WO2017159886A1 - 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017159886A1
WO2017159886A1 PCT/KR2016/002522 KR2016002522W WO2017159886A1 WO 2017159886 A1 WO2017159886 A1 WO 2017159886A1 KR 2016002522 W KR2016002522 W KR 2016002522W WO 2017159886 A1 WO2017159886 A1 WO 2017159886A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmitted
base station
signal
urgent
Prior art date
Application number
PCT/KR2016/002522
Other languages
English (en)
French (fr)
Inventor
이은종
조희정
한진백
변일무
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US16/085,545 priority Critical patent/US11076419B2/en
Priority to PCT/KR2016/002522 priority patent/WO2017159886A1/ko
Publication of WO2017159886A1 publication Critical patent/WO2017159886A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0838Random access procedures, e.g. with 4-step access using contention-free random access [CFRA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method for a terminal to transmit uplink data to a base station and an apparatus supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • the object of the present disclosure is to provide a method for faster transmission of information or a message on an emergency situation by canceling or delaying transmission of lower priority data.
  • an object of the present disclosure is to provide a method of defining the emergency signal in advance for each event or for each terminal so that the base station can quickly know what event has occurred only by detecting the emergency signal.
  • an object of the present disclosure is to provide a method for defining a time point for transmitting an emergency message including detailed information on an emergency situation in order to increase the efficiency of a limited uplink resource.
  • a method for transmitting and receiving data in a wireless communication system receiving an urgent signal (urgent signal) informing the occurrence of an event related to an emergency situation from the terminal, to at least one terminal included in the cell
  • An indicator indicating a channel on which a response signal for informing the occurrence of the event is transmitted is transmitted, and the response signal is transmitted to the at least one terminal, wherein the response signal is transmitted through a downlink control channel or a downlink data channel.
  • the present invention when the response signal is transmitted through the downlink control channel, and transmits the system information to the at least one terminal, the system information is a resource in which the response signal is transmitted in the downlink control channel It includes area information and the indicator.
  • the resource region is located in one symbol of the first to third orthogonal frequency division multiplexing (OFDM) symbols of the subframe.
  • OFDM orthogonal frequency division multiplexing
  • the resource region is located behind a physical control format indication channel (PCFICH) or a physical hybrid-ARQ indicator channel (PHICH) of the downlink control channel.
  • PCFICH physical control format indication channel
  • PHICH physical hybrid-ARQ indicator channel
  • the response signal is transmitted through an ON / OFF keying method or a common search space.
  • the spreading is repeated three times.
  • the present invention also transmits information related to the event to the at least one terminal through a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • the response signal when the response signal is transmitted through the downlink data channel, the response signal is transmitted in the RRC message.
  • the RRC message is transmitted in any one of a broadcast, unicast or multicast transmission scheme.
  • the RRC message when the RRC message is transmitted in either unicast or multicast transmission scheme, the RRC message is transmitted through a specific Radio Network Temporary Identifier (RNTI) for transmitting the response signal .
  • RNTI Radio Network Temporary Identifier
  • the communication unit for transmitting and receiving a wireless signal with the outside; And a processor that is functionally coupled to the communication unit, wherein the processor receives an urgent signal from the terminal informing of occurrence of an event related to an emergency, and includes at least one of a cell included in the cell.
  • An indicator indicating a channel on which a response signal for informing the occurrence of the event is transmitted to the terminal, and transmits the response signal to the at least one terminal, the response signal through a downlink control channel or a downlink data channel Provides a base station to be transmitted.
  • the terminal detecting the emergency situation can not only quickly notify the base station of the situation but also have an effect of monopolizing uplink resources more quickly than the prior art.
  • This fast uplink resource monopoly of an emergency terminal transmits an emergency message to a base station more securely and without error (so that a single SF resource can be secured so that a strong message can be generated and transmitted). By making this possible, it is possible to ensure not only transmission latency but also reliability of transmission.
  • the uplink data transmission of the UE in which a delay of 1 ms has occurred from 17.5 ms, is reduced from 7 ms to 5 ms at maximum.
  • E-UTRAN evolved universal terrestrial radio access network
  • FIG. 2 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP LTE / LTE-A system to which the present invention can be applied and a general signal transmission method using the same.
  • FIG. 4 shows a structure of a radio frame in 3GPP LTE / LTE-A to which the present invention can be applied.
  • FIG. 5 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 6 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 7 is a diagram illustrating a resource unit used for configuring a downlink control channel in an LTE system.
  • FIG 8 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 9 is a diagram illustrating a MAC PDU used in a MAC entity in a wireless communication system to which the present invention can be applied.
  • FIGS. 10 and 11 illustrate a sub header of a MAC PDU in a wireless communication system to which the present invention can be applied.
  • FIG. 12 is a diagram illustrating a format of a MAC control element for reporting a buffer status in a wireless communication system to which the present invention can be applied.
  • FIG. 13 is a diagram illustrating an uplink resource allocation process of a terminal in a wireless communication system to which the present invention can be applied.
  • FIG. 14 is a diagram illustrating a latency in a control plane (C-Plane) required by 3GPP LTE-A to which the present invention may be applied.
  • C-Plane control plane
  • 16 and 17 illustrate an example of a method of transmitting actual data through a scheduling request and a BSR procedure.
  • FIG. 18 is a diagram illustrating an example of a method of transmitting actual data through a RACH procedure.
  • FIG 19 illustrates an example of an uplink data transmission method proposed in the present specification.
  • 20 is a diagram illustrating an example of an operation method of a base station for supporting emergency message transmission proposed in the present specification.
  • 21 is a diagram illustrating another example of an operation method of a base station for emergency message transmission proposed in the present specification.
  • 22 is a diagram illustrating another example of an operation method of a base station for emergency message transmission proposed in the present specification.
  • FIG. 23 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • E-UTRAN evolved universal terrestrial radio access network
  • the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
  • the E-UTRAN consists of base stations (eNBs) that provide a control plane and a user plane protocol to the terminal, and the base stations are connected through an X2 interface.
  • An X2 user plane interface (X2-U) is defined between base stations.
  • the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
  • An X2 control plane interface (X2-CP) is defined between two neighboring base stations. X2-CP performs functions such as context transfer between base stations, control of a user plane tunnel between a source base station and a target base station, transfer of handover related messages, and uplink load management.
  • the base station is connected to the terminal through a wireless interface and is connected to the evolved packet core (EPC) through the S1 interface.
  • the S1 user plane interface (S1-U) is defined between the base station and the serving gateway (S-GW).
  • the S1 control plane interface (S1-MME) is defined between the base station and the mobility management entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • MME mobility management entity
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • MME mobility management entity
  • the S1 interface supports a many-to-many-relation between the base station
  • FIG. 2 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 2A illustrates a radio protocol structure for a control plane
  • FIG. 2B illustrates a radio protocol structure for a user plane.
  • the layers of the air interface protocol between the terminal and the E-UTRAN are based on the lower three layers of the open system interconnection (OSI) standard model known in the art of communication systems. It may be divided into a first layer L1, a second layer L2, and a third layer L3.
  • the air interface protocol between the UE and the E-UTRAN consists of a physical layer, a data link layer, and a network layer horizontally, and vertically stacks a protocol stack for transmitting data information. (protocol stack) It is divided into a user plane and a control plane, which is a protocol stack for transmitting control signals.
  • the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • an application layer for example, voice data or Internet packet data
  • a physical layer which is a first layer (L1), provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer located at a higher level through a transport channel, and data is transmitted between the MAC layer and the physical layer through the transport channel.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • data is transmitted between different physical layers through a physical channel between a physical layer of a transmitter and a physical layer of a receiver.
  • the physical layer is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel is a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) to the UE.
  • PCH paging channel
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the PDCCH may carry an UL grant that informs the UE of resource allocation of uplink transmission.
  • PDFICH physical control format indicator channel informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • a physical HARQ indicator channel (PHICH) carries a HARQ acknowledgment (ACK) / non-acknowledge (NACK) signal in response to uplink transmission.
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NACK, downlink request and channel quality indicator (CQI) for downlink transmission.
  • a physical uplink shared channel (PUSCH) carries a UL-SCH.
  • the MAC layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer multiplexes / demultiplexes into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • SDU MAC service data unit
  • the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
  • AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
  • the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
  • Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
  • IP Internet protocol
  • IPv4 Internet protocol version 4
  • IPv6 Internet protocol version 6
  • a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages with each other through the RRC layer.
  • the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
  • the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
  • Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the radio bearer may be further divided into two signaling radio bearers (SRBs) and data radio bearers (DRBs).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH for transmitting a paging message
  • DL-SCH for transmitting user traffic or control messages.
  • Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
  • RACH random access channel
  • UL-SCH uplink shared
  • the logical channel is on top of the transport channel and is mapped to the transport channel.
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • a broadcast control channel BCCH
  • PCCH paging control channel
  • CCCH common control channel
  • DCCH dedicated control channel
  • MCCH multicast control channel
  • DTCH dedicated traffic channel
  • MTCH multicast traffic channel
  • an EMM registration state (EMM-REGISTERED) and an EMM registration release state (EMM-DEREGISTERED) may be defined.
  • EMM registration state and the EMM deregistration state may be applied to the terminal and the MME.
  • the initial terminal is in an EMM deregistration state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the access procedure is successfully performed, the UE and the MME transition to the EMM registration state.
  • an EPS connection management (ECM) connection state (ECM-CONNECTED) and an ECM idle state (ECM-IDLE) may be defined.
  • ECM connection state and the ECM idle state may also be applied to the terminal and the MME.
  • the ECM connection consists of an RRC connection established between the terminal and the base station and an S1 signaling connection established between the base station and the MME.
  • the RRC state indicates whether the RRC layer of the terminal and the RRC layer of the base station are logically connected. That is, when the RRC layer of the terminal and the RRC layer of the base station is connected, the terminal is in the RRC connected state (RRC_CONNECTED). If the RRC layer of the terminal and the RRC layer of the base station is not connected, the terminal is in the RRC idle state (RRC_IDLE).
  • the network can grasp the existence of the UE in the ECM connection state in units of cells and can effectively control the UE.
  • the network cannot grasp the presence of the UE in the ECM idle state, and the core network (CN) manages the tracking area, which is a larger area than the cell.
  • the terminal When the terminal is in the ECM idle state, the terminal performs Discontinuous Reception (DRX) set by the NAS using an ID assigned only in the tracking area. That is, the terminal may receive a broadcast of system information and paging information by monitoring a paging signal at a specific paging opportunity every UE-specific paging DRX cycle.
  • DRX Discontinuous Reception
  • the network does not have context information of the terminal.
  • the UE in the ECM idle state may perform a UE-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal may inform the network of the location of the terminal through a tracking area update (TAU) procedure.
  • TAU tracking area update
  • the terminal when the terminal is in the ECM connection state, the mobility of the terminal is managed by the command of the network.
  • the network knows the cell to which the UE belongs. Accordingly, the network may transmit and / or receive data to or from the terminal, control mobility such as handover of the terminal, and perform measurement on neighboring cells.
  • the terminal needs to transition to the ECM connection state in order to receive a normal mobile communication service such as voice or data.
  • the initial terminal is in the ECM idle state as in the EMM state, and when the terminal successfully registers with the network through the initial attach procedure, the terminal and the MME transition to the ECM connection state.
  • transition In addition, if the terminal is registered in the network but the traffic is deactivated and the radio resources are not allocated, the terminal is in the ECM idle state, and if new uplink or downlink traffic is generated in the terminal, a service request procedure is performed. The UE and the MME are transitioned to the ECM connected state.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP LTE / LTE-A system to which the present invention can be applied and a general signal transmission method using the same.
  • an initial cell search operation such as synchronization with the base station is performed.
  • the terminal receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell identifier (identifier). do.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell. Meanwhile, the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • PBCH physical broadcast channel
  • DL RS downlink reference signal
  • the UE may acquire more specific system information by receiving the PDSCH according to the PDCCH and the PDCCH information in step S302.
  • the terminal may perform a random access procedure such as steps S303 to S306 to complete the access to the base station.
  • the UE may transmit a preamble through a physical random access channel (PRACH) (S303) and receive a response message for the preamble through a PDCCH and a PDSCH corresponding thereto (S304).
  • PRACH physical random access channel
  • the UE may perform a contention resolution procedure such as transmitting an additional PRACH signal (S305) and receiving a PDCCH signal and a corresponding PDSCH signal (S306).
  • the UE may receive a PDCCH signal and / or a PDSCH signal (S307) and a physical uplink shared channel (PUSCH) signal and / or a physical uplink control channel as a general uplink / downlink signal transmission procedure.
  • the transmission of the (PUCCH) signal (S308) may be performed.
  • UCI uplink control information
  • HARQ-ACK / NACK scheduling request (SR), channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI) information, and the like.
  • SR scheduling request
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • the UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data are to be transmitted at the same time.
  • the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 4 shows a structure of a radio frame in 3GPP LTE / LTE-A to which the present invention can be applied.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE / LTE-A standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain.
  • the downlink channel response can be obtained from the uplink channel response.
  • the uplink transmission and the downlink transmission are time-divided in the entire frequency band, and thus the downlink transmission by the base station and the uplink transmission by the terminal cannot be simultaneously performed.
  • uplink transmission and downlink transmission are performed in different subframes.
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE / LTE-A uses OFDMA in downlink, the OFDM symbol is for representing one symbol period.
  • the OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block as a resource allocation unit includes a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • the CP has an extended CP and a normal CP.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended cyclic prefix, the length of one OFDM symbol is increased, so the number of OFDM symbols included in one slot is smaller than that of the normal cyclic prefix.
  • the extended cyclic prefix for example, the number of OFDM symbols included in one slot may be six.
  • the extended cyclic prefix may be used to further reduce the interference between symbols.
  • one slot includes 7 OFDM symbols, so one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each half frame consists of five subframes, and one subframe consists of two slots.
  • a special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element (RE), and one resource block includes 12 ⁇ 7 resource elements.
  • Resource elements on the resource grid may be identified by in-slot index pairs (k, l).
  • the number (NRB) of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 6 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are a control region to which control channels are allocated, and the remaining OFDM symbols are a data region to which a PDSCH is allocated.
  • Examples of downlink control channels used in 3GPP LTE / LTE-A include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and the like.
  • PCFICH Physical Control Format Indicator Channel
  • PDCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK / NACK signal for HARQ.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, and attaches a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • RNTI radio network temporary identifier
  • a unique identifier eg, C-RNTI (cell-RNTI)
  • C-RNTI cell-RNTI
  • a paging indication identifier for example, p-RNTI (p-RNTI)
  • p-RNTI paging indication identifier
  • a system information identifier (system information-RNTI) may be masked to the CRC.
  • a random access-RNTI (RA-RNTI) may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the terminal.
  • FIG. 7 is a diagram illustrating a resource unit used to configure a downlink control channel in a wireless communication system to which the present invention can be applied.
  • FIG. 7A illustrates a case where the number of transmit antennas of the base station is 1 or 2
  • FIG. 7B illustrates a case where the number of transmit antennas of the base station is 4. Only the RS (Reference Signal) pattern is different according to the number of transmitting antennas, and the method of setting a resource unit associated with the control channel is the same.
  • RS Reference Signal
  • the basic resource unit of the downlink control channel is a resource element group (REG).
  • the PCFICH and PHICH described with reference to FIG. 6 include four REGs and three REGs, respectively.
  • the PDCCH is composed of CCE (Control Channel Elements) units, and one CCE includes nine REGs.
  • the UE is configured to check M (L) ( ⁇ L) CCEs arranged in successive or specific rules in order to confirm whether a PDCCH composed of L CCEs is transmitted to the UE.
  • the CCE sets that the UE needs to check for PDCCH reception are called a search space.
  • Table 1 below shows an example of the search area.
  • CCE aggregation level L represents the number of CCEs constituting the PDCCH
  • M (L) is the number of candidate PDCCHs to be monitored in the search region of the aggregation level L.
  • the search area may be divided into a UE-specific search space that allows access to only a specific terminal and a common search space that allows access to all terminals in a cell.
  • the UE monitors a common search region with CCE aggregation levels of 4 and 8, and monitors a UE-specific search region with CCE aggregation levels of 1, 2, 4, and 8.
  • the common search area and the terminal specific search area may overlap.
  • PDCCH search region hashing the position of the first (with the smallest index) CCE in the PDCCH search region given to any UE for each CCE aggregation level value is changed every subframe according to the UE. This is called PDCCH search region hashing.
  • the CCE may be distributed in a system band. More specifically, a plurality of logically continuous CCEs may be input to an interleaver, and the interleaver performs a function of mixing the input CCEs in REG units. Therefore, frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe. As a result, the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
  • FIG 8 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a PUCCH carrying uplink control information.
  • the data area is allocated a PUSCH carrying user data.
  • the terminal may support simultaneous transmission of the PUSCH and the PUCCH.
  • a PUCCH for one UE is allocated a resource block pair in a subframe. Resource blocks belonging to a resource block pair allocated to a PUCCH occupy different subcarriers in each of two slots based on a slot boundary.
  • the resource block pair allocated to the PUCCH is said to be frequency hopping at the slot boundary.
  • PDCCH Physical Downlink Control Channel
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI downlink control information
  • the PDCCH has a different size and use of control information according to the DCI format, and a different size according to a coding rate.
  • Table 2 shows DCI according to DCI format.
  • the DCI format includes a format 0 for PUSCH scheduling, a format 1 for scheduling one PDSCH codeword, a format 1A for compact scheduling of one PDSCH codeword, and a DL-SCH.
  • Format 1C for very simple scheduling
  • format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode format 2A for PDSCH scheduling in open-loop spatial multiplexing mode
  • uplink channel There are formats 3 and 3A for transmission of a transmission power control (TPC) command, and format 4 for PUSCH scheduling in one uplink cell in a multi-antenna port transmission mode.
  • TPC transmission power control
  • DCI format 1A may be used for PDSCH scheduling, regardless of which transmission mode is configured for the UE.
  • the DCI format may be independently applied to each UE, and PDCCHs of multiple UEs may be multiplexed simultaneously in one subframe.
  • the PDCCH consists of an aggregation of one or several consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • CCE refers to a unit corresponding to nine sets of REGs consisting of four resource elements.
  • the base station may use ⁇ 1, 2, 4, 8 ⁇ CCEs to configure one PDCCH signal, wherein ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel state.
  • the PDCCH configured according to each UE is interleaved and mapped to the control channel region of each subframe by a CCE-to-RE mapping rule.
  • the location of the PDCCH may vary depending on the number of OFDM symbols, the number of PHICH groups, the transmission antenna, and the frequency shift for the control channel of each subframe.
  • channel coding is independently performed on the PDCCH of each multiplexed terminal and a cyclic redundancy check (CRC) is applied.
  • CRC cyclic redundancy check
  • a unique identifier (UE ID) of each UE is masked to the CRC so that the UE can receive its own PDCCH.
  • the base station does not provide information on where the PDCCH corresponding to the UE is.
  • the UE In order to receive the control channel transmitted from the base station, the UE cannot know where the PDCCH is transmitted in which CCE aggregation level or DCI format. Therefore, the UE monitors the aggregation of PDCCH candidates in a subframe. Find the PDCCH. This is called blind decoding (BD).
  • BD blind decoding
  • Blind decoding may be referred to as blind detection or blind search.
  • Blind decoding refers to a method in which a UE de-masks its UE ID in a CRC portion and then checks the CRC error to determine whether the corresponding PDCCH is its control channel.
  • FIG. 9 is a diagram illustrating a MAC PDU used in a MAC entity in a wireless communication system to which the present invention can be applied.
  • the MAC PDU includes a MAC header, at least one MAC service data unit (SDU), and at least one MAC control element, and further includes padding. can do. In some cases, at least one of the MAC SDU and the MAC control element may not be included in the MAC PDU.
  • SDU MAC service data unit
  • MAC control element may not be included in the MAC PDU.
  • the MAC control element is generally located ahead of the MAC SDU. And, the size of the MAC control element can be fixed or variable. If the size of the MAC control element is variable, it may be determined whether the size of the MAC control element is extended through an extended bit. The size of the MAC SDU may also be variable.
  • the MAC header may include at least one sub-header.
  • at least one subheader included in the MAC header corresponds to each MAC SDU, MAC control element, and padding, and the order of the subheaders is the same as the arrangement order of the corresponding elements. For example, if a MAC PDU includes a MAC control element 1, a MAC control element 2, a plurality of MAC SDUs and padding, the MAC header includes a subheader corresponding to MAC control element 1, a subheader corresponding to MAC control element 2, and a plurality of MAC control element 1s. A plurality of sub headers corresponding to each of the MAC SDUs and sub headers corresponding to the padding may be sequentially arranged.
  • the sub header included in the MAC header may include six header fields.
  • the sub header may include six header fields of R / R / E / LCID / F / L.
  • a subheader including four header fields may be used for a subheader corresponding to a fixed size MAC control element and a subheader corresponding to the last of data fields included in a MAC PDU.
  • the four fields may be R / R / E / LCID.
  • FIGS. 10 and 11 illustrate a sub header of a MAC PDU in a wireless communication system to which the present invention can be applied.
  • E Extended field, which indicates whether an element corresponding to a subheader is extended. For example, if the E field is '0', the element corresponding to the subheader is terminated without repetition, and if the E field is '1', the element corresponding to the subheader is repeated one more time so that its length is 2 Can be expanded.
  • LCID The Logical Channel Identification field identifies a logical channel corresponding to a corresponding MAC SDU or identifies a type of corresponding MAC control element and padding. If it is MAC SDU associated with the sub header, it indicates which MAC SDU corresponds to a logical channel, and if it is MAC control element associated with the sub header, it may indicate which MAC control element.
  • Table 3 shows the values of LCIDs for DL-SCH.
  • Table 4 shows the values of LCIDs for UL-SCH.
  • the UE sets an index value of any one of a shortened BSR, a short BSR, and a long BSR in the LCID field to inform the network of its buffer state. You can report it.
  • mapping relationship between the index and the LCID value illustrated in Tables 3 and 4 is illustrated for convenience of description, but the present invention is not limited thereto.
  • F Format field, which indicates the size of the L field.
  • L Length field, which indicates the size of MAC SDU and MAC control element corresponding to the subheader. If the size of the MAC SDU or MAC control element corresponding to the sub-header is less than or equal to 127 bits, the 7-bit L field may be used (FIG. 14 (a)), otherwise the 15-bit L field may be used. (FIG. 14B). If the MAC control element has a variable size, the size of the MAC control element may be defined through the L field. When the size of the MAC control element is fixed, the size of the MAC control element can be determined even if the size of the MAC control element is not defined as the L field, so the F and L fields can be omitted as shown in FIG. 15.
  • FIG. 12 is a diagram illustrating a format of a MAC control element for reporting a buffer status in a wireless communication system to which the present invention can be applied.
  • the MAC control element corresponding to the subheader may have one logical channel group ID (LCG ID) as shown in FIG. It may be configured to include an Identification field and one buffer size field indicating the buffer status of the logical channel group.
  • the LCG ID field is for identifying a logical channel group for which a buffer status is to be reported.
  • the LCG ID field may have a size of 2 bits.
  • the buffer size field is for identifying the total amount of available data of all logical channels belonging to the logical channel group after the MAC PDU is generated.
  • the available data includes all data that can be transmitted in the RLC layer and the PDCP layer, and the amount of data is represented by the number of bytes. At this time, the size of the RLC header and MAC header can be excluded when calculating the amount of data.
  • the buffer size field may have a size of 6 bits.
  • the MAC control element corresponding to the subheader is 4 indicating the buffer status of four groups having LCG IDs of 0 to 3, as shown in FIG. Buffer size fields may be included. Each buffer size field may be used to identify the total amount of data available for different logical channel groups.
  • a scheduling-based data transmission / reception method of a base station is used to maximize resource utilization. This means that if there is data to be transmitted by the terminal, the base station may first request uplink resource allocation and transmit data using only uplink resources allocated from the base station.
  • FIG. 13 is a diagram illustrating an uplink resource allocation process of a terminal in a wireless communication system to which the present invention can be applied.
  • the base station In order to efficiently use the uplink radio resource, the base station must know what kind of data is transmitted by uplink for each user equipment. Accordingly, the terminal directly transmits information about uplink data to be transmitted by the terminal to the base station, and the base station may allocate uplink resources to the corresponding terminal based on the information. In this case, the information on the uplink data delivered to the base station by the terminal is the amount of uplink data stored in its buffer, which is called a buffer status report (BSR).
  • the BSR is transmitted using a MAC control element when the terminal is allocated resources on the PUSCH in the current TTI and a reporting event is triggered.
  • FIG. 13A illustrates an uplink resource allocation process for actual data when an uplink radio resource for buffer status reporting (BSR) is not allocated to the terminal. That is, in the case of the UE that switches the state of the active mode in the DRX mode, since there is no data resource allocated in advance, it is required to request a resource for uplink data starting with the SR transmission through the PUCCH. Resource allocation procedures are used.
  • BSR buffer status reporting
  • the UE when a UE is not allocated a PUSCH resource for transmitting a BSR, the UE first transmits a scheduling request (SR) to a base station in order to receive a PUSCH resource (S13010). ).
  • SR scheduling request
  • the scheduling request is used to request a base station to receive a PUSCH resource for uplink transmission when a reporting event occurs but the terminal is not scheduled with a radio resource on the PUSCH in the current TTI. That is, the terminal transmits the SR on the PUCCH when the regular BSR is triggered but does not have an uplink radio resource for transmitting the BSR to the base station.
  • the UE transmits the SR through PUCCH or initiates a random access procedure according to whether the PUCCH resource for the SR is configured.
  • the PUCCH resource to which the SR can be transmitted is configured by a UE-specific higher layer (eg, an RRC layer), and the SR configuration is an SR periodicity and an SR subframe. Contains offset information.
  • the terminal When the UE receives the UL grant for the PUSCH resource for BSR transmission from the base station (S13020), the terminal transmits the triggered BSR to the base station through the PUSCH resource allocated by the UL grant (S13030).
  • the base station confirms the amount of data to be transmitted by the actual terminal to the uplink through the BSR and transmits a UL grant for the PUSCH resource for actual data transmission to the terminal (S13040).
  • the terminal receiving the UL grant for the actual data transmission transmits the actual uplink data to the base station through the allocated PUSCH resources (S13050).
  • FIG. 13B illustrates an uplink resource allocation process for actual data when an uplink radio resource for a BSR is allocated to the terminal.
  • the UE when a UE is already allocated a PUSCH resource for BSR transmission, the UE transmits a BSR through the allocated PUSCH resource and transmits a scheduling request to the base station (S13110). . Subsequently, the base station checks the amount of data to be transmitted by the actual terminal to the uplink through the BSR and transmits a UL grant for the PUSCH resource for the actual data transmission to the terminal (S13120). The terminal receiving the UL grant for actual data transmission transmits the actual uplink data to the base station through the allocated PUSCH resources (S13130).
  • FIG. 14 is a diagram illustrating a latency in a control plane (C-Plane) required by 3GPP LTE-A to which the present invention may be applied.
  • C-Plane control plane
  • 3GPP LTE-A requires a transition time from idle mode (IP address assigned) to connected mode to 50 ms or less.
  • the transition time includes a set time of the user plane (excluding the S1 propagation delay time).
  • the transition time from the dormant state to the active state in the connected mode is required to be 10 ms or less.
  • the transition from the dormant state to the active state can occur in four scenarios as follows.
  • Random access process ( RACH procedure )
  • 15 (a) and 15 (b) show examples of a random access procedure in a LTE system.
  • the random access procedure is performed when initial access in RRC_IDLE, initial access after a radio link failure, handover requiring a random access procedure, and generation of uplink or downlink data requiring a random access procedure during RRC_CONNECTED.
  • Some RRC messages such as an RRC Connection Request message, a Cell Update message, and a UTRAN Registration Area (URA) Update message, are also transmitted using a random access procedure.
  • the logical channels Common Control Channel (CCCH), Dedicated Control Channel (DCCH), and Dedicated Traffic Channel (DTCH) may be mapped to the transport channel RACH.
  • the transport channel RACH is mapped to the physical channel physical random access channel (PRACH).
  • the terminal physical layer When the MAC layer of the terminal instructs the terminal physical layer to transmit PRACH, the terminal physical layer first selects one access slot and one signature and transmits the PRACH preamble upward.
  • the random access process is divided into contention based random access process and non-contention based random access process.
  • FIG. 15A illustrates an example of a contention based random access procedure
  • FIG. 15B illustrates an example of a non-contention based random access procedure.
  • the terminal receives and stores information about the random access from the base station through the system information. Thereafter, when random access is required, the terminal transmits a random access preamble (also called message 1) to the base station (S15010).
  • a random access preamble also called message 1
  • the base station When the base station receives the random access preamble from the terminal, the base station transmits a random access response message (also referred to as message 2) to the terminal (S15020).
  • a random access response message (also referred to as message 2)
  • downlink scheduling information on the random access response message may be CRC masked with a random access-radio network temporary identifier (RA-RNTI) and transmitted on an L1 or L2 control channel (PDCCH).
  • RA-RNTI random access-radio network temporary identifier
  • PDCCH L1 or L2 control channel
  • the UE Upon receiving the downlink scheduling signal masked with the RA-RNTI, the UE may receive and decode a random access response message from a physical downlink shared channel (PDSCH). Thereafter, the terminal checks whether the random access response message includes random access response information indicated to the terminal.
  • PDSCH physical downlink shared channel
  • Whether the random access response information indicated to the presence of the self may be determined by whether there is a random access preamble (RAID) for the preamble transmitted by the terminal.
  • RAID random access preamble
  • the random access response information includes a TA (Timing Alignment) indicating timing offset information for synchronization, radio resource allocation information used for uplink, and a temporary identifier (eg, Temporary C-RNTI) for terminal identification.
  • TA Timing Alignment
  • radio resource allocation information used for uplink
  • temporary identifier eg, Temporary C-RNTI
  • the terminal When receiving the random access response information, the terminal performs uplink transmission (also referred to as message 3) on an uplink shared channel (SCH) according to radio resource allocation information included in the response information (S15030).
  • the uplink transmission may be represented as scheduled transmission.
  • the base station After receiving the uplink transmission from the terminal, the base station transmits a message for contention resolution (also referred to as message 4) to the terminal through a downlink shared channel (DL-SCH) (S15040). ).
  • DL-SCH downlink shared channel
  • the base station Before the UE transmits the random access preamble, the base station allocates a non-contention random access preamble to the UE (S15110).
  • the non-competitive random access preamble may be allocated through dedicated signaling such as a handover command or a PDCCH.
  • the UE receives the non-competitive random access preamble, the UE transmits the allocated non-competitive random access preamble to the base station (S15120).
  • the base station may transmit a random access response (also referred to as message 2) to the terminal similarly to step S2102 in the contention-based random access procedure (S15130).
  • a random access response also referred to as message 2
  • HARQ is not applied to the random access response, but HARQ may be applied to a message for uplink transmission or contention resolution for the random access response. Therefore, the UE does not need to transmit ACK or NACK for the random access response.
  • Cellular systems such as LTE (-A) systems or 802.16m systems use a base station scheduling based resource allocation scheme.
  • the UE requesting a resource to the base station for data transmission is called a scheduling request.
  • Such a scheduling request of the UE may be performed through transmission of a scheduling request (SR) to a PUCCH or a transmission of a buffer status report (BSR) to a PUSCH.
  • SR scheduling request
  • BSR buffer status report
  • the terminal when the terminal is not allocated a resource for transmitting the SR or BSR from the base station, the terminal may request the uplink resources to the base station through the RACH procedure.
  • the base station receiving the scheduling request from the terminal allocates an uplink resource to be used by the terminal to the terminal through a downlink control channel (i.e., UL grant message, DCI in case of LTE (-A)).
  • a downlink control channel i.e., UL grant message, DCI in case of LTE (-A)
  • the downlink control channel may be a PDCCH.
  • the UL grant transmitted to the terminal through the PDCCH may be informed by explicitly (explicitly) signaling the resource of the subframe the resource allocated to the terminal, but for a specific time (eg, 4ms in LTE ) May be defined the time promised between the terminal and the base station by resource allocation for the subsequent subframe.
  • a specific time eg, 4ms in LTE
  • the base station allocates resources to the terminal after Xms (eg, 4ms in case of LTE (-A)) means that the terminal receives and decodes a UL grant and prepares and encodes uplink data for transmission. Because it considers.
  • Xms eg, 4ms in case of LTE (-A)
  • FIG. 16 is a diagram illustrating a time taken for a UE to transmit actual data through a 5-step scheduling request procedure using a PUCCH SR resource.
  • the terminal may transmit actual uplink data about 17 ms after the time of transmitting the SR signal.
  • the SR resource allocated for the UE may be allocated on the PUCCH with a specific period, and may be allocated at a minimum of 1ms to a maximum of 80ms.
  • the average time for the UE to wait for the PUCCH resource for SR transmission is 0.5 ms
  • the delay time until data transmission through the scheduling request to the base station is 17.5 ms. do.
  • the terminal may transmit a resource request for newly generated data using the pre-allocated resource.
  • the terminal may request additional uplink resources to the base station by transmitting the BSR together with data transmitted through the resources allocated in advance.
  • the terminal may request a resource for newly generated data using the RACH procedure.
  • the UE may see that a delay of 17 ms occurs from transmitting the RACH preamble to the base station until transmitting uplink data.
  • the PRACH resource capable of transmitting the RACH preamble may be configured with a specific period for each cell.
  • an average data transmission delay of 17.5 ms may occur.
  • the terminal generates a delay of at least 9 ms to at most 17.5 ms to transmit uplink data.
  • 5G communications are increasing the requirements for supporting a variety of real-time application services such as healthcare, traffic safety, disaster safety, and remote medical control.
  • 5G communication aims to build an ultra-low latency system with extremely short response time so that users will not notice the awkwardness even when providing the most sensitive tactile information of human senses on the Internet (target delay: E2E or Radio). 1 ms).
  • the delay of data transmission should be minimized.
  • -Dormant UE 1ms ⁇ 1,280ms delay occurs according to the DRX cycle configured to the UE (short DRX cycle: 2 ⁇ 640ms, long DRX cycle: 10 ⁇ 2560ms)
  • -Idle UE Average 160ms ⁇ 1,280ms + initial access delay occurs according to paging DRX cycle set for UE (paging cycle: 320 ⁇ 2560ms, initial access: 50ms ⁇ 100ms (LTE-A: 50ms / LTE: 100ms))
  • Unsynchronized UE 17.5ms delay (SR over RACH)
  • various time delays may occur according to the state of the terminal, and in particular, the delay of receiving downlink data may occur in various lengths for the dormant or idle state terminal.
  • the data transmission delay in the uplink data transmission can be transmitted when the terminal is needed, it can be seen that an additional delay necessarily occurs by using a base station scheduling-based data transmission scheme.
  • 5G communication is a secondary accident by quickly notifying the base station or a neighboring terminal or a user of information about an accident or condition that may be caused by a specific event at an unpredictable time from various end users such as a human or a machine (car or sensor). It is anticipated for the purpose of major services to be able to respond quickly to prevention or emergencies.
  • Such a low delay service mainly transmits uplink data quickly so that subsequent procedures can be performed.
  • delay in uplink data transmission is considered to be an essential factor.
  • the UL data transmission method proposed in the present specification may be performed through a 3-step method as follows.
  • the 3-step UL data transmission method proposed in the present specification is for the purpose of quickly transmitting UL data related to an emergency situation, but is not limited thereto, and can be widely used or applied in a method for quickly transmitting data such as short data. .
  • FIG 19 illustrates an example of an uplink data transmission method proposed in the present specification.
  • the first terminal transmits an urgent signal to the base station (S1810).
  • the first terminal represents a terminal capable of transmitting low delay service related data and may be represented as an urgent UE.
  • the first terminal and the emergency terminal will be used interchangeably.
  • low latency service may refer to services related to health care, traffic safety, disaster safety, remote medical control, and the like, which are currently mainly discussed in 5G communication.
  • a specific terminal In a wireless communication system supporting such a low delay service, a specific terminal promptly informs a base station, a neighboring terminal, or a user of information about an accident or a condition that may be caused by a specific event, thereby preventing people from causing secondary accidents or emergencies. It allows you to respond quickly.
  • the emergency signal refers to a signal for the first terminal to detect the occurrence of an emergency situation and inform the base station of this.
  • the first terminal may transmit the emergency signal to the base station using (1) ON / OFF keying method or (2) a new physical channel (e.g., Physical Urgent CH: PUCH).
  • a new physical channel e.g., Physical Urgent CH: PUCH.
  • the method of transmitting the emergency signal that is, the specific methods of (1) and (2) will be described later.
  • the base station may transmit a response to the received emergency signal to the first terminal and / or the second terminal.
  • the response to the emergency signal may be expressed as an urgent acknowledgment signal, urgent ACK (signal), or the like.
  • the second terminal may mean general UEs in a cell that do not transmit data for the low delay service.
  • the base station may transmit a response to the emergency signal to the first terminal and the second terminal in a broadcast manner.
  • the base station may unicast the response to the emergency signal only to the first terminal or only the second terminal.
  • the base station when receiving the emergency signal from the first terminal, can support the urgent message transmission to the emergency terminal by operating in three forms as follows (S1820).
  • the first terminal After operation of any one of the three types of base stations, the first terminal transmits an urgent message to the base station and / or neighboring terminals.
  • the emergency message may be expressed as emergency data or emergency PUSCH.
  • the first terminal transmits an emergency signal in an Nth subframe (SF #N), and transmits an emergency message to a base station and / or neighboring terminals in an Xth and subsequent subframes (subframe # N + X) in SF #N. It transmits (S1830).
  • the emergency signal may be generated by a specific event such as an emergency situation, and the specific event may occur in SF #N through which the emergency signal is transmitted or in SF even before the SF #N.
  • step S19010 of FIG. 19 that is, an emergency signal transmission method of the first terminal will be described.
  • the first terminal When the first terminal (emergency terminal) detects the occurrence of a specific event, such as an emergency situation, the first terminal (urgent terminal) first transmits an urgent signal (urgent signal) to the base station to transmit the emergency information or the emergency message related to the generated specific event.
  • a specific event such as an emergency situation
  • the urgent signal may be used not only for immediately notifying the occurrence of a specific event related to an emergency situation to a base station but also for securing a resource for transmitting an emergency message including detailed information of the specific event that occurred.
  • the emergency signal may refer to a signal allocated by the emergency terminal to the base station in order to receive a resource allocation, that is, an UL grant from the base station for transmitting emergency information or an emergency message.
  • the urgent signal may be transmitted through (1) an ON / OFF keying method or (2) a new physical channel (PUCH).
  • the urgent signal may be represented by an urgent sequence.
  • the resource for transmitting the urgent signal may be set in advance for each event or for each terminal.
  • Urgent events that may occur in order to transmit an emergency signal will be defined in advance.
  • the urgent event may be displayed as 'En'.
  • n an integer value greater than zero.
  • the base station may pre-allocate a specific resource (e.g., PUCCH resource) or a specific sequence (e.g., PUCH sequence) by the number (n) of urgent events that can be predefined so that the emergency terminal can transmit an emergency signal.
  • a specific resource e.g., PUCCH resource
  • a specific sequence e.g., PUCH sequence
  • information on a specific resource i.e., PUCCH US or PUCH
  • PUCCH US or PUCH information on a specific resource for transmitting the emergency signal
  • the specific resource or specific sequence may indicate resource allocation information for emergency signal transmission.
  • Resource allocation information for transmitting the emergency signal may be transmitted to terminals in a cell through a broadcast message such as System information (e.g., SIB2) or a Radio Resource Control (RRC) message.
  • SIB2 System information
  • RRC Radio Resource Control
  • the base station for the emergency signal transmission only unicast or multicast to the corresponding emergency terminal Resource allocation information may be transmitted.
  • an event that may occur or an event that may be used for urgent signal transmission may be as shown in Table 5 below, and may be defined as a total of n events from event 0 to event (n-1).
  • each event may be predefined in a cell as shown in Table 5 below, or may be defined differently for each cell.
  • the information related to the event may be transmitted together in a message for transmitting detailed information about the urgent signal, and may be predefined according to the system.
  • a specific resource or a specific sequence for emergency signal transmission may be mapped in advance.
  • the base station When transmitting the urgent signal through the ON / OFF keying scheme, the base station allocates PUCCH resources corresponding to the number n of a corresponding event within a specific TTI or a specific subframe according to the urgent event defined in the cell.
  • the RRC information element including resource information related to the urgent signal transmission may be defined as follows.
  • PUCCH format 1 may be reused for transmission of the emergency signal.
  • the US (Urgent Signal) can be used instead of the scheduling request (SR) of the PUCCH.
  • the RRC information element may be defined as follows, and may include US resource allocation information, US configuration information, US signaling information, and the like.
  • US User Signal
  • the RRC Connection Reconfig A resource of the US may be set or released through a (Radio Resource Config. Dedicated (Physical config. Dedicated (US config)) message.
  • US resources for up to 2,048 Events ((0, ..., 2047)) in one subframe may be allocated.
  • the number of events that can be allocated in one (short) subfame is more than 2,048 depending on the allocated resources. Can be small.
  • US periodicity may be set according to the US configuration index, and US subframe offset may also be set according to the index.
  • the emergency terminal may transmit the US to the base station through a simple On-Off Keying (O.O.K) scheme.
  • O.O.K On-Off Keying
  • D (0) 1: Preempt a PUSCH resource of (N + X) th sub-frame (positive US)
  • D (0) 1 indicates that there is an urgent signal transmission, and the PUSCH resource of the N + X th SF (SF # N + X) is pre-allocated to transmit an urgent message.
  • N the number of subframes transmitting the US.
  • the emergency terminal transmits the US to the base station by loading power from the generated emergency event and the US resource mapped to the base station to inform the base station of the generated emergency event.
  • the base station can quickly determine what kind of emergency event has occurred by receiving the emergency signal in a specific resource.
  • the urgent signal may also be expressed as an urgent sequence.
  • This method refers to newly defining a physical urgent channel (PUCH) for transmitting an urgent sequence in a PUSCH resource.
  • PUCH physical urgent channel
  • the emergency terminal transmits an urgent sequence to the base station through the PUCH mapped to the generated specific event.
  • the base station can quickly determine what event occurred when receiving a specific urgent sequence from the emergency terminal.
  • the urgent sequence may mean an urgent signal or a PUCH through which an urgent signal is transmitted.
  • the physical emergency channel may be defined in a similar manner to the Physical Random Access Channel (PRACH).
  • the PRACH occupies 6 resource blocks (RBs) in the resource structure of the LTE (-A) system and has a subcarrier spacing of 1.25 kHz (format # 4 is 7.5 kHz).
  • the PRACH may have 64 preamble sequences in each cell.
  • Each preamble sequence portion consists of a ZC sequence of length 839 (format # 4 is length 139).
  • the urgent sequence may be defined to have a sequence smaller than the number of preamble sequences (64) defined in the PRACH, and may map a specific emergency event to each urgent sequence.
  • a specific range (0 to 63) of the PRACH preamble may be previously allocated as an urgent sequence for transmitting the urgent signal.
  • the base station When allocating resources for urgent signal transmission for each terminal, the base station can immediately recognize a specific terminal (emergency terminal) through the reception of the urgent signal, thereby quickly assigns an UL grant (uplink resource) to the specific terminal I can do it.
  • the urgent signal transmission method of the emergency terminal may include (1) urgent signal transmission through ON / OFF keying or (2) urgent sequence transmission through a new physical channel (eg, Physical Urgent CH or PUCH). have.
  • a new physical channel eg, Physical Urgent CH or PUCH.
  • the base station may allocate as many PUCCH resources as the number n of emergency terminals in a specific TTI (or specific subframe) according to the urgent terminal connected in the cell so that the emergency terminal may transmit the urgent signal through an ON / OFF keying scheme. .
  • the base station may include resource information related to the urgent signal transmission in an RRC information element and transmit the information to an emergency terminal and / or a general terminal, that is, terminals in a cell.
  • the RRC information element may be defined as follows.
  • the urgent signal may be transmitted using the physical layer structure of the LTE (-A) system, in which case the US may be transmitted by reusing the PUCCH format 1.
  • the SR Service Request
  • US User Signal
  • the RRC information element may be defined as follows, and may include US resource allocation information, US configuration information, US signaling information, and the like.
  • US User Signal
  • the RRC Connection Reconfig A resource of the US may be set or released through a (Radio Resource Config. Dedicated (Physical config. Dedicated (US config)) message.
  • US resources for up to 2,048 Events ((0, ..., 2047) may be allocated in one subframe.
  • the number of events allocable in one (short) subfame may be smaller than 2,048 depending on the allocated resources.
  • US periodicity may be set according to the US configuration index, and US subframe offset may also be set according to the index.
  • the emergency terminal may transmit the US to the base station through a simple On-Off Keying (O.O.K) scheme.
  • O.O.K On-Off Keying
  • D (0) 1: Preempt a PUSCH resource of (N + X) th sub-frame (positive US)
  • D (0) 1 indicates that there is an urgent signal transmission, and the PUSCH resource of the N + X th SF (SF # N + X) is pre-allocated to transmit an urgent message.
  • N the number of subframes transmitting the US.
  • the following shows another example of the UrgentSignalConfig information element.
  • the emergency terminal may inform the base station that an emergency situation has occurred by powering a resource allocated for urgent signal transmission and transmitting an urgent signal to the base station.
  • the base station recognizes that an emergency event has occurred in the emergency terminal, and allocates a specific SF (transmission prohibited SF) as a resource for transmitting the urgent message of the emergency terminal.
  • a specific SF transmission prohibited SF
  • the urgent signal may also be expressed as an urgent sequence.
  • the base station may allocate a specific sequence for transmitting the urgent signal to the emergency terminal, so that the base station can quickly determine which terminal caused an emergency situation by receiving the specific sequence.
  • the base station can recognize the emergency terminal immediately by receiving the allocated sequence by allocating the sequence for each terminal to the terminal that can be defined as the urgent UE.
  • the physical emergency channel may be defined in a similar manner to the Physical Random Access Channel (PRACH).
  • the PRACH occupies 6 resource blocks (RBs) in the resource structure of the LTE (-A) system and has a subcarrier spacing of 1.25 kHz (format # 4 is 7.5 kHz).
  • the PRACH may have 64 preamble sequences in each cell.
  • Each preamble sequence portion consists of a ZC sequence of length 839 (format # 4 is length 139).
  • the urgent sequence may be defined to have a sequence smaller than the number of preamble sequences (64) defined in the PRACH, and may map each urgent sequence for each emergency terminal.
  • a specific range (0 to 63) of the PRACH preamble may be previously allocated as an urgent sequence for transmitting the urgent signal.
  • the base station When the base station receives the urgent signal from the emergency terminal, it may operate in the following three forms.
  • FIG. 20 is a diagram illustrating an example of an operation method of a base station for supporting emergency message transmission proposed in the present specification.
  • the method implicitly allocates resources for urgent message transmission by an emergency terminal by canceling or discarding a UL grant of a general terminal.
  • the base station When the base station receives an urgent signal from the emergency terminal (S1910), the base station discards or cancels the UL grant (message) generated for the general terminals in order to allocate the UL grant for UL data transmission to the emergency terminal preferentially. (S1920).
  • the base station when the base station receives an urgent signal through the Nth SF (SF #N) from the emergency terminal, the base station is allocated for UL data transmission of the general terminal in the (N + Pt) th SF. Release all UL grants attempted.
  • the base station postpones the UL grant to the general terminals to be resource allocated in the (N + Pt + 1) th SF or later SF.
  • the base station can immediately cancel the UL grant from the SF (SF #N) receiving the urgent signal to the general terminals, the UL data transmission of the general terminals are delayed to the (N + Pt + 1) th SF. .
  • the UL grant to the general terminal for this is allocated or transmitted in the (N + 1) th SF.
  • the base station can cancel the UL grant to the general terminals in the SF (SF #N + 1) immediately after the SF (SF #N) receiving the urgent signal
  • the UL data transmission of the general terminals (N + Pt + 2) may be delayed to the SF.
  • the UL grant to the general terminal for this is allocated or transmitted in the (N + 2) th SF.
  • the emergency terminal is UL grant decoding time and data encoding of the general terminals until the UL grant to the general terminals is cancelled After a time (processing time), an urgent message may be transmitted to the base station.
  • the base station receives the urgent signal transmitted from the emergency terminal, and the time for recognizing this is within 1ms (eg, in the case of Wi-Fi, the request time for detecting a signal or sequence is within 4us), (Fig. 19 and Likewise), immediately after receiving the urgent signal (SF #N), the UL grant scheduled to be transmitted to general terminals may be canceled or delayed in the next SF (SF # N + 1).
  • the base station When the base station receives the urgent signal from the emergency terminal in SF #N, the base station is UL UL of the general terminal allocated after the subframe (SF #N) receiving the urgent signal in consideration of the processing time (Pt) of the general terminal You can also defer or revoke a grant.
  • the processing time (Pt) represents the sum of the decoding time and the data (UL data) encoding time for the UL grant of the general terminal.
  • the processing time Pt corresponds to 4 ms (4 SF).
  • the base station may immediately postpone or cancel the UL grant of general terminals even in the subframe (SF #N) receiving the urgent signal.
  • the base station may determine the number of UL grant subframes (number of SFs in which the UL grant is transmitted) of the general terminals to postpone or cancel in consideration of the size of the UL grant to be allocated to the urgent signal.
  • the number of UL grant subframes of the deferred or canceled general terminals may be one.
  • the base station receives an urgent signal from an emergency terminal in SF # 4.
  • the base station cancels the UL grant for the general terminals allocated to SF # 5 in consideration of the processing time of the system.
  • the general terminal since the UL grant is canceled in the SF # 5, the general terminal does not transmit UL data to the base station in SF # 9, and then the UL received through SF # 6 in SF (SF # 10). The UL data is transmitted to the base station using the grant.
  • the base station may transmit to the general terminal UL grant cancellation information for notifying the general terminal that the UL grant scheduled to be transmitted to the general terminal. This will be described in more detail with reference to FIG. 21.
  • the general terminal predicts that the UL grant to be allocated to the emergency terminal will be canceled by monitoring or overhearing the urgent signal transmitted by the emergency terminal, thereby transmitting UL data at the time when the emergency terminal transmits the urgent message. It may not transmit to the base station.
  • the general terminal can accurately predict which UL grant is canceled in which SF in consideration of the processing time and so on, which SF cannot transmit UL data.
  • the processing time Pt is the sum of the decoding time for the UL grant and the encoding time of the UL data.
  • 21 is a diagram illustrating another example of an operation method of a base station for emergency message transmission proposed in the present specification.
  • FIG. 21 illustrates a method of broadcasting an acknowledgment signal for an urgent signal for notifying that all emergency stations have occurred to all terminals in a cell when the base station receives an urgent signal.
  • FIG. 21 illustrates a method in which the base station explicitly transmits the fact that an emergency event has occurred to the general terminal, thereby stopping UL data transmission for the general terminal at the time of transmitting the urgent message.
  • the base station When the base station receives the urgent signal from the emergency terminal (S2010), the base station transmits a notification signal for notifying that all the emergency event has occurred to all the terminals in the cell (S21020).
  • the notification signal may be expressed as an acknowledgment signal of the urgent signal or a response of the urgent signal, an urgent ACK (signal), or a response signal.
  • the base station cancels or postpones the transmission of the UL grant scheduled to be transmitted to the general terminals at the time of transmitting the notification signal (for example, SF # 5).
  • the general terminal may ignore all UL resources allocated through the UL grant from the base station after receiving the notification signal from the base station.
  • the general terminal receiving the urgent ACK signal from the base station can receive the ACK signal before the time of decoding the UL grant and encoding a new message (UL data), the general terminal is assigned to the uplink allocated to itself The UL data is not transmitted in the SF allocated after the urgent ACK signal so that an emergency terminal may use a link resource.
  • the 'prohibit transmission SF' indicating not to transmit the UL data is an SF after the time when the general terminal receives the urgent ACK signal broadcast from the base station. It is preferred to be defined.
  • the general terminal may not ignore all UL resources after receiving the urgent ACK signal from the base station.
  • the UL data may be transmitted between the urgent signal transmission time and the urgent message transmission time of the emergency terminal.
  • the predetermined time is represented by X SFs, and the predetermined time may indicate a processing time of an emergency terminal for decoding the urgent ACK signal by the emergency terminal and encoding the urgent message.
  • the general terminal may transmit the UL data through the previously received UL grant until the time of transmitting the urgent message due to the processing time of the emergency terminal.
  • the general terminal may transmit UL data in SFs before SF # 7 (SF # 5, SF # 6) in which the emergency terminal transmits an urgent message (first time).
  • the processing time (urgent ACK decoding time + urgent message encoding time) of the emergency terminal is shortened, the time that the general terminal can transmit the UL data before the urgent message transmission can be reduced.
  • the processing time of the emergency terminal may be shared in advance with the general terminal and / or the base station.
  • the general terminal when the general terminal receives the urgent ACK signal from the base station, it may determine whether to transmit the UL data by considering the urgent signal transmission time of the emergency terminal, the processing time of the emergency terminal, the urgent message transmission time, and the like.
  • the urgent message transmission time of the emergency terminal may be related to a cancellation time of the UL data transmission of the general terminal after receiving the urgent ACK signal of the general terminal.
  • the urgent message transmission time of the emergency terminal may be faster.
  • the time required for the emergency terminal to transmit the urgent signal to the base station and the general terminals to receive the urgent ACK from the base station is about 3 ms.
  • the time for transmitting the urgent message that is, X may be defined as 3 SFs.
  • the X may be defined as 4 SFs.
  • no transmission SF may be defined as one or more consecutive SFs after the Urgent ACK received SF.
  • the transmission prohibition SF refers to an SF in which the general terminal cannot transmit UL data due to urgent signal transmission of an emergency terminal, and indicates an SF for which UL data transmission of the general terminal is prohibited or an SF for transmitting an urgent message of an emergency terminal. Can be.
  • the transmission prohibition SF may be set from (N + 2) SF to (N + Pt-1) SF in consideration of the Pt time of the system.
  • N represents the number of the SF that received the urgent ACK
  • Pt time may represent the sum of the UL grant decoding time and the data encoding time.
  • the transmission prohibition SF (No tx. SF) is set from SF 7 to SF 8.
  • the transmission prohibition SF may be set to M consecutive SFs from SF (N + 2).
  • the transmission prohibition SF (No tx. SF) is set from SF 7 to SF 10.
  • the transmission prohibition SF (No transmission SF) may be defined as one SF after the UE receives the Urgent ACK.
  • it may be set to (N + 2) SF in consideration of the Urgent ACK reception time of the general terminal.
  • the transmission prohibition SF (No tx. SF) may be set to SF # 7.
  • the urgent ACK signal may be transmitted from the base station to the terminals in the cell through the same method as the urgent signal transmitted by the emergency terminal.
  • the Urgent ACK signal is a signal that should be received by all the terminals (general terminal and emergency terminal) in the cell is preferably transmitted in a broadcast manner.
  • the Urgent ACK signal may be transmitted through a specific resource of the PDCCH.
  • This method relates to a method in which an emergency terminal transmits an urgent message after transmitting an urgent signal.
  • the emergency terminal transmits an urgent signal from the SF #N to the base station, and then transmits an urgent message to the base station and / or neighboring terminals after X SFs (SF # N + X).
  • the urgent message includes detailed information related to an emergency event generated in an emergency terminal.
  • the value of X may be determined according to a time point at which UL data is canceled after the urgent ACK signal is received by the general terminal.
  • the X value may be determined according to the setting of the transmission prohibition SF.
  • the transmission time of the urgent message may be variously set according to the methods (FIGS. 19 and 20) described in the urgent signal reception and the urgent acknowledgment transmission of the base station.
  • the base station does not allocate or transmit a UL grant to the general terminals so that general terminals do not transmit UL data in the transmission prohibition SF (No tx. SF).
  • the base station implicitly allocates a resource capable of transmitting an urgent message by the emergency terminal.
  • the emergency terminal transmits a predefined data transmission scheme (eg, MCS, through a resource of SF (SF # N + X) after a predetermined time or after X SF from a time point (SF #N) of transmitting the urgent signal). transmits an urgent message to a base station and / or neighboring terminals using power.
  • a predefined data transmission scheme eg, MCS, through a resource of SF (SF # N + X) after a predetermined time or after X SF from a time point (SF #N) of transmitting the urgent signal.
  • the base station explicitly expresses an urgent ACK signal to terminals in a cell so that normal terminals do not transmit UL data in a transmission prohibition SF (No tx. SF). ) send.
  • all the general terminals in the cell receiving the Urgent ACK signal are UL through the SF, that is, the transmission prohibition SF when the SF corresponding to the UL grant corresponds to the transmission prohibition SF (No tx. SF). Do not send data.
  • the emergency terminal transmits an urgent message through the transmission prohibition SF (No tx. SF) based on the reception of the urgent ACK signal.
  • 22 is a diagram illustrating another example of an operation method of a base station for emergency message transmission proposed in the present specification.
  • the base station when the base station receives an urgent signal described with reference to FIG. 18 from the terminal, the base station may transmit a response signal to notify other terminals in the cell.
  • the emergency terminal transmits an urgent signal (Urgent Signal) to the base station when an emergency situation occurs as described with reference to FIGS. 19 to 21 (S22010).
  • an urgent signal Urgent Signal
  • the emergency signal may be allocated resources in a specific event unit, and when more than one terminal transmits an emergency signal related to the same event to the base station, it may transmit an emergency signal using the same resource.
  • the base station Upon receiving the emergency signal, the base station transmits an emergency signal to terminals in the cell, that is, the emergency terminal as well as other general terminals in the cell, in order to inform the terminals in the cell of information related to the emergency (S22020).
  • the base station may transmit the emergency signal to the terminals in the cell through the following two methods.
  • a downlink physical control channel eg, PDCCH or PBCH
  • a downlink physical data channel eg, PDSCH
  • a base station transmits a response signal to terminals in a cell through a downlink physical control channel.
  • the physical channel for transmitting the response signal is defined as a physical downlink urgent channel (PDUCH).
  • the base station may share downlink resource information for each emergency situation in a channel to terminals in a cell in advance.
  • the base station defines a specific resource region in a physical control channel as a PDUCH through a system information block (SIB) for transmitting system information, and maps to which emergency situation a specific resource of the PDUCH is mapped.
  • SIB system information block
  • Related index information can also be defined.
  • the index information may be mapped to the resource information of the PDUCH according to the emergency event number n defined in Table 4.
  • the resource of the PDUCH is X * n REs (Resource) from the start of the PDUCH resource.
  • the PHICH can transmit eight HARQ ACK / NACK through 12REs using OS 8.
  • each PDUCH resource index 0 to index (n-1) may be mapped as it is from event 0 to event (n-1).
  • the location of the PDUCH may be transmitted in the first OFDM symbol of the first slot of each subframe.
  • the PDUCH may be located after the PCFICH or after the PHICH in the downlink physical control channel.
  • the resource order of PCFCI, PHICH, PDUCH in the downlink physical control channel may be 1PCFICH-> PHICH-> PDUCH or 2PCFICH-> PDUCH-> PHICH.
  • the PCFICH is used to inform the number of symbols (1, 2, 3) for the PDCCH and has a fixed size of 4REGs (16REs). Since the terminal may have a fixed size according to the size (X REs), the terminal may know the size of the PHICH and PDUCH in advance.
  • the PCFICH may have four consecutive resource elements located at 10, 20, 30, and REG indexes of the first symbol (16 REs in total).
  • PCFICH, PHICH, and PDUCH are all allocated with a fixed size in a downlink control channel in a cell, it is possible to design the resources allocated to the respective channels so as not to collide with each other.
  • the location of resources allocated to the PDCCH may be changed according to the location of resources allocated to the PCFICH, PHICH, and PDUCH.
  • the size of the PDUCH may be transmitted to terminals in a cell through the PBCH.
  • information related to the total size of the PDUCH may be transmitted, or resource size for each event related to an emergency situation may be transmitted, and information related to the total number of events through the SIB when the resource size for each event is transmitted. Can be transmitted.
  • the UE may know what emergency situation occurs when the response signal is transmitted through the index information.
  • the terminal may transmit information related to the emergency situation received through the response signal to a higher layer (for example, an application layer) and perform an operation according to the emergency situation through the application layer.
  • a higher layer for example, an application layer
  • the operation according to the emergency situation may be set differently according to the emergency situation and the terminal. For example, in case of a traffic accident, receive detour guidance information or stop driving a car)
  • the PDUCH may transmit the response signal to terminals in a cell through the ON / OFF keying scheme described above through a specific RE resource. That is, similar to the PHICH, after spreading 1 bit information into 4 consecutive REs and then repeating the method three times, the UEs in the cell indicate that an emergency has occurred through a total of 12 REs. You can inform.
  • the base station pre-maps the emergency situation for each index in advance by using the index information of each RE of the PDUCH, and receives a signal indicating that a specific emergency situation has occurred from the emergency terminal, the index to the index of the PDUCH mapped thereto It transmits a response signal associated with the specific emergency situation to the terminals in the cell through the resources for.
  • the index of the PDUCH is defined as the same as the number of emergency situations defined in the urgent signal configuration described above, the index of the PDUCH may be mapped to each emergency situation.
  • the PDUCH may be defined in CCE units. That is, the same number of CCE indexes as the number of emergency situations defined in the urgent signal configuration may be defined, and each CCE index may be mapped to each emergency situation.
  • the information related to the emergency situation transmitted through the PDUCH may be transmitted through a common search space.
  • the information related to the emergency may be transmitted through a physical boradcast channel (PBCH).
  • PBCH physical boradcast channel
  • n-bit bitmap resources may be allocated through the PBCH, and an emergency may be mapped to bitmap indexes 0 to (n-1).
  • the UE connected to the base station may receive the information related to the emergency situation.
  • information related to the emergency may be repeatedly transmitted for a specific time.
  • indication information indicating that the information related to the emergency situation is transmitted through the PDUCH may be transmitted to the terminals in the cell through the PBCH or the PCH.
  • a base station transmits a response signal to UEs in a cell through a downlink physical downlink channel (PDSCH).
  • PDSCH downlink physical downlink channel
  • the base station may transmit information related to an emergency situation to the terminals in the cell through the PDSCH using a broadcast, multicast or unicast transmission method.
  • the base station transmits the information related to the emergency situation to the terminals in a cell by using a broadcasting transmission method
  • the base station transmits the information related to the emergency situation in an RRC system information transmission message such as a system information block (SIB). It can be included and transmitted.
  • SIB system information block
  • the SIB may be newly defined to transmit information related to the emergency situation, or may use an existing SIB.
  • the SIB may be transmitted only when a specific emergency situation occurs, and may be transmitted in duplicate through one or more TTIs (or sub frames) so that all terminals (connection state terminal and idle state terminal) in the cell can receive it. have.
  • the emergency terminal by sending an indicator indicating that the information related to the emergency situation is transmitted through the SIB through the PBCH or PCH so that the terminal in the idle state can be received, the emergency terminal through the SIB It may inform that information related to the situation is transmitted.
  • the base station may transmit information related to the emergency situation by using a unicast or multicast transmission scheme through a downlink data channel to inform a specific terminal or specific terminals in a cell that an emergency situation has occurred.
  • the information related to the emergency situation may be transmitted through a specific radio network temporary identifier (RNTI) using unicast or multicast transmission knowledge.
  • RNTI radio network temporary identifier
  • an RNTI eg, U-RNTI or Urgent RNTI
  • U-RNTI eg, U-RNTI or Urgent RNTI
  • the idle terminal By setting a specific interval in a cell so that an idle terminal can receive information related to the emergency using the defined RNTI, the idle terminal receives information related to the emergency within the set interval. Can be received.
  • an indicator indicating that information related to an emergency situation is transmitted through the SIB through the PBCH or PCH is transmitted, and instructs the terminal in the idle state to receive the information related to the emergency situation at the set interval. can do.
  • the base station when the base station receives a signal or message indicating the occurrence of an emergency situation from the terminal, the base station can quickly notify the terminals in the cell to prevent the occurrence of a secondary accident, and if an emergency occurs, it can quickly and efficiently Can be.
  • FIG. 23 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • a wireless communication system includes a base station 2310 and a plurality of terminals 2320 located in an area of a base station 2310.
  • the base station 2310 includes a processor 2311, a memory 2312, and an RF unit 2313.
  • the processor 2311 implements the functions, processes, and / or methods proposed in FIGS. 1 to 20. Layers of the air interface protocol may be implemented by the processor 2311.
  • the memory 2312 is connected to the processor 2311 and stores various information for driving the processor 2311.
  • the RF unit 2313 is connected to the processor 2311 and transmits and / or receives a radio signal.
  • the terminal 2320 includes a processor 2321, a memory 2232, and an RF unit 2323.
  • the processor 2321 implements the functions, processes, and / or methods proposed in FIGS. 1 to 20. Layers of the air interface protocol may be implemented by the processor 2321.
  • the memory 2232 is connected to the processor 2321 and stores various information for driving the processor 2321.
  • the RF unit 2323 is connected to the processor 2321 to transmit and / or receive a radio signal.
  • the memories 2312 and 2322 may be inside or outside the processors 2311 and 2321, and may be connected to the processors 2311 and 2321 by various well-known means.
  • the base station 2310 and / or the terminal 2320 may have one antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치에 관한 것이다. 본 발명에 의하면, 긴급 상황과 관련된 이벤트(event)의 발생을 알리는 긴급 신호(urgent signal)를 단말로부터 수신하고, 셀에 포함되어 있는 적어도 하나의 단말에게 상기 이벤트의 발생을 알리기 위한 응답 신호를 상기 적어도 하나의 단말에게 전송하는 단계를 포함하는 방법을 제공할 수 있다.

Description

무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치
본 명세서는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 단말이 상향링크 데이터를 기지국에 전송하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 긴급 상황과 관련된 이벤트가 발생할 경우, 이보다 우선 순위가 낮은 데이터의 전송을 취소 또는 연기함으로써, 긴급 상황에 대한 정보 또는 메시지를 보다 빠르게 전송하기 위한 방법을 제공함에 목적이 있다.
또한, 본 명세서는 기지국에서 긴급 신호의 검출만으로도 어떤 이벤트가 발생하였는지를 빠르게 알 수 있도록 상기 긴급 신호를 이벤트 별로 또는 단말 별로 사전에 정의하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 한정된 상향링크 자원의 효율성을 높이기 위해 긴급 상황에 대한 상세 정보를 포함하는 긴급 메시지의 전송 시점을 정의하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선통신 시스템에서 데이터를 송수신하기 위한 방법에 있어서, 긴급 상황과 관련된 이벤트(event)의 발생을 알리는 긴급 신호(urgent signal)를 단말로부터 수신하고, 셀에 포함되어 있는 적어도 하나의 단말에게 상기 이벤트의 발생을 알리기 위한 응답 신호가 전송되는 채널을 나타내는 지시자를 전송하며, 상기 응답 신호를 상기 적어도 하나의 단말에게 전송하되, 상기 응답 신호는 하향링크 제어 채널 또는 하향링크 데이터 채널을 통해서 전송되는 방법을 제공한다.
또한, 본 발명은, 상기 응답 신호가 상기 하향링크 제어 채널을 통해서 전송되는 경우, 상기 적어도 하나의 단말에게 시스템 정보를 전송하되, 상기 시스템 정보는 상기 하향링크 제어 채널에서 상기 응답 신호가 전송되는 자원 영역 정보 및 상기 지시자를 포함한다.
또한, 본 발명에서, 상기 자원 영역은 서브프레임의 첫 번째 내지 세 번째 OFDM(orthogonal frequency division multiplexing) 심볼 중 하나의 심볼에 위치한다.
또한, 본 발명에서, 상기 자원 영역은 상기 하향링크 제어 채널의 PCFICH(physical control format indication channel) 또는 PHICH(Physical Hybrid-ARQ Indicator Channel) 뒤에 위치한다.
또한, 본 발명에서 상기 응답 신호는 ON/OFF Keying 방식 또는 공통 검색 공간(common search space)를 통해서 전송된다.
또한, 본 발명에서, 상기 응답 신호가 ON/OFF Keying 방식으로 전송되는 경우, 4개의 연속된 자원 요소들(resource elements)로 1 bit 정보를 스프레딩(spreading)한다.
또한, 본 발명에서, 상기 스프레딩(spreading)은 3번 반복된다.
또한, 본 발명은, 상기 적어도 하나의 단말로 물리 방송 채널(Physical Broadcast Channel, PBCH)을 통해서 상기 이벤트와 관련된 정보를 전송한다.
또한, 본 발명에서, 상기 응답 신호가 상기 하향링크 데이터 채널을 통해서 전송되는 경우, 상기 응답 신호는 RRC 메시지에 포함되어 전송된다.
또한, 본 발명에서, 상기 RRC 메시지는 브로드캐스트, 유니캐스트 또는 멀티캐스트 전송 방식 중 어느 하나의 방식으로 전송된다.
또한, 본 발명에서, 상기 RRC 메시지가 유니캐스트 또는 멀티캐스트 전송 방식 중 어느 하나의 방식으로 전송되는 경우, 상기 RRC 메시지는 상기 응답 신호를 전송하기 위한 특정 RNTI(Radio Network Temporary Identifier)를 통해서 전송된다.
또한, 본 발명은, 외부와 무선 신호를 송신 및 수신하는 통신부; 및 상기 통신부와 기능적으로 결합되어 있는 프로세서를 포함하되, 상기 프로세서는, 긴급 상황과 관련된 이벤트(event)의 발생을 알리는 긴급 신호(urgent signal)를 단말로부터 수신하고, 셀에 포함되어 있는 적어도 하나의 단말에게 상기 이벤트의 발생을 알리기 위한 응답 신호가 전송되는 채널을 나타내는 지시자를 전송하며, 상기 응답 신호를 상기 적어도 하나의 단말에게 전송하되, 상기 응답 신호는 하향링크 제어 채널 또는 하향링크 데이터 채널을 통해서 전송되는 기지국을 제공한다.
본 명세서는 이벤트 별로 또는 단말 별로 긴급 신호를 사전에 정의함으로써, 긴급한 상황을 감지한 단말이 해당 상황을 기지국으로 빠르게 알릴 수 있을 뿐만 아니라 종래 기술 대비 더 빠르게 상향링크 자원을 독점할 수 있는 효과가 있다.
이와 같은 긴급 단말의 빠른 상향링크 자원 독점은 긴급 메시지를 더욱 안전하고, 오류 없이(하나의 SF 자원을 모두 확보할 수 있도록 함으로써 오류에 강한 메시지를 생성하여 전송할 수 있도록 할 수 있음) 기지국으로 전송하는 것을 가능하게 함으로써, 전송 지연(latency)뿐만 아니라 전송에 대한 신뢰성(reliability)도 보장할 수 있게 하는 효과가 있다.
따라서, 본 명세서에서 제안하는 방법을 통해, 17.5ms에서 9ms의 지연이 발생했던 단말의 상향링크 데이터 전송이 최대 7ms에서 5ms까지 줄어드는 효과가 있다.
또한, 본 명세서는 경쟁 기반의 자원을 이용하는 것이 아니라 기지국 제어에 의한 자원 점유 방식을 이용하기 때문에, 경쟁 기반 자원 점유 방식에서 발생할 수 있었던 자원 충돌 문제를 해결함으로써 더욱 안전하고 오류에 강한 메시지를 전송할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 3은 본 발명이 적용될 수 있는 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 본 발명이 적용될 수 있는 3GPP LTE/LTE-A에서 무선 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 7는 LTE 시스템에서 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타내는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 9은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 엔티티(entity)에서 사용하는 MAC PDU를 예시하는 도면이다.
도 10 및 도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC PDU의 서브 헤더를 예시한다.
도 12은 본 발명이 적용될 수 있는 무선 통신 시스템에서 버퍼 상태 보고를 위한 MAC 제어 요소의 포맷을 예시하는 도면이다.
도 13는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말의 상향링크 자원 할당 과정을 예시하는 도면이다.
도 14은 본 발명이 적용될 수 있는 3GPP LTE-A에서 요구하는 제어 평면(C-Plane)에서의 지연 시간(latency)을 설명하기 위한 도면이다.
도 15는 본 발명이 적용될 수 있는 랜덤 접속 과정(Random Access Procedure)의 일 예를 나타낸 도이다.
도 16 및 도 17은 스케줄링 요청 및 BSR 프로시저를 통해 실제 데이터를 전송하는 방법의 일 예를 나타낸 도이다.
도 18은 RACH 프로시저를 통해 실제 데이터를 전송하는 방법의 일 예를 나타낸 도이다.
도 19은 본 명세서에서 제안하는 상향링크 데이터 전송 방법의 일 예를 나타낸 도이다.
도 20는 본 명세서에서 제안하는 긴급 메시지 전송을 지원하기 위한 기지국의 동작 방법의 일 예를 나타낸 도이다.
도 21은 본 명세서에서 제안하는 긴급 메시지 전송을 위한 기지국의 동작 방법의 또 다른 일 예를 나타낸 도이다.
도 22는 본 명세서에서 제안하는 긴급 메시지 전송을 위한 기지국의 동작 방법의 또 다른 일 예를 나타낸 도이다.
도 23은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
시스템 일반
도 1은 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 기지국(eNB)들로 구성되고, 기지국들은 X2 인터페이스를 통해 연결된다. X2 사용자 평면 인터페이스(X2-U)는 기지국들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 기지국 사이에 정의된다. X2-CP는 기지국 간의 컨텍스트(context) 전달, 소스 기지국과 타겟 기지국 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다. 기지국은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다. S1 사용자 평면 인터페이스(S1-U)는 기지국과 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 기지국과 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 기지국과 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다. 도 2의 (a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 2의 (b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 2를 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PDFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 논리채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel), 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다.
단말과 MME의 제어 평면에 위치한 NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM(EPS mobility management) 등록 상태(EMM-REGISTERED) 및 EMM 등록 해제 상태(EMM-DEREGISTERED)가 정의될 수 있다. EMM 등록 상태 및 EMM 등록 해제 상태는 단말과 MME에게 적용될 수 있다. 단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM 등록 해제 상태에 있으며, 이 단말이 네트워크에 접속하기 위해서 초기 접속(initial attach) 절차를 통해 해당 네트워크에 등록하는 과정을 수행한다. 접속 절차가 성공적으로 수행되면 단말 및 MME는 EMM 등록 상태로 천이(transition)된다.
또한, 단말과 네트워크 간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS connection management) 연결 상태(ECM-CONNECTED) 및 ECM 아이들 상태(ECM-IDLE)가 정의될 수 있다. ECM 연결 상태 및 ECM 아이들 상태 또한 단말과 MME에게 적용될 수 있다. ECM 연결은 단말과 기지국 간에 설정되는 RRC 연결과 기지국과 MME 간에 설정되는 S1 시그널링 연결로 구성된다. RRC 상태는 단말의 RRC 계층과 기지국의 RRC 계층이 논리적으로 연결(connection)되어 있는지 여부를 나타낸다. 즉, 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있는 경우, 단말은 RRC 연결 상태(RRC_CONNECTED)에 있게 된다. 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있지 않은경우, 단말은 RRC 아이들 상태(RRC_IDLE)에 있게 된다.
네트워크는 ECM 연결 상태에 있는 단말의 존재를 셀 단위에서 파악할 수 있고, 단말을 효과적으로 제어할 수 있다. 반면, 네트워크는 ECM 아이들 상태에 있는 단말의 존재를 파악할 수 없으며, 코어 네트워크(CN: core network)가 셀보다 더 큰 지역 단위인 트래킹 영역(tracking area) 단위로 관리한다. 단말이 ECM 아이들 상태에 있을 때에는 단말은 트래킹 영역에서 유일하게 할당된 ID를 이용하여 NAS에 의해 설정된 불연속 수신(DRX: Discontinuous Reception)을 수행한다. 즉, 단말은 단말-특정 페이징 DRX 사이클 마다 특정 페이징 기회에 페이징 신호를 모니터링함으로써 시스템 정보 및 페이징 정보의 브로드캐스트를 수신할 수 있다. 또한, 단말이 ECM 아이들 상태에 있을 때에는 네트워크는 단말의 컨텍스트(context) 정보를 가지고 있지 않다. 따라서 ECM 아이들 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(cell reselection)과 같은 단말 기반의 이동성 관련 절차를 수행할 수 있다. ECM 아이들 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라지는 경우, 단말은 트래킹 영역 업데이트(TAU: tracking area update) 절차를 통해 네트워크에 해당 단말의 위치를 알릴 수 있다. 반면, 단말이 ECM 연결 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM 연결 상태에서 네트워크는 단말이 속한 셀을 안다. 따라서, 네트워크는 단말로 또는 단말로부터 데이터를 전송 및/또는 수신하고, 단말의 핸드오버와 같은 이동성을 제어하고, 주변 셀에 대한 측정을 수행 할 수 있다.
위와 같이, 단말이 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 ECM 연결 상태로 천이하여야 한다. 단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM 상태와 마찬가지로 ECM 아이들 상태에 있으며, 단말이 초기 접속(initial attach) 절차를 통해 해당 네트워크에 성공적으로 등록하게 되면 단말 및 MME는 ECM 연결 상태로 천이(transition)된다. 또한, 단말이 네트워크에 등록되어 있으나 트래픽이 비활성화되어 무선 자원이 할당되어 있지 않은 경우 단말은 ECM 아이들 상태에 있으며, 해당 단말에 상향링크 혹은 하향링크 새로운 트래픽이 발생되면 서비스 요청(service request) 절차를 통해 단말 및 MME는 ECM 연결 상태로 천이(transition)된다.
도 3은 본 발명이 적용될 수 있는 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S301 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주 동기 채널(P-SCH: primary synchronization channel) 및 부 동기 채널(S-SCH: secondary synchronization channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID(identifier) 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리 방송 채널(PBCH: physical broadcast channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(DL RS: downlink reference signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S302 단계에서 PDCCH 및 PDCCH 정보에 따른 PDSCH 을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S303 내지 단계 S306과 같은 랜덤 액세스 절차(random access procedure)을 수행할 수 있다. 이를 위해 단말은 물리 랜덤 액세스 채널(PRACH: physical random access channel)을 통해 프리앰블(preamble)을 전송하고(S303), PDCCH 및 이에 대응하는 PDSCH을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304). 경쟁 기반 랜덤 액세스의 경우, 단말은 추가적인 PRACH 신호의 전송(S305) 및 PDCCH 신호 및 이에 대응하는 PDSCH 신호의 수신(S306)과 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH 신호 및/또는 PDSCH 신호의 수신(S307) 및 물리 상향링크 공유 채널(PUSCH) 신호 및/또는 물리 상향링크 제어 채널(PUCCH) 신호의 전송(S308)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: uplink control information)라고 지칭한다. UCI는 HARQ-ACK/NACK, 스케줄링 요청(SR: scheduling request), 채널 품질 지시자(CQI), 프리코딩 행렬 지시자(PMI: precoding matrix indicator), 랭크 지시자(RI: rank indication) 정보 등을 포함한다.
LTE/LTE-A 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 4는 본 발명이 적용될 수 있는 3GPP LTE/LTE-A에서 무선 프레임의 구조를 나타낸다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE/LTE-A 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것을 의미한다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 단말에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
도 4(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원 블록(RB: Resource Block)을 포함한다. 3GPP LTE/LTE-A는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 할당 단위로서의 자원 블록은, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 순환 전치(CP: Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장 순환 전치(extended CP)와 일반 순환 전치(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 순환 전치에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장 순환 전치에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 순환 전치인 경우보다 적다. 확장 순환 전치의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 순환 전치가 사용될 수 있다.
일반 순환 전치가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 4의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임으로 구성되고, 1개의 서브프레임은 2개의 슬롯으로 구성된다. 5개의 서브프레임 중 특히, 스페셜 서브프레임(special subframe)은 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 5을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(RE: resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair)(k, l)에 의해 식별될 수 있다. 여기서, k(k=0, …, NRB×12-1)는 주파수 영역 내 부 반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다. 하향링크 슬롯에 포함되는 자원 블록들의 수(NRB)는 하향링크 전송 대역폭(bandwidth)에 종속한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 6을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE/LTE-A에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ에 대한 ACK/NACK 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(RNTI: radio network temporary identifier)가 마스킹(masking)된다. 특정 단말을 위한 PDCCH라면 단말의 고유 식별자(예를 들어 C-RNTI(cell-RNTI))가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자(예를 들어 P-RNTI(paging-RNTI))가 CRC에 마스킹될 수 있다. 시스템 정보 블록(SIB: system information block)을 위한 PDCCH라면 시스템 정보 식별자(SI-RNTI(system information-RNTI))가 CRC에 마스킹될 수 있다. 또한, 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 7는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타내는 도면이다.
상기 도 7을 참조하면, 상기 도 7의 (a)는 기지국의 송신 안테나 개수가 1 또는 2개인 경우를 나타내고, 상기 도 7의 (b)는 기지국의 송신 안테나 개수가 4개인 경우를 나타낸다. 송신 안테나의 개수에 따라 RS(Reference Signal) 패턴만 상이할 뿐 제어 채널과 관련된 자원 단위의 설정 방법은 동일하다.
상기 도 7에 도시된 바와 같이, 하향링크 제어 채널의 기본 자원 단위는 REG(Resource Element Group)이다. 상기 도 6에서 살펴본 PCFICH 및 PHICH는 각각 4개의 REG 및 3개의 REG를 포함한다. PDCCH는 CCE(Control Channel Elements) 단위로 구성되며 하나의 CCE는 9개의 REG를 포함한다.
단말은 자신에게 L개의 CCE로 이루어진 PDCCH가 전송되는지를 확인하기 위하여 M(L)(≥L)개의 연속되거나 특정 규칙으로 배치된 CCE를 확인하도록 설정된다. 상기 단말이 PDCCH 수신을 위해 고려해야 하는 L값은 복수가 될 수 있다. 상기 단말이 PDCCH 수신을 위해 확인해야 하는 CCE 집합들을 검색 영역(search space)이라고 한다.
아래 표 1은 상기 검색영역의 일 예를 나타낸다.
Figure PCTKR2016002522-appb-T000001
상기 표 1에서 CCE 집성 레벨 L은 PDCCH를 구성하는 CCE 개수를 나타내고,
Figure PCTKR2016002522-appb-I000001
는 CCE 집성 레벨 L의 검색 영역을 나타내며, M(L)은 집성 레벨 L의 검색 영역에서 모니터링 해야 하는 후보 PDCCH의 개수이다.
검색 영역은 특정 단말에 대해서만 접근이 허용되는 단말 특정 검색 영역(UE-specific search space)과 셀 내의 모든 단말에 대해 접근이 허용되는 공통 검색 영역(common search space)로 구분될 수 있다. 단말은 CCE 집성 레벨이 4 및 8인 공통 검색 영역을 모니터하고, CCE 집성 레벨이 1, 2, 4 및 8인 단말-특정 검색 영역을 모니터한다. 공통 검색 영역 및 단말 특정 검색 영역은 오버랩될 수 있다.
또한, 각 CCE 집성 레벨 값에 대하여 임의의 단말에게 부여되는 PDCCH 검색 영역에서 첫 번째(가장 작은 인덱스를 가진) CCE의 위치는 단말에 따라서 매 서브프레임마다 변화하게 된다. 이를 PDCCH 검색 영역 해쉬(hashing)라고 한다.
상기 CCE는 시스템 대역에 분산될 수 있다. 보다 구체적으로, 논리적으로 연속된 복수의 CCE가 인터리버(interleaver)로 입력될 수 있으며, 상기 인터리버는 입력된 복수의 CCE를 REG 단위로 뒤섞는 기능을 수행한다. 따라서, 하나의 CCE를 이루는 주파수/시간 자원은 물리적으로 서브프레임의 제어 영역 내에서 전체 주파수/시간 영역에 흩어져서 분포한다. 결국, 제어 채널은 CCE 단위로 구성되지만 인터리빙은 REG 단위로 수행됨으로써 주파수 다이버시티(diversity)와 간섭 랜덤화(interference randomization) 이득을 최대화할 수 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 8을 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH이 할당된다. 상위 계층에서 지시되는 경우, 단말은 PUSCH와 PUCCH의 동시 전송을 지원할 수 있다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록 쌍(pair)이 할당된다. PUCCH에 할당되는 자원 블록 쌍에 속하는 자원 블록들은 슬롯 경계(slot boundary)를 기준으로 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 자원 블록 쌍은 슬롯 경계에서 주파수 도약(frequency hopping)된다고 한다.
PDCCH (Physical Downlink Control Channel)
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(DCI: Downlink Control Indicator)라고 한다. PDCCH은 DCI 포맷에 따라서 제어 정보의 크기 및 용도가 다르며 또한 부호화율에 따라 크기가 달라질 수 있다.
표 2는 DCI 포맷에 따른 DCI를 나타낸다.
Figure PCTKR2016002522-appb-T000002
상기 표 2을 참조하면, DCI 포맷으로는 PUSCH 스케줄링을 위한 포맷 0, 하나의 PDSCH 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, DL-SCH의 매우 간단한 스케줄링을 위한 포맷 1C, 폐루프(Closed-loop) 공간 다중화(spatial multiplexing) 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Openloop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, 상향링크 채널을 위한 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3 및 3A, 다중 안테나 포트 전송 모드(transmission mode)에서 하나의 상향링크 셀 내 PUSCH 스케줄링을 위한 포맷 4가 있다.
DCI 포맷 1A는 단말에 어떤 전송 모드가 설정되어도 PDSCH 스케줄링을 위해 사용될 수 있다.
이러한, DCI 포맷은 단말 별로 독립적으로 적용될 수 있으며, 하나의 서브프레임 안에 여러 단말의 PDCCH가 동시에 다중화(multiplexing)될 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation)으로 구성된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 4개의 자원 요소로 구성된 REG의 9개의 세트에 대응하는 단위를 말한다. 기지국은 하나의 PDCCH 신호를 구성하기 위해 {1, 2, 4, 8} 개의 CCE들을 사용할 수 있으며, 이때의 {1, 2, 4, 8}은 CCE 집합 레벨(aggregation level)이라고 부른다. 특정 PDCCH의 전송을 위해 사용되는 CCE의 개수는 채널 상태에서 따라 기지국에 의하여 결정된다. 각 단말에 따라 구성된 PDCCH는 CCE 대 RE 맵핑 규칙(CCE-to-RE mapping rule)에 의하여 각 서브프레임의 제어 채널 영역으로 인터리빙(interleaving)되어 맵핑된다. PDCCH의 위치는 각 서브프레임의 제어채널을 위한 OFDM 심볼 개수, PHICH 그룹 개수 그리고 송신안테나 및 주파수 천이 등에 따라 달라질 수 있다.
상술한 바와 같이, 다중화된 각 단말의 PDCCH에 독립적으로 채널 코딩이 수행되고 CRC(Cyclic Redundancy Check)가 적용된다. 각 단말의 고유의 식별자 (UE ID)를 CRC에 마스킹(masking)하여 단말이 자신의 PDCCH를 수신할 수 있도록 한다. 하지만, 서브프레임 내에서 할당된 제어 영역에서 기지국은 단말에게 해당하는 PDCCH가 어디에 있는지에 관한 정보를 제공하지 않는다. 단말은 기지국으로부터 전송된 제어채널을 수신하기 위해서 자신의 PDCCH가 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷으로 전송되는지 알 수 없으므로, 단말은 서브프레임 내에서 PDCCH 후보(candidate)들의 집합을 모니터링하여 자신의 PDCCH를 찾는다. 이를 블라인드 디코딩(BD: Blind Decoding)이라 한다. 블라인드 디코딩은 블라인드 탐색(Blind Detection) 또는 블라인드 서치(Blind Search)라고 불릴 수 있다. 블라인드 디코딩은 단말이 CRC 부분에 자신의 단말 식별자(UE ID)를 디 마스킹(De-Masking) 시킨 후, CRC 오류를 검토하여 해당 PDCCH가 자신의 제어 채널인지 여부를 확인하는 방법을 말한다.
버퍼 상태 보고( BSR : buffer status reporting)
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 엔티티(entity)에서 사용하는 MAC PDU를 예시하는 도면이다.
도 9를 참조하면, MAC PDU는 MAC 헤더(header), 적어도 하나의 MAC SDU(service data unit) 및 적어도 하나의 MAC 제어 요소(control element)를 포함하고, 부가적으로 패딩(padding)을 더 포함할 수 있다. 경우에 따라, MAC SDU 및 MAC 제어 요소 중 적어도 하나는 MAC PDU에 포함되지 않을 수 있다.
도 9의 예시와 같이, MAC 제어 요소는 MAC SDU 보다 선행하여 위치하는 것이 일반적이다. 그리고, MAC 제어 요소의 크기를 고정되거나 가변적일 수 있다. MAC 제어 요소의 크기가 가변적인 경우, 확장된 비트(extentded bit)를 통해 MAC 제어 요소의 크기가 확장되었는지 여부를 판단할 수 있다. MAC SDU의 크기 역시 가변적일 수 있다.
MAC 헤더는 적어도 하나 이상의 서브 헤더(sub-header)를 포함할 수 있다. 이때, MAC 헤더에 포함되는 적어도 하나 이상의 서브 헤더는 각각의 MAC SDU, MAC 제어 요소 및 패딩에 대응하는 것으로서, 서브 헤더의 순서는 대응되는 요소의 배치 순서와 동일하다. 예컨대, MAC PDU에 MAC 제어 요소 1, MAC 제어 요소 2, 복수개의 MAC SDU 및 패딩이 포함되어 있다면, MAC 헤더에서는 MAC 제어 요소 1에 대응되는 서브 헤더, MAC 제어 요소 2에 대응되는 서브 헤더, 복수개의 MAC SDU 각각에 대응되는 복수 개의 서브 헤더 및 패딩에 대응되는 서브 헤더가 순서대로 배치될 수 있다.
MAC 헤더에 포함되는 서브 헤더는 6개의 헤더 필드를 포함할 수 있다. 구체적으로 서브 헤더는 R/R/E/LCID/F/L의 6개의 헤더 필드를 포함할 수 있다.
고정된 크기의 MAC 제어 요소에 대응되는 서브 헤더 및 MAC PDU에 포함된 데이터 필드 중 가장 마지막 것에 대응되는 서브 헤더에 대해서는 4개의 헤더 필드를 포함하는 서브 헤더가 사용될 수 있다. 이처럼 서브 헤더가 4개의 필드를 포함하는 경우, 4개의 필드는 R/R/E/LCID 일 수 있다.
도 10 및 도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC PDU의 서브 헤더를 예시한다.
도 10 및 도 11을 참조하여 각 필드를 설명하면 다음과 같다.
1) R: 예약 비트(Reserved bit)이며, 사용되지 않는 비트이다.
2) E: 확장 필드(Extended field)로서, 서브 헤더에 대응되는 요소의 확장 여부를 나타낸다. 예를 들어, E 필드가 ‘0’인 경우, 서브 헤더에 대응되는 요소는 반복 없이 종료되고, E 필드가 ‘1’인 경우, 서브 헤더에 대응되는 요소는 1회 더 반복되어 그 길이가 2개 확장될 수 있다.
3) LCID: 논리 채널 식별 필드(Logical Channel Identification field)는 해당 MAC SDU와 대응되는 논리 채널(logical channel)을 식별하거나 또는 해당 MAC 제어 요소 및 패딩의 타입을 식별한다. 만약, 서브 헤더와 연관된 것이 MAC SDU라면 어떠한 논리 채널에 해당하는 MAC SDU 인지를 나타내고, 만약 서브 헤더와 연관된 것이 MAC 제어 요소라면 어떠한 MAC 제어 요소인지를 나타낼 수 있다.
표 3은 DL-SCH를 위한 LCID의 값을 나타낸다.
Figure PCTKR2016002522-appb-T000003
표 4는 UL-SCH를 위한 LCID의 값을 나타낸다.
Figure PCTKR2016002522-appb-T000004
LTE/LTE-A 시스템에서 단말은 LCID 필드에 단축된 BSR(Truncated BSR), 짧은 BSR(Short BSR) 및 긴 BSR(Long BSR) 중 어느 하나의 인덱스 값을 설정함으로써, 네트워크에 자신의 버퍼 상태를 보고할 수 있다.
표 3 및 표 4에 예시된 인덱스 및 LCID 값의 매핑 관계를 설명의 편의를 위해 예시된 것이며, 본 발명이 이에 한정되는 것은 아니다.
4) F: 포맷 필드(Format field)로서, L 필드의 크기를 나타낸다.
5) L: 길이 필드(Length field)로서, 서브 헤더와 대응되는 MAC SDU 및 MAC 제어 요소의 크기를 나타낸다. 서브 헤더에 대응되는 MAC SDU 또는 MAC 제어 요소의 크기가 127 비트보다 같거나 작으면 7 비트의 L 필드가 사용되고(도 14의 (a)), 그 외의 경우에는 15 비트의 L 필드가 사용될 수 있다(도 14의 (b)). MAC 제어 요소가 가변하는 크기인 경우, L 필드를 통해 MAC 제어 요소의 크기가 정의될 수 있다. MAC 제어 요소의 크기가 고정되는 경우, L 필드로 MAC 제어 요소의 크기가 정의되지 않더라도 MAC 제어 요소의 크기를 결정할 수 있으므로 도 15와 같이 F 및 L 필드는 생략될 수 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 버퍼 상태 보고를 위한 MAC 제어 요소의 포맷을 예시하는 도면이다.
서브 헤더의 LCID 필드에 단축된 BSR 및 짧은 BSR이 정의되는 경우, 서브 헤더에 대응되는 MAC 제어 요소는 도 12의 (a)의 예시와 같이, 하나의 논리 채널 그룹 아이디(LCG ID: Logical Channel Group Identification) 필드 및 논리 채널 그룹의 버퍼 상태를 가리키는 하나의 버퍼 사이즈(Buffer Size) 필드를 포함하도록 구성될 수 있다. LCG ID 필드는 버퍼 상태를 보고하여야 할 논리 채널 그룹을 식별하기 위한 것으로서, LCG ID 필드는 2 비트의 크기를 가질 수 있다.
버퍼 사이즈 필드는 MAC PDU가 생성된 이후, 논리 채널 그룹에 속한 모든 논리 채널의 사용 가능한 총 데이터 양을 식별하기 위한 것이다. 사용 가능한 데이터는 RLC 계층 및 PDCP 계층에서 전송 가능한 모든 데이터를 포함하며, 데이터 양은 바이트(byte) 수로 나타낸다. 이때, 데이터 양을 연산할 때 RLC 헤더 및 MAC 헤더의 크기를 배제될 수 있다. 버퍼 사이즈 필드는 6 비트의 크기를 가질 수 있다.
서브 헤더의 LCID 필드에 긴 BSR이 정의되는 경우, 서브 헤더에 대응되는 MAC 제어 요소는 도 12의 (b)의 예시와 같이, 0 내지 3의 LCG ID를 가지는 4개의 그룹의 버퍼 상태를 가리키는 4개의 버퍼 사이즈 필드가 포함될 수 있다. 각 버퍼 사이즈 필드는 서로 다른 논리 채널 그룹 별로 사용 가능한 총 데이터 양을 식별하는데 이용될 수 있다.
상향링크 자원 할당 절차
3GPP LTE/LTE-A 시스템의 경우, 자원의 활용을 최대화하기 위해 기지국의 스케줄링 기반의 데이터 송수신 방법을 사용한다. 이는 단말이 전송할 데이터가 있는 경우 우선적으로 기지국에게 상향링크 자원 할당을 요청하고, 기지국으로부터 할당된 상향링크 자원만을 이용하여 데이터를 전송할 수 있음을 의미한다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말의 상향링크 자원 할당 과정을 예시하는 도면이다.
상향링크의 무선 자원의 효율적인 사용을 위하여, 기지국은 각 단말 별로 어떤 종류의 데이터를 얼마만큼 상향링크로 전송할지를 알아야 한다. 따라서, 단말이 직접 자신이 전송하고자 하는 상향링크 데이터에 관한 정보를 기지국으로 전달하고, 기지국은 이에 기반하여 해당 단말에 상향링크 자원을 할당할 수 있다. 이 경우, 단말이 기지국으로 전달하는 상향링크 데이터에 관한 정보는 자신의 버퍼에 저장되어 있는 상향링크 데이터의 양으로서, 이를 버퍼 상태 보고(BSR: Buffer Status Report)라고 지칭한다. BSR은 단말이 현재 TTI에서 PUSCH 상의 자원이 할당되고 보고 이벤트(reporting event)가 트리거링된 경우, MAC 제어 요소(MAC control element)를 사용하여 전송된다.
도 13의 (a)는 단말이 버퍼 상태 보고(BSR: buffer status reporting)를 위한 상향링크 무선 자원이 단말에 할당되지 않은 경우에 실제 데이터(actual data)를 위한 상향링크 자원 할당 과정을 예시한다. 즉, DRX 모드에서 액티브 모드의 상태를 전환하는 단말의 경우, 미리 할당 받은 데이터 자원이 없기 때문에, PUCCH를 통한 SR 전송을 시작으로 상향 데이터에 대한 자원을 요청해야 하며, 이 경우 5 단계의 상향링크 자원 할당 절차가 사용된다.
도 13의 (a)를 참조하면, 단말은 BSR를 전송하기 위한 PUSCH 자원이 할당되지 않은 경우로, 단말은 PUSCH 자원을 할당 받기 위하여 먼저 스케줄링 요청(SR: scheduling request)을 기지국에 전송한다(S13010).
스케줄링 요청은 보고 이벤트(reporting event)가 발생되었으나 단말이 현재 TTI에서 PUSCH 상에 무선 자원이 스케줄링되지 않은 경우, 단말이 상향링크 전송을 위한 PUSCH 자원을 할당 받기 위하여 기지국에 요청하기 위해 이용된다. 즉, 단말은 정규적 버퍼 상태 보고(regular BSR)가 트리거(trigger)되었으나 BSR을 기지국에 전송하기 위한 상향링크 무선 자원을 가지지 않을 때 PUCCH 상에 SR을 전송한다. 단말은 SR을 위한 PUCCH 자원이 설정되었는지 여부에 따라 단말은 PUCCH를 통해 SR을 전송하거나 또는 랜덤 액세스 절차를 개시한다. 구체적으로, SR이 전송될 수 있는 PUCCH 자원은 단말 특정적으로 상위 계층(예를 들어, RRC 계층)에 의하여 설정되며, SR 설정은(SR configuration)은 SR 전송주기(SR periodicity) 및 SR 서브프레임 오프셋 정보를 포함한다.
단말은 기지국으로부터 BSR 전송을 위한 PUSCH 자원에 대한 UL grant를 수신하면(S13020), UL grant에 의해 할당된 PUSCH 자원을 통해 트리거링된 BSR을 기지국으로 전송한다(S13030).
기지국은 BSR을 통해 실제 단말이 상향링크로 전송할 데이터의 양을 확인하고 실제 데이터 전송을 위한 PUSCH 자원에 대한 UL grant를 단말에 전송한다(S13040). 실제 데이터 전송을 위한 UL grant를 수신한 단말은 할당된 PUSCH 자원을 통해 실제 상향링크 데이터를 기지국으로 전송한다(S13050).
도 13의 (b)는 단말이 BSR를 위한 상향링크 무선 자원이 단말에 할당되어 있는 경우에 실제 데이터를 위한 상향링크 자원 할당 과정을 예시한다.
도 13의 (b)를 참조하면, 단말이 BSR 전송을 위한 PUSCH 자원이 이미 할당된 경우로, 단말은 할당된 PUSCH 자원을 통해 BSR을 전송하며, 이와 함께 스케줄링 요청을 기지국에 전송한다(S13110). 이어, 기지국은 BSR을 통해 실제 단말이 상향링크로 전송할 데이터의 양을 확인하고 실제 데이터 전송을 위한 PUSCH 자원에 대한 UL grant를 단말에 전송한다(S13120). 실제 데이터 전송을 위한 UL grant를 수신한 단말은 할당된 PUSCH 자원을 통해 실제 상향링크 데이터를 기지국으로 전송한다(S13130).
도 14는 본 발명이 적용될 수 있는 3GPP LTE-A에서 요구하는 제어 평면(C-Plane)에서의 지연 시간(latency)을 설명하기 위한 도면이다.
도 14를 참조하면, 3GPP LTE-A는 아이들 모드(Idle mode)(IP 주소가 할당된 상태)에서 연결 모드(Connected mode)로의 천이(transition) 시간이 50ms 이하가 되도록 요구한다. 이때, 천이 시간은 사용자 평면(U-Plane)의 설정 시간(S1 전달 지연 시간은 제외)을 포함한다. 또한, 연결 모드 내에서 도먼트 상태(dormant state)에서 액티브 상태(active state)로의 전환 시간은 10ms 이하로 요구된다.
도먼트 상태(dormant state)에서 액티브 상태(active state)로의 천이는 다음과 같이 4가지의 시나리오에서 발생될 수 있다.
- 동기화된 단말의 경우, 상향링크 전송에 의해 개시된 천이(Uplink initiated transition, synchronized)
- 비동기화된 단말의 경우, 상향링크 전송에 의해 개시된 천이(Uplink initiated transition, unsynchronized)
- 동기화된 단말의 경우, 하향링크 전송에 의해 개시된 천이(Downlink initiated transition, synchronized)
- 비동기화된 단말의 경우, 하향링크 전송에 의해 개시된 천이(Downlink initiated transition, unsynchronized)
랜덤 접속 과정( RACH 프로시저 )
도 15의 (a) 및 도 15의 (b)는 LTE 시스템에서 랜덤 접속 과정(Random Access Procedure)의 일 예를 나타낸다.
랜덤 접속 과정은 RRC_IDLE에서의 초기 접속, 무선 링크 실패 후의 초기 접속, 랜덤 접속 과정을 요구하는 핸드오버, RRC_CONNECTED 중에 랜덤 접속 과정이 요구되는 상향링크 또는 하향링크 데이터 발생 시에 수행된다. RRC 연결 요청 메시지(RRC Connection Request Message)와 셀 갱신 메시지(Cell Update Message), URA(UTRAN Registration Area) 갱신 메시지(URA Update Message) 등의 일부 RRC 메시지도 랜덤 접속 과정을 이용하여 전송된다. 논리채널 CCCH(Common Control Channel), DCCH(Dedicated Control Channel), DTCH(Dedicated Traffic Channel)가 전송채널 RACH에 매핑될 수 있다. 전송채널 RACH는 물리채널 PRACH(Physical Random Access Channel)에 매핑된다.
단말의 MAC 계층이 단말 물리계층에 PRACH 전송을 지시하면, 단말 물리계층은 먼저 하나의 접속 슬롯(access slot)과 하나의 시그너처(signature)를 선택하여 PRACH 프리앰블을 상향으로 전송한다. 랜덤 접속 과정은 경쟁 기반(Contention based)의 랜덤 접속 과정과 비경쟁 기반(Non-contention based)의 랜덤 접속 과정으로 구분된다.
도 15의 (a)는 경쟁 기반(Contention based)의 랜덤 접속 과정의 일 예를 나타내며, 도 15의 (b)는 비경쟁 기반(Non-contention based)의 랜덤 접속 과정의 일 예를 나타낸다.
먼저, 경쟁 기반의 랜덤 접속 과정에 대해 도 15의 (a)를 참조하여 살펴보기로 한다.
단말은 시스템 정보를 통해 기지국으로부터 랜덤 접속에 관한 정보를 수신하여 저장한다. 이후, 랜덤 접속이 필요한 경우, 단말은 랜덤 접속 프리앰블(Random Access Preamble; 메시지 1이라고도 함)을 기지국으로 전송한다(S15010).
기지국이 상기 단말로부터 랜덤 접속 프리앰블을 수신하면, 상기 기지국은 랜덤 접속 응답 메시지(Random Access Response; 메시지 2라고도 함)를 단말에게 전송한다(S15020). 구체적으로, 상기 랜덤 접속 응답 메시지에 대한 하향 스케쥴링 정보는 RA-RNTI(Random Access-Radio Network Temporary Identifier)로 CRC 마스킹되어 L1 또는 L2 제어채널(PDCCH) 상에서 전송될 수 있다. RA-RNTI로 마스킹된 하향 스케쥴링 신호를 수신한 단말은 PDSCH(Physical Downlink Shared Channel)로부터 랜덤 접속 응답 메시지를 수신하여 디코딩할 수 있다. 이후, 단말은 상기 랜덤 접속 응답 메시지에 자신에게 지시된 랜덤 접속 응답 정보가 있는지 확인한다.
자신에게 지시된 랜덤 접속 응답 정보가 존재하는지 여부는 단말이 전송한 프리앰블에 대한 RAID(Random Access Preamble ID)가 존재하는지 여부로 확인될 수 있다.
상기 랜덤 접속 응답 정보는 동기화를 위한 타이밍 옵셋 정보를 나타내는 TA(Timing Alignment), 상향링크에 사용되는 무선자원 할당 정보, 단말 식별을 위한 임시 식별자(예: Temporary C-RNTI) 등을 포함한다.
단말은 랜덤 접속 응답 정보를 수신하는 경우, 상기 응답 정보에 포함된 무선자원 할당 정보에 따라 상향링크 SCH(Uplink Shared Channel)로 상향링크 전송(메시지 3이라고도 표현함)을 수행한다(S15030). 여기서, 상향링크 전송은 스케쥴된 전송(Scheduled Transmission)으로 표현될 수도 있다.
기지국은 단말로부터 상기 상향링크 전송을 수신한 후에, 경쟁 해결(contention resolution)을 위한 메시지(메시지 4라고도 표현함)를 하향링크 공유 채널(Downlink Shared Channel:DL-SCH)을 통해 단말에게 전송한다(S15040).
다음으로, 비경쟁 기반의 랜덤 접속 과정에 대해 도 15의 (b)를 참조하여 살펴보기로 한다.
단말이 랜덤 접속 프리앰블을 전송하기 전에 기지국이 비경쟁 랜덤 접속 프리앰블(Non-contention Random Access Preamble)을 단말에게 할당한다(S15110).
비경쟁 랜덤 접속 프리앰블은 핸드오버 명령이나 PDCCH와 같은 전용 시그널링(Dedicated Signalling)을 통해 할당될 수 있다. 단말은 비경쟁 랜덤 접속 프리앰블을 할당받은 경우, 기지국으로 할당된 비경쟁 랜덤 접속 프리앰블을 전송한다(S15120).
이후, 상기 기지국은 경쟁 기반 랜덤 접속 과정에서의 S2102단계와 유사하게 랜덤 접속 응답(Random Access Response; 메시지 2라고도 표현함)을 단말에게 전송할 수 있다(S15130).
상기 설명된 랜덤 접속 과정에서 랜덤 접속 응답에 대해서는 HARQ가 적용되지 않지만, 랜덤 접속 응답에 대한 상향링크 전송이나 경쟁 해결을 위한 메시지에 대해서는 HARQ가 적용될 수 있다. 따라서, 랜덤 접속 응답에 대해서 단말은 ACK 또는 NACK을 전송할 필요가 없다.
먼저, LTE(-A) 시스템 또는 802.16m 시스템에서의 상향링크 데이터(UL data) 전송 방법에 대해 간략히 살펴보기로 한다.
LTE(-A) 시스템 또는 802.16m 시스템 등과 같은 셀룰러 시스템은 기지국 스케줄링 기반의 자원 할당 방식을 사용한다.
기지국 스케줄링 기반의 자원 할당 방식을 사용하는 시스템의 경우, 단말이 기지국으로 전송할 데이터(i.e., UL data)가 발생하는 경우, 단말은 기지국으로 데이터를 전송하기 전에 상기 데이터 전송을 위한 자원을 기지국으로 요청한다.
이처럼, 단말이 데이터 전송을 위해 기지국으로 자원을 요청하는 것을 스케쥴링 요청(scheduling request)라고 한다.
이와 같은 단말의 스케줄링 요청은 PUCCH로의 SR(Scheduling Request) 전송 또는 PUSCH로의 BSR(Buffer Status Report) 전송을 통해 수행될 수 있다.
또한, 단말은 기지국으로부터 SR 또는 BSR을 전송할 자원을 할당받지 못한 경우, 단말은 RACH 프로시저를 통해 상향링크 자원을 기지국으로 요청할 수 있다.
이와 같이 단말로부터 스케줄링 요청을 수신한 기지국은 해당 단말이 사용할 상향링크 자원을 하향링크 제어 채널(i.e., UL grant 메시지, LTE(-A)의 경우 DCI)을 통해 단말로 할당하게 된다.
상기 하향링크 제어 채널은 PDCCH일 수 있다.
이 때, PDCCH를 통해 단말로 전송되는 UL grant는 상기 단말에게 할당되는 자원이 어떤 subframe의 자원에 해당되는지를 명시적으로(explicit하게) 시그널링함으로써 알려줄 수도 있지만, 특정 시간(e.g., LTE의 경우 4ms) 이후의 subframe에 대한 자원 할당으로 단말과 기지국 사이에 약속된 시간을 정의할 수도 있다.
즉, 기지국이 단말에게 Xms(e.g., LTE(-A)의 경우 4ms) 이후에 자원을 할당하는 것은 단말이 UL grant를 수신 및 디코딩하고, 단말이 전송할 상향링크 데이터를 준비 및 인코딩하는 시간을 모두 고려하기 때문이다.
도 16는 단말이 PUCCH SR 자원을 이용하여 5 단계 스케줄링 요청 프로시저를 통해 실제 데이터를 전송하기까지 걸리는 시간을 나타낸 도이다.
도 16에 도시된 바와 같이, 단말은 SR 시그널을 전송한 시간으로부터 약 17ms 이후에 실제 상향링크 데이터를 전송할 수 있다.
이 때, 단말에 대해 할당된 SR 자원은 특정 주기를 가지고 PUCCH 상에 할당될 수 있으며, 최소 1ms~ 최대 80ms 주기로 할당될 수 있다.
여기서, 해당 단말에게 1ms 주기의 SR이 할당되었다고 할 경우, 단말이 SR 전송을 위한 PUCCH 자원을 기다리는 평균 시간은 0.5ms 가 되고, 기지국으로 스케줄링 요청을 통한 데이터 전송까지의 지연시간은 17.5ms가 소요된다.
만약, 단말이 기지국으로부터 미리 할당 받은 상향링크 자원이 있는 경우, 단말은 새롭게 생성된 데이터에 대한 자원 요청을 미리 할당 받은 자원을 이용하여 전송할 수도 있다.
또는, 단말은 미리 할당 받은 자원으로 전송되는 데이터에 BSR을 함께 전송함으로써 추가적인 상향링크 자원을 기지국으로 요청할 수 있다.
이 경우, 도 17에 도시된 바와 같이, 단말이 BSR을 기지국으로 전송한 후, 상향링크 데이터를 기지국으로 전송하기까지 9ms의 지연이 발생하는 것을 볼 수 있다.
만약, 단말이 기지국으로부터 할당 받은 PUCCH SR 자원 또는 PUSCH 자원이 없거나 상향링크 동기가 맞지 않는 경우, 단말은 새롭게 생성된 데이터에 대한 자원을 RACH 프로시저를 이용하여 요청할 수 있다.
이 경우, 도 18에 도시된 바와 같이, 단말은 RACH preamble을 기지국으로 전송한 시점부터 상향링크 데이터를 전송하기까지 17ms의 지연이 발생하는 것을 볼 수 있다.
이때, RACH preamble을 전송할 수 있는 PRACH 자원은 셀마다 특정 주기를 가지고 설정될 수 있다.
만약, PRACH 자원이 최소 1ms의 주기를 가진다고 가정할 경우, 평균 17.5ms의 데이터 전송 지연이 발생할 수 있다.
도 16 내지 도 18에서 살핀 바와 같이, 단말은 상향링크 데이터를 전송하기 위해 최소 9ms에서 최대 17.5ms까지의 지연이 발생하게 된다.
이는, 기지국이 각 단말의 채널 상황에 최적의 자원을 할당함으로써 자원 효율성을 최대화할 수 있는 장점이 있지만, 단말의 UL data 전송에 있어서는 지연이 발생하게 된다.
5G 통신은 헬스 케어, 교통 안전, 재난 안전, 원격 의료제어 등과 같은 다양한 실시간 응용 서비스를 지원하기 위한 요구사항이 증가하고 있다.
따라서, 5G 통신은 인간의 오감 중 지연 시간에 가장 민감한 촉감 정보를 인터넷으로 제공해도 사용자가 어색함을 눈치채지 못할 정도로 극단적으로 짧은 반응시간을 갖는 초 저 지연 시스템 구축을 목표(목표 지연: E2E or Radio 1ms)로 하고 있다.
이와 같은 5G 통신 서비스를 제공하기 위해서는 데이터 전송의 지연이 최소화되어야 한다.
하지만, 현재 시스템에서 데이터 전송은 다음과 같은 지연이 추가적으로 발생하게 설계되어 있다.
하향링크 데이터 전송 지연
- Connected UE: 0ms (지연 없음)
- Dormant UE: 단말에게 설정된 DRX cycle에 따라 평균 1ms~1,280ms지연 발생(short DRX cycle: 2~640ms, long DRX cycle: 10~2560ms)
- Idle UE: 단말에게 설정된 paging DRX cycle에 따라 평균 160ms~1,280ms + initial access 지연 발생(paging cycle: 320~2560ms, initial access: 50ms~ 100ms (LTE-A: 50ms/LTE: 100ms))
상향링크 데이터 전송 지연
- Synchronized & dormant UE: 17.5ms 지연 발생 (5단계 SR)
- Unsynchronized UE: 17.5ms 지연 발생 (RACH 통한 SR)
- 상향링크 자원이 할당된 connected UE: 9ms (BSR전송을 통해 데이터 전송)
이처럼, 단말이 데이터를 송/수신하기 위해서는 단말의 상태에 따라 다양한 시간 지연이 발생할 수 있으며, 특히 하향링크 데이터 수신의 지연은 dormant 또는 idle 상태 단말에 대해 다양한 길이로 지연이 발생할 수 있다.
다만, 이는 단말의 전력 소모를 줄이기 위한 방안 중의 하나로, 데이터 수신 지연과 전력 소모 사이의 관계성을 면밀히 살펴볼 필요가 있다.
하지만, 상향링크 데이터 전송에서의 데이터 전송 지연은 단말이 필요할 때에 전송할 수 있음에도 불구하고 기지국 스케줄링 기반의 데이터 전송 방식을 사용하게 됨으로써 추가적인 지연이 반드시 발생하는 것을 확인할 수 있다.
5G 통신은 human 또는 machine(자동차, 센서) 등과 같이 다양한 end user로부터 예측할 수 없는 시간에 특정 이벤트에 의해 발생할 수 있는 사고나 상태에 대한 정보를 기지국 또는 주변 단말 또는 사용자에게 빠르게 알림으로써, 2차 사고 예방이나 응급 상황에 빠르게 대처할 수 있도록 하는 것을 주요 서비스의 목적으로 예상하고 있다.
이와 같은 저 지연 서비스는 주로 상향링크 데이터를 빠르게 전송함으로써 후속 절차를 수행할 수 있도록 한다.
이 때문에 해당 서비스의 initiation 단계인 상향링크 데이터의 빠른 전송은 전체 서비스의 지연에 영향을 주는 주요 요소 중의 하나이다.
상기와 같은 이유들로 인해, 새로운 5G 통신의 저 지연 서비스를 지원하기 위해서는 상향링크 데이터 전송에서의 지연은 필수적으로 감소되어야 하는 요소로 고려되고 있다.
이하에서, 본 명세서에서 제안하는 새로운 5G(generation) 통신에서의 저 지연(low latency) 서비스를 지원하기 위해 상향링크 데이터(UL data)를 좀 더 빠르게 전송하기 위한 방법에 대해 관련 도면을 참고하여 구체적으로 살펴보기로 한다.
본 명세서에서 제안하는 UL data 전송 방법은 아래와 같이 크게 3-step 방식을 통해 수행될 수 있다.
- 1 step: 단말의 urgent signal 전송
- 2 step: 기지국의 urgent signal 수신 및 단말들로 urgent acknowledgment signal 전송
- 3 step: 단말의 urgent message(or urgent data) 전송
상기 3-step 방식을 통한 UL data 전송 방법에 대해 도 18 내지 도 20을 참조하여 전체적인 절차 및 각 단계에 대해 구체적으로 살펴보기로 한다.
본 명세서에서 제안하는 3-step의 UL data 전송 방법은 긴급 상황과 관련된 UL data를 빠르게 전송하기 위한 목적이나, 이에 한정되지 않고 short data와 같은 data를 빠르게 전송하기 위한 방법에서도 폭넓게 활용 또는 적용 가능하다.
도 19 본 명세서에서 제안하는 상향링크 데이터 전송 방법의 일 예를 나타낸 도이다.
먼저, 제 1 단말은 긴급 신호(urgent signal)를 기지국으로 전송한다(S1810).
상기 제 1 단말은 저 지연 서비스 관련 데이터를 전송할 수 있는 단말을 나타내며, 긴급 단말(urgent UE) 등으로 표현될 수 있다.
설명의 편의를 위해, 제 1 단말 및 긴급 단말을 혼용하기로 한다.
저 지연 서비스(low latency service)는 앞서도 언급한 바와 같이, 현재 5G 통신에서 주로 논의되고 있는 헬스 케어, 교통 안전, 재난 안전, 원격 의료 제어 등과 관련된 서비스를 말할 수 있다.
이러한 저 지연 서비스를 지원하는 무선 통신 시스템에서는 특정 단말이 기지국, 주변 단말, 사용자 등에게 특정 이벤트에 의해 발생할 수 있는 사고나 상태에 대한 정보를 빠르게 알림으로써, 사람들이 2차 사고 예방이나 응급 상황에 대해 빠르게 대처할 수 있도록 해준다.
상기 긴급 신호는 제 1 단말이 긴급한 상황의 발생을 감지하고, 이를 기지국으로 알리기 위한 신호를 의미한다.
상기 제 1 단말은 상기 긴급 신호를 (1) ON/OFF keying 방식 또는 (2) 새로운 물리 채널(e.g., Physical Urgent CH:PUCH)을 이용하여 기지국으로 전송할 수 있다.
상기 긴급 신호의 전송 방법 즉, (1) 및 (2)의 구체적인 방법에 대해서는 후술하기로 한다.
이후, 상기 기지국은 상기 제 1 단말로부터 긴급 신호를 수신하는 경우, 상기 수신된 긴급 신호에 대한 응답을 제 1 단말 및/또는 제 2 단말로 전송할 수 있다.
상기 긴급 신호에 대한 응답은 긴급 긍정 응답(urgent acknowledgement signal), urgent ACK (signal) 등으로 표현될 수 있다.
여기서, 제 2 단말은 저 지연 서비스에 대한 데이터를 전송하지 않는 셀 내의 일반 단말(general UE)들을 의미할 수 있다.
또한, 기지국은 상기 긴급 신호에 대한 응답을 제 1 단말 및 제 2 단말로 브로드캐스트 방식으로 전송할 수 있다.
또는, 상기 기지국은 상기 긴급 신호에 대한 응답을 상기 제 1 단말로만 또는 상기 제 2 단말로만 유니캐스팅할 수 있다.
구체적으로, 상기 기지국은 상기 제 1 단말로부터 긴급 신호를 수신하는 경우, 아래와 같이 3 가지 형태로 동작함으로써, 긴급 단말에 대한 urgent message 전송을 지원할 수 있다(S1820).
① 제 2 단말로 전송할 예정인 UL grant 전송을 연기 또는 취소
② 제 2 단말로의 UL grant 전송 연기 또는 취소(①의 방법) 및 긴급 신호에 대한 응답(urgent ACK signal)을 제 1 단말 및/또는 제 2 단말로 전송
③ 긴급 신호에 대한 응답을 제 1 단말 및/또는 제 2 단말로 전송
상기 3 가지 형태 중 기지국의 어느 하나의 동작 이후, 상기 제 1 단말은 기지국 및/또는 주변 단말들로 긴급 메시지(urgent message)를 전송한다.
상기 긴급 메시지는 긴급 데이터 또는 긴급 PUSCH 등으로 표현될 수도 있다.
구체적으로, 상기 제 1 단말은 N번째 subframe(SF #N)에서 긴급 신호를 전송하고, SF #N에서 X번째 이후 subframe(subframe #N+X)에서 긴급 메시지를 기지국 및/또는 주변 단말들로 전송한다(S1830).
상기 긴급 신호는 긴급 상황과 같은 특정 이벤트에 의해 발생되며, 상기 특정 이벤트는 상기 긴급 신호가 전송되는 SF #N에서 발생하거나 또는 상기 SF #N 이전 SF에서도 발생할 수 있다.
다음으로, 단말의 urgent message 전송을 지원하기 위한 상기 3-step 방법의 각 단계들에 대해 좀 더 구체적으로 살펴보기로 한다.
긴급 신호(Urgent signal) 전송 방법
먼저, 첫 번째 단계(도 19의 S19010 단계) 즉, 제 1 단말의 긴급 신호 전송 방법에 대해 살펴보기로 한다.
제 1 단말(긴급 단말)은 긴급 상황과 같은 특정 이벤트의 발생을 감지하는 경우, 상기 발생된 특정 이벤트와 관련된 긴급 정보 또는 긴급 메시지를 전송하기 위해 긴급 신호(urgent signal)을 먼저 기지국으로 전송한다.
상기 urgent signal은 기지국으로 긴급 상황과 관련된 특정 이벤트의 발생을 즉각적으로 알리기 위한 목적뿐만 아니라, 발생한 특정 이벤트의 상세 정보를 포함하는 긴급 메시지를 전송하기 위한 자원을 사전에 확보하기 위해 사용될 수 있다.
따라서, 상기 긴급 신호는 긴급 정보 또는 긴급 메시지를 전송하기 위한 자원 할당 즉, UL grant를 상기 기지국으로부터 수신하기 위해 긴급 단말이 기지국으로 전송하는 신호를 의미할 수 있다.
상기 urgent signal은 (1) ON/OFF keying 방식 또는 (2) 새로운 물리 채널(Physical Urgent channel:PUCH)을 통해 전송될 수 있다.
여기서, 상기 urgent signal은 urgent sequence로 표현될 수도 있다.
또한, 상기 urgent signal을 전송하기 위한 자원은 이벤트 별로 또는 단말 별로 사전에 설정될 수 있다.
이하에서, 이벤트 별로 urgent signal을 전송하기 위한 자원을 설정하고, 이를 통해 ON/OFF keying 방식 또는 새로운 물리 채널(Physical Urgent channel:PUCH)을 이용하여 urgent signal을 전송하는 방법과, 단말 별로 urgent signal을 전송하기 위한 자원을 설정하고, 이를 통해 ON/OFF keying 방식 또는 새로운 물리 채널(Physical Urgent channel:PUCH)을 이용하여 urgent signal을 전송하는 방법에 대해 구분하여 살펴보기로 한다.
Event 별 urgent signal 전송 자원 설정 및 urgent signal 전송 방법
먼저, 이벤트 별로 긴급 신호를 전송하기 위한 자원을 설정하는 방법에 대해 살펴본다.
긴급 신호를 전송하기 위해 발생 가능한 긴급 이벤트(urgent event)를 사전에 정의하기로 한다. 여기서, urgent event는 ‘En’으로 표시될 수 있다.
여기서, n은 0 보다 큰 정수 값을 나타낸다.
기지국은 긴급 단말이 긴급 신호를 전송할 수 있도록 사전에 정의될 수 있는 urgent event의 수(n개)만큼 특정 자원(e.g., PUCCH resource) 또는 특정 sequence(e.g., PUCH sequence)를 미리 할당할 수 있다.
여기서, 상기 긴급 신호를 전송하기 위한 특정 자원(i.e., PUCCH US or PUCH)에 대한 정보는 셀마다 다르게 정의될 수 있다.
상기 특정 자원 또는 특정 sequence는 긴급 신호 전송을 위한 자원 할당 정보를 나타낼 수 있다.
상기 긴급 신호를 전송하기 위한 자원 할당 정보는 System information(e.g., SIB2) 등과 같은 브로드캐스트 메시지 또는 RRC(Radio Resource Control) 메시지를 통해 셀 내 단말들로 전송될 수 있다.
또는, (시스템 정의에 따라) 특정 urgent signal을 전송할 수 있는 긴급 단말에게만 상기 긴급 신호를 전송하기 위한 자원 할당 정보를 전송하고자 하는 경우, 기지국은 해당 긴급 단말들로만 unicast 또는 multicast 방식으로 긴급 신호 전송을 위한 자원 할당 정보를 전송할 수도 있다.
여기서, urgent signal 전송을 위해 발생 가능한 이벤트 또는 사용될 수 있는 event는 아래 표 5의 예시와 같을 수 있으며, event 0 ~ event (n-1)까지 총 n개의 이벤트로 정의될 수 있다.
또한, 각 이벤트는 아래 표 5와 같이 셀 내에서 미리 정의될 수 있으며, 각 셀마다 다르게 정의될 수도 있다.
또한, 상기 event와 관련된 정보는 urgent signal에 대한 상세 정보를 전송하는 메시지 등에서 함께 전송될 수도 있으며, 시스템에 따라 미리 정의될 수 있다.
Figure PCTKR2016002522-appb-T000005
즉, 표 5와 같이 정의된 이벤트 각각에 대해 긴급 신호 전송을 위한 특정 자원 또는 특정 sequence가 사전에 매핑될 수 있다.
다음으로, event 별로 설정된 urgent signal의 전송 자원을 기초로, ON/OFF keying 방식을 통해 urgent signal을 전송하는 방법에 대해 살펴보기로 한다.
ON/OFF keying 방식을 통해 urgent signal을 전송하는 경우, 기지국은 셀 내에 정의된 urgent event에 따라 해당 이벤트 수(n)만큼의 PUCCH 자원을 특정 TTI(Transmission Time Interval) 내 또는 특정 subframe 내에 할당한다.
상기 urgent signal 전송과 관련된 자원 정보를 포함하는 RRC information element는 아래와 같이 정의될 수 있다.
상기 긴급 신호가 LTE(-A)의 물리 계층 구조를 이용하여 전송될 경우, 상기 긴급 신호의 전송에 PUCCH format 1을 재사용할 수 있다.
이 때, PUCCH의 SR(Scheduling Request) 대신 US(Urgent Signal)로 대체되어 사용될 수 있다.
즉, RRC information element는 아래와 같은 사항들이 정의될 수 있고, US resource allocation 정보, US configuration 정보, US signaling 정보 등을 포함할 수 있다.
- US만 전송되는 경우, PUCCH format 1을 사용하여 US(Urgent Signal)를 전송
- 긴급 신호 자원 할당(US resource allocation) 정보
셀 내에 정의된 각 이벤트에 대한 US resource가 unicast 메시지로 설정되는 경우, RRC Connection Reconfig. (Radio Resource Config. Dedicated (Physical config. Dedicated (US config))) 메시지를 통해 상기 US의 resource가 설정 또는 해지(setup/release)될 수 있다.
또는, 셀 내에 정의된 각 이벤트에 대한 US resource가 broadcast 메시지로 설정되는 경우, System Information Block Type2(Radio Resource Config Common (US config)))를 통해 상기 US의 resource가 설정 또는 해지(setup/release) 될 수 있다.
또한, LTE(-A) 물리 계층 구조를 이용하여 urgent signal을 전송하는 경우, 하나의 subframe에서 최대 2,048개 Events((0,…,2047))를 위한 US resource가 할당될 수 있다.
또는, LTE(-A) 시스템의 TTI(14 symbol)보다 작은 길이의 Short TTI를 이용하여 urgent signal을 전송하는 경우, 하나의 (short) subfame에서 할당 가능한 event 수는 할당되는 자원에 따라 2,048개보다 작아질 수 있다.
- US 구성(US configuration) 정보
US configuration index에 따라 US periodicity가 설정될 수 있고, US subframe offset도 index에 따라 설정될 수 있다.
- US signaling
긴급 단말은 간단한 On-Off Keying (O.O.K) 방식을 통해 US를 기지국으로 전송할 수 있다.
D(0)=1: Preempt a PUSCH resource of (N+X)th sub-frame (positive US)
D(0)는 data를 의미하며, D(0)=1(positive value)은 특정 data의 전송이 있음을 나타내고, D(0)=0(negative value)은 특정 data의 전송이 없음을 나타낸다.
즉, D(0)=1은 Urgent signal의 전송이 있으며, urgent message를 전송할 수 있도록 N+X 번째 SF(SF #N+X)의 PUSCH 자원이 사전 할당됨을 나타낸다.
여기서, N은 US를 전송하는 서브프레임의 number를 나타낸다.
Transmitting nothing: urgent signal의 전송이 없음을 나타낸다(negative US).
상기 transmitting nothing은 D(0)=0으로 표현될 수도 있다.
아래는 UrgentSignalConfig information element의 일 예를 나타낸다.
Figure PCTKR2016002522-appb-I000002
따라서, 긴급 단말은 각 US 자원과 매핑 관계가 설정된 긴급 이벤트가 발생한 경우, 상기 발생된 긴급 이벤트를 기지국으로 알리기 위해 상기 발생된 긴급 이벤트와 매핑된 US 자원에서 파워를 실어 US를 기지국으로 전송한다.
즉, 기지국은 특정 자원에서 상기 긴급 신호의 수신을 통해 어떤 종류의 긴급 이벤트가 발생했는지를 빠르게 파악할 수 있게 된다.
다음으로, event 별로 설정된 urgent signal의 전송 자원을 기초로, 새로운 물리 채널 (e.g., Physical Urgent CH, PUCH)을 통해 urgent signal을 전송하기 방법에 대해 살펴본다.
여기서, urgent signal은 urgent sequence로도 표현될 수 있다.
이 방법은 PUSCH 자원 중에 urgent sequence를 전송하기 위한 물리 긴급 채널(physical urgent channel:PUCH)을 새롭게 정의하는 것을 말한다.
즉, 긴급 상황과 같은 특정 이벤트가 발생하는 경우, 긴급 단말은 상기 발생된 특정 이벤트에 매핑된 PUCH를 통해 urgent sequence를 기지국으로 전송한다.
이 경우, 시스템 또는 셀 내에 정의된 이벤트 정보를 특정 시퀀스 또는 PUCH에 매핑함으로써, 기지국은 긴급 단말로부터 특정 urgent sequence를 수신하는 경우, 어떤 이벤트가 발생했는지를 빠르게 파악할 수 있게 된다.
여기서, urgent sequence는 urgent signal을 의미하거나 urgent signal이 전송되는 PUCH를 의미할 수 있다.
상기 물리 긴급 채널(PUCH)은 PRACH(Physical Random Access Channel)와 유사한 방법으로 정의될 수도 있다.
먼저, PRACH는 LTE(-A) 시스템의 자원 구조에서 6 RB(resource block)를 차지하며, 부반송파 간격은 1.25kHz(format #4는 7.5kHz)를 가진다.
또한, PRACH는 각 셀에서 64개의 preamble sequence들을 가질 수 있다.
각 preamble sequence 부분은 길이 839의 ZC sequence로 구성된다(format #4는 길이 139이다).
구체적으로, urgent sequence는 PRACH에서 정의된 preamble sequence의 개수(64개)보다 작은 수의 sequence를 가지도록 정의하고, 특정 긴급 이벤트를 각 urgent sequence에 매핑할 수 있다.
또는, PRACH preamble의 특정 범위(0~63)를 urgent signal 전송을 위한 urgent sequence로 미리 할당할 수도 있다.
UE 별 urgent signal 전송 자원 설정 및 urgent signal 전송 방법
다음으로, 단말(UE) 별 urgent signal의 전송을 위한 자원을 설정하고, 설정된 자원을 통해 urgent signal을 전송하는 방법에 대해 구체적으로 살펴보기로 한다.
단말 별로 urgent signal 전송을 위한 자원을 할당하는 경우, 기지국은 urgent signal의 수신을 통해 바로 특정 단말(긴급 단말)을 인식할 수 있고, 이를 통해 상기 특정 단말로 UL grant(상향링크 자원)를 빠르게 할당해 줄 수 있게 된다.
앞서 살핀 바와 같이, 긴급 단말의 urgent signal 전송 방법은 (1) ON/OFF keying 방식을 통한 urgent signal 전송 또는 (2) 새로운 물리 채널(e.g., Physical Urgent CH, PUCH)을 통한 urgent sequence 전송이 있을 수 있다.
먼저, 단말 별로 설정된 urgent signal의 전송 자원을 기초로, 긴급 단말이 ON/OFF keying 방식을 통해 urgent signal을 전송하는 방법에 대해 살펴보기로 한다.
긴급 단말이 ON/OFF keying 방식을 통해 urgent signal을 전송할 수 있도록 기지국은 셀 내에 연결된 urgent 단말에 따라 미리 긴급 단말의 개수(n)만큼의 PUCCH 자원을 특정 TTI(또는 특정 subframe) 내에 할당할 수 있다.
상기 기지국은 RRC information element에 상기 urgent signal 전송과 관련된 자원 정보를 포함하여 긴급 단말 및/또는 일반 단말 즉, 셀 내 단말들에게 전송할 수 있다.
상기 RRC information element는 아래와 같이 정의될 수 있다.
여기서, 상기 urgent signal은 LTE(-A) 시스템의 물리 계층 구조를 이용하여 전송될 수 있으며, 이 경우 US는 PUCCH format 1을 재사용하여 전송될 수 있다.
이 경우, PUCCH의 SR(Scheduling Request) 대신 US(Urgent Signal)로 정의될 수 있다.
즉, RRC information element는 아래와 같은 사항들이 정의될 수 있고, US resource allocation 정보, US configuration 정보, US signaling 정보 등을 포함할 수 있다.
- US만 전송되는 경우, PUCCH format 1을 사용하여 US(Urgent Signal)를 전송
- 긴급 신호 자원 할당(US resource allocation) 정보
셀 내에 정의된 각 이벤트에 대한 US resource가 unicast 메시지로 설정되는 경우, RRC Connection Reconfig. (Radio Resource Config. Dedicated (Physical config. Dedicated (US config))) 메시지를 통해 상기 US의 resource가 설정 또는 해지(setup/release)될 수 있다.
또는, 셀 내에 정의된 각 이벤트에 대한 US resource가 broadcast 메시지로 설정되는 경우, System Information Block Type2(Radio Resource Config Common (US config)))를 통해 상기 US의 resource가 설정 또는 해지(setup/release) 될 수 있다.
또한, urgent signal이 LTE(-A) 물리 계층 구조를 이용하여 전송되는 경우, 하나의 subframe에서 최대 2,048개 Events((0,…,2047))를 위한 US resource가 할당될 수 있다.
또는, LTE(-A) 시스템의 TTI(14 symbol)보다 작은 길이의 Short TTI를 이용하는 경우, 하나의 (short) subfame에서 할당 가능한 event 수는 할당되는 자원에 따라 2,048개보다 작아질 수 있다.
- US 구성(US configuration) 정보
US configuration index에 따라 US periodicity가 설정될 수 있고, US subframe offset도 index에 따라 설정될 수 있다.
- US signaling
긴급 단말은 간단한 On-Off Keying (O.O.K) 방식을 통해 US를 기지국으로 전송할 수 있다.
D(0)=1: Preempt a PUSCH resource of (N+X)th sub-frame (positive US)
D(0)는 data를 의미하며, D(0)=1(positive value)은 특정 data의 전송이 있음을 나타내고, D(0)=0(negative value)은 특정 data의 전송이 없음을 나타낸다.
즉, D(0)=1은 Urgent signal의 전송이 있으며, urgent message를 전송할 수 있도록 N+X 번째 SF(SF #N+X)의 PUSCH 자원이 사전 할당됨을 나타낸다.
여기서, N은 US를 전송하는 서브프레임의 number를 나타낸다.
Transmitting nothing: urgent signal의 전송이 없음을 나타낸다(negative US).
상기 transmitting nothing은 D(0)=0으로 표현될 수도 있다.
다음은 UrgentSignalConfig information element의 또 다른 일 예를 나타낸다.
Figure PCTKR2016002522-appb-I000003
긴급 단말은 urgent event가 발생한 경우, urgent signal 전송을 위해 할당된 자원에 파워를 실어 기지국으로 urgent signal을 전송함으로써, 긴급 상황이 발생했음을 기지국에게 알릴 수 있다.
이를 통해, 상기 기지국은 긴급 단말에서 긴급 이벤트가 발생했음을 인지하고, 특정 SF(전송 금지 SF)를 상기 긴급 단말의 urgent message 전송을 위한 자원으로 할당한다.
다음으로, 단말 별로 설정된 urgent signal의 전송 자원을 기초로, 새로운 물리 채널 (e.g., Physical Urgent CH, PUCH)을 통해 urgent signal을 전송하기 방법에 대해 살펴본다.
여기서, urgent signal은 urgent sequence로도 표현될 수 있다.
즉, PUSCH 자원 중에 urgent sequence를 전송하기 위한 physical urgent channel(PUCH)을 새롭게 정의하여, 긴급 상황이 발생한 긴급 단말이 빠르게 자신에게 할당된 sequence를 전송할 수 있는 방법에 대해 살펴본다.
긴급 단말이 셀에 진입한 경우, 기지국은 상기 긴급 단말에게 urgent signal 전송을 위한 특정 시퀀스를 할당하여, 기지국이 상기 특정 시퀀스 수신을 통해 어떤 단말에게 긴급 상황이 발생했는지를 빠르게 파악할 수 있도록 할 수 있다.
즉, 기지국은 urgent UE로 정의될 수 있는 단말에게 단말 별로 sequence를 미리 할당함으로써, 상기 할당된 sequence 수신을 통해 바로 긴급 단말을 인식할 수 있다.
상기 물리 긴급 채널(PUCH)은 PRACH(Physical Random Access Channel)와 유사한 방법으로 정의될 수도 있다.
먼저, PRACH는 LTE(-A) 시스템의 자원 구조에서 6 RB(resource block)를 차지하며, 부반송파 간격은 1.25kHz(format #4는 7.5kHz)를 가진다.
또한, PRACH는 각 셀에서 64개의 preamble sequence들을 가질 수 있다.
각 preamble sequence 부분은 길이 839의 ZC sequence로 구성된다(format #4는 길이 139이다).
구체적으로, urgent sequence는 PRACH에서 정의된 preamble sequence의 개수(64개)보다 작은 수의 sequence를 가지도록 정의하고, 긴급 단말 별로 각 urgent sequence를 매핑할 수 있다.
또는, PRACH preamble의 특정 범위(0~63)를 urgent signal 전송을 위한 urgent sequence로 미리 할당할 수도 있다.
기지국의 urgent signal 수신 및 이에 대한 응답 전송
다음으로, 기지국에서 urgent signal을 수신하여 처리하는 동작 즉, 3-step 방법 중 두 번째 단계(도 19의 S19020 단계)에 대해 구체적으로 살펴보기로 한다.
기지국이 긴급 단말로부터 urgent signal을 수신한 경우, 아래 3 가지 형태로 동작할 수 있다.
① 일반 단말(General UE)로 전송 예정인 UL grant 메시지 전송 연기 또는 취소
② Urgent signal에 대한 acknowledgment signal 브로드 캐스팅
③ Urgent acknowledgment signal 전송
먼저, 상기 ①의 방법에 대해 도 20를 참조하여 살펴보기로 한다.
여기서, 도 20는 본 명세서에서 제안하는 긴급 메시지 전송을 지원하기 위한 기지국의 동작 방법의 일 예를 나타낸 도이다.
도 20의 경우, 기지국이 긴급 단말로부터 urgent signal을 수신하는 경우, 일반 단말의 UL grant를 취소 또는 폐기함으로써, 긴급 단말의 urgent message 전송에 대한 자원을 암시적으로(implicitly) 할당하는 방법을 나타낸다.
기지국은 긴급 단말로부터 urgent signal을 수신한 경우(S1910), 긴급 단말에게 우선적으로 UL data 전송을 위한 UL grant를 할당하기 위해, 기지국은 일반 단말들을 위해 생성한 UL grant (메시지)를 폐기 또는 취소한다(S1920).
도 20에 도시된 바와 같이, 기지국이 긴급 단말로부터 N번째 SF(SF #N)를 통해 urgent signal을 수신한 경우, 상기 기지국은 (N+Pt)번째 SF에서 일반 단말의 UL data 전송을 위해 할당하려 했던 UL grant를 모두 해지(release)한다.
그리고, 상기 기지국은 일반 단말들로의 UL grant를 (N+Pt+1)번째 SF 또는 그 이후 SF에서 자원 할당되도록 연기한다.
여기서, 기지국이 urgent signal을 수신한 SF(SF #N)에서 일반 단말들로의 UL grant를 바로 취소할 수 있는 경우, 일반 단말들의 UL data 전송은 (N+Pt+1) 번째 SF으로 연기된다. 이에 대한 일반 단말로의 UL grant는 (N+1) 번째 SF에서 할당 또는 전송된다.
또한, 기지국이 urgent signal을 수신한 SF(SF #N) 바로 다음 SF(SF #N+1)에서 일반 단말들로의 UL grant를 취소할 수 있는 경우, 일반 단말들의 UL data 전송은 (N+Pt+2) 번째 SF으로 연기될 수 있다. 이에 대한 일반 단말로의 UL grant는 (N+2) 번째 SF에서 할당 또는 전송된다.
여기서, 기지국이 urgent signal을 수신한 SF 바로 다음 SF에서 일반 단말들로의 UL grant를 취소하는 경우, 긴급 단말은 일반 단말들로의 UL grant가 취소되기 전까지 일반 단말들의 UL grant decoding 시간 및 data encoding 시간(프로세싱 시간) 이후에 urgent message를 상기 기지국으로 전송할 수 있다.
여기서, 기지국이 긴급 단말로부터 전송된 urgent signal을 수신하고, 이를 인식하는 시간이 1ms 이내(e.g., Wi-Fi의 경우 signal 또는 sequence를 detection하는 요구시간이 4us 이내임)인 경우, (도 19와 같이) urgent signal을 수신한(SF #N) 바로 다음 SF(SF #N+1)에서 일반 단말들로 전송할 예정인 UL grant를 취소 또는 연기할 수 있다.
기지국이 SF #N에서 긴급 단말로부터 urgent signal을 수신한 경우, 상기 기지국은 일반 단말의 프로세싱 시간(Pt)을 고려하여 상기 urgent signal을 수신한 subframe(SF #N) 이후에 할당되는 일반 단말의 UL grant를 연기 또는 취소할 수도 있다.
여기서, 상기 프로세싱 시간(Pt)은 일반 단말의 UL grant에 대한 decoding 시간 및 data(UL data) encoding 시간의 합을 나타낸다.
LTE(-A) 시스템의 경우, 상기 프로세싱 시간(Pt)는 4ms(4 SF)에 해당한다.
단, 상기 프로세싱 시간이 단말의 구현 기술의 발전 등으로 인해 단축되는 경우, 상기 기지국은 상기 urgent signal을 수신한 subframe(SF #N)에서도 일반 단말들의 UL grant를 바로 연기 또는 취소할 수 있다.
또한, 상기 기지국은 urgent signal에 대해 할당할 UL grant의 크기를 고려하여 연기 또는 취소하는 일반 단말들의 UL grant subframe 개수(UL grant가 전송되는 SF 개수)를 결정할 수 있다.
단, 긴급 단말이 전송하는 urgent signal의 크기가 일반적으로 크지 않은 점을 고려할 때, 상기 연기 또는 취소되는 일반 단말들의 UL grant subframe의 개수는 1개일 수 있다.
도 20를 참조하면, 기지국은 SF #4에서 긴급 단말로부터 urgent signal을 수신한다.
이후, 상기 기지국은 시스템의 프로세싱 시간을 고려하여 SF #5에 할당된 일반 단말들에 대한 UL grant를 취소한다.
이후, 상기 긴급 단말은 상기 urgent signal을 기지국으로 전송한 후, X SFs(X=6) 이후(SF #9)에 긴급 상황과 관련된 상세 정보를 포함하는 urgent message를 상기 기지국으로 전송한다(S20030).
여기서, 일반 단말은 SF #5에서의 UL grant가 취소되었기 때문에, 상기 일반 단말은 SF #9에서는 기지국으로 UL data를 전송하지 않고, 이후 SF(SF #10)에서 SF #6을 통해 수신된 UL grant를 이용하여 기지국으로 UL data를 전송한다.
추가적으로, 기지국은 일반 단말로 전송할 예정인 UL grant가 취소되었음을 상기 일반 단말로 알리기 위한 UL grant 취소 정보 등을 상기 일반 단말로 전송할 수도 있다. 이에 대해서는 도 21을 참조하여 좀 더 구체적으로 살펴보기로 한다.
또는, 일반 단말은 상기 긴급 단말이 전송하는 urgent signal을 monitoring 또는 엿들음(overhearing)으로써, 자신에게 할당될 UL grant가 취소될 것이라는 것을 예측함으로써, 긴급 단말이 urgent message를 전송하는 시점에 UL data를 기지국으로 전송하지 않을 수도 있다.
이 경우, 상기 일반 단말은 프로세싱 시간 등을 고려하여 어떤 SF에서 자신의 UL grant가 취소되고, 그로 인해 어떤 SF에서 UL data를 전송하지 못하는지에 대해 정확히 예측할 수 있다.
살핀 것처럼, 상기 프로세싱 시간(Pt)은 UL grant에 대한 decoding 시간과 UL data의 encoding 시간의 합이다.
다음으로, 상기 ②의 방법에 대해 도 21을 참조하여 살펴보기로 한다.
도 21은 본 명세서에서 제안하는 긴급 메시지 전송을 위한 기지국의 동작 방법의 또 다른 일 예를 나타낸 도이다.
도 21은 기지국이 urgent signal을 수신한 경우, 셀 내 모든 단말들에게 특정 긴급 이벤트가 발생하였음을 알리기 위한 urgent signal에 대한acknowledgment signal을 브로드캐스트하는 방법을 나타낸다.
즉, 도 21의 경우, 기지국이 일반 단말로 긴급 이벤트의 발생 사실을 명시적으로 전송함으로써, urgent message의 전송 시점에서 일반 단말에 대한 UL data 전송을 중단하게 하는 방법을 나타낸다.
기지국은 urgent signal을 긴급 단말로부터 수신한 경우(S2010), 셀 내 모든 단말에게 긴급 이벤트가 발생하였음을 알리기 위한 알림 신호를 전송한다(S21020).
상기 알림 신호는 urgent signal의 acknowledgment signal 또는 urgent signal의 응답, urgent ACK (signal), 또는 응답 신호(Response signal) 등으로 표현될 수 있다.
여기서, 기지국은 상기 알림 신호를 전송하는 시점(예: SF #5)에서 일반 단말들에게 전송할 예정인 UL grant의 전송을 취소 또는 연기한다.
또한, 일반 단말은 상기 기지국으로부터 상기 알림 신호를 수신한 이후에 기지국으로부터 UL grant를 통해 할당받은 UL 자원을 모두 무시할 수 있다.
즉, 기지국으로부터 urgent ACK signal을 수신한 일반 단말은 UL grant를 디코딩하고, 새로운 메시지(UL data)를 인코딩하는 시간 이전에 상기 ACK signal을 수신할 수 있기 때문에, 상기 일반 단말은 자신에게 할당된 상향링크 자원을 긴급 단말이 사용할 수 있도록 상기 urgent ACK signal 이후 할당받은 SF에서 UL 데이터를 전송하지 않는다.
따라서, 상기 일반 단말이 기지국으로부터 UL grant를 할당 받았음에도 불구하고 UL data를 전송하지 않도록 지시하는 ‘전송 금지 SF’은 기지국으로부터 브로드캐스팅된 urgent ACK signal을 일반 단말들이 수신 완료한 시간 이후의 SF으로 정의되는 것이 바람직하다.
여기서, 상기 일반 단말은 기지국으로부터 urgent ACK signal을 수신한 이후의 모든 UL 자원을 무시하지 않을 수도 있다.
즉, 긴급 단말이 urgent signal을 기지국으로 전송하고, 기지국 및/또는 주변 단말들로 상기 urgent signal에 기초한 urgent message를 전송(S2030)하는데 일정 시간(X SFs)이 걸리기 때문에, 이를 고려하여 일반 단말은 긴급 단말의 urgent signal 전송 시간과 urgent message 전송 시간 사이에서는 UL data를 전송할 수 있다.
도 21에서, 상기 일정 시간은 X SFs로 표현되어 있으며, 상기 일정 시간은 긴급 단말이 urgent ACK signal을 decoding하고, 상기 urgent message를 encoding하는데 걸리는 긴급 단말의 프로세싱 시간(Processing Time)을 나타낼 수 있다.
즉, 일반 단말은 상기 긴급 단말의 프로세싱 시간으로 인해 urgent message를 전송하는 시점 전까지는 기 수신된 UL grant를 통해 UL data를 전송할 수 있다.
도 21에서와 같이, 일반 단말은 긴급 단말이 urgent message를 (최초로) 전송하는 SF #7 이전 SF들(SF #5, SF #6)에서는 UL data를 전송할 수 있다.
여기서, 긴급 단말의 프로세싱 시간(urgent ACK decoding 시간 + urgent message encoding 시간)이 단축되는 경우, 상기 urgent message 전송 전까지 일반 단말이 UL data를 전송할 수 있는 시간은 줄어들 수 있다.
상기, 긴급 단말의 프로세싱 시간은 일반 단말 및/또는 기지국과 사전에 공유될 수 있다.
따라서, 일반 단말은 기지국으로부터 urgent ACK signal을 수신한 경우, 긴급 단말의 urgent signal 전송 시간, 긴급 단말의 프로세싱 시간, urgent message 전송 시간 등을 고려함으로써, UL data 전송 여부를 결정할 수 있다.
이를 통해, 제한된 UL 자원에 대한 효율적 사용이 가능할 수 있다.
또한, 긴급 단말의 urgent message 전송 시점은 일반 단말의 urgent ACK signal 수신 이후, 일반 단말의 UL data 전송에 대한 취소 시점과 관련될 수 있다.
구체적으로, 일반 단말이 기지국으로부터 urgent ACK signal을 수신한 SF 바로 다음 SF에서 UL data 전송을 취소할 수 있는 경우, 긴급 단말의 urgent message 전송 시점은 더 빨라질 수 있다.
도 21을 참조하면, 긴급 단말이 urgent signal을 기지국으로 전송하고, 일반 단말들이 기지국으로부터 Urgent ACK을 수신하는 데까지 소요되는 시간은 약 3ms임을 알 수 있다.
도 21에 도시된 바와 같이, 일반 단말이 기지국으로부터 urgent ACK을 수신하자마자(SF #5), 그 다음 SF(SF #6)에서부터 UL data 전송을 취소할 수 있는 경우, 긴급 단말이 urgent signal 전송 후(SF #3), urgent message를 전송하는 시간 즉, X는 3 SFs으로 정의될 수 있다.
하지만, 일반 단말이 urgent ACK을 수신하고, 그 다음 SF에서 UL data 전송을 취소할 수 없는 경우, 상기 X는 4 SFs으로 정의될 수 있다.
또한, 전송 금지 SF(No transmission SF)은 Urgent ACK 수신 SF 이후 하나 또는 하나 이상의 연속한 SFs로 정의될 수도 있다.
상기 전송 금지 SF는 긴급 단말의 urgent signal 전송으로 인해 일반 단말이 UL data를 전송할 수 없는 SF을 의미하는 것으로, 일반 단말의 UL data 전송이 금지되는 SF 또는 긴급 단말의 urgent message가 전송되는 SF을 나타낼 수 있다.
상기 전송 금지 SF는 시스템의 Pt 시간을 고려하여 (N+2)번 SF부터 (N+Pt-1)번 SF까지로 설정될 수 있다.
여기서, N은 urgent ACK을 수신한 SF의 number를 나타내며, Pt 시간은 UL grant decoding time과 data encoding time의 합을 나타낼 수 있다.
예를 들어, 일반 단말이 urgent ACK을 5번 SF에서 수신하고, Pt=4 SF인 경우, 전송 금지 SF(No tx. SF)는 7번 SF부터 8번 SF까지 설정된다.
또는, 상기 전송 금지 SF는 (N+2)번 SF부터 M개의 연속한 SFs로 설정될 수도 있다.
예를 들어, 일반 단말이 urgent ACK을 5번 SF에서 수신하고, M=4 SF인 경우, 전송 금지 SF(No tx. SF)는 7번 SF부터 10번 SF까지 설정된다.
또는, 상기 전송 금지 SF(No transmission SF)는 단말이 Urgent ACK을 수신한 이후에 하나의 SF로 정의될 수 있다.
이 경우, 일반 단말의 Urgent ACK 수신 시점을 고려하여 (N+2)번 SF으로 설정될 수 있다.
예를 들어, 일반 단말이 urgent ACK을 5번 SF에서 수신한 경우, 전송 금지 SF(No tx. SF)는 7번 SF으로 설정될 수 있다.
상기 urgent ACK signal은 긴급 단말이 전송하는 Urgent signal과 동일한 방법을 통해 기지국에서 셀 내 단말들로 전송될 수 있다.
여기서, 상기 Urgent ACK signal은 셀 내의 모든 단말들(일반 단말 및 긴급 단말)이 수신해야 하는 signal이기 때문에 브로드캐스트 방식으로 전송되는 것이 바람직하다.
이 경우, 상기 Urgent ACK signal은 PDCCH의 특정 자원을 통해 전송될 수 있다.
상기 Urgent ACK Signal을 셀 내의 General UEs에게 전송하는 방법은 아래에서 자세히 살펴보도록 한다.
Urgent message 전송 방법
다음으로, 긴급 단말이 urgent message를 전송하는 방법 즉, 3-step 방법 중 세 번째 단계(도 19의 S19030 단계)에 대해 구체적으로 살펴보기로 한다.
이 방법은 긴급 단말이 urgent signal 전송 후, urgent message를 전송하는 방법에 관한 것이다.
즉, 긴급 단말은 urgent signal을 SF #N에서 기지국으로 전송한 후, 그로부터 X SFs 이후(SF #N+X)에 urgent message를 기지국 및/또는 주변 단말들로 전송한다.
상기 urgent message는 긴급 단말에서 발생된 긴급 이벤트와 관련된 상세 정보를 포함한다.
앞서 살핀 것처럼, 상기 X의 값은 일반 단말에서 urgent ACK signal 수신 후, UL data를 취소하는 시점에 따라 결정될 수 있다.
또는, 상기 X 값은 전송 금지 SF의 설정에 따라 결정될 수도 있다.
이하에서, 긴급 단말이 상기 urgent message를 전송하기 위해 자원을 확보하는 시점에 대해 좀 더 살펴보기로 한다.
상기 urgent message의 전송 시점은 기지국의 urgent signal 수신 및 urgent acknowledgement 전송에서 살펴본 방법들(도 19 및 도 20)에 따라 다양하게 설정될 수 있다.
먼저, 도 20에 따를 경우(①의 방법), 일반 단말들은 전송 금지 SF(No transmission SF)에서 어떤 UL data도 전송하지 않는다.
즉, 기지국은 상기 전송 금지 SF(No tx. SF)에서 일반 단말들이 UL data를 전송하지 못하도록 UL grant를 상기 일반 단말들로 할당 또는 전송하지 않는다.
이를 통해, 기지국은 긴급 단말이 urgent message를 전송할 수 있는 자원을 암묵적으로(implicitly) 할당한다.
이 경우, 긴급 단말은 urgent signal을 전송한 시점(SF #N)부터 미리 약속된 시간 또는 X SF 이후의 SF(SF #N+X)의 자원을 통해 미리 정의된 데이터 전송 방식(e.g., MCS, power 등)을 이용하여 기지국 및/또는 주변 단말들로 urgent message를 전송한다.
다음으로, 도 21에 따를 경우(②의 방법), 기지국은 전송 금지 SF(No tx. SF)에서 일반 단말들이 UL data를 전송하지 못하도록, 셀 내 단말들에게 Urgent ACK signal을 명시적으로(explicitly) 전송한다.
이 경우, 상기 Urgent ACK signal을 수신한 셀 내 모든 일반 단말들은 자신의 UL grant에 해당하는 SF가 전송 금지 SF(No tx. SF)에 해당하는 경우, 상기 SF 즉, 상기 전송 금지 SF를 통해 UL data를 전송하지 않는다.
따라서, 긴급 단말은 상기 urgent ACK signal의 수신에 기초하여, 상기 전송 금지 SF(No tx. SF)를 통해 urgent message를 전송하게 된다.
이하, 상기 Urgent ACK Signal을 셀 내의 General UEs에게 전송하는 방법에 대해서 구체적으로 살펴보도록 한다.
도 22는 본 명세서에서 제안하는 긴급 메시지 전송을 위한 기지국의 동작 방법의 또 다른 일 예를 나타낸 도이다.
상기 도 22를 참조하면, 상기 기지국은 상기 단말로부터 상기 도 18에서 설명한 긴급 신호(Urgent Signal)를 수신한 경우, 이를 셀 내의 다른 단말들에게 알리기 위해서 응답 신호를 전송할 수 있다.
구체적으로, 응급 단말은 상기 도 19 내지 상기 도 21에서 살펴본 바와 같이 긴급 상황이 발생한 경우, 기지국으로 긴급 신호(Urgent Signal)을 전송한다(S22010).
이때, 상기 응급 신호는 특정 이벤트 단위로 자원이 할당되어 있을 수 있으며, 하나 이상의 단말이 동일한 이벤트와 관련된 응급 신호를 상기 기지국으로 전송하는 경우 동일한 자원을 사용하여 응급 신호를 전송할 수 있다.
상기 긴급 신호를 수신한 상기 기지국은 상기 응급 상황과 관련된 정보를 셀 내의 단말들에게 알리기 위해서 셀 내의 단말들, 즉 상기 긴급 단말 뿐만 아니라 셀 내의 다른 일반 단말들로 응급 신호를 전송한다(S22020).
이때, 상기 기지국은 상기 응급 신호를 아래의 2가지 방법을 통해서 셀 내의 단말들에게 전송할 수 있다.
① 하향링크 물리 제어 채널(예를 들면, PDCCH 또는 PBCH)을 통한 전송
① 하향링크 물리 데이터 채널(예를 들면, PDSCH)을 통한 전송
이하, 각 방법에 대해서 자세히 살펴보도록 한다.
하양링크 물리 제어 채널(Physical Downlink Urgent Channel)을 통한 전
본 방법은 기지국이 셀 내의 단말들에게 하향링크 물리 제어 채널을 통해서 응답 신호를 전송한다. 이때, 상기 응답 신호를 전송하기 위한 물리 채널을 PDUCH(Physical Downlink Urgent Channel)이라고 정의한다.
상기 기지국은 상기 PDUCH를 통해서 상기 응답 신호를 전송하기 위해서, 채널 내에 긴급 상황 별 하향링크 자원 정보를 사전에 셀 내의 단말들에게 공유할 수 있다.
예를 들면, 상기 기지국은 시스템 정보를 전송하기 위한 SIB(System Information Block)를 통해서 물리 제어 채널 내 특정 자원 영역을 PDUCH로 정의하고, 상기 PDUCH의 특정 자원이 어떤 긴급 상황에 매핑(mapping)되는지와 관련된 index 정보 또한 정의할 수 있다.
이때, 상기 index 정보는 상기 표 4에 정의된 긴급 상황의 이벤트 수(n)에 따라 상기 PDUCH의 자원 정보가 그대로 매핑될 수 있다.
예를 들면, n개의 이벤트가 상기 도 19 내지 상기 도 21에서 살펴본 UrgentSignal-Config information element 또는 PCUH-Config information elements 내에 정의되어 있는 경우, PDUCH의 자원은 PDUCH 자원의 시작지점부터 X*n REs(Resource Elements)(PHICH와 유사하게 정의될 수 있으며, orthogonal sequence를 사용하지 않는 경우 X=12를 의미할 수 있다.)만큼의 자원이 할당될 수 있다.
여기서, 상기 PHICH는 OS 8을 사용하여 12REs를 통해 8개의 HARQ ACK/NACK을 전송할 수 있다.
또는, X*n CCEs(PFCCH 자원 정보와 유사하게 정의되는 경우 CCE 단위로 정의될 수 있으며, 1CCE에 대해 1 이벤트가 할당되는 경우, X=1을 의미할 수 있다.)의 만큼의 자원이 할당될 수 있다.
이때, 각 PDUCH 자원 index 0부터 index (n-1)까지는 event 0 ~ event (n-1)까지 그대로 매핑될 수 있다.
상기 PDUCH의 위치는 각 서브프레임의 첫 번째 슬롯의 첫 번째 OFDM 심볼에서 전송될 수 있다. 예를 들면, 상기 PDUCH는 하향링크 물리 제어 채널에서 PCFICH 이후, 또는 PHICH 이후에 위치할 수 있다.
즉, 상기 하향링크 물리 제어 채널에서 PCFCI, PHICH, PDUCH의 자원 순서는 ①PCFICH -> PHICH -> PDUCH 또는 ②PCFICH -> PDUCH -> PHICH일 수 있다.
상기 PCFICH는 PDCCH에 대한 심볼 수(1, 2, 3)를 알려주기 위해 사용되며 4REGs(16REs)로 크기가 고정되어 있으며, PDUCH는 셀 내의 정의된 이벤트 수(n)와 각 이벤트에 대해 필요한 자원 크기(X REs)에 따라 고정된 크기를 가질 수 있기 때문에, 상기 단말은 PHICH 및 PDUCH의 크기를 사전에 미리 알 수 있다.
이때, 상기 PCFICH는 4개의 연속된 자원 요소(Resource Element)들이 첫 번째 심볼의 10, 20, 30,REG index에 위치할 수 있다(총 16개의 RE).
상기 PCFICH, PHICH, PDUCH는 모두 셀 내의 하향링크 제어 채널에서 고정된 크기(size)로 할당되기 때문에 각각의 채널에 할당되는 자원이 충돌되지 않도록 설계하는 것이 가능하다.
즉, 각각 충돌이 일어나지 않은 위치에 자원이 할당되도록 설계하는 것이 가능하다.
또한, 상기 PCFICH, PHICH, PDUCH에 할당되는 자원들의 위치에 따라 PDCCH에 할당되는 자원의 위치가 변경될 수 있다.
상기 PDUCH의 크기는 PBCH를 통해서 셀 내의 단말들에게 전송될 수 있다. 이때, PDUCH의 전체 크기와 관련된 정보가 전송되거나, 긴급 상황과 관련된 이벤트 각각에 대한 자원 크기가 전송될 수 있으며, 이벤트 각각에 대한 자원 크기가 전송되는 경우, SIB를 통해서 전체 이벤트의 개수와 관련된 정보가 전송될 수 있다.
상기 SIB를 통해서 상기 PDUCH의 특정 자원 인덱스와 관련된 인덱스 정보를 SIB를 통해서 수신한 상기 단말들은 상기 인덱스 정보를 통해서 상기 응답 신호가 전송되는 경우, 어떤 긴급 상황이 발생했는지를 알 수 있다.
이후, 상기 단말은 상기 응답 신호를 통해서 수신한 상기 긴급 상황과 관련된 정보를 상위 계층(예를 들면, 응용 계층)으로 전달할 수 있고, 응용 계층을 통해서 상기 긴급 상황에 따른 동작을 수행할 수 있다.
이때, 상기 긴급 상황에 따른 동작은 긴급 상황 및 단말에 따라 다르게 설정될 수 있다. 예를 들면, 교통 사고의 경우, 우회도로 안내 정보를 수신 또는 자동차의 운행을 정지)
상기 PDUCH는 특정 RE 자원을 통해 앞에서 설명한 ON/OFF keying 방식을 통해 셀 내의 단말들로 상기 응답 신호를 전송할 수 있다. 즉, PHICH와 유사하게 4개의 연속된 REs로 1 bit 정보를 스프레딩(spreading) 한 후, 3번 반복(repetition)하는 방법을 이용하여 총 12개의 REs를 통해 긴급 상황이 발생했음을 셀 내의 단말들에게 알릴 수 있다.
상기 기지국은 PDUCH의 각 RE에 대한 인덱스 정보를 이용하여 각 인덱스에 대한 긴급 상황을 사전에 미리 매핑 해 놓고, 긴급 단말로부터 특정 긴급 상황이 발생하였다는 신호를 수신하면, 이에 매핑된 PDUCH의 인덱스에 대한 자원을 통해 셀 내의 단말들에게 상기 특정 긴급 상황과 관련된 응답 신호를 전송한다.
즉, PDUCH의 인덱스는 앞에서 살펴본 urgent signal configuration에 정의된 긴급 상황의 수와 동일한 수만큼 정의되고, 각 긴급 상황에 대해 PDUCH의 인덱스가 매핑될 수 있다.
본 발명의 또 다른 실시예로 PDUCH는 CCE 단위로 정의될 수도 있다. 즉, 상기 Urgent signal configuration에서 정의된 긴급 상황의 수와 동일한 수의 CCE 인덱스가 정의되고, 각 CCE 인덱스가 각 긴급 상황에 매핑될 수 있다.
이때, 상기 PDUCH를 통해 전송되는 상기 긴급 상황과 관련된 정보는 공통 검색 영역(common search space)를 통해 전송될 수 있다.
본 발명의 또 다른 실시예로 상기 긴급 상황과 관련된 정보는 PBCH(Physical Boradcast Channel)를 통해서 전송될 수도 있다. 이때, 상기 PBCH를 통해 n-bit의 bitmap 자원을 할당해 두고, 긴급 상황을 bitmap index 0~(n-1)에 매핑시킬 수 있다.
이와 같이, 앞에서 설명한 물리 제어 채널을 통해 긴급 상황과 관련된 정보를 전송하는 경우, 기지국과 연결된 단말(Conencted UE) 뿐만 아니라 유휴 상태의 단말(Idle UE)도 상기 긴급 상황과 관련된 정보를 수신할 수 있도록 하기 위해, 상기 긴급 상황과 관련된 정보가 특정 시간 동안 반복해서 전송될 수 있다.
또한, PBCH 또는 PCH를 통해 상기 긴급 상황과 관련된 정보가 PDUCH를 통해 전송된다는 것을 나타내는 지시 정보가 셀 내의 단말들에게 전송될 수 있다.
하향링크 물리 데이터 채널을 통한 전송(Physical Downlink Shared Channel)을 통한 전송
본 방법은 기지국이 셀 내의 단말들에게 하향링크 물리 데이터 채널(Physical Downlink Shred Channel, PDSCH)을 통해서 응답 신호를 전송한다.
상기 기지국은 상기 PDSCH를 통해서 셀 내의 단말들에게 긴급 상황과 관련된정보를 브로드캐스트, 멀티캐스트 또는 유니캐스트 전송 방법을 이용하여 전송할 수 있다.
브로드캐스트를 이용한 전송
상기 기지국이 상기 긴급 상황과 관련된 정보를 브로드캐스팅 전송 방법을 이용하여 셀 내의 단말들에게 전송하는 경우, 상기 기지국은 상기 긴급 상황과 관련된 정보는 SIB(System Information Block)과 같은 RRC 시스템 정보 전송 메시지에 포함되어 전송될 수 있다.
이때, 상기 SIB는 상기 긴급 상황과 관련된 정보를 전송하기 위해서 새롭게 정의될 수도 있으며, 기존의 SIB를 이용할 수도 있다.
상기 SIB는 특정 긴급 상황이 발생하였을 경우에만 전송될 수 있으며, 셀 내의 모든 단말(연결 상태 단말 및 유휴 상태의 단말)이 수신할 수 있도록 하나 이상의 TTI(또는 Sub Frame)를 통해서 중복되어 전송될 수 있다.
또한, 상기 SIB를 상기 유휴 상태의 단말이 수신할 수 있도록 PBCH 또는 PCH를 통해 상기 SIB를 통해 긴급 상황과 관련된 정보가 전송된다는 것을 나타내는 지시자를 전송하여, 상기 유휴 상태의 단말에게 상기 SIB를 통해 긴급 상황과 관련된 정보가 전송된다는 것을 알릴 수 있다.
유니캐스트 /멀티캐스트를 이용한 전송
상기 기지국은 셀 내의 특정 단말 또는 특정 단말들에게 긴급 상황이 발생하였음을 알리기 위해서 하향링크 데이터 채널을 통해 유니캐스트 또는 멀티캐스트 전송 방식을 이용하여 상기 긴급 상황과 관련된 정보를 전송할 수 있다.
예를 들면, 상기 긴급 상황과 관련된 정보는 유니캐스트 또는 멀티캐스트 전송 박식을 이용하여 특정 RNTI(radio network temporary identifier)을 통해서 전송될 수 있다.
만약, 멀티캐스트 전송 방식을 이용하는 경우, 수신하는 단말의 상태와 관계 없이 상기 긴급 상황과 관련된 정보를 수신할 수 있도록 상기 정보의 전송을 위한 RNTI(예를 들면, U-RNTI 또는 Urgent RNTI)를 정의할 수 있다.
상기 정의된 RNTI를 이용하여 유휴 상태의 단말이 상기 긴급 상황과 관련된 정보를 수신할 수 있도록 특정 간격(interval)을 셀 내에 설정함으로써 상기 유휴 상태의 단말은 설정된 간격 내에서 상기 긴급 상황과 관련된 정보를 수신할 수 있다.
이때, PBCH 또는 PCH를 통해 상기 SIB를 통해 긴급 상황과 관련된 정보가 상기 설정된 간격에 전송된다는 것을 나타내는 지시자를 전송하여, 상기 유휴 상태의 단말에게 상기 설정된 간격에서 상기 긴급 상황과 관련된 정보를 수신하도록 지시할 수 있다.
이와 같이, 기지국이 단말로부터 긴급 상황의 발생을 알리는 신호 또는 메시지를 수신한 경우, 이를 셀 내의 단말들에게 빠르게 알림으로써 2차 사고의 발생을 방지할 수 있으며, 긴급 상황이 발생한 경우 빠르고 효율적으로 대처할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 23은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 23을 참조하면, 무선 통신 시스템은 기지국(2310)과 기지국(2310) 영역 내에 위치한 다수의 단말(2320)을 포함한다.
기지국(2310)은 프로세서(processor, 2311), 메모리(memory, 2312) 및 RF부(radio frequency unit, 2313)을 포함한다. 프로세서(2311)는 앞서 도 1 내지 도 20에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2311)에 의해 구현될 수 있다. 메모리(2312)는 프로세서(2311)와 연결되어, 프로세서(2311)를 구동하기 위한 다양한 정보를 저장한다. RF부(2313)는 프로세서(2311)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(2320)은 프로세서(2321), 메모리(2322) 및 RF부(2323)을 포함한다. 프로세서(2321)는 앞서 도 1 내지 도 20에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2321)에 의해 구현될 수 있다. 메모리(2322)는 프로세서(2321)와 연결되어, 프로세서(2321)를 구동하기 위한 다양한 정보를 저장한다. RF부(2323)는 프로세서(2321)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2312, 2322)는 프로세서(2311, 2321) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2311, 2321)와 연결될 수 있다.
또한, 기지국(2310) 및/또는 단말(2320)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 상향링크 데이터 전송을 위한 방안은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (16)

  1. 저 지연(low latency) 서비스를 지원하는 무선 통신 시스템에서 기지국이 데이터를 송수신하기 위한 방법에 있어서,
    긴급 상황과 관련된 이벤트(event)의 발생을 알리는 긴급 신호(urgent signal)를 단말로부터 수신하는 단계;
    셀에 포함되어 있는 적어도 하나의 단말에게 상기 이벤트의 발생을 알리기 위한 응답 신호가 전송되는 채널을 나타내는 지시자를 전송하는 단계; 및
    상기 응답 신호를 상기 적어도 하나의 단말에게 전송하는 단계를 포함하되,
    상기 응답 신호는 하향링크 제어 채널 또는 하향링크 데이터 채널을 통해서 전송되는 방법.
  2. 제 1 항에 있어서, 상기 응답 신호가 상기 하향링크 제어 채널을 통해서 전송되는 경우,
    상기 적어도 하나의 단말에게 시스템 정보를 전송하는 단계를 더 포함하되,
    상기 응답 신호는 상기 하향링크 제어 채널의 특정 자원 영역을 통해서 전송되고,
    상기 시스템 정보는 상기 특정 자원 영역의 정보 및 상기 지시자를 포함하는 방법.
  3. 제 2 항에 있어서,
    상기 특정 자원 영역에 포함되어 있는 각 자원의 인덱스는 상기 이벤트와 매핑되는 방법.
  4. 제 2 항에 있어서,
    상기 특정 자원 영역의 크기는 상기 긴급 상황과 관련된 이벤트의 개수 및 각 이벤트에 할당된 자원 요소(Resource Element)에 의해 결정되는 방법.
  5. 제 2 항에 있어서,
    상기 특정 자원 영역의 크기는 상기 긴급 상황과 관련된 이벤트의 개수 및 각 이벤트에 할당된 제어 채널 요소(Control Channel Element, CCE)에 의해 결정되는 방법.
  6. 제 1 항에 있어서,
    상기 자원 영역은 서브프레임의 첫 번째 내지 세 번째 OFDM(orthogonal frequency division multiplexing) 심볼 중 하나의 심볼에 위치하는 방법.
  7. 제 1 항에 있어서,
    상기 자원 영역은 상기 하향링크 제어 채널의 PCFICH(physical control format indication channel) 또는 PHICH(Physical Hybrid-ARQ Indicator Channel) 이후에 위치하는 방법.
  8. 제 1 항에 있어서,
    상기 응답 신호는 ON/OFF Keying 방식 또는 공통 검색 공간(common search space)를 통해서 전송되는 방법.
  9. 제 5 항에 있어서,
    상기 응답 신호가 ON/OFF Keying 방식으로 전송되는 경우, 4개의 연속된 자원 요소들(resource elements)로 1 bit 정보를 스프레딩(spreading)하는 방법.
  10. 제 8 항에 있어서,
    상기 스프레딩(spreading)은 3번 반복되는 방법.
  11. 제 1 항에 있어서,
    상기 적어도 하나의 단말로 물리 방송 채널(Physical Broadcast Channel, PBCH)을 통해서 상기 이벤트와 관련된 정보를 전송하는 단계를 더 포함하는 방법.
  12. 제 1 항에 있어서,
    상기 응답 신호가 상기 하향링크 데이터 채널을 통해서 전송되는 경우, 상기 응답 신호는 RRC 메시지에 포함되어 전송되는 방법.
  13. 제 12 항에 있어서,
    상기 RRC 메시지는 브로드캐스트, 유니캐스트 또는 멀티캐스트 전송 방식 중 어느 하나의 방식으로 전송되는 방법.
  14. 제 13 항에 있어서,
    상기 RRC 메시지가 브로드캐스트 전송 방식으로 전송되는 경우, 상기 이벤트가 발생된 경우에만 전송되는 방법.
  15. 제 13 항에 있어서,
    상기 RRC 메시지가 유니캐스트 또는 멀티캐스트 전송 방식 중 어느 하나의 방식으로 전송되는 경우, 상기 RRC 메시지는 상기 응답 신호를 전송하기 위한 특정 RNTI(Radio Network Temporary Identifier)를 통해서 전송되는 방법.
  16. 저 지연(low latency) 서비스를 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 기지국에 있어서,
    외부와 무선 신호를 송신 및 수신하는 통신부; 및
    상기 통신부와 기능적으로 결합되어 있는 프로세서를 포함하되, 상기 프로세서는,
    긴급 상황과 관련된 이벤트(event)의 발생을 알리는 긴급 신호(urgent signal)를 단말로부터 수신하고,
    셀에 포함되어 있는 적어도 하나의 단말에게 상기 이벤트의 발생을 알리기 위한 응답 신호가 전송되는 채널을 나타내는 지시자를 전송하며,
    상기 응답 신호를 상기 적어도 하나의 단말에게 전송하되,
    상기 응답 신호는 하향링크 제어 채널 또는 하향링크 데이터 채널을 통해서 전송되는 기지국.
PCT/KR2016/002522 2016-03-14 2016-03-14 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치 WO2017159886A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/085,545 US11076419B2 (en) 2016-03-14 2016-03-14 Method for transmitting uplink data in wireless communication system and apparatus therefor
PCT/KR2016/002522 WO2017159886A1 (ko) 2016-03-14 2016-03-14 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/002522 WO2017159886A1 (ko) 2016-03-14 2016-03-14 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
WO2017159886A1 true WO2017159886A1 (ko) 2017-09-21

Family

ID=59852274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002522 WO2017159886A1 (ko) 2016-03-14 2016-03-14 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11076419B2 (ko)
WO (1) WO2017159886A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643832B1 (ko) 2011-12-22 2016-07-28 인터디지탈 패튼 홀딩스, 인크 Lte 캐리어 어그리게이션에서의 제어 시그널링
CN109040976B (zh) * 2016-08-12 2020-11-24 华为技术有限公司 一种数据传输方法及设备
US10631173B2 (en) * 2016-09-02 2020-04-21 Qualcomm Incorporated Radio (NR) procedures for shared spectrum
US10820342B2 (en) * 2018-02-13 2020-10-27 Mediatek Singapore Pte. Ltd. Method and apparatus for flexible scheduling of uplink transmissions in mobile communications
US11349625B2 (en) * 2018-03-14 2022-05-31 Sony Group Corporation Low duty cycle proximity based acknowledgement
WO2020117557A1 (en) 2018-12-06 2020-06-11 Google Llc Base-station-initiated grant revoke
CN113396598A (zh) * 2018-12-11 2021-09-14 株式会社Ntt都科摩 用户终端以及无线通信方法
US11523301B2 (en) * 2020-04-20 2022-12-06 Qualcomm Incorporated Physical uplink control channel with buffer status report
US11758513B2 (en) 2020-04-20 2023-09-12 Qualcomm Incorporated Physical uplink control channel with uplink message short data field
US11817000B2 (en) * 2020-12-10 2023-11-14 Rockwell Collins, Inc. System and method to reduce runway occupancy time using pseudo threshold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110059718A1 (en) * 2008-06-20 2011-03-10 Interdigital Patent Holdings, Inc. Emergency information in system information broadcast
WO2013137582A1 (ko) * 2012-03-15 2013-09-19 엘지전자 주식회사 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
EP2704463A1 (en) * 2011-05-31 2014-03-05 Huawei Technologies Co., Ltd Data transmission method and device
US20140134970A1 (en) * 2012-11-13 2014-05-15 Qualcomm Incorporated Emergency alert using mbms and cell broadcasting
EP2763449A1 (en) * 2011-09-30 2014-08-06 Huawei Technologies Co., Ltd. Emergency processing method, device and system

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054929B2 (en) * 2006-06-29 2011-11-08 Applied Micro Circuits Corporation System and method for auto-squelching digital communications
US8711765B2 (en) * 2006-09-27 2014-04-29 Texas Instruments Incorporated Uplink synchronization management in wireless networks
ES2718801T3 (es) * 2007-06-19 2019-07-04 Optis Cellular Tech Llc Procedimientos y sistemas para planificar recursos en un sistema de telecomunicaciones
US20100254329A1 (en) * 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
CN101932115A (zh) * 2009-06-17 2010-12-29 宏达国际电子股份有限公司 避免随机存取程序不正确结束的方法及相关通信装置
TW201100848A (en) * 2009-06-22 2011-01-01 Htc Corp Method of enhancing positioning measurement and related communication device
US8619649B2 (en) * 2009-07-14 2013-12-31 Htc Corporation Method of handling random access procedure and related communication device
WO2012011775A2 (ko) * 2010-07-22 2012-01-26 엘지전자 주식회사 다중 반송파 시스템에서 상향링크 제어 정보 전송 방법 및 장치
CN102970761A (zh) * 2011-09-01 2013-03-13 华为技术有限公司 数据发送方法和用户设备
WO2014115139A1 (en) * 2013-01-23 2014-07-31 Iatas (Automatic Air Traffic Control) Ltd System and methods for automated airport air traffic control services
WO2015002432A1 (ko) * 2013-07-01 2015-01-08 엘지전자 주식회사 신호 전송 방법 및 전송 장치
US9510161B2 (en) * 2013-07-08 2016-11-29 Electronics & Telecoomunications Research Institute Method for public safety communication and apparatus for the same
US9749996B2 (en) * 2013-07-29 2017-08-29 Lg Electronics Inc. Method and device for performing coordinated multi-point transmission based on selection of transmission point
WO2015020427A1 (ko) * 2013-08-06 2015-02-12 엘지전자 주식회사 D2d 신호 전송 방법 및 이를 위한 장치
US9654953B2 (en) * 2013-11-27 2017-05-16 Blackberry Limited Method and apparatus for wireless emergency alerts
WO2015147376A1 (ko) * 2014-03-24 2015-10-01 엘지전자 주식회사 무선 통신 시스템에서 차량 내 통신 기기의 통신 방법 및 이를 위한 장치
WO2015160158A1 (ko) * 2014-04-13 2015-10-22 엘지전자(주) 무선 통신 시스템에서 d2d 단말 그룹 관리 방법 및 이를 위한 장치
US20160219583A1 (en) * 2014-05-09 2016-07-28 Telefonaktiebolaget L M Ericsson (Publ) Sub frame timing for harq lte hd-fdd
KR101893313B1 (ko) * 2014-08-11 2018-08-29 텔레폰악티에볼라겟엘엠에릭슨(펍) D2d 및 셀룰러 동작
US10027359B2 (en) * 2014-08-13 2018-07-17 Qualcomm Incorporated Managing transmitter collisions
KR102096146B1 (ko) * 2014-09-02 2020-04-28 애플 인크. 가변 햅틱 출력을 위한 시맨틱 프레임워크
WO2016089185A1 (ko) * 2014-12-05 2016-06-09 엘지전자 주식회사 기기 간 사이드링크를 이용하여 단말이 신호를 송수신하는 방법 및 장치
WO2016117772A1 (en) * 2015-01-23 2016-07-28 Lg Electronics Inc. Method and apparatus for sending uplink data in wireless communication system
US10455370B2 (en) * 2015-06-17 2019-10-22 Lg Electronics Inc. Method and device for receiving data from asynchronous adjacent cell in wireless communication system
WO2016208829A1 (ko) * 2015-06-26 2016-12-29 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 송수신 방법 및 이를 위한 장치
US10244527B2 (en) * 2015-12-18 2019-03-26 Qualcomm Incorporated Techniques for dropping uplink grants in carrier aggregation to mitigate intermodulation interference
US10477492B2 (en) * 2016-02-02 2019-11-12 Lg Electronics Inc. Method for transmitting signal on basis of multi-radio access technology in wireless communication system and apparatus therefor
WO2017155290A1 (ko) * 2016-03-07 2017-09-14 엘지전자(주) 무선 통신 시스템에서 상/하향링크 데이터 송수신 방법 및 이를 위한 장치
FR3063385B1 (fr) * 2017-02-28 2019-04-26 Stmicroelectronics (Rousset) Sas Circuit integre avec detection d'amincissement par la face arriere et condensateurs de decouplage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110059718A1 (en) * 2008-06-20 2011-03-10 Interdigital Patent Holdings, Inc. Emergency information in system information broadcast
EP2704463A1 (en) * 2011-05-31 2014-03-05 Huawei Technologies Co., Ltd Data transmission method and device
EP2763449A1 (en) * 2011-09-30 2014-08-06 Huawei Technologies Co., Ltd. Emergency processing method, device and system
WO2013137582A1 (ko) * 2012-03-15 2013-09-19 엘지전자 주식회사 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
US20140134970A1 (en) * 2012-11-13 2014-05-15 Qualcomm Incorporated Emergency alert using mbms and cell broadcasting

Also Published As

Publication number Publication date
US11076419B2 (en) 2021-07-27
US20190104541A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2017159886A1 (ko) 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치
WO2018186677A1 (en) Apparatus and method for performing a random access procedure
WO2018164552A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018030793A1 (ko) 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2016153316A1 (ko) 무선 통신 시스템에서 단말 접근성 모니터링 방법 및 이를 위한 장치
WO2016111591A1 (ko) 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치
WO2017003235A1 (ko) 무선 통신 시스템에서 그룹 메시지를 전송하기 위한 방법 및 이를 위한 장치
WO2016114611A1 (ko) 무선 통신 시스템에서 영역 업데이트 방법 및 이를 위한 장치
WO2016099138A1 (ko) 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치
WO2016163723A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 타이밍을 조절하기 위한 방법 및 이를 위한 장치
WO2016208997A1 (ko) 무선 통신 시스템에서 단말의 영역 관리 방법 및 이를 위한 장치
WO2015137632A1 (en) Method for allocating temporary identifier to terminal in random access procedure in wireless communication system and apparatus tehrefor
WO2017159972A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2015023128A1 (ko) 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
WO2017047878A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 베어러 설정 방법 및 이를 지원하는 장치
WO2018226072A2 (ko) 무선 통신 시스템에서 오버로드 제어 방법 및 이를 위한 장치
WO2017142268A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2021141329A1 (en) Method and apparatus for performing communication in wireless communication system
WO2016153277A1 (ko) 무선 통신 시스템에서 지리적 영역 내 존재하는 단말의 수의 보고를 위한 방법 및 이를 위한 장치
WO2017217802A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2019132501A1 (ko) 무선 통신 시스템에서 네트워크에 액세스하는 방법 및 이를 위한 장치
WO2019164377A1 (ko) 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 이를 위한 장치
WO2018194239A1 (en) Method and apparatus for transmitting and receiving a wake-up signal in a wireless communication system
WO2022216048A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023128608A1 (en) Method and apparatus for small data transmission in wireless communication system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894617

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894617

Country of ref document: EP

Kind code of ref document: A1