETX field size is "Q" bit, Multiple (part or all) SECDATA_SUBST values (preset (/ signaled)) that can be specified together with a specific (single) FDATA_SUBLN (or SFDATA_SUBLN) value (required) are interpreted as a STATE (or value) for unnecessary information. Can be considered).
  • Example # 20-3 As an example, for a specific (one) TB transmission, when one PSSCH transmission is configured (/ signaled), the V2X RX UE (S) may transmit (via corresponding) V2X TX through the TGAP_INIRETX field. Since the UE can determine whether to perform one or two PSSCH transmissions (for a specific (one) TB), the RETX_INDEX related STATE (or value) can be interpreted (/ regarded) as unnecessary information.
  • a RETX_INDEX related value (or STATE) is a pre-set (/ signaled) (specific) value (or STATE).
  • a corresponding (specific) value (or STATE) (relating to RETX_INDEX) may be used for the purpose of “VIRTUAL CRC”.
  • Example # 20-4 As an example, some bits that are preset (/ signaled) among RSV_BIT field related bits (eg, “7 bits”) are interpreted as unnecessary information related bits (or values). Can be.
  • DM-RS SEQUENCE (/ CS (/ OCC) INDEX) Mitigates COLLISION problems (e.g., through the operation) the PSCCH CRC is randomized, which (finally) results in PSSCH (DM-RS) SEQUENCE ( / CS (/ OCC) INDEX, etc.), where, for example, the above-described unnecessary information related STATE (or value) and / or bit generation (for example, specific (one) TB transmission is performed.
  • one PSSCH transmission is established (/ signaled) is only one example, and the (some or all) proposed method of the present invention (STATE (or value) related to unnecessary information and / or bits generated)
  • STATE or value related to unnecessary information and / or bits generated
  • the FRA_INRETX size being changed (depending on the total number of subchannels (K) that make up the V2V resource pool (in one subframe) (pre-set / signaled).
  • the (additional) bits generated by changing the size of FRA_INRETX may be considered as unnecessary information related bits).
  • the 16-bit CRC (C 0 , C 1 ,..., C 15 ) of the PSCCH is randomized (/ 15 ) through a corresponding randomization operation of the unnecessary information related STATE (or value) and / or bits. Change) and finally the PSSCH DM-RS CS (/ SEQUENCE / OCC) (index) is also randomized (/ change) (see Table 7 and / or Table 8).
  • a transmitting terminal may be configured to generate a random information related STATE (or value) and / or a randomly selected value (and / or ((serving)) from a base station (or network) (described above). ) Can be set as a preset (/ signaled value).
  • the unnecessary information related STATE (or value) and / or bit by bit for example, (example # 20-1), (example # 20-2), (example # 20-3)) , (Example # 20-4) may be defined (/ signaled) differently under the condition that these rules apply to.
  • the number of subchannels (/ signaled) set to resource pool (for V2X communication) is “1” (or / or for one (1) TB transmission, one PSSCH transmission is configured).
  • the size of FRA_INRETX (actually used) will be “0”, so STATE (or value) for unnecessary information of (Example # 20-3) (for example, STATE (or value) for RETX_INDEX) ) And / or allow the rule to be applied to bits, and in other cases (eg, for V2X communication), the number of subchannels (/ signaled) into the resource pool is not "1" (and / or If greater than “1” (and / or for one (1) TB transmission, one PSSCH transmission is set up (/ signaled)), then (Example # 20-2) (for example (actually Multiple (part or all) (preset (/ signaled)) that can be specified with a specific (one) FDATA_SUBLN value
  • This rule can be applied to STATE (or value) and / or bits of unnecessary information related to a plurality of (some or all) SECDATA_SUBST values (or STATEs) that can be specified together (preset / signaled). There is also.
  • a transmitting terminal may be configured to transmit (A) the unnecessary information related STATE (or value) and / or bits (A) to transmit (or (target) receive) a terminal identifier and / or (B). Specified by a derived (/ calculated) value based on a predefined (randomized / hopped) function with the selected PSCCH CS index (/ value) (e.g., "2 bits") as an input parameter ( Or (C) transmit (or (target) receive) a terminal identifier and / or (D) select a value derived by a selected PSCCH CS index (/ value) (eg, “2 bits”) or the like. .
  • the (bit) position that should be specified in) is set (/ signaled) in advance and / or (B) “(Q-5-PC_SELCSBIT)” (and / or “(Q-CEILING (LOG 2 (K)))- PC_SELCSBIT) ”), so that the remaining bits (eg,“ 1 ”bits) can be set to ZERO PADDING (or to a preset value (/ signaled)).
  • a PSCCH CRC used to determine a parameter such as a PSSCH-related (DM-RS) SEQUENCE (/ CS (/ OCC) INDEX, etc. transmitted at a specific time point may be transmitted in the form of (FDM) in which (PSCCH and (associated) PSSCH are linked). Case) may be defined as a PSCCH CRC transmitted at the same time point as the PSSCH (and / or a PSCCH CRC transmitted together for (requiredly) for PSSCH transmission).
  • DM-RS PSSCH-related
  • Case may be defined as a PSCCH CRC transmitted at the same time point as the PSSCH (and / or a PSCCH CRC transmitted together for (requiredly) for PSSCH transmission).
  • examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
  • some proposal schemes may be implemented in combination (or merge).
  • the present invention has been described a proposal method based on the 3GPP LTE system for convenience of description, the scope of the system to which the proposed method is applied can be extended to other systems in addition to the 3GPP LTE system.
  • the proposed schemes of the present invention can be extended and applied for D2D communication.
  • D2D communication means that the UE communicates directly with another UE using a wireless channel, where, for example, the UE means a terminal of a user, but network equipment such as a base station is used for communication between UEs. Therefore, when transmitting / receiving a signal, it can also be regarded as a kind of UE. Also, as an example, the proposed schemes of the present invention may be limitedly applied only to the MODE 2 V2X operation (and / or the MODE 1 V2X operation).
  • the proposed schemes of the present invention ('(trans) resource (re) selection operation' is triggered (as the predefined (/ signaled) condition is satisfied)) '(LOW LAYER) buffer' ( And / or if a packet (/ message) (to be transmitted or generated) is present on (or 'PDCP LAYER') (or a packet (/ message) is generated) (or '(LOW LAYER) buffer' (and /
  • the present invention may be limited to the case where the packet (to be transmitted or generated) (/ message) does not exist (or the packet (/ message) is not generated) on the 'PDCP LAYER').
  • the proposed schemes of the present invention may be limitedly applied only when the PSCCH and the (used) PSSCH are not located (or located) in the adjacent RB (S) on the same subframe.
  • the proposed schemes of the present invention not only V2V MODE 1 (/ MODE 2) DYNAMIC SCHEDULING operation but also V2V MODE 1 (/ MODE 2) SEMI-PERSISTENT SCHEDULING ( SPS ) operation (and / or V2X MODE 1 (/ MODE). 2) DYNAMIC SCHEDULING operation and / or V2X MODE 1 (/ MODE 2) SPS operation) can be extended.
  • "transmission resource selection" wording may be interpreted as (extended) "transmission resource (re) reservation”.
  • 39 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • the terminal 1100 includes a processor 1110, a memory 1120, and an RF unit 1130.
  • the processor 1110 may execute a function / operation / method described by the present invention. For example, the processor 1110 may perform a sensing during a terminal-specific sensing period, select a resource for V2X communication, and perform V2X communication based on the selected resource.
  • the processor 1110 may select a resource for performing V2X communication within a range satisfying a latency request and perform V2X communication based on the selected resource.
  • the processor 1110 selects a resource for performing the V2X message transmission by sensing in a subchannel unit having a size corresponding to the size of the subchannel used for V2X message transmission, and based on the selected resource.
  • the V2X message transmission may be performed.
  • the processor 1110 may make a reservation for a finite number of resources on which V2X communication is performed and perform the V2X communication on the reserved finite number of resources.
  • the processor 1110 determines whether a resource reselection condition is satisfied, and if the resource reselection condition is satisfied, performs a reselection for a resource on which vehicle-to-X communication is performed. And perform the V2X communication based on the selected resource.
  • the processor 1110 may select a subframe other than the subframe related to the subframe in which the transmission is performed during the sensing period in the selection period and perform V2X communication based on the selected subframe.
  • the processor 1110 may allocate a V2X resource pool to the remaining subframes except for a specific subframe and perform V2X communication on the allocated V2X resource pool.
  • the RF unit 1130 is connected to the processor 1110 to transmit and receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

본 발명은 무선 통신 시스템에서 V2X(Vehicle-to-X) 단말에 의해 수행되는 V2X 동작 방법에 있어서, V2X 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하고 및 예약된 상기 유한한 개수의 자원 상에서 상기 V2X 통신을 수행하는 것을 특징으로 하는 방법을 제공한다.

Description

무선 통신 시스템에서 V2X 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하는 방법 및 상기 방법을 이용하는 단말
본 발명은 무선 통신에 관한 으로서, 보다 상세하게는, 무선 통신 시스템에서 단말에 의해 수행되는 V2X 전송 자원 선택 방법 및 이 방법을 이용하는 단말에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 준비하고 있다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다. 상업적 통신 네트워크는 빠르게 LTE로 변화하고 있으나 기존 통신 규격과의 충돌 문제와 비용 측면에서 현재의 공중 안전 네트워크는 주로 2G 기술에 기반하고 있다. 이러한 기술 간극과 개선된 서비스에 대한 요구는 공중 안전 네트워크를 개선하고자 하는 노력으로 이어지고 있다.
상술한 D2D 통신을 확장하여 차량 간의 신호 송수신에 적용할 수 있으며, 차량 (VEHICLE)과 관련된 통신을 특별히 V2X(VEHICLE-TO-EVERYTHING) 통신이라고 부른다. V2X에서 'X'라는 용어는 PEDESTRIAN (COMMUNICATION BETWEEN A VEHICLE AND A DEVICE CARRIED BY AN INDIVIDUAL(예: HANDHELD TERMINAL CARRIED BY A PEDESTRIAN, CYCLIST, DRIVER OR PASSENGER), 이 때, V2X는 V2P로 표시할 수 있다), VEHICLE (COMMUNICATION BETWEEN VEHICLES) (V2V), INFRASTRUCTURE/NETWORK (COMMUNICATION BETWEEN A VEHICLE AND A ROADSIDE UNIT (RSU)/NETWORK (예) RSU IS A TRANSPORTATION INFRASTRUCTURE ENTITY (예) AN ENTITY TRANSMITTING SPEED NOTIFICATIONS) IMPLEMENTED IN AN eNB OR A STATIONARY UE)) (V2I/N) 등을 의미한다. 보행자(혹은 사람)가 소지한 (V2P 통신 관련) 디바이스를 "P-UE"로 명명하고, 차량(VEHICLE)에 설치된 (V2X 통신 관련) 디바이스를 "V-UE"로 명명한다. 본 발명에서 '엔티티(ENTITY)' 용어는 P-UE, V-UE, RSU(/NETWORK/INFRASTRUCTURE) 중 적어도 하나로 해석될 수 있다.
한편, V2X 통신에서, P-UE가 V2X 신호를 전송하려고 할 때 어떤 자원을 어떻게 선택할 것인지가 문제될 수 있다. P-UE는 차량에 설치된 단말과 달리 배터리 소모에 민감한 특징이 있다. 또한, V2X 통신에서는 주로 주기적으로 신호를 전송하고, 다른 단말에게 간섭을 미치지 않는 것이 중요할 수 있다. 이러한 점들을 고려하여, P-UE의 전송 자원 선택 방법을 결정할 필요가 있다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 단말에 의해 수행되는 V2X 전송 자원 선택 방법 및 이를 이용하는 단말을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 무선 통신 시스템에서 V2X(Vehicle-to-X) 단말에 의해 수행되는 V2X 동작 방법에 있어서, V2X 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하고 및 예약된 상기 유한한 개수의 자원 상에서 상기 V2X 통신을 수행하는 것을 특징으로 하는 방법이 제공된다.
이때, 상기 유한한 개수는 상기 V2X 단말이 임의적으로 선택한 카운터 값에 비례하고, 상기 카운터 값은 양의 정수를 가질수 있다.
이때, 상기 카운터 값은 5 이상의 값을 가지고, 상기 카운터 값은 15 이하의 값을 가질 수 있다.
이때, 상기 유한한 개수는 상기 V2X 단말이 임의적으로 선택한 카운터 값의 10배의 값을 가질 수 있다.
이때, 상기 V2X 단말은 예약된 상기 자원이 더 이상 남아있지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행할 수 있다.
이때, 상기 V2X 단말이 1초 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행할 수 있다.
이때, 상기 V2X 단말이 기 설정된 개수의 전송 기회 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행할 수 있다.
본 발명의 다른 실시예에 따르면, 무선 통신 시스템에서 V2X(Vehicle-to-X) 단말에 의해 수행되는 V2X 동작 방법에 있어서, 자원 재 선택 조건이 만족되는지 여부를 결정하고, 상기 자원 재 선택 조건이 만족되는 경우, V2X(Vehicle-to-X) 통신이 수행되는 자원에 대한 재 선택을 수행하고 및 선택된 상기 자원에 기초하여 상기 V2X 통신을 수행하는 것을 특징으로 하는 방법이 제공된다.
이때, 상기 V2X 단말은 예약된 상기 자원이 더 이상 남아있지 않은 경우, 선택 윈도우에서 자원 재 선택을 수행할 수 있다.
이때, 상기 V2X 단말이 1초 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서 자원 재 선택을 수행할 수 있다.
이때, 상기 V2X 단말이 기 설정된 개수의 전송 기회 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서 자원 재 선택을 수행할 수 있다.
이때, 상기 기 설정된 개수는 1 내지 9의 값을 가질 수 있다.
본 발명의 또 다른 실시예에 따르면, 단말(User equipment; UE)은, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, V2X(Vehicle-to-X) 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하고, 및 예약된 상기 유한한 개수의 자원 상에서 상기 V2X 통신을 수행하는 것을 특징으로 하는 단말을 제공한다.
본 발명에 따르면, 단말이 V2X 통신을 수행할 때, V2X 통신이 수행되는 자원을 효율적으로 예약할 수 있다. 이에 따라, 본 발명에 따른 단말은 무선 자원을 효율적으로 이용할 수 있으므로, 불필요한 무선 자원의 점유가 최소화 되어, 무선 통신의 효율성이 극대화된다.
도 1은 본 발명이 적용될 수 있는 무선통신 시스템을 예시한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 5는 ProSe 직접 통신을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 6은 ProSe 직접 통신을 위한 사용자 평면 프로토콜 스택을 나타낸다.
도 7은 D2D 발견을 위한 PC 5 인터페이스를 나타낸다.
도 8은 본 발명의 일 실시예에 따른, 단말 특정적 센싱 구간에 기반한 V2X 통신 수행 방법에 대한 순서도다.
도 9는 단말 특정적 센싱 윈도우에 대한 개략적인 예를 도시한 것이다.
도 10은 본 발명의 일 실시예에 따른, 선택 윈도우 구성 방법에 대한 순서도다.
도 11과 도 12는 [제안 규칙#1]에 대한 도식적 표현이다.
도 13과 도 14는 재예약(/선택) 자원 결정 및 재예약(/선택)된 자원을 기반으로 곧바로 (V2X MESSAGE) 전송을 수행하는 것을 도시한 것이다.
도 15 및 도 16은 ('SINGLE V2X UE' 관점에서) '제어(/스케줄링) 정보'와 '(해당 제어(/스케줄링) 정보와 연동된) 데이터'가 동일 SF 상에서 'FDM' 형태로 전송되는 경우에 대한 일례를 나타낸다.
도 17은 (시스템 관점에서) '제어(/스케줄링) 정보 전송풀'과 '데이터 전송풀'이 'FDM' 형태로 설정(/구성)된 경우에 대한 일례를 나타낸다.
도 18은 본 발명의 일 실시예에 따른, V2X 메시지 전송에 사용되는 서브채널의 개수가 복수개인 경우, 센싱을 수행하는 방법의 순서도다.
도 19는 ENERGY MEASUREMET(즉, 센싱)가 단말이 전송하려는 데이터의 서브채널 사이즈로 수행되는 것의 일례를 도시한 것이다.
도 20 및 도 21은 'PARTIALLY OVERLAPPED REGION BASED SENSING (혹은 'SLIDING WINDOW BASED SENSING') 형태에 대한 일례를 도시한 것이다.
도 22는 “SFN (SYSTEM FRAME NUMBER) WRAP AROUND” 문제가 발생되는 예를 개략적으로 도시한 것이다.
도 23은 본 발명의 일 실시예에 따른, 유한한 개수의 자원을 예약하는 방법의 순서도다.
도 24는 본 발명의 일 실시예에 따른, 단말이 자원을 재 선택하는 방법의 순서도다.
도 25는 전술한 제안을 고려하여 자원 예약을 수행하는 방법의 일례다.
도 26은 본 발명의 일 실시예에 따른, 단말이 센싱을 수행하지 못한 서브프레임에 관련된 (선택 윈도우에서의) 서브프레임을 배제시키는 방법의 순서도다.
도 27은 단말이 센싱을 수행하지 못한 서브프레임에 관련된 (선택 윈도우에서의) 서브프레임을 배제하는 예를 도시한 것이다.
도 28 내지 도 30은 “RESOURCE EXCLUSION PROCEDURE (BASED ON PSSCH-RSRP MEASUREMENT)”에서 반영하는 예를 나타낸 것이다.
도 31은 (기존) “DFN RANGE” 값 (예를 들어, “10240” 혹은 “10176”)을 증가 시킨 경우에 대한 일례를 나타낸 것이다.
도 32는 업데이트된 시스템 정보를 전송하는 일례를 도시한 것이다.
도 33은 하이퍼 DFN의 일례를 도시하고 있다.
도 34는 본 발명의 일 실시예에 따른, 할당된 V2X 자원 풀 상에서 V2X 통신을 수행하는 방법의 순서도다.
도 35는 SLSS 서브프레임이 V2X 전송에서 제외되는 예를 개략적으로 도시한 것이다.
도 36은 DL 및 S(SPECIAL) 서브프레임이 V2X 전송에서 제외되는 예를 개략적으로 도시한 것이다.
도 37은 본 발명의 일 실시예에 따른, 짧은 주기의 자원 예약이 설정되는 경우 V2X 전송 자원에 대한 예약이 수행되는 방법의 순서도다.
도 38은 본 발명의 일 실시예에 따른, 짧은 주기의 자원 예약이 설정되는 경우 상대적으로 짧은 주기로 센싱을 수행하는 방법의 순서도다.
도 39는 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 1은 본 발명이 적용될 수 있는 무선통신 시스템을 예시한다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
*68이제 D2D 동작에 대해 설명한다. 3GPP LTE-A에서는 D2D 동작과 관련한 서비스를 근접성 기반 서비스(Proximity based Services: ProSe)라 칭한다. 이하 ProSe는 D2D 동작과 동등한 개념이며 ProSe는 D2D 동작과 혼용될 수 있다. 이제, ProSe에 대해 기술한다.
ProSe에는 ProSe 직접 통신(communication)과 ProSe 직접 발견(direct discovery)이 있다. ProSe 직접 통신은 근접한 2 이상의 단말들 간에서 수행되는 통신을 말한다. 상기 단말들은 사용자 평면의 프로토콜을 이용하여 통신을 수행할 수 있다. ProSe 가능 단말(ProSe-enabled UE)은 ProSe의 요구 조건과 관련된 절차를 지원하는 단말을 의미한다. 특별한 다른 언급이 없으면 ProSe 가능 단말은 공용 안전 단말(public safety UE)와 비-공용 안전 단말(non-public safety UE)를 모두 포함한다. 공용 안전 단말은 공용 안전에 특화된 기능과 ProSe 과정을 모두 지원하는 단말이고, 비-공용 안전 단말은 ProSe 과정은 지원하나 공용 안전에 특화된 기능은 지원하지 않는 단말이다.
ProSe 직접 발견(ProSe direct discovery)은 ProSe 가능 단말이 인접한 다른 ProSe 가능 단말을 발견하기 위한 과정이며, 이 때 상기 2개의 ProSe 가능 단말들의 능력만을 사용한다. EPC 차원의 ProSe 발견(EPC-level ProSe discovery)은 EPC가 2개의 ProSe 가능 단말들의 근접 여부를 판단하고, 상기 2개의 ProSe 가능 단말들에게 그들의 근접을 알려주는 과정을 의미한다.
이하, 편의상 ProSe 직접 통신은 D2D 통신, ProSe 직접 발견은 D2D 발견이라 칭할 수 있다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 4를 참조하면, ProSe를 위한 기준 구조는 E-UTRAN, EPC, ProSe 응용 프로그램을 포함하는 복수의 단말들, ProSe 응용 서버(ProSe APP server), 및 ProSe 기능(ProSe function)을 포함한다.
EPC는 E-UTRAN 코어 네트워크 구조를 대표한다. EPC는 MME, S-GW, P-GW, 정책 및 과금 규칙(policy and charging rules function:PCRF), 가정 가입자 서버(home subscriber server:HSS)등을 포함할 수 있다.
ProSe 응용 서버는 응용 기능을 만들기 위한 ProSe 능력의 사용자이다. ProSe 응용 서버는 단말 내의 응용 프로그램과 통신할 수 있다. 단말 내의 응용 프로그램은 응용 기능을 만들기 위한 ProSe 능력을 사용할 수 있다.
ProSe 기능은 다음 중 적어도 하나를 포함할 수 있으나 반드시 이에 제한되는 것은 아니다.
- 제3자 응용 프로그램을 향한 기준점을 통한 인터워킹(Interworking via a reference point towards the 3rd party applications)
- 발견 및 직접 통신을 위한 인증 및 단말에 대한 설정(Authorization and configuration of the UE for discovery and direct communication)
- EPC 차원의 ProSe 발견의 기능(Enable the functionality of the EPC level ProSe discovery)
- ProSe 관련된 새로운 가입자 데이터 및 데이터 저장 조정, ProSe ID의 조정(ProSe related new subscriber data and handling of data storage, and also handling of ProSe identities)
- 보안 관련 기능(Security related functionality)
- 정책 관련 기능을 위하여 EPC를 향한 제어 제공(Provide control towards the EPC for policy related functionality)
- 과금을 위한 기능 제공(Provide functionality for charging (via or outside of EPC, e.g., offline charging))
이하에서는 ProSe를 위한 기준 구조에서 기준점과 기준 인터페이스를 설명한다.
- PC1: 단말 내의 ProSe 응용 프로그램과 ProSe 응용 서버 내의 ProSe 응용 프로그램 간의 기준 점이다. 이는 응용 차원에서 시그널링 요구 조건을 정의하기 위하여 사용된다.
- PC2: ProSe 응용 서버와 ProSe 기능 간의 기준점이다. 이는 ProSe 응용 서버와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 기능의 ProSe 데이터베이스의 응용 데이터 업데이트가 상기 상호 작용의 일 예가 될 수 있다.
- PC3: 단말과 ProSe 기능 간의 기준점이다. 단말과 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 발견 및 통신을 위한 설정이 상기 상호 작용의 일 예가 될 수 있다.
- PC4: EPC와 ProSe 기능 간의 기준점이다. EPC와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. 상기 상호 작용은 단말들 간에 1:1 통신을 위한 경로를 설정하는 때, 또는 실시간 세션 관리나 이동성 관리를 위한 ProSe 서비스 인증하는 때를 예시할 수 있다.
- PC5: 단말들 간에 발견 및 통신, 중계, 1:1 통신을 위해서 제어/사용자 평면을 사용하기 위한 기준점이다.
- PC6: 서로 다른 PLMN에 속한 사용자들 간에 ProSe 발견과 같은 기능을 사용하기 위한 기준점이다.
- SGi: 응용 데이터 및 응용 차원 제어 정보 교환을 위해 사용될 수 있다.
<ProSe 직접 통신(D2D 통신): ProSe Direct Communication>.
ProSe 직접 통신은 2개의 공용 안전 단말들이 PC 5 인터페이스를 통해 직접 통신을 할 수 있는 통신 모드이다. 이 통신 모드는 단말이 E-UTRAN의 커버리지 내에서 서비스를 받는 경우나 E-UTRAN의 커버리지를 벗어난 경우 모두에서 지원될 수 있다.
도 5는 ProSe 직접 통신을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 5 (a)를 참조하면, 단말 A, B는 셀 커버리지 바깥에 위치할 수 있다. 도 5 (b)를 참조하면, 단말 A는 셀 커버리지 내에 위치하고, 단말 B는 셀 커버리지 바깥에 위치할 수 있다. 도 5 (c)를 참조하면, 단말 A, B는 모두 단일 셀 커버리지 내에 위치할 수 있다. 도 5 (d)를 참조하면, 단말 A는 제1 셀의 커버리지 내에 위치하고, 단말 B는 제2 셀의 커버리지 내에 위치할 수 있다.
ProSe 직접 통신은 도 5와 같이 다양한 위치에 있는 단말들 간에 수행될 수 있다.
한편, ProSe 직접 통신에는 다음 ID들이 사용될 수 있다.
소스 레이어-2 ID: 이 ID는 PC 5 인터페이스에서 패킷의 전송자를 식별시킨다.
목적 레이어-2 ID: 이 ID는 PC 5 인터페이스에서 패킷의 타겟을 식별시킨다.
SA L1 ID: 이 ID는 PC 5 인터페이스에서 스케줄링 할당(scheduling assignment: SA)에서의 ID이다.
도 6은 ProSe 직접 통신을 위한 사용자 평면 프로토콜 스택을 나타낸다.
도 6을 참조하면, PC 5 인터페이스는 PDCH, RLC, MAC 및 PHY 계층으로 구성된다.
ProSe 직접 통신에서는 HARQ 피드백이 없을 수 있다. MAC 헤더는 소스 레이어-2 ID 및 목적 레이어-2 ID를 포함할 수 있다.
<ProSe 직접 통신을 위한 무선 자원 할당>.
ProSe 가능 단말은 ProSe 직접 통신을 위한 자원 할당에 대해 다음 2가지 모드들을 이용할 수 있다.
1. 모드 1
모드 1은 ProSe 직접 통신을 위한 자원을 기지국으로부터 스케줄링 받는 모드이다. 모드 1에 의하여 단말이 데이터를 전송하기 위해서는 RRC_CONNECTED 상태이여야 한다. 단말은 전송 자원을 기지국에게 요청하고, 기지국은 스케줄링 할당 및 데이터 전송을 위한 자원을 스케줄링한다. 단말은 기지국에게 스케줄링 요청을 전송하고, ProSe BSR(Buffer Status Report)를 전송할 수 있다. 기지국은 ProSe BSR에 기반하여, 상기 단말이 ProSe 직접 통신을 할 데이터를 가지고 있으며 이 전송을 위한 자원이 필요하다고 판단한다.
2. 모드 2
모드 2는 단말이 직접 자원을 선택하는 모드이다. 단말은 자원 풀(resource pool)에서 직접 ProSe 직접 통신을 위한 자원을 선택한다. 자원 풀은 네트워크에 의하여 설정되거나 미리 정해질 수 있다.
한편, 단말이 서빙 셀을 가지고 있는 경우 즉, 단말이 기지국과 RRC_CONNECTED 상태에 있거나 RRC_IDLE 상태로 특정 셀에 위치한 경우에는 상기 단말은 기지국의 커버리지 내에 있다고 간주된다.
단말이 커버리지 밖에 있다면 상기 모드 2만 적용될 수 있다. 만약, 단말이 커버리지 내에 있다면, 기지국의 설정에 따라 모드 1 또는 모드 2를 사용할 수 있다.
다른 예외적인 조건이 없다면 기지국이 설정한 때에만, 단말은 모드 1에서 모드 2로 또는 모드 2에서 모드 1로 모드를 변경할 수 있다.
<ProSe 직접 발견(D2D 발견): ProSe direct discovery>
ProSe 직접 발견은 ProSe 가능 단말이 근접한 다른 ProSe 가능 단말을 발견하는데 사용되는 절차를 말하며 D2D 직접 발견 또는 D2D 발견이라 칭하기도 한다. 이 때, PC 5 인터페이스를 통한 E-UTRA 무선 신호가 사용될 수 있다. ProSe 직접 발견에 사용되는 정보를 이하 발견 정보(discovery information)라 칭한다.
도 7은 D2D 발견을 위한 PC 5 인터페이스를 나타낸다.
도 7을 참조하면, PC 5인터페이스는 MAC 계층, PHY 계층과 상위 계층인 ProSe Protocol 계층으로 구성된다. 상위 계층(ProSe Protocol)에서 발견 정보(discovery information)의 알림(anouncement: 이하 어나운스먼트) 및 모니터링(monitoring)에 대한 허가를 다루며, 발견 정보의 내용은 AS(access stratum)에 대하여 투명(transparent)하다. ProSe Protocol은 어나운스먼트를 위하여 유효한 발견 정보만 AS에 전달되도록 한다.
MAC 계층은 상위 계층(ProSe Protocol)로부터 발견 정보를 수신한다. IP 계층은 발견 정보 전송을 위하여 사용되지 않는다. MAC 계층은 상위 계층으로부터 받은 발견 정보를 어나운스하기 위하여 사용되는 자원을 결정한다. MAC 계층은 발견 정보를 나르는 MAC PDU(protocol data unit)를 만들어 물리 계층으로 보낸다. MAC 헤더는 추가되지 않는다.
발견 정보 어나운스먼트를 위하여 2가지 타입의 자원 할당이 있다.
1. 타입 1
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적이지 않게 할당되는 방법으로, 기지국이 단말들에게 발견 정보 어나운스먼트를 위한 자원 풀 설정을 제공한다. 이 설정은 시스템 정보 블록(system information block: SIB)에 포함되어 브로드캐스트 방식으로 시그널링될 수 있다. 또는 상기 설정은 단말 특정적 RRC 메시지에 포함되어 제공될 수 있다. 또는 상기 설정은 RRC 메시지 외 다른 계층의 브로드캐스트 시그널링 또는 단말 특정정 시그널링이 될 수도 있다.
단말은 지시된 자원 풀로부터 스스로 자원을 선택하고 선택한 자원을 이용하여 발견 정보를 어나운스한다. 단말은 각 발견 주기(discovery period) 동안 임의로 선택한 자원을 통해 발견 정보를 어나운스할 수 있다.
2. 타입 2
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적으로 할당되는 방법이다. RRC_CONNECTED 상태에 있는 단말은 RRC 신호를 통해 기지국에게 발견 신호 어나운스먼트를 위한 자원을 요청할 수 있다. 기지국은 RRC 신호로 발견 신호 어나운스먼트를 위한 자원을 할당할 수 있다. 단말들에게 설정된 자원 풀 내에서 발견 신호 모니터링을 위한 자원이 할당될 수 있다.
RRC_IDLE 상태에 있는 단말에 대하여, 기지국은 1) 발견 정보 어나운스먼트를 위한 타입 1 자원 풀을 SIB로 알려줄 수 있다. ProSe 직접 발견이 허용된 단말들은 RRC_IDLE 상태에서 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 이용한다. 또는 기지국은 2) SIB를 통해 상기 기지국이 ProSe 직접 발견은 지원함을 알리지만 발견 정보 어나운스먼트를 위한 자원은 제공하지 않을 수 있다. 이 경우, 단말은 발견 정보 어나운스먼트를 위해서는 RRC_CONNECTED 상태로 들어가야 한다.
RRC_CONNECTED 상태에 있는 단말에 대하여, 기지국은 RRC 신호를 통해 상기 단말이 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 사용할 것인지 아니면 타입 2 자원을 사용할 것인지를 설정할 수 있다.
<V2X(VEHICLE-TO-X) 통신>
전술한 바와 같이, 일반적으로 D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 동작을 수행하는 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다. 상술한 D2D 통신의 확장으로 차량 간의 신호 송수신을 포함하여, 차량 (VEHICLE)과 관련된 통신을 특별히 V2X(VEHICLE-TO-X) 통신이라고 부른다.
여기서, 일례로, V2X (VEHICLE-TO-X)에서 'X' 용어는 PEDESTRIAN (COMMUNICATION BETWEEN A VEHICLE AND A DEVICE CARRIED BY AN INDIVIDUAL (예) HANDHELD TERMINAL CARRIED BY A PEDESTRIAN, CYCLIST, DRIVER OR PASSENGER)) (V2P), VEHICLE (COMMUNICATION BETWEEN VEHICLES) (V2V), INFRASTRUCTURE/NETWORK (COMMUNICATION BETWEEN A VEHICLE AND A ROADSIDE UNIT (RSU)/NETWORK (예) RSU IS A TRANSPORTATION INFRASTRUCTURE ENTITY (예) AN ENTITY TRANSMITTING SPEED NOTIFICATIONS) IMPLEMENTED IN AN eNB OR A STATIONARY UE)) (V2I/N) 등을 의미한다. 또한, 일례로, 제안 방식에 대한 설명의 편의를 위해서, 보행자 (혹은 사람)가 소지한 (V2P 통신 관련) 디바이스를 "P-UE"로 명명하고, VEHICLE에 설치된 (V2X 통신 관련) 디바이스를 "V-UE"로 명명한다. 또한, 일례로, 본 발명에서 '엔티티(ENTITY)' 용어는 P-UE 그리고/혹은 V-UE 그리고/혹은 RSU(/NETWORK/INFRASTRUCTURE)로 해석될 수 가 있다.
V2X 단말은 사전에 정의된(혹은 시그널링된) 리소스 풀 (RESOURCE POOL) 상에서 메시지(혹은 채널) 전송을 수행할 수 있다. 여기서 리소스 풀은 단말이 V2X 동작을 수행하도록 (혹은 V2X 동작을 수행할 수 있는) 사전에 정의된 자원(들)을 의미할 수 있다. 이때, 리소스 풀은 예컨대 시간-주파수 측면에서 정의될 수도 있다.
한편, V2X 전송 자원 풀은 다양한 타입이 존재할 수 있다.
도 6은 V2X 전송 자원 풀의 타입을 예시한다.
도 6 (a)를 참조하면, V2X 전송 자원 풀#A는 (부분) 센싱(sensing)만 허용되는 자원 풀일 수 있다. V2X 전송 자원 풀#A에서 단말은 (부분) 센싱을 수행한 후 V2X 전송 자원을 선택해야 하며, 랜덤 선택은 허용되지 않을 수 있다. (부분) 센싱에 의하여 선택된 V2X 전송 자원은 도 6 (a)에서 도시하는 바와 같이 일정 주기로 반정적으로 유지된다.
단말이 V2X 전송 자원 풀#A 상에서 V2X 메시지 전송을 수행하기 위해서는 (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 (부분적으로) 수행하도록 기지국은 설정할 수 있다. 이것은, 상기 V2X 전송 자원 풀#A 상에서는 전송 자원의 '랜덤 선택'이 허용되지 않은 것으로 해석될 수 있으며, '(부분) 센싱' 기반의 전송 자원 선택(만)이 수행(/허용)되는 것)으로 해석될 수 있다. 상기 설정은 기지국이 할 수 있다.
도 6 (b)를 참조하면, V2X 전송 자원 풀#B는 랜덤 선택(random selection)만 허용되는 자원 풀일 수 있다. V2X 전송 자원 풀#B에서 단말은 (부분) 센싱을 수행하지 않고, 선택 윈도우에서 V2X 전송 자원을 랜덤하게 선택할 수 있다. 여기서, 일례로, 랜덤 선택만 허용되는 자원 풀에서는, (부분) 센싱만 허용되는 자원 풀과 달리 선택된 자원이 반정적으로 유보되지 않도록 설정(/시그널링)될 수 도 있다.
기지국은, 단말이 V2X 전송 자원 풀#B 상에서 V2X 메시지 전송 동작을 수행하기 위해서는 (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 수행하지 않도록 설정할 수 있다. 이것은, V2X 전송 자원 풀 #B 상에서는 전송 자원 '랜덤 선택'(만)이 수행(/허용)되는 것 그리고/혹은 '(부분) 센싱' 기반의 전송 자원 선택이 허용되지 않은 것으로 해석될 수 있다.
한편, 도 6에는 도시하지 않았지만, (부분) 센싱과 랜덤 선택이 둘 다 가능한 자원 풀도 존재할 수 있다. 기지국은 이러한 자원 풀에서 (단말 구현으로) (부분) 센싱과 랜덤 선택 중 하나의 방식(either of the partial sensing and the random selection)으로 V2X 자원을 선택할 수 있음을 알려줄 수 있다.
도 7은 부분 센싱 동작에 따른 V2X 전송 자원 (재)선택(/예약) 방법을 예시한다.
도 7을 참조하면, 단말(P-UE, 이하 동일)은 (사전에 정의된 조건의 만족 여부에 따라) V2X 신호 전송을 위한 자원의 (재)선택(/예약)이 결정(/트리거링)될 수 있다. 예를 들어, 서브프레임 #m에서, 상기 전송 자원 (재)선택(/예약)이 결정 또는 트리거링 되었다고 가정해 보자. 이 경우, 단말은 서브프레임 #m+T1에서 #m+T2까지의 서브프레임 구간에서, V2X 신호 전송을 위한 자원을 (재)선택(/예약)할 수 있다. 상기 서브프레임 #m+T1에서 #m+T2까지의 서브프레임 구간을, 이하에서 선택 윈도우(selection window)라고 칭한다. 선택 윈도우는 예를 들어, 연속하는 100개의 서브프레임들로 구성될 수 있다.
단말은 선택 윈도우 내에서, 최소 Y개의 서브프레임들을 후보(candidate) 자원들로 선택할 수 있다. 즉, 단말은 선택 윈도우 내에서 최소한 Y개의 서브프레임들을 후보 자원들로 고려해야 할 수 있다. 상기 Y 값은 미리 설정된 값일 수도 있고, 네트워크에 의하여 설정되는 값일 수도 있다. 다만, 선택 윈도우 내에서 Y개의 서브프레임들을 어떻게 선택할 것인지는 단말 구현의 문제일 수 있다. 즉, 상기 Y값이 예컨대, 50이라고 할 때, 선택 윈도우를 구성하는 100개의 서브프레임들 중에서 어떤 50개의 서브프레임들을 선택할 것인지는 단말이 선택할 수 있다. 예를 들어, 단말은 상기 100개의 서브프레임들 중에서 서브프레임 번호가 홀수인 50개의 서브프레임들을 선택할 수도 있고, 서브프레임 번호가 짝수인 50개의 서브프레임들을 선택할 수도 있다. 또는 임의의 규칙에 의하여 50개의 서브프레임들을 선택할 수 있다.
한편, 상기 Y개의 서브프레임들 중에서 특정 서브프레임, 예컨대, 서브프레임 #N(SF#N)을 V2X 신호를 전송할 수 있는 V2X 전송 서브프레임으로 (재)선택(/예약)하기 위해서는, 단말은 상기 서브프레임 #N에 링크되거나 연관된 적어도 하나의 서브프레임을 센싱해야 할 수 있다. 센싱을 위하여 정의된 (전체) 서브프레임 구간을 센싱 윈도우(sensing window)라 칭하며, 예를 들어, 1000개의 서브프레임들로 구성될 수 있다. 즉, 센싱 윈도우는 1000 밀리초(ms) 또는 1초로 구성될 수 있다. 예를 들어, 단말은 센싱 윈도우 내에서, 서브프레임 #N-100*k (여기서, k는 [1, 10] 범위의 각 요소들의 집합일 수 있으며, 미리 설정되거나 네트워크에 의하여 설정되는 값일 수 있다)에 해당하는 서브프레임들을 센싱할 수 있다.
도 7에서는 k 값이 {1, 3, 5, 7, 10}인 경우를 예시하고 있다. 즉, 단말은 서브프레임 #N-1000, #N-700, #N-500, #N-300, #N-100을 센싱하여, 서브프레임 #N이 다른 V2X 단말에 의하여 사용되고 있는지 여부 (그리고/혹은 서브프레임 #N 상에 상대적으로 높은 (혹은 사전에 설정(/시그널링)된 임계값 이상의) 간섭이 존재하는지 여부)를 추정/판단하고 그 결과에 따라 서브프레임 #N을 (최종적으로) 선택할 수 있다. 보행 단말은 차량 단말에 비하여 배터리 소모에 민감하므로, 센싱 윈도우 내의 모든 서브프레임들을 센싱하는 것이 아니라 일부 서브프레임들만을 센싱, 즉, 부분 센싱(partial sensing)하는 것이다.
일례로, V2V 통신 수행시, (A) 센싱 동작 기반의 전송 자원 선택 절차(/방법) 그리고/혹은 (B) V2V 자원 풀 설정(/시그널링) 절차(/방법)에 대한 일례는 아래와 같이 서술될 수 있다.
(A) 센싱 동작 기반의 전송 자원 선택 절차(/방법)에 관하여,
STEP 1: PSSCH 자원 (재)선택에 관하여, 모든 PSCCH/PSSCH 전송이 동일한 우선 순위를 가지는 경우, 우선은 모든 자원들이 선택 가능한 자원으로 고려될 수 있다.
STEP 2: 한편, 단말은 SA 디코딩 및 추가적 조건 중 적어도 하나에 기초하여, 자원을 제외할 수 있다.
단말은 스케줄링 할당 및 추가적인 조건에 기반하여 특정 자원을 제외한 후, V2X 전송 자원을 선택하였다. 이 때, 스케줄링 할당과 이에 연관된 데이터가 동일한 서브프레임에서 전송되는 경우, PSSCH의 DM-RS 수신 전력에 기반하여 자원을 제외하는 방법이 지원될 수 있다. 즉, 디코딩된 스케줄링 할당에 의하여 지시되거나 유보(예약)된 자원들 및 상기 스케줄링 할당에 연관된 데이터 자원들에서 수신된 PSSCH RSRP(reference signal received power)가 문턱치 이상인 자원들을 제외하는 것이다. 구체적으로 PSSCH RSRP는, PSCCH에 의하여 지시된 PRB(physical resource block)들 내에서 PSSCH와 연관된 DM-RS들을 나르는 RE(resource element)들의 전력 분포의 선형 평균으로 정의될 수 있다. PSSCH RSRP는 단말의 안테나 연결부를 기준점으로 측정될 수 있다. 상기 스케줄링 할당은 3 비트의 PPPP 필드를 포함할 수 있다.
문턱치는 우선 순위 정보에 대하여 함수 형태로 주어질 수 있다. 예를 들어, 전송 블록의 우선 순위 정보 및 디코딩된 스케줄링 할당의 우선 순위 정보에 종속적일 수 있다. 상기 문턱치는 [-128dBm]에서 [0 dBm] 범위에서 [2dBm] 단위로 주어질 수 있다. 총 64개의 문턱치가 미리 설정될 수 있다.
단말은 센싱 구간 내에 있는 서브프레임 #m+c에서 스케줄링 할당을 디코딩하고, 서브프레임 #m+d+P*i에서 상기 스케줄링 할당에 의하여 동일한 주파수 자원이 유보(예약)된다고 가정할 수 있다. 전술한 바와 같이 P는 100으로 고정된 값일 수 있다. i는 [0, 1, ..., 10] 범위에서 선택될 수 있는데, 반송파 특정적으로 네트워크에 의하여 설정되거나 미리 정해질 수 있다. i=0은 주파수 자원을 유보(예약)할 의도가 없음을 의미한다. i는 10비트 비트맵에 의하여 설정될 수도 있고, 스케줄링 할당 내에서 4비트 필드로 설정될 수도 있다.
주기 P*I에서 후보 반정적 자원 X가 다른 단말의 스케줄링 할당에 의하여 예약된 자원 Y와 충돌하고, 제외 조건을 만족하는 경우, 단말은 상기 후보 반정적 자원 X를 제외할 수 있다. 상기 I는 스케줄링 할당에 의하여 시그널링된 i의 값이다.
스케줄링 할당 디코딩, 센싱 과정 등을 거쳐 자원을 제외한 후 남은 자원이 선택 윈도우 내에서의 총 자원들의 20%보다 적은 경우, 단말은 문턱치를 증가(예컨대, 3 dB)시킨 후, 다시 자원을 제외하는 과정을 수행하며 이 과정은 상기 남은 자원이 상기 선택 윈도우 내에서의 총 자원들의 20 %보다 많아질 때까지 수행될 수 있다. 상기 선택 윈도우 내에서의 총 자원들은, 가능한 후보 자원들로 단말이 고려해야 하는 자원들을 의미한다.
한편, 특정 자원을 제외한 후 V2X 전송 자원을 선택하는 과정에서, 단말은 카운터가 0 값에 도달하면, 확률 p로 현재 자원을 유지하고 상기 카운터를 리셋할 수 있다. 즉, 확률 1-p로 자원이 재선택될 수 있다.
반송파 특정적 파라미터인 p는 미리 설정될 수 있으며, [0, 0.2, 0.4, 0.6, 0.8] 범위에서 설정될 수 있다.
단말은 특정 자원을 제외한 나머지 PSSCH 자원들을 측정하고 총 수신 에너지에 기반하여 랭킹을 매긴 후, 부분 집합을 선택한다. 상기 부분 집합은 가장 낮은 수신 에너지를 가지는 후보 자원들의 집합일 수 있다. 상기 부분 집합의 크기는 선택 윈도우 내의 총 자원들의 20%일 수 있다.
단말은 상기 부분 집합에서 하나의 자원을 랜덤하게 선택할 수 있다.
하나의 서브프레임에서 하나의 전송 블록만 전송될 때, 단말은 연속한 M개의 서브채널들을 선택할 수 있으며, 각 서브 채널에서 측정한 에너지의 평균이 각 자원의 에너지 측정값이 될 수 있다.
한편, 전송 블록(TRANSMISSION BLOCK; TB)가 두개의 서브프레임에서 전송되는 경우, 아래와 같은 자원 선택이 지원될 수 있다.
우선, 하나의 서브프레임에서 전송되는 TB의 경우에 대해 정의되는 메커니즘이 사용되는 하나의 자원이 선택될 수 있다.
그리고, 다른 자원은 다름과 같은 조건 하에 랜덤하게 선택될 수 있다. 선택된 자원은 첫 번째 자원과 동일한 서브프레임이 아니어야 되며, 자원 선택에서 제외되는 서브프레임이 아니어야 된다. 아울러 SCI는 두 개의 선택된 자원들 간의 타임 겝을 지시할 수 있어야 된다.
만약, 두 번째 자원의 선택 조건을 만족시키는 자원이 없는 경우, TB는 첫 번째 자원만을 사용하여 전송될 수 있다.
STEP 3: 단말은 제외되지 않은 자원들 중에서 V2X 전송 자원을 선택할 수 있다.
(B) V2V 자원 풀 설정(/시그널링) 절차(/방법)
우선, 동일한 서브프레임에서 SA 및 데이터가 항상 전송되는 것으로 자원이 설정된 경우, 단말은 혼합된 PSCCH가 서로 다른 서브프레임들에서 전송되는 것이 예견되지 않는다.
만약, 단말이 동일한 서브프레임의 인접한 RB들에서 SA 및 데이터를 항상 전송하는 것으로 설정된 풀에서는, 데이터 전송에 대해 선택된 것들 중 최저의 인덱스를 가지는 서브채널은 SA 전송을 위해 사용될 수 있다.
만약, 단말이 동일한 서브프레임의 인접하지 않은 RB들에서 SA 및 데이터를 전송하는 것으로 설정된 풀인 경우에는, SA 풀에서의 SA 후보 자원의 개수는 연관된 데이터 풀에서의 서브채널의 개수와 동일할 수 있다. 데이터 전송에 대해 선택된 것들 중 최저의 인덱스와 연관된 SA 자원은 SA 전송에 대해 사용될 수 있다.
단말은 TTI m(>=n)에서의 자원 선택/재선택 결정을 할 수 있다. 여기서 TTI m은 대응되는 TB의 수신 시간을 의미할 수 잇다.
자원 재선택에 관하여, 단말은 [m+T1, m+T2] 구간에서의 가능한 후보 자원들을 고려해야만 한다. 여기서 T1은 단말 구현에 따를 수 있으며, T1 <= [4]일 수 있다. 아울러, T2 또한 단말 구현에 따를 수 있으며, 20 <= T2 <= 100일 수 있다. 여기서, 선택된 T2는 레이턴시 요구를 만족해야 된다.
아울러, 센싱 윈도우는 [m-a, m-b)와 같이 변할 수도 있다. (여기서, a=b+1000 and b=1)
동일한 서브프레임의 인접한 RB들에서 SA 및 데이터를 단말이 항상 전송하도록 설정된 풀인 경우, 자원 풀은 주파수 도메인에서의 하나 또는 복수의 서브채널들로 이루어질 수 있다. 여기서 서브채널은 동일한 서브프레임에서 근접한 RB들의 그룹으로 구성될 수 있다. 아울러, 자원 풀에서의 서브채널의 크기는 기지국(e.g. eNB)에 의해 설정되거나, 또는 기 설정된 값을 가질 수 있다. 여기서, 서브채널의 후보 자원은 {5, 6, 10, 15, 20, 25, 50, 75, 100}을 의미할 수 있다.
동일한 서브프레임의 인접하지 않은 RB들에서 SA 및 데이터를 단말이 전송하도록 설정된 풀인 경우, 자원 풀은 주파수 도메인에서의 하나 또는 복수의 서브채널들로 이루어질 수 있다. 여기서 서브채널은 동일한 서브프레임에서 근접한 RB들의 그룹으로 이루어질 수 있다. 아울러, 자원 풀에서의 서브채널의 크기는 기지국(e.g. eNB)에 의해 설정되거나, 또는 기 설정된 값을 가질 수 있다. 여기서, 상기 서브채널은 최대 20개일 수 있으며, 최소 후보 사이즈는 4 미만의 값을 가지지 않을 수 있다.
단말은 전송을 위해 정수 개의 인접 서브채널들을 선택할 수 있으며, 단말은 하나의 서브프레임에서 [100] RB들 이상을 디코딩하지 않을 수 있다. 아울러, 단말은 하나의 서브프레임에서 [10] PSSCH들 이상을 디코딩하지 않을 수 있다.
SA 풀과, 관련된 데이터 풀은 오버랩될 수 있다. 아울러, SA 풀과, 연관되지 않은 데이터 풀 또한 오버랩될 수 있다.
동일한 서브프레임의 인접한 RB들에서 SA 및 데이터를 단말이 전송하도록 설정된 풀인 경우에는, 자원 풀은 주파수 도메인에서 N개의 연속한 PRB들로 구성될 수 있다. 여기서, N은 (서브 채널의 사이즈 * 서브 채널들의 개수)와 같을 수 있다.
V2V 풀은, 스킵되는 SLSS 서브프레임을 제외한 모든 서브프레임에 대해 비트맵이 반복되면서 매핑되도록 정의될 수 있다. 여기서, 비트맵의 길이는 16, 20, 또는 100을 의미할 수 있다. 여기서, 비트맵은 풀에 대해 어떠한 서브프레임이 V2V SA/데이터 전송 및/또는 수신에 대해 허용되는지를 정의하는 것을 의미할 수 있다.
한편, 자원 재선택이 트리거되는 경우, 단말은 TB에 대응되는 모든 전송에 관한 자원들을 재선택할 수 있다. 여기서, SA는 하나의 TB에 대응되는 전송을 스케줄링할 수 있다. 또한, 성공적으로 디코딩한 연관된 SA의 수신 이전에 발생한 TTI에서 측정된 PSSCH-RSRP를 적용할 수 있따. 여기서 TB의 전송 개수는 1 또는 2를 의미할 수 있다. 추가적으로, 각각의 SA는 동일한 TB에 대응되는 모든 데이터 전송의 시간/주파수 자원을 지시할 수 있다.
이하, 본 발명에 대해 설명한다.
아래 제안 방식들은 V2X UE(S)이 “센싱 (SENSING) 동작”을 기반으로, 자신의 V2X MESSAGE 전송 (TX) 관련 자원(들)을 (재)예약(/선택)할 때, (A) 센싱 동작이 수행되는 시간 영역의 경계 (BOUNDARY)를 효과적으로 정의하는 방법 그리고/혹은 (B) 센싱 동작 수행으로 생략(/중단)된 V2X MESSAGE(S)의 재전송 (RE-TX)을 효율적으로 지원하는 방법을 제시한다. 여기서, 일례로, 본 발명에서 “센싱”의 워딩은 (디코딩에 성공한 PSCCH가 스케줄링하는 PSSCH 상의) (사전에 정의(/시그널링)된) 참조 신호 (REFERENCE SIGNAL (RS))에 대한 RSRP 측정 (예를 들어, S-RSRP) 동작 그리고/혹은 (서브) 채널에 대한 에너지 측정 (예를 들어, S-RSSI) 동작으로 해석되거나, 혹은 사전에 정의(/시그널)된 채널 (예를 들어, PSCCH (PHYSICAL SIDELINK CONTROL CHANNEL))에 대한 디코딩 동작으로 해석될 수 있다. 여기서, 일례로, 본 발명에서, “DURATION” (그리고/혹은 “구간”) 워딩은 “RANGE(/WINDOW)” (그리고/혹은 “범위”)로 확장 해석될 수 도 있다.
[제안 규칙#1] (V2X UE(S) 별로) 센싱 동작이 수행되는 시간 영역(/구간)의 경계(/위치)가 “UE-SPECIFIC ((TIME) BOUNDARY)”의 형태(/특성)를 가질 수 있다. 여기서, 일례로, 특정 V2X UE의 (자원 (재)예약(/선택) 관련) 센싱 동작이 수행되는 시간 영역(/구간)의 경계(/위치)는 (해당 V2X UE의) “V2X MESSAGE TX TIME (SF#K)”으로 정의될 수 있다. 이러한 규칙이 적용될 경우, 일례로, V2X UE는 “SF#(K-D)에서부터 SF#K (혹은 SF#(K-1-D)에서부터 SF#(K-1))까지의 자원 구간 (여기서, 일례로, “D”는 사전에 정의(/시그널)된 'SENSING DURATION'을 의미함)” 상에서, 자신이 (실제) V2X MESSAGE TX 동작을 수행하는 (자원) 시점을 제외한 나머지 (자원) 시점들에서 센싱 동작을 수행한 후, 향후 자신의 V2X MESSAGE TX 관련 자원(들)을 (재)예약(/선택)하게 된다. 여기서, 또 다른 일례로, V2X UE는 (사전에 정의된 규칙에 따라) (필요시) 'SF#K' 상의 자신의 (V2X MESSAGE) (마지막) 전송을 생략(/중단)하고, 자신이 사용하던 (혹은 이전에 예약(/선택)한) 자원 (SF#K)까지 센싱(/측정)하여, 최적의 재예약(/선택) 자원 결정 (그리고/혹은 재예약(/선택)된 자원을 기반으로 곧바로 (V2X MESSAGE) 전송)을 수행할 수 있다. 여기서, 또 다른 일례로, 상기 자원 구간에서 센싱 동작을 수행한 V2X UE의 경우, “SF#(K+1)에서부터 SF#(K+1+R) (혹은 SF#K에서부터 SF#(K+R))까지의 자원 구간 (여기서, 일례로, “R”은 사전에 정의(/시그널)된 'TX RESOURCE (RE)SELECTION DURATION'을 의미함)” 상에서, (센싱 결과 기반의) 자원 (재)예약(/선택)을 수행할 수 있다.
이해의 편의를 위해, 도면을 통해 제안 규칙 #1에서의 (V2X UE(S) 별로) 센싱 동작이 수행되는 시간 영역의 경계가 “UE-SPECIFIC (TIME) BOUNDARY”의 형태(/특성)이라는 점을 설명하면 아래와 같다.
도 8은 본 발명의 일 실시예에 따른, 단말 특정적 센싱 구간에 기반한 V2X 통신 수행 방법에 대한 순서도다.
도 8에 따르면, 단말은 단말 특정적인 센싱 구간 동안 센싱을 수행하여, V2X 통신을 수행할 자원을 선택할 수 있다(S810). 여기서, 단말이 특정 구간(즉, 단말 특정적인 센싱 구간(혹은 단말 특정적 센싱 윈도우)) 동안 센싱을 수행하여 V2X 통신을 수행할 자원을 선택하는 것은, (A) 단말이 센싱을 수행하는 구간(즉, 센싱 윈도우)이 단말 특정적이라는 관점과, (B) 단말이 센싱을 수행하는 구간이 1초(즉, 1000개의 서브프레임에 대응되는 구간, 각각의 서브프레임은 1MS의 구간)이며, 상기 1초는 최대 SPS PERIOD (혹은 최대 자원 예약 (가능) 주기) 길이 (i.e. [N-1000, N-1])에 대응된다는 관점을 중심으로 설명될 수 있다.
(A) 우선, 단말이 센싱을 수행하는 구간(즉, 센싱 윈도우)이 단말 특정적이라는 점을 중심으로 설명하면 아래와 같다.
단말은 전술한 바와 같이 센싱을 수행하여 V2X 통신을 수행할 자원을 선택할 수 있는데, 여기서 센싱을 수행하는 구간은 단말 별로 상이한 센싱 구간(즉, 단말 특정적인 센싱 구간)을 가질 수 있다. 여기서, 단말 별로 상이한 센싱 구간을 가진다고 함은, 센싱 시간 자체가 단말 별로 다르다는 것이 아니라, 센싱 구간(즉, 센싱 윈도우)의 위치가 단말 별로 상이하다는 것을 의미할 수 있다.
즉, (V2X UE(S) 별로) 센싱 동작이 수행되는 시간 영역의 경계가 “UE-SPECIFIC (TIME) BOUNDARY”의 형태(/특성)를 가질 수 있다. 달리 말하면, ENERGY MEASUREMENT WINDOW가 UE-SPECIFIC한 것 (즉, “[N-A, N-B]” 에너지 센싱(/측정) 구간의 경우, N 값이 UE-SPECIFIC 함)을 의미하며, 이를 도면을 통해 설명하면 아래와 같다.
도 9는 단말 특정적 센싱 윈도우에 대한 개략적인 예를 도시한 것이다.
도 9를 참조하면, 각각의 단말 즉 'UE 1' 및 'UE 2'는 서로 다른 시간에서 센싱 윈도우를 가지며, 서로 다른 시간에서 각각의 단말에 대한 센싱 윈도우가 존재할 수 있다.
보다 구체적으로, 특정 서브프레임(이하, 서브프레임 N)에서 단말의 상위 레이어로부터의 요청이 발생한 경우, 단말은 V2X 메시지 전송(예컨대, PSSCH 전송)에 관하여 상위 레이어에게 전송되어야 될 자원들의 세트를 결정할 수 있다.
이후, 단말은 (단말에 의한 전송이 발생하는 서브프레임들을 제외한) 특정 센싱 구간 동안(예컨대, 서브프레임 N-1000, N-999, N-998, ..., N-1까지)을 모니터링한다. 여기서, 단말 자체의 상위 레이어에 의해 결정되는 서브프레임 N을 기준으로, 특정 센싱 구간(예컨대, 서브프레임 N-1000, N-999, ..., N-1까지)을 단말이 모니터링을 수행한다는 것은, 단말이 모니터링을 수행하는 구간인 센싱 윈도우가 각각의 단말에 의해 결정된다는 점을 의미한다.
도 9의 예를 기준으로 설명하면, UE 1의 경우 N_UE1에서 UE 1의 상위 레이어로부터의 요청이 발생했다고 가정할 수 있다. 이때의 경우, UE 1에서의 센싱 구간(즉, 센싱 윈도우)을 서브프레임 N_UE1-1000, N_UE1-999, ..., N_UE1-1까지를 의미할 수 있으며, 이때의 센싱 윈도우는 도 9에 나타난 바와 같이 UE 1에 대해 특정적이다. 마찬가지로, UE 2의 경우 N_UE2에서 UE 2의 상위 레이어로부터의 요청이 발생했다고 가정할 수 있다. 이때의 경우, UE 2에서의 센싱 구간(즉, 센싱 윈도우)은 서브프레임 N_UE2-1000, N_UE2-999, ..., N_UE2-1까지를 의미할 수 있으며, 이때의 센싱 윈도우는 도 9에 나타난 바와 같이 UE 2에 대해 특정적이다.
이후, 단말은 전술한 서브프레임들 즉, 서브프레임 N-1000, N-999, N-998, ..., N-1 내에서 측정된 S-RSSI 및 디코딩된 PSCCH에 기초하여, V2X 통신을 수행할 자원을 선택할 수 있다. 여기서, 단말이 V2X 통신을 수행할 자원을 선택하는 구체적인 예는 전술한 바와 같다.
(B) 단말이 센싱을 수행하는 구간이 1초(즉, 1000개의 서브프레임 구간)이며, 상기 1초는 최대 SPS(SEMI-PERSISTENT SCHEDULING) PERIOD (혹은 최대 자원 예약 (가능) 주기) 길이 (i.e. [N-1000, N-1])에 대응된다는 점을 중심으로 설명하면 아래와 같다.
일례로, V2X UE가 'SF#(N-A), SF#(N-A+1),…, SF#(N-B) (혹은 SC PERIOD#(N-A), SC PERIOD#(N-A+1),…, SC PERIOD#(N-B)) (A≥B (예를 들어, 'B' 값은 자원 (재)선택을 위한 프로세싱 시간을 고려하여 '0' 보다 큰 양의 정수일 수 있음))'의 구간을 모니터링함으로써 획득한 센싱 결과를 (자원 재예약(/선택)이 트리거링된 'SF#N' (혹은 'SC PERIOD#N')에서) (V2X MESSAGE TX 관련) 자원 (재)예약(/선택)에 이용할 경우, “MONITORING WINDOW SIZE (즉, '(A-B)')”는 자원 (재)예약(/선택)이 일어나는 시간 (예를 들어, 예약 자원의 간격(/INTERVAL)으로 해석 가능함)의 최대값에서 맞춰질 수 도 있다. 여기서, 일례로, 해당 V2X UE는 'SF#(N+C), SF#(N+C+1),…, SF#(N+D) (혹은 SC PERIOD#(N+C), SC PERIOD#(N+C+1),…, SC PERIOD#(N+D)) (D≥C (예를 들어, 'C' 값은 PSCCH/PSSCH 생성 관련 프로세싱 시간을 고려하여 '0' 보다 큰 양의 정수일 수 있음))'의 구간 상에서 자신의 전송 자원을 선택하게 된다. 구체적인 일례로, 만약 '500 밀리 초 (millisecond; MS)'에 한번 자원 (재)예약(/선택)하게 된다면, (전송 자원의 시간 길이(/LATENCY REQUIREMENT)인 '100MS'를 고려하여) '(A-B)'는 '400MS' (여기서, 예를 들어서, '400MS'는 '500MS'에서 사전에 정의(/시그널링)된 하나의 'SC PERIOD (100MS)'(/LATENCY REQUIREMENT)를 뺀 나머지 값으로 해석될 수 도 있음. 또한, 일례로, 해당 '400MS' 구간은 'SF#(N-500MS)'로부터 'SF#(N-100MS)'까지의 구간으로 해석될 수 도 있음)가 될 수 있다. 다시 말해서, 'SENSING DURATION' (혹은 '(A-B)')은 사전에 정의(/설정)된 '자원 (재)예약(/선택) 주기'의 함수가 될 수 있다는 것이다 (혹은 '자원 (재)예약(/선택) 주기'로부터 유도되는 시간 동안 'SENSING 동작'을 수행하는 것으로 해석될 수 있다). 요약하자면, 일례로, '자원 재예약(/선택)'을 하기 전까지는 같은 자원을 선택(/사용)할 것이므로, 직전 ('자원 재예약(/선택)') 주기 자원 이전 것을 센싱하는 의미가 있지만, '자원 재예약(/선택)'이 반드시 일어나는 시간 이전 것까지는 (센싱)할 필요가 없다는 것이다. 여기서, 일례로, 이러한 규칙은 SA/DATA (POOL)가 'TDM 구조'로 구현되는 경우에 특히 유용할 수 있다.
또 다른 일례로, V2X UE(S)가 'SF#(N+C)'에서 'SF#(N+D)' (예를 들어, 'D ≥ C') 상의 연동된 'DATA(/PSSCH)' 전송 관련 'SA(/PSCCH)' 전송을 수행하는 상황을 가정한다. 여기서, 일례로, 'SF#N'은 (사전에 정의된 규칙(/시그널링)에 따라) 'RESOURCE (RE)SELECTION' 동작이 수행되는 시점 그리고/혹은 'SF#(N-A)'부터 'SF#(N-B)' (예를 들어, 'A > B > 0') 까지의 구간은 '(SA(/PSCCH) ('SF#(N+C)') 그리고/혹은 DATA(/PSSCH) ('SF#(N+D)')) RESOURCE (RE)SELECTION' 수행시에 참조되는 센싱 결과가 도출되는 (혹은 센싱이 수행되는) 영역으로 가정(/해석)될 수 있다. 여기서, 일례로, 'SF#(N+D)'에서 'SF#(N+E)' (예를 들어, 'D < E') 상에서의 다른 'TB' 관련 'POTENTIAL DATA(/PSSCH)' 전송 수행시, ('SF#(N+D)' 상의 'DATA(/PSSCH)' 전송에 사용된) '(주파수) 자원'을 재사용할지에 대한 '의도'를 (사전에 정의(/시그널링)된 채널 (예를 들어, 'SA(/PSCCH)' ('SF#(N+C)') (혹은 'DATA(/PSSCH)'))을 통해서) 알려줄 수 있다. 여기서, 일례로, 해당 용도로 사용되는 'SA(/PSCCH)' ('SF#(N+C)') 상에 (추가적으로) '(E-C)' 값 (혹은 '(E-D)' 값 혹은 'E' 값)이 전송되는 필드가 (새롭게) 정의될 수 도 있다. 여기서, 일례로, '(E-C)' 값 (E_ CGAP) (혹은 '(E-D)' 값 (E_ DGAP)) (혹은 'E' 값 (E_GAP))은 'SA(/PSCCH)' ('SF#(N+C)') 전송 시점과 'NEXT TB' 관련 (POTENTIAL) DATA(/PSSCH)' 전송 시점 간의 간격 (혹은 'SA(/PSCCH)' ('SF#(N+C)')로부터 스케줄링되는 'DATA(/PSSCH)' 전송 시점과 'NEXT TB' 관련 (POTENTIAL) DATA(/PSSCH)' 전송 시점 간의 간격) 혹은 'V2X MESSAGE GENERATION(/TX) PERIODICITY'로 해석될 수 있다. 여기서, 일례로, V2X UE의 'SENSING WINDOW SIZE' (예를 들어, '(B-A)')는 아래 (일부) 규칙에 따라 결정(/설정)될 수 있다. 여기서, 일례로, 'E_CGAP' (혹은 E_DGAP 혹은 E_GAP) 관련 (최대(/최소))값은 (네트워크 (혹은 (서빙) 기지국)로부터) ('UE-COMMON' 혹은 'UE-SPECIFIC'하게) 'SINGLE VALUE' 혹은 'MULTIPLE VALUE(S)'로 설정(/시그널링)되거나 혹은 V2X UE가 자신의 (최대(/최소)) 'MESSAGE GENERATION(/TX) PERIODICITY'와 동일하게 간주(/가정)할 수 있다.
(규칙#A) 'SENSING WINDOW SIZE'는 (A) 'E_CGAP' (혹은 E_DGAP 혹은 E_GAP) 관련 (최대(/최소))값 그리고/혹은 (B) (최대(/최소)) 'MESSAGE GENERATION(/TX) PERIODICITY' 값으로 간주(/결정)될 수 있다. 또 다른 일례로, 'SENSING WINDOW SIZE'는 (A) 'E_CGAP' (혹은 E_DGAP 혹은 E_GAP) 관련 (최대(/최소))값 그리고/혹은 (B) (최대(/최소)) 'MESSAGE GENERATION(/TX) PERIODICITY' 값에 상관없이, 사전에 설정(/시그널링)된 (특정) 값으로 설정될 수 있다. 여기서, 일례로, 이러한 규칙이 적용될 경우, V2X UE가 (상대적으로) 긴 'MESSAGE GENERATION(/TX) PERIODICITY'의 'V2X MESSAGE' 전송을 수행할 때에도 (사전에 설정(/시그널링)된) (상대적으로) 작은 값의 'SENSING WINDOW SIZE'로 센싱 동작을 수행 (예를 들어, 일종의 'PARTIAL(/LIMITED) REGION SENSING'으로 해석될 수 있음) 할 수 도 있다. 일례로, 상기 (규칙#A)에서 'SENSING WINDOW SIZE'는 'UE-COMMON' (혹은 'UE-SPECIFIC')하게 설정될 수 있다.
(규칙#B) 'SENSING WINDOW SIZE'는 사전에 설정(/시그널링)된 '(V2X) SPS PERIODICITY' 값으로 간주(/결정)될 수 있다. 여기서, (해당 규칙이 적용된 경우에 대한) 일례로, 만약 'SPS PERIODICITY'가 상이한 복수개의 'SPS CONFIGURATION(/PROCESS)'가 설정(/시그널링)된다면, 'SPS CONFIGURATION(/PROCESS)' 별로 'SENSING WINDOW SIZE'가 다른 것으로 해석(/간주)될 수 도 있다. 또 다른 일례로, 상이한 '(V2X) SPS PERIODICITY'의 복수개의 'SPS CONFIGURATION(/PROCESS/(전송)동작)'가 설정(/시그널링/허용)된 경우, 해당 '(V2X) SPS PERIODICITY' 중에 최대(/최소) 값으로 '(COMMON) SENSING WINDOW SIZE'가 결정(/도출)되고 복수개의 'SPS CONFIGURATION(/PROCESS/(전송)동작)' 상에 공통적으로 적용될 수 도 있다. 일례로, 상기 (규칙#B)에서 'SENSING WINDOW SIZE'는 'UE-SPECIFIC' (혹은 'UE-COMMON')하게 설정될 수 있다.
여기서 SPS 주기(PERIOD)는 아래 표 1에 나타난 바와 같이, SCI(Sidelink Control Information) 포멧 1에서의 자원 예약 필드와 같이 결정될 수 있다.
SCI 포멧 1에서의 자원 예약 필드 지시되는 값 X 조건(condition)
'0001', '0010', ..., '1010' 필드에 대응되는 10진법 수 상위 레이어가 다름 전송 블록의 전송에 대한 자원을 유지하기로 결정하고, X의 값이 1 이상 10 이하인 경우
'1011' 0.5 상위 레이어가 다름 전송 블록의 전송에 대한 자원을 유지하기로 결정하고, X의 값이 0.5인 경우
'1100' 0.2 상위 레이어가 다름 전송 블록의 전송에 대한 자원을 유지하기로 결정하고, X의 값이 0.2인 경우
'0000' 0 상위 레이어가 다름 전송 블록의 전송에 대한 자원을 유지하지 않기로 결정한 경우
'1101', '1110', '1111' 예약됨(Reserved) -
여기서, 수신 단말(RX UE)은 표 1에 나타난 SCI FORMAT 상의 RESOURCE RESERVATION 필드로 시그널링될 수 있는 값들에 기초하여 최종 전송 단말(TX UE)의 자원 예약 주기를 파악할 수 있다.
여기서, RX UE는 자원 예약 필드의 값에 100을 곱해서 TX UE가 설정할 수 있는 “자원 예약 주기 후보 값”을 결정할 수 있다. 예컨대, 자원 예약 필드의 값이 '0001'인 경우 자원 예약 주기 값은 100MS일 수 있고, 자원 예약 필드의 값이 '0010'인 경우 자원 예약 주기 값은 200MS일 수 있다. 마찬가지로, 자원 예약 필드의 값이 '1010'인 경우 자원 예약 주기 값은 1000MS일 수 있다.
정리하면, RX UE는 자원 예약 필드의 값에 100을 곱해서 TX UE가 설정할 수 있는 “자원 예약 주기 후보 값”이 “20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000MS” 임을 알 수 있으며, 이에 따라, SPS 주기(PERIOD)의 최대 값은 1000MS(즉, 1s)의 값을 가질 수 있다.
앞서 설명한 바와 같이, 단말이 센싱을 수행하는 구간(즉, 단말의 센싱 윈도우)는 최대 SPS(SEMI-PERSISTENT SCHEDULING) PERIOD (혹은 최대 자원 예약 (가능) 주기) 길이를 가질 수 있으며, 이에 따라, 단말이 센싱을 수행하는 구간(즉, 센싱 윈도우)은 SPS 주기의 최대 값인 1000MS(즉, 1s)일 수 있다.
다시 도 8로 돌아와서, 단말은 선택된 상기 자원에 기초하여 V2X 통신을 수행할 수 있다(S820). 전술(혹은 후술)한 바와 같이, 상기 단말은 단말 특정적인 센싱 구간 동안 수행한 센싱 결과에 기초하여, 선택 윈도우 이내의 서브프레임을 선택할 수 있으며, 단말은 선택된 서브프레임에 기초하여 전송 예약 자원들을 결정하고, 상기 예약 자원 상에서 V2X 통신을 수행할 수 있다. 단말이 선택한 자원에 기초하여 V2X 통신을 수행하는 구체적인 예는 전술(혹은 후술)한 바와 같으므로, 구체적인 내용은 생략하도록 한다.
한편, V2X 통신에서는 엔드 투 엔드(END TO END) 레이턴시(LATENCY)가 고려되어야 된다. 즉, 단말이 상위 레이어에서 생성한 패킷을 전송할 때, 상위 레이어에서 생성된 패킷을 물리 계층까지 내려 보내는 시간뿐만 아니라, 수신 단말이 상기 패킷을 수신한 다음 수신 단말의 상위 레이어까지 올려 보내는 시간까지 고려되어야 한다. 이에 따라, 단말이 V2X 메시지 전송을 수행할 자원을 선택하는 구간, 즉, 선택 윈도우(SELECTION WINDOW)를 어떤 식으로 구성하여 전송 자원을 선택할지 여부가 문제된다. 이하에서는, 도면을 통해 선택 윈도우를 구성하는 방법에 대해 설명한다.
도 10은 본 발명의 일 실시예에 따른, 선택 윈도우 구성 방법에 대한 순서도다.
단말은 레이턴시 요구(LATENCY REQUIREMENT)를 만족시키는 범위 내에서 V2X 통신을 수행할 자원(혹은, 서브프레임, 이하에서는 설명의 편의를 위해 자원과 서브프레임을 혼용할 수 있다.)을 선택할 수 있다(S1010). 이때, 상기 단말은 상기 레이턴시 요구를 만족시키는 범위 내에서 선택 윈도우(SELECTION WINDOW)를 구성하여 상기 자원을 선택할 수 있으며, 상기 V2X 통신은 복수의 서브채널 단위로 수행되고, 상기 복수의 서브채널의 크기에 대응되는 크기의 서브채널 단위로 수행된 센싱에 기초하여, 상기 V2X 통신을 수행할 자원이 선택될 수 있다. 상기 센싱이 수행될 때 이용되는 센싱 영역은 상기 복수의 서브채널의 크기에 대응되는 크기의 영역일 수 있다. 아울러, 상기 단말은 상기 복수의 서브채널에 포함된 서브채널들의 에너지 측정 평균 값을 이용하여 센싱을 수행할 수도 있다.
정리하면, 단말은 레이턴시 요구를 만족시키는 범위 내에서 선택 윈도우(SELECTION WINDOW)를 구성하여 상기 자원을 선택할 수 있을 뿐만 아니라, 상기 V2X 통신이 복수의 서브채널 단위로 수행되는 경우에는 복수의 서브채널 단위로 센싱을 수행할 수도 있다. 여기서, 상기 V2X 통신이 복수의 서브채널 단위로 수행되는 경우에는 복수의 서브채널 단위로 센싱을 수행하는 구체적인 예는 후술하도록 한다.
이하에서는 단말이 레이턴시 요구를 충족시키는 범위 내에서 전송 자원을 선택하는 예를 중점적으로 설명한다.
단말은 레이턴시 요구(LATENCY REQUIREMENT)를 만족시키는 범위내에서, (SLECTION WINDOW를 구성하고) 전송 자원(혹은, 서브프레임)을 선택할 수 있다. 여기서, 단말은 특정 구간(예컨대, [n+T1, n+T2]) 이내에 포함된 V2X 자원 풀(예컨대, PSSCH 자원 풀)에서의 인접한 서브 채널들(예컨대. LsubCH)의 세트는 하나의 후보 서브프레임(자원)에 대응된다고 가정할 수 있다. 이때, 상기 특정 구간을 결정하기 위한 정보들(예컨대, T1 및 T2)의 선택은 단말 구현에 따를 수 있다. T1은 4 이하의 값을 가질 수 있고, T2는 20 이상 100 이하의 값을 가질 수 있다. 특히, T2의 단말 선택은 레이턴시 요구를 충족시켜야 된다.
예컨대, 'SENSING DURATION (D)' 그리고/혹은 'TX RESOURCE (RE)SELECTION DURATION (R)'은 'V2X MESSAGE GENERATION PERIOD' (그리고/혹은 '(SERVICE) LATENCY REQUIREMENT')와 (암묵적으로) 동일하게 가정 (그리고/혹은 'V2X MESSAGE GENERATION PERIOD' (그리고/혹은 '(SERVICE) LATENCY REQUIREMENT' 그리고/혹은 '(V2X MESSAGE(/TB)) PPPP' (예를 들어, 상이한 '(SERVICE) LATENCY REQUIREMENT'의 V2X MESSAGE(/TB) 별로 (일부) 다른 'PPPP' 값이 설정(/허용)될 경우))에 따라 상이하게 가정(/변경))되거나, 그리고/혹은 사전에 정의(/시그널링)된 특정 값으로 가정될 수 있다 (예를 들어, 해당 규칙은 'TX RESOURCE (RE)SELECTION DURATION (R)'가 '(SERVICE) LATENCY REQUIREMENT'를 만족시키도록 설정되는 것으로 해석될 수 도 있음). 여기서, 일례로, (특히, 후자의 경우) 'SENSING DURATION (D)'와 'TX RESOURCE (RE)SELECTION DURATION (R)'는 (항상) 동일한 값으로 설정(/간주)되거나, 혹은 독립적인 (혹은 상이한) 값으로 정의될 수 도 있다. 또 다른 일례로, 특정 V2X UE의 (자원 (재)예약(/선택) 관련) 센싱 동작이 수행되는 시간 영역의 경계는 (해당 V2X UE의) “V2X MESSAGE GENERATION TIME”으로 정의될 수 도 있다. 또 다른 일례로, (V2X UE의) '(TX) PROCESSING TIME' 등을 고려할 때, 상기 설명한 (자원 (재)예약(/선택) 관련) '센싱 동작이 수행되는 시간 영역의 경계 기준' (예를 들어, 'V2X MESSAGE TX TIME', 'V2X MESSAGE GENERATION TIME')에서 사전에 정의(/시그널링)된 일정한 오프셋을 더한 (혹은 뺀) 시점이, 최종적인 '센싱 동작이 수행되는 시간 영역의 경계 기준'이 될 수 도 있다. 구체적인 일례로, V2X UE는 “SF#(K-D-S)에서부터 SF#(K-S) (혹은 SF#(K-1-D-S)에서부터 SF#(K-1-S))까지의 자원 구간 (여기서, 일례로, “D”와 “S”는 각각 사전에 정의(/시그널)된 'SENSING DURATION', (V2X UE의) '(TX) PROCESSING TIME'을 의미함)” 상에서, 자신이 (실제) V2X MESSAGE TX 동작을 수행하는 (자원) 시점을 제외한 나머지 (자원) 시점들에서 센싱 동작을 수행한 후, (“SF#(K+1)에서부터 SF#(K+1+R) (혹은 SF#K에서부터 SF#(K+R))까지의 자원 구간 (여기서, 일례로, “R”은 사전에 정의(/시그널)된 'TX RESOURCE (RE)SELECTION DURATION'을 의미함)” 상에서) 향후 자신의 V2X MESSAGE TX 관련 자원(들)을 (재)예약(/선택)하게 된다.
이후, 단말은 선택된 상기 자원에 기초하여 V2X 통신을 수행할 수 있다(S1020). 여기서, 전술한 바와 같이, 선택된 상기 자원은 LATENCY REQUIREMENT를 만족시키는 범위내에서 구성된 (SELECTION WINDOW)에 기초하여 결정된 자원(즉, 레이턴시 요구를 만족시키는 선택 윈도우 상의 자원)을 의미할 수 있다. 또한, 전술(혹은 후술)한 바와 같이, 상기 단말은 단말 특정적인 센싱 구간 동안 수행한 센싱 결과에 기초하여, 선택 윈도우 이내의 서브프레임을 선택할 수 있으며, 단말은 선택된 서브프레임에 기초하여 전송 예약 자원들을 결정하고, 상기 예약 자원 상에서 V2X 통신을 수행할 수 있다. 단말이 선택한 자원에 기초하여 V2X 통신을 수행하는 구체적인 예는 전술(혹은 후술)한 바와 같으므로, 구체적인 내용은 생략하도록 한다.
도 11과 도 12는 [제안 규칙#1]에 대한 도식적 표현이다.
도 11과 도 12에 따르면, 여기서, 일례로, (V2X UE(S) 별로) V2X MESSAGE가 주기적으로 발생 (예를 들어, '100MS')되는 상황을 가정하였다. 또한, 일례로, 'SENSING DURATION(/TX RESOURCE (RE)SELECTION DURATION)'과 'V2X MESSAGE TX 관련 반복 횟수 (REPETITION NUMBER)'가 각각 '100MS', '1'로 설정된 경우를 가정하였다. 추가적인 일례로, 도 11은 “SF#(K-100)에서부터 SF#K까지의 자원 구간” 상에서, 자신이 (실제) V2X MESSAGE TX 동작을 수행하는 (자원) 시점을 제외한 나머지 (자원) 시점들에서 센싱 동작을 수행한 후, 해당 센싱 결과를 기반으로 “SF#(K+1)에서부터 SF#(K+101)까지의 자원 구간” 상에 자신의 V2X MESSAGE TX 관련 자원(들)을 재예약(/선택)하는 경우를 보여준다. 도 12는 “SF#(K-1)에서부터 SF#(K-101)까지의 자원 구간” 상에서, 자신이 (실제) V2X MESSAGE TX 동작을 수행하는 (자원) 시점을 제외한 나머지 (자원) 시점들에서 센싱 동작을 수행한 후, 해당 센싱 결과를 기반으로 “SF#(K+1)에서부터 SF#(K+101)까지의 자원 구간” 상에 자신의 V2X MESSAGE TX 관련 자원(들)을 재예약(/선택)하는 경우를 보여준다. 일례로, 도 11과 도 12에서 '(N+1) 번째 V2X MESSAGE의 전송'은 재선택 자원 (예를 들어, SF#(K+Z+100))을 통해서 수행된다.
도 13과 도 14는 재예약(/선택) 자원 결정 및 재예약(/선택)된 자원을 기반으로 곧바로 (V2X MESSAGE) 전송을 수행하는 것을 도시한 것이다.
보다 구체적으로, 도 13과 도 14는 각각 도 11, 도 12와 동일한 상황 하에서, V2X UE가 (사전에 정의된 규칙에 따라) 'SF#K' 상에서의 (V2X MESSAGE) 전송을 생략(/중단)하고, 자신이 사용하던 (혹은 이전에 예약(/선택)한) 자원 (SF#K)까지 센싱(/측정)하여, 최적의 재예약(/선택) 자원 결정 및 재예약(/선택)된 자원을 기반으로 곧바로 (V2X MESSAGE) 전송을 수행하는 경우를 보여준다. 여기서, 일례로, '(N+1) 번째 V2X MESSAGE의 전송'은 재선택 자원 (예를 들어, SF#(K+Z+100))을 통해서 수행된다.
[제안 규칙#2] (상기 [제안 규칙#1]에서) 사용하던 (혹은 이전에 예약(/선택)한) 자원에 대한 센싱(/측정) 목적으로, 생략(/중단)된 V2X MESSAGE 전송 (예를 들어, 도 13과 도 14의 경우, 'N 번째 V2X MESSAGE 전송')은 아래의 (일부) 규칙에 따라 재전송될 수 있다.
(예시#2-1) ('생략(/중단)된 V2X MESSAGE'의 재전송에 대한 고려없이) '센싱(/측정) 결과' 및 '사전에 정의된 (재예약(/선택)) 기준(/규칙)'에 따라 자원 재예약(/선택)을 수행한 후, 만약 재예약(/선택)된 자원을 통해서 '생략(/중단)된 V2X MESSAGE'의 재전송이 수행될 때에 '(SERVICE) LATENCY REQUIREMENT'를 만족시킬 수 있다면, (해당 재예약(/선택)된 자원을 기반으로) '생략(/중단)된 V2X MESSAGE'의 재전송이 (곧바로) 수행되도록 정의될 수 있다. 여기서, 일례로, 반면에 재예약(/선택)된 자원을 통해서 '생략(/중단)된 V2X MESSAGE'의 재전송이 수행될 때에 '(SERVICE) LATENCY REQUIREMENT'를 만족시킬 수 없다면, (해당 재예약(/선택)된 자원을 기반으로) '생략(/중단)된 V2X MESSAGE'의 재전송이 수행되지 않도록 정의될 수 도 있다. 구체적인 일례로, 도 13와 도 14의 경우, 재예약(/선택)된 자원 (SF#(K+Z))을 통해서 '생략(/중단)된 V2X MESSAGE (SF#K)'의 재전송이 수행될 때에 '(SERVICE) LATENCY REQUIREMENT (100MS)'를 만족시킬 수 있으므로, (재예약(/선택)된 자원 (SF#(K+Z))을 통해서) 곧바로 '생략(/중단)된 V2X MESSAGE'의 재전송이 수행된다.
(예시#2-2) V2X UE로 하여금, '생략(/중단)된 V2X MESSAGE'의 재전송이 '(SERVICE) LATENCY REQUIREMENT'를 만족시킬 수 있는 '후보 자원들'만을 고려하여, 자원 재예약(/선택)을 수행하도록 정의될 수 있다. 이러한 규칙이 적용될 경우, 일례로, V2X UE는 해당 '후보 자원들' 중에 사전에 정의된 (재예약(/선택)) 기준(/규칙)을 만족시키는 최적의 자원을 최종적으로 재예약(/선택)하게 된다. 여기서, 일례로, 해당 최종 재예약(/선택)된 자원을 통해서, '생략(/중단)된 V2X MESSAGE'의 재전송뿐만 아니라, '향후 (발생되는) V2X MESSAGE(S)'의 전송이 수행된다. 상기 규칙은 일례로, '생략(/중단)된 V2X MESSAGE'의 재전송을 높은 확률로 보장해줄 수 있다. 상기 설명한 동작을 보장하기 위해서, 일례로, 'TX RESOURCE (RE)SELECTION DURATION (R)'의 영역을 축소할 수 도 있다. 이를 통해서, 일례로, '(SERVICE) LATENCY REQUIREMENT'를 만족하면서 (생략(/중단)된) V2X MESSAGE(S)를 재전송할 수 있도록, 지금 (생략(/중단)된) 전송 시점의 인근 자원만이 선택 가능해진다. 이와 같은 경우, 일례로, 'SENSING DURATION (D)'의 영역도 (이에 따라) 축소될 수 있다.
(예시#2-3) (사전에) '생략(/중단)된 V2X MESSAGE'의 재전송(만)을 위한 자원(/POOL)이 독립(/추가)적으로 설정(/시그널링)되거나, 혹은 V2X UE로 하여금, 사전에 정의(/시그널링)된 아래 (일부) 규칙(/기준)에 따라 '생략(/중단)된 V2X MESSAGE'의 재전송을 위한 자원을 추가적으로 선택하도록 할 수 도 있다. 여기서, 일례로, (후자의 경우) 추가적으로 선택된 해당 자원은 (이전에) '생략(/중단)된 V2X MESSAGE'의 재전송을 위해서만 일시적으로 (혹은 한정적으로) 사용될 수 있다.
(일례#2-3-1) '생략(/중단)된 V2X MESSAGE'의 재전송이 '(SERVICE) LATENCY REQUIREMENT'를 만족시킬 수 있는 '후보 자원들'만을 고려하여, 추가적인 (재전송) 자원을 선택하도록 한다. 또 다른 일례로, '생략(/중단)된 V2X MESSAGE'의 재전송이 아니라, '향후 (발생되는) V2X MESSAGE(S)'의 전송을 위한 자원 재예약(/선택)은 사전에 정의(/시그널링)된 'TX RESOURCE (RE)SELECTION DURATION' 내에서 수행될 수 있다. 여기서, 일례로, 이러한 용도로 재예약(/선택)된 자원은 (비록 '생략(/중단)된 V2X MESSAGE'의 재전송이 수행될 때에 '(SERVICE) LATENCY REQUIREMENT'를 만족시킬 수 있다고 할지라도) '생략(/중단)된 V2X MESSAGE'의 재전송을 위한 후보 자원에서 제외시킬 수 있다. 즉, 일례로, '향후 (발생되는) V2X MESSAGE(S)'의 전송을 위한 자원이 '생략(/중단)된 V2X MESSAGE'의 재전송을 위한 자원보다 (상대적으로) 높은 우선 순위를 가지는 것으로 해석 (혹은 '향후 (발생되는) V2X MESSAGE(S)'의 전송은 사전에 정의된 (재예약(/선택)) 기준(/규칙)을 만족시키는 (가장) 최적의 자원을 통해서 수행되는 것으로 해석)될 수 있다.
[제안 규칙#3] (상기 [제안 규칙#1]에서) 만약 하나의 V2X MESSAGE가 'Q' 번 반복 전송된다면, (자원 (재)예약(/선택) 관련) 센싱 동작이 수행되는 시간 영역의 경계 (BOUNDARY)는 아래 (일부) 기준(/규칙)에 따라 정의될 수 있다. 여기서, 일례로, 'Q' 값은 1보다 큰 양의 정수일 수 있다. 이하에서는 설명의 편의를 위해서, 일례로, (하나의) V2X MESSAGE가 '2번 반복 전송 (예를 들어서, SF#(N+K1), SF#(N+K1))'되는 상황을 가정한다.
(예시#3-1) ((하나의) V2X MESSAGE가 여러 SF(S)을 통해서 (반복) 전송되거나, 그리고/혹은 각각의 SF 상에서 독립적인 자원 할당을 하는 것이 아니라면) 첫번째 (혹은 마지막) '반복 전송 타이밍' (혹은 'SF')이 (자원 (재)예약(/선택) 관련) 센싱 동작이 수행되는 시간 영역의 경계로 정의될 수 있다. 구체적인 일례로, 첫번째 '반복 전송 타이밍' (혹은 'SF') (예를 들어, SF#(N+K1))이 센싱 동작이 수행되는 시간 영역의 경계로 지정될 경우, V2X UE는 “SF#(N+K1-D)에서부터 SF#(N+K1) (혹은 SF#(N+K1-1-D)에서부터 SF#(N+K1-1))까지의 자원 구간 (여기서, 일례로, “D”는 사전에 정의(/시그널)된 'SENSING DURATION'을 의미함)” 상에서, 자신이 (실제) V2X MESSAGE TX 동작을 수행하는 (자원) 시점을 제외한 나머지 (자원) 시점들에서 센싱 동작을 수행한 후, 향후 자신의 V2X MESSAGE TX 관련 자원(들)을 (재)예약(/선택)하게 된다. 또 다른 일례로, 마지막 '반복 전송 타이밍' (혹은 'SF') (예를 들어, SF#(N+K2))이 센싱 동작이 수행되는 시간 영역의 경계로 지정될 경우, V2X UE는 “SF#(N+K2-D)에서부터 SF#(N+K2) (혹은 SF#(N+K2-1-D)에서부터 SF#(N+K2-1))까지의 자원 구간” 상에서, 자신이 (실제) V2X MESSAGE TX 동작을 수행하는 (자원) 시점을 제외한 나머지 (자원) 시점들에서 센싱 동작을 수행한 후, 향후 자신의 V2X MESSAGE TX 관련 자원(들)을 (재)예약(/선택)하게 된다.
(예시#3-2) 사용하던 (혹은 이전에 예약(/선택)한) 자원에 대한 센싱(/측정) 목적으로, 'Q' 번의 반복 전송 중에 일부가 생략(/중단)될 경우, 첫번째 (혹은 마지막) '생략(/중단)된 전송 타이밍' (혹은 'SF')이 (자원 (재)예약(/선택) 관련) 센싱 동작이 수행되는 시간 영역의 경계로 정의될 수 있다.
(예시#3-3) 하나의 V2X MESSAGE가 'Q' 번 반복 전송될 경우, 각각의 전송 (혹은 상이한 'RV (REDUNDANCY VERSION)' 전송) 마다 (혹은 초기 (INITIAL) 전송과 재전송 (RETRANSMISSION) 간에) 아래 (일부) 파라미터들이 상이하게 (혹은 독립적으로) 정의(/운영)될 수 있다. 또 다른 일례로, 상이한 MESSAGE '크기(/타입)' 그리고/혹은 '전송(/발생) 주기' 그리고/혹은 '우선 순위 (PRIORITY)' 별로 (혹은 사전에 정의(/시그널링)된 'SECURITY 정보'가 포함되어 전송되는지의 여부에 따라) 아래 (일부) 파라미터들이 독립적으로 (혹은 상이하게) 정의(/운영)될 수 도 있다. 여기서, 구체적인 일례로, 낮은 (혹은 높은) 우선 순위의 MESSAGE 관련 'SENSING DURATION 값'은 길게 설정하여 자원 재예약(/선택) 빈도를 적게 만들고, 높은 (혹은 낮은) 우선 순위의 MESSAGE 관련 'SENSING DURATION 값'은 짧게 설정하여 자원 재예약(/선택) 빈도를 크게 만들 수 있다.
(일례#3-3-1) 'SENSING DURATION 값' (그리고/혹은 '자원 재예약(/선택) 수행 관련 확률 값' 그리고/혹은 '자원 재예약(/선택) 수행 관련 백오프 값' 그리고/혹은 '최대 예약 가능 (시간) 길이 (MAXIMUM RESERVATION TIME)' 그리고/혹은 'MUTING(/SILENCING/전송 생략(/중단)) 확률(/주기/패턴/여부)')
또 다른 일례로, 아래의 (일부) 규칙을 통해서, '(자원 (재)예약(/선택) 관련) 센싱 동작' 그리고/혹은 '자원 재예약(/선택)'이 수행되도록 정의될 수 있다.
[제안 규칙#4] “RANDOM MUTING(/SILENCING/전송 생략(/중단))” (혹은 “사전에 정의(/시그널링)된 확률 기반의 MUTING(/SILENCING/전송 생략(/중단))”)에 따라, 자신이 사용하던 (혹은 이전에 예약(/선택)한) 자원에 대한 센싱 동작이 수행될 때, (하나의) V2X MESSAGE의 (반복) 전송에 사용되는 전체 SF(S)을 MUTING(/SILENCING)하는 것이 아니라 (혹은 (하나의) V2X MESSAGE 관련 'Q' 번의 반복 전송을 전체 생략(/중단)하는 것이 아니라), 사전에 정의(/시그널링)된 규칙(/(홉핑) 패턴)에 따라, 일부 SF (혹은 반복 전송)만을 (주기적으로) 번갈아 가면서 MUTING(/SILENCING) (혹은 생략(/중단))할 수 있다. 여기서, 일례로, 해당 (홉핑) 패턴은 '(SOURCE) UE ID' (그리고/혹은 '(V2X MESSAGE TX 동작이 수행되는) POOL(/자원) 주기 인덱스' 그리고/혹은 'SA PERIOD 인덱스') 등의 입력 파라미터(들)을 기반으로 랜덤화될 수 있다. 또 다른 일례로, “(RANDOM) MUTING(/SILENCING/전송 생략(/중단))” 수행시, 초기 전송과 재전송 간에 '(RANDOM) MUTING(/SILENCING/전송 생략(/중단)) 확률(/주기/패턴)'이 상이하게 (혹은 독립적으로) 정의될 수 도 있다. 여기서, 일례로, 이러한 규칙은 'RV 0' (초기 전송)와 다른 'RV' (재전송) 간에 '(RANDOM) MUTING(/SILENCING/전송 생략(/중단)) 확률(/주기/패턴)'이 상이하게 (혹은 독립적으로) 설정된 것 (혹은 'RV' 마다 '(RANDOM) MUTING(/SILENCING/전송 생략(/중단)) 확률(/주기/패턴)'이 상이하게 (혹은 독립적으로) 설정된 것)으로 해석 가능하다. 구체적인 일례로, 'RV 0' (초기 전송)가 다른 'RV' (재전송)보다 상대적으로 작은 확률로 “(RANDOM) MUTING(/SILENCING/전송 생략(/중단))”되도록 설정될 수 있다.
[제안 규칙#5] (하나의) V2X MESSAGE가 여러 SF(S)을 통해서 (반복) 전송되는 경우 (혹은 (하나의) V2X MESSAGE가 'Q' 번 반복 전송되는 경우), 자원 재예약(/선택)시, 모든 SF(S) (혹은 'Q' 번의 반복 전송 관련 자원들)을 한번에 재예약(/선택)하는 것이 아니라, 사전에 정의(/시그널링)된 규칙(/(홉핑) 패턴)에 따라, 한번에 사전에 정의(/시그널링)된 'T' 개의 SF (혹은 반복 전송 관련 자원)만을 재예약(/선택)하도록 설정될 수 있다. 여기서, 일례로, 'T' 값은 '1'로 설정될 수 있다. 또한, 일례로, 해당 (홉핑) 패턴은 '(SOURCE) UE ID' (그리고/혹은 '(V2X MESSAGE TX 동작이 수행되는) POOL(/자원) 주기 인덱스' 그리고/혹은 'SA PERIOD 인덱스') 등의 입력 파라미터(들)을 기반으로 랜덤화될 수 있다. 상기 규칙이 적용될 경우, 일례로, (전체) 자원 재예약(/선택)이 간섭 환경에 급격한 변화를 주는 것을 완화시킬 수 있다.
또 다른 일례로, V2X MESSAGE TX 관련 자원(들)의 (반정적인) (재)예약(/선택)이 수행되고, “센싱 동작”이 사전에 정의(/시그널)된 채널 (예를 들어, PSCCH(/SA (SCHEDULING ASSIGNMENT)))에 대한 디코딩을 통해서 이행될 경우, 아래 (일부) 규칙에 따라, 'DATA (혹은 PSSCH (PHYSICAL SIDELINK SHARED CHANNEL))' 디코딩 동작이 수행될 수 있다.
[제안 규칙#6] 특정 주기에서 SA(/PSCCH) 디코딩에 성공하고, 자원 예약이 설정 (SET(/ON))되어 있다면, (A) 다음 주기에서 SA(/PSCCH)가 성공적으로 수신되면, 해당 (수신 성공한) SA(/PSCCH)에 따라 DATA(/PSSCH) 디코딩을 수행하면 되겠지만, (B) (반면에) 다음 주기에서 SA(/PSCCH)의 수신에 실패하면, 기존 (수신 성공한) (혹은 가장 최근에 수신 성공한) SA(/PSCCH)의 사전에 정의(/시그널링된) 여러 정보들 (예를 들어, RA (RESOURCE ALLOCATION), MCS (MODULATION AND CODING SCHEME), RS SEQUENCE SETTING 등)을 재사용하여, DATA(/PSSCH) 디코딩을 시도하도록 설정될 수 있다.
[제안 규칙#7] 한번 (재)예약(/선택)한 자원을 유지할 수 있는 '최대 시간'이 있는 경우 (예를 들어, 'RESOURCE RESELECTION TIMER'가 있는 경우) 혹은 (PSCCH(/SA) (혹은 PSSCH(/DATA)) 상의) 'RESERVATION FIELD'에서 (재)예약(/선택)한 자원을 얼마나 유지하는지를 지정해주는 경우, (SA(/PSCCH) 수신 실패한) 수신 V2X UE로 하여금, 해당 시간 동안은 가장 최근에 수신 성공한 (PSCCH(/SA)를 기반으로 DATA(/PSSCH) 디코딩을 시도하고, 또한, 해당 (다른 V2X UE에 의해) 점유된 자원 위치를 'RESOURCE (RE)ALLOCATION'에서 피하도록 설정될 수 있다.
또 다른 일례로, V2X UE로 하여금, 예약(/선택)한 자원이 있는데, 사전에 정의(/시그널링)된 기준(/규칙)을 만족시키는 더 좋은 자원이 발견된다면, 자신이 사용하던 (혹은 이전에 예약(/선택)한) 자원을 '재예약(/선택)'하도록 할 수 도 있다. 추가적인 일례로, V2X UE로 하여금, 현재 (자신이) 예약하고 있는 자원을 센싱(/측정)하기 위해서, 'MUTING(/SILENCING)'을 수행하는 대신에, 사전에 설정(/시그널링)된 다른 자원(/POOL)으로 잠깐만 이동 (그리고/혹은 (해당 이동한 자원(/POOL) 상에서) V2X MESSAGE의 전송을 수행 (일종의 'V2X MESSAGE TX W/O RESERVATION'으로 해석 가능)) 했다가, (자신이 예약한 자원을) 센싱(/측정)하고 (다시) 돌아오도록 할 수 도 있다. 여기서, 일례로, 다른 자원(/POOL)에 머무르는 '시간'은 사전에 설정(/시그널링)될 수 있다. 이러한 규칙이 적용될 경우, 일례로, 'MUTING(/SILENCING)' 동작으로 V2X MESSAGE의 전송이 생략(/중단)되는 것을 완화시킬 수 있다.
또 다른 일례로, 특정 V2X UE의 (자원 (재)예약(/선택) 관련) '센싱 동작이 수행되는 시간 영역의 경계'는 사전에 정의(/시그널)된 규칙을 기반으로 선정된 “PIVOT SF (혹은 REFERENCE SF)” (SF #P)으로 정의될 수 있다. 여기서, 일례로, 이러한 규칙이 적용될 경우, V2X UE는 “SF#(P-Y1)에서부터 SF#(P+Y2)까지의 자원 구간 (여기서, 일례로, 'Y1 = FLOOR((D-1)/2)', 'Y2 = CEILING((D-Y1)/2)' (혹은 'Y1 = CEILING((D-1)/2)', 'Y2 = FLOOR ((D-Y1)/2)')) (혹은 SF#(P-D)에서부터 SF#P까지의 자원 구간 혹은 SF#(P-1-D)에서부터 SF#(P-1)까지의 자원 구간)” 상에서, 센싱 동작을 수행한 후, 향후 자신의 V2X MESSAGE TX 관련 자원(들)을 (재)예약(/선택)하게 된다. 여기서, “D”는 사전에 정의(/시그널)된 'SENSING DURATION'을 의미하고, 'CEILING (X)'와 'FLOOR(X)'는 각각 'X보다 크거나 같은 최소 정수를 도출하는 함수', 'X보다 작거나 같은 최대 정수를 도출하는 함수'를 의미한다. 여기서, 일례로, 해당 “PIVOT SF (혹은 REFERENCE SF)”은 ('(SOURCE) UE ID' (그리고/혹은 '(V2X MESSAGE TX 동작이 수행되는) POOL(/자원) 주기 인덱스' 그리고/혹은 'SA PERIOD 인덱스') 등의 입력 파라미터(들)을 기반으로) 랜덤하게 선택될 수 있다. 또한, 일례로, 상기 제안 규칙은 (V2X UE) 전원을 켠 후에 초기 (INITIAL) 센싱 동작이 수행될 경우 그리고/혹은 이전 시점에서 (혹은 사전에 정의(/시그널링)된 길이의 (이전) 구간(/윈도우) 내에서) V2X MESSAGE 전송이 (한번도) 수행되지 않은 경우에만 한정적으로 적용될 수 있다.
또 다른 일례로, V2X UE(S)가 'SF#(N+C)'에서 'SF#(N+D)' (예를 들어, 'D ≥ C') 상의 연동된 'DATA(/PSSCH)' 전송 관련 'SA(/PSCCH)' 전송을 수행하는 상황을 가정한다. 여기서, 일례로, 'SF#(N+D)'에서 'SF#(N+E)' (예를 들어, 'D < E') 상에서의 다른 'TB' 관련 'POTENTIAL DATA(/PSSCH)' 전송 수행시, ('SF#(N+D)' 상의 'DATA(/PSSCH)' 전송에 사용된) '(주파수) 자원'을 재사용할지에 대한 '의도'를 (사전에 정의(/시그널링)된 채널 (예를 들어, 'SA(/PSCCH)' ('SF#(N+C)') (혹은 'DATA(/PSSCH)'))을 통해서) 알려줄 수 있다. 여기서, 일례로, 설명의 편의를 위해서, V2X UE#X에 의해, ('SF#(N+E)' 상에서의 다른 'TB' 관련 'POTENTIAL DATA(/PSSCH)' 전송 수행시) 재사용 '의도'가 없는 것으로 지시(/시그널링)된 '(주파수) 자원'을 'UN-BOOKING RESOURCE'로 명명한다. 여기서, 일례로, V2X UE#Y가 'ENERGY MEASUREMENT (그리고/혹은 SA DECODING)' 기반의 센싱 동작을 수행할 때, (현재 (예를 들어, 'SF#(N+D)') 혹은 센싱 구간 내에서) 높은 에너지가 측정되는 V2X UE#X에 의해 ‘UN-BOOKING RESOURCE'로 지시된 '(주파수) 자원'을 (자신의 자원 선택(/예약)시) 아래 (일부) 규칙에 따라 가정(/처리)할 수 있다. 왜냐하면, 일례로, V2X UE#X에 의해 ‘UN-BOOKING RESOURCE'로 지시된 해당 '(주파수) 자원'은 ('SF#(N+E)'을 포함한) 향후에 (어느 정도 시간 동안은) 사용되지 않을 확률이 높음에도 불구하고, (현재 (예를 들어, 'SF#(N+D)') 혹은 센싱 구간 내에서) 측정된 높은 에너지로 인해서 V2X UE#Y에 의해 선택(/예약)되지 않을 것이기 때문이다. 여기서, 일례로, 하기 규칙들은 V2X UE(S)가 특정 시점부터 자신이 이전 (자원 (재)선택(/예약) 주기)에 예약(/선택)한 자원 (마찬가지로 ‘UN-BOOKING RESOURCE'로 명명)을 더 이상 사용하지 않음을 (다른 V2X UE(S)에게) 사전에 정의(/시그널링)된 채널 (예를 들어, 'SA(/PSCCH)' (혹은 'DATA(/PSSCH)'))을 통해서 알려줄 때에도 확장 적용될 수 있다. 여기서, 일례로, 하기 규칙들은 V2X UE(S)가 'ENERGY MEASUREMENT ONLY' 기반의 센싱 동작' 혹은 'COMBINATION OF ENERGY MEASUREMENT AND SA DECODING' 기반의 센싱 동작'을 수행할 경우에만 한정적으로 적용 (예를 들어, 'SA DECODING ONLY' 기반의 센싱 동작'을 수행할 경우에는 적용되지 않음) 될 수 도 있다.
[제안 규칙#8] 'UN-BOOKING RESOURCE'로 지시된 '(주파수) 자원'에 대한 에너지 측정 값은 (해당 '(주파수) 자원' 상에서 측정된 에너지 값에서) 'RSRP 측정 값'을 뺀 나머지 값 (혹은 사전에 설정(/시그널링)된 오프셋 값을 뺀 나머지 값)으로 간주(/가정)하고, 자원 별 에너지 측정 값에 대한 'RANKING'을 수행한다. 여기서, 일례로, 해당 'RSRP 측정'은 사전에 설정(/시그널링)된 채널 (예를 들어, 'PSBCH'(/'PSCCH'/'PSSCH')) 상의 참조 신호 (예를 들어, 'DM-RS')를 기반으로 수행될 수 있다. 여기서, 일례로, 'SA(/PSCCH)'와 'DATA(/PSSCH)'가 'FDM'될 경우, '(주파수) 자원' (혹은 'SA(/PSCCH)' 혹은 'DATA(/PSSCH)') 관련 최종 'RSRP (측정) 값'은 (실제 측정된 'RSRP 값'에서) ('SA(/PSCCH)'와 'DATA(/PSSCH)' 간의 (주파수 영역 상의) 이격 거리에 따라 (상이하게)) 적용된 (사전에 설정(/시그널링된)) 'MPR 값'을 보상하여 (혹은 더하여) 최종 도출(/가정)될 수 도 있다.
[제안 규칙#9] 'UN-BOOKING RESOURCE'로 지시된 '(주파수) 자원'에 대한 '에너지 측정 값' 혹은 'RANKING 값'은 사전에 설정(/시그널링)된 값으로 간주(/가정)될 수 있다. 여기서, 일례로, 'UN-BOOKING RESOURCE'로 지시된 '(주파수) 자원'에 대한 'RANKING 값'은 최하위 (예를 들어, 해당 '(주파수) 자원'이 선택(/예약)될 확률이 낮음) (혹은 최상위 (예를 들어, 해당 '(주파수) 자원'이 선택(/예약)될 확률이 높음))로 설정(/시그널링)될 수 있다. 또 다른 일례로, 'UN-BOOKING RESOURCE'로 지시된 '(주파수) 자원'은 자원 선택(/예약)시, 항상 제외 (혹은 (우선적으로) 선택)되도록 규칙이 정의될 수 도 있다.
한편, V2X UE(S)의 센싱 동작은 아래와 같이 수행될 수 있다.
아래 제안 방식들은 V2X UE(S)이 'V2X MESSAGE 전송 (TX) 관련 자원'을 선택하기 위한 (효율적인) '센싱 방법'을 제시한다. 여기서, 일례로, '센싱' 동작이 적용될 경우, (인접한 거리에 있는) 상이한 V2X UE(S)이 동일한 위치의 전송 자원을 선택하여, (실제 전송 수행시) 상호 간에 간섭을 주고 받는 문제를 완화시킬 수 있다. 여기서, 일례로, '센싱'의 워딩은 (A) 에너지 (혹은 파워) 측정 동작으로 해석되거나 그리고/혹은 (B) 사전에 정의(/시그널링)된 채널 (예를 들어, PSCCH (PHYSICAL SIDELINK CONTROL CHANNEL))에 대한 디코딩 동작으로 해석될 수 있다. 여기서, 일례로, '에너지 (혹은 파워) 측정'은 (A) 'RSSI (RECEIVED SIGNAL STRENGTH INDICATOR) 형태 (예를 들어, (사전에 정의(/시그널링)된 안테나 포트의 'DM-RS'가 전송되는 혹은 데이터가 전송되는) 심벌들에서 측정한 수신 전력들의 평균값)' 그리고/혹은 (B) 'RSRP (REFERENCE SIGNAL RECEIVED POWER) (예를 들어, (사전에 정의(/시그널링)된 안테나 포트의) 'DM-RS'가 전송되는 'RE (RESOURCE ELEMENT)'에서 측정한 수신 전력들의 평균값) 형태' 그리고/혹은 (C) '사전에 정의(/시그널링)된 규칙(/수식)에 따라 'RSSI'와 'RSRP'를 조합한 형태 (예를 들어, 'RSRQ (REFERENCE SIGNAL RECEIVED QUALITY)'와 유사한 형태)'로 해석될 수 있다.
일례로, (A) V2X UE(S)의 'TOPOLOGY'가 변경되어 '센싱' 정보가 부정확해지는 문제 그리고/혹은 (B) 'HALF DUPLEX' 문제 등을 완화시키기 위해서, ('SINGLE V2X UE' 관점에서) '제어(/스케줄링) 정보'와 '(해당 제어(/스케줄링) 정보와 연동된) 데이터'가 동일 서브프레임 (SF) 상에서 'FDM (FREQUENCY DIVISION MULTIPLEXING)' 형태로 전송되는 것이 고려될 수 있다.
도 15 및 도 16은 ('SINGLE V2X UE' 관점에서) '제어(/스케줄링) 정보'와 '(해당 제어(/스케줄링) 정보와 연동된) 데이터'가 동일 SF 상에서 'FDM' 형태로 전송되는 경우에 대한 일례를 나타낸다.
여기서, 일례로, 도 15와 도 16은 각각 '연속된 자원 (RB (RESOURCE BLOCK)) 상에 제어(/스케줄링) 정보와 연동된 데이터가 전송되는 경우', '연속되지 않는 자원 (RB) 상에 제어(/스케줄링) 정보와 연동된 데이터가 전송되는 경우'를 나타낸다. 또 다른 일례로, '제어(/스케줄링) 정보'의 'LINK BUDGET'을 고려할 때, ('SINGLE V2X UE' 관점에서) '제어(/스케줄링) 정보'와 '(해당 제어(/스케줄링) 정보와 연동된) 데이터'가 다른 SF 상에서 'TDM (TIME DIVISION MULTIPLEXING)' 형태로 전송되는 것이 고려될 수 도 있다.
도 17은 (시스템 관점에서) '제어(/스케줄링) 정보 전송풀'과 '데이터 전송풀'이 'FDM' 형태로 설정(/구성)된 경우에 대한 일례를 나타낸다.
일례로, (A) 'V2X SERVICE'의 'LATENCY REQUIREMENT'를 (효율적으로) 만족시키고 그리고/혹은 (B) '제어(/스케줄링) 정보 전송'을 시간 영역 상에서 분산시키기 위해서, (시스템 관점에서) '제어(/스케줄링) 정보 전송풀'과 '데이터 전송풀'이 'FDM' 형태로 설정(/구성)될 수 있다. 도 17은 이러한 경우에 대한 일례를 보여준다. 여기서, 일례로, 특정 '제어(/스케줄링) 정보 전송풀'과 연동된 '데이터 전송풀'은 'TDM' 되어 있다고 가정하였다.
한편, (기본적으로) 단말은 (각각의) 서브채널 단위로 센싱을 수행하지만, 실제 V2X 메시지 전송은 복수개의 서브채널 단위로 수행될 수도 있다. 만약, 단말이 실제 V2X 메시지 전송에 사용되는 서브채널의 개수가 복수개인 경우(즉, V2X 메시지 전송이 복수개의 서브채널 단위로 수행되는 경우), 센싱을 어떻게 수행할 것인지가 문제된다. 이에 이하에서는, V2X 메시지 전송에 사용되는 서브채널의 개수가 복수개인 경우, 센싱을 수행하는 방법을 설명하도록 한다.
[제안 방법] 일례로, V2X UE(S)로 하여금, (자신이) 'V2X MESSAGE TX'에 사용할 '자원 크기 단위'로 센싱 동작을 수행하도록 규칙이 정의될 수 있다. 여기서, 일례로, 해당 규칙이 적용될 경우, V2X UE의 '센싱 자원 유닛 크기'는 (해당 V2X UE가) 'V2X MESSAGE TX'에 사용할 '자원 크기'와 동일해 진다. 예를 들어, 단말이 센싱 동작으로 에너지 측정을 수행하는 경우, 상기 에너지 측정을 어떤 자원 단위/크기로 수행할 것인지가 문제될 수 있다. 이 때, 본 제안 방법에서는, 에너지 측정의 단위/크기를, 단말이 데이터 전송에 사용하는 자원 단위/크기, 예컨대 서브채널 사이즈로 할 수 있다. 예를 들어, 단말이 V2X 메시지 전송을 특정 서브 채널 사이즈로 수행할 경우, 센싱 동작을 위한 에너지 측정은 상기 특정 서브 채널 사이즈의 자원 단위로 수행될 수 있다. 이하, 본 제안 방법을 도면을 통해 설명한다.
도 18은 본 발명의 일 실시예에 따른, V2X 메시지 전송에 사용되는 서브채널의 개수가 복수개인 경우, 센싱을 수행하는 방법의 순서도다.
도 18에 따르면, 단말은 V2X 메시지 전송에 사용되는 서브 채널의 크기에 대응되는 크기의 서브 채널 단위로 센싱을 수행하여 V2X 메시지 전송을 수행할 자원을 선택한다(S1810). 이때, 상기 단말은 레이턴시 요구를 만족시키는 범위 내에서 선택 윈도우(SELECTION WINDOW)를 구성하여 상기 자원을 선택할 수 있으며, 상기 V2X 메시지 전송은 복수의 서브채널 단위로 수행되고, 상기 복수의 서브채널의 크기에 대응되는 크기의 서브채널 단위로 수행된 센싱에 기초하여, 상기 V2X 통신을 수행할 자원이 선택될 수 있다. 상기 센싱이 수행될 때 이용되는 센싱 영역은 상기 복수의 서브채널의 크기에 대응되는 크기의 영역일 수 있다. 아울러, 상기 단말은 상기 복수의 서브채널에 포함된 서브채널들의 에너지 측정 평균 값을 이용하여 센싱을 수행할 수도 있다.
정리하면, 단말은 V2X 통신이 복수의 서브채널 단위로 수행되는 경우에는 복수의 서브채널 단위로 센싱을 수행할 수 있을 뿐만 아니라, 레이턴시 요구를 만족시키는 범위 내에서 선택 윈도우(Selection Window)를 구성하여 상기 자원을 선택할 수도 있다. 여기서, 레이턴시 요구를 만족시키는 범위 내에서 선택 윈도우(Selection Window)를 구성하여 상기 자원을 선택하는 예는 전술한 바와 같다.
이하에서는 V2X 메시지 전송이 복수의 서브채널 단위로 수행되는 경우, 단말이 복수의 서브채널 단위로 센싱을 수행하는 예를 중점적으로 설명한다.
단말은 V2X 메시지 전송에 사용되는 서브 채널의 크기에 대응되는 크기의 서브 채널 단위로 센싱을 수행하고, 단말은 센싱 결과에 기초하여 V2X 메시지 전송을 수행할 자원을 선택할 수 있다. 달리 말하면, 센싱(예컨대, ENERGY MEASUREMET)은 단말이 전송하려는 데이터의 서브채널 사이즈로 수행될 수 있다.
단말이 전송하려는 데이터의 서브채널 사이즈로 센싱(예컨대, ENERGY MEASUREMET)이 수행될 때, 서브채널들의 리니어(LINEAR) 평균 값이 이용될 수 있다. 보다 구체적으로, (모든 후보 단일 서브프레임 자원들의 집합인) 세트 SA에 남은 후보 단일 서브프레임 자원 Rx,y에 대해, 센싱 영역(예컨대, 메트릭 Ex,y)는 서브채널들 x+k에서 측정된 S-RSSI의 리니어 평균으로 정의될 수 있다. 여기서, K=0, ..., LsubCH-1과 같이 정의될 수 있으며, LsubCH는 실제 패킷을 보낼 때 필요한 서브 채널의 개수를 의미할 수 있다. 이해의 편의를 위해, 본 내용을 도면을 이용하여 아래와 같이 설명할 수 있다.
도 19는 ENERGY MEASUREMET(즉, 센싱)가 단말이 전송하려는 데이터의 서브채널 사이즈로 수행되는 것의 일례를 도시한 것이다. 도 19에서는, 단말이 전송하려는 V2X 메시지(예컨대, V2X 데이터)의 서브채널 사이즈가 2라고 가정(즉, LsubCH=2)하였다.
도 19의 예에서, ENERGY MEASUREMET는 단말이 전송하는 데이터의 서브채널 사이즈에 대응되는 두 개의 서브 채널 단위로 수행될 수 있다. 예컨대, 우선적으로 단말은 센싱 영역 #1 즉, 서브채널 #1 및 서브채널 #2에서의 에너지 센싱 값의 평균을 이용하여, 센싱 영역 #1에 대한 센싱 값을 결정할 수 있다. 아울러, 단말은 센싱 영역 #2 즉, 서브채널 #2 및 서브채널 #3에서의 에너지 센싱 값의 평균을 이용하여, 센싱 영역 #2에 대한 센싱 값을 결정할 수 있다. 마찬가지로, 단말은 센싱 영역 #3 즉, 서브채널 #3 및 서브채널 #4에서의 에너지 센싱 값의 평균을 이용하여, 센싱 영역 #3에 대한 센싱 값을 결정할 수 있다.
도 19의 예에서는 단말이 전송하려는 데이터의 서브채널 사이즈가 2개라고 가정하였으나, 단말이 전송하려는 데이터의 서브 채널 사이즈는 3개 이상의 값을 가질 수도 있다. 별도로 도시하지는 않았지만, 단말이 전송하려는 데이터의 서브채널 사이즈가 3개인 경우라면, 단말은 서브채널 #1 내지 서브채널 #3에서의 에너지 센싱 값의 평균을 이용하여, 센싱 영역에 대한 센싱 값을 결정할 수도 있다.
다시 도 18로 돌아와서, 단말은 선택된 상기 자원에 기초하여 V2X 메시지를 전송할 수 있다(S1820). 전술(혹은 후술)한 바와 같이, 상기 단말은 단말 특정적인 센싱 구간 동안 수행한 센싱 결과에 기초하여, 선택 윈도우 이내의 서브프레임을 선택할 수 있으며, 단말은 선택된 서브프레임에 기초하여 전송 예약 자원들을 결정하고, 상기 예약 자원 상에서 V2X 통신을 수행할 수 있다. 단말이 선택한 자원에 기초하여 V2X 통신을 수행하는 구체적인 예는 전술(혹은 후술)한 바와 같으므로, 구체적인 내용은 생략하도록 한다.
도 20 및 도 21은 ‘PARTIALLY OVERLAPPED REGION BASED SENSING (혹은 'SLIDING WINDOW BASED SENSING') 형태에 대한 일례를 도시한 것이다.
일례로, 센싱 동작은 (A) 'NON-OVERLAPPED REGION BASED SENSING' 형태 (도 20 참조) 그리고/혹은 (B) 'PARTIALLY OVERLAPPED REGION BASED SENSING' (혹은 'SLIDING WINDOW BASED SENSING') 형태 (도 21 참조)로 구현될 수 있다. 여기서, 일례로, 전자 규칙 ('(A)')이 적용될 경우, (연속적으로) 센싱 동작이 수행되는 영역들이 서로 겹치지 않는다 (예를 들어, 도 20 상의 '(센싱 영역#1)', '(센싱 영역#2)', '(센싱 영역#3)'이 서로 겹치지 않음을 볼 수 있음). (반면에) 후자 규칙 ('(B)')이 적용될 경우, 일례로, (연속적으로) 센싱 동작이 수행되는 영역들이 사전에 설정(/시그널링)된 '비율' (혹은 '자원양(/크기)') 만큼 서로 겹치게 된다 (예를 들어, 도 21 상의 '(센싱 영역#1)과 (센싱 영역#2)', '(센싱 영역#2)와 (센싱 영역#3)', '(센싱 영역#3)과 (센싱 영역#4)', '(센싱 영역#4)와 (센싱 영역#5)'가 각각 사전에 정의(/시그널링)된 '비율' (혹은 '자원양(/크기)') 만큼 서로 겹치는 것을 볼 수 있음). 일례로, 전자 규칙 ('(A)')은 후자 규칙 ('(B)')에 비해, V2X UE의 '센싱 동작 수행의 복잡도'를 낮출 수 있다. 다시 말해서, 일례로, 동일 크기의 자원풀에서 요구되는 '전체 센싱 횟수'가 전자 규칙 ('(A)')이 후자 규칙 ('(B)')에 비해서 상대적으로 적을 수 있다. 반면에, 일례로, 후자 규칙 ('(B)')은 전자 규칙 ('(A)')에 비해, (동일 크기의 자원풀에서 요구되는 '전체 센싱 횟수'가 더 많을 수 있지만) 'V2X MESSAGE TX' 관련 '가용 자원 후보 위치'를 상대적으로 효율적으로 (혹은 면밀하게) 탐색(/선택) 할 수 있다.
또 다른 일례로, V2X UE(S)로 하여금, 사전에 설정(/시그널링)된 '자원 단위(/크기)' (예를 들어, '1RB')로 (우선적으로) 센싱 동작을 수행하도록 한 후, 자신의 'V2X MESSAGE TX'에 사용될 '자원 크기(/단위)'에 해당되는 복수개의 센싱(/측정) 값들의 '(가중치) 평균값' (혹은 'SUM') (혹은 복수개의 센싱(/측정) 값들 중에 최대값 (혹은 최소값 혹은 중간값))을 ('V2X MESSAGE TX'에 사용될) '자원 크기(/단위)' 별 대표 센싱(/측정) 값으로 간주(/가정)할 수 도 있다.
또 다른 일례로, V2X UE(S)가 '주파수 (자원) 영역' 상에서 '불연속적인 위치'의 (복수 개의) 자원들을 이용하여 '(V2X) 채널/시그널 전송' (예를 들어서, 'MULTI-CLUSTER TX' (혹은 'DVRB TX'))을 수행할 때, 사전에 설정(/시그널링)된 '센싱 자원 유닛 단위(/크기)' (예를 들어서, 'K 개'의 'RB' (혹은 'RBG (RESOURCE BLOCK GROUP)')로 ('NON-OVERLAPPED REGION BASED SENSING' 혹은 'PARTIALLY OVERLAPPED REGION BASED SENSING'(/'SLIDING WINDOW BASED SENSING') 형태 기반의) 센싱(/측정) 동작을 수행하도록 한 후, (사전에 설정(/시그널링)된 임계값보다 작은 (혹은 큰) (에너지) 측정값의 자원들 중에) 자신의 'V2X MESSAGE TX' 관련 자원들을 (최종) 선택하도록 할 수 있다.
또 다른 일례로, V2X UE(S)가 '(SINGLE) V2X TB(/MESSAGE)' 를 전송함에 있어서, 'K 번'의 반복 전송 (예를 들어, 'K' 값은 '초기 전송'과 '재전송' 횟수를 (모두) 포함한 것임)을 수행하는 상황을 가정한다. 여기서, 일례로, 설명의 편의를 위해서, 'K' 값을 '4'로 가정한다. 여기서, 일례로, 'SA(/PSCCH)' 전송이 'SF#(N+C)'에서 수행되고, 연동된 ('4' 번의) 'DATA(/PSSCH)' 전송들이 각각 'SF#(N+D)', 'SF#(N+D+K1)', 'SF#(N+D+K2)', 'SF#(N+D+K3)'에서 수행 (예를 들어, 'C ≤ D', '0 < K1 < K2 < K3') 된다고 가정한다. 여기서, 일례로, 'SA(/PSCCH)' ('SF#(N+C)') 상에 (A) 'K 번' 혹은 (B) '(K-1) 번'의 반복 전송 관련 '시간 자원 위치들'을 알려주기 위한 필드가 정의될 수 있으며, 이를 위해서 아래 (일부) 규칙이 적용될 수 있다. 여기서, 일례로, 후자 ('(B)')의 경우, 해당 필드가 '초기(/첫번째) 전송'을 제외한 '나머지 ('(K-1) 번'의) 전송들' 관련 '시간 자원 위치들'을 알려주는 것으로 해석되거나 그리고/혹은 '초기(/첫번째) 전송'은 'SA(/PSCCH)' ('SF#(N+C)')와 동일한 시간 자원 (위치) 상에서 (항상) 수행된다고 해석되거나 그리고/혹은 '초기(/첫번째) 전송' 관련 '시간 자원 위치'는 (사전에 정의된) 'SA(/PSCCH)' ('SF#(N+C)') 전송 시점과 '초기(/첫번째) 전송' 시점 간의 간격을 알려주는 (다른) 필드로 시그널링된다고 해석될 수 있다.
(예시#A) '초기(/첫번째) 전송' 관련 '시간 자원 위치'는 (사전에 정의된) 'SA(/PSCCH)' ('SF#(N+C)') 전송 시점과 '초기(/첫번째) 전송' 시점 ('SF#(N+D)') 간의 간격을 알려주는 (다른) 'FIELD#F'로 시그널링되고, '나머지 ('(K-1) 번'의) 전송들' 관련 '시간 자원 위치들' (예를 들어, 'SF#(N+D+K1)', 'SF#(N+D+K2)', 'SF#(N+D+K3)')은 사전에 설정(/시그널링)된 '첫번째 전송' ('SF#(N+D)') 시점과 'K 번째 전송' ('SF#(N+D+K3)') 시점 간의 최대 간격 (MAX_GAP)과 동일한 사이즈(/크기)의 (새로운) 'FIELD#S'로 시그널링될 수 있다. 여기서, 일례로, ‘FIELD#S'는 '비트맵' 형태로 구현될 수 있다. 여기서, 일례로, ‘FIELD#S' 관련 '비트맵'은 '초기(/첫번째) (DATA(/PSSCH)) 전송' ('SF#(N+D)') 시점을 기준(/시작점)으로 적용될 수 있다. 여기서, 일례로, 'MAX_GAP' 값이 '10'으로 설정(/시그널링)된 경우, 만약 ‘FIELD#S'가 '0100100100'로 시그널링(/설정)되었다면, '두번째 전송', '세번째 전송', '네번째 전송'은 각각 'SF#(N+D+2)', 'SF#(N+D+5)', 'SF#(N+D+8)' 상에서 수행된다. 또 다른 일례로, 'K 번'의 반복 전송들 (예를 들어, 'SF#(N+D)', 'SF#(N+D+K1)', 'SF#(N+D+K2)', 'SF#(N+D+K3)') 관련 '시간 자원 위치들'은 사전에 설정(/시그널링)된 'SA(/PSCCH)' ('SF#(N+C)') 전송 시점과 'K 번째 전송' ('SF#(N+D+K3)') 시점 간의 최대 간격 (MAX_ TVAL )과 동일한 사이즈(/크기)의 (새로운) 'FIELD#Q'로 시그널링될 수 도 있다. 여기서, 일례로, ‘FIELD#Q'는 '비트맵' 형태로 구현될 수 있다. 여기서, 일례로, ‘FIELD#Q' 관련 '비트맵'은 'SA(/PSCCH)' ('SF#(N+C)') 시점을 기준(/시작점)으로 적용될 수 있다. 여기서, 일례로, 'MAX_TVAL' 값이 '10'으로 설정(/시그널링)된 경우, 만약 ‘FIELD#Q'가 '1100100100'로 시그널링(/설정)되었다면, '첫번째 전송', '두번째 전송', '세번째 전송', '네번째 전송'은 각각 'SF#(N+C+1)', 'SF#(N+C+2)', 'SF#(N+C+5)', 'SF#(N+C+8)' 상에서 수행된다. 해당 예시에서 만약 'SA(/PSCCH)' ('SF#(N+C)') 상에 ‘FIELD#F'가 정의되어 있었다면, ‘FIELD#F' 값은 '1'로 설정될 수 있다. 또 다른 일례로, V2X 통신 관련 'CONGESTION(/LOAD/MEASUREMENT) CONTROL 결과'로 ‘FIELD#S' (혹은 ‘FIELD#Q' (혹은 ‘FIELD#F'))가 가질 수 있는 '패턴 (형태/개수)' (혹은 '(최대(/최소)) 값(/길이)') 그리고/혹은 '(비트맵 상에서) '1'로 설정될 수 있는 비트의 (최대(/최소)) 개수' 등에 대한 제한이 생길 수 도 있다. 여기서, 일례로, 해당 (제한) 정보는 V2X UE(S)가 'CONGESTION(/LOAD/MEASUREMENT)' 상황을 보고 (사전에 정의(/시그널링)된 규칙(/기준)에 따라) 결정하거나 혹은 (V2X UE(S)로부터 보고받은 혹은 자신이 측정한 'CONGESTION(/LOAD/MEASUREMENT)' 정보를 기반으로) (서빙) 기지국이 설정(/시그널링)해줄 수 있다. 여기서, 일례로, V2X 통신 관련 'CONGESTION(/LOAD/MEASUREMENT) CONTROL 결과'로 'MAX_GAP' (혹은 'MAX_TVAL')이 가질 수 있는 '(최대(/최소)) 값(/길이)'에 제한이 (마찬가지로) 생길 수 도 있다.
(예시#B) 'K 번'의 반복 전송들 (예를 들어, 'SF#(N+D)', 'SF#(N+D+K1)', 'SF#(N+D+K2)', 'SF#(N+D+K3)') 관련 '시간 자원 위치들'은 'SA(/PSCCH)' ('SF#(N+C)') 상에 정의된 'K 개'의 ‘FIELD#F' ('(예시#A)') (예를 들어, ‘(X 번째) FIELD#F'는 'SA(/PSCCH)' ('SF#(N+C)') 전송 시점과 'X 번째 전송' 시점 간의 (시간 영역 상에서의) 간격을 알려주게 됨)로 시그널링될 수 있다.
(예시#C) (상기 (일부) 규칙들 (예를 들어, (예시#A), (예시#B))이 적용되는 상황하에서) ('K 번' (예를 들어, 'SF#(N+D)', 'SF#(N+D+K1)', 'SF#(N+D+K2)', 'SF#(N+D+K3)')의) 'DATA(/PSSCH)' 전송 마다 (각각) 'SA(/PSCCH)' 전송이 수행된다면, 아래 (일부) 규칙이 적용될 수 있다. 여기서, 일례로, 하기 (일부) 규칙들은 '(DATA/(PSSCH)) FREQUENCY HOPPING'이 수행되는 경우에만 한정적으로 적용될 수 도 있다.
(일례#1) '초기(/첫번째) 전송' ('SF#(N+D)') 관련 'SA(/PSCCH)' ('SF#(N+C)') 상의 'SF PATTERN' 정보(/필드) 그리고/혹은 '주파수 자원 (위치)' 정보(/필드) 그리고/혹은 'MCS' 정보(/필드) 중의 일부가 '나머지 ('(K-1) 번'의) 전송' 관련 'SA(/PSCCH)' 상에도 동일하게 전송될 수 있다. 여기서, 일례로, 이런 구분을 위해서, 하나의 'TB'가 여러 SF(S)에서 전송되는 경우, 각 SF 상의 (DATA/(PSSCH)) 전송을 스케줄링하는 'SA(/PSCCH)'에 몇 번째 ((DATA/(PSSCH)) 전송) SF에 해당하는지에 대한 'COUNTER 정보' (혹은 'DATA(/PSCCH) 전송'이 몇 번째 전송인지에 대한 정보(/필드) 혹은 'DATA(/PSCCH) 전송' 관련 'RV' 정보(/필드))가 포함될 수 있다. 여기서, 일례로, '초기(/첫번째) 전송' ('SF#(N+D)') 관련 'SA(/PSCCH)' ('SF#(N+C)') 상에는 (최소한) '초기(/첫번째) 전송' 관련 '주파수 자원 (위치)' 정보(/필드) 그리고/혹은 'MCS' 정보(/필드) 그리고/혹은 (상기 설명한) ‘FIELD#S' (혹은 ‘FIELD#Q') (혹은 'SF PATTERN' 정보(/필드)) 그리고/혹은 ‘FIELD#F' (예를 들어, 'X 번째 전송' 관련 'SA(/PSCCH)' 전송 시점과 'X 번째 전송' 시점 간의 간격을 알려주는 필드로 (확장) 해석될 수 있음) 그리고/혹은 '(해당) DATA(/PSCCH) 전송'이 몇 번째 전송인지에 대한 정보(/필드) (혹은 '(해당) DATA(/PSCCH) 전송' 관련 'RV' 정보(/필드)) (그리고/혹은 '(DATA/(PSSCH)) FREQUENCY HOPPING' 적용 여부 정보(/필드)) 등이 정의될 수 있다. 여기서, 일례로, 해당 규칙이 적용될 경우, ('나머지 ('(K-1) 번'의) 전송들' 관련 '주파수 자원 (위치)' 정보들이 관련 'SA(/PSCCH)' 상에서 (직접적으로) 전송(/시그널링)되지 않거나 그리고/혹은 ‘FIELD#F' 값들이 '초기(/첫번째) 전송' 관련 'SA(/PSCCH)' 전송 시점과 '초기(/첫번째) 전송' 시점 간의 간격과 동일하게 설정되지만) V2X UE(S)가 '이전 전송' 관련 'SA(/PSCCH)' 수신(/디코딩)에 실패하더라도 '이후 전송' 관련 'SA(/PSCCH)' 수신(/디코딩)에 성공하게 되면, 해당 '이후 전송' 관련 '주파수 자원 (위치) 정보'를 (A) '(DATA/(PSSCH)) FREQUENCY HOPPING 패턴' 정보 그리고/혹은 '이후 전송' 관련 'SA(/PSCCH)' 상의 (B) '초기(/첫번째) 전송' 관련 '주파수 자원 (위치)' 정보 그리고/혹은 (C) ‘FIELD#S' (혹은 ‘FIELD#Q') 정보 (혹은 'SF PATTERN' 정보) 그리고/혹은 'DATA(/PSCCH) 전송'이 몇 번째 전송인지에 대한 정보 (혹은 'DATA(/PSCCH) 전송' 관련 'RV' 정보)를 조합하여, (역추적 형태로) 파악(/도출)할 수 있다. 여기서, 일례로, '이후 전송' 관련 '시간 자원 (위치) 정보'는 '이후 전송' 관련 'SA(/PSCCH)' 상의 ‘FIELD#F'를 통해서 파악(/도출)할 수 있다. 여기서, 일례로, 상기 제안 규칙이 적용될 경우, (특히, '(DATA/(PSSCH)) FREQUENCY HOPPING' 동작이 적용될 경우) '초기(/첫번째) 전송' 관련 'SA(/PSCCH)' 수신(/디코딩)에 성공한 V2X UE(S)는 '나머지 ('(K-1) 번'의) 전송' 관련 'SA(/PSCCH)' 디코딩(/수신)을 (일부) 시도하지 않을 수 도 있다. 또 다른 일례로, (상기 제안 규칙에서) ‘FIELD#F' (예를 들어, 'SA(/PSCCH)' 전송 시점과 '연동된 DATA(PSSCH)' 전송 시점 간의 'TIMING GAP'으로 해석될 수 있음) (혹은 향후 (특정 시점에) 다른 'TB' 관련 'POTENTIAL DATA(/PSSCH)' 전송 수행시, 이전 'DATA(/PSSCH)' 전송에 사용된 '(주파수) 자원'을 재사용할지에 대한 '의도'를 알려주는 필드)가 각각의 'SA(/PSCCH)' 전송 마다 독립적으로 (혹은 (모두) 동일하게) 설정(/시그널링)될 수 도 있다. 여기서, 일례로, 해당 규칙이 적용될 경우, V2X UE(S)로 하여금, 'K 번'의 전송 관련 'SA(/PSCCH)'에 대해 (모두) 디코딩(/수신) 시도하도록 할 수 도 있다. 또 다른 일례로, (상기 제안 규칙에서) V2X TX UE가 (하나의 'TB'를 여러 SF(S)에서 전송하는 경우), (중간에) 사전에 설정(/시그널링)된 규칙 (예를 들어, (다른 V2X UE(S)가 전송하는 'HIGHER PRIORITY'의 'SA(/PSCCH)'(/'DATA(PSSCH)')를 검출하였을 경우) 'CURRENT RESOURCE ALLOCATION'이 사전에 정의(/시그널링)된 'REQUIREMENT' (예를 들어, LATENCY, RELIABILITY, PRIORITY, FAIRNESS, QOS)를 만족시키지 못할 경우 등)에 따라, 'RESOURCE RESELECTION' 동작을 수행할 수 도 있다. 따라서, 일례로, V2X RX UE로 하여금, (해당 'TB' 관련) '후속 SA(/PSSCH)'가 '전 SA(/PSCCH)'와 다른 스케줄링을 수행할 경우, '후속 SA(/PSSCH)'을 따르도록 할 수 있다.
(일례#2) ((일례#1)에서) 'X 번째 전송' (예를 들어, 'X > 1') 관련 'SA(/PSCCH)' 전송시, ‘FIELD#S' (혹은 ‘FIELD#Q')는 해당 'X 번째 전송'가 마치 '초기(/첫번째) 전송'인 것처럼 가정하고, ‘FIELD#S' (혹은 ‘FIELD#Q')를 설정하도록 할 수 도 있다. 또 다른 일례로, 'SA(/PSCCH)' 상에 '주파수 자원 (위치)' 정보(/필드)가 정의되고 '(DATA/(PSSCH)) FREQUENCY HOPPING' 동작이 수행될 경우, '주파수 자원 (위치)' 정보(/필드) 값 자체는 'SA(/PSCCH)' 전송마다 (해당 '(DATA/(PSSCH)) FREQUENCY HOPPING 패턴'을 고려하여) 상이하게 설정될 수 있다. 왜냐하면, 일례로, '(N+1) 번째 전송' 관련 'SA(/PSCCH)'는 'N 번째 전송' 관련 'SA(/PSCCH)'가 스케줄링한 '주파수 자원 (위치)'에 '(DATA/(PSSCH)) FREQUENCY HOPPING'을 적용한 후, (해당) 변경된 '주파수 자원 (위치)'를 지정(/시그널링)해줘야 하기 때문이다.
또 다른 일례로, V2X UE(S)로 하여금, 자신이 (일정 기간(/주기) 동안에) 예약(/선택)한 (전송) 자원을 사전에 설정(/시그널링)된 조건이 만족되는 될 때마다, 재선택하도록 할 수 있다. 여기서, 일례로, V2X UE(S)로 하여금, 사전에 정의(/시그널링)된 범위 (“C_RANGE”)에서 카운터 (COUNTER) 값을 선택하도록 한 후, 해당 카운터가 '0' (혹은 '0 보다 작은 값')될 때, 자신이 (일정 기간(/주기) 동안에) 예약(/선택)한 (전송) 자원을 재선택하도록 할 수 있다. 여기서, 일례로, 해당 카운터는 (A) (새로운) TB 전송 (예를 들어, 'TB 전송'의 워딩은 '실제 (성공적으로) 수행된 TB 전송'만으로 해석되거나 그리고/혹은 ('센싱 결과' 그리고/혹은 '상대적으로 높은 우선 순위의 (다른 V2X UE(S)의) 메시지 전송과의 충돌'로 인해) '생략된 TB 전송'도 포함되는 것으로 해석될 수 있음)마다 사전에 정의(/시그널링)된 값 (예를 들어, '1')으로 감소 (혹은 증가)되거나 혹은 (B) 사전에 설정(/시그널링)된 (주기) 값 (예를 들어, '100MS') 마다 사전에 정의(/시그널링)된 값 (예를 들어, '1')으로 감소 (혹은 증가)되도록 할 수 있다. 여기서, 일례로, 사전에 정의(/시그널링)된 범위에서 카운터 값을 (재)선택하는 작업 (혹은 카운터 값을 'RESET'하는 작업)은 '(ALL) SEMI-PERSISTENTLY SELECTED RESOURCE(S)' 관련 '(RESOURCE(S)) RESELECTION'이 트리거링된 경우로 정의될 수 있다. 여기서, 일례로, 'C_RANGE' 값은 아래 (일부) 파라미터에 따라 (일부) 상이하게 설정(/가정)되도록 할 수 있다. 여기서, 일례로, ((특정) 파라미터의 범위에 따른) 'C_RANGE' 값은 사전에 정의되거나 혹은 네트워크로부터 시그널링될 수 있다.
(일례#1) 'V2X UE VELOCITY'. 여기서, 일례로, (상대적으로 혹은 사전에 설정(/시그널링)된 임계값보다) 빠른 'V2X UE VELOCITY'의 경우, (상대적으로) 긴 (혹은 짧은) 'C_RANGE' 값이 적용될 수 있음.
(일례#2) '(TRANSMISSION) SYNCHRONIZATION REFERENCE TYPE' (예를 들어, 'eNB', 'GNSS', 'UE'). 여기서, 일례로, '(TRANSMISSION) SYNCHRONIZATION REFERENCE TYPE'이 GNSS (혹은 eNB 혹은 UE)인 경우, ('(TRANSMISSION) SYNCHRONIZATION REFERENCE TYPE'이 eNB (혹은 UE 혹은 GNSS)인 경우에 비해) (상대적으로) 긴 (혹은 짧은) 'C_RANGE' 값이 적용될 수 있음.
(일례#3) 'V2X MESSAGE TRANSMISSION (그리고/혹은 GENERATION) PERIODICITY'. 여기서, 일례로, (상대적으로 혹은 사전에 설정(/시그널링)된 임계값보다) 긴 'V2X MESSAGE TRANSMISSION (그리고/혹은 GENERATION) PERIODICITY'의 경우, (상대적으로) 긴 (혹은 짧은) 'C_RANGE' 값이 적용될 수 있음.
(일례#4) 'V2X MESSAGE (그리고/혹은 SERVICE) TYPE' (예를 들어, 'EVENT-TRIGGERED MESSAGE', 'PERIODIC MESSAGE' (혹은 '(상대적으로) 작은 LATENCY REQUIREMENT (그리고/혹은 (상대적으로) 높은 신뢰도(/QOS) REQUIREMENT 그리고/혹은 (상대적으로) 높은 우선 순위)의 메시지', '(상대적으로) 긴 LATENCY REQUIREMENT (그리고/혹은 (상대적으로) 낮은 신뢰도(/QOS) REQUIREMENT 그리고/혹은 (상대적으로) 낮은 우선 순위)의 메시지'). 여기서, 일례로, 'EVENT-TRIGGERED MESSAGE'의 경우, ('PERIODIC MESSAGE'인 경우에 비해) (상대적으로) 긴 (혹은 짧은) 'C_RANGE' 값이 적용될 수 있음.
(일례#5) 'V2X MESSAGE (그리고/혹은 SERVICE) PRIORITY (그리고/혹은 LATENCY REQUIREMENT 그리고/혹은 RELIABILITY REQUIREMENT 그리고/혹은 QOS REQUIREMENT)'. 여기서, 일례로, (상대적으로) 낮은 'V2X MESSAGE (그리고/혹은 SERVICE) PRIORITY (그리고/혹은 LATENCY REQUIREMENT 그리고/혹은 RELIABILITY REQUIREMENT 그리고/혹은 QOS REQUIREMENT)'의 경우, (상대적으로) 긴 (혹은 짧은) 'C_RANGE' 값이 적용될 수 있음.
또 다른 일례로, V2X TX UE(S)로 하여금, 아래 (일부 혹은 모든) 규칙에 따라, (V2X MESSAGE) 전송 자원 (재)예약(/선택) 동작을 수행하도록 할 수 있다. 여기서, 일례로, (해당) 전송 자원 (재)예약(/선택) 동작은 V2X TX UE(S)가 사전에 설정(/시그널링)된 범위 (예를 들어, “5~15”) 안에서 랜덤하게 선택한 (전송 자원 (재)예약) 카운터 값 (SEL _ CNTVAL)이 “0” (그리고/혹은 “음의 정수값”)이 되었을 때에 (적어도) 트리거링될 수 있다. 여기서, 일례로, (선택된) 카운터 값은 (실제) TRANSPORT BLOCK (TB)(/패킷) 전송 마다 (그리고/혹은 ((실제) TB(/패킷) 전송과 상관없이) (선택된) 카운터 값(/개수) (그리고/혹은 (선택된) 카운터 값(/개수)로부터 유도된 값(/개수)) 만큼의 (자원 예약 (간격) 주기 “P”의) 전송 자원들이 예약(/선택)되었다고 간주(/가정)한 후, (시간 영역 상에서) 해당 예약(/선택)된 전송 자원이 지나갈 때마다 그리고/혹은 (LOW LAYER) 버퍼 (그리고/혹은 PDCP LAYER) 상에 (전송될 혹은 생성(/수신)된) TB(/패킷)가 존재할 (그리고/혹은 존재하지 않을) 경우), 사전에 설정(/시그널릴)된 값 (예를 들어, “1”)만큼 감소시키도록 할 수 있다. 여기서, 일례로, 본 발명에서 “(재)예약(/선택)” 용어는 (A) V2X TX UE(S)가 (사전에 설정(/시그널링)된 확률 값 (KEEP_P) (예를 들어, “전술한 STEP 3”) 기반으로 기존에 선택한 (전송) 자원을 유지(/재사용)하지 않는 것으로 결정한 경우 (예를 들어, “0”과 “1” 사이에서 랜덤하게 선택한 값이 KEEP_P 보다 작거나 같을 때에만 기존에 선택한 (전송) 자원을 유지한다고 간주함) (혹은 해당 확률 값 (KEEP_P)에 상관없이)) 센싱 결과를 기반으로 (기존과 다른 (혹은 동일한)) 전송 자원을 재예약(/선택)하는 것 그리고/혹은 (B) V2X TX UE(S)가 (사전에 설정(/시그널링)된 확률 값 (KEEP_P) 기반으로 (혹은 해당 확률 값 (KEEP_P)에 상관없이)) 기존에 선택한 (전송) 자원을 유지(/재사용)하는 것 (그리고/혹은 (C) 기존과 동일한 유한한 개수 (혹은 사전에 설정(/시그널링)된 (다른) 개수 (예를 들어, SEL_CNTVAL 값 (그리고/혹은 SEL_CNTVAL 값으로부터 유도되는 값) 보다 큰 (혹은 크거나 같은) 값으로 해석))의 서브프레임들 (혹은 (기존과) 같은 자원)을 (다시) 예약(/선택)하는 것)으로 (일반적으로) 해석될 수 있다. 여기서, 일례로, (일반적으로) “(재)예약(/선택)” 동작이 수행될 경우, (전송 자원 (재)예약) 카운터 값을 새롭게 (랜덤하게) 선택 (혹은 (전송 자원 (재)예약) 카운터 값을 (새롭게 (랜덤하게) 선택하지 않고) 기존값 (SEL_CNTVAL) (혹은 나머지 값 (혹은 사전에 설정(/시그널링)된 (다른) 값))을 승계(/유지/적용)) 하도록 할 수 있다.
(예시#1) 일례로, V2X TX UE(S)로 하여금, 전송 자원 (재)예약(/선택) 수행시, (자원 예약 (간격) 주기 “P”의) 무한개의 서브프레임(/자원)을 (우선적으로) 예약(/선택)하도록 한 후, 전송 자원 (재)예약(/선택) 동작이 트리거링되기 전까지 (해당) 예약(/선택)된 자원을 사용하도록 할 수 있다. 하지만, 일례로, 해당 규칙이 적용될 경우, “SFN (SYSTEM FRAME NUMBER) WRAP AROUND” 문제가 발생될 수 있다.
이하, 이해의 편의를 위해, 도면을 통해 “SFN (SYSTEM FRAME NUMBER) WRAP AROUND” 문제가 발생되는 예를 설명한다.
도 22는 “SFN (SYSTEM FRAME NUMBER) WRAP AROUND” 문제가 발생되는 예를 개략적으로 도시한 것이다.
도 22에 따르면, 일례로, SUBFRAME#0 시점에서 “100MS”의 자원 예약 (간격) 주기로 전송 자원 (재)예약(/선택)을 수행하려는 V2X TX UE#X가 있다고 가정하자. 여기서, 일례로, 모든 10240 개의 서브프레임들이 V2X 자원 (풀)로 설정(/시그널링)되었다고 가정하자. 여기서, 일례로, 이와 같은 경우, V2X TX UE#X는 SUBFRAME#0, SUBFRAME#100,…, SUBFRAME#10200, 그리고, SUBFRAME#10300을 선택해야 할 경우에 (SFN의 제한으로 인해서) SUBFRAME#60을 선택하게 된다. 그 결과로, 일례로, V2X TX UE#X의 (모든) 서브프레임 선택이 끝난 후, 두번째 전송 기회는 SUBFRAME#100 전에 발생하게 된다.
한편, 해당 문제를 해결하기 위해서, V2X TX UE(S)로 하여금, 전송 자원 (재)예약(/선택) 수행시, (자원 예약 (간격) 주기 “P”의) 유한한 개수 (FINI_SFNUM)의 서브프레임(/자원)을 (우선적으로) 예약(/선택)하도록 할 수 있다. 이하, 단말이 사전에 정의된 규칙에 따라, 유한한 개수의 RESOURCE를 예약 (i.e., 10*SL_RESOURCE_RESELECTION_COUNTER)하는 예를 도면을 통해 설명한다.
도 23은 본 발명의 일 실시예에 따른, 유한한 개수의 자원을 예약하는 방법의 순서도다.
도 23에 따르면, 단말은 V2X 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행할 수 있다(S2310). 단말은 선택 윈도우 상의 자원을 선택하고, 선택된 자원으로부터 특정 주기에 기초하여 반복되는 자원들에 대한 예약을 수행할 수 있으며, 이때의 예약된 자원(들)은 유한한 개수일 수 있다. 이때, 상기 유한한 개수는 단말이 임의적으로 선택(혹은, 결정)한 카운터(예컨대, SL_RESOURCE_RESELECTION_COUNTE) 값에 비례하고, 상기 카운터 값은 양의 정수를 가질 수 있다. 또한, 상기 카운터 값은 5 이상의 값을 가지고, 상기 카운터 값은 15 이하의 값을 가질 수 있다. 아울러, 상기 유한한 개수는 상기 단말이 임의적으로 선택한 카운터 값의 10배의 값을 가질 수 있다. 이하에서는, 단말이 유한한 개수의 자원을 예약하는 예를 구체적으로 설명한다.
단말은 V2X 통신이 수행되는 복수의 자원을 예약할 수 있으며, 예약되는 복수의 자원은 유한한 개수를 가질 수 있다. 단말이 유한한 개수의 RESOURCE를 예약할 때, 사전에 정의된 규칙(e.g. 10*SL_RESOURCE_RESELECTION_COUNTER)을 적용할 수 있다.
사전에 정의된 규칙에 대한 구체적인 예로, PSSCH의 전송 기회에 관한 시간 및 주파수 자원의 하나의 세트에서의 서브프레임 개수는 특정 값(예컨대, Cresel)과 같이 주어질 수 있다. 이때, Cresel는 (특정 카운터(예컨대, SL_RESOURCE_RESELECTION_COUNTER)가 설정된 경우) 10*SL_RESOURCE_RESELECTION_COUNTER과 같이 정의될 수 있으며, 그렇지 않은 경우 (즉, SL_RESOURCE_RESELECTION_COUNTER가 설정되지 않은 경우)에는 Cresel가 1로 설정될 수 있다. 여기서, SL_RESOURCE_RESELECTION_COUNTER는 5 이상, 15 이하의 값 중 랜덤한 값이 설정될 수 있다.
예컨대, SL_RESOURCE_RESELECTION_COUNTER가 5인 경우에는, PSSCH의 전송을 위해 예약되는 서브프레임이 총 50개일 수 있으며, 예컨대, SL_RESOURCE_RESELECTION_COUNTER가 15인 경우에는 PSSCH의 전송을 위해 예약되는 서브프레임은 총 150개일 수 있다.
여기서, 일례로, (해당) 유한한 개수는 (A) V2X 자원 (풀)로 설정(/시그널링)된 서브프레임(/자원)의 총 개수 (TNUM _ V2XSF) (여기서, 일례로, TNUM_V2XSF 값은 10240 보다 작거나 같은 (“0”을 포함한) 양의 정수값으로 해석될 수 있음) (혹은 “FLOOR (TNUM_V2XSF/자원 예약 (간격) 주기 (P))” (혹은 “CEILING (TNUM_V2XSF/자원 예약 (간격) 주기 (P))” 혹은 “FLOOR (10240/자원 예약 (간격) 주기 (P))” 혹은 “CEILING (10240/자원 예약 (간격) 주기 (P))”) (여기서, 일례로, FLOOR (X)와 CEILING (X)는 각각 X 보다 작거나 같은 최대 정수 값을 도출하는 함수, X 보다 크거나 같은 최소 정수 값을 도출하는 함수를 나타냄) 혹은 (사전에 설정(/시그널링)된) TNUM_V2XSF (혹은 10240) 보다 작은 (혹은 작거나 같은) 값) 그리고/혹은 (B) ((서빙) 기지국 (혹은 네트워크)으로부터) 사전에 설정(/시그널링)된 (특정) 값으로 정의될 수 있다. 여기서, 일례로, (해당) 유한한 개수 (그리고/혹은 TNUM_V2XSF 값)은 SEL_CNTVAL 값 (그리고/혹은 SEL_CNTVAL 값으로부터 유도되는 값) 보다 큰 (혹은 크거나 같은) 것으로 해석 (그리고/혹은 (해당) 유한한 개수 (그리고/혹은 TNUM_V2XSF 값)은 (일종의) 예약(/선택) 가능한 최대 서브프레임(/자원)의 개수로 해석) 될 수 있다. 여기서, 일례로, 해당 규칙의 적용을 통해서, (선택된) 카운터 값이 양의 정수 값 상태임에도 불구하고, 예약(/선택)한 서브프레임(/자원)이 (시간 영역 상에서) 모두) 지나가는 문제도 완화될 수 있다. 여기서, 일례로, V2X TX UE(S)로 하여금, (해당) 유한한 개수 (예를 들어, (일종의) 예약(/선택) 가능한 최대 서브프레임(/자원) 개수로 해석 가능함)를 정의하지만, 만약 SEL_CNTVAL 값 (그리고/혹은 SEL_CNTVAL 값으로부터 유도되는 값)이 (해당) 유한한 개수 보다 작다면, (예외적으로) SEL_CNTVAL 개 (그리고/혹은 SEL_CNTVAL 값으로부터 유도되는 값(/개수) 그리고/혹은 더 작은 값(/개수))의 서브프레임(/자원)을 예약(/선택)하도록 할 수 도 있다.
단말은 예약된 상기 유한한 개수의 자원 상에서 V2X 통신을 수행할 수 있다(S2320). 단말이 예약된 자원 상에서 V2X 통신을 수행하는 것은 전술한 바와 같다.
한편, 단말은 예약된 자원 상에서 무한하게 V2X 전송을 수행하지는 않는다. 즉, 단말은 예약된 전송 자원을 재선택할 수 있으며, 전술한 바와 같이, (해당) 전송 자원 (재)예약(/선택) 동작은 V2X TX UE(S)가 사전에 설정(/시그널링)된 범위 (예를 들어, “5~15”) 안에서 랜덤하게 선택한 (전송 자원 (재)예약) 카운터 값 (SEL_CNTVAL)이 “0” (그리고/혹은 “음의 정수값”)이 되었을 때에 (적어도) 트리거링될 수 있다.
이때, 상기 V2X 단말은 예약된 상기 자원이 더 이상 남아있지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행할 수 있다. 또한, 상기 V2X 단말이 1초 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행할 수 있으며, 상기 V2X 단말이 기 설정된 개수의 전송 기회 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행할 수 있다. 일례로, (해당) 유한한 개수 (그리고/혹은 TNUM_V2XSF 개)의 예약(/선택)된 서브프레임(/자원)이 (시간 영역 상에서) (모두) 지나감 (그리고/혹은 사전에 설정(/시그널링)된 서브프레임 인덱스 (예를 들어, 10240 (혹은 TNUM_V2XSF))가 지나감)에도 불구하고 (선택된) 카운터 값이 “0” (그리고/혹은 “음의 정수값”)이 되지 않았을 경우, V2X TX UE(S)로 하여금, 전송 자원 (재)예약(/선택) 동작을 수행하도록 하되, (전송 자원 (재)예약) 카운터 값을 새롭게 (랜덤하게) 선택 (혹은 (전송 자원 (재)예약) 카운터 값을 (새롭게 (랜덤하게) 선택하지 않고) 기존값 (SEL_CNTVAL) (혹은 나머지 값 (혹은 사전에 설정(/시그널링)된 (다른) 값))을 승계(/유지/적용)) 하도록 할 수 도 있다.
단말이 전송 자원을 재 선택하는 구체적인 예는 후술하도록 한다.
여기서, 일례로, (해당) “전송 자원 (재)예약(/선택) 동작” 용어는 (A) V2X TX UE(S)가 (사전에 설정(/시그널링)된 확률 값 (KEEP_P) 기반으로 기존에 선택한 (전송) 자원을 유지(/재사용)하지 않는 것으로 결정한 경우 (혹은 해당 확률 값 (KEEP_P)에 상관없이)) 센싱 결과를 기반으로 (기존과 다른 (혹은 동일한)) 전송 자원을 (재)예약(/선택)하는 것 그리고/혹은 (B) V2X TX UE(S)가 (사전에 설정(/시그널링)된 확률 값 (KEEP_P) 기반으로 (혹은 해당 확률 값 (KEEP_P)에 상관없이)) 기존에 선택한 (전송) 자원을 유지(/(재)사용)하는 것 (그리고/혹은 (C) 기존과 동일한 유한한 개수 (혹은 사전에 설정(/시그널링)된 (다른) 개수 (예를 들어, SEL_CNTVAL 값 (그리고/혹은 SEL_CNTVAL 값으로부터 유도되는 값) 보다 큰 (혹은 크거나 같은) 값으로 해석))의 서브프레임들 (혹은 (기존과) 같은 자원)을 (다시) 예약(/선택)하는 것)으로 해석될 수 있다.
(예시#2) 일례로, ((예시#1)이 적용될 경우) V2X TX UE#X (예를 들어, 자원 예약 (간격) 주기 “P_X”)로 하여금, (PSCCH 디코딩으로 파악한) 다른 V2X TX UE#Y가 예약(/선택)한 자원 예약 (간격) 주기 “P_Y”의 전송 자원과 자신의 예약(/선택) 가능한 후보 자원 간의 충돌(/겹침) 여부 판단 (예를 들어, 전술한 “STEP 2”)은 (해당 후보 자원 상에서) 자신이 가정(/간주)하는 (유한한) 개수 (NUM_EXTX)의 전송들이 수행된다고 가정(/간주)했을 때 (혹은 자신이 예약(/선택)하는 (자원 예약 (간격) 주기 “P_X”의) 유한한 서브프레임(/자원) 개수만큼의 전송들이 수행된다고 가정(/간주)했을 때), 충돌(/겹침)이 발생되는지에 따라 결정되도록 할 수 있다. 여기서, (해당 규칙이 적용된 경우에 대한) 일례로, ((SUBFRAME#(N-10)) PSCCH 디코딩으로) V2X TX UE#Y가 “1000MS”의 자원 예약 (간격) 주기로 SUBFRAME#(N-10), SUBFRAME#(N+990) 상의 전송 자원을 예약(/선택)한 것을 파악한 경우, V2X TX UE#X (“100MS”의 자원 예약 (간격) 주기)로 하여금, SUBFRAME#N (현재 시점)에서 전송 자원 (재)예약(/선택) 수행시, (사전에 설정(/가정)된 “(TX RESOURCE) SELECTION WINDOW” 내의) UBFRAME#(N+90) 상의 (V2X TX UE#Y와 동일한 (주파수) 위치의) 후보 자원이 선택 가능한지를 판단하기 위해서, “SUBFRAME#(N+90), SUBFRAME#(N+190), SUBFRAME#(N+290), SUBFRAME#(N+390), SUBFRAME#(N+490), SUBFRAME#(N+590), SUBFRAME#(N+690), SUBFRAME#(N+790), SUBFRAME#(N+890)(, SUBFRAME#(N+990))” (그리고/혹은 “SUBFRAME#(N+(990-100*9)), SUBFRAME#(N+(990-100*8)), SUBFRAME#(N+(990-100*7)), SUBFRAME#(N+(990-100*6)), SUBFRAME#(N+(990-100*5)), SUBFRAME#(N+(990-100*4)), SUBFRAME#(N+(990-100*3)), SUBFRAME#(N+(990-100*2)), SUBFRAME#(N+(990-100))(, SUBFRAME#(N+990))”) 형태의 모니터링을 수행하도록 할 수 있다. 여기서, 일례로, 해당 형태의 모니터링은 V2X TX UE#X가 (사전에 설정(/가정)된 “(TX RESOURCE) SELECTION WINDOW” 내의) V2X TX UE#Y가 예약(/선택)한 동일 (주파수) 위치의 후보 자원 (SUBFRAME #Z (예를 들어, “Z = (N+90)”))이 선택 가능한지는 (해당) V2X TX UE#Y가 (“P_Y” 기반으로) (추가적으로) 예약(/선택)한 자원(/서브프레임) 시점 (예를 들어, SUBFRAME #G (예를 들어, “G = (N+990)”)) (예를 들어, 일종의 “UPPER BOUND”로 해석할 수 있음)와 SUBFRAME#(Z+P_X*K) (여기서, 일례로, ”0 ≤ K ≤ (“(Z+P_X*M)” 값이 “G” 값보다 작거나 같은 조건을 만족하는 최대 (정수) M 값)”) 간에 겹침이 발생 (그리고/혹은 SUBFRAME#Z와 SUBFRAME#(G-P_X*R) (여기서, 일례로, ”0 ≤ R ≤ (“(G-P_X*H)” 값이 (사전에 설정(/가정)된) “(TX RESOURCE) SELECTION WINDOW” 내의 최소 서브프레임 인덱스 값보다 크거나 같은 조건을 만족하는 최대 (정수) H 값)”) 간에 겹침이 발생) 하는지에 따라 결정(/판단)되는 것으로 볼 수 있다. 여기서, 일례로, ((예시#2)의) 제안 규칙이 적용될 경우, V2X TX UE(S)가 예약(/선택)하는 자원의 개수 (예를 들어, (예시#1))와 충돌(/겹침)을 판단하기 위해 미래를 살펴봐야 하는 자원의 개수 (예를 들어, (예시#2))는 다를 수 있는 것으로 해석될 수 있다. 여기서, (해당 규칙이 적용된 경우에 대한) 또 다른 일례로, ((SUBFRAME#(N-10)) PSCCH 디코딩으로) V2X TX UE#Y가 “1000MS”의 자원 예약 (간격) 주기로 SUBFRAME#(N-10), SUBFRAME#(N+990) 상의 전송 자원을 예약(/선택)한 것을 파악한 경우, V2X TX UE#X (“100MS”의 자원 예약 (간격) 주기)로 하여금, SUBFRAME#N (현재 시점)에서 전송 자원 (재)예약(/선택) 수행시, SUBFRAME#(N+90) 상의 (V2X TX UE#Y와 동일한 (주파수) 위치의) 후보 자원은 자신이 가정(/간주)하는 (유한한) 개수 (예를 들어, “9”개) (예를 들어, 해당 (유한한) 개수는 V2X TX UE#Y의 예약(/선택) 전송 자원 (예를 들어, SUBFRAME#(N+990)) 시점보다 모니터링 서브프레임 인덱스의 최대값이 커지지 않는 (최대) (정수) 값으로 설정될 수 있음)의 전송들 (예를 들어, SUBFRAME#(N+90), SUBFRAME#(N+190), SUBFRAME#(N+290), SUBFRAME#(N+390), SUBFRAME#(N+490), SUBFRAME#(N+590), SUBFRAME#(N+690), SUBFRAME#(N+790), SUBFRAME#(N+890))이 수행될 때, V2X TX UE#Y의 예약(/선택) 전송 자원 (예를 들어, SUBFRAME#(N+990))과 충돌하는지 (혹은 겹치는지)에 따라 (최종) 선택 여부가 결정될 수 있다. 여기서, 일례로, 해당 예시에서는 충돌하지 (혹은 겹치지지) 않기 때문에 (최종) 선택 가능하다. 일례로, NUM_EXTX 값과 FINI_SFNUM 값 ((예시#1) 참조)은 독립적으로(/상이하게) (혹은 동일하게) 설정(/시그널링)될 수 있다. 여기서, 일례로, FINI_SFNUM 값은 (같은 케리어(/주파수) 상의 (V2X 자원 풀을 공유하는)) V2X UE (GROUP) 간에 공통적인 값 (혹은 독립적인 값)으로 설정(/시그널링) (그리고/혹은 NUM_EXTX 값은 (같은 케리어(/주파수) 상의 (V2X 자원 풀을 공유하는)) V2X UE (GROUP) 간에 독립적인 값 (예를 들어, 단말의 상위 계층이 설정) (혹은 공통적인 값)으로 설정(/시그널링)) 될 수 도 있다.
(예시#3) 일례로, (선택된) 카운터 값이 (실제) TB(/패킷) 전송 마다, 사전에 설정(/시그널릴)된 값 (예를 들어, “1”)만큼 감소될 경우, 만약 V2X TX UE#M에게 전송할 TB(/패킷)이 (장시간 동안) ((LOW LAYER) 버퍼 (그리고/혹은 PDCP LAYER) 상에) 없다면 (그리고/혹은 (실제) TB(/패킷) 전송이 없다면), (선택된) 카운터 값의 감소가 중단될 것이고, (장시간 후에) 전송할 TB(/패킷)가 다시 생겼을 때 (그리고/혹은 (실제) TB(/패킷) 전송이 수행될 때), (해당) V2X TX UE#M는 ((선택된) 카운터 값이 양의 정수 값 상태이므로) (기존에) 예약(/선택)된 자원들을 여전히 가지고 있다고 간주(/가정)하고 (해당) 자원들을 올바르지 않게 사용하게 된다.
단말은 예약된 전송 자원을 재선택할 수 있으며, (해당) 전송 자원 (재)예약(/선택) 동작은 V2X TX UE(S)가 사전에 설정(/시그널링)된 범위 (예를 들어, “5~15”) 안에서 랜덤하게 선택한 (전송 자원 (재)예약) 카운터 값 (SEL _ CNTVAL)이 “0” (그리고/혹은 “음의 정수값”)이 되었을 때에 (적어도) 트리거링될 수 있다. 여기서, 일례로, 단말은 실제 전송을 수행하였을 때, 상기 카운터 값을 '1'씩 감소시킬 수 있으며, 카운터 값이 0이 될 경우에 단말이 자원 재 예약 동작을 수행할 수 있다. 달리 말하면, 이 경우, 전송 자원 재 예약은 ((사전에) 예약된 자원 상에서) 단말이 실제로 전송을 수행하여야지만 발생할(트리거될) 수 있다.
전술한 바와 같이, (자원 재 예약을 트리거시키는) 상기 카운터의 값은 ((사전에) 예약된 자원 상에서) 단말에 의한 실제 패킷 전송이 수행되어야지만 감소되는데, 만약 (사전에) 예약된 (유한한) 개수의 자원이 (시간 영역 상에서)_모두 지나감에도 불구하고 해당 카운터 값이 “0” (그리고/혹은 “음의 정수값”)이 되지 않으면,(영원히 자원 재 예약이 트리거링되지 않은) 데드락(Deadlock) 문제가 발생할 수 있다.
이에, 앞서 발생하는 문제를 해결하기 위하여, 이하에서는 (상기 카운터의 값이 0이 되지 않는 경우에도) 자원 재 예약(즉, 자원 재 선택)을 수행할 수 있는 방법을 도면을 통해 설명하도록 한다.
도 24는 본 발명의 일 실시예에 따른, 단말이 자원을 재 선택하는 방법의 순서도다.
도 24에 따르면, 단말은 자원 재선택 조건이 만족되는지 여부를 결정한다(S2410). 자원 재선택 조건은 복수 개일 수 있다. 단말은 상기 복수의 자원 재선택 조건들 중에서 적어도 하나를 만족할 경우, 자원 재선택을 수행할 수 있다. 여기서, 일례로, (해당 문제를 해결하기 위해) ((선택된) 카운터 값이 양의 정수 값 상태인) V2X TX UE#M로 하여금, 만약 사전에 설정(/시그널링)된 임계 (시간)값 이상으로 전송할 TB(/패킷)이 ((LOW LAYER) 버퍼 (그리고/혹은 PDCP LAYER) 상에) 없다면 (그리고/혹은 (실제) TB(/패킷) 전송이 (연속적으로) 수행되지 않으면) (그리고/혹은 (현재의) 서브프레임 인덱스가 10240 (혹은 TNUM_V2XSF) 값을 초과한다면 그리고/혹은 자신이 예약(/선택)한 (유한한 개수의) 서브프레임(/자원)이 (시간 영역 상에서) (모두) 지나가면), 전송 자원 (재)예약(/선택) 동작을 수행하도록 하되, (전송 자원 (재)예약) 카운터 값을 새롭게 (랜덤하게) 선택 (혹은 (전송 자원 (재)예약) 카운터 값을 (새롭게 (랜덤하게) 선택하지 않고) 기존값 (SEL_CNTVAL) (혹은 나머지 값 (혹은 사전에 설정(/시그널링)된 (다른) 값))을 승계(/유지/적용)) 하도록 할 수 도 있다.
정리하면, 단말의 자원 재 선택 조건은 (A) V2X 전송을 위한 자원이 더 이상 남아있지 않은 경우(예를 들어, 전술한 바와 같이 '자신이 예약(/선택)한 서브프레임(/자원)이 (모두) 지나가는 경우'), (B) 단말이 연속적인 1초 동안 패킷 전송을 수행하지 않은 경우(예를 들어, 전술한 바와 같이, '사전에 설정(/시그널링)된 임계 시간 값 이상으로 (연속된) TB(/패킷) 전송이 수행되지 않는 경우'), (C) 단말이 기 설정된 개수의 연속된 전송 기회를 스킵한 경우(예를 들어, 전술한 바와 같이, '사전에 설정(/시그널링)된 임계 값 이상으로 (연속적으로) TB(/패킷) 전송이 수행되지 않는 경우')가 존재할 수 있다. 이하, 전술한 자원 재 선택 조건에 대한 구체적인 예를 설명하도록 한다.
(A) V2X 전송을 위한 자원이 더 이상 남아있지 않은 경우,
단말은 설정된 사이드링크 그랜트와 관련된 자원이 더 이상 남아 있지 않은 경우, 자원 재 선택을 수행할 수 있다. 즉, 단말은 설정된 사이드링크 그랜트와 관련된 자원이 더 이상 남아있지 않고, 단말에게 전송할 새로운 MAC PDU가 있는 경우, 자원 재 선택이 트리거될 수 있다. (즉, 전술한 경우에, 단말은 자원 재 선택을 수행할 수 있다.)
일례로, (해당) 유한한 개수 (그리고/혹은 TNUM_V2XSF 개)의 예약(/선택)된 서브프레임(/자원)이 (시간 영역 상에서) (모두) 지나감 (그리고/혹은 사전에 설정(/시그널링)된 서브프레임 인덱스 (예를 들어, 10240 (혹은 TNUM_V2XSF))가 지나감)에도 불구하고 (선택된) 카운터 값이 “0” (그리고/혹은 “음의 정수값”)이 되지 않았을 경우, V2X TX UE(S)로 하여금, 전송 자원 (재)예약(/선택) 동작을 수행하도록 하되, (전송 자원 (재)예약) 카운터 값을 새롭게 (랜덤하게) 선택 (혹은 (전송 자원 (재)예약) 카운터 값을 (새롭게 (랜덤하게) 선택하지 않고) 기존값 (SEL_CNTVAL) (혹은 나머지 값 (혹은 사전에 설정(/시그널링)된 (다른) 값))을 승계(/유지/적용)) 하도록 할 수 도 있다.
(B) 단말이 연속적인 1초 동안 패킷 전송을 수행하지 않은 경우,
(마지막) 1초 동안, 설정된 사이드링크 그랜트에서 지시되는 자원 상에서 전송이나 재전송이 (MAC 엔티티에 의해) 수행되지 않은 경우, 단말은 자원 재 선택을 수행할 수 있다. 즉, 단말이 1초라는 연속적인 전송 기회 상에서 전송이나 혹은 재전송을 수행하지 않은 경우, 자원 재 선택이 트리거될 수 있다.
(C) 단말이 기 설정된 개수의 연속된 전송 기회를 스킵한 경우,
단말에게 기 설정된 값이 설정되어 있고, (설정된 사이드링크 그랜트가 지시하는 자원 상에서) 사용되지 않은 전송 기회의 개수가 상기 기 설정된 값과 동일한 경우, 단말은 자원 재 선택을 수행할 수 있다. 달리 말하면, 단말에게 특정 값이 설정되어 있고, 단말이 연속적으로 상기 특정 값의 개수만큼 전송 기회를 스킵한 경우, 단말은 자원 재 선택을 수행할 수 있다.
즉, 단말에게 N(여기서, N은 양의 정수)이라는 연속적인 전송 기회를 스킵한 경우, 자원 재 선택이 트리거될 수 있다. 여기서 상기 조건이 사용되는 경우에 상기 N이 단말에게 설정되며, 상기 N은 [1, 2, 3, 4, 5, 6, 7, 8, 9]라는 값을 가질 수 있다.
예컨대, 단말에게 '5'개의 연속적인 전송 기회를 스킵할 경우에, 단말이 자원 재 선택을 수행하도록 설정되어 있는 경우에는, 단말은 5개의 연속적인 전송 기회 동안 전송을 수행하지 않을 때 자원 재 선택을 수행할 수 있다.
이후, 단말은 자원 재 선택 조건이 만족되는 경우, V2X 통신이 수행되는 자원에 대한 재 선택을 수행할 수 있다(S2420). 달리 말하면, 단말은 상기 자원 재 선택 조건이 만족되는 경우, V2X 통신이 수행되는 자원을 재 선택할 수 있으며, 이후, 단말은 선택된 자원 상에서 V2X 통신을 수행할 수 있다. 예컨대, 전술한 바와 같이, 단말은 (A) V2X 전송을 위한 자원이 더 이상 남아있지 않은 경우(예를 들어, 전술한 바와 같이 '자신이 예약(/선택)한 서브프레임(/자원)이 (모두) 지나가는 경우'), (B) 단말이 연속적인 1초 동안 패킷 전송을 수행하지 않은 경우(예를 들어, 전술한 바와 같이, '사전에 설정(/시그널링)된 임계 시간 값 이상으로 (연속된) TB(/패킷) 전송이 수행되지 않는 경우'), 또는 (C) 단말이 기 설정된 개수의 연속된 전송 기회를 스킵한 경우(예를 들어, 전술한 바와 같이, '사전에 설정(/시그널링)된 임계 값 이상으로 (연속적으로) TB(/패킷) 전송이 수행되지 않는 경우'), V2X 통신이 수행되는 자원을 재선택하여 선택된 자원 상에서 V2X 통신을 수행할 수 있다.
이후, 단말은 선택된 상기 자원에 기초하여 상기 V2X 통신을 수행할 수 있다(S2430). 여기서, 전술한 바와 같이, 선택된 상기 자원은 LATENCY REQUIREMENT를 만족시키는 범위내에서 구성된 SELECTION WINDOW에 기초하여 결정된 자원(즉, 레이턴시 요구를 만족시키는 선택 윈도우 상의 자원)을 의미할 수 있다. 또한, 전술(혹은 후술)한 바와 같이, 상기 단말은 단말 특정적인 센싱 구간 동안 수행한 센싱 결과에 기초하여, 선택 윈도우 이내의 서브프레임을 선택할 수 있으며, 단말은 선택된 서브프레임에 기초하여 전송 예약 자원들을 결정하고, 상기 예약 자원 상에서 V2X 통신을 수행할 수 있다. 단말이 선택한 자원에 기초하여 V2X 통신을 수행하는 구체적인 예는 전술(혹은 후술)한 바와 같으므로, 구체적인 내용은 생략하도록 한다.
여기서, 일례로, (해당) “전송 자원 (재)예약(/선택) 동작” 용어는 (A) V2X TX UE(S)가 (사전에 설정(/시그널링)된 확률 값 (KEEP_P) 기반으로 기존에 선택한 (전송) 자원을 유지(/재사용)하지 않는 것으로 결정한 경우 (혹은 해당 확률 값 (KEEP_P)에 상관없이)) 센싱 결과를 기반으로 (기존과 다른 (혹은 동일한)) 전송 자원을 (재)예약(/선택)하는 것 그리고/혹은 (B) V2X TX UE(S)가 (사전에 설정(/시그널링)된 확률 값 (KEEP_P) 기반으로 (혹은 해당 확률 값 (KEEP_P)에 상관없이)) 기존에 선택한 (전송) 자원을 유지(/(재)사용)하는 것 (그리고/혹은 (C) 기존과 동일한 유한한 개수 (혹은 사전에 설정(/시그널링)된 (다른) 개수 (예를 들어, SEL_CNTVAL 값 (그리고/혹은 SEL_CNTVAL 값으로부터 유도되는 값) 보다 큰 (혹은 크거나 같은) 값으로 해석))의 서브프레임들 (혹은 (기존과) 같은 자원)을 (다시) 예약(/선택)하는 것)으로 해석될 수 있다.
(예시#4) 일례로, V2X TX UE#U로 하여금, (자신의 전송 자원 (재)예약(/선택) 수행시 그리고/혹은 다른 V2X TX UE#Z의 선택(/예약)된 서브프레임(/자원) 위치 파악시) 자원 예약 (간격) 주기 “P”의 유한(/무한)한 개수의 (예약(/선택)) 서브프레임(/자원)이 (이전) 10240 번째 서브프레임을 초과 (예를 들어, “Z” 번째 서브프레임 (여기서, 일례로, “Z”는 “10240” 보다 큰 양의 정수 값))할 경우, 다음 (혹은 이후) 10240 개의 서브프레임 내의 “MOD (Z, 10240) (여기서, 일례로, MOD (X, Y)는 X를 Y로 나누었을 때의 나머지 값을 도출하는 함수를 나타냄)” 번째 서브프레임부터 (다시) 자원 예약 (간격) 주기 “P”의 간격으로 (서브프레임(/자원)이) 예약(/선택)되는 것으로 간주(/가정)하도록 할 수 있다.
(예시#5) 일례로, ((예시#1) 그리고/혹은 (예시#2) 그리고/혹은 (예시#3) 그리고/혹은 (예시#4)의 경우) (V2X UE(S)로 하여금) (유한(/무한) 개수의 서브프레임(/자원)) 예약(/선택) 자체는 SFN 범위 (혹은 TNUM_V2XSF 범위)를 벗어나면서 (SFN WRAP AROUND 시켜서) 하되, V2X UE(S)로 하여금, 자신의 자원 예약 (간격) 주기 “P”를 잘 지키면서 이상한 (시점의) 서브프레임(/자원)은 (유효한 전송 서브프레임(/자원)에서) 제외 (SKIP)하는 형태 (그리고/혹은 (유한(/무한) 개수의 서브프레임(/자원)) 예약(/선택)을 자체적으로 SFN 범위 (혹은 TNUM_V2XSF 범위)를 늘리면서 하는 형태)로 동작하도록 할 수 있다.
(예시#7) 일례로, 이하의 설명은 V2X TX UE(S)의 효율적인 (V2X 메시지(/TB)) 전송 동작을 지원하기 위한 방법을 나타낸다. 이하, 단말은 자원 예약 주기 P 간격으로 10*C 서브프레임을 예약하고, 이때, C는 MAC에 의해 결정되는 SL_RESOURCE_RESELECTION_COUNTER를 의미할 수 있다.
(A) 전술한 바와 같이, 단말이 자원 예약 주기 P 간격으로 10*C 서브프레임을 예약하는 것은 크게 두 가지 문제점이 존재할 수 있다.
우선, 단말은 유한한 개수의 서브프레임들을 예약하나, SL_RESOURCE_RESELECTION_COUNTER은 MAC PDU가 전송되는 경우에만 감소할 수 있다. 따라서, 상위 레이어가 특정 시간 구간 동안 패킷 생성을 중단하는 경우, 그리고 많은 예약 서브프레임에서 전송을 스킵한 경우, 단말은 예약된 자원이 더 이상 유효하지 않게 되고 새롭게 도착한 패킷의 전송에 대한 자원이 더 이상 남지 않을 수 있다.
또한, 예약된 서브프레임의 세트의 시간 구간이 DFN(D2D FRAME NUMBER) 범위를 넘어서는 경우(즉, 10*C*P>Tmax, Tmax는 10240 또는 10176), 두 번째 DFN 범위에서의 서브프레임 넘버는 100으로 나눠지지 않을 수 있다(즉, 100으로 나눌 경우, 나머지가 발생할 수 있다).
예컨대, 도 22의 경우와 같이, V2V서브프레임이 10240라는 인덱스 범위를 가지는 경우, 단말이 인덱스 {0, 100, ..., 10200, 10300, ..., 14900}에 대한 서브프레임을 예약할 경우, 상기 10300 부터 14900까지의 서브프레임 넘버는 DFN 범위를 넘어서는 범위에 해당하기 때문에, 실제로 {0, 100, ..., 10200, 60, 160, ..., 3660}에 대한 서브프레임이 예약될 수 있다.
(B) 이에, 이하에서는 전술한 두 가지 문제점을 해결하기 위한 방법을 제공하도록 한다.
우선, 첫 번째 문제점을 해결하기 위하여, 단말이 예약한 자원이 더 이상 남아있지 않음에도 불구하고, SL_RESOURCE_RESELECTION_COUNTER가 여전히 0보다 큰 경우, 단말은 자원 예약을 확장할 수 있다.
두 번째 문제점을 해결하기 위하여, 예약된 서브 프레임의 수가 카운터 수와 독립적으로 설정할 수 있다. 아울러, 예약된 서브프레임이 수를 카운터 값보다 작게 설정할 수도 있다. 예를 들어, 단말은 자원 예약이 트리거 될 때 현재의 DFN 범위의 경계까지의 서브 프레임들의 세트를 예약할 수 있다.
도 25는 전술한 제안을 고려하여 자원 예약을 수행하는 방법의 일례다.
도 25에 따르면, 전술한 두 가지 제안을 함께 고려하여, 단말은 먼저 DFN 경계 이전에 종료하는 서브 프레임들의 세트를 결정하고, 더 많은 자원들이 필요하다면 동일한 자원 예약 간격으로 자원 예약을 반복할 수 있다.
(C) 전술한 제안을 정리하면 아래와 같다..
제안 1: 단말이 더 이상 예약 된 리소스를 가지고 있지 않지만 SL_RESOURCE_RESELECTION_COUNTER가 여전히 0보다 큰 경우, 단말이 자원 예약을 확장할 수 있다.
제안 2: 자원 예약이 트리거 될 때, 단말은 현재의 DFN 범위의 경계까지의 서브 프레임들의 세트를 예약할 수 있다.
V2X TX UE(S)의 전송 자원 (재)예약(/선택) 동작에 대한 일례는 아래 표 2와 같이 나타낼 수 있다.
<표 2>
Figure PCTKR2017003843-appb-I000001
Figure PCTKR2017003843-appb-I000002
Figure PCTKR2017003843-appb-I000003
(예시#6) 일례로, V2X TX UE(S)로 하여금, 표 2 (예를 들어, 전술(혹은 후술)한 “STEP 2/3”)에 따라, 전송 자원 (재)예약(/선택) 동작을 수행하도록 할 수 있다. 여기서, 일례로, SCI 포맷 상의 “RESOURCE RESERVATION FIELD (RR_FIELD)” 값은 ((단말) 상위 계층으로부터 설정(/시그널링)된) “RESOURCE RESERVATION INTERVAL (RR_ INV)” 값을 사전에 정의(/시그널링)된 값 (P_STEP) (예를 들어, “P_STEP = 100”)으로 나눈 몫(/값) (I_VALUE)으로 지정될 수 있다. 여기서, 일례로, I_VALUE 값은 (최대) “1 ≤ I_VALUE ≤ 10”의 범위로 설정(/시그널링)될 수 있다. 여기서, 일례로, 특정 I_VALUE 값의 선택(/허용) 가능 여부는 “CARRIER(/POOL)-SPECIFIC NETWORK (PRE)CONFIGURATION” 형태로 (사전에 정의된 시그널링 (예를 들어, 10-BIT BITMAP 상의 X 번째 비트가 X 번째 I_VALUE 값의 선택(/허용) 가능 여부를 지시함)을 통해서) 지정될 수 도 있다. 여기서, 일례로, 특정 I_VALUE 값 (I_ RESVAL)의 선택 제한은 (A) “I_RESVAL*P_STEP” 값의 RR_INV 값을 ((단말) 상위 계층이) 설정(/시그널링)하지 못하는 것 그리고/혹은 (B) ((단말) 상위 계층이) (실제로) 원하는 RR_INV 값과 가장 근접한 값을 표현할 수 있는 (I_RESVAL가 아닌) 다른 I_VALUE 값을 설정(/시그널링)해야 하는 것으로 해석될 수 있다.
한편, 단말이 (센싱 윈도우에서) 센싱을 수행하는 동안 전송이 수행되는 경우, 즉, 센싱 윈도우 내에서 V2X 전송이 수행되는 서브프레임에 대해서는 (하프 듀플렉스 문제로 인해) 단말이 센싱을 수행하지 못할 수 있다. 이때, 단말이 센싱을 수행하지 못하는 서브프레임과 특정 주기들에 대응되는 서브프레임 상에서, 단말이 V2X 메시지 전송을 수행할 경우에는, 단말이 센싱을 수행하지 못한 서브프레임에 기초하여 V2X 메시지를 전송하는 결과를 초래하게 된다.
이에, 이하에서는, 단말이 센싱을 수행하지 못한 서브프레임에 기초하여 V2X 메시지를 전송하는 문제를 해결하기 위해, 단말이 센싱을 수행하지 못한 서브프레임에 관련된 (선택 윈도우에서의) 서브프레임을 배제시키는 방법을 도면을 통해 제공하도록 한다.
도 26은 본 발명의 일 실시예에 따른, 단말이 센싱을 수행하지 못한 서브프레임에 관련된 (선택 윈도우에서의) 서브프레임을 배제시키는 방법의 순서도다.
도 26에 따르면, 단말은 센싱 구간 동안 전송이 수행된 서브프레임에 관련된 (선택 윈도우에서의) 서브프레임을 제외한, 서브프레임을 (선택 윈도우에서) 선택한다(S2610). 달리 말하면, 단말은 선택 윈도우에서의 복수의 서브프레임 중에서 센싱 구간 동안 전송이 수행된 서브프레임과 관련된 선택 윈도우에서의 서브프레임을 제외하고, 제외된 선택 윈도우에서의 서브프레임 이외의 서브프레임을 상기 복수의 서브프레임 중에서 선택할 수 있다.
여기서, 센싱 구간 동안 전송이 수행된 서브프레임과 관련된 선택 윈도우에서의 서브프레임은, 단말이 상기 선택 윈도우에서의 서브프레임을 선택할 경우, 선택된 서브프레임의 자원 예약 주기에 따른 서브프레임이 단말이 센싱을 수행하지 못하는 서브프레임과 특정 주기들에 대응되는 서브프레임과 오버랩되는 서브프레임을 의미할 수 있다. 이해의 편의를 위해, 본 내용들을 도면을 통해 설명하면 아래와 같다.
도 27은 단말이 센싱을 수행하지 못한 서브프레임에 관련된 (선택 윈도우에서의) 서브프레임을 배제하는 예를 도시한 것이다.
도 27에 따르면, 예컨대, 제1 서브프레임은 단말이 센싱을 수행하지 못한 서브프레임을 의미할 수 있다. 상기 제1 서브프레임과 특정 주기에 대응되는 서브프레임은 제3 서브프레임이라고 가정할 수 있다.
여기서, 선택 윈도우에서의 제2 서브프레임이 선택될 때, 선택된 제2 서브프레임에 대한 자원 예약 주기에 따라 예약되는 서브프레임이 복수 개 있으며, 예약되는 서브프레임 중 하나(혹은 복수) 개의 서브프레임이 상기 제3 서브프레임과 오버랩되는 경우에는, 단말은 상기 제2 서브프레임을 선택 윈도우에서 선택하지 않을 수 있다(즉, 선택을 제외할 수 있다).
도 26으로 돌아와 이를 일반화 하면, 예컨대, (센싱 윈도우 이내의) 서브프레임 #k에서 (V2X 메시지 전송이 수행되어) 단말이 센싱을 수행하지 못하였고, 서브프레임 #(y+P*j)와 서브프레임 #(k+100*i)이 오버랩되는 경우, 단말은 선택 윈도우 이내의 서브프레임 #y를 자원 예약 선택에서 배제할 수 있다. 여기서, 전술한 바와 같이, 서브프레임 #k는 단말이 센싱을 수행하지 못한 서브프레임에 대응되고, 서브프레임 #y는 선택 윈도우 이내의 서브프레임을 의미할 수 있다. 또한, 상기 P는 단말의 자원 예약 주기를 의미할 수 있으며, 예컨대, P는 100ms의 값을 가질 수 있다. 상기 j는 0, 1, 2, ..., C_ resel-1의 값을 의미할 수 있으며, C_ resel은 전술한 바와 같이 특정 카운터 값이 비례하는 값(예컨대, 10*SL_RESOURCE_RESELECTION_COUNTER)의 값을 의미할 수 있다. 특정 카운터에 대한 내용(즉, SL_RESOURCE_RESELECTION_COUNTER)은 전술한 바와 같으므로, 구체적인 설명은 생략하도록 한다. 아울러, i는 캐리어 특정적 설정에 의해 제한되는 세트에서의 요소를 의미할 수 있다. 즉, 상기 i는 기지국이 예약을 허용할 수 있는 값을 의미하며, 특정 주기와 연관된 값(예컨대, i가 2인 경우, 특정 주기(예컨대, 1홉)는 100*i = 200ms)을 의미할 수 있다. 이때, i는 예컨대 2, 4, 6, 8의 값을 가질 수도 있다.
여기서, 일례로, 표 2 상에 기술된 STEP 5에서, V2X TX UE(S)로 하여금, 만약 STEP 2에서
Figure PCTKR2017003843-appb-I000004
이 자신의 V2X 메시지 전송 동작으로 모니터링되지 못했다면 (그리고/혹은 자신의 V2X 메시지 전송 동작으로
Figure PCTKR2017003843-appb-I000005
상에서 다른 V2X TX UE(S) 관련 PSCCH 디코딩 및 (연동된) PSSCH DM-RS RSRP (그리고/혹은 S-RSSI) 측정 동작을 수행하지 못했다면), SA에 속하는 RX,Y 중에 RX,Y +RR_ INVTX *j
Figure PCTKR2017003843-appb-I000006
(그리고/혹은
Figure PCTKR2017003843-appb-I000007
상의 다른 V2X TX UE(S)에 의해 선택(/예약)될 수 있는 (일부) 자원(들))와 겹친다면, RX,Y를 SA 집합으로부터 (추가적으로) 제외시키도록 할 수 있다. 여기서, 일례로, “J” 값은 “0, 1,…, (CRESEL-1) (표 2 참조)” 형태로 정의될 수 있다. 여기서, 일례로, “RR_INVTX”은 자신의 (상위 계층으로부터 설정(/시그널링)된) “RESOURCE RESERVATION INTERVAL” 값을 의미하고, “I_CANVAL”는 (사전에) “CARRIER(/POOL)-SPECIFIC NETWORK (PRE)CONFIGURATION” 형태로 지정된 선택(/허용) 가능한 “I_VALUE SET”에 속하는 값(들)로 (한정적으로) 해석될 수 있다. 여기서, 일례로, 상기 규칙이 적용될 경우, (V2X TX UE(S)가 STEP 2에서 자신의 V2X 메시지 전송 동작으로 모니터링되지 못한 자원 (예를 들어,
Figure PCTKR2017003843-appb-I000008
)이 발생됨으로써) SA 집합으로부터 RX,Y의 (추가) 제외 여부를 판단할 때, (특정 케리어(/풀) 상에서) (실제) 선택(/허용) 가능한 “I_VALUE SET” (그리고/혹은 “RESOURCE RESERVATION INTERVAL”)만을 고려하는 것으로 해석될 수 있다.
이후, 단말은 선택된 상기 서브프레임에 기초하여 V2X 통신을 수행할 수 있다(S2620). 여기서, 전술한 바와 같이, 선택된 상기 서브프레임(혹은, 자원)은 LATENCY REQUIREMENT를 만족시키는 범위내에서 구성된 (SLECTION WINDOW)에 기초하여 결정된 자원(즉, 레이턴시 요구를 만족시키는 선택 윈도우 상의 자원)을 의미할 수 있다. 또한, 전술(혹은 후술)한 바와 같이, 상기 단말은 단말 특정적인 센싱 구간 동안 수행한 센싱 결과에 기초하여, 선택 윈도우 이내의 서브프레임을 선택할 수 있으며, 단말은 선택된 서브프레임에 기초하여 전송 예약 자원들을 결정하고, 상기 예약 자원 상에서 V2X 통신을 수행할 수 있다. 전술한 바와 같이, 단말이 선택된 상기 서브프레임 상에서 V2X 통신을 수행한다는 것은, 단말이 선택한 서브프레임에 연관되어 예약된 서브프레임 상에서 V2X 통신을 수행한다는 것을 의미할 수 있다. 단말이 선택한 자원에 기초하여 V2X 통신을 수행하는 구체적인 예는 전술(혹은 후술)한 바와 같으므로, 구체적인 내용은 생략하도록 한다.
여기서, 또 다른 일례로, 표 2 상에 기술된 STEP 5에서, V2X TX UE(S)로 하여금, 만약 STEP 2에서
Figure PCTKR2017003843-appb-I000009
이 자신의 V2X 메시지 전송 동작으로 모니터링되지 못했다면 (그리고/혹은 자신의 V2X 메시지 전송 동작으로
Figure PCTKR2017003843-appb-I000010
상에서 다른 V2X TX UE(S) 관련 PSCCH 디코딩 및 (연동된) PSSCH DM-RS RSRP (그리고/혹은 S-RSSI) 측정 동작을 수행하지 못했다면), SA에 속하는 RX,Y 중에 RX,Y +RR_ INVTX *J
Figure PCTKR2017003843-appb-I000011
(그리고/혹은
Figure PCTKR2017003843-appb-I000012
상의 다른 V2X TX UE(S)에 의해 선택(/예약)될 수 있는 (일부) 자원(들))와 겹친다면, RX,Y를 SA집합으로부터 (추가적으로) 제외시키도록 할 수 있다. 여기서, 일례로, “I_CANVAL_X”는 (사전에) “CARRIER(/POOL)-SPECIFIC NETWORK (PRE)CONFIGURATION” 형태로 지정된 선택(/허용) 가능한 “I_VALUE SET”에 속하는 값(들) 중에 최대값 (혹은 최소값 혹은 특정 값)으로 설정(/시그널링)될 수 있다. 여기서, 또 다른 일례로, 표 2 상에 기술된 STEP 5에서, V2X TX UE(S)로 하여금, 만약
Figure PCTKR2017003843-appb-I000013
이 자신의 V2X 메시지 전송 동작으로 STEP 2에서 모니터링되지 못했다면 (그리고/혹은 자신의 V2X 메시지 전송 동작으로
Figure PCTKR2017003843-appb-I000014
상에서 다른 V2X TX UE(S) 관련 PSCCH 디코딩 및 (연동된) PSSCH DM-RS RSRP (그리고/혹은 S-RSSI) 측정 동작을 수행하지 못했다면), RX,Y를 SA집합으로부터 (추가적으로) 제외시키도록 할 수 있다. 여기서, 일례로, “(N - 1001) ≤ (Y - I_CANVAL*P_STEP) ≤ (N - 2)” (여기서, 일례로, SUBFRAME#N 시점은 (상위 계층으로부터) (전송) 자원 (재)예약(/선택) 수행이 설정(/시그널링)된 시점으로 해석될 수 있음) (그리고/혹은 “P_STEP = 100”)으로 정의될 수 있다. 여기서, 또 다른 일례로, 표 2 상에 기술된 STEP 5에서, V2X TX UE(S)로 하여금, 만약
Figure PCTKR2017003843-appb-I000015
이 자신의 V2X 메시지 전송 동작으로 STEP 2에서 모니터링되지 못했다면 (그리고/혹은 자신의 V2X 메시지 전송 동작으로
Figure PCTKR2017003843-appb-I000016
상에서 다른 V2X TX UE(S) 관련 PSCCH 디코딩 및 (연동된) PSSCH DM-RS RSRP (그리고/혹은 S-RSSI) 측정 동작을 수행하지 못했다면), RX,Y 를 SA 집합으로부터 (추가적으로) 제외시키도록 할 수 있다. 여기서, 일례로, “(N - 1001) ≤ (Y - I_CANVAL_Q*P_STEP*K) ≤ (N - 2)” (여기서, 일례로, SUBFRAME#N 시점은 (상위 계층으로부터) (전송) 자원 (재)예약(/선택) 수행이 설정(/시그널링)된 시점으로 해석될 수 있음) (그리고/혹은 “P_STEP = 100”) 그리고/혹은 “K = NON-NEGATIVE INTEGER”로 정의될 수 있다. 여기서, 일례로, “I_CANVAL_Q”는 ((사전에) “CARRIER(/POOL)-SPECIFIC NETWORK (PRE)CONFIGURATION” 형태로 지정된) 선택(/허용) 가능한 “I_VALUE SET”에 속하는 값(들) (그리고/혹은 선택(/허용) 가능한 “I_VALUE SET”에 속하는 값(들) 중에 최소값 (혹은 최대값 혹은 특정 값))으로 설정(/시그널링)될 수 있다. 여기서, 일례로, 상기 (일부) 규칙이 적용될 경우, SA 집합으로부터 RX,Y 의 (추가) 제외 여부를 판단할 때, (A) J 값을 사전에 설정(/시그널링)된 특정 값(들) (예를 들어, “J = 1(/0)”) (그리고/혹은 “RR_INVTX*J” (혹은 “P_STEP*J”)이 (특정 케리어(/풀) 상에서) (실제) 선택(/허용) 가능한 최대 (혹은 최소) “RESOURCE RESERVATION INTERVAL” (혹은 사전에 설정(/시그널링)된 특정 “RESOURCE RESERVATION INTERVAL”)와 같아지는 J 값 (혹은 해당 도출된 J 값 보다 작거나 (혹은 크거나) 같은 값(들)))으로(만) 가정하도록 하거나 그리고/혹은 (B) RR_INVTX 값을 사전에 설정(/시그널링)된 특정 값(들) (예를 들어, “RR_INVTX = 1000MS”) (그리고/혹은 (특정 케리어(/풀) 상에서) (실제) 선택(/허용) 가능한 최대 (혹은 최소) “RESOURCE RESERVATION INTERVAL” (혹은 해당 최대 (혹은 최소) “RESOURCE RESERVATION INTERVAL” 보다 작거나 (혹은 크거나) 같은 값(들)))으로(만) 가정하도록 할 수 도 있다. 여기서, 일례로, 상기 제안 방법은 V2X TX UE(S)가 전송할 메시지(/패킷) 관련 우선 순위 값 (그리고/혹은 (해당) 케리어(/풀) 관련 CONGESTION LEVEL 값)이 사전에 설정(/시그널링)된 임계값보다 작은 (혹은 큰) 경우에만 한정적으로 적용되도록 할 수 도 있다.
(예시#8) 일례로, (V2X UE(S)) 자신의 전송 동작으로 모니터링(/센싱)되지 못한 자원(/서브프레임)을 “RESOURCE EXCLUSION PROCEDURE (BASED ON PSSCH-RSRP MEASUREMENT)”에서 효과적으로 반영하는 방법은 아래와 같다.
서브프레임 #k에서 다른 단말들에 의해 TB의 단일 전송이 수행되는 경우, 스킵된 서브프레임 #k 상에서 PSSCH-RSRP의 정확한 정보를 획득하는 것은 힘들 수 있다. 이에, 서브프레임 #(y+P*j)가 서브프레임 #(k+100*i)와 오버랩되는 경우, 단말 #A가 단말의 선택 윈도우 이내에 존재하는 서브프레임 #k를 제외하는 것이 고려될 수 있다. 이때, 전술한 바와 같이, P는 단말의 자원 예약 인터벌을 의미할 수 있고, j는 0, 1, ..., 10*SL_RESOURCE_RESELECTION_COUNTER-1를 의미할 수 있다. 아울러 i는 캐리어 특정적 네트워크 (기)설정에 의해 제한되는 세트에서의 (가능한) 요소를 의미할 수 있다.
(여기서, 일례로, “SUBFRAME#(K+100*I)” 상의 “100” 값은 (사전에 설정(/시그널링)된 (특정) 자원 풀 상에서 “SHORTER RESOURCE RESERVATION PERIOD(/INTERVAL)”의 V2X UE(S) (그리고/혹은 (상대적으로) 짧은 주기의 V2X 메시지(/트레픽) 전송을 수행하는 V2X UE(S)) (SHORTP _ UE (S))와 “(RELATIVELY) LONGER RESOURCE RESERVATION PERIOD(/INTERVAL)”의 V2X UE(S) (그리고/혹은 (상대적으로) 긴 주기의 V2X 메시지(/트레픽) 전송을 수행하는 V2X UE(S)) (LONGP_UE(S))가 공존할 때) (A) SHORTP_UE(S)가 센싱 동작을 수행할 경우 그리고/혹은 (B) LONGP_UE(S)가 (SHORTP_UE(S)에 대한) 센싱 동작을 수행할 경우에 (사전에 설정(/시그널링)된) 다른 값으로 지정될 수 있다.)
전술한 접근 방법과 함께, 단말 #A는 스킵된 서브프레임 #k로부터 스케줄될 수 있는 다른 단말의 전송에 오버랩되는 (단말의 선택 윈도우 내의) 모든 자원들을 제외할 수 있다. 이하에서는 이를 도면을 통해 설명하도록 한다.
도 28 내지 도 30은 “RESOURCE EXCLUSION PROCEDURE (BASED ON PSSCH-RSRP MEASUREMENT)”에서 반영하는 예를 나타낸 것이다.
도 28 내지 도 30에 따르면, i의 세트는 {2, 4}와 같이 제한될 수 있으며, P 및 SL_RESOURCE_RESELECTION_COUNTER는 각각 200ms, 5로 설정될 수 있다.
도 28의 경우, “subframe#(k+100*2) (i.e., i=2) 및 subfram#(y+200*0) (i.e., j=0)”, “subframe#(k+100*4) (i.e., i=4) 및 subfram#(y+200*1) (i.e., j=1)”로 인하여, (선택 윈도우 이내의) 서브프레임 #k가 선택에서 제외될 수 있다.
도 29의 경우, “subframe#(k+100*4) (i.e., i=4) 및 subfram#(y+200*0) (i.e., j=0)”로 인하여, (선택 윈도우 이내의) 서브프레임 #k가 선택에서 제외될 수 있다.
하지만, 도 30의 경우, 전술한 바에 따른 오버랩이 발생하는 선택 윈도우에서의 서브프레임이 없으므로, 선택에서 제외는 선택 윈도우에서의 서브프레임이 없을 수도 있다.
결론적으로, 아래와 같은 제안이 제공된다.
제안: 자원 배제 절차에서 (자신의 전송으로 인해) 스킵된 서브프레임 #k를 처리하기 위해, 다음 해결책이 제안될 수 있다. 단말 #a는 서브프레임 #(y+P*j)가 서브프레임 #(k+100*i)와 중첩 될 수 있다면 자신의 선택 윈도우 내에서의 서브 프레임 #y를 배제해야 할 수 있다. 여기서 P는 단말의 자원 예약 간격을 의미할 수 있고, j는 0, 1, ..., (10 * SL_RESOURCE_RESELECTION_COUNTER-1)이고, i는 캐리어 별 네트워크 (사전) 구성에 의해 제한된 세트의 모든 (사용 가능한) 요소일 수 있다.
또 다른 일례로, 사전에 지정(/시그널링)된 (특정) 길이 (예를 들어, “16”, “20”, “100”)의 비트맵이 V2X 자원 풀 설정을 위해 반복 적용될 경우, (특히, SLSS 전송 용도로 설정(/시그널링)된 서브프레임들이 V2X 자원 풀로 설정(/시그널링) 가능한 (후보) 서브프레임들에서 제외됨으로써) “DFN RANGE END”에서 해당 비트맵 (적용)이 “TRUNCATED”되는 문제가 발생될 수 있다. 여기서, 일례로, 해당 문제를 해결하기 위해서, (기존) “DFN RANGE” 값 (예를 들어, “10240” 혹은 “10176”)을 증가 (예를 들어, 일종의 HYPER-SFN(/HYPER-DFN) 방식으로 해석 가능함) 시킬 수 있다. 여기서, 일례로, (증가된) “(최대) DFN RANGE” 값은 “10240(/10176)*H_VAL” (혹은 “10240(/10176)*H_MAXVAL”) (그리고/혹은 “MAX DFN RANGE*H_VAL” (혹은 “MAX DFN RANGE*H_MAXVAL”)) 형태로 정의될 수 있다. 여기서, 일례로, (A) (현재 적용되는) H_VAL 값(/인덱스) (B) 설정(/사용) 가능한 H_VAL (인덱스) 범위 그리고/혹은 (C) H_VAL의 최대값(/최대인덱스) (H_ MAXVAL) (그리고/혹은 최소값(/최소인덱스) (H_ MINVAL)) 등은 네트워크 (혹은 서빙 셀)이 사전에 정의된 (상위(/물리) 계층) 시그널링 (그리고/혹은 (SYNCH. SOURCE) 단말이 PSBCH 상의 (새롭게 정의된) 필드 (혹은 사전에 정의된 D2D 채널/시그널))을 통해서 (“CARRIER(/POOL/CELL)-SPECIFIC (PRE)CONFIGURATION” 형태 그리고/혹은 “V2X POOL (PRE)CONFIGURATION”의 일환으로) 사전에 설정(/시그널링)해 줄 수 있다.
도 31은 (기존) “DFN RANGE” 값 (예를 들어, “10240” 혹은 “10176”)을 증가 시킨 경우에 대한 일례를 나타낸 것이다. 여기서, 일례로, H_VAL (그리고/혹은 H_MAXVAL) 값 (예를 들어, 도 31에서는 “H”로 표시하였음)이 “5”로 설정된 상황을 가정하였다. 여기서, 일례로, (증가된) “(최대) DFN RANGE” 값이 V2X 자원 풀 설정 관련 (지정(/시그널링)된) 비트맵 길이로 (나머지 없이) 나누어 떨어질 수 있도록 (그리고/혹은 (V2X 자원 풀로 설정(/시그널링)된 (전체) 서브프레임들 상에서) ((특정 케리어(/풀) 상에서) (실제) 선택(/허용) 가능한) (최대 (혹은 최소) 혹은 사전에 설정(/시그널링)된) “RESOURCE RESERVATION INTERVAL” (예를 들어, “100MS”)의 배수에 해당되는 주기의 (올바른) “WRAP AROUND”가 가능하도록) H_VAL 값 (그리고/혹은 H_MAXVAL) (그리고/혹은 V2X 자원 풀 설정(/시그널링) 관련 비트맵 값)이 (제한적으로) 설정(/시그널링)될 수 있다. 여기서, 일례로, 상기 규칙이 적용될 경우, V2X UE(S)는 (기존) “(최대) DFN RANGE” 값 (예를 들어, “1024(/10240)”)이 지날 때마다, H_VAL 값을 사전에 설정(/시그널링)된 값 (예를 들어, “1”) 만큼씩 증가시키되, 동일한 H_VAL 값 기반의 (V2X) 서브프레임 (집합) 내에서 상대적으로 작은 인덱스의 (V2X) 서브프레임부터 (V2X 메시지) 전송 (그리고/혹은 V2X 통신)에 사용(/고려)하게 된다. 또 다른 일례로, 센싱 등의 동작에서 “SUBFRAME INDEX”는 (V2X) 자원 풀 내에서의 “LOGICAL INDEX”를 사용한다. 여기서, 일례로, (사전에 설정된) 다른 시그널과 (V2X) 자원 풀이 “TDM” 될 경우, 물리적인 시간 간격이 상대적으로 커질 수 있다. 여기서, 일례로, 이와 같은 경우, V2X TX UE(S)로 하여금, “RESOURCE RESERVATION INTERVAL” 값을 더 작은 값으로 사용하도록 할 수 있다.
한편, 앞서 설명한 규칙이 적용된 경우(예컨대, 앞서 설명한 바와 같이, (기존) “DFN RANGE” 값 (예를 들어, “10240” 혹은 “10176”)을 증가 (예를 들어, 일종의 HYPER-SFN(/HYPER-DFN) 방식으로 해석 가능함) 시키는 경우), 아래와 같이 V2X 통신이 수행될 수 있다.
(A) (예를 들어, V2V 서브 프레임에 대한 비트 맵이 DFN 기간 [RAN1, RAN2] 내에서 정수 횟수 반복하지 않는 경우), V2V는 다른 신호/채널과 멀티플렉싱될 수 있다.
(B) 현재, V2V에 대한 DFN 범위, 즉 V2V에 할당 될 수 있는 서브 프레임의 수를 의미하는 Tmax는 SLSS 자원 구성에 따라 10240 또는 10176일 수 있다.
반면, 자원 풀에 대한 V2V 서브 프레임을 나타내는 비트 맵의 길이는 16, 20 또는 100일 수 있다. 따라서 전술한 바(예컨대, 도 22의 경우)와 같이, DFN 범위가 비트 맵 길이 단위로 나누어지지 않는 경우가 발생할 수 있다.
이 문제를 해결할 수 있는 근본적인 해결책은 DFN 범위(즉, Tmax)를 항상 비트 맵 길이로 나뉘어질 수 있도록 변경하는 것일 수 있다. 이는 비트 맵 길이의 배수가 되도록 DFN 범위를 늘리는 것을 의미할 수 있다. 이에, SFN 범위를 늘리기 위해 "하이퍼 SFN(H-SFN)"이라는 개념이 도입될 수 있다.
여기서, H-SFN이 SystemInformationBlockType1-BR에서 제공되는 경우, CE 내의 BL UE 및 UE에 대한 수정주기 경계는 (H-SFN*1024+SFN) mod m = 0 인 SFN값에 의해 정의될 수 있다. 여기서, NB-IoT에 관하여, H-SFN은 항상 제공될 수 있으며, 수정주기 경계는 (H-SFN*1024+SFN) mod m = 0 인 SFN 값에 의해 정의될 수 있다. 수정 주기는 시스템 정보에 의해 설정될 수 있다.
수정 주기보다 길거나 혹은 동일한 eDRX주기를 사용하는 RRC_IDLE 단말에 대한 시스템 정보 업데이트 통지를 가능하게 하기 위해, eDRX 획득 주기가 정의될 수 있다. eDRX 획득 주기의 경계는 H-SFN mod 256 = 0 인 H-SFN 값에 의해 결정될 수 있다. 특히, NB-IoT의 경우, eDRX 획득 기간의 경계는 H-SFN mod 1024 = 0 인 H-SFN 값에 의해 결정될 수 있다.
도 32는 업데이트된 시스템 정보를 전송하는 일례를 도시한 것이다.
도 32에 따르면, 네트워크가 (일부의) 시스템 정보를 변경하면, 네트워크는 이 변화에 대해 단말들에게 먼저 통지할 수 있다. 다음 수정주기에서 네트워크는 업데이트 된 시스템 정보를 전송할 수 있다. 변경 통지를 수신하면, 단말은 수정 주기보다 작거나 같은 DRX 사이클을 사용하여 다음 수정주기의 시작으로부터 새로운 시스템 정보를 즉시 획득할 수 잇다.
전송되는 시스템 정보, 즉, SystemInformationBlockType1는 아래 표 3과 같이 정의될 수 있다.
<표 3>
Figure PCTKR2017003843-appb-I000017
여기서, 'hyperSFN'는 SFN이 랩핑 될 때 하나씩 증가하는 하이퍼 SFN을 나타내며, 'eDRX-Allowed'에 관하여, 이 필드의 존재는 유휴 모드 확장 된 DRX가 셀에서 허용되는지 여부를 나타낸다. 단말은 eDRX 허용이 존재하지 않으면 유휴 모드에서 확장 된 DRX 사용을 중단해야 한다.
비슷한 원리를 사용하면 "하이퍼 DFN"을 정의하여 DFN 범위를 늘릴 수 있다. (즉, SLSS 서브 프레임을 제외한) 논리적 도메인에서의 V2V 서브 프레임 인덱스는 (H-DFN * Tmax + DFN)에 의해 주어질 수 있다.
H-DFN의 최대 값인 Hmax는 하이퍼 DFN 범위에서 잠재적인 V2V 서브 프레임의 총 수인 Hmax * Tmax가 구성된 비트 맵 길이로 나누어 지도록 구성 할 수 있다.
도 33은 하이퍼 DFN의 일례를 도시하고 있다.
본 예에서는 Hmax가 5로 설정될 수 있다. (즉, H-DFN # 5가 H-DFN # 0으로 리셋 됨). 이러한 하이퍼 DFN을 지원하기 위해, 현재의 H-DFN 인덱스는 동일한 리소스 풀을 공유하는 단말들뿐만 아니라 eNB와 단말 간에 동기화 될 필요가 있다. 이는 eNB와 단말 사이의 자원 풀 구성의 일부로서 시그널링 될 수 있고, 또한 PSBCH를 통해 시그널링 될 수 있다. GNSS가 동기화 참조 인 경우, H-DFN 인덱스는 현재 UTC 값에서 파생 될 수 있다.
(C) 결론적으로,
서브 프레임 비트 맵 반복의 불연속성을 처리하기 위해 하이퍼 DFN이 다음과 같이 제안될 수 있다.
제안 1: 하이퍼 DFN은 DFN 범위를 Hmax 시간만큼 증가 시키도록 정의될 수 있다. 논리적 도메인의 V2V 서브 프레임 인덱스는 H-DFN=0, 1, ..., Hmax-1 인 Tmax 서브 프레임 이후에 H-DFN이 증가하는(H-DFN * Tmax + DFN)에 의해 제공될 수 있다.
제안 2: Hmax는 리소스 풀의 V2V 서브 프레임 비트 맵의 길이로 Hmax * Tmax를 나눈 값과 같이 설정될 수 있다.
제안 3: 현재의 H-DFN은 eNB로부터의 자원 풀 구성의 일부로서 시그널링될 수 있다. 그리고 또한 PSBCH를 통해 시그널링될 수 있다.
또 다른 일례로, 전술한 예에서 Hmax 값은 (추가적인 시그널링 필요없이) 사전에 정의된 값으로 (스펙 상에) 고정될 수 도 있다. 여기서, 일례로, Hmax 값은 “25” (혹은 “25의 배수 값”)으로 고정될 수 있다. 표 4, 표 5, 표 6는 전술한 바에 대한 분석 자료다.
<표 4>
Figure PCTKR2017003843-appb-I000018
<표 5>
Figure PCTKR2017003843-appb-I000019
<표 6>
Figure PCTKR2017003843-appb-I000020
또 다른 일례로, (A) 사전에 설정(/시그널링)된 (특정) 길이의 비트맵이 반복 적용되어 V2X 자원 풀이 지정될 경우 그리고/혹은 (B) ((단말) 상위 계층으로부터 설정(/시그널링)된) “RESOURCE RESERVATION INTERVAL” 기반의 (주기적인) 전송 자원(들)이 예약(/선택)될 경우, (해당) 비트맵에 의해 지정된 (일부) V2X 자원 그리고/혹은 (V2X TX UE(S)에 의해) 예약(/선택)된 (일부) (주기적인) 전송 자원이 WAN 통신 관련 DL (시간(/주파수)) 자원 (예를 들어, “DL SF” 그리고/혹은 “(TDD) SPECIAL SF” (그리고/혹은 “DWPTS”)) 상에 위치할 수 있다.
한편, 단말이 특정 캐리어 상에서 V2X 메시지 전송을 수행할 때, 단말은 상기 캐리어 상의 모든 서브프레임을 이용하여 V2X 메시지 전송을 수행할 수 있는 것은 아니다. 이에, 단말이 V2X 메시지 전송을 수행하지 않는 서브프레임을 고려하여, V2X 메시지를 전송하는 방법에 대한 예를 도면을 통해 설명하도록 한다.
도 34는 본 발명의 일 실시예에 따른, 할당된 V2X 자원 풀 상에서 V2X 통신을 수행하는 방법의 순서도다.
도 34에 따르면, 단말은 특정 서브프레임을 제외한 나머지 서브프레임에 대해 V2X 자원 풀을 할당할 수 있다(S3410). 이때, 상기 특정 서브프레임은 (A) SLSS 서브프레임, (B) TDD 공유 캐리어의 경우, DL 및 S(SPECIAL) 서브프레임, 혹은 (C) 예약된 서브 프레임들을 의미할 수 있다. 이하에서는 V2X 전송에서 제외되는 서브프레임을 결정하는 보다 구체적인 예를 설명한다.
(A) SLSS 서브프레임에 관해,
우선, 단말은 SLSS 서브프레임을 제외한 나머지 서브프레임에 대해 V2X 자원 풀을 할당할 수 있다.
구체적으로, SLSS 서브프레임은 (반복되는) V2V 풀 비트맵(즉, V2X 풀이 할당될 수 있는 서브프레임을 지시하는 비트맵(혹은 정보))에 따른 매핑에서 제외될 수 있으며, 이때, 상기 비트맵 길이는 16, 20, 혹은 100을 의미할 수 있다. 상기 비트맵은 어떠한 서브프레임이 V2V SA 및/또는 데이터 전송 및/또는 수신이 허용되는 서브프레임인지를 정의할 수 있다. SLSS 서브프레임이 V2X 전송에서 제외되는 예를 도면을 통해 설명하면 아래와 같다.
도 35는 SLSS 서브프레임이 V2X 전송에서 제외되는 예를 개략적으로 도시한 것이다.
도 35에서는, 서브프레임 넘버가 0, 1, ..., 10239(즉, 서브프레임이 총 10240개)를 가질 수 있다는 점을 가정하고 있으며, V2X 비트맵이 10개의 서브프레임 단위로 반복되며, V2X 비트맵이 [0110101101]이라는 점을 가정하고 있다.
단말은 V2X 논리 인덱스를 할당할 때, SLSS 서브프레임을 제외한 서브프레임에 대해 V2X 논리 인덱스를 할당할 수 있다. 예컨대, 서브프레임 인덱스 #3, #163 등이 각각 SLSS 서브프레임에 해당된다고 가정(SLSS 서브프레임은 160개의 서브프레임 단위로 반복된다고 가정)할 때, V2X 단말은 서브프레임 인덱스 #3, #163 등을 제외한 나머지 서브프레임(즉, SLSS 서브프레임을 제외한 나머지 서브프레임)에 대해 V2X 논리 인덱스를 할당할 수 있다(S3510). 여기서, 단말은 V2X 논리 인덱스가 할당한 서브프레임에 대해 V2X 비트맵에 따라 V2X 자원을 할당한다고 가정할 수 있다.
이때, 전술한 바를 통해 도출된 V2X 논리 인덱스는 V2X 비트맵의 정수 배에 대응되지 않을 수 있다. 예컨대, 160개의 서브프레임 단위로 SLSS 서브프레임이 할당되는 경우, 전술한 바와 같이 10240개의 서브프레임에서는 64개의 SLSS 서브프레임이 존재할 수 있으며, 이에 따라, V2X 논리 인덱스는 10240-64에 해당하는 10176개의 서브프레임에 할당될 수 있다.
이와 같이, 10176 개의 서브프레임에 V2X 논리 인덱스가 할당될 수 있고, V2X 비트맵 주기가 10개라고 가정할 경우에는, 논리 인덱스와 V2X 비트맵 주기가 나누어 떨어지지 않는다. 즉, 10176 개의 서브프레임에 10이라는 주기를 가지는 V2X 비트맵을 할당할 경우에는, 6개의 서브프레임에 대해 비트가 할당되지 못하는 경우가 발생할 수 있다.
이에, 단말은 전술한 할당되지 못한 개수만큼의 서브프레임을 V2X 논리 인덱스 할당에 제외시킬 수 있다(S3520). 이때, 할당되지 못한 서브프레임은 균등하게 분배(EVENLY DISTRIBUTED)될 수 있다.
(B) DL 및 S(SPECIAL) 서브프레임에 관해,
TDD (공유) 캐리어의 경우, DL 및/또는 S(SPECIAL) 서브프레임은 (반복되는) V2V 풀 비트맵에 따른 매핑에서 제외될 수 있다. DL 및/또는 S(SPECIAL) 서브프레임이 V2X 전송에서 제외되는 예를 도면을 통해 설명하면 아래와 같다.
도 36은 DL 및 S(SPECIAL) 서브프레임이 V2X 전송에서 제외되는 예를 개략적으로 도시한 것이다.
도 36에서는, 서브프레임 넘버가 0, 1, ..., 10239(즉, 서브프레임이 총 10240개)를 가질 수 있다는 점을 가정하고 있으며, V2X 비트맵이 10개의 서브프레임 단위로 반복되며, V2X 비트맵이 [0110101101]이라는 점을 가정하고 있다.
단말은 V2X 논리 인덱스를 할당할 때, DL 및/또는 S(SPECIAL) 서브프레임(및/또는 SLSS 서브프레임)을 제외한 서브프레임에 대해 V2X 논리 인덱스를 할당할 수 있다. 예컨대, 서브프레임 인덱스 #7(등)이 DL 및 S(SPECIAL) 서브프레임에 해당된다고 가정할 때, V2X 단말은 서브프레임 인덱스 #7(등)을 제외한 나머지 서브프레임에 대해 V2X 논리 인덱스를 할당할 수 있다(S3610). 여기서, 단말은 V2X 논리 인덱스가 할당한 서브프레임에 대해 V2X 비트맵에 따라 V2X 자원을 할당할 수 있다.
이후, 단말은 할당되지 못한 개수만큼의 서브프레임을 V2X 논리 인덱스 할당에 추가적으로 제외시킬 수 있다(S3520). 이때, 할당되지 못한 서브프레임은 균등하게 분배(EVENLY DISTRIBUTED)될 수 있다.
(C) 예약된 서브프레임의 경우,
자원 풀은 특정 범위(예컨대, DFN(D2D Frame Number) 범위) 내의 정수로 비트 맵이 반복되도록 여러 개의 예약 된 서브 프레임으로 구성된다. 예컨대, 여기서, V2X(예컨대, V2V) 논리적 서브 프레임 인덱스는 예약 된 서브 프레임에 할당되지 않을 수 있다. 아울러, 예약 된 서브 프레임의 위치는 묵시적인 방법으로 표시될 수 있다.
정리하면, 여기서, 일례로, 해당 문제가 발생되는 이유는 V2X 자원 풀 설정 관련 비트맵이 (사전에 설정(/시그널링)된) V2X SYNCH. SIGNAL 전송 관련 (시간(/주파수)) 자원들 (예를 들어, V2X SYNCH. SUBFRAME(S))만 제외하고, WAN 통신 관련 DL/UL (시간(/주파수)) 자원들에 대한 구분없이 적용되기 때문 (그리고/혹은 DFN WRAP AROUND 문제(/현상) 때문)이다. 여기서, 일례로, 해당 문제를 해결하기 위해서, V2X TX UE(S)로 하여금, (A) WAN 통신 관련 DL (시간(/주파수)) 자원 상의 (비트맵에 의해 지정된) (일부) V2X 자원은 ((V2X 풀 관련) “LOGICAL INDEXING” 측면에서) 유효하지 않은 것으로 가정하도록 하거나 그리고/혹은 (B) WAN 통신 관련 DL (시간(/주파수)) 자원 상의 (V2X TX UE(S)에 의해) 예약(/선택)된 (일부) (주기적인) 전송 자원에서는 (V2X 메시지(/TB)) 전송 동작을 생략 (그리고/혹은 (V2X 메시지(/TB)) 전송 동작을 생략하지 않고 이후의 (가장 가까운) 유효한(/사용 가능 한) V2X 자원 상에서 (V2X 메시지(/TB)) 전송 동작을 (재)수행)하도록 할 수 있다. 여기서, 일례로, 전자의 경우, (V2X 풀 관련) “LOGICAL INDEXING”은 상기 유효하지 않은 자원 (예를 들어, DL (시간(/주파수)) 자원)을 포함 (예를 들어, “LOGICAL INDEX” 기반으로 특정 주기의 전송 타이밍이 결정될 때, 실제 전송 주기가 의도한 (타겟) 주기보다 (과도하게) 커지는 문제를 완화시킬 수 있음)해서 (혹은 배제하고) 수행되는 것으로 해석 할 수 도 있다. 또 다른 일례로, 사전에 설정(/시그널링)된 (특정) 길이의 비트맵이 반복 적용될 때, WAN 통신 관련 DL (시간(/주파수)) 자원 (예를 들어, “DL SF” 그리고/혹은 “(TDD) SPECIAL SF” (그리고/혹은 “DWPTS”))을 (추가적으로) 배제 (예를 들어, 해당 (추가적으로) 배제되는 자원은 (V2X 풀 관련) “LOGICAL INDEXING”이 수행(/적용)되지 않는 것으로 해석할 수 도 있음)하고, (WAN 통신 관련 UL (시간(/주파수)) 자원만을 고려하여) 적용하도록 할 수 있다. 여기서, 일례로, 상기 규칙은 “IN-COVERAGE” 환경 (그리고/혹은 TDD 시스템) 하에서만 한정적으로 적용될 수 있다.
도 34로 돌아와서, 단말은 할당된 V2X 자원 풀 상에서 V2X 통신을 수행할 수 있다(S2420). 단말이 V2X 통신을 수행하는 구체적인 예는 전술한 바와 같다.
여기서, 일례로, 상기 규칙은 (비트맵에 의해 지정된) (일부) V2X 자원 그리고/혹은 (V2X TX UE(S)에 의해) 예약(/선택)된 (일부) (주기적인) 전송 자원이 WAN 통신 관련 DL (시간(/주파수)) 자원 상에 위치한 경우뿐만 아니라 (사전에 설정(/시그널링)된) V2X 통신 수행이 적합하지 않는 자원 (예를 들어, “UL SF” (그리고/혹은 “UPPTS”) 외의 (시간(/주파수)) 자원) (그리고/혹은 (전송할 V2X 메시지 관련 우선 순위보다) 상대적으로 높은 우선 순위의 (특정) V2X 채널(/시그널링) 송신(/수신)이 설정된 자원) 상에 위치한 경우에도 확장 적용될 수 있다.
또 다른 일례로, (기지국 커버리지 안의) V2X UE(S)로 하여금, ((서빙) 기지국으로부터) 사전에 시그널링(/설정)된 “GNSS 기반의 DFN#0에 대한 오프셋 값”을 사전에 정의된 채널 (예를 들어, PSBCH)을 통해서 (기지국 커버리지 밖의) 다른 V2X UE(S)에게 전송해주도록 할 수 있다.
또 다른 일례로, V2X 자원 풀 (그리고/혹은 (V2X) 케리어) 상에서 선택(/허용) 가능한 I_VALUE (범위) 값 그리고/혹은 “RESOURCE RESERVATION INTERVAL” (범위) 값이 (“CARRIER(/POOL)-SPECIFIC NETWORK (PRE)CONFIGURATION” 형태로) 한정될 경우, V2X TX UE(S)로 하여금, 해당 V2X 자원 풀 (그리고/혹은 (V2X) 케리어) 상에서, (A) I_VALUE의 최소값 (I_ MINVAL) (혹은 최대값) (혹은 사전에 설정(/시그널링)된 (특정) I_VALUE 값)으로 도출(/계산)될 수 있는 주기 값 (예를 들어, “I_MINVAL*P_STEP”) 그리고/혹은 (B) “RESOURCE RESERVATION INTERVAL”의 최소 (혹은 최대) 주기 값 (혹은 사전에 설정(/시그널링)된 (특정) “RESOURCE RESERVATION INTERVAL” 값)을 기반으로 센싱 동작 (예를 들어, 표 2의 STEP 5) (그리고/혹은 에너지 측정 동작 (예를 들어, 표 2의 STEP 8))을 수행하도록 할 수 있다. 여기서, 일례로, 특정 V2X 자원 풀이 (V-UE(S)에 비해) 상대적으로 긴 주기 (예를 들어, “500MS”)로 V2X 메시지 전송을 수행하는 P-UE(S)을 위해서만 설정(/허용)되고 상기 규칙이 적용될 경우, P-UE(S)는 (해당) 주기 (예를 들어, “500MS”) 기반의 센싱 동작 (그리고/혹은 에너지 측정 동작)을 수행하게 된다.
한편, 앞서 설명한 바와 같이, 단말은 예컨대 상대적으로 긴 자원 예약 주기 (예를 들어, 100ms 이상의 자원 예약 주기) (“L_PER”로 명명)에서는 5 이상 15 이하의 구간에서 랜덤 값을 뽑고, 선택된 값에 10을 곱한 만큼 자원을 예약할 수 있다. 하지만, 앞서 설명한 자원 예약 방법을, 상대적으로 짧은 자원 예약 주기 (예를 들어, (100ms 보다 작은) 20ms, 50ms) (“S_PER”로 명명)의 경우에 적용하는 것은, 동일 자원 풀 상에서 공존하는 L_PER 단말이 S_PER 단말을 센싱하는데 부적합할 수 있다.
이에, 단말이 (상대적으로) 짧은 주기의 V2X 메시지(/트레픽) 전송을 지원하기 위해서, (상대적으로) “SHORTER RESOURCE RESERVATION PERIOD(/INTERVAL)” (예를 들어, “20MS”)가 도입될 경우, 아래 (일부) 파라미터가 ((상대적으로) 긴 주기 (혹은 사전에 설정(/시그널링)된 (임계) 주기값) (예를 들어, “100MS”)의 V2X 메시지(/트레픽) 전송 경우와 비교할 때) 상이하게 (혹은 독립적으로) 설정(/시그널링)될 수 있다. 여기서, 일례로, 아래 (일부) 파라미터는 (사전에 설정(/시그널링)된 (특정) 자원 풀 상에서 “SHORTER RESOURCE RESERVATION PERIOD(/INTERVAL)”의 V2X UE(S) (그리고/혹은 (상대적으로) 짧은 주기의 V2X 메시지(/트레픽) 전송을 수행하는 V2X UE(S)) (SHORTP _ UE (S))와 “(RELATIVELY) LONGER RESOURCE RESERVATION PERIOD(/INTERVAL)”의 V2X UE(S) (그리고/혹은 (상대적으로) 긴 주기의 V2X 메시지(/트레픽) 전송을 수행하는 V2X UE(S)) (LONGP_UE(S))가 공존할 때) (A) SHORTP_UE(S)가 센싱 동작을 수행할 경우 그리고/혹은 (B) LONGP_UE(S)가 (SHORTP_UE(S)에 대한) 센싱 동작을 수행할 경우에 적용되는 것으로 해석될 수 있다. 이하, 본 방법에 대하여, 도면을 통해 설명하도록 한다.
도 37은 본 발명의 일 실시예에 따른, 상대적으로 짧은 주기 (예를 들어, (100ms 보다 작은) 20ms, 50ms)의 자원 예약이 설정되는 경우 V2X 전송 자원에 대한 예약이 수행되는 방법의 순서도다.
도 37에 따르면, 단말은 상대적으로 짧은 주기의 자원 예약이 설정되는 경우, 상대적으로 많은 수의 V2X 전송 자원에 대한 예약을 수행할 수 있다(S3710). 여기서, 상대적으로 많은 수의 V2X 전송 자원을 예약한다는 것은, 앞서 설명한 바와 같이, 단말이 5 이상 15 이하의 구간에서 랜덤 값을 뽑고, 선택된 값에 10을 곱한 만큼 자원을 예약하는 것이 아니라, 단말이 5*K(여기서, K는 2 이상의 양의 정수) 이상 15*K 이하의 구간에서 랜덤 값을 뽑고, 선택된 값에 10을 곱한 만큼 자원을 예약한다는 것을 의미한다.
즉, 상대적으로 짧은 자원 예약 주기(예컨대, 20ms, 50ms)의 경우, 앞서 설명한 카운터 값(5 이상, 15 이하의 값)에 예컨대 5 또는 2의 값을 곱한 다음 추가적으로 10을 곱한 만큼의 자원을 예약할 수 있다.
예컨대, 자원 예약 주기가 '20ms'인 경우, 단말은 [5*5,15*5](즉, 5*2 이상, 15*5 이하) 구간에서 랜덤 값을 뽑고, 여기에 추가적으로 10을 곱한 수만큼의 자원을 예약할 수 있다. 본 예에 따를 경우, 단말은 250개 이상 750개 이하의 자원을 예약할 수 있다.
또 다른 예로, 자원 예약 주기가 '50ms'인 경우, 단말은 [5*2, 15*2] 구간에서, 랜덤 값을 뽑고, 여기에 추가적으로 10을 곱한 수만큼의 자원을 예약할 수 있다. 본 예에 따를 경우, 단말은 100개 이상, 300개 이하의 자원을 예약할 수 있다.
(예제#1) 전송 자원 (재)예약(/선택) 수행시, 가정(/사용)되는 (자원 예약 (간격) 주기의) 유한한 서브프레임 개수 (그리고/혹은 표 2 상의 Cresel 값 (예를 들어, “[10*SL_RESOURCE_RESELECTION_COUNTER]”)). 여기서, 일례로, (상대적으로) 짧은 주기의 V2X 메시지(/트레픽) 전송 경우, 해당 (자원 예약 (간격) 주기의) 유한한 서브프레임 개수 값 (그리고/혹은 Cresel 값)이 상대적으로 작게 설정(/시그널링)될 수 있음 (예를 들어, (짧은 시간 구간 내에) 과도한 자원 예약(/선택)을 방지하는 효과가 있음).
이후, 단말은 예약된 V2X 전송 자원 상에서 V2X 통신 수행할 수 있다(S3720). 단말이 예약된 V2X 전송 자원 상에서 V2X 통신을 수행하는 구체적인 예는 전술한 바와 같다.
도 38은 본 발명의 일 실시예에 따른, 짧은 주기의 자원 예약이 설정되는 경우 상대적으로 짧은 주기로 센싱을 수행하는 방법의 순서도다.
도 38에 따르면, 단말은 짧은 주기의 자원 예약이 설정되는 경우, 센싱 구간에서 상대적으로 짧은 주기로 센싱을 수행하여 V2X 통신이 수행되는 자원 결정할 수 있다(S3810). 즉, 전술한 바와 같이, 단말이 짧은 주기의 자원 예약이 설정(예컨대, 100ms보다 짧은 구간 단위로 자원 예약이 설정)된 경우에는, 센싱(즉, S-RSSI 측정) 구간은 단말의 전송에 사용되는 자원 예약 구간으로 설정될 수 있다. 달리 말하면, 단말이 짧은 주기의 자원 예약이 설정될 경우, 단말은 자원 예약에 사용되는 상기 짧은 주기에 따라 센싱을 수행할 수 있다. 이를 보다 구체적으로 설명하면 아래와 같다.
(예제#2) V2X 메시지 우선 순위 (예를 들어, 상대적으로 낮은 (혹은 높은) 우선 순위로 설정(/시그널링)될 수 있음) 그리고/혹은 표 2 STEP 5 상의 “PSSCH-RSRP MEASUREMENT” 임계값 (그리고/혹은 표 2 STEP 6(/8) 상의 “0.2*Mtotal” 관련 계수(/비율)값 (예를 들어, 표 2의 STEP 5 수행 후에 (전체 (후보) 자원 중에) (SA 집합 내에) 남아 있어야 하는 최소 (후보) 자원 개수를 도출(/결정)하는 비율 값 그리고/혹은 표 2의 STEP 8 수행 후에 SB 집합 내에 있어야 (최소) (후보) 자원 개수를 도출(/결정)하는 비율 값으로 해석될 수 있음)이 상이한 (혹은 독립적인) 값으로 설정(/시그널링)될 수 있음 그리고/혹은 표 2의 STEP 5 수행 후에 (전체 (후보) 자원 중에) SA 집합 내에 남아 있어야 하는 최소 (후보) 자원 개수가 충족되지 못한 경우에 적용되는 “PSSCH-RSRP MEASUREMENT” 증가값 (예를 들어, “3DB”) 그리고/혹은 센싱 동작 (예를 들어, 표 2의 STEP 5)에 사용되는 주기값 (그리고/혹은 에너지 측정 동작 (예를 들어, 표 2의 STEP 8)에 사용되는 주기값 (예를 들어, 표 2의 STEP 8에서 “100MS” 값이 (상대적으로 짧은 (혹은 긴) 값으로) 변경될 수 있음))).
(예제#3) V2X 자원 풀 (그리고/혹은 (V2X) 케리어) 상에서 선택(/허용) 가능한 I_VALUE (범위) 값 그리고/혹은 P_STEP 값.
(예제#4) 전송 전력 관련 (OPEN-LOOP) 파라미터(/값) (예를 들어, “PO“, ”ALPHA” 등) 그리고/혹은 V2X 자원 풀(/케리어).
또 다른 일례로, V2X UE(S)로 하여금, (전송) 자원 (재)선택을 아래와 같이 수행할 수 있다.
V2X 단말은 다음과 같은 방식으로 전송 자원을 선택할 수 있다.
단말 스스로 자원 선택을 하는 모드임을 가정한다. 상기 모드 하에서, 단말은 V2X 메시지 전송을 위한 자원 선택/재선택이 트리거링되면, 센싱을 수행하고, 상기 센싱에 기반하여 자원을 선택/재선택한다. 단말은 상기 선택/재선택한 자원을 지시하는 스케줄링 할당(SA)을 전송할 수 있다.
예를 들어, 서브프레임(subframe, TTI라 칭할 수도 있음, 이하 동일) #n에서 단말에게 자원 선택/재선택이 트리거링(triggering)될 수 있다. 그러면, 단말은 서브프레임 #n-a와 서브프레임 #n-b (a>b>0이며, a, b는 정수) 사이에서 센싱(sensing)을 수행하고, 그 결과에 기반하여 V2X 메시지 전송을 위한 자원을 선택/재선택할 수 있다.
상기 a, b는 V2X 단말들에게 공통적으로 설정되는 값일 수도 있고, 각 V2X 단말들에게 독립적으로 설정되는 값일 수도 있다.
또는 전술한 a, b 값이 V2X 단말들에게 공통적인 값일 경우, 예를 들어, 'a=1000+b'와 같은 관계일 수 있다. 즉, V2X 메시지 전송을 위한 자원을 단말 스스로 선택하도록 트리거링되면, 단말은 1초(1000ms = 1000개의 서브프레임=1000개의 TTI) 동안 센싱 동작을 수행할 수 있다.
단말은 서브프레임 #n-a에서 서브프레임 #n-b까지의 구간에서 디코딩된 SA 전송을 모두 고려할 수 있다. 상기 디코딩된 SA는 서브프레임 #n-a에서 서브프레임 #n-b까지의 구간에서의 데이터 전송에 연관된 것일 수 있으며, 상기 디코딩된 SA는 서브프레임 #n-a보다 먼저 전송된 것도 고려될 수 있다.
서브프레임 #m에서 센싱 동작을 수행하지 못한 단말은(예를 들어, 서브프레임 #m에서 신호를 전송하여야 하는 등의 이유로) 서브프레임들 #(m+100*k)을 자원 선택/재선택에서 제외할 수 있다. 한편, 단말은 자신이 신호를 전송하는데 사용되는 서브프레임들에서는 센싱 동작을 수행하지 않고 스킵(skip)할 수 있다.
단말은 상기 센싱을 수행한 후, PSSCH 즉, 사이드링크 데이터 채널을 위한 시간/주파수 자원을 선택한다.
단말은 서브프레임 #n+c에서 스케줄링 할당(SA)를 전송할 수 있다. 상기 c는 0 이상의 정수로, 고정된 값일 수도 있고 변수일 수도 있다. 단말은 상기 c 값이 cmin보다 작은 서브프레임들에서는 스케줄링 할당 전송(즉, PSCCH 전송)이 요구되지 않을 수 있다. 상기 cmin는 고정된 값 또는 네트워크에 의하여 설정된 값일 수 있다.
서브프레임 #n+c에서 전송되는 상기 스케줄링 할당(SA)은 서브프레임 #n+d에서 전송되는 연관된 데이터(associated data)를 지시할 수 있다. d는 c 이상의 정수(integer)일 수 있다(d≥c). c, d는 둘 다 100 이하의 값일 수 있다.
한편, 다음 조건들 중 어느 하나라도 만족하면, V2X 자원의 재선택이 트리거링될 수 있다.
(A) 카운터가 만료 조건을 만족할 경우.
카운터는 매 전송 블록 전송마다 값이 감소하며, 반정적으로 선택된 자원들 모두에 대하여 재선택이 트리거링되면 값이 리셋(reset)될 수 있다. 리셋되는 값은 특정 범위, 예컨대, 5와 15 사이에서 동등한 확률로 랜덤하게 선택될 수 있다.
(B) 허용되는 최대 MCS(modulation and coding scheme)을 사용하여도 현재 자원 할당에 전송 블록이 맞지 않는 경우.
(C) 상위 계층에 의하여 지시되는 경우 등이다.
한편, 모든 PSCCH/PSSCH 전송들이 동일한 우선 순위를 가지고 있는 경우, PSSCH 자원의 선택/재선택은 다음 과정을 거쳐 선택될 수 있다.
(A) STEP 1:
일단 모든 자원들이 선택 가능하다고 간주한 후,
(B) STEP 2:
스케줄링 할당 디코딩 및 추가적은 조건들에 기반하여 특정 자원들을 제외한다. 이 때, 단말은 다음 2가지 옵션들 중 하나를 선택할 수 있다.
첫번째 옵션은 디코딩된 스케줄링 할당에 의하여 지시되거나 유보(예약)된 자원들 및 상기 스케줄링 할당에 연관된 데이터 자원들에서 수신된 DM-RS 전력이 문턱치 이상인 자원들을 제외하는 것이다.
두번째 옵션은 디코딩된 스케줄링 할당에 의하여 지시되거나 유보(예약)된 자원들 및 상기 스케줄링 할당에 연관된 데이터 자원들에서 측정된 에너지가 문턱치 이상인 자원들을 제외하는 것이다.
(C) STEP 3:
단말은 제외되지 않은 자원들 중에서 V2X 전송 자원을 선택할 수 있다.
예를 들어, 단말은 총 수신 에너지에 기반하여 남아 있는 PSSCH 자원들을 측정하고 랭킹을 매긴 후, 부분 집합을 선택할 수 있다. 단말은 현재 선택된 자원들에서의 에너지와 상기 부분 집합에서의 에너지를 비교하여, 현재 선택된 자원들에서의 에너지가 상기 부분 집합에서의 에너지에 비하여 문턱치보다 더 크면, 상기 부분 집합 중 하나를 선택할 수 있다. 단말은 상기 부분 집합에서 하나의 자원을 랜덤하게 선택할 수 있다.
또는, 단말은 총 수신 에너지에 기반하여 남아 있는 PSSCH 자원들을 측정하고 랭킹을 매긴 후, 부분 집합을 선택할 수 있다. 단말은 상기 부분 집합에서 하나의 자원을 랜덤하게 선택할 수 있다.
또는, 단말은 총 수신 에너지에 기반하여 남아 있는 PSSCH 자원들을 측정하고 랭킹을 매긴 후, 부분 집합을 선택할 수 있다. 단말은 상기 부분 집합에서 주파수 자원의 분할(fragmentation)을 최소화하는 자원을 선택할 수 있다.
일례로, 상기 표 2에 따라 (전송) 자원 (재)선택 동작이 수행될 경우, 아래 (일부) 규칙들이 추가적으로 적용될 수 도 있다.
[제안 규칙#10] 일례로, (전송될 혹은 생성된) 패킷의 'LATENCY(/QOS) REQUIREMENT' (그리고/혹은 'PRIORITY' 그리고/혹은 'SERVICE TYPE')에 따라서, '(D(/C)-M)' ((최대값(/최소값)) 범위) (예를 들어, 'TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)'로 해석 가능) (예를 들어, 'M' 값은 '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 도착(/수신)되는 시점 (혹은 패킷(/메시지)이 생성되는 시점)으로 해석될 수 도 있고, 또한, (여기서) 'D(/C)' 워딩은 (예외적으로) 자원 (재)선택(/예약) 동작이 트리거링 (예를 들어, SUBFRAME#N)된 후의 (초기) 데이터 (PSSCH)(/제어 정보 (PSCCH)) 전송 시점으로 해석될 수 도 있음)이 상이하게 설정(/시그널링)될 수 있다. 또 다른 일례로, 'C' 그리고/혹은 'D' ((최대값(/최소값)) 범위)값 (예를 들어, 'TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)'로 해석 가능)은 'SERVICE TYPE' (그리고/혹은 'PRIORITY LEVEL')에 따라 상이할 수 있는 'LATENCY(/QOS) REQUIREMENT'을 만족시키도록 (혹은 고려해서) 결정되어야 한다. 여기서, 일례로, 'C' 그리고/혹은 'D' 값의 'UPPER LIMIT(/LOWER BOUND)' (예를 들어, 'TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)'로 해석 가능)는 고정되지 않을 수 있다. 여기서, 일례로, 해당 'UPPER LIMIT(/LOWER BOUND)'는 'PRIORITY LEVEL' (그리고/혹은 'SERVICE TYPE' 그리고/혹은 'LATENCY(/QOS) REQUIREMENT')에 따라 상이하게 설정(/시그널링)될 수 있다. 여기서, 일례로, 만약 현재 선택된 'D' 값 (혹은 'SUBFRAME#D')이 새롭게 도달(/생성(/수신))된 패킷(/메시지)의 'LATENCY(/QOS) REQUIREMENT'을 만족시키는데 문제가 있다면, (전송) 자원 (재)선택 동작이 트리거링될 수 있다. 여기서, 일례로, 'D' (그리고/혹은 'C') 값의 최대값 (그리고/혹은 최소값) 혹은 범위 (예를 들어, 'TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)'로 해석 가능)는 'LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 도착(/수신)되는 시점 (혹은 패킷(/메시지)이 생성되는 시점) ('M') 그리고/혹은 (사전에 정의(/시그널링)된 조건이 만족되어) (전송) 자원 (재)선택 동작이 트리거링되는 시점 ('N') 그리고/혹은 'LATENCY REQUIREMENT' ('L') (예를 들어, '100MS') 그리고/혹은 패킷(/메시지)의 'PPPP' (예를 들어, 상이한 'LATENCY REQUIREMENT'의 패킷(/메시지) 별로 (일부) 다른 'PPPP' 값이 설정(/허용)될 경우) 등을 고려하여 결정될 수 있다. 여기서, 구체적인 일례로, 'D' (그리고/혹은 'C') 값의 최대값 (그리고/혹은 최소값)은 '(L - ABS(M-N))'으로 결정되거나, 혹은 'MIN(L, (L - ABS(M-N)))' (여기서, 일례로, 'MIN(X, Y)', 'ABS(Z)'는 각각 'X'와 'Y' 중에 최소값을 도출하는 함수, 'Z'의 절대값을 도출하는 함수를 의미함)로 결정되거나, 혹은 'D' (그리고/혹은 'C') 값의 범위는 '(L - ABS(M-N)) < D(/C) < 100(/'LATENCY REQUIREMENT')' (혹은 '(L- ABS(M-N)) ≤ D(/C) ≤ 100(/'LATENCY REQUIREMENT')')으로 지정될 수 도 있다. 여기서, 일례로, 특정 (하나의) 'TB(/패킷/메시지)'의 재전송을 고려해서, 'D' (그리고/혹은 'C') 값의 최대값 (그리고/혹은 최소값) 계산(/결정)시, 'L' 값에서 사전에 정의(/시그널링)된 일정 'MARGIN(/OFFSET)' 값 ('MAG_VAL')을 빼야 할 수 도 있다. 여기서, 일례로, 해당 규칙이 적용될 경우, 'D' (그리고/혹은 'C') 값의 최대값 (그리고/혹은 최소값)은 '((L-MAG_VAL) - ABS(M-N))' 혹은 'MIN((L - MAG_VAL), ((L - MAG_VAL) - ABS(M-N)))'으로 결정될 수 있다. 여기서, 일례로, ‘MAG_VAL' 값은 재전송 횟수에 'DEPENDENCY' (예를 들어, 재전송 횟수가 증가할수록 ‘MAG_VAL' 값이 커짐)를 가질 수 도 있다. 여기서, 일례로, 상기 규칙은 ((사전에 정의(/시그널링)된 조건이 만족됨에 따라) '(전송) 자원 (재)선택 동작'이 트리거링되고) '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 존재하는 경우 (혹은 패킷(/메시지)이 생성된 경우)에만 한정적으로 적용될 수 도 있다. 여기서, 또 다른 일례로, ((사전에 정의(/시그널링)된 조건이 만족됨에 따라) '(전송) 자원 (재)선택 동작'이 트리거링되었는데) '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 존재하지 않을 경우 (혹은 생성된 패킷(/메시지)이 없는 경우), '(N = M)' (예를 들어, (전송) 자원 (재)선택 동작이 트리거링되는 시점 ('N')이 '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 수신되는 시점 ('M')으로 가정(/간주)하는 것으로 해석될 수 있음)으로 가정(/간주)하거나, 혹은 (전송) 자원 (재)선택 동작을 '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 실제로 도착(/수신) (혹은 실제로 패킷(/메시지)이 생성)될 때까지 연기시키거나, 혹은 ('N' 시점을 포함하여 (혹은 포함하지 않고) 이전에) '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 도착(/수신)되었다고(/존재한다고) 가정 (혹은 패킷(/메시지)이 생성되었다고 가정)하고 (전송) 자원 (재)선택 동작을 수행하도록 할 수 도 있다. 또 다른 일례로, (상기 설명한) 'D' (그리고/혹은 'C') 값의 최대값 (예를 들어, '(L - ABS(M-N))', '100(/'LATENCY REQUIREMENT')')에 해당되는 시점을 포함한 (혹은 포함하지 않은) 이후의 자원들은 가용하지 않은 것으로 가정(/간주)하고 (('STEP 3(/2)' 상의) (재)선택 가능한 후보 자원들에서) 제외하도록 할 수 있다. 추가적인 일례로, 'C' (그리고/혹은 'D') 값 (예를 들어, 'C' 시점은 (전송) 자원 (재)선택 동작이 트리거링된 ('N') 후에 (첫번째) 제어(/스케줄링) 정보 (PSCCH) 전송이 수행되는 시점으로 해석될 수 있음)의 최소값 (C_MIN) (예를 들어, '최소값'은 단말의 'PROCESSING TIME'을 고려하여 결정 (예를 들어, '4MS')될 수 있음)에 해당되는 시점 (예를 들어, '(C + C_MIN)')을 포함한 (혹은 포함하지 않은) 이전의 자원들 (혹은 'N' 시점과 '(C + C_MIN)' 시점 사이의 자원들 (여기서, 일례로, 'N' 시점과 '(C + C_MIN)' 시점에 해당되는 자원들은 포함될 (혹은 포함되지 않을) 수 있음))은 가용하지 않은 것으로 가정(/간주)하고 (('STEP 2(/3)' 상의) (재)선택 가능한 후보 자원들에서) 제외하도록 할 수 있다. 또 다른 일례로, 본 발명에서 설명한 (일부) 제안 규칙 (예를 들어, [제안 규칙#1], [제안 규칙#10] 등)에 따라, 'TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)' ((최대값(/최소값)) 범위)가 'PRIORITY LEVEL' (그리고/혹은 'SERVICE TYPE' 그리고/혹은 'LATENCY(/QOS) REQUIREMENT') 등을 고려하여 상이하게 설정(/변경)될 경우, 사전에 정의된 조건의 만족 여부에 따라, 센싱 동작 (그리고/혹은 (전송) 자원 (재)선택(/예약) 동작 (그리고/혹은 V2X 메시지 전송)) 관련 아래 (일부) 파라미터가 상이하게 지정되도록 할 수 도 있다. 여기서, 일례로, (해당) 조건은 (A) 사전에 설정(/시그널링)된 임계값보다 짧은 (혹은 긴) ‘LATENCY REQUIREMENT'의 V2X 메시지를 전송하는 경우 (그리고/혹은 사전에 설정(/시그널링)된 임계값보다 높은 (혹은 낮은) ‘PPPP'의 V2X 메시지를 전송하는 경우), 그리고/혹은 (B) ‘TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)' 내에, 사전에 설정(/시그널링)된 임계값보다 적은 (혹은 많은) 개수의 (선택 가능한) (후보) 자원 (예를 들어, 서브프레임)이 존재하는(/남은) 경우 (그리고/혹은 ‘TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)'의 최소값(/최대값)이 사전에 설정(/시그널링)된 임계값보다 작은 (혹은 큰) 경우) 등으로 정의될 수 도 있다.
(예시#10-1) (V2X 메시지 관련) PPPP 값(/범위) (예를 들어, (사전에 설정(/시그널링)된 임계값보다) 짧은 (혹은 긴) 'LATENCY REQUIREMENT'의 V2X 메시지의 경우, 상대적으로 높은 (혹은 낮은) PPPP 값(/범위)를 선택하도록 함으로써, 해당 전송을 보호해줄 수 있음. 여기서, 일례로, 높은 (혹은 낮은) PPPP 값(/범위) 기반의 전송은, 다른 단말이 해당 전송으로 사용되고 있는 자원의 선택 가능 (혹은 IDLE/BUSY) 여부를 판단할 때, 상대적으로 낮은 (혹은 높은) PSSCH-RSRP 임계값으로 판단하게 됨을 의미함.) (그리고/혹은 PPPP 값(/범위)에 연동된 PSSCH-RSRP 임계값 (예를 들어, 동일 PPPP 값(/범위)라고 할지라도, (사전에 설정(/시그널링)된 임계값보다) 긴 (혹은 짧은) 'LATENCY REQUIREMENT'의 V2X 메시지의 경우, 상대적으로 낮은 (혹은 높은) PSSCH-RSRP 임계값을 설정(/시그널링)해줌으로써, (사전에 설정(/시그널링)된 임계값보다) 짧은 (혹은 긴) 'LATENCY REQUIREMENT'의 V2X 메시지 전송을 보호해줄 수 있음.) 그리고/혹은 센싱 동작 수행 구간(/주기) 그리고/혹은 후보 (전송) 자원을 선택할 수 있는 ((최대값(/최소값)) 구간(/범위) (SELECTION WINDOW) 그리고/혹은 (재)선택(/예약)한 자원의 유지 구간을 정하기 위해서 랜덤 값을 선정하는 (혹은 뽑는) 범위 (그리고/혹은 (C_RESEL 값 [1/2/3] 도출을 위해) 해당 선정된 랜덤 값에 곱해지는 계수) 그리고/혹은 자원 예약 주기 그리고/혹은 PSSCH-RSRP 임계값 기반의 후보 (전송) 자원 배제 동작 후에, 최소한으로 남아 있어야 하는 후보 (전송) 자원 비율(/개수) (그리고/혹은 해당 남은 후보 (전송) 자원 비율(/개수)가 사전에 설정(/시그널링)된 임계값보다 작은 경우, (관련) PSSCH-RSRP 임계값에 더해지는 오프셋 값) 그리고/혹은 S-RSSI 기반의 후보 (전송) 자원 배제 동작 후에, 최소한으로 남아 있어야 하는 후보 (전송) 자원 비율(/개수) (예를 들어, (사전에 설정(/시그널링)된 임계값보다) 짧은 (혹은 긴) 'LATENCY REQUIREMENT'의 V2X 메시지의 경우 (그리고/혹은 (사전에 설정(/시그널링)된 임계값보다) 높은 (혹은 낮은) ‘PPPP'의 V2X 메시지를 전송하는 경우 그리고/혹은 ‘TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)' 내에, 사전에 설정(/시그널링)된 임계값보다 적은 (혹은 많은) 개수의 (선택 가능한) (후보) 자원이 존재하는(/남은) 경우 그리고/혹은 ‘TX RESOURCE (RE)SELECTION DURATION(/RANGE/WINDOW)'의 최소값(/최대값)이 사전에 설정(/시그널링)된 임계값보다 작은 (혹은 큰) 경우), (A) PSSCH-RSRP 임계값 기반의 후보 (전송) 자원 배제 동작 후에, 최소한으로 남아 있어야 하는 후보 (전송) 자원 비율(/개수) 그리고/혹은 (B) 해당 남은 후보 (전송) 자원 비율(/개수)가 사전에 설정(/시그널링)된 임계값보다 작은 경우, (관련) PSSCH-RSRP 임계값에 더해지는 오프셋 값 그리고/혹은 (C) S-RSSI 기반의 후보 (전송) 자원 배제 동작 후에, 최소한으로 남아 있어야 하는 후보 (전송) 자원 비율(/개수) 등이 상대적으로 높게 지정 (예를 들어, 충돌 확률 증가 완화 효과) 될 수 도 있음.) 그리고/혹은 (서브) 채널 BUSY(/IDLE) 판단에서 사용되는 CBR 임계값 그리고/혹은 (PPPP/CBR 별) 허용(/제한)된 RADIO-LAYER PARAMETER SET (예를 들어, 최대 전송 파워, TB 당 재전송 횟수 값(/범위), MCS 값(/범위), OCCUPANCY RATIO의 최대 제한 (CR_LIMIT) 등) [1/2/3])
[제안 규칙#11] 일례로, (전송) 자원 (재)선택 관련 '(TIMER) EXPIRATION CONDITION'은 아래 (일부) 조건들이 (동시에) 만족되었을 경우로 정의될 수 있다. 여기서, 일례로, 아래 (일부) 조건들이 (동시에) 만족되었을 때에만 V2X UE(S)로 하여금, (실제로) ((전송) 자원 (재)선택 동작이 트리거링되었다고 간주(/가정)하고) (전송) 자원 (재)선택 동작을 수행하도록 하는 것으로 해석될 수 도 있다.
(예시#11-1) (매 TB 전송마다 사전에 설정된 값 (예를 들어, '1')만큼 감소되는) 카운터값이 '0' (그리고/혹은 '음수값')으로 변경된 경우
(예시#11-2) '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성(/수신)된) 패킷(/메시지)이 있는 경우 (그리고/혹은 패킷(/메시지)이 생성된 경우)
[제안 규칙#12] 일례로, (매 TB 전송마다 사전에 설정된 값 (예를 들어, '1')만큼 감소되는) 카운터값이 'EXPIRATION CONDITION' (예를 들어, 카운터 값이 '0' (그리고/혹은 '음수값')으로 변경된 경우)을 만족시켰는데 (그리고/혹은 (사전에 정의(/시그널링)된 조건이 만족됨에 따라) '(전송) 자원 (재)선택 동작'이 트리거링되었는데), 만약 '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성(/수신)된) 패킷(/메시지)이 없다면 (혹은 패킷(/메시지기)이 생성되지 않았다면), V2X UE(S)로 하여금, (가장 최근) 패킷(/메시지)이 이전(/최근)에 관찰된 'INTERVAL(/PERIODICITY)'로 도달(/생성(/수신))한다고 가정하고, (전송) 자원 (재)선택한 다음에 (추후) 실제로 문제 (예를 들어, (재)선택된 (전송) 자원으로 'LATENCY(/QOS) REQUIREMENT'을 만족시키지 못하는 경우)가 발생하면, (전송) 자원 (재)선택 동작을 추가적으로 수행하도록 할 수 도 있다.
일례로, (표 2 상에 기술된 규칙과 더불어) 아래의 방법에 따라, V2X UE(S)로 하여금, (전송) 자원 (재)예약을 수행하도록 할 수 있다.
d는 dmax 이하의 값일 수 있다. dmax 는 단말/데이터/서비스 타입 등의 우선 순위(priority)에 종속적으로 결정될 수 있다.
단말은 서브프레임 #n+d에서 전송되는 신호를 위한 주파수 자원을 서브프레임 #n+e에서의 다른 전송 블록의 잠재적 전송에 재사용할 것인지 여부를 알려줄 수 있다. 여기서, e는 정수이며, d<e의 관계에 있다. 단말은 명시적으로 또는 묵시적으로 상기 재사용 여부를 알려줄 수 있다. 상기 e 값은 하나의 값일 수도 있고 복수의 값들일 수도 있다. 또한, 추가적으로, 서브프레임 #n+e 다음부터는 서브프레임 #n+d에서 전송되는 신호를 위한 주파수 자원을 사용하지 않음을 알려줄 수도 있다.
V2X 신호를 수신하는 수신 단말은, V2X 신호를 전송하는 전송 단말이 전송한 스케줄링 할당(SA)을 디코딩한다. 이 때, 상기 스케줄링 할당에 의하여 서브프레임 #n+d+P*j (j=i, 2*i, ..., J*i)에서 동일한 주파수 자원이 유보(reserved)된다고 가정할 수 있다. 상기 P는 100일 수 있다. 상기 J 값은 상기 스케줄링 할당에 의하여 명시적으로 시그널링될 수도 있고, 고정된 값(예컨대, 1)일 수도 있다. 상기 i 값은 상기 스케줄링 할당에 의하여 명시적으로 시그널링될 수도 있고, 미리 설정된 값 또는 고정된 값일 수도 있다. 또는 상기 i 값은 0과 10 사이의 정수일 수도 있다.
[제안 규칙#13] 일례로, V2X TX UE(S)로 하여금, “I" 값 (전술한 I 참조)을 SA (필드)를 통해서 시그널링하도록 함으로써, V2X RX UE(S)는 V2X TX UE(S)가 향후 어느 시점에 (해당) SA를 통해서 지정(/스케줄링)된 동일 주파수 자원을 (추가적으로) 예약(/사용)할지를 파악 (예를 들어, V2X TX UE가 “I" 값을 “2”로 시그널링된 경우, V2X RX UE(S)는 “TTI#(N+D)”, “TTI#(N+D+2*P)” 상에서 (해당) SA를 통해서 지정(/스케줄링)된 동일 주파수 자원이 예약된 것으로 가정함) 할 수 있게 된다. 여기서, 일례로, 이하에서는 설명의 편의를 위해서, “I” 값이 사전에 설정(/시그널링)된 “[0, 1, …, 10]” 범위 안에서 선택 (4 비트) 되고 그리고/혹은 “J” 값 (전술한 J 참조)은 “1”로 고정되었다고 가정한다. 여기서, 일례로, 사전에 정의된 파라미터 (예를 들어, 속도/(진행) 방향 변화량 등)에 따라 V2X MESSAGE 생성 주기가 변경됨으로써, V2X TX UE(S)가 (자신의) V2X MESSAGE 생성 주기를 정확하게 예측하기 어려운 경우, 상기 방법에 따라 (미래) 자원을 예약하는 것은 효율적이지 않을 수 있다. 여기서, 일례로, 해당 문제를 해결할 수 있는 한가지 방법으로 V2X RX UE(S)로 하여금, 특정 V2X TX UE(S)가 (SA 필드 상의) “I" 값을 “2”로 시그널링된 경우에 “TTI#(N+D)”, “TTI#(N+D+2*P)” 상의 (해당) SA를 통해서 지정(/스케줄링)된 동일 주파수 자원 (HARD_RSC)은 “EXPLICIT (혹은 HARD)”하게 예약되었다고 가정하되, (SA (필드)를 통해서 시그널링되지 않은) 나머지 “I” 값 기반의 시점 (예를 들어, “TTI#(N+D+1*P)”, “TTI#(N+D+3*P)”, “TTI#(N+D+4*P)”, “TTI#(N+D+5*P)”, “TTI#(N+D+6*P)”, “TTI#(N+D+7*P)”, “TTI#(N+D+8*P)”, “TTI#(N+D+9*P)”, “TTI#(N+D+10*P)”) 상의 ((해당) SA를 통해서 지정(/스케줄링)된) 동일 주파수 자원 (SOFT_RSC)은 “POTENTIAL (혹은 SOFT)”하게 예약되었다고 가정하도록 할 수 있다. 여기서, 일례로, 해당 규칙 (그리고/혹은 SOFT_RSC 예약)은 사전에 설정(/시그널링)된 특정 RESOURCE ALLOCATION MODE에 대해서만 적용 (예를 들어, MODE 1 그리고/혹은 P-UE의 RANDOM RESOURCE SELECTION(/PARTIAL SENSING 기반의 RESOURCE SELECTION)에 대해서는 적용되지 않음) 될 수 있다. 여기서, 일례로, 해당 규칙이 적용될 경우, V2X TX UE(S)로 하여금, (SA 디코딩 기반으로 판단한) 다른 V2X TX UE(S)의 HARD_RSC와 SOFT_RSC에 대해, “DM-RS POWER/ENERGY MEASUREMENT” 값에 따라, 선택 가능한 후보 자원인지 아니면 배제시킬 자원인지를 판단할 때 (표 2의 STEP 2), 사전에 설정(/시그널링)된 상이한 (DM-RS POWER/ENERGY MEASUREMENT) 임계값을 적용하도록 할 수 있다. 여기서, 일례로, HARD_RSC 관련 임계값 (HARD_ TH)이 SOFT_RSC의 것 (SOFT_ TH) 보다 낮게 (혹은 높게) 설정(/시그널링) (예를 들어, HARD_RSC가 SOFT_RSC에 비해 상대적으로 높은 우선 순위로 보호되는 것으로 해석될 수 있음) 될 수 있다. 여기서, 일례로, SOFT_RSC 관련 임계값은 HARD_RSC의 것에 대한 오프셋 값 (HARD_ THOFF) 형태로 설정(/시그널링) (그리고/혹은 HARD_TH 관련 임계값은 SOFT_RSC의 것에 대한 오프셋 값 (SOFT_ THOFF) 형태로 설정(/시그널링)) 될 수 도 있다. 여기서, 일례로, (A) HARD_THOFF 값이 “0”으로 설정(/시그널링)되면, 다른 V2X TX UE(S)는 (해당 V2X TX UE(S)의) HARD_RSC와 SOFT_RSC를 동일한 우선 순위로 “DM-RS POWER/ENERGY MEASUREMENT” 값에 따라 배제 여부를 판단 (표 2의 STEP 2)하게 되고 (혹은 (해당) V2X TX UE(S)가 모든 “I” 값 기반의 시점 상의 ((해당) SA를 통해서 지정(/스케줄링)된) 동일 주파수 자원을 예약하려는 의도로 해석하고), (B) HARD_THOFF 값이 “무한대 (혹은 상대적으로 큰 값)”로 설정(/시그널링)되면, 다른 V2X TX UE(S)는 (해당 V2X TX UE(S)의) SOFT_RSC를 항상 (혹은 매우 높은 확률로) 선택 가능한 후보 자원으로 판단 (표 2의 STEP 2)하게 된다. 여기서, 일례로, (A) SA 디코딩 기반으로 파악한 다른 V2X TX UE(S)의 V2X MESSAGE PRIORITY (그리고/혹은 자신이 전송하고자 하는 V2X MESSAGE PRIORITY) 그리고/혹은 (B) (측정된) “CONGESTION LEVEL” 별로 (해당) 임계값 (예를 들어, HARD_TH, SOFT_TH) (혹은 오프셋 값 (예를 들어, HARD_THOFF (혹은 SOFT_THOFF)))이 상이하게 설정(/시그널링) (그리고/혹은 (C) SA 디코딩 기반으로 파악한 다른 V2X TX UE(S)의 V2X MESSAGE PRIORITY (그리고/혹은 자신이 전송하고자 하는 V2X MESSAGE PRIORITY) 그리고/혹은 (D) (측정된) “CONGESTION LEVEL”에 따라 (해당) 임계값 (예를 들어, HARD_TH, SOFT_TH) (혹은 오프셋 값 (예를 들어, HARD_THOFF (혹은 SOFT_THOFF)))이 조절) 될 수 도 있다. 여기서, 일례로, V2X TX UE(S)로 하여금, (SA 디코딩 기반으로 판단한) 다른 V2X TX UE(S)의 HARD_RSC와 SOFT_RSC 관련 “DM-RS POWER/ENERGY MEASUREMENT” 값에 사전에 설정(/시그널링)된 상이한 오프셋 값을 적용하여, 선택 가능한 후보 자원인지 아니면 배제시킬 자원인지를 판단 (표 2의 STEP 2) 하도록 할 수 있다. 여기서, 일례로, HARD_RSC 관련 오프셋 값 (예를 들어, “음의 값”으로 가정)이 SOFT_RSC의 것 보다 크게 (혹은 작게) 설정(/시그널링) (예를 들어, HARD_RSC가 SOFT_RSC에 비해 상대적으로 높은 우선 순위로 보호되는 것으로 해석될 수 있음) 될 수 있다. 여기서, 일례로, SOFT_RSC (혹은 HARD_RS) 관련 “DM-RS POWER/ENERGY MEASUREMENT” 값에 대한 오프셋 값만이 설정(/시그널링)될 수 도 있다. 여기서, 일례로, (A) SA 디코딩 기반으로 파악한 다른 V2X TX UE(S)의 V2X MESSAGE PRIORITY (그리고/혹은 자신이 전송하고자 하는 V2X MESSAGE PRIORITY) 그리고/혹은 (B) (측정된) “CONGESTION LEVEL” 별로 (해당) 오프셋 값이 상이하게 설정(/시그널링) (그리고/혹은 (C) SA 디코딩 기반으로 파악한 다른 V2X TX UE(S)의 V2X MESSAGE PRIORITY (그리고/혹은 자신이 전송하고자 하는 V2X MESSAGE PRIORITY) 그리고/혹은 (D) (측정된) “CONGESTION LEVEL”에 따라 (해당) 오프셋 값이 조절) 될 수 도 있다. 여기서, 일례로, V2X TX UE(S)가 SA TX 관련 자원 선택(/예약)시, (SA 디코딩 기반으로 판단한) 다른 V2X TX UE(S)의 HARD_RSC와 SOFT_RSC 상의 데이터 전송(들)과 연동된 SA 전송 자원(들)에 대해, (마찬가지로) 사전에 설정(/시그널링)된 상이한 “DM-RS POWER/ENERGY MEASUREMENT” 임계값 (혹은 오프셋 값)을 적용하여, 선택 가능한 (SA) 후보 자원인지 아니면 배제시킬 (SA) 자원인지 판단하도록 할 수 있다. 여기서, 일례로, (A) SA 전송 시점과 연동된 데이터 전송 시점 간의 “TIME GAP” (범위) 값이 해당 데이터가 어떤 자원 타입 (예를 들어, HARD_RSC, SOFT_RSC)을 통해서 전송되는지에 따라 상이하게 설정(/시그널링) 그리고/혹은 (B) 상이한 자원 타입을 통해서 전송되는 데이터 관련 (전송) 전력 값(/(전송) 전력 제어 파라미터) (그리고/혹은 (최대 허용) MCS 값)이 다르게 (혹은 독립적으로) 설정(/시그널링) 될 수 도 있다. 일례로, PEDESTRIAN UE (P- UE)의 V2X 메시지 전송 주기 (예를 들어, “1000MS”)는 (상대적으로 느린 이동 속도 그리고/혹은 베터리 절약 필요성을 고려할 때) VEHICLE UE (V- UE)의 것 (예를 들어, “100MS”)에 비해 상대적으로 길게 설정(/시그널링) 될 수 있다. 여기서, 일례로, P-UE가 V2X 메시지 전송시, SA 필드 상의 “I" 값이 사전에 설정(/시그널링)된 특정 값 (혹은 “RESERVED STATE”)을 가리키도록 함으로써, 다른 V2X RX UE(S)로 하여금, (A) (해당) SA (그리고/혹은 연동된 데이터) 전송은 P-UE가 수행한 것으로 해석되도록 하거나 그리고/혹은 (B) (해당) SA 기반의 (스케줄드) 자원은 사전에 설정(/시그널링)된 ((V-UE의 경우에 비해) 상대적으로 긴) (다른) 주기로 예약된 것으로 해석되도록 할 수 있다.
[제안 규칙#14] 일례로, V2X TX UE(S)로 하여금, (A) 만약 (상이한 서비스 타입 그리고/혹은 V2X MESSAGE PRIORITY 관련) 복수개의 (SIDELINK (SL)) SPS PROCESS(/CONFIGURATION)를 동시에 운영하고 (혹은 활성화 시키고) 있었다면, 특정 (SL) SPS PROCESS(/CONFIGURATION) 관련 전송 자원 선택시, 이전에 (혹은 이미) 선택한 다른 (SL) SPS PROCESS(/CONFIGURATION) 관련 자원(여기서 자원은 서브프레임으로 해석될 수도 있다.)은 (선택 가능한) 후보 자원에서 배제시키도록 정의 (표 2의 STEP 2) 그리고/혹은 (B) 사전에 설정(/시그널링)된 동기 시그널 (PRIMARY SIDELINK SYNCHRONIZATION SIGNAL (PSSS)/SECONDARY SIDELINK SYNCHRONIZATION SIGNAL (SSSS)) (그리고/혹은 PHYSICAL SIDELINK BROADCAST CHANNEL (PSBCH)) 전송 (시간(/주파수)) 자원 (예를 들어, “서브프레임”)은 (선택 가능한) 후보 자원에서 배제시키도록 정의 (표 2의 STEP 2) 될 수 있다.
[제안 규칙#15] 일례로, 사전에 설정(/시그널링)된 “(DROPPING) PRIORITY”에 따라, 특정 시점 상에 V2X (TB) 전송 동작이 생략될 경우 (예를 들어, “WAN UL TX(S)” (그리고/혹은 “동기 시그널 전송 (자원)”)와 V2X (MESSAGE) TX(S)가 시간(/주파수) 영역에서 (일부 혹은 모두) 겹칠 경우), 자원 재선택 관련 카운터 (표 2) 값은 상관없이 감소시키도록 정의 (그리고/혹은 자원 재선택 동작이 트리거링 되도록 정의) 될 수 있다. 일례로, V2X TX UE(S)로 하여금, 자신의 “SYNCHRONIZATION SOURCE”가 변경되면, 자원 재선택 동작이 트리거링 되도록 정의 (그리고/혹은 변경된 “SYNCHRONIZATION SOURCE” 관련 시간(/주파수) 동기 값과 기존 “SYNCHRONIZATION SOURCE” 관련 (시간(/주파수) 동기) 값 간의 차이가 사전에 설정(/시그널링)된 (최대 허용) 임계값보다 큰 경우에만 자원 재선택 동작이 트리거링 되도록 정의) 될 수 있다. 일례로, V2X TX UE(S)로 하여금, 자신의 “SYNCHRONIZATION SOURCE”가 변경되면, (A) (남아 있는 “LATENCY” 값이 사전에 설정(/시그널링)된 임계값보다 적은 경우) 전송 자원을 랜덤 선택(/예약)하도록 정의 (예를 들어, 랜덤 선택된 자원은 사전에 설정(/시그널링)된 개수의 “TRANSPORT BLOCK (TB)” 전송에만 이용하도록 하고, 이후에는 센싱 기반의 선택(/예약)된 자원을 통해서 “TB” 전송을 수행하도록 정의될 수 도 있음) 그리고/혹은 (B) 사전에 설정(/시그널링)된 (시간) 구간 동안에 센싱 동작을 수행한 후에 전송 자원을 선택(/예약)하도록 정의될 수 있다. 여기서, 일례로, V2X TX UE(S)로 하여금, (현재의 “SYNCHRONIZATION SOURCE”를 포함하여) (사전에 설정(/시그널링)된 값 기반의) 복수 개의 (다른) “SYNCHRONIZATION SOURCE” 관련 통신들에 대한 센싱 동작을 수행하도록 한 후, 이 중에 하나로 “SYNCHRONIZATION SOURCE”가 변경되면, 해당 (변경된 “SYNCHRONIZATION SOURCE” 관련) 센싱 결과 값을 이용하여, 전송 자원을 선택(/예약)하도록 할 수 있다.
[제안 규칙#16] 일례로, V2X UE(S)로 하여금, (A) (시간(/주파수)) 동기가 동일한 (혹은 (시간(/주파수)) 동기 차이가 사전에 설정(/시그널링)된 임계값보다 작은) 몇 개의 케리어에 대한 동시 수신(/송신) 능력이 있는지를 보고하도록 정의 그리고/혹은 (시간(/주파수)) 동기가 다른 (혹은 (시간(/주파수)) 동기 차이가 사전에 설정(/시그널링)된 임계값보다 큰) 몇 개의 케리어에 대한 동시 수신(/송신) 능력이 있는지를 (독립적으로) 보고하도록 정의될 수 있다. 여기서, 일례로, 이러한 (능력) 정보를 수신한 (서빙) 기지국은 (해당) V2X UE(S)의 능력을 고려하여, 적당한 개수의 케리어를 V2X 통신 (수신(/송신)) 용도로 설정(/시그널링)해 줄 수 있다. 일례로, MODE 1 V2X 통신의 경우, (서빙) 기지국은 V2X UE(S)의 절대 속도 그리고/혹은 “SYNCHRONIZATION SOURCE TYPE (예를 들어, GNSS, ENB)”에 따라, 상이한 MCS (범위) 값 그리고/혹은 RESOURCE BLOCK (RB) 개수 그리고/혹은 (HARQ) 재전송 횟수의 V2X TX 동작이 수행되도록 관련 정보를 (V2X UE(S)에게) 시그널링해줄 수 있다. 일례로, (서빙) 기지국은 (자신의 커버리지 내에 있는) V2X UE(S)로부터 보고받은 속도(/위치) 정보를 기반으로 “위치 기반 풀 크기”를 조절해줄 수 있다. 여기서, 일례로, (서빙) 기지국은 (자신의 커버리지 내에 있는) V2X UE(S)에게 속도 (범위) 별로 “위치 기반 풀 크기” 정보를 상이하게 설정(/시그널링)해주고, V2X UE(S)로 하여금, 자신의 속도에 해당되는 “위치 기반 풀 크기” 정보를 적용(/이용)하여 V2X 통신을 수행하도록 할 수 있다.
[제안 규칙#17] 일례로, ((A) 특정 TB 관련 상이한 REDUNDANCY VERSION (RV) (데이터) 수신에 대한 HARQ COMBINING 동작 그리고/혹은 (B) 데이터 (재)전송 관련 (시간) 자원 위치 정보 시그널링에 필요한 PSCCH 페이로드 크기 (증가)를 고려하여), V2X TX UE(S)로 하여금, 특정 (하나의) TB 관련 복수개 (NUM _ RETX)의 데이터 (재)전송 관련 시간 자원들이 사전에 설정(/시그널링)된 구간 (LIM _ TIMEWIN) 내에서 선택되도록 할 수 있다. 여기서, 일례로, 해당 규칙이 적용될 경우, V2X TX UE(S)로 하여금, 아래 (일부) 방법에 따라 센싱 기반의 자원 (재)선택 (예를 들어, 표 2의 STEP 2/3) 동작을 수행하도록 할 수 있다. 여기서, 일례로, LIM_TIMEWIN 값은 (A) V2X TX UE(S)가 전송하고자 하는 V2X MESSAGE PRIORITY 그리고/혹은 (B) (측정된) CONGESTION LEVEL 그리고/혹은 (C) V2X MESSAGE(/SERVICE) 관련 TARGET LATENCY(/RELIABILITY) REQUIREMENT 등에 따라 조절 (혹은 상이하게 설정(/시그널링) 될 수 있다.
(예시#17-1) 일례로, (표 2) STEP 2 (예를 들어, OPTION 2-1) 수행 결과로 도출된 (배제되지 않은) 자원들 (NOEX _RSC) 중에, (특정 TB 관련) NUM_RETX 개의 데이터 (재)전송 관련 시간 자원들을 LIM_TIMEWIN 내에서 (모두) 선택할 수 없다면 (혹은 LIM_TIMEWIN 내에서 선택할 수 있는 후보 개수가 사전에 설정(/시그널링)된 임계값보다 작다면), (A) (특정 TB 관련) NUM_RETX 개의 데이터 (재)전송을 (모두) 생략하도록 정의되거나 그리고/혹은 (B) LIM_TIMEWIN 내에서 선택할 수 있는 (최대 개수의) 시간 자원들만을 이용하여 (특정 TB 관련) 데이터 (재)전송을 (부분적으로) 수행하도록 정의되거나 그리고/혹은 (C) (이러한 경우에 사용(/적용)되도록) 사전에 추가적으로 설정(/시그널링)된 구간 값 (FLIM _ TIMEWIN) (예를 들어, “FLIM_TIMEWIN > LIM_TIMEWIN”) 내에서 (특정 TB 관련) NUM_RETX 개의 데이터 (재)전송 관련 시간 자원들을 선택하도록 정의 (예를 들어, FLIM_TIMEWIN 내에서 선택 가능한 후보가 없다면 생략하도록 할 수 있음) 되거나 그리고/혹은 (D) (표 2) STEP 2의 (자원 배제 관련) PSSCH DM-RS RSRP THRESHOLD 값을 (특정 TB 관련) NUM_RETX 개의 데이터 (재)전송 관련 시간 자원들이 LIM_TIMEWIN (혹은 FLIM_TIMEWIN) 내에서 (모두) 선택될 수 있을 때까지 (혹은 LIM_TIMEWIN 내에서 선택할 수 있는 후보 개수가 사전에 설정(/시그널링)된 임계값보다 커질 때까지), 사전에 설정(/시그널링)된 오프셋 값만큼씩 증가시키도록 정의될 수 있다. 일례로, ((상기 규칙에 따라) (표 2) STEP 2가 수행된 후) (표 2) STEP 3 상에서 하위 (혹은 상위) X %의 PSSCH DM-RS RSRP 값이 측정된 자원들 중에 (특정 TB 관련) NUM_RETX 개의 데이터 (재)전송 관련 시간 자원들을 사전에 정의된 규칙 (예를 들어, 랜덤 선택 방법)에 따라 선택할 때, 만약 선택된 (일부) 시간 자원들이 LIM_TIMEWIN (혹은 FLIM_TIMEWIN) 내에 존재하지 않는다면, (A) (해당 조건을 만족시킬 때까지) 재선택을 수행하도록 정의되거나 그리고/혹은 (B) (특정 TB 관련) NUM_RETX 개의 데이터 (재)전송을 (모두) 생략하도록 정의되거나 그리고/혹은 (C) LIM_TIMEWIN (혹은 FLIM_TIMEWIN) 내에 위치한 시간 자원들만을 이용하여 (특정 TB 관련) 데이터 (재)전송을 (부분적으로) 수행하도록 정의될 수 있다.
[제안 규칙#18] 일례로, PSCCH DM-RS 관련 CYCLIC SHIFT (CS) (그리고/혹은 OCC) 값은 사전에 정의(/시그널링)된 (특정) 값 (예를 들어, “CS INDEX = 0”, “OCC = [+1 +1]”)으로 고정되어있다. 여기서, 일례로, 해당 규칙이 적용될 경우, 상이한 V2X TX UE(S) 간에 PSCCH 전송 자원이 (일부) 겹치게 되면 PSCCH 관련 수신 성능이 보장될 수 없는 문제가 발생된다. 여기서, 일례로, 해당 문제를 완화시키기 위해, V2X TX UE(S)로 하여금, 사전에 설정(/시그널링)된 CS SET (그리고/혹은 OCC SET) 내에서 사전에 정의된 규칙 (예를 들어, 랜덤 선택 방법)에 따라 (하나의) CS (그리고/혹은 OCC) 값을 선택하도록 할 수 있다. 여기서, 일례로, CS (INDEX) SET은 “CS INDEX 0, 3, 6, 9”로 설정(/시그널링)될 수 있다. 여기서, 일례로, V2X RX UE(S)는 (V2X TX UE(S)가 어떤 값을 선택한지를 정확하게 모르기 때문에) 해당 CS SET (그리고/혹은 OCC SET) 내의 (모든) CS (그리고/혹은 OCC)에 대한 블라인드 검출 (BD) 동작을 수행하게 된다. 여기서, 일례로, V2X TX UE(S)가 CS SET (그리고/혹은 OCC SET) 내에서 선택하게 되는 CS (그리고/혹은 OCC) 값은 (A) (V2V) 서브프레임(/슬롯) 인덱스 그리고/혹은 (B) V2X TX UE ID (혹은 (TARGET) V2X RX UE ID) 그리고/혹은 (C) PSCCH 상에 전송되는 (X 비트의) ID 등을 입력 파라미터(/시드값)로 가지는 함수(/수식)에 의해서 랜덤화(/홉핑)되도록 정의 (그리고/혹은 V2X TX UE(S)의 CS SET (그리고/혹은 OCC SET) (구성)은 (D) (V2V) 서브프레임(/슬롯) 인덱스 그리고/혹은 (E) V2X TX UE ID (혹은 (TARGET) V2X RX UE ID) 그리고/혹은 (F) PSCCH 상에 전송되는 (X 비트의) ID 등을 입력 파라미터(/시드값)로 가지는 함수(/수식)에 의해서 랜덤화(/변경)되도록 정의)될 수 있다. 여기서, 일례로, CS SET (그리고/혹은 OCC SET) (구성)은 (V2X TX UE(S)가 전송하고자 하는) V2X MESSAGE PRIORITY 그리고/혹은 (측정한) CONGESTION LEVEL 등에 따라 상이하게 설정(/시그널링)될 수 있다. 여기서, 일례로, (상기 규칙이 적용될 경우) V2X RX UE(S)의 (PSCCH DM-RS) CS (그리고/혹은 OCC) BD 동작 관련 복잡도를 낮추기 위해서, ((서빙) 기지국으로부터) 하나의 서브프레임 내에서 (V2X RX UE(S)가) 수행해야 하는 최대 BD 횟수가 설정(/시그널링)될 수 있다. 여기서, 일례로, V2X UE(S)로 하여금, 자신이 하나의 서브프레임 내에서 최대로 수행할 수 있는 BD 횟수 정보를 ((서빙) 기지국으로) 사전에 정의된 시그널링을 통해서 보고하도록 할 수 있다. 여기서, 일례로, PSCCH SCRAMBLING SEQUENCE GENERATOR가 V2X TX UE(S)가 선택하게 되는 (사전에 설정(/시그널링)된) CS SET (그리고/혹은 OCC SET) 내의 (모든) CS (그리고/혹은 OCC) 값 (그리고/혹은 사전에 설정(/시그널링)된 C_INIT 값 (예를 들어, “510”))에 따라 초기화 (INITIALIZATION) 되도록 할 수 있다. 여기서, 일례로, (해당 규칙이 적용될 경우) PSCCH 상에 CS 필드 (예를 들어, “3 비트”)가 정의될 수 있으며, 해당 CS 필드 값은 V2X TX UE(S)가 사전에 설정(/시그널링)된 CS SET 내에서 사전에 정의된 규칙 (예를 들어, 랜덤 선택 방법)에 따라 선택한 (하나의) CS 값 (SELCS _VAL)에 의해 (그리고/혹은 SELCS_VAL 값을 입력 파라미터로 가지는 사전에 정의된 (랜덤화(/홉핑)) 함수 기반의 도출(/계산)값에 의해) (동일하게) 지정될 수 있으며, 해당 (지정된) CS 필드 값에 따라 (PSCCH와 연동된) PSSCH DM-RS CS 값이 설정(/결정)될 수 있다. 여기서, 일례로, 해당 규칙이 적용될 경우, PSCCH DM-RS (CS) 상의 간섭이 완화(/랜덤화)되었으면, (연동된) PSSCH DM-RS (CS) 상의 간섭도 (동일하게) 완화(/랜덤화)될 수 있다. 여기서, 일례로, 여기서, 일례로, (상기 규칙이 적용될 경우) (PSCCH와 연동된) PSSCH DM-RS CS 값은 (PSCCH 상에 CS 필드 (예를 들어, “3 비트”)를 추가적으로 정의하지 않고) V2X TX UE(S)가 사전에 설정(/시그널링)된 CS SET 내에서 사전에 정의된 규칙 (예를 들어, 랜덤 선택 방법)에 따라 선택한 (하나의) PSCCH DM-RS CS 값 (SELCS_VAL)에 의해 (그리고/혹은 SELCS_VAL 값을 입력 파라미터로 가지는 사전에 정의된 (랜덤화(/홉핑)) 함수 기반의 도출(/계산)값에 의해) (동일하게) 설정될 수 있다. 여기서, 일례로, PSSCH SCRAMBLING SEQUENCE GENERATOR가 (PSCCH 상의) CS 필드 값 (그리고/혹은 (PSCCH 상의) V2X TX UE ID (혹은 (TARGET) V2X RX UE ID (혹은 X 비트의 ID)) 그리고/혹은 (V2V) 서브프레임(/슬롯) 인덱스)에 따라 초기화 (INITIALIZATION) 되도록 할 수 있다.
일례로, V2V 통신 수행 시, PSCCH 그리고/혹은 (연동된) PSSCH 관련 (A) (DM-RS) SEQUENCE GENERATION RULE 그리고/혹은 (B) (DM-RS) CS(/OCC) INDEX SELECTION(/DETERMINATION) RULE 그리고/혹은 (C) GROUP/SEQUENCE HOPPING RULE 등은 표 7 및 표 8과 같이 정의될 수 있다. 일례로, 아래 (일부) 제안 방식들은 상이한 단말 간의 PSCCH 그리고/혹은 PSSCH 전송 자원이 (일부 혹은 모두) 겹칠 경우, (DM-RS) SEQUENCE(/CS(/OCC) INDEX) (그리고/혹은 간섭) 랜덤화 동작이 효율적으로 수행되도록 하는 방법들을 제시한다.
이하, 표 7 및 표 8을 통해, V2V 통신 수행 시, PSCCH 그리고/혹은 (연동된) PSSCH 관련 (A) (DM-RS) SEQUENCE GENERATION RULE 그리고/혹은 (B) (DM-RS) CS(/OCC) INDEX SELECTION(/DETERMINATION) RULE 그리고/혹은 (C) GROUP/SEQUENCE HOPPING RULE 등에 대한 일례를 설명한다. 이때, V2V WI에서는 일반 CP 만 지원될 수 있으며, 목적지 ID는 SA를 통해 전달되지 않을 수 있다. 아울러, SA로부터의 16 CRC 비트는 PSSCH DMRS 시퀀스 및 데이터 스크램블링 시퀀스를 생성하는데 사용될 수 있다.
<표 7>
Figure PCTKR2017003843-appb-I000021
여기서,
Figure PCTKR2017003843-appb-I000022
일 수 있다.
<표 8>
Figure PCTKR2017003843-appb-I000023
여기서,
Figure PCTKR2017003843-appb-I000024
일 수 있으며, nx는 PSSCH DMRS 시퀀스를 생성하는데 사용되는 SA에서의 X 비트를 의미할 수 있다.
[제안 규칙#19] 일례로, (연동된) PSSCH DM-RS CS 인덱스(/값) 결정에 사용되는 비트 (필드) (예를 들어, PSCCH의 16 비트 CRC (C0, C1,…, C15) 중에 “C12, C13, C14”의 (3) 비트 값) 중에 사전에 설정(/시그널링)된 (혹은 랜덤 선택된) 2 비트를 선택된 PSCCH CS 인덱스(/값) (예를 들어, “2 비트”)으로 SCRAMBLING 되도록 할 수 있다. 여기서, 일례로, 이러한 규칙이 적용될 경우, (A) PSCCH의 (최종적인) 16 비트 CRC는 “C0, C1,…, C15” 값으로 유지(/적용) (예를 들어, (연동된) PSSCH DM-RS CS 인덱스(/값) 결정에 사용되는 CRC (그리/고/혹은 비트 (필드))만이 (해당) SCRAMBLING 동작으로 변경된 것으로 간주(/가정)함) 되도록 하거나 그리고/혹은 (B) (해당) SCRAMBLING 동작으로 (일부) 변경된 16 비트 CRC가 PSCCH의 (최종적인) CRC가 되도록 할 수 있다. 일례로, PSCCH의 16 비트 CRC (C0, C1,…, C15) 중에 LSB (예를 들어, 해당 규칙이 적용될 경우, PSSCH DM-RS OCC 인덱스(/값)도 변경될 수 있음) (혹은 MSB) 2 비트 (그리고/혹은 사전에 설정(/시그널링)된 (혹은 랜덤 선택된) 특정 위치의 2 비트)를 선택된 PSCCH CS 인덱스(/값) (예를 들어, “2 비트”)으로 SCRAMBLING 되도록 할 수 있다. 여기서, 일례로, 이러한 규칙이 적용될 경우, (A) (해당) SCRAMBLING 동작으로 (일부) 변경된 16 비트 CRC가 PSCCH의 (최종적인) CRC가 되도록 하거나 그리고/혹은 (B) PSCCH의 (최종적인) 16 비트 CRC는 “C0, C1,…, C15” 값으로 유지(/적용) (예를 들어, (연동된) PSSCH DM-RS CS 인덱스(/값) 결정에 사용되는 CRC (그리/고/혹은 비트 (필드))만이 (해당) SCRAMBLING 동작으로 변경된 것으로 간주(/가정)함) 되도록 할 수 있다. 일례로, PSCCH CS 인덱스(/값) (예를 들어, “2 비트”) 별로 SCRAMBLING 용도의 (상이한) 16 비트가 사전에 설정(/시그널링)되고, 단말로 하여금, (A) 선택된 PSCCH CS 인덱스(/값)과 연동된 SCRAMBLING 용도의 16 비트 (S0, S1,…, S15)와 PSCCH의 (생성된) 16 비트 CRC (C0, C1,…, C15)를 SCRAMBLING 시킨 후, (해당) SCRAMBLING 결과 값 (W0, W1,…, W15)을 PSCCH의 최종적인 16 비트 CRC가 되도록 하거나 그리고/혹은 (B) PSCCH의 (최종적인) 16 비트 CRC는 “C0, C1,…, C15” 값으로 유지(/적용)하되, (연동된) PSSCH DM-RS CS 인덱스(/값) 결정에 사용되는 16 비트 CRC (그리고/혹은 비트 (필드))만을 “W0, W1,…, W15“ 값 (그리고/혹은 “W0, W1,…, W15” 중에 “W12, W13, W14”의 (3) 비트 값)으로 사용(/가정)하도록 할 수 있다.
일례로, (A) MODE 2 V2V SCHEDULING (MODE2 _ SCH) 동작시에 사용되는 SCI FOMRAT 구성 필드(들) 그리고/혹은 (B) MODE 1 DYNAMIC V2V SCHEDULING (MODE1_DYN) 동작시에 사용되는 DCI FORMAT 구성 필드(들)은 아래와 같이 정의될 수 있다. 여기서, 일례로, FRA_INRETX 필드는 (기존 LTE 시스템의 LVRB 형태와 유사하게) RESOURCE INDICATION VALUE (RIV) 값이 (PSSCH 전송 관련) (A) 시작 서브채널 인덱스(/위치) 정보 (SUB_START) 그리고/혹은 (주파수 영역 상에서) 연속적으로 할당(/위치)된 서브채널 길이(/개수) 정보 (SUB_LENGTH)를 알려주는 형태로 정의될 수 있다. 여기서, 일례로, 특정 (하나의) TB 전송을 위해서, 2 번의 PSSCH 전송이 설정(/시그널링)될 경우, (A) SUB_START 값은 두번째 PSSCH 전송이 수행되는 서브채널의 시작 인덱스(/위치) 정보 (SECDATA _ SUBST)로 해석될 수 있으며, 그리고/혹은 (B) SUB_LENGTH 값은 첫번째와 두번째 PSSCH 전송에 사용되는 서브채널 길이(/개수) 정보 (SFDATA _ SUBLN)로 해석될 수 있다. 여기서, 일례로, 첫번째 PSSCH 전송이 수행되는 서브채널의 시작 인덱스(/위치) 정보 (FIRDATA _ SUBST)는 (FRA_INRETX 필드를 통해서 직접적으로 시그널링되는 것이 아니라) 수신 단말로 하여금, 사전에 정의(/시그널링)된 “((블라인드) 검출된) (첫번째) PSCCH 자원 인덱스(/위치) 정보”와 “(연동된) (첫번째) PSSCH 전송이 수행되는 서브채널의 시작 인덱스(/위치) 정보” 간의 (일대일) 맵핑(/링키지) 관계를 통해서, 암묵적으로 파악하도록 할 수 있다.
이하에서는, MODE2_SCH 동작시에 사용되는 SCI FOMRAT 구성 필드(들) 그리고/혹은 (B) MODE1_DYN 동작시에 사용되는 DCI FORMAT 구성 필드(들)에 대한 일례를 설명한다.
SCI는 1) PRIORITY: 3비트, 2) 자원 예약: 4비트, 3) MCS: 5비트, 4) CRC: 16비트 5) 재전송 인덱스(RETX_INDEX): 1비트, 6) 전송 개시와 재전송 간의 시간 갭(TGAP_INIRETX): 4비트, 7) 전송 개시와 재전송의 주파수 자원 위치(FRA_INRETX): 8비트, 8) 예약된 비트(RSV_BIT): 7비트가 설정될 수 있다.
DCI는 1) CIF: 3비트, 2) 전송 개시에 할당되는 서브 채널의 최저 인덱스(PSCCH_RA): 5비트, 3) (SA 컨텐츠로서) 전송 개시 및 재전송 간의 시간 갭: 4비트, 4) 전송 개시 및 재전송의 주파수 자원 위치(FRA_INRETX): 8비트를 포함할 수 있다.
[제안 방법#20] 일례로, 특정 (하나의) TB 전송을 위해서, 1 번의 PSSCH 전송이 설정(/시그널링)될 경우, (상기 설명한) FRA_INRETX 필드의 일부 정보 (예를 들어, “SECDATA_SUBST 관련 정보”)는 불필요하게 된다. (다시 말해서) 일례로, 해당 경우에 필요한 정보는 (오직) 첫번째 PSSCH 전송에 사용되는 서브채널 길이(/개수) 정보 (FDATA _ SUBLN)이다. 여기서, 일례로, (해당) 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트는 아래 (일부 혹은 모든) 규칙에 따라 정의될 수 있다.
(예시#20-1) 일례로, (A) (하나의 서브프레임 상에서) 최대 20 개의 서브채널들이 (V2V) 자원풀로 설정(/시그널링)될 수 있다고 가정할 때, FDATA_SUBLN 정보를 나타내기 위해서 필요한 비트 개수는 “5” 비트 (즉, “CEILING (LOG2(20)) = 5” (여기서, 일례로, CEILING (X)는 X 보다 크거나 같은 최소 정보값을 도출하는 함수임))가 되거나 그리고/혹은 (B) (하나의 서브프레임 상에서) K 개의 서브채널이 (V2V) 자원풀로 설정(/시그널링)되었다고 가정할 때, FDATA_SUBLN 정보를 나타내기 위해서 필요한 비트 개수는 “CEILING (LOG2(K))”가 될 수 있다. 여기서, 일례로, 특정 (하나의) TB 전송을 위해서, 2 번의 PSSCH 전송이 설정(/시그널링)된 경우, (필요한) FRA_INRETX 필드 크기를 “Q” 비트 (예를 들어, “Q = 8”)로 가정할 때, “(Q - 5)” (그리고/혹은 “(Q - CEILING (LOG2(K)))”)의 나머지 비트가 불필요 정보 관련 비트로 해석(/간주) 될 수 있다.
(예시#20-2) 일례로, 특정 (하나의) TB 전송을 위해서, 2 번의 PSSCH 전송이 설정(/시그널링)된 경우, (필요한) FRA_INRETX 필드 크기를 “Q” 비트로 가정할 때, (실제로 필요한) 특정 (하나의) FDATA_SUBLN (혹은 SFDATA_SUBLN) 값과 함께 지정될 수 있는 (사전에 설정(/시그널링)된) 복수 개의 (일부 혹은 모든) SECDATA_SUBST 값이 불필요 정보 관련 STATE (혹은 값)로 해석(/간주) 될 수 있다.
(예시#20-3) 일례로, 특정 (하나의) TB 전송을 위해서, 1 번의 PSSCH 전송이 설정(/시그널링)될 경우, V2X RX UE(S)는 TGAP_INIRETX 필드를 통해, (해당) V2X TX UE가 (특정 (하나의) TB에 대해서) 1 번 혹은 2 번의 PSSCH 전송을 수행할지를 파악할 수 있기 때문에, RETX_INDEX 관련 STATE (혹은 값)은 불필요 정보로 해석(/간주) 될 수 있다. 또 다른 일례로, 특정 (하나의) TB 전송을 위해서, 1 번의 PSSCH 전송이 설정(/시그널링)될 경우, RETX_INDEX 관련 값 (혹은 STATE)는 사전에 설정(/시그널링)된 (특정) 값 (혹은 STATE)으로 지정될 수 있다. 여기서, 일례로, (RETX_INDEX 관련) 해당 (특정) 값 (혹은 STATE)은 “VIRTUAL CRC” 용도로 사용될 수 있다.
(예시#20-4) 일례로, RSV_BIT 필드 관련 비트 (예를 들어, “7 비트”) 중에 사전에 설정(/시그널링)된 일부 비트가 불필요 정보 관련 비트 (혹은 값)로 해석(/간주) 될 수 있다.
일례로, 아래 (일부) 규칙에 따라, (상기 설명한) 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트를 랜덤화시킴으로써, 상이한 단말의 PSSCH 전송 자원이 (일부 혹은 모두) 겹칠 때 발생되는 PSSCH (DM-RS) SEQUENCE(/CS(/OCC) INDEX) COLLISION 문제를 완화 (예를 들어, (해당 동작을 통해) PSCCH CRC가 랜덤화되고, 이로 인해 (최종적으로) PSSCH (DM-RS) SEQUENCE(/CS(/OCC) INDEX 등이 랜덤화됨) 시킬 수 있다. 여기서, 일례로, 상기 설명한 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트 발생 경우 (예를 들어, 특정 (하나의) TB 전송을 위해서, 1 번의 PSSCH 전송이 설정(/시그널링)된 경우)는 하나의 예시일 뿐이며, 본 발명의 (일부 혹은 모든) 제안 방법은 (불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트가 발생되는) 다양한 경우 (예를 들어, (MODE1_DYN DCI FORMAT 그리고/혹은 MODE2_SCH SCI FORMAT의 경우) FRA_INRETX 크기가 (사전에 설정(/시그널링)된 (하나의 서브프레임 내에서) V2V 자원 풀을 구성하는 전체 서브채널의 개수 (K)에 따라) 변경됨으로써 발생되는 (추가적인) 여유분의 비트 (예를 들어, “(8 - CEILING (LOG2 (K(K+1)/2)) (FRA_INRETX 크기))” (그리고/혹은 ““(8 - CEILING (LOG2 (K(K+1)/2)) (FRA_INRETX 크기) - CEILING (LOG2 (K)) (PSCCH_RA 크기))”)) (그리고/혹은 사전에 정의(/시그널링)된 (타겟) 페이로드 크기 (예를 들어, MODE1_DYN DCI FORMAT, MODE2_SCH SCI FORMAT의 (타겟) 페이로드 크기는 각각 (기존) DCI FORMAT 0 패이로드 크기 (전술한 바를 참조), 48 비트 (전술한 바를 참조)가 될 수 있음)에서, FRA_INRETX 크기가 변경됨으로써 발생되는 (추가적인) 여유분의 비트)가 불필요 정보 관련 비트로 간주될 수 도 있음)에 확장 적용이 가능하다. 여기서, 일례로, 해당 (불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트의) 랜덤화 동작을 통해서, PSCCH의 16 비트 CRC (C0, C1,……, C15)가 랜덤화(/변경)되고, 최종적으로 PSSCH DM-RS CS(/SEQUENCE/OCC) (인덱스)도 랜덤화(/변경) (표 7 및/또는 표 8 참조)되게 된다. 여기서, 일례로, (A) (상기 설명한) (예시#20-3) 그리고/혹은 (B) (예시#20-4) 그리고/혹은 (C) FRA_INRETX 크기가 (사전에 설정(/시그널링)된 (하나의 서브프레임 내에서) V2V 자원 풀을 구성하는 전체 서브채널의 개수 (K)에 따라) 변경됨으로써 발생되는 (추가적인) 여유분의 비트에 아래 (일부) 규칙을 적용시키는 것은 V2V 자원 풀을 구성하는 전체 서브채널의 개수가 사전에 설정(/시그널링)된 값 (예를 들어, “1”) 이하로 지정된 경우 (예를 들어, FRA_INRETX 필드 크기가 작아져서 (예를 들어, “0”)가 되어 PSSCH DMRS(/PSCCH CRC) 랜덤화를 (해당 필드를 통해) 추가적으로 도출하기 어려운 상황으로 해석될 수 있음)로 한정될 수 도 있다.
(규칙#20-1) 일례로, 전송 단말로 하여금, (상기 설명한) 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트를 랜덤하게 선택한 값 (그리고/혹은 ((서빙) 기지국 (혹은 네트워크)부터) 사전에 설정(/시그널링)된 값)으로 지정하도록 할 수 있다. 여기서, 일례로, (상기 설명한) 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트 별 (예를 들어, (예시#20-1), (예시#20-2), (예시#20-3), (예시#20-4))로 이러한 규칙이 적용되는 조건이 상이하게 정의(/시그널링)될 수 도 있다. 여기서, 일례로, (V2X 통신을 위해) 자원풀로 설정(/시그널링)된 서브채널의 개수가 “1”인 경우 (그리고/혹은 특정 (하나의) TB 전송을 위해서, 1 번의 PSSCH 전송이 설정(/시그널링)된 경우)에는 (실제 사용되는) FRA_INRETX 크기가 “0”이 되므로, (예시#20-3) (예를 들어, RETX_INDEX 관련 STATE (혹은 값))의 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트에 상기 규칙이 적용되도록 하고, 그 외의 경우 (예를 들어, (V2X 통신을 위해) 자원풀로 설정(/시그널링)된 서브채널의 개수가 “1”이 아닌 (그리고/혹은 “1” 보다 큰) 경우 (그리고/혹은 특정 (하나의) TB 전송을 위해서, 1 번의 PSSCH 전송이 설정(/시그널링)된 경우))에는 (예시#20-2) (예를 들어, (실제로 필요한) 특정 (하나의) FDATA_SUBLN 값과 함께 지정될 수 있는 (사전에 설정(/시그널링)된) 복수 개의 (일부 혹은 모든) SECDATA_SUBST 값 (혹은 STATE))의 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트에 상기 규칙이 적용되도록 할 수 있다. 여기서, 일례로, (특정 (하나의) TB 전송을 위해서, 1 번의 PSSCH 전송이 수행되는 환경 하에서) (V2X 통신을 위해) 자원풀로 설정(/시그널링)된 서브채널의 개수에 상관없이 (예시#20-3) (예를 들어, RETX_INDEX 관련 STATE (혹은 값))의 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트에 상기 규칙이 적용되도록 하고, (V2X 통신을 위해) 자원풀로 설정(/시그널링)된 서브채널의 개수가 “1”이 아닌 (그리고/혹은 “1” 보다 큰) 경우에만 (예시#20-2) (예를 들어, (실제로 필요한) 특정 (하나의) FDATA_SUBLN 값과 함께 지정될 수 있는 (사전에 설정(/시그널링)된) 복수 개의 (일부 혹은 모든) SECDATA_SUBST 값 (혹은 STATE))의 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트에 상기 규칙이 적용되도록 할 수 도 있다.
(규칙#20-2) 일례로, 전송 단말로 하여금, (상기 설명한) 불필요 정보 관련 STATE (혹은 값) 그리고/혹은 비트를 (A) 전송 (혹은 (타겟) 수신) 단말 식별자 그리고/혹은 (B) 선택된 PSCCH CS 인덱스(/값) (예를 들어, “2 비트”) 등을 입력 파라미터로 가지는 사전에 정의된 (랜덤화(/홉핑)) 함수 기반의 도출(/계산)값에 의해 지정 (혹은 (C) 전송 (혹은 (타겟) 수신) 단말 식별자 그리고/혹은 (D) 선택된 PSCCH CS 인덱스(/값) (예를 들어, “2 비트”) 등에 의해 유도된 값으로 지정) 되도록 할 수 있다. 여기서, 일례로, (상기 설명한) 불필요 정보 관련 비트가 (예시#20-1) 형태로 정의된 경우, 만약 “(Q - 5)” (그리고/혹은 “(Q - CEILING (LOG2(K)))”) (예를 들어, “Q = 8”, “K = 20”)이 선택된 PSCCH CS 인덱스(/값)을 나타내는 비트 값 (PC_ SELCSBIT) (예를 들어, “2 비트”) 보다 크다면, (A) “(Q - 5)” (그리고/혹은 “(Q - CEILING (LOG2(K)))”) 비트 중에 PC_SELCSBIT 비트(/값) (혹은 PC_SELCSBIT 비트로 유도된 비트(/값))으로 지정되어야 하는 (비트) 위치가 사전에 설정(/시그널링)되거나 그리고/혹은 (B) “(Q - 5 - PC_SELCSBIT)” (그리고/혹은 “(Q - CEILING (LOG2(K)) - PC_SELCSBIT)”)의 나머지 비트 (예를 들어, “1” 비트)를 ZERO PADDING (혹은 사전에 설정(/시그널링)된 특정 값으로 지정) 하도록 할 수 있다.
일례로, 특정 (하나의) TB 전송을 위해서, 1 번의 PSSCH 전송이 설정(/시그널링)될 경우, (상기 설명한) FRA_INRETX 필드 크기를 (예외적으로) 줄이도록 할 수 도 있다 (예를 들어, “(Q - 5)”, “(Q - CEILING (LOG2(K)))”).
일례로, 특정 시점에서 전송되는 PSSCH 관련 (DM-RS) SEQUENCE(/CS(/OCC) INDEX 등의 파라미터 결정에 사용되는 PSCCH CRC는 (PSCCH와 (연동된) PSSCH가 “FDM” 형태로 전송될 경우) PSSCH와 동일 시점에서 전송되는 PSCCH CRC (그리고/혹은 PSSCH 전송을 위해 (반드시) 함께 전송되는 PSCCH CRC)로 정의될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 일례로, 본 발명에서는 설명의 편의를 위해 3GPP LTE 시스템을 기반으로 제안 방식을 설명하였지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다. 일례로, 본 발명의 제안 방식들은 D2D 통신을 위해서도 확장 적용 가능하다. 여기서, 일례로, D2D 통신은 UE가 다른 UE와 직접 무선 채널을 이용하여 통신하는 것을 의미하며, 여기서, 일례로 UE는 사용자의 단말을 의미하지만, 기지국과 같은 네트워크 장비가 UE 사이의 통신 방식에 따라서 신호를 송/수신하는 경우에는 역시 일종의 UE로 간주될 수 있다. 또한, 일례로, 본 발명의 제안 방식들은 MODE 2 V2X 동작 (그리고/혹은 MODE 1 V2X 동작)에만 한정적으로 적용될 수 도 있다. 또한, 일례로, 본 발명의 제안 방식들은 ((사전에 정의(/시그널링)된 조건이 만족됨에 따라) '(전송) 자원 (재)선택 동작'이 트리거링되고) '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 존재하는 경우 (혹은 패킷(/메시지)이 생성된 경우) (혹은 '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 존재하지 않는 경우 (혹은 패킷(/메시지)이 생성되지 않은 경우))에만 한정적으로 적용될 수 도 있다. 또한, 일례로, 본 발명의 제안 방식들은 PSCCH와 (연동된) PSSCH가 동일 서브프레임 상의 인접 RB(S)에 위치하지 않는 (혹은 위치하는) 경우에만 한정적으로 적용될 수 도 있다. 또한, 일례로, 본 발명의 제안 방식들은 V2V MODE 1(/MODE 2) DYNAMIC SCHEDULING 동작뿐만 아니라 V2V MODE 1(/MODE 2) SEMI-PERSISTENT SCHEDULING (SPS) 동작 (그리고/혹은 V2X MODE 1(/MODE 2) DYNAMIC SCHEDULING 동작 그리고/혹은 V2X MODE 1(/MODE 2) SPS 동작)에서도 확장 적용이 가능하다. 또한, 일례로, 본 발명에서 “전송 자원 선택” 워딩은 “전송 자원 (재)예약”으로 (확장) 해석될 수 도 있다.
도 39는 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 39를 참조하면, 단말(1100)은 프로세서(1110), 메모리(1120) 및 RF부(radio frequency unit, 1130)을 포함한다.
일 실시예에 따르면, 프로세서(1110)는 본 발명이 설명하는 기능/동작/방법을 실시할 수 있다. 예를 들어, 프로세서(1110)는 단말 특정적인 센싱 구간 동안 센싱을 수행하여, V2X 통신을 수행할 자원을 선택하고, 및 선택된 상기 자원에 기초하여 V2X 통신을 수행할 수 있다.
예를 들어, 프로세서(1110)는 레이턴시 요구를 만족시키는 범위 내에서 V2X 통신을 수행할 자원을 선택하고 및 선택된 상기 자원에 기초하여 V2X 통신을 수행할 수 있다.
예를 들어, 프로세서(1110)는 V2X 메시지 전송에 사용되는 서브 채널의 크기에 대응되는 크기의 서브 채널 단위로 센싱을 수행하여 상기 V2X 메시지 전송을 수행할 자원을 선택하고 및 선택된 상기 자원에 기초하여 상기 V2X 메시지 전송을 수행할 수 있다.
예를 들어, 프로세서(1110)는 V2X 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하고 및 예약된 상기 유한한 개수의 자원 상에서 상기 V2X 통신을 수행할 수 있다.
예를 들어, 프로세서(1110)는 자원 재 선택 조건이 만족되는지 여부를 결정하고, 상기 자원 재 선택 조건이 만족되는 경우, V2X(Vehicle-to-X) 통신이 수행되는 자원에 대한 재 선택을 수행하고 및 선택된 상기 자원에 기초하여 상기 V2X 통신을 수행할 수 있다.
예를 들어, 프로세서(1110)는 센싱 구간 동안 전송이 수행된 서브프레임에 관련된 서브프레임을 제외한 서브프레임을 선택 구간에서 선택하고 및 선택된 상기 서브프레임에 기초하여 V2X 통신을 수행할 수 있다.
예를 들어, 프로세서(1110)는 특정 서브프레임을 제외한 나머지 서브프레임에 대해 V2X 자원 풀을 할당하고 및 할당된 V2X 자원 풀 상에서 V2X 통신을 수행할 수 있다.
RF부(1130)은 프로세서(1110)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.

Claims (13)

  1. 무선 통신 시스템에서 V2X(Vehicle-to-X) 단말에 의해 수행되는 V2X 동작 방법에 있어서,
    V2X 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하고; 및
    예약된 상기 유한한 개수의 자원 상에서 상기 V2X 통신을 수행하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 유한한 개수는 상기 V2X 단말이 임의적으로 선택한 카운터 값에 비례하고,
    상기 카운터 값은 양의 정수를 가지는 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 카운터 값은 5 이상의 값을 가지고,
    상기 카운터 값은 15 이하의 값을 가지는 것을 특징으로 하는 방법.
  4. 제3항에 있어서,
    상기 유한한 개수는 상기 V2X 단말이 임의적으로 선택한 카운터 값의 10배의 값을 가지는 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 V2X 단말은 예약된 상기 자원이 더 이상 남아있지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행하는 것을 특징으로 하는 방법.
  6. 제1항에 있어서,
    상기 V2X 단말이 1초 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행하는 것을 특징으로 하는 방법.
  7. 제1항에 있어서,
    상기 V2X 단말이 기 설정된 개수의 전송 기회 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서의 자원 재 선택을 수행하는 것을 특징으로 하는 방법.
  8. 무선 통신 시스템에서 V2X(Vehicle-to-X) 단말에 의해 수행되는 V2X 동작 방법에 있어서,
    자원 재 선택 조건이 만족되는지 여부를 결정하고;
    상기 자원 재 선택 조건이 만족되는 경우, V2X(Vehicle-to-X) 통신이 수행되는 자원에 대한 재 선택을 수행하고; 및
    선택된 상기 자원에 기초하여 상기 V2X 통신을 수행하는 것을 특징으로 하는 방법.
  9. 제8항에 있어서,
    상기 V2X 단말은 예약된 상기 자원이 더 이상 남아있지 않은 경우, 선택 윈도우에서 자원 재 선택을 수행하는 것을 특징으로 하는 방법.
  10. 제8항에 있어서,
    상기 V2X 단말이 1초 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서 자원 재 선택을 수행하는 것을 특징으로 하는 방법.
  11. 제8항에 있어서,
    상기 V2X 단말이 기 설정된 개수의 전송 기회 동안 연속적으로 V2X 전송을 수행하지 않은 경우, 선택 윈도우에서 자원 재 선택을 수행하는 것을 특징으로 하는 방법.
  12. 제11항에 있어서,
    상기 기 설정된 개수는 1 내지 9의 값을 가지는 것을 특징으로 하는 방법.
  13. 단말(User equipment; UE)은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서; 를 포함하되, 상기 프로세서는,
    V2X(Vehicle-to-X) 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하고, 및
    예약된 상기 유한한 개수의 자원 상에서 상기 V2X 통신을 수행하는 것을 특징으로 하는 단말.
PCT/KR2017/003843 2016-04-07 2017-04-07 무선 통신 시스템에서 v2x 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하는 방법 및 상기 방법을 이용하는 단말 WO2017176096A1 (ko)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2019513780A JP6820407B2 (ja) 2016-09-10 2017-04-07 無線通信システムでv2x通信が行われる有限な個数のリソースに対する予約を行う方法およびその方法を利用する端末
CA3036351A CA3036351C (en) 2016-04-07 2017-04-07 Method for reserving finite number of resources used for performing v2x communication in wireless communication system, and terminal using same
CN201780055658.4A CN109792640B (zh) 2016-09-10 2017-04-07 在无线通信系统中预留用于执行v2x通信的有限数量资源的方法和使用该方法的终端
SG11201901833YA SG11201901833YA (en) 2016-09-10 2017-04-07 Method for reserving finite number of resources used for performing v2x communication in wireless communication system, and terminal using same
EP17779396.5A EP3512246B1 (en) 2016-09-10 2017-04-07 Method for reserving finite number of resources used for performing v2x communication in wireless communication system, and terminal using same
BR112019004649A BR112019004649A2 (pt) 2016-09-10 2017-04-07 método para reservar um número finito de recursos usados para realizar comunicação de v2x em um sistema de comunicação sem fio e terminal que utiliza o mesmo
KR1020187037553A KR102139642B1 (ko) 2016-09-10 2017-04-07 무선 통신 시스템에서 v2x 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하는 방법 및 상기 방법을 이용하는 단말
AU2017248062A AU2017248062A1 (en) 2016-09-10 2017-04-07 Method for reserving finite number of resources used for performing V2X communication in wireless communication system, and terminal using same
RU2019110454A RU2721010C1 (ru) 2016-09-10 2017-04-07 Способ для резервирования конечного числа ресурсов, используемых для выполнения v2х-связи в системе беспроводной связи, и терминал, использующий его
MX2019002663A MX2019002663A (es) 2016-09-10 2017-04-07 Metodo para reservar numero finito de recursos usados para realizar comunicacion de v2x en el sistema de comunicacion inalambrica y terminal que usa el mismo.
US16/283,167 US10694347B2 (en) 2016-09-10 2019-02-22 Method for reserving finite number of resources used for performing V2X communication in wireless communication system, and terminal using same
PH12019500472A PH12019500472A1 (en) 2016-09-10 2019-03-04 Method for reserving finite number of resources used for performing v2x communication in wireless communication system, and terminal using same
US16/787,776 US11240646B2 (en) 2016-09-10 2020-02-11 Method for reserving finite number of resources used for performing V2X communication in wireless communication system, and terminal using same

Applications Claiming Priority (52)

Application Number Priority Date Filing Date Title
US201662319733P 2016-04-07 2016-04-07
US62/319,733 2016-04-07
US201662334444P 2016-05-10 2016-05-10
US62/334,444 2016-05-10
US201662335656P 2016-05-12 2016-05-12
US62/335,656 2016-05-12
US201662341686P 2016-05-26 2016-05-26
US62/341,686 2016-05-26
US201662345789P 2016-06-05 2016-06-05
US62/345,789 2016-06-05
US201662348127P 2016-06-09 2016-06-09
US62/348,127 2016-06-09
US201662376373P 2016-08-17 2016-08-17
US62/376,373 2016-08-17
US201662378745P 2016-08-24 2016-08-24
US201662379225P 2016-08-24 2016-08-24
US62/378,745 2016-08-24
US62/379,225 2016-08-24
US201662379263P 2016-08-25 2016-08-25
US62/379,263 2016-08-25
US201662381593P 2016-08-31 2016-08-31
US62/381,593 2016-08-31
US201662382307P 2016-09-01 2016-09-01
US201662382743P 2016-09-01 2016-09-01
US62/382,743 2016-09-01
US62/382,307 2016-09-01
US201662384185P 2016-09-06 2016-09-06
US62/384,185 2016-09-06
US201662385967P 2016-09-10 2016-09-10
US201662385962P 2016-09-10 2016-09-10
US62/385,962 2016-09-10
US62/385,967 2016-09-10
US201662393158P 2016-09-12 2016-09-12
US62/393,158 2016-09-12
US201662400620P 2016-09-27 2016-09-27
US62/400,620 2016-09-27
US201662400683P 2016-09-28 2016-09-28
US62/400,683 2016-09-28
US201662401188P 2016-09-29 2016-09-29
US62/401,188 2016-09-29
US201662403048P 2016-09-30 2016-09-30
US62/403,048 2016-09-30
US201662403673P 2016-10-03 2016-10-03
US62/403,673 2016-10-03
US201662406373P 2016-10-10 2016-10-10
US62/406,373 2016-10-10
US201662406468P 2016-10-11 2016-10-11
US62/406,468 2016-10-11
US201662421401P 2016-11-14 2016-11-14
US62/421,401 2016-11-14
US201762475234P 2017-03-23 2017-03-23
US62/475,234 2017-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/283,167 Continuation US10694347B2 (en) 2016-09-10 2019-02-22 Method for reserving finite number of resources used for performing V2X communication in wireless communication system, and terminal using same

Publications (1)

Publication Number Publication Date
WO2017176096A1 true WO2017176096A1 (ko) 2017-10-12

Family

ID=60000616

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/KR2017/003845 WO2017176098A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 레이턴시 요구를 만족시키는 범위 내에서 v2x 통신을 수행할 자원을 선택하는 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/003842 WO2017176095A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 단말 특정적인 센싱 구간 동안 센싱을 수행하는 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/003846 WO2017176099A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 특정 서브프레임을 제외한 나머지 서브프레임에 대해 v2x 자원 풀을 할당하는 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/003844 WO2017176097A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 센싱 구간 동안 전송이 수행된 서브프레임에 관련된 서브프레임을 제외한 서브프레임을 선택 구간에서 선택하는 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/003843 WO2017176096A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 v2x 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하는 방법 및 상기 방법을 이용하는 단말

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/KR2017/003845 WO2017176098A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 레이턴시 요구를 만족시키는 범위 내에서 v2x 통신을 수행할 자원을 선택하는 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/003842 WO2017176095A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 단말 특정적인 센싱 구간 동안 센싱을 수행하는 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/003846 WO2017176099A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 특정 서브프레임을 제외한 나머지 서브프레임에 대해 v2x 자원 풀을 할당하는 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/003844 WO2017176097A1 (ko) 2016-04-07 2017-04-07 무선 통신 시스템에서 센싱 구간 동안 전송이 수행된 서브프레임에 관련된 서브프레임을 제외한 서브프레임을 선택 구간에서 선택하는 방법 및 상기 방법을 이용하는 단말

Country Status (2)

Country Link
CA (1) CA3036351C (ko)
WO (5) WO2017176098A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151803A1 (ko) * 2018-01-31 2019-08-08 엘지전자 주식회사 무선 통신 시스템에서 단말의 신호 전송 방법 및 상기 방법을 이용하는 장치
WO2020060304A1 (ko) * 2018-09-20 2020-03-26 엘지전자 주식회사 무선통신시스템에서 단말이 사이드 링크 신호를 전송하는 방법 및 장치
WO2020063578A1 (zh) * 2018-09-28 2020-04-02 北京展讯高科通信技术有限公司 传输资源配置选择方法、装置及终端
WO2020067713A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 무선 통신 시스템에서 신호를 전송하는 방법 및 단말
US10694347B2 (en) 2016-09-10 2020-06-23 Lg Electronics Inc. Method for reserving finite number of resources used for performing V2X communication in wireless communication system, and terminal using same
WO2020171280A1 (ko) * 2019-02-20 2020-08-27 에티포스 시오 이동 통신 시스템에서의 무선 자원 할당 방법
RU2742794C1 (ru) * 2017-11-03 2021-02-10 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ определения параметра передачи, оконечное устройство и сетевое устройство

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019090522A1 (zh) * 2017-11-08 2019-05-16 Oppo广东移动通信有限公司 D2d通信中资源配置的方法、终端设备和网络设备
EP3487236A1 (en) * 2017-11-16 2019-05-22 Industrial Technology Research Institute User equipment and resource sensing and selection method thereof
US11057854B2 (en) * 2017-11-17 2021-07-06 Qualcomm Incorporated Synchronization for V2X carrier aggregation
US10924245B2 (en) * 2017-12-06 2021-02-16 Qualcomm Incorporated DMRS design for SPS assigned traffic
CN110139376B (zh) 2018-02-08 2021-11-02 中兴通讯股份有限公司 载波集合的确定方法、装置、存储介质及电子装置
WO2019157739A1 (en) * 2018-02-14 2019-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of wireless communication of same
US11601915B2 (en) 2018-06-11 2023-03-07 Lg Electronics Inc. V2X communication apparatus and multi-channel transmission method thereof
US10764918B2 (en) 2018-06-11 2020-09-01 At&T Intellectual Property I, L.P. Wireless communication framework for multiple user equipment
WO2020022845A1 (ko) * 2018-07-26 2020-01-30 엘지전자 주식회사 무선통신시스템에서 사이드 링크 단말이 신호를 전송하는 방법 및 장치
CN112425233A (zh) * 2018-08-01 2021-02-26 松下电器(美国)知识产权公司 用户设备和通信方法
US11595858B2 (en) 2018-08-08 2023-02-28 Lg Electronics Inc. Method and apparatus for performing resource reservation in NR V2X
WO2020032658A1 (ko) * 2018-08-08 2020-02-13 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 사이드링크 신호를 전송하는 방법 및 이를 위한 장치
CN110830951A (zh) * 2018-08-09 2020-02-21 华为技术有限公司 配置侧行链路传输资源的方法和装置
US20210314919A1 (en) * 2018-08-10 2021-10-07 Lg Electronics Inc. Method for v2x operation based on restructuring of plurality of resources in wireless communication system and terminal using same
US10951362B2 (en) 2018-08-10 2021-03-16 At&T Intellectual Property I, L.P. Hybrid automatic repeat request and scheduling for wireless cellular systems with local traffic managers
WO2020029225A1 (zh) * 2018-08-10 2020-02-13 Oppo广东移动通信有限公司 侧行信道配置方法、终端设备和网络设备
WO2020032766A1 (ko) * 2018-08-10 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 비주기적 신호를 전송하는 방법 및 단말
US11689903B2 (en) 2018-08-17 2023-06-27 Nec Corporation System and method for vehicular data communication
US11234251B2 (en) 2018-08-17 2022-01-25 At&T Intellectual Property I, L.P. Generic control channel configuration for new radio sidelink
CN112673698B (zh) 2018-09-14 2023-11-28 富士通株式会社 终端、无线通信系统和基站
WO2020067842A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
WO2020063908A1 (en) * 2018-09-28 2020-04-02 Mediatek Inc. Method and apparatus of sidelink resource allocation for v2x in new radio mobile communications
WO2020085522A1 (ko) * 2018-10-23 2020-04-30 엘지전자 주식회사 V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법
US11930513B2 (en) 2018-10-25 2024-03-12 Lg Electronics Inc. Resource selection method of sidelink terminal in wireless communication system, and terminal using method
JP7018137B2 (ja) 2018-10-25 2022-02-09 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるサイドリンクharqフィードバックと関連した情報に基づいてリソース選択ウィンドウを決定する方法及び装置
WO2020091346A1 (ko) * 2018-10-28 2020-05-07 엘지전자 주식회사 무선통신시스템에서 단말이 pssch를 전송하는 방법 및 장치
WO2020091458A1 (ko) * 2018-11-01 2020-05-07 주식회사 아이티엘 무선통신 시스템에서 전송 캐리어를 선택/재선택하는 방법 및 장치
US11956782B2 (en) 2018-11-02 2024-04-09 Apple Inc. Resource allocation and processing behaviors for NR V2X sidelink communications
US11115959B2 (en) * 2018-11-20 2021-09-07 Qualcomm Incorporated Resource exclusion for device to device communication
US11178693B2 (en) 2018-12-14 2021-11-16 Apple Inc. V2X side-link resource management
US11039422B2 (en) 2019-01-11 2021-06-15 At&T Intellectual Property I, L.P. Load manager performance management for 5G or other next generation network
WO2020146634A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Sidelink procedures and structures for transmission and reception of non-standalone and standalone physical sidelink shared channel
TWI748323B (zh) * 2019-01-11 2021-12-01 聯發科技股份有限公司 新無線電車聯網行動通訊中存在帶內發射時之資源配置技術
US20200359375A1 (en) * 2019-01-22 2020-11-12 Lg Electronics Inc. Method for determining slot in which psfch is transmitted in wireless communication system
WO2020153820A1 (ko) * 2019-01-23 2020-07-30 엘지전자 주식회사 Nr v2x의 사이드링크 제어 정보 포맷
KR20210130228A (ko) * 2019-03-04 2021-10-29 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 채널을 측정하는 방법 및 장치
KR20210133260A (ko) * 2019-03-27 2021-11-05 삼성전자주식회사 무선 통신 시스템에서 차량 통신을 지원하기 위한 방법 및 장치
WO2020204485A1 (ko) * 2019-03-29 2020-10-08 주식회사 아이티엘 무선통신 시스템에서 자원 풀 구성 방법 및 장치
CN111757345A (zh) * 2019-03-29 2020-10-09 北京大唐高鸿数据网络技术有限公司 一种信息传输方法及终端
KR20200116303A (ko) * 2019-04-01 2020-10-12 삼성전자주식회사 통신 시스템에서 신호 송수신 방법 및 장치
US20220174646A1 (en) * 2019-04-08 2022-06-02 Lg Electronics Inc. Method and device for performing sidelink communication
SG10201903473SA (en) * 2019-04-17 2020-11-27 Panasonic Ip Corp America Communication apparatuses and communication methods for soft-segregation of resource pool for v2x communication apparatuses
CN113875295B (zh) * 2019-04-28 2023-07-07 Lg电子株式会社 用于控制nr v2x中的副链路发送功率的方法和装置
CN112399487B (zh) * 2019-08-13 2022-11-08 北京华为数字技术有限公司 一种通信方法、装置及计算机可读存储介质
WO2021034166A1 (ko) * 2019-08-22 2021-02-25 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 디스커버리 절차를 수행하는 방법 및 이를 위한 장치
US20220287009A1 (en) * 2019-08-23 2022-09-08 Lg Electronics Inc. Method and apparatus for performing resource pool-based sidelink communication in nr v2x
KR20220052318A (ko) * 2019-08-28 2022-04-27 엘지전자 주식회사 Nr v2x에서 sci를 전송하는 방법 및 장치
WO2021040437A1 (ko) * 2019-08-29 2021-03-04 엘지전자 주식회사 Nr v2x에서 사이드링크와 관련된 자원을 선택하는 방법 및 장치
US20220295305A1 (en) * 2019-09-06 2022-09-15 Lg Electronics Inc. Resource assignment method for sidelink
KR20210086225A (ko) * 2019-12-31 2021-07-08 주식회사 아이티엘 무선 통신 시스템에서 사이드링크 주파수 자원 선택 방법 및 장치
KR20210090392A (ko) * 2020-01-10 2021-07-20 주식회사 아이티엘 무선 통신 시스템에서 사이드링크 주파수 자원 선택 방법 및 장치
CN113271668B (zh) * 2020-02-14 2023-06-30 中信科智联科技有限公司 一种资源指示方法及终端
ES2931326T3 (es) 2020-03-17 2022-12-28 Asustek Comp Inc Procedimiento y aparato para la selección de recursos de enlace lateral de dispositivo a dispositivo en un sistema de comunicación inalámbrica
EP4050950B1 (en) * 2020-04-02 2024-05-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource exclusion method and apparatus, and device and storage medium
KR20230152158A (ko) * 2020-04-06 2023-11-02 엘지전자 주식회사 사이드링크 통신
CN111934835A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 一种资源选择、指示方法、装置、终端和存储介质
WO2022065956A1 (ko) * 2020-09-25 2022-03-31 엘지전자 주식회사 Sl drx를 위한 채널 센싱 및 자원 할당 방법 및 장치
EP4221386A1 (en) * 2020-09-25 2023-08-02 LG Electronics Inc. Operation method and device using non-activation period of sl drx configuration in nr v2x
EP4224923A4 (en) * 2020-10-16 2023-11-01 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR DETERMINING SIDELINK TRANSMISSION RESOURCES
WO2022087205A1 (en) * 2020-10-21 2022-04-28 Ofinno, Llc Conditions for skipping resource evaluation for sidelink
EP4311353A1 (en) * 2021-03-16 2024-01-24 LG Electronics Inc. Method for transmitting and receiving pssch in wireless communication system, and device therefor
CN115190612A (zh) * 2021-04-06 2022-10-14 华为技术有限公司 一种处理资源重叠的方法及装置
US20230254819A1 (en) * 2022-02-04 2023-08-10 Samsung Electronics Co., Ltd. Method and apparatus for (re)selection of candidate carriers for transmission in sl ca

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015142082A1 (en) * 2014-03-19 2015-09-24 Lg Electronics Inc. Method and apparatus for configuring buffer status report for public safety transmission or vehicle-related transmission in wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005015971D1 (de) * 2005-09-13 2009-09-24 Ntt Docomo Inc Dynamische Unterkanalzuweisung in einem OFDM/TDMA TDD Kommunikationssystem
AU2013320766B2 (en) * 2012-09-26 2015-12-24 Lg Electronics Inc. Method and apparatus for sub-channel selective access in wireless LAN system
US9769796B2 (en) * 2013-10-08 2017-09-19 Microsoft Technology Licensing, Llc Radio channel utilization
US10091828B2 (en) * 2013-11-08 2018-10-02 Lg Electronics Inc. Method for transmitting signal using direct communication between terminals in wireless communication system and device therefor
US10057076B2 (en) * 2014-05-19 2018-08-21 Futurewei Technologies, Inc. System and method for device-to-device communication
WO2016018009A1 (ko) * 2014-08-01 2016-02-04 삼성전자 주식회사 D2d 통신에서 단말의 송신 전력 제어 방법 및 장치
US10225810B2 (en) * 2014-08-06 2019-03-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving synchronization signal in device-to-device communication system
WO2016021942A1 (en) * 2014-08-06 2016-02-11 Samsung Electronics Co., Ltd. Signal transmission/reception method and apparatus of d2d terminal
US9894651B2 (en) * 2014-08-08 2018-02-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource allocation for D2D communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015142082A1 (en) * 2014-03-19 2015-09-24 Lg Electronics Inc. Method and apparatus for configuring buffer status report for public safety transmission or vehicle-related transmission in wireless communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Distributed Resource Allocation for V2X over PC5", R1 -161070, 3GPP TSG RAN WG1 MEETING #84, 5 February 2016 (2016-02-05), St. Julian's, Malta, XP051063994, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs> *
LENOVO: "Mechanisms for V2V Resource Allocation", R1-161014, 3GPP TSG RAN WG1 MEETING #84, 6 February 2016 (2016-02-06), St. Julian's, Malta, XP051054318, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs> *
LG ELECTRONICS: "Discussion on UE Autonomous Resource Allocation Mechanism for PC5-based V2V", R1 - 160634, 3GPP TSG RAN WG1 MEETING 1184, 6 February 2016 (2016-02-06), St. Julian's, Malta, XP051064271, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs> *
LG ELECTRONICS: "Summary of V2V Offline Summary", R1-161405, 3GPP TSG RAN WG1 MEETING #84, 24 February 2016 (2016-02-24), St. Julian's, Malta, XP051079327, Retrieved from the Internet <URL:http://www.3gpp.org/flp/tsg_ran/WG1_RL1/TSGR1_84/Docs> *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10785618B2 (en) 2016-09-10 2020-09-22 Lg Electronics Inc. Method for allocating V2X resource pool to subframe remaining after excluding specific subframe in wireless communication system, and terminal using same
US11564072B2 (en) 2016-09-10 2023-01-24 Lg Electronics Inc. Method for selecting, in selection period, subframe excluding subframe relating to subframe in which transmission has been performed during sensing period in wireless communication system, and terminal using same
US11240646B2 (en) 2016-09-10 2022-02-01 Lg Electronics Inc. Method for reserving finite number of resources used for performing V2X communication in wireless communication system, and terminal using same
US10993095B2 (en) 2016-09-10 2021-04-27 Lg Electronics Inc. Method for selecting, in selection period, subframe excluding subframe relating to subframe in which transmission has been performed during sensing period in wireless communication system, and terminal using same
US10993092B2 (en) 2016-09-10 2021-04-27 Lg Electronics Inc. Method for selecting, in selection period, subframe excluding subframe relating to subframe in which transmission has been performed during sensing period in wireless communication system, and terminal using same
US10694347B2 (en) 2016-09-10 2020-06-23 Lg Electronics Inc. Method for reserving finite number of resources used for performing V2X communication in wireless communication system, and terminal using same
US10805776B2 (en) 2016-09-10 2020-10-13 Lg Electronics Inc. Method for allocating V2X resource pool to subframe remaining after excluding specific subframe in wireless communication system, and terminal using same
US11108492B2 (en) 2017-11-03 2021-08-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Transmission parameter determination method, terminal device and network device
RU2742794C1 (ru) * 2017-11-03 2021-02-10 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ определения параметра передачи, оконечное устройство и сетевое устройство
US11646815B2 (en) 2017-11-03 2023-05-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Transmission parameter determination method, terminal device and network device
WO2019151803A1 (ko) * 2018-01-31 2019-08-08 엘지전자 주식회사 무선 통신 시스템에서 단말의 신호 전송 방법 및 상기 방법을 이용하는 장치
US11323233B2 (en) 2018-01-31 2022-05-03 Lg Electronics Inc. Method for transmitting signal by terminal in wireless communication system, and device using method
WO2020060304A1 (ko) * 2018-09-20 2020-03-26 엘지전자 주식회사 무선통신시스템에서 단말이 사이드 링크 신호를 전송하는 방법 및 장치
CN110972273A (zh) * 2018-09-28 2020-04-07 北京展讯高科通信技术有限公司 传输资源配置选择方法、装置及终端
WO2020067713A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 무선 통신 시스템에서 신호를 전송하는 방법 및 단말
WO2020063578A1 (zh) * 2018-09-28 2020-04-02 北京展讯高科通信技术有限公司 传输资源配置选择方法、装置及终端
CN110972273B (zh) * 2018-09-28 2022-03-25 北京紫光展锐通信技术有限公司 传输资源配置选择方法、装置及终端
WO2020171280A1 (ko) * 2019-02-20 2020-08-27 에티포스 시오 이동 통신 시스템에서의 무선 자원 할당 방법

Also Published As

Publication number Publication date
WO2017176099A1 (ko) 2017-10-12
WO2017176097A1 (ko) 2017-10-12
CA3036351A1 (en) 2017-10-12
CA3036351C (en) 2022-08-09
WO2017176095A1 (ko) 2017-10-12
WO2017176098A1 (ko) 2017-10-12

Similar Documents

Publication Publication Date Title
WO2017176096A1 (ko) 무선 통신 시스템에서 v2x 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하는 방법 및 상기 방법을 이용하는 단말
WO2019066629A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말
WO2018004323A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2020222532A1 (ko) 사이드링크 통신에서 채널 상태 측정 및 보고 방법 및 장치
WO2020222575A1 (en) Method and apparatus for transmission and reception of sidelink feedback in wireless communication system
WO2017150956A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2020017939A1 (en) Method and apparatus for nr v2x resource selection
WO2018062957A1 (ko) Rrc 비활성화 또는 활성화 상태에서 데이터 전송 방법 및 장치
WO2020032580A1 (ko) 무선 통신 시스템에서 노드의 동작 방법 및 상기 방법을 이용하는 장치
WO2021002714A1 (en) Method of random access procedure for supporting large random access response (rar) window size
WO2020022781A1 (en) Method and apparatus for network controlled resource allocation in nr v2x
WO2018084524A1 (ko) 무선 통신 시스템에서 사이드링크 전송을 수행하기 위한 방법 및 이를 위한 장치
WO2017135726A1 (ko) 이동 통신 시스템에서 통신 방법 및 장치
WO2016021902A1 (ko) 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
WO2014178671A1 (en) Methods and apparatus for device-to-device communications system
WO2017159886A1 (ko) 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치
WO2021162397A1 (ko) 무선 통신 시스템에서 단말간 통신을 위한 센싱 대상 자원 결정 방법 및 장치
WO2022015028A1 (en) Method and apparatus for handling small data transmission in rrc_inactive state in a wireless communication system
WO2021145591A1 (en) Apparatus and method of random access procedure
WO2023043283A1 (ko) 무선 통신 시스템에서 단말간 조정 정보의 송수신 방법 및 그 장치
WO2023022576A1 (ko) 무선 통신 시스템에서 단말간 조정 정보의 송수신 방법 및 그 장치
WO2023211157A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 장치
WO2023211153A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 장치
WO2023211156A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 장치
WO2023211155A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 62/379,225

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/379,263

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/378,745

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/341,686

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/382,743

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/382,307

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/335,656

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/381,593

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/348,127

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/376,373

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/334,444

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/475,234

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/384,185

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/319,733

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 62/345,789

Country of ref document: US

Date of ref document: 20180725

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037553

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3036351

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019513780

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004649

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017779396

Country of ref document: EP

Effective date: 20190410

ENP Entry into the national phase

Ref document number: 2017248062

Country of ref document: AU

Date of ref document: 20170407

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019004649

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190308