WO2017217802A1 - 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치 - Google Patents
무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치 Download PDFInfo
- Publication number
- WO2017217802A1 WO2017217802A1 PCT/KR2017/006304 KR2017006304W WO2017217802A1 WO 2017217802 A1 WO2017217802 A1 WO 2017217802A1 KR 2017006304 W KR2017006304 W KR 2017006304W WO 2017217802 A1 WO2017217802 A1 WO 2017217802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- base station
- data
- session
- identifier
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/26—Network addressing or numbering for mobility support
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/22—Manipulation of transport tunnels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2101/00—Indexing scheme associated with group H04L61/00
- H04L2101/60—Types of network addresses
- H04L2101/618—Details of network addresses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements, protocols or services for addressing or naming
- H04L61/50—Address allocation
- H04L61/5007—Internet protocol [IP] addresses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to a method for transmitting and receiving data of a terminal in a wireless communication system, and more particularly, to a method for transmitting and receiving data by allocating a terminal identifier for identifying a terminal and an apparatus for supporting the same.
- Mobile communication systems have been developed to provide voice services while ensuring user activity.
- the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
- An object of the present invention is to provide a method and apparatus for establishing a logical path for transmitting and receiving data according to a quality of service (QoS) of a service.
- QoS quality of service
- Another object of the present invention is to provide a method and apparatus for transmitting data through a predetermined path or a portion of a path without a separate logical path setting.
- Another object of the present invention is to provide a method and apparatus for transmitting a plurality of data having different required quality of service through one logical path.
- Another object of the present invention is to provide a method and apparatus for setting a radio bearer set in units of terminals for providing an emergency service between a base station and a terminal.
- Another object of the present invention is to provide a method for establishing a session for transmitting and receiving data between a plurality of terminals requiring the same quality of service between a base station and a network node, and an apparatus for supporting the same.
- Another object of the present invention is to provide a method for allocating an identifier for identifying a terminal transmitting data and an apparatus supporting the same, when data transmitted from a plurality of terminals is transmitted through the same session.
- Another object of the present invention is to provide a method for updating an assigned identifier and an apparatus supporting the same when a mobility or state of a terminal is changed.
- the present invention provides a method and apparatus for transmitting and receiving data in a wireless communication system in order to solve the above problems.
- the data transmission and reception method forming a first session for transmitting and receiving data with the first network node; Receiving uplink data for providing a specific service from a terminal in a connected state or a disconnected state; Assigning, by a second network node, a first terminal identifier for identifying the terminal; And transmitting the uplink data to the second network node along with the first terminal identifier and a base station identifier for identifying the base station, wherein the first session is transmitted from a plurality of terminals or the plurality of terminals. It is a radio path for transmitting and receiving data having the same quality of service transmitted to the terminal.
- the first terminal identifier is an identifier for identifying the terminal from which the second network node has transmitted the uplink data when the uplink data is transmitted through the first session.
- the present invention may further include establishing a second session for transmitting and receiving data of the specific service with the terminal, wherein the uplink data is transmitted to the base station through the second session.
- the uplink data when the terminal transmits the uplink data in a non-connected state, the uplink data includes the first indicator and the uplink data indicating that the uplink data uses the first session. It is sent with data type information.
- the present invention also provides a report message for reporting an update of the first terminal identifier due to the specific event to a third network node that performs a function of controlling the second network node or a network node when a specific event occurs.
- the specific event is one of handover of the terminal, transition state of the terminal, or release of a temporary terminal identifier assigned to the terminal, and the report message includes the first terminal identifier. do.
- the report message when the specific event is the handover, the report message further includes a target base station identifier for identifying a target base station, and a second terminal identifier assigned by the target base station.
- the method further includes receiving downlink data from the second network node, wherein the downlink data is transmitted together with the first terminal identifier and an IP address indicating a destination of the downlink data.
- the IP address is assigned by the second network node based on the first terminal identifier and the base station identifier.
- the IP address is released when the data of the terminal is not transmitted and received through the first session during the IP address release procedure or the specific time with the second network node.
- the communication unit for transmitting and receiving a wireless signal with the outside; And a processor that is functionally coupled to the communication unit, wherein the processor forms a first session for transmitting and receiving data with a first network node, and provides a specific service from a terminal in a connected or disconnected state.
- a second network node assigns a first terminal identifier for identifying the terminal, and assigns the uplink data with the first terminal identifier and a base station identifier for identifying the base station;
- the first session is transmitted from a plurality of terminals, or a wireless path for transmitting and receiving data having the same quality of service transmitted to the plurality of terminals.
- the present invention has the effect of reducing the signaling for establishing a separate logical path according to the quality of service by transmitting a plurality of different data of different quality of service through one logical path.
- the present invention has the effect of transmitting and receiving data by identifying the terminal according to the position or state of the terminal by updating the terminal identifier when the mobility or state of the terminal is changed.
- the present invention has the effect of reducing the resources for managing the logical path by transmitting a plurality of data having the same or different quality of service through one logical path.
- FIG. 1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the present invention can be applied.
- EPS Evolved Packet System
- FIG. 2 shows a wireless communication system to which the present invention is applied.
- FIG. 3 is a block diagram illustrating an example of a functional split between an E-UTRAN and an EPC to which the present invention can be applied.
- FIG. 4 is a block diagram illustrating an example of a radio protocol architecture to which technical features of the present invention can be applied.
- FIG. 5 is a flowchart illustrating a process of establishing an RRC connection to which the present invention can be applied.
- FIG. 6 is a flowchart illustrating a RRC connection resetting process to which the present invention can be applied.
- FIG. 7 shows an example of a random access procedure in an LTE system.
- FIG. 8 is a diagram illustrating EMM and ECM states in a wireless communication system to which the present invention can be applied.
- FIG. 9 is a diagram illustrating a bearer structure in a wireless communication system to which the present invention can be applied.
- FIG. 10 is a diagram illustrating transmission paths of a control plane and a user plane in an EMM registered state in a wireless communication system to which the present invention can be applied.
- FIG. 11 shows an example of a basic bearer activation procedure.
- FIG. 13 illustrates an example of a dedicated bearer deactivation procedure.
- QoS 14 is a diagram illustrating an example of a parameter configuration for quality of service (QoS) management.
- 15 is a diagram illustrating an example of a method for transmitting and receiving data of a plurality of terminals by establishing a session proposed in the present specification.
- 16 is a flowchart illustrating an example of a method for transmitting and receiving data of a plurality of terminals by establishing a session proposed in the present specification.
- 17 is a diagram illustrating an example of a method for transmitting and receiving uplink data by establishing a session proposed in the present specification.
- FIG. 18 illustrates another example of a method for transmitting and receiving uplink data by establishing a session proposed in the present specification.
- 19 is a diagram illustrating an example of a method for transmitting and receiving downlink data by establishing a session proposed in the present specification.
- 20 illustrates another example of a method for transmitting and receiving downlink data by establishing a session proposed in the present specification.
- 21 illustrates another example of a method for transmitting and receiving downlink data by establishing a session proposed in the present specification.
- FIG. 22 is a flowchart illustrating an example of a method for updating an identifier of a terminal proposed in the present specification.
- FIG. 23 is a flowchart illustrating an example of a method for releasing an IP address of a terminal proposed in the present specification.
- 24 is a flowchart illustrating an example of a method for transmitting / receiving data of a terminal by a base station proposed in the present specification by establishing a session.
- 25 is a diagram illustrating an example of an internal block diagram of a wireless device to which the present invention can be applied.
- a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
- a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
- UE user equipment
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS Advanced Mobile Station
- WT Wireless Terminal
- MTC Machine-Type Communication
- M2M Machine-to-Machine
- D2D Device-to-Device
- downlink means communication from a base station to a terminal
- uplink means communication from a terminal to a base station.
- a transmitter may be part of a base station
- a receiver may be part of a terminal.
- a transmitter may be part of a terminal and a receiver may be part of a base station.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
- EPS stands for Evolved Packet System and means a core network supporting a Long Term Evolution (LTE) network.
- LTE Long Term Evolution
- UMTS evolved network
- PDN Public Data Network
- APN Access Point Name: A name of an access point managed in a network, which is provided to a UE. That is, the name (string) of the PDN. Based on the name of the access point, the corresponding PDN for the transmission and reception of data is determined.
- Tunnel Endpoint Identifier An end point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
- MME Mobility Management Entity
- a session is a channel for data transmission.
- the unit may be a PDN, a bearer, or an IP flow unit.
- the difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
- APN or PDN unit the entire target network unit
- QoS classification unit the QoS classification unit
- destination IP address unit as defined in 3GPP.
- EPS Bearer Logical path created between UE and gateway through which various kinds of traffic are transmitted and received.
- Default EPS Bear As a logical path for data transmission and reception basically created when the terminal accesses the network, it may be maintained until the terminal exits from the network.
- Dedicated EPS Bearer A logical path created when needed to provide additional services after the Default EPS Bearer is created.
- IP flow Various kinds of traffic transmitted and received through a logical path between a terminal and a gateway.
- Service Data Flow The IP flow or combination of multiple IP flows of user traffic classified by service type.
- PDN connection (connection) A connection from the terminal to the PDN, that is, the association (connection) between the terminal represented by the IP address and the PDN represented by the APN.
- UE Context The context information of the UE used to manage the UE in the network, that is, the context information consisting of UE id, mobility (current location, etc.), and attributes of the session (QoS, priority, etc.)
- P-TMSI Packet Temporary Mobile Subscriber
- GTP GPRS Tunneling Protocol
- TEID Tunnel Endpoint ID
- GUTI Globally Unique Temporary Identity, UE identifier known to MME
- FIG. 1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the present invention can be applied.
- EPS Evolved Packet System
- the LTE system aims to provide seamless Internet Protocol connectivity between a user equipment (UE) and a pack data network (PDN) while the user does not interfere with the end user's use of the application on the go. .
- the LTE system completes the evolution of wireless access through the Evolved Universal Terrestrial Radio Access Network (E-UTRAN), which defines a radio protocol architecture between the user terminal and the base station, which is an Evolved Packet Core (EPC) network. It is also achieved through evolution in non-wireless terms by the inclusion of System Architecture Evolution (SAE).
- LTE and SAE include an Evolved Packet System (EPS).
- EPS Evolved Packet System
- the EPS uses the concept of EPS bearers to route IP traffic from the gateway to the user terminal in the PDN.
- a bearer is an IP packet flow having a specific Quality of Service (QoS) between the gateway and the user terminal.
- QoS Quality of Service
- E-UTRAN and EPC both set up and release bearers required by the application.
- EPC also called CN (core network)
- CN core network
- a node (logical or physical node) of an EPC of the SAE includes a mobility management entity (MME) 30, a PDN-GW or a PDN gateway (P-GW) 50, and an S-GW ( Serving Gateway (40), Policy and Charging Rules Function (PCRF) 60, Home Subscriber Server (HSS) 70, and the like.
- MME mobility management entity
- P-GW PDN gateway
- S-GW Serving Gateway
- PCRF Policy and Charging Rules Function
- HSS Home Subscriber Server
- the MME 30 is a control node that handles signaling between the UE 10 and the CN.
- the protocol exchanged between the UE 10 and the CN is known as a Non-Access Stratum (NAS) protocol.
- NAS Non-Access Stratum
- Examples of functions supported by the MME 30 include functions related to bearer management operated by the session management layer in the NAS protocol, including network setup, management, and release of bearers, network and It is manipulated by a connection layer or a mobility management layer in the NAS protocol layer including the establishment of a connection and security between the UEs 10.
- the MME 30 is an entity in which a function necessary for processing authentication and context information for a terminal is implemented, which has been described as an embodiment. Thus, other devices as well as the MME 30 may perform the corresponding function.
- the S-GW 40 serves as a local mobility anchor for the data bearer when the UE 10 moves between base stations (eNodeBs) 20. All user IP packets are sent via the S-GW 40. Also, the S-GW 40 is in an idle state where the UE 10 is known as the ECM-IDLE state, and the MME 30 performs paging of the UE 10 to re-establish the bearer. Maintain information related to the bearer when temporarily buffering downlink data during initiation. It also serves as a mobility anchor for inter-working with other 3GPP technologies such as General Packet Radio Service (GRPS) and Universal Mobile Telecommunications System (UMTS).
- GRPS General Packet Radio Service
- UMTS Universal Mobile Telecommunications System
- the S-GW 40 is an entity in which a function necessary for processing routing / forwarding of user data is implemented and described as an embodiment.
- other devices as well as the S-GW 40 may perform the corresponding function.
- the P-GW 50 performs IP address assignment for the UE and performs flow-based charging in accordance with QoS enforcement and rules from the PCRF 60.
- the P-GW 50 performs QoS enforcement for GBR bearers (Guaranteed Bit Rate (GBR) bearers). It also serves as a mobility anchor for interworking with non-3GPP technologies such as CDMA2000 and WiMAX networks.
- GBR bearers Guard Bit Rate (GBR) bearers
- the P-GW 50 is an entity in which a function necessary for processing routing / forwarding of user data is implemented and described as an embodiment.
- other devices as well as the P-GW 50 may perform the corresponding function.
- the PCRF 60 performs policy control decision-making and performs flow-based charging.
- the HSS 70 is also called a home location register (HLR), and includes SAE subscription data including information on EPS-subscribed QoS profiles and access control for roaming. It also includes information about the PDN that the user accesses. This information may be maintained in the form of an Access Point Name (APN), which is a Domain Name system (DNS) -based label that identifies the PDN address that represents the access point or subscribed IP address for the PDN.
- API Access Point Name
- DNS Domain Name system
- various interfaces such as S1-U, S1-MME, S5 / S8, S11, S6a, Gx, Rx, and SG may be defined between EPS network elements.
- Mobility Management is a procedure to reduce overhead on the E-UTRAN and processing at the UE.
- MME mobility management
- the UE can inform the network about the new location whenever it leaves the current tracking area (TA) so that the network can contact the UE in the ECM-IDLE state.
- This procedure may be called “Tracking Area Update”, which may be called “Routing Area Update” in universal terrestrial radio access network (UTRAN) or GSM EDGE Radio Access Network (GERAN) system.
- the MME performs the function of tracking the user's location while the UE is in the ECM-IDLE state.
- the MME transmits a paging message to all base stations (eNodeBs) on the tracking area (TA) where the UE is registered.
- eNodeBs base stations
- TA tracking area
- the base station then begins paging for the UE over a radio interface.
- a procedure for causing the state of the UE to transition to the ECM-CONNECTED state is performed.
- This procedure can be called a “Service Request Procedure”. Accordingly, information related to the UE is generated in the E-UTRAN, and all bearers are re-established.
- the MME is responsible for resetting the radio bearer and updating the UE context on the base station.
- a mobility management (MM) backoff timer may be further used.
- the UE may transmit a tracking area update (TAU) to update the TA, and the MME may reject the TAU request due to core network congestion, in which case the MM backoff timer You can provide a time value.
- the UE may activate the MM backoff timer.
- TAU tracking area update
- FIG. 2 shows a wireless communication system to which the present invention is applied.
- E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
- LTE Long Term Evolution
- the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
- BS base station
- UE user equipment
- the base stations 20 may be connected to each other through an X2 interface.
- the base station 20 is connected to a Serving Gateway (S-GW) through a Mobility Management Entity (MME) and an S1-U through an Evolved Packet Core (EPC), more specifically, an S1-MME through an S1 interface.
- S-GW Serving Gateway
- MME Mobility Management Entity
- EPC Evolved Packet Core
- EPC consists of MME, S-GW and Packet Data Network Gateway (P-GW).
- the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
- S-GW is a gateway having an E-UTRAN as an endpoint
- P-GW is a gateway having a PDN as an endpoint.
- Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
- L2 second layer
- L3 third layer
- the RRC Radio Resource Control
- the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
- FIG. 3 is a block diagram illustrating an example of a functional split between an E-UTRAN and an EPC to which the present invention can be applied.
- hatched blocks represent radio protocol layers and empty blocks represent functional entities in the control plane.
- the base station performs the following functions.
- Radio resource management such as radio bearer control, radio admission control, connection mobility control, and dynamic resource allocation to a terminal RRM
- IP Internet Protocol
- IP Internet Protocol
- Scheduling and transmission (5) scheduling and transmission of broadcast information, and (6) measurement and measurement report setup for mobility and scheduling.
- the MME performs the following functions. (1) distribution of paging messages to base stations, (2) Security Control, (3) Idle State Mobility Control, (4) SAE Bearer Control, (5) NAS (Non-Access) Stratum) Ciphering and Integrity Protection of Signaling.
- S-GW performs the following functions. (1) termination of user plane packets for paging, and (2) user plane switching to support terminal mobility.
- FIG. 4 is a block diagram illustrating an example of a radio protocol architecture to which technical features of the present invention can be applied.
- FIG. 4A illustrates an example of a radio protocol architecture for a user plane
- FIG. 4B illustrates a radio protocol architecture for a control plane.
- the user plane is a protocol stack for user data transmission
- the control plane is a protocol stack for control signal transmission.
- a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
- the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
- MAC medium access control
- the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
- OFDM orthogonal frequency division multiplexing
- the function of the MAC layer is mapping between logical channels and transport channels and multiplexing / demultiplexing ('/') into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels. Meaning includes both the concepts of 'or' and 'and').
- the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
- RLC Radio Link Control
- RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
- QoS Quality of Service
- the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
- TM transparent mode
- UM unacknowledged mode
- Acknowledged Mode acknowledged mode
- AM Three modes of operation (AM).
- AM RLC provides error correction through an automatic repeat request (ARQ).
- the RRC (Radio Resource Control) layer is defined only in the control plane.
- the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
- RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
- PDCP Packet Data Convergence Protocol
- Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
- the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
- the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
- RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
- SRB is used as a path for transmitting RRC messages in the control plane
- DRB is used as a path for transmitting user data in the user plane.
- the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
- the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
- Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
- the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
- RACH random access channel
- SCH uplink shared channel
- BCCH broadcast control channel
- PCCH paging control channel
- CCCH common control channel
- MCCH multicast control channel
- MTCH multicast traffic
- the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
- One sub-frame consists of a plurality of OFDM symbols in the time domain.
- the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
- each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
- Transmission Time Interval is a unit time of subframe transmission.
- the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE.
- the UE of the RRC idle state cannot be recognized by the E-UTRAN and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than a cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
- the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
- the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
- RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
- the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
- EMM-REGISTERED EPS Mobility Management-REGISTERED
- EMM-DEREGISTERED EMM-DEREGISTERED
- the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
- ECM EPS Connection Management
- ECM-CONNECTED ECM-CONNECTED
- the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
- the E-UTRAN does not have context information of the terminal. Accordingly, the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
- the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
- the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
- the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
- the system information includes a master information block (MIB) and a scheduling block (SB). It is divided into SIB (System Information Block).
- MIB master information block
- SB scheduling block
- the MIB enables the UE to know the physical configuration of the cell, for example, bandwidth.
- SB informs transmission information of SIBs, for example, a transmission period.
- SIB is a collection of related system information. For example, some SIBs contain only information of neighboring cells, and some SIBs contain only information of an uplink radio channel used by the terminal.
- FIG. 5 is a flowchart illustrating a process of establishing an RRC connection to which the present invention can be applied.
- the terminal sends an RRC connection request message to the network requesting an RRC connection (S5010).
- the network sends an RRC connection setup message in response to the RRC connection request (S5020). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
- the terminal sends an RRC connection setup complete message used to confirm successful completion of RRC connection establishment to the network (S5030).
- FIG. 6 is a flowchart illustrating a RRC connection resetting process to which the present invention can be applied.
- RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release a radio bearer (RB), perform handover, and set up / modify / release a measurement.
- RB radio bearer
- the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S6010).
- the terminal sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S6020).
- Random access process ( RACH procedure )
- FIG. 7 shows an example of a random access procedure in an LTE system.
- the random access procedure is performed when initial access in RRC_IDLE, initial access after a radio link failure, handover requiring a random access procedure, and generation of uplink or downlink data requiring a random access procedure during RRC_CONNECTED.
- Some RRC messages such as an RRC Connection Request message, a Cell Update message, and a UTRAN Registration Area (URA) Update message, are also transmitted using a random access procedure.
- the logical channels Common Control Channel (CCCH), Dedicated Control Channel (DCCH), and Dedicated Traffic Channel (DTCH) may be mapped to the transport channel RACH.
- the transport channel RACH is mapped to the physical channel physical random access channel (PRACH).
- the terminal physical layer When the MAC layer of the terminal instructs the terminal physical layer to transmit PRACH, the terminal physical layer first selects one access slot and one signature and transmits a PRACH preamble upward.
- the random access process is divided into contention based random access process and non-contention based random access process.
- FIG. 7A illustrates an example of a contention based random access procedure
- FIG. 7B illustrates an example of a non-contention based random access procedure.
- the terminal receives and stores information about the random access from the base station through the system information. Thereafter, when random access is required, the UE transmits a random access preamble (also called message 1) to the base station (S7010).
- a random access preamble also called message 1
- the base station When the base station receives the random access preamble from the terminal, the base station transmits a random access response message (also referred to as message 2) to the terminal (S7020).
- a random access response message (also referred to as message 2)
- downlink scheduling information on the random access response message may be CRC masked with a random access-radio network temporary identifier (RA-RNTI) and transmitted on an L1 or L2 control channel (PDCCH).
- RA-RNTI random access-radio network temporary identifier
- PDCCH L1 or L2 control channel
- the UE Upon receiving the downlink scheduling signal masked with the RA-RNTI, the UE may receive and decode a random access response message from a physical downlink shared channel (PDSCH). Thereafter, the terminal checks whether the random access response message includes random access response information indicated to the terminal.
- PDSCH physical downlink shared channel
- Whether there is random access response information indicated to the self may be determined by whether there is a random access preamble (RAID) for the preamble transmitted by the UE.
- RAID random access preamble
- the random access response information includes a TA (Timing Alignment) indicating timing offset information for synchronization, radio resource allocation information used for uplink, and a temporary identifier (eg, Temporary C-RNTI) for terminal identification.
- TA Timing Alignment
- radio resource allocation information used for uplink
- temporary identifier eg, Temporary C-RNTI
- the terminal When receiving the random access response information, the terminal performs uplink transmission (also referred to as message 3) on an uplink shared channel (SCH) according to radio resource allocation information included in the response information (S7030).
- the uplink transmission may be represented as scheduled transmission.
- the base station After receiving the uplink transmission from the terminal, the base station transmits a message for contention resolution (also referred to as message 4) to the terminal through a downlink shared channel (DL-SCH) (S7040). ).
- DL-SCH downlink shared channel
- the base station Before the UE transmits the random access preamble, the base station allocates a non-contention random access preamble to the UE (S7110).
- the non-competitive random access preamble may be assigned through dedicated signaling such as a handover command or a PDCCH.
- the UE receives the non-competitive random access preamble, the UE transmits the allocated non-competitive random access preamble to the base station (S7120).
- the base station may transmit a random access response (also referred to as message 2) to the terminal similarly to step S2002 in the contention-based random access procedure (S7130).
- a random access response also referred to as message 2
- HARQ is not applied to the random access response, but HARQ may be applied to a message for uplink transmission or contention resolution for the random access response. Therefore, the UE does not need to transmit ACK or NACK for the random access response.
- Cellular systems such as LTE (-A) system or 802.16m use a resource allocation scheme based on base station scheduling.
- a terminal having data i.e., UL data
- a base station scheduling-based resource allocation scheme a terminal having data (i.e., UL data) to transmit requests a base station for a resource for data transmission before transmitting data.
- Such a scheduling request of the UE may be performed through transmission of a scheduling request (SR) to a PUCCH or a transmission of a buffer status report (BSR) to a PUSCH.
- SR scheduling request
- BSR buffer status report
- the terminal may request an uplink resource to the base station through the RACH procedure.
- the base station receiving the scheduling request from the terminal allocates an uplink resource to be used by the terminal to the terminal through a downlink control channel (i.e., UL grant message, DCI in case of LTE (-A)).
- a downlink control channel i.e., UL grant message, DCI in case of LTE (-A)
- the UL grant transmitted to the terminal may be informed by explicitly signaling which subframe resource corresponds to the resource allocated to the terminal, but the resource allocation for the subframe after a specific time (eg, 4 ms in case of LTE). It is also possible to define the time promised between the terminal and the base station.
- the terminal when the base station allocates resources after Xms (eg, 4ms in case of LTE (-A)) to the terminal, the terminal takes into account all the time for receiving and decoding the UL grant and preparing and encoding data to be transmitted. It means to allocate resources.
- Xms eg, 4ms in case of LTE (-A)
- EMM EPS mobility management
- ECM EPS connection management
- FIG. 8 is a diagram illustrating EMM and ECM states in a wireless communication system to which the present invention can be applied.
- the EMM registered state (EMM-REGISTERED) according to whether the UE is attached or detached from the network in order to manage mobility of the UE in the NAS layer located in the control plane of the UE and the MME. ) And the EMM deregistration state (EMM-DEREGISTERED) may be defined.
- the EMM-REGISTERED state and the EMM-DEREGISTERED state may be applied to the terminal and the MME.
- the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the access procedure is successfully performed, the UE and the MME are transitioned to the EMM-REGISTERED state. In addition, when the terminal is powered off or the radio link fails (when the packet error rate exceeds the reference value on the wireless link), the terminal is detached from the network and transitioned to the EMM-DEREGISTERED state.
- ECM-connected state and an ECM idle state may be defined to manage a signaling connection between the terminal and the network.
- ECM-CONNECTED state and ECM-IDLE state may also be applied to the UE and the MME.
- the ECM connection consists of an RRC connection established between the terminal and the base station and an S1 signaling connection established between the base station and the MME. In other words, when the ECM connection is set / released, it means that both the RRC connection and the S1 signaling connection are set / released.
- the RRC state indicates whether the RRC layer of the terminal and the RRC layer of the base station are logically connected. That is, when the RRC layer of the terminal and the RRC layer of the base station is connected, the terminal is in the RRC connected state (RRC_CONNECTED). If the RRC layer of the terminal and the RRC layer of the base station is not connected, the terminal is in the RRC idle state (RRC_IDLE).
- the network can grasp the existence of the terminal in the ECM-CONNECTED state in units of cells and can effectively control the terminal.
- the network cannot grasp the existence of the UE in the ECM-IDLE state, and manages the core network (CN) in a tracking area unit that is a larger area than the cell.
- the terminal When the terminal is in the ECM idle state, the terminal performs Discontinuous Reception (DRX) set by the NAS using an ID assigned only in the tracking area. That is, the UE may receive broadcast of system information and paging information by monitoring a paging signal at a specific paging occasion every UE-specific paging DRX cycle.
- DRX Discontinuous Reception
- the network does not have context information of the terminal. Accordingly, the UE in the ECM-IDLE state may perform a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
- the terminal In the ECM idle state, when the location of the terminal is different from the location known by the network, the terminal may inform the network of the location of the terminal through a tracking area update (TAU) procedure.
- TAU tracking area update
- the network knows the cell to which the UE belongs. Accordingly, the network may transmit and / or receive data to or from the terminal, control mobility such as handover of the terminal, and perform cell measurement on neighbor cells.
- the terminal needs to transition to the ECM-CONNECTED state in order to receive a normal mobile communication service such as voice or data.
- the initial terminal is in the ECM-IDLE state as in the EMM state.
- the terminal and the MME are in the ECM connection state. Transition is made.
- the terminal is registered in the network but the traffic is inactivated and the radio resources are not allocated, the terminal is in the ECM-IDLE state, and if a new traffic is generated uplink or downlink to the terminal, a service request procedure UE and MME is transitioned to the ECM-CONNECTED state through.
- FIG. 9 is a diagram illustrating a bearer structure in a wireless communication system to which the present invention can be applied.
- PDN packet date network
- IMS IP Multimedia Subsystem
- the EPS bearer is a transmission path of traffic generated between the UE and the PDN GW in order to deliver user traffic in EPS.
- One or more EPS bearers may be set per terminal.
- Each EPS bearer may be divided into an E-UTRAN radio access bearer (E-RAB) and an S5 / S8 bearer, and the E-RAB is divided into a radio bearer (RB: radio bearer) and an S1 bearer. Can lose. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively.
- E-RAB E-UTRAN radio access bearer
- S5 / S8 bearer an S5 / S8 bearer
- RB radio bearer
- the E-RAB delivers the packet of the EPS bearer between the terminal and the EPC. If there is an E-RAB, the E-RAB bearer and the EPS bearer are mapped one-to-one.
- a data radio bearer (DRB) transfers a packet of an EPS bearer between a terminal and an eNB. If the DRB exists, the DRB and the EPS bearer / E-RAB are mapped one-to-one.
- the S1 bearer delivers the packet of the EPS bearer between the eNB and the S-GW.
- the S5 / S8 bearer delivers an EPS bearer packet between the S-GW and the P-GW.
- the UE binds a service data flow (SDF) to the EPS bearer in the uplink direction.
- SDF is an IP flow or collection of IP flows that classifies (or filters) user traffic by service.
- a plurality of SDFs may be multiplexed onto the same EPS bearer by including a plurality of uplink packet filters.
- the terminal stores mapping information between the uplink packet filter and the DRB in order to bind between the SDF and the DRB in the uplink.
- P-GW binds SDF to EPS bearer in downlink direction.
- a plurality of SDFs may be multiplexed on the same EPS bearer by including a plurality of downlink packet filters.
- the P-GW stores the mapping information between the downlink packet filter and the S5 / S8 bearer to bind between the SDF and the S5 / S8 bearer in the downlink.
- the eNB stores a one-to-one mapping between the DRB and the S1 bearer to bind between the DRB and the S1 bearer in the uplink / downlink.
- S-GW stores one-to-one mapping information between S1 bearer and S5 / S8 bearer in order to bind between S1 bearer and S5 / S8 bearer in uplink / downlink.
- EPS bearers are classified into two types: a default bearer and a dedicated bearer.
- the terminal may have one default bearer and one or more dedicated bearers per PDN.
- the minimum default bearer of the EPS session for one PDN is called a default bearer.
- the EPS bearer may be classified based on an identifier.
- EPS bearer identity is assigned by the terminal or the MME.
- the dedicated bearer (s) is combined with the default bearer by Linked EPS Bearer Identity (LBI).
- LBI Linked EPS Bearer Identity
- a PDN connection is generated by assigning an IP address and a default bearer is generated in the EPS section. Even if there is no traffic between the terminal and the corresponding PDN, the default bearer is not released unless the terminal terminates the PDN connection, and the default bearer is released when the corresponding PDN connection is terminated.
- the bearer of all sections constituting the terminal and the default bearer is not activated, the S5 bearer directly connected to the PDN is maintained, the E-RAB bearer (ie DRB and S1 bearer) associated with the radio resource is Is released. When new traffic is generated in the corresponding PDN, the E-RAB bearer is reset to deliver the traffic.
- the terminal uses a service (for example, the Internet, etc.) through a default bearer
- the terminal may use an insufficient service (for example, Videon on Demand (VOD), etc.) to receive a Quality of Service (QoS) with only the default bearer.
- VOD Videon on Demand
- QoS Quality of Service
- the terminal (on-demand) dedicated bearer is generated. If there is no traffic of the terminal dedicated bearer is released.
- the terminal or the network may generate a plurality of dedicated bearers as needed.
- the IP flow may have different QoS characteristics depending on what service the UE uses.
- the network determines the allocation of network resources or a control policy for QoS at the time of establishing / modifying an EPS session for the terminal and applies it while the EPS session is maintained. This is called PCC (Policy and Charging Control). PCC rules are determined based on operator policy (eg, QoS policy, gate status, charging method, etc.).
- PCC rules are determined in units of SDF. That is, the IP flow may have different QoS characteristics according to the service used by the terminal, IP flows having the same QoS are mapped to the same SDF, and the SDF becomes a unit for applying the PCC rule.
- PCC Policy and Charging Control Function
- PCEF Policy and Charging Enforcement Function
- PCRF determines PCC rules for each SDF when creating or changing EPS sessions and provides them to the P-GW (or PCEF). After setting the PCC rule for the SDF, the P-GW detects the SDF for each IP packet transmitted and received and applies the PCC rule for the SDF. When the SDF is transmitted to the terminal via the EPS, it is mapped to an EPS bearer capable of providing a suitable QoS according to the QoS rules stored in the P-GW.
- PCC rules are divided into dynamic PCC rules and pre-defined PCC rules. Dynamic PCC rules are provided dynamically from PCRF to P-GW upon EPS session establishment / modification. On the other hand, the predefined PCC rule is preset in the P-GW and activated / deactivated by the PCRF.
- the EPS bearer includes a QoS Class Identifier (QCI) and Allocation and Retention Priority (ARP) as basic QoS parameters.
- QCI QoS Class Identifier
- ARP Allocation and Retention Priority
- QCI is a scalar that is used as a reference to access node-specific parameters that control bearer level packet forwarding treatment, and the scalar value is pre-configured by the network operator.
- a scalar may be preset to any one of integer values 1-9.
- ARP The main purpose of ARP is to determine if a bearer's establishment or modification request can be accepted or rejected if resources are limited.
- ARP can be used to determine which bearer (s) to drop by the eNB in exceptional resource constraints (eg, handover, etc.).
- the EPS bearer is classified into a guaranteed bit rate (GBR) type bearer and a non-guaranteed bit rate (non-GBR) type bearer according to the QCI resource type.
- the default bearer may always be a non-GBR type bearer, and the dedicated bearer may be a GBR type or non-GBR type bearer.
- GBR bearer has GBR and Maximum Bit Rate (MBR) as QoS parameters in addition to QCI and ARP.
- MBR means that fixed resources are allocated to each bearer (bandwidth guarantee).
- MBR MBR: Aggregated MBR
- AMBR Aggregated MBR
- the QoS of the EPS bearer is determined as above, the QoS of each bearer is determined for each interface. Since the bearer of each interface provides QoS of the EPS bearer for each interface, the EPS bearer, the RB, and the S1 bearer all have a one-to-one relationship.
- FIG. 10 is a diagram illustrating transmission paths of a control plane and a user plane in an EMM registered state in a wireless communication system to which the present invention can be applied.
- FIG. 10A illustrates an ECM-CONNECTED state
- FIG. 10B illustrates an ECM-IDLE.
- the terminal When the terminal successfully attaches to the network and becomes the EMM-Registered state, the terminal receives the service using the EPS bearer.
- the EPS bearer is configured by divided into DRB, S1 bearer, S5 bearer for each interval.
- a NAS signaling connection that is, an ECM connection (that is, an RRC connection and an S1 signaling connection) is established.
- an S11 GTP-C (GPRS Tunneling Protocol Control Plane) connection is established between the MME and the SGW, and an S5 GTP-C connection is established between the SGW and the PDN GW.
- GTP-C GPRS Tunneling Protocol Control Plane
- the DRB, S1 bearer, and S5 bearer are all configured (ie, radio or network resource allocation).
- the ECM connection (that is, the RRC connection and the S1 signaling connection) is released.
- the S11 GTP-C connection between the MME and the SGW and the S5 GTP-C connection between the SGW and the PDN GW are maintained.
- both the DRB and the S1 bearer are released, but the S5 bearer maintains the configuration (ie, radio or network resource allocation).
- FIG. 11 shows an example of a basic bearer activation procedure.
- the MME may perform a default bearer context activation procedure by sending an ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message to activate the default bearer, and may enter the BEARER CONTEXT ACTIVE PENDING state (S11010).
- the MME may send the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message with the ATTACH ACCEPT message and may not start the T3485 timer.
- the MME sends the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message alone and starts a T3485 timer.
- the MME may allocate an EPS bearer identifier and include the EPS bearer identifier in the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message.
- the MME obtains a PTI from the PDN CONNECTIVITY REQUEST and includes it in the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message.
- Both the network identifier part and the operator identifier part may be included in the Access Point Name IE.
- the UE After receiving the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message, if the timer for the indicated APN of the message is running, the UE may stop the T3396 timer, and transmit the ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT message, It may enter the BEARER CONTEXT ACTIVE state (S11020).
- the UE may transmit an ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT with an ATTACH COMPLETE message.
- the UE may transmit an ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT message alone.
- the UE stores the WLAN offload acceptability values for a PDN connection.
- the E-UTRAN offload acceptability value may be used.
- the UE may check the PTI of the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message to identify the UE requested PDN connectivity procedure related to the basic bearer context activation.
- the MME may enter the BEARER CONTEXT ACTIVE state and stop it when the T3485 timer is operating.
- the MME may store the NAS signaling low priority indication in the default EPS bearer context.
- the ESM sublayer may inform the EMM sublayer of the ESM failure.
- the UE may transmit an ACTIVATE DEFAULT EPS BEARER CONTEXT REJECT message and enter the BEARER CONTEXT INACTIVE state (S11030).
- the ACTIVATE DEFAULT EPS BEARER CONTEXT REJECT message may include an ESM cause generally indicated by one of the following cause values.
- the MME may enter a state BEARER CONTEXT INACTIVE state and may stop it when the T3485 timer is running.
- FIG. 12 is a flowchart illustrating a dedicated bearer activation procedure for S5 / S8 based on GPRS Tunneling Protocol (GTP).
- GTP GPRS Tunneling Protocol
- the PCRF transmits a PCC decision provision (QoS policy) message to the PDN GW.
- QoS policy PCC decision provision
- the PDN GW transmits a Create Bearer Request message (IMSI, PTI, EPS Bearer QoS, TFT, S5 / S8 TEID, Charging Id, LBI, Protocol Configuration Options) for requesting bearer creation to the Serving GW.
- IMSI Create Bearer Request message
- PTI Packet Control
- EPS Bearer QoS Packet Control Service
- TFT Time Division Multiple Access
- S5 / S8 TEID Charging Id
- LBI Protocol Configuration Options
- the Serving GW transmits the Create Bearer Request (IMSI, PTI, EPS Bearer QoS, TFT, S1-TEID, PDN GW TEID (GTP-based S5 / S8), LBI, Protocol Configuration Options) message to the MME.
- IMSI Create Bearer Request
- PTI Packet Control
- EPS Bearer QoS Packet Control Service
- TFT Time Division Multiple Access
- S1-TEID Packet Control Protocol
- PDN GW TEID GTP-based S5 / S8
- LBI Protocol Configuration Options
- the MME sends a Bearer Setup Request (EPS Bearer Identity, EPS Bearer QoS, Session Management Request, S1-TEID) message for requesting bearer setup to the eNodeB.
- EPS Bearer Identity EPS Bearer Identity
- EPS Bearer QoS EPS Bearer QoS
- Session Management Request S1-TEID
- the eNodeB transmits an RRC Connection Reconfiguration (Radio Bearer QoS, Session Management Request, EPS RB Identity) message to the UE.
- RRC Connection Reconfiguration Radio Bearer QoS, Session Management Request, EPS RB Identity
- the UE transmits an RRC Connection Reconfiguration Complete message to the eNodeB to inform radio bearer activation.
- the eNodeB transmits a Bearer Setup Response (EPS Bearer Identity, S1-TEID) message to the MME to inform the radio bearer activation of the terminal.
- EPS Bearer Identity S1-TEID
- the UE transmits a Direct Transfer (Session Management Response) message to the eNodeB.
- a Direct Transfer Session Management Response
- the eNodeB transmits an Uplink NAS Transport (Session Management Response) message to the MME.
- Uplink NAS Transport Session Management Response
- the MME transmits a Create Bearer Response (EPS Bearer Identity, S1-TEID, User Location Information (ECGI)) message to the Serving GW to inform the bearer activation to the Serving GW.
- EPS Bearer Identity S1-TEID
- ECGI User Location Information
- the Serving GW transmits a Create Bearer Response (EPS Bearer Identity, S5 / S8-TEID, User Location Information (ECGI)) message to the PDN GW in order to inform bearer activation to the PDN GW.
- EPS Bearer Identity S5 / S8-TEID, User Location Information (ECGI)
- the PDN GW indicates to the PCRF whether a requested PCC decision (QoS policy) has been performed.
- FIG. 13 illustrates an example of a dedicated bearer deactivation procedure.
- FIG. 13 is a flowchart illustrating a dedicated bearer deactivation procedure for S5 / S8 based on GPRS Tunneling Protocol (GTP).
- GTP GPRS Tunneling Protocol
- the procedure of FIG. 13 may be used to deactivate a dedicated bearer or to deactivate all bearers belonging to a PDN address.
- the PDN GW deactivates all bearers belonging to the PDN connection. A detailed procedure will be described with reference to FIG. 13.
- QoS 14 is a diagram illustrating an example of parameter configuration for quality of service (QoS) management.
- the wireless communication system applies a QoS policy in units of a service data flow (SDF) composed of one or more IP flows classifying user traffic by services and in an EPS bearer unit, which is a logical path through which one or more SDFs are transmitted. . That is, QoS of data transmitted and received by the following QoS parameters is managed.
- SDF service data flow
- Guaranteed bit rate Guaranteed minimum bandwidth
- APN-AMBR Access Point Name-Aggregate Maximum Bit Rate
- UE-AMBR maximum bandwidth allowed per UE
- P-GW discards packets exceeding MBR for each incoming SDF
- P-GW discards packets exceeding MBR for one or more SDFs entering each GBR EPS bearer and discards packets exceeding APN-AMBR for one or more SDFs entering all non-GBR EPS bearers.
- the base station discards packets exceeding the UE-AMBR for one or more SDFs introduced into all NoN-GBR EPS bearers
- UE discards packets exceeding MBR (GBR) and APN-AMBR (Non-GBR)
- Base station discards packets exceeding MBR (GBR) and UE-AMBR (Non-GBR)
- Phase 3 P-GW discards more than APN-AMBR for one or more SDFs entering all non-GBR EPS bearers and discards packets exceeding MBR for each SDF.
- a separate dedicated bearer for example, EPS bearer, etc.
- the present invention proposes a method for transmitting and receiving data of a plurality of terminals for providing a specific service through the same session, without establishing a separate session for each terminal between the base station and the network node to solve this problem.
- 15 is a diagram illustrating an example of a method for transmitting and receiving data of a plurality of terminals by establishing a session proposed in the present specification.
- the terminal when transmitting and receiving data for providing a specific service requiring low delay, the terminal sets a radio bearer for providing a specific service and transmits and receives data, and the base station and the gateway transmit a specific service.
- a session for providing may be set to transmit and receive data of a plurality of terminals through the same session.
- the terminal sets the EPS bearer for each gateway and service to transmit and receive data.
- a request delay of services eg, an emergency service for transmitting an emergency message
- a plurality of data may be transmitted and received by establishing a session for transmitting and receiving data requiring the same or different Quality of Service between the base station and the gateway.
- a session established between the base station and the gateway is used to transmit uplink data transmitted from the plurality of terminals to the gateway, or used to transmit downlink data transmitted to the plurality of terminals from the gateway to the base station.
- the base station may receive uplink data for a specific service requiring low delay from a plurality of terminals, and transmit the received data to the gateway through the same session.
- the base station may receive downlink data for a specific service requiring a low delay from the gateway, and transmit the received data to a plurality of terminals through the same session.
- the terminal and the base station may transmit and receive data using a radio bearer in a connected state, or transmit and receive data without forming a radio bearer in a disconnected state.
- UE 1 and UE 2 establish a radio bearer in connection with the eNB. It can be used to send and receive data with the eNB.
- the eNB may transmit data transmitted from UE 1, UE 2, and UE 3 to the gateway, or receive data transmitted from UE 1, UE 2, and UE from the gateway.
- the eNB and the gateway may transmit and receive data for the same service or data for different services using the same session without setting up a separate session for each terminal.
- the eNB transmits / receives data to be transmitted from UE 1 and UE 2, or is transmitted to UE 1 and UE 2 using session 2, data to be transmitted from UE 3, or transmitted to UE 3. Can be transmitted and received using session 2.
- the gateway is a network node equipped with a U-plane function, and may be, for example, a node named S-GW / P-GW in a 3GPP 4G system, and may be called another name.
- 16 is a flowchart illustrating an example of a method for transmitting and receiving data of a plurality of terminals by establishing a session proposed in the present specification.
- a base station transmits and receives data to be transmitted from a terminal in a plurality of connected or unconnected states or to a terminal in a plurality of connected or unconnected states through the same session, thereby reducing the delay time of data transmission and reception. You can shorten it.
- the base station sets up a session for transmitting and receiving data for a service requiring the same or different quality of service as a core network node (eg, a mobility management entity (MME), etc.) (S16010).
- a core network node eg, a mobility management entity (MME), etc.
- MME mobility management entity
- the session created between the base station and the gateway may be established through an interface setting procedure, and may be used to transmit and receive uplink data or downlink data of a plurality of terminals for a service requiring the same or different quality of service. .
- an emergency session a session used for transmitting and receiving uplink data or downlink data of a plurality of terminals for a service requiring the same or different quality of service is called an emergency session.
- the base station may generate a radio bearer through the connection setting process or the environment setting process described above with the terminal (s) (S16020).
- the radio bearer generated between the base station and the terminal may be set for each terminal for each service, and may be used to transmit and receive data for a specific service.
- the base station may receive the uplink data from the terminal (s) using the generated radio bearer (S16030).
- step S16020 when data is transmitted and received between the base station and the terminal in the unconnected state, step S16020 is not performed.
- the base station may receive uplink data from the terminal in the unconnected state because no radio bearer is formed.
- the uplink data may be transmitted to the base station together with an indicator indicating that the uplink data is transmitted to the gateway using an emergency session and the data type of the uplink data. Can be.
- the base station determines a routing session for transmitting the uplink data to the gateway according to the data type of the uplink data transmitted from the terminal (S16040).
- the base station determines whether the uplink data is data for which service through a data type, and selects an emergency session for transmitting uplink data when a plurality of emergency sessions are generated.
- the base station transmits the uplink data (s) received from the terminal (s) to the gateway using the determined routing session (S16050).
- a session between a radio bearer, a base station, and a gateway is separately generated between the terminal and the base station, and data of a plurality of terminals can be transmitted and received through a session between the base station and the gateway.
- the gateway when transmitting data of a plurality of terminals through the same session, the gateway cannot identify from which terminal the transmitted data is transmitted.
- the gateway may not identify from which terminal the transmitted data is transmitted.
- an identifier for identifying a terminal and an IP address for transmitting and receiving data are proposed.
- a field including a terminal identifier for identifying a terminal allocated by a base station and a base station identifier for identifying a base station may be configured as shown in Table 1 below.
- the terminal identifier may be uniquely used to identify the terminal only in the base station to which the terminal identifier is assigned, and the base station identifier and the entire terminal identifier may be used to uniquely identify the terminal and the base station in the network or in all networks. have.
- the terminal identifier may be Cell Radio Network Temporary Identities (C-RNTI) or Temporary C-RNTI.
- C-RNTI Cell Radio Network Temporary Identities
- Temporary C-RNTI Temporary C-RNTI
- the base station temporarily assigns a Temporary C-RNTI to the terminal that has performed random access, and if the terminal enters the RRC connection state, the C-RNTI is Temporary C-RNTI.
- the identifier is continuously assigned until the UE is released or handed over.
- Table 1 the following identifiers may exist as an example of a base station identifier.
- ECGI E-UTRAN Cell Global Identifier
- emergency sessions (session 1 and session 2) used for transmitting and receiving uplink data or downlink data of a plurality of terminals for a service requiring low delay are set up as described with reference to FIG. 15. do.
- 17 is a diagram illustrating an example of a method for transmitting and receiving uplink data by establishing a session proposed in the present specification.
- the base station allocates an identifier for identifying the terminal, and the gateway identifies and transmits the data by transmitting the uplink data through the identifier to transmit and receive data.
- the eNB receives uplink data for a specific service requiring low delay from UE 1 through a radio bearer.
- the eNB selects a session to use for transmission of the received uplink data.
- the eNB may select a session based on at least one of a data type of the received uplink data, a quality of service, or a service type of a service to be provided through the uplink data.
- the eNB adds at least one terminal identification field including a terminal identifier for identifying a terminal and at least one base station identification field including a base station identifier for identifying a base station to uplink data, and adds the field to uplink data.
- the eNB may determine the final service receivers of the uplink data according to the received uplink data type.
- FIG. 17B illustrates an example of a packet format of uplink data transmitted by an eNB to a gateway.
- the Gateway IP Address field includes an address of a gateway through which an eNB transmits uplink data.
- the gateway that receives the uplink data from the eNB allocates an IP address for transmitting and receiving data to UE 1 based on the terminal identifier and the base station identifier of the uplink data. Thereafter, the eNB transmits the uplink data by setting the allocated IP address as the source IP address of the uplink data.
- Table 2 below shows an example of the IP address of the terminal allocated by the gateway based on the base station identifier and the terminal identifier.
- the gateway may determine a base station and a terminal to which data is transmitted using the assigned IP address.
- the terminal to which the data is to be transmitted may be determined.
- FIG. 18 illustrates another example of a method for transmitting and receiving uplink data by establishing a session proposed in the present specification.
- the terminal when the terminal and the base station are not in the connected state, the terminal may be identified by assigning a temporary identifier.
- uplink data for a specific service requiring low delay from UE 3 in a disconnected state is transmitted through a radio bearer. Receive.
- the UE 3 may transmit an indicator indicating that uplink data is transmitted to the gateway using an emergency session and a data type of uplink data together with the uplink data to the base station.
- the eNB selects a session to use for transmission of the received uplink data.
- the eNB may select a session based on at least one of a data type of the received uplink data, a quality of service, or a service type of a service to be provided through the uplink data.
- the eNB adds at least one terminal identification field including a terminal identifier for identifying a terminal and at least one base station identification field including a base station identifier for identifying a base station to uplink data, and adds the field to uplink data.
- the eNB since the eNB is not connected to the terminal, the eNB may allocate a temporary identifier (eg, Temporary C-RNTI, etc.) which is an identifier temporarily assigned to the terminal.
- a temporary identifier eg, Temporary C-RNTI, etc.
- the eNB may determine the final service receivers of the uplink data according to the received uplink data type.
- the Gateway IP Address field includes an address of a gateway through which an eNB transmits uplink data.
- the gateway that receives the uplink data from the eNB allocates an IP address for transmitting and receiving data to UE 1 based on the terminal identifier and the base station identifier of the uplink data. Thereafter, the eNB transmits the uplink data by setting the allocated IP address as the source IP address of the uplink data.
- Table 3 shows an example of an IP address of a terminal allocated by a gateway based on a base station identifier and a terminal identifier.
- the gateway may determine a base station and a terminal to which data is transmitted using the assigned IP address.
- 19 is a diagram illustrating an example of a method for transmitting and receiving downlink data by establishing a session proposed in the present specification.
- the gateway may identify a terminal to transmit downlink data through an allocated IP address based on the terminal identifier and the base station identifier.
- the gateway receives downlink data in which an IP address assigned to UE 1 is set as a destination address based on a terminal identifier and a base station identifier.
- the gateway may identify a base station and a terminal to transmit the received downlink data based on the IP address.
- the gateway may determine whether the received downlink data is data transmitted using an emergency session.
- the gateway may select a session based on at least one of an assigned IP address, a data type of downlink data, a quality of service, or a service type of a service to be provided through uplink data.
- the gateway is identified by adding at least one terminal identifier field including a terminal identifier and at least one base station identifier field including a base station identifier to the downlink data so that downlink data can be transmitted to the terminal corresponding to the IP address. To send.
- the gateway when the gateway receives downlink data with an IP address set to x.x.x.x, the gateway may recognize that the destination of the received downlink data is UE1.
- the gateway adds a terminal identifier for identifying UE 1 and a base station identifier for identifying the eNB of UE 1 to downlink data to the eNB by using an emergency session 2.
- Downlink data may be transmitted.
- 19B illustrates an example of a packet format of downlink data.
- the eNB that receives the downlink data through the session 2 from the gateway may determine a terminal to transmit the downlink data through the terminal identifier field and transmits the downlink data to the determined terminal.
- the gateway may identify a base station and a terminal to which downlink data will be transmitted when downlink data to be transmitted is generated using a session for transmitting and receiving data of a plurality of terminals.
- 20 illustrates another example of a method for transmitting and receiving downlink data by establishing a session proposed in the present specification.
- the gateway identifies a terminal to transmit downlink data through an IP address allocated based on a temporary terminal identifier and a base station identifier. can do.
- the gateway receives downlink data in which an IP address assigned to UE 1 is set as a destination address based on a terminal identifier and a base station identifier.
- the gateway may identify a base station and a terminal to transmit the received downlink data based on the IP address.
- the gateway may determine whether the received downlink data is data transmitted using an emergency session.
- the gateway may select a session based on at least one of an assigned IP address, a data type of downlink data, a quality of service, or a service type of a service to be provided through uplink data.
- the gateway is identified by adding at least one terminal identifier field including a terminal identifier and at least one base station identifier field including a base station identifier to the downlink data so that downlink data can be transmitted to the terminal corresponding to the IP address. To send.
- the gateway may add a temporary terminal identifier field including the temporary terminal identifier to the downlink data.
- the gateway when the gateway receives downlink data with the IP address set to xxxy, the gateway may recognize that the destination of the received downlink data is UE 3 which is not connected to the eNB. have.
- the gateway adds a temporary terminal identifier for temporarily identifying UE 3 and a base station identifier for identifying the eNB of UE 3 to use downlink session 2, which is an emergency session.
- Downlink data can be transmitted to the eNB.
- 20B illustrates an example of a packet format of downlink data.
- the eNB that receives the downlink data through the session 2 from the gateway may determine a terminal to transmit the downlink data through the temporary terminal identifier field, and may recognize that the terminal is in a non-connected state.
- the eNb transmits downlink data in the unconnected state to the determined terminal.
- 21 illustrates another example of a method for transmitting and receiving downlink data by establishing a session proposed in the present specification.
- the gateway may transmit downlink data through an emergency session based on the assigned IP address.
- the gateway receives downlink data in which an IP address assigned to UE 1 is set as a destination address based on a terminal identifier and a base station identifier.
- the terminal does not transmit the uplink data
- the terminal is assigned an IP address by the gateway.
- UE 1 and UE 3 transmitting uplink data may be assigned an IP address by the gateway as shown in Table 4 below.
- the gateway may identify a base station and a terminal to transmit the received downlink data based on the IP address.
- the gateway may determine whether the received downlink data is data transmitted using an emergency session.
- the gateway may select a session based on at least one of an assigned IP address, a data type of downlink data, a quality of service, or a service type of a service to be provided through uplink data.
- the gateway is identified by adding at least one terminal identifier field including a terminal identifier and at least one base station identifier field including a base station identifier to the downlink data so that downlink data can be transmitted to the terminal corresponding to the IP address. To send.
- the gateway may add a temporary terminal identifier field including the temporary terminal identifier to the downlink data.
- the gateway when the gateway receives downlink data in which the IP address is set to X.X.X.Z, the gateway may recognize that the destination of the received downlink data is UE5.
- the gateway adds a terminal identifier for identifying UE 5 and a base station identifier for identifying the eNB of UE 5 to downlink data to the eNB using the emergency session 2.
- Downlink data may be transmitted.
- 21 (b) shows an example of a packet format of downlink data.
- the eNB that receives the downlink data through the session 2 from the gateway may determine a terminal to transmit the downlink data through the terminal identifier field and transmits the downlink data to the determined terminal.
- FIG. 22 is a flowchart illustrating an example of a method for updating an identifier of a terminal proposed in the present specification.
- the Serving eNB may update the terminal identifier by transmitting a message for updating the terminal identifier to the gateway.
- the serving base station of the terminal when the serving base station of the terminal is changed or the state of the terminal is changed, the serving base station must update the terminal identifier assigned by the terminal.
- the serving base station may update the terminal identifier by reporting to the base station that a specific event that needs to be updated.
- FIG. 22A illustrates an example in which the serving base station reports a specific event to a direct gateway
- FIG. 22B illustrates an example indirectly reported by the serving base station.
- Table 5 below is a table showing an example of specific events and information reported by the base station to update the terminal identifier.
- the IP address allocated by the gateway based on the base station identifier and the terminal identifier should be updated according to the changed information.
- the serving base station transmits the changed information to the gateway, and the gateway updates the assigned IP address based on the changed information.
- the serving base station when the serving base station directly transmits changed information to the gateway, the serving base station includes the event information indicating the generated event and the reporting information of Table 5 according to the event.
- the report message is transmitted to the gateway (S22010).
- the serving base station when the serving base station indirectly transmits changed information to the gateway, the serving base station reports the event information indicating the generated event and the reporting information of Table 5 according to the event.
- the message is transmitted to a core network node (for example, MME, etc.) that performs a network control function (S22110).
- the core network node receiving the report message from the serving base station transmits it to the gateway (S22120).
- the gateway can recognize the generated event and the changed information through the report message and update the IP address according to the changed information.
- the gateway changes the base station identifier from the serving base station identifier to the identifier of the target base station, and when the terminal identifier is changed, updates the terminal identifier to the terminal identifier changed from the existing terminal identifier. .
- the gateway changes the base station identifier from the identifier of the serving base station to the identifier of the network node that performs the function of controlling the mobility of the terminal, and the terminal identifier to the existing terminal identifier. Updates the identifier of the terminal in the network node.
- the serving base station no longer manages the network node performing the function of controlling the mobility of the terminal, so the terminal is managed.
- the base station identifier is updated with the identifier of the network node.
- the gateway may identify a terminal to transmit / receive data by using an emergency session by updating the assigned IP address.
- FIG. 23 is a flowchart illustrating an example of a method for releasing an IP address of a terminal proposed in the present specification.
- an IP address assigned by a gateway may be released through a release procedure triggered by the serving base station or gateway.
- FIG. 23A illustrates an example of an IP address release procedure triggered by a base station
- FIG. 23B illustrates an example of an IP address release procedure triggered by a gateway.
- the IP address assigned or updated by the gateway described with reference to FIGS. 17 to 22 is valid until a separate control message for normally release of the IP address is transmitted and received normally. Therefore, the base station or gateway must perform a release procedure to release the assigned IP address.
- the serving eNB When the release procedure is triggered by the base station as shown in (a) of FIG. 23, the serving eNB transmits a release request message for requesting release of an IP address allocated by the gateway to the MME.
- the MME means a network node that performs a control function, and may be called another name.
- the gateway Upon receiving the release request message from the MME, the gateway releases the assigned IP address based on the terminal identifier of the corresponding terminal and the base station identifier of the serving base station, and transmits a release response message to the MME.
- MME receiving the release response message transmits it to the serving base station (S23020).
- the serving base station receiving the release response message can recognize that the assigned IP address has been successfully released.
- the gateway releases the allocated IP address based on the terminal identifier of the corresponding terminal of the serving base station and the base station identifier of the serving base station, and sends the message to the MME. Send the release indication message indicating release of the IP address.
- MME receiving the release indication message from the serving base station transmits it to the serving base station (S23110).
- the base station receiving the release indication message from the MME may recognize that the allocated IP address is released based on the base station identifiers of the corresponding terminal and the serving base station.
- the serving base station transmits a release response message to the gateway in response to the release indication message through the MME, and the release procedure for release of the IP address is terminated (S23120).
- the allocated IP address may be released based on the timer.
- the allocated IP address may be valid until the specific timer expires without the release procedure by the separate control message transmission and reception described with reference to FIG. 23.
- the assigned IP address may be released.
- the IP address may be released according to the start and reset conditions of the validity timer for each terminal identifier between the base station and the gateway.
- the effective time timer is (re) started / reset, uplink data and / or downlink using the emergency session until the timer expires If there is no transmission / reception of the link data, the IP address assigned to the corresponding terminal is released.
- the valid time timer may be set to a flexible value (for example, a value set according to the type of data) transmitted with the data, or may be set to a predefined fixed value.
- the validity time timer may operate as follows.
- the validity time timer is not reset and continues to operate at the target base station. Therefore, when a handover occurs, the serving base station transmits a valid time timer value to the target base station, and the target base station continues to advance the timer value.
- the base station stops the operation of the valid time timer of the terminal, only the valid time timer of the gateway It will continue to work.
- the serving base station no longer manages the terminal.
- the base station stops the operation of the time timer for data transmission and reception of the terminal using an emergency session, and only the gateway continues to operate the valid time timer.
- the gateway can release the assigned IP address.
- 24 is a flowchart illustrating an example of a method for transmitting / receiving data of a terminal by a base station proposed in the present specification by establishing a session.
- the base station may transmit and receive data through a session for transmitting and receiving data of a plurality of terminals by allocating a terminal identifier for identifying the terminal.
- the base station forms a first session for transmitting and receiving data with a first network node (eg, MME), which is a network node performing a control function (S24010).
- MME a network node performing a control function
- the first session is the same session as the emergency session described with reference to FIGS. 15 to 21 and is used for transmitting uplink data having the same or different quality of service transmitted from the plurality of terminals to the gateway, or transmitted to the plurality of terminals. It is used to transmit downlink data having the same or different quality of service from the gateway to the base station.
- the base station receives uplink data for providing a specific service from the terminal in the connected state or the disconnected state (S24020). If the uplink data is transmitted in the unconnected state, the uplink data may be transmitted to the base station together with the indicator indicating that the uplink data is transmitted to the gateway using the first session and the data type of the uplink data. have.
- the base station allocates a first terminal identifier for identifying a terminal through which the second network node (gateway) transmits uplink data (S24030). That is, since a session is not established between the base station and the second network node according to a service for each terminal, and uplink data transmitted from a plurality of terminals is transmitted to the gateway through the same session, the base station is a terminal through which the gateway transmits uplink data. Allocate a terminal identifier so that it can be identified.
- the base station transmits uplink data to the second network node together with the first terminal identifier and the base station identifier for identifying the base station (S24040).
- the second network allocates an IP address based on the transmitted first terminal identifier and the base station identifier. Subsequently, when downlink data to be transmitted is generated using the first session, the second network allocates downlink data generated through the allocated IP address. It can be transmitted to the terminal.
- 25 is a diagram illustrating an example of an internal block diagram of a wireless device to which the present invention can be applied.
- the wireless device may be a base station and a UE, and the base station includes both a macro base station and a small base station.
- the base station 2510 and the UE 2520 include a communication unit (transmitter and receiver, RF unit, 2513 and 2523), a processor 2511 and 2521, and a memory 2512 and 2522.
- the base station and the UE may further include an input unit and an output unit.
- the communication units 2513 and 2523, the processors 2511 and 2521, the input unit, the output unit and the memory 2512 and 2522 are functionally connected to perform the method proposed in the present specification.
- the communication unit transmitter / receiver unit or RF unit, 2513, 2523
- the communication unit receives information generated from the PHY protocol (Physical Layer Protocol)
- the received information is transferred to the RF-Radio-Frequency Spectrum, filtered, and amplified.
- the communication unit functions to move an RF signal (Radio Frequency Signal) received from the antenna to a band that can be processed by the PHY protocol and perform filtering.
- the communication unit may also include a switch function for switching the transmission and reception functions.
- Processors 2511 and 2521 implement the functions, processes, and / or methods proposed herein. Layers of the air interface protocol may be implemented by a processor.
- the processor may be represented by a controller, a controller, a control unit, a computer, or the like.
- the memories 2512 and 2522 are connected to a processor and store protocols or parameters for performing an uplink resource allocation method.
- Processors 2511 and 2521 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
- the communication unit may include a baseband circuit for processing a wireless signal.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in memory and executed by a processor.
- the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
- the output unit (display unit or display unit) is controlled by a processor and outputs information output from the processor together with a key input signal generated at the key input unit and various information signals from the processor.
- Orientation-based device discovery method is not limited to the configuration and method of the embodiments described as described above, the embodiments are all or part of each of the embodiments is optional so that various modifications can be made It may be configured in combination.
- the direction-based device search method of the present specification may be implemented as processor-readable code in a processor-readable recording medium provided in a network device.
- the processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor. Examples of the processor-readable recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet. .
- the processor-readable recording medium can also be distributed over network coupled computer systems so that the processor-readable code is stored and executed in a distributed fashion.
- the RRC connection method has been described with reference to an example applied to the 3GPP LTE / LTE-A system.
- the RRC connection method may be applied to various wireless communication systems in addition to the 3GPP LTE / LTE-A system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선 통신 시스템에서 기지국이 데이터를 송수신하기 위한 방법 및 장치에 관한 것이다. 본 발명에 의하면, 제 1 네트워크 노드와 데이터를 송수신하기 위한 제 1 세션을 형성하고, 연결 상태 또는 비 연결 상태의 단말로부터 특정 서비스를 제공하기 위한 상향링크 데이터를 수신하며, 제 2 네트워크 노드가 상기 단말을 식별하기 위한 제 1 단말 식별자를 할당하고, 상기 상향링크 데이터를 상기 제 1 단말 식별자 및 상기 기지국을 식별하기 위한 기지국 식별자와 함께 상기 제 2 네트워크 노드로 전송하는 방법 및 장치를 제공할 수 있다
Description
본 발명은 무선 통신시스템에서 단말의 데이터 송수신 방법에 관한 것으로서, 보다 상세하게 단말을 식별하기 위한 단말 식별자를 할당하여 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명은 서비스의 QoS(Quality of Service)에 따라 데이터를 송수신하기 위한 논리적인 경로의 설정 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 별도의 논리적인 경로 설정 없이 기 설정되어 있는 경로 또는 경로의 일 부분을 통해서 데이터를 전송하기 위한 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 요구되는 서비스 품질(Quality of Service)가 서로 다른 다수의 데이터를 하나의 논리적 경로를 통해서 전송하기 위한 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 기지국과 단말 간에 긴급 서비스를 제공하기 위한 단말 단위로 설정되는 무선 베어러를 설정하는 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 기지국과 망 노드 간에 동일한 서비스 품질(Quality of Service)가 요구되는 다수의 단말들의 데이터를 송수신하기 위한 세션을 설정하는 방법 및 이를 지원하는 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 복수의 단말로부터 전송되는 데이터가 동일한 세션을 통해서 전송되는 경우, 데이터를 전송하는 단말을 식별하기 위한 식별자를 할당하기 위한 방법 및 이를 지원하는 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 단말의 이동성이나 상태가 변경된 경우, 할당된 식별자를 갱신하기 위한 방법 및 이를 지원하는 장치를 제공함에 그 목적이 있다.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에서는 상술한 문제점을 해결하기 위하여, 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치를 제공한다.
구체적으로, 본 발명의 일 실시예에 따른 데이터 송수신 방법은, 제 1 네트워크 노드와 데이터를 송수신하기 위한 제 1 세션을 형성하는 단계; 연결 상태 또는 비 연결 상태의 단말로부터 특정 서비스를 제공하기 위한 상향링크 데이터를 수신하는 단계; 제 2 네트워크 노드가 상기 단말을 식별하기 위한 제 1 단말 식별자를 할당하는 단계; 및 상기 상향링크 데이터를 상기 제 1 단말 식별자 및 상기 기지국을 식별하기 위한 기지국 식별자와 함께 상기 제 2 네트워크 노드로 전송하는 단계를 포함하되, 상기 제 1 세션은 복수의 단말로부터 전송되거나, 상기 복수의 단말로 전송되는 동일한 서비스 품질을 갖는 데이터를 송수신하기 위한 무선 경로인이다.
또한, 본 발명에서, 상기 제 1 단말 식별자는 상기 상향링크 데이터가 상기 제 1 세션을 통해서 전송되는 경우, 상기 제 2 네트워크 노드가 상기 상향링크 데이터를 전송한 단말을 식별하기 위한 식별자이다.
또한, 본 발명은, 상기 단말과 상기 특정 서비스의 데이터를 송수신하기 위한 제 2 세션을 형성하는 단계를 더 포함하되, 상기 상향링크 데이터는 상기 제 2 세션을 통해서 상기 기지국으로 전송된다.
또한, 본 발명에서, 상기 단말로부터 상기 제 2 세션을 형성하기 위한 연결 요청 메시지를 수신하는 단계; 및 상기 연결 요청 메시지에 대한 응답으로 연결 응답 메시지를 전송하는 단계를 포함한다.
또한, 본 발명에서, 상기 단말이 비 연결 상태에서 상기 상향링크 데이터를 전송하는 경우, 상기 상향링크 데이터는 상기 상향링크 데이터가 상기 제 1 세션을 이용한다는 것을 나타내는 제 1 지시자 및 상기 상향링크 데이터의 데이터 타입 정보와 함께 전송된다.
또한, 본 발명은, 특정 이벤트가 발생한 경우, 상기 제 2 네트워크 노드 또는 망 노드를 제어하는 기능을 수행하는 제 3 네트워크 노드로 상기 특정 이벤트에 의한 상기 제 1 단말 식별자의 갱신을 보고하기 위한 보고 메시지를 전송하는 단계를 포함하되, 상기 특정 이벤트는 상기 단말의 핸드오버, 상기 단말의 연결 상태 천이 또는 상기 단말에게 할당된 임시 단말 식별자의 해제 중 하나이고, 상기 보고 메시지는 상기 제 1 단말 식별자를 포함한다.
또한, 본 발명에서, 상기 특정 이벤트가 상기 핸드오버인 경우, 상기 보고 메시지는 타겟 기지국을 식별하기 위한 타겟 기지국 식별자, 및 상기 타겟 기지국이 할당한 제 2 단말 식별자를 더 포함한다.
또한, 본 발명에서, 상기 제 2 네트워크 노드로부터 하향링크 데이터를 수신하는 단계를 더 포함하되, 상기 하향링크 데이터는 상기 제 1 단말 식별자 및 상기 하향링크 데이터의 목적지를 나타내는 IP 주소와 함께 전송된다.
또한, 본 발명에서, 상기 IP 주소는 상기 제 1 단말 식별자 및 상기 기지국 식별자에 기초하여 상기 제 2 네트워크 노드에 의해서 할당된다.
또한, 본 발명에서, 상기 IP 주소는 상기 제 2 네트워크 노드와의 IP 주소 해제 절차 또는 특정 시간 동안 상기 제 1 세션을 통해서 상기 단말의 데이터가 송수신되지 않는 경우 해제된다.
또한, 본 발명은, 외부와 무선 신호를 송신 및 수신하는 통신부; 및 상기 통신부와 기능적으로 결합되어 있는 프로세서를 포함하되, 상기 프로세서는, 제 1 네트워크 노드와 데이터를 송수신하기 위한 제 1 세션을 형성하며, 연결 상태 또는 비 연결 상태의 단말로부터 특정 서비스를 제공하기 위한 상향링크 데이터를 수신하고, 제 2 네트워크 노드가 상기 단말을 식별하기 위한 제 1 단말 식별자를 할당하며, 상기 상향링크 데이터를 상기 제 1 단말 식별자 및 상기 기지국을 식별하기 위한 기지국 식별자와 함께 상기 제 2 네트워크 노드로 전송하되, 상기 제 1 세션은 복수의 단말로부터 전송되거나, 상기 복수의 단말로 전송되는 동일한 서비스 품질을 갖는 데이터를 송수신하기 위한 무선 경로인 장치를 제공한다.
본 발명은 서비스 품질(Quality of Service)이 서로 다른 다수의 데이터를 하나의 논리적 경로를 통해 전송함으로써, 서비스 품질에 따라 별도의 논리적 경로를 설정하는데 소요되는 지연을 감소 시킬 수 있는 효과가 있다.
또한, 본 발명은 서비스 품질(Quality of Service)이 서로 다른 다수의 데이터를 하나의 논리적 경로를 통해 전송함으로써, 서비스 품질에 따라 별도의 논리적 경로를 설정하기 위한 시그널링을 감소 시킬 수 있는 효과가 있다.
또한, 본 발명은 복수의 단말들의 데이터가 동일한 세션을 통해서 송수신되는 경우, 단말을 식별하기 위한 단말 식별자를 할당함으로써, 송수신되는 데이터의 소스 단말 또는 목적지 단말을 식별할 수 있는 효과가 있다.
또한, 본 발명은 단말의 이동성 또는 상태가 변경되는 경우, 단말 식별자를 갱신함으로써, 단말의 위치 또는 상태에 따라 단말을 식별하여 데이터를 송수신할 수 있는 효과가 있다.
또한, 본 발명은 서비스 품질(Quality of Service)이 동일하거나 서로 다른 복수의 데이터를 하나의 논리적 경로를 통해 전송함으로써, 논리적 경로를 관리하기 위한 자원을 감소 시킬 수 있는 효과가 있다.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명이 적용될 수 있는 LTE 시스템에 관련된 EPS(Evolved Packet System)의 일 예를 나타낸 도이다.
도 2는 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 3은 본 발명이 적용될 수 있는 E-UTRAN과 EPC 간의 기능 분할(functional split)의 일 예를 나타낸 블록도이다.
도 4는 발명의 기술적 특징이 적용될 수 있는 무선 프로토콜 구조(radio protocol architecture)의 일 예를 나타낸 블록도이다.
도 5은 본 발명이 적용될 수 있는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
도 6는 본 발명이 적용될 수 있는 RRC 연결 재설정 과정을 나타낸 흐름도이다.
도 7은 LTE 시스템에서 랜덤 접속 과정(Random Access Procedure)의 일 예를 나타낸다.
도 8는 본 발명이 적용될 수 있는 무선 통신 시스템에서 EMM 및 ECM 상태를 예시하는 도이다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 베어러 구조를 예시한 도이다.
도 10은 본 발명의 적용될 수 있는 무선 통신 시스템에서 EMM 등록 상태에서 제어 평면(control plane) 및 사용자 평면(user plane)의 전송 경로를 예시하는 도이다.
도 11은 기본 베어러 활성화(activation) 절차의 일례를 나타낸 도이다.
도 12은 전용 베어러 비활성화(deactivation) 절차의 일례를 나타낸 도이다.
도 13는 전용 베어러 비활성화(deactivation) 절차의 일례를 나타낸 도이다.
도 14은 QoS(Quality of Service) 관리를 위한 파라미터 구성의 일 예를 나타낸 도이다.
도 15는 본 명세서에서 제안하는 세션을 설정하여 복수의 단말들의 데이터를 송수신하기 위한 방법의 일 예를 나타내는 도이다.
도 16은 본 명세서에서 제안하는 세션을 설정하여 복수의 단말들의 데이터를 송수신하기 위한 방법의 일 예를 나타내는 순서도이다.
도 17은 본 명세서에서 제안하는 세션을 설정하여 상향링크 데이터를 송수신하기 위한 방법의 일 예를 나타내는 도이다.
도 18은 본 명세서에서 제안하는 세션을 설정하여 상향링크 데이터를 송수신하기 위한 방법의 또 다른 일 예를 나타내는 도이다.
도 19는 본 명세서에서 제안하는 세션을 설정하여 하향링크 데이터를 송수신하기 위한 방법의 일 예를 나타내는 도이다.
도 20은 본 명세서에서 제안하는 세션을 설정하여 하향링크 데이터를 송수신하기 위한 방법의 또 다른 일 예를 나타내는 도이다.
도 21은 본 명세서에서 제안하는 세션을 설정하여 하향링크 데이터를 송수신하기 위한 방법의 또 다른 일 예를 나타내는 도이다.
도 22는 본 명세서에서 제안하는 단말의 식별자를 갱신하기 위한 방법의 일 예를 나타내는 흐름도이다.
도 23은 본 명세서에서 제안하는 단말의 IP 주소를 해제하기 위한 방법의 일 예를 나타내는 흐름도이다.
도 24는 본 명세서에서 제안하는 기지국이 세션을 설정하여 단말의 데이터를 송수신하기 위한 방법의 일 예를 나타내는 순서도이다.
도 25는 본 발명이 적용될 수 있는 무선 장치의 내부 블록도의 일 예를 나타낸 도이다
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다.
상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니며, 5G 시스템에서도 적용될 수 있음은 물론이다.
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.
EPS: Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크
PDN (Public Data Network): 서비스를 제공하는 서버가 위치한 독립적인 망
APN (Access Point Name): 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. 즉, PDN의 이름(문자열)을 가리킴. 상기 접속 포인트의 이름에 기초하여, 데이터의 송수신을 위한 해당 PDN이 결정된다.
TEID(Tunnel Endpoint Identifier): 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.
MME: Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.
세션(Session): 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다.
각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.
EPS Bearer: 다양한 종류의 트래픽이 송수신되는 단말과 게이트웨이간에 생성되는 논리적 경로.
Default EPS Bear: 단말이 망에 접속하면 기본적으로 생성되는 데이터 송수신을 위한 논리적 경로로써, 단말이 망에서 빠져나오기(Detach)전까지 유지될 수 있다.
Dedicated EPS Bearer: Default EPS Bearer 생성된 후 추가적으로 서비스를 제공하기 위해 필요한 경우 생성되는 논리적 경로.
IP flow: 단말과 게이트웨이간에 논리적 경로를 통해서 송수신되는 다양한 종류의 트래픽.
Service Data Flow(SDF): 서비스 타입에 따라 분류되는 사용자 트래픽의 IP flow 또는 다수의 IP flow의 결합.
PDN 연결(connection): 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔티티간 연결(단말-PDN GW)을 의미한다.
UE Context: 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보
TIN: Temporary Identity used in Next update
P-TMSI: Packet Temporary Mobile Subscriber
TAU: Tracking Area Update
GBR: Guaranteed Bit Rate
GTP: GPRS Tunneling Protocol
TEID: Tunnel Endpoint ID
GUTI: Globally Unique Temporary Identity, MME에 알려진 UE 식별자
도 1은 본 발명이 적용될 수 있는 LTE 시스템에 관련된 EPS(Evolved Packet System)의 일 예를 나타낸 도이다.
LTE 시스템은 사용자 단말(UE)과 PDN(pack data network) 간에, 사용자가 이동 중 최종 사용자의 응용프로그램 사용에 방해를 주지 않으면서, 끊김 없는 IP 연결성(Internet Protocol connectivity)을 제공하는 것을 목표로 한다. LTE 시스템은, 사용자 단말과 기지국 간의 무선 프로토콜 구조(radio protocol architecture)를 정의하는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)를 통한 무선 접속의 진화를 완수하며, 이는 EPC(Evolved Packet Core) 네트워크를 포함하는 SAE(System Architecture Evolution)에 의해 비-무선적 측면에서의 진화를 통해서도 달성된다. LTE와 SAE는 EPS(Evolved Packet System)를 포함한다.
EPS는 PDN 내에서 게이트웨이(gateway)로부터 사용자 단말로 IP 트래픽을 라우팅하기 위해 EPS 베어러(EPS bearers)라는 개념을 사용한다. 베어러(bearer)는 상기 게이트웨이와 사용자 단말 간에 특정한 QoS(Quality of Service)를 갖는 IP 패킷 플로우(IP packet flow)이다. E-UTRAN과 EPC는 응용 프로그램에 의해 요구되는 베어러를 함께 설정하거나 해제(release)한다.
EPC는 CN(core network)이라고도 불리며, UE를 제어하고, 베어러의 설정을 관리한다.
도 1에 도시된 바와 같이, 상기 SAE의 EPC의 노드(논리적 혹은 물리적 노드)는 MME(Mobility Management Entity) (30), PDN-GW 또는 P-GW(PDN gateway) (50), S-GW(Serving Gateway) (40), PCRF(Policy and Charging Rules Function) (60), HSS (Home subscriber Server) (70) 등을 포함한다.
MME(30)는 UE(10)와 CN 간의 시그널링을 처리하는 제어 노드이다. UE(10)와 CN 간에 교환되는 프로토콜은 NAS(Non-Access Stratum) 프로토콜로 알려져 있다. MME(30)에 의해 지원되는 기능들의 일례는, 베어러의 설정, 관리, 해제를 포함하여 NAS 프로토콜 내의 세션 관리 계층(session management layer)에 의해 조작되는 베어러 관리(bearer management)에 관련된 기능, 네트워크와 UE(10) 간의 연결(connection) 및 보안(Security)의 설립에 포함하여 NAS 프로토콜 계층에서 연결계층 또는 이동제어계층(mobility management layer)에 의해 조작된다.
본 발명에서, 상기 MME(30)는 단말에 대한 인증 및 context 정보를 처리하는데 필요한 기능이 구현된 개체이며, 하나의 실시 예로써 설명된 것이다. 따라서, 상기 MME (30)뿐만 아니라 다른 장치도 해당 기능을 수행할 수 있다.
S-GW(40)는 UE(10)가 기지국(eNodeB, 20) 간에 이동할 때 데이터 베어러를 위한 로컬 이동성 앵커(local mobility anchor)의 역할을 한다. 모든 사용자 IP 패킷은 S-GW(40)을 통해 송신된다. 또한 S-GW(40)는 UE(10)가 ECM-IDLE 상태로 알려진 유휴 상태(idle state)에 있고, MME(30)가 베어러를 재설정(re-establish)하기 위해 UE(10)의 페이징을 개시하는 동안 하향링크 데이터를 임시로 버퍼링할 때 베어러에 관련된 정보를 유지한다. 또한, GRPS(General Packet Radio Service), UMTS(Universal Mobile Telecommunications System)와 같은 다른 3GPP 기술과의 인터워킹(inter-working)을 위한 이동성 앵커(mobility anchor)의 역할을 수행한다.
본 발명에서, 상기 S-GW(40)는 사용자 데이터의 라우팅/포워딩을 처리하는데 필요한 기능이 구현된 개체이며, 실시 예로써 설명된 것이다. 따라서, 상기 S-GW(40)뿐만 아니라 다른 장치도 해당 기능을 수행할 수 있다.
P-GW(50)은 UE를 위한 IP 주소 할당을 수행하고, QoS 집행(Qos enforcement) 및 PCRF(60)로부터의 규칙에 따라 플로우-기반의 과금(flow-based charging)을 수행한다. P-GW(50)는 GBR 베어러(Guaranteed Bit Rate (GBR) bearers)를 위한 QoS 집행을 수행한다. 또한, CDMA2000이나 WiMAX 네트워크와 같은 비3GPP(non-3GPP) 기술과의 인터워킹을 위한 이동성 엥커(mobility anchor) 역할도 수행한다.
본 발명에서, 상기 P-GW(50)는 사용자 데이터의 라우팅/포워딩을 처리하는데 필요한 기능이 구현된 개체이며, 실시 예로써 설명된 것이다. 따라서, 상기 P-GW(50)뿐만 아니라 다른 장치도 해당 기능을 수행할 수 있다.
PCRF(60)는 정책 제어 의사결정(policy control decision-making)을 수행하고, 플로우-기반의 과금(flow-based charging)을 수행한다.
?HSS(70)는 HLR(Home Location Register)이라고도 불리며, EPS-subscribed QoS 프로파일(profile) 및 로밍을 위한 접속제어에 정보 등을 포함하는 SAE 가입 데이터(SAE subscription data)를 포함한다. 또한, 사용자가 접속하는 PDN에 대한 정보 역시 포함한다. 이러한 정보는 APN(Access Point Name) 형태로 유지될 수 있는데, APN는 DNS(Domain Name system) 기반의 레이블(label)로, PDN에 대한 엑세스 포인트 또는 가입된 IP 주소를 나타내는 PDN 주소를 설명하는 식별기법이다.
도 1에 도시된 바와 같이, EPS 네트워크 요소(EPS network elements)들 간에는 S1-U, S1-MME, S5/S8, S11, S6a, Gx, Rx 및 SG와 같은 다양한 인터페이스가 정의될 수 있다.
이하, 이동성 관리(mobility management; MM)의 개념과 이동선 관리(MM) 백오프 타이머(back-off timer)를 상세하게 설명한다. 이동성 관리(MM)는 E-UTRAN 상의 오버헤드와 UE에서의 프로세싱을 감소시키기 위한 절차이다.
이동성 관리(MM)가 적용되는 경우, 엑세스 네트워크에서 UE에 관련된 모든 정보는 데이터가 비활성화되는 기간 동안 해제될 수 있다. MME는 상기 Idle 구간 동안 UE 콘텍스트(context) 및 설정된 베어러에 관련된 정보를 유지할 수 있다.
네트워크가 ECM-IDLE 상태에 있는 UE에 접촉할 수 있도록, UE는 현재의 TA(Tracking Area)를 벗어날 때마다 네트워크에 새로운 위치에 관하여 알릴 수 있다. 이러한 절차는 “Tracking Area Update”라 불릴 수 있으며, 이 절차는 UTRAN(universal terrestrial radio access network)이나 GERAN(GSM EDGE Radio Access Network) 시스템에서 “Routing Area Update”라 불릴 수 있다. MME는 UE가 ECM-IDLE 상태에 있는 동안 사용자 위치를 추적하는 기능을 수행한다.
ECM-IDLE 상태에 있는 UE에게 전달해야 할 다운링크 데이터가 있는 경우, MME는 UE가 등록된 TA(tracking area) 상의 모든 기지국(eNodeB)에 페이징 메시지를 송신한다.
그 다음, 기지국은 무선 인터페이스(radio interface) 상으로 UE에 대해 페이징을 시작한다. 페이징 메시지가 수신됨에 따라, UE의 상태가 ECM-CONNECTED 상태로 천이하게 하는 절차를 수행한다. 이러한 절차는 “Service Request Procedure”라 부릴 수 있다. 이에 따라 UE에 관련된 정보는 E-UTRAN에서 생성되고, 모든 베어러는 재설정(re-establish)된다. MME는 라디오 베어러(radio bearer)의 재설정과, 기지국 상에서 UE 콘텍스트를 갱신하는 역할을 수행한다.
상술한 이동성 관리(MM) 절차가 수행되는 경우, MM(mobility management) 백오프 타이머가 추가로 사용될 수 있다. 구체적으로 UE는 TA를 갱신하기 위해 TAU(Tracking Area Update)를 송신할 수 있고, MME는 핵심 망의 혼잡(core network congestion)으로 인해 TAU 요청을 거절할 수 있는데, 이 경우 MM 백오프 타이머에 관련된 시간 값을 제공할 수 있다. 해당 시간 값을 수신함에 따라, UE는 MM 백오프 타이머를 활성화시킬 수 있다.
도 2는 본 발명이 적용되는 무선통신 시스템을 나타낸다.
이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 3은 본 발명이 적용될 수 있는 E-UTRAN과 EPC 간의 기능 분할(functional split)의 일 예를 나타낸 블록도이다.
도 3을 참조하면, 빗금친 블록은 무선 프로토콜 계층(radio protocol layer)을 나타내고, 빈 블록은 제어 평면의 기능적 개체(functional entity)를 나타낸다.
기지국은 다음과 같은 기능을 수행한다. (1) 무선 베어러 제어(Radio Bearer Control), 무선 허락 제어(Radio Admission Control), 연결 이동성 제어(Connection Mobility Control), 단말로의 동적 자원 할당(dynamic resource allocation)와 같은 무선 자원 관리(Radio Resource Management; RRM) 기능, (2) IP(Internet Protocol) 헤더 압축 및 사용자 데이터 스트림의 해독(encryption), (3) S-GW로의 사용자 평면 데이터의 라우팅(routing), (4) 페이징(paging) 메시지의 스케줄링 및 전송, (5) 브로드캐스트(broadcast) 정보의 스케줄링 및 전송, (6) 이동성과 스케줄링을 위한 측정과 측정 보고 설정.
MME는 다음과 같은 기능을 수행한다. (1) 기지국들로 페이징 메시지의 분산, (2) 보안 제어(Security Control), (3) 아이들 상태 이동성 제어(Idle State Mobility Control), (4) SAE 베어러 제어, (5) NAS(Non-Access Stratum) 시그널링의 암호화(Ciphering) 및 무결 보호(Integrity Protection).
S-GW는 다음과 같은 기능을 수행한다. (1) 페이징에 대한 사용자 평면 패킷의 종점(termination), (2) 단말 이동성의 지원을 위한 사용자 평면 스위칭.
도 4는 발명의 기술적 특징이 적용될 수 있는 무선 프로토콜 구조(radio protocol architecture)의 일 예를 나타낸 블록도이다.
상기 도 4의 (a)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)의 일 예를 나타내며, 상기 도 4의 (b)는 제어 평면(control plane)에 대한 무선 프로토콜 구조의 일 예를 나타낸 블록도이다.
사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
상기 도 4의 (a) 및 (b)를 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화(‘/’의 의미는 ‘or’과 ‘and’의 개념을 모두 포함한다)를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫 번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
이하, 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다.
반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 구역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다.
ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면, 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트랙킹 구역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
다음은, 시스템 정보(System Information)에 대해 살펴본다.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다.
3GPP TS 36.331 V8.7.0 (2009-09) "Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.2.2절에 의하면, 상기 시스템 정보는 MIB(Master Information Block), SB(Scheduling Block), SIB(System Information Block)로 나뉜다. MIB는 단말이 해당 셀의 물리적 구성, 예를 들어 대역폭(Bandwidth) 같은 것을 알 수 있도록 한다. SB은 SIB들의 전송정보, 예를 들어, 전송 주기 등을 알려준다. SIB은 서로 관련 있는 시스템 정보의 집합체이다. 예를 들어, 어떤 SIB는 주변의 셀의 정보만을 포함하고, 어떤 SIB는 단말이 사용하는 상향링크 무선 채널의 정보만을 포함한다.
도 5는 본 발명이 적용될 수 있는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S5010). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S5020). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S5030).
도 6은 본 발명이 적용될 수 있는 RRC 연결 재설정 과정을 나타낸 흐름도이다.
RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 무선 베어러(Radio Bearer, RB) 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S6010). 단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S6020).
랜덤 접속 과정(
RACH
프로시저
)
도 7은 LTE 시스템에서 랜덤 접속 과정(Random Access Procedure)의 일 예를 나타낸다.
랜덤 접속 과정은 RRC_IDLE에서의 초기 접속, 무선 링크 실패 후의 초기 접속, 랜덤 접속 과정을 요구하는 핸드오버, RRC_CONNECTED 중에 랜덤 접속 과정이 요구되는 상향링크 또는 하향링크 데이터 발생 시에 수행된다. RRC 연결 요청 메시지(RRC Connection Request Message)와 셀 갱신 메시지(Cell Update Message), URA(UTRAN Registration Area) 갱신 메시지(URA Update Message) 등의 일부 RRC 메시지도 랜덤 접속 과정을 이용하여 전송된다. 논리채널 CCCH(Common Control Channel), DCCH(Dedicated Control Channel), DTCH(Dedicated Traffic Channel)가 전송채널 RACH에 매핑될 수 있다. 전송채널 RACH는 물리채널 PRACH(Physical Random Access Channel)에 매핑된다.
단말의 MAC 계층이 단말 물리계층에 PRACH 전송을 지시하면, 단말 물리계층은 먼저 하나의 접속 슬롯(access slot)과 하나의 시그너처(signature)를 선택하여 PRACH 프리엠블을 상향으로 전송한다. 랜덤 접속 과정은 경쟁 기반(Contention based)의 랜덤 접속 과정과 비경쟁 기반(Non-contention based)의 랜덤 접속 과정으로 구분된다.
상기 도 7의 (a)는 경쟁 기반(Contention based)의 랜덤 접속 과정의 일 예를 나타내며, 상기 도 7의 (b)는 비경쟁 기반(Non-contention based)의 랜덤 접속 과정의 일 예를 나타낸다.
먼저, 경쟁 기반의 랜덤 접속 과정에 대해서 상기 도 7의 (a)를 참조하여 살펴보기로 한다.
단말은 시스템 정보를 통해 기지국으로부터 랜덤 접속에 관한 정보를 수신하여 저장한다. 이후, 랜덤 접속이 필요한 경우, 단말은 랜덤 접속 프리엠블(Random Access Preamble; 메시지 1이라고도 함)을 기지국으로 전송한다(S7010).
기지국이 상기 단말로부터 랜덤 접속 프리엠블을 수신하면, 상기 기지국은 랜덤 접속 응답 메시지(Random Access Response; 메시지 2라고도 함)를 단말에게 전송한다(S7020). 구체적으로, 상기 랜덤 접속 응답 메시지에 대한 하향 스케쥴링 정보는 RA-RNTI(Random Access-Radio Network Temporary Identifier)로 CRC 마스킹되어 L1 또는 L2 제어채널(PDCCH) 상에서 전송될 수 있다. RA-RNTI로 마스킹된 하향 스케쥴링 신호를 수신한 단말은 PDSCH(Physical Downlink Shared Channel)로부터 랜덤 접속 응답 메시지를 수신하여 디코딩할 수 있다. 이후, 단말은 상기 랜덤 접속 응답 메시지에 자신에게 지시된 랜덤 접속 응답 정보가 있는지 확인한다.
자신에게 지시된 랜덤 접속 응답 정보가 존재하는지 여부는 단말이 전송한 프리엠블에 대한 RAID(Random Access Preamble ID)가 존재하는지 여부로 확인될 수 있다.
상기 랜덤 접속 응답 정보는 동기화를 위한 타이밍 옵셋 정보를 나타내는 TA(Timing Alignment), 상향링크에 사용되는 무선자원 할당 정보, 단말 식별을 위한 임시 식별자(예: Temporary C-RNTI) 등을 포함한다.
단말은 랜덤 접속 응답 정보를 수신하는 경우, 상기 응답 정보에 포함된 무선자원 할당 정보에 따라 상향링크 SCH(Uplink Shared Channel)로 상향링크 전송(메시지 3이라고도 표현함)을 수행한다(S7030). 여기서, 상향링크 전송은 스케쥴된 전송(Scheduled Transmission)으로 표현될 수도 있다.
기지국은 단말로부터 상기 상향링크 전송을 수신한 후에, 경쟁 해결(contention resolution)을 위한 메시지(메시지 4라고도 표현함)를 하향링크 공유 채널(Downlink Shared Channel:DL-SCH)을 통해 단말에게 전송한다(S7040).
다음으로, 비경쟁 기반의 랜덤 접속 과정에 대해 상기 도 7의 (b)를 참조하여 살펴보기로 한다.
단말이 랜덤 접속 프리엠블을 전송하기 전에 기지국이 비경쟁 랜덤 접속 프리엠블(Non-contention Random Access Preamble)을 단말에게 할당한다(S7110).
비경쟁 랜덤 접속 프리엠블은 핸드오버 명령이나 PDCCH와 같은 전용 시그널링(Dedicated Signalling)을 통해 할당될 수 있다. 단말은 비경쟁 랜덤 접속 프리엠블을 할당받은 경우, 기지국으로 할당된 비경쟁 랜덤 접속 프리엠블을 전송한다(S7120).
이후, 상기 기지국은 경쟁 기반 랜덤 접속 과정에서의 S2002단계와 유사하게 랜덤 접속 응답(Random Access Response; 메시지 2라고도 표현함)을 단말에게 전송할 수 있다(S7130).
상기 설명된 랜덤 접속 과정에서 랜덤 접속 응답에 대해서는 HARQ가 적용되지 않지만, 랜덤 접속 응답에 대한 상향링크 전송이나 경쟁 해결을 위한 메시지에 대해서는 HARQ가 적용될 수 있다. 따라서, 랜덤 접속 응답에 대해서 단말은 ACK 또는 NACK을 전송할 필요가 없다.
다음으로, LTE(-A) 또는 802.16에서의 UL data 전송 방법에 대해 간략히 살펴보기로 한다.
LTE(-A) 시스템 또는 802.16m 등과 같은 셀룰러 시스템은 기지국 스케줄링 기반의 자원 할당 방식을 사용하고 있다.
이와 같은 기지국 스케줄링 기반의 자원 할당 방식을 사용하는 시스템에서 전송할 데이터(i.e., UL data)가 있는 단말은 데이터를 전송하기 전에 해당 데이터 전송을 위한 자원을 기지국에게 요청한다.
이와 같은 단말의 스케줄링 요청은 PUCCH로의 SR(Scheduling Request) 전송 또는 PUSCH로의 BSR(Buffer Status Report) 전송을 통해 수행될 수 있다.
또한, 단말에게 SR 또는 BSR을 전송할 자원이 할당되지 않은 경우, 단말은 RACH 프로시저를 통해 상향링크 자원을 기지국으로 요청할 수 있다.
이와 같이 단말로부터 스케줄링 요청을 수신한 기지국은 해당 단말이 사용할 상향링크 자원을 하향링크 제어 채널(i.e., UL grant 메시지, LTE(-A)의 경우 DCI)을 통해 단말로 할당하게 된다.
이 때, 단말에게 전송되는 UL grant는 단말에게 할당되는 자원이 어떤 subframe의 자원에 해당되는지를 explicit하게 시그널링 함으로써 알려줄 수도 있지만, 특정 시간(e.g., LTE의 경우 4ms) 이후의 subframe에 대한 자원 할당으로 단말과 기지국 사이에 약속된 시간을 정의할 수도 있다.
이와 같이, 기지국이 단말에게 Xms(e.g., LTE(-A)의 경우 4ms) 이후의 자원을 할당하는 것은 단말이 UL grant를 수신 및 디코딩하고, 전송할 데이터를 준비 및 인코딩하는 시간을 모두 고려하여 단말의 자원을 할당함을 의미한다.
EMM
및 ECM 상태
EMM(EPS mobility management), ECM(EPS connection management) 상태에 대하여 살펴본다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 EMM 및 ECM 상태를 예시하는 도이다.
상기 도 8을 참조하면, 단말과 MME의 제어 평면에 위치한 NAS 계층에서 단말의 이동성을 관리하기 위하여 단말이 네트워크에 어태치(attach)되었는지 디태치(detach)되었는지에 따라 EMM 등록 상태(EMM-REGISTERED) 및 EMM 등록 해제 상태(EMM-DEREGISTERED)가 정의될 수 있다. EMM-REGISTERED 상태 및 EMM-DEREGISTERED 상태는 단말과 MME에게 적용될 수 있다.
단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM-DEREGISTERED 상태에 있으며, 이 단말이 네트워크에 접속하기 위해서 초기 접속(initial attach) 절차를 통해 해당 네트워크에 등록하는 과정을 수행한다. 접속 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태로 천이(transition)된다. 또한, 단말의 전원이 꺼지거나 무선 링크 실패인 경우(무선 링크 상에서 패킷 에러율이 기준치를 넘은 경우), 단말은 네트워크에서 디태치(detach)되어 EMM-DEREGISTERED 상태로 천이된다.
또한, 단말과 네트워크 간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM 연결 상태(ECM-CONNECTED) 및 ECM 아이들 상태(ECM-IDLE)가 정의될 수 있다. ECM-CONNECTED 상태 및 ECM-IDLE 상태 또한 단말과 MME에게 적용될 수 있다. ECM 연결은 단말과 기지국 간에 설정되는 RRC 연결과 기지국과 MME 간에 설정되는 S1 시그널링 연결로 구성된다. 즉, ECM 연결이 설정/해제되었다는 것은 RRC 연결과 S1 시그널링 연결이 모두 설정/해제되었다는 것을 의미한다.
RRC 상태는 단말의 RRC 계층과 기지국의 RRC 계층이 논리적으로 연결(connection)되어 있는지 여부를 나타낸다. 즉, 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있는 경우, 단말은 RRC 연결 상태(RRC_CONNECTED)에 있게 된다. 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있지 않은 경우, 단말은 RRC 아이들 상태(RRC_IDLE)에 있게 된다.
네트워크는 ECM-CONNECTED 상태에 있는 단말의 존재를 셀 단위에서 파악할 수 있고, 단말을 효과적으로 제어할 수 있다.
반면, 네트워크는 ECM-IDLE 상태에 있는 단말의 존재를 파악할 수 없으며, 코어 네트워크(CN: core network)가 셀보다 더 큰 지역 단위인 트래킹 영역(tracking area) 단위로 관리한다. 단말이 ECM 아이들 상태에 있을 때에는 단말은 트래킹 영역에서 유일하게 할당된 ID를 이용하여 NAS에 의해 설정된 불연속 수신(DRX: Discontinuous Reception)을 수행한다. 즉, 단말은 단말-특정 페이징 DRX 사이클 마다 특정 페이징 시점(paging occasion)에 페이징 신호를 모니터링함으로써 시스템 정보 및 페이징 정보의 브로드캐스트를 수신할 수 있다.
또한, 단말이 ECM-IDLE 상태에 있을 때에는 네트워크는 단말의 컨텍스트(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(cell reselection)과 같은 단말 기반의 이동성 관련 절차를 수행할 수 있다. ECM 아이들 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라지는 경우, 단말은 트래킹 영역 업데이트(TAU: tracking area update) 절차를 통해 네트워크에 해당 단말의 위치를 알릴 수 있다.
반면, 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-CONNECTED 상태에서 네트워크는 단말이 속한 셀을 안다. 따라서, 네트워크는 단말로 또는 단말로부터 데이터를 전송 및/또는 수신하고, 단말의 핸드오버와 같은 이동성을 제어하고, 주변 셀에 대한 셀 측정을 수행할 수 있다.
위와 같이, 단말이 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 ECM-CONNECTED 상태로 천이하여야 한다. 단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM 상태와 마찬가지로 ECM-IDLE 상태에 있으며, 단말이 초기 접속(initial attach) 절차를 통해 해당 네트워크에 성공적으로 등록하게 되면 단말 및 MME는 ECM 연결 상태로 천이(transition)된다. 또한, 단말이 네트워크에 등록되어 있으나 트래픽이 비활성화되어 무선 자원이 할당되어 있지 않은 경우 단말은 ECM-IDLE 상태에 있으며, 해당 단말에 상향링크 혹은 하향링크 새로운 트래픽이 발생되면 서비스 요청(service request) 절차를 통해 단말 및 MME는 ECM-CONNECTED 상태로 천이(transition)된다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 베어러 구조를 예시한 도이다.
단말이 패킷 데이터 네트워크(PDN: Packet Date Network)에 연결될 때 PDN 연결(PDN connection)이 생성되고, PDN connection은 EPS 세션(session)으로도 불릴 수 있다. PDN은 사업자 외부 또는 내부 IP (internet protocol) 망으로 인터넷이나 IMS(IP Multimedia Subsystem)와 같은 서비스 기능을 제공한다.
EPS session은 하나 이상의 EPS 베어러(bearer)를 가진다. EPS bearer는 EPS에서 사용자 트래픽을 전달하기 위하여 단말과 PDN GW 간에 생성되는 트래픽의 전송 경로(transmission path)이다. EPS bearer는 단말 당 하나 이상 설정될 수 있다.
각 EPS bearer는 E-UTRAN 무선 액세스 베어러(E-RAB: E-UTRAN Radio Access Bearer) 및 S5/S8 bearer로 나누어질 수 있고, E-RAB 는 무선 베어러(RB: radio bearer), S1 bearer로 나누어질 수 있다. 즉, 하나의 EPS bearer는 각각 하나의 RB, S1 bearer, S5/S8 bearer 에 대응된다.
E-RAB은 단말과 EPC 간에 EPS bearer의 패킷을 전달한다. E-RAB가 존재하면, E-RAB bearer와 EPS bearer는 일대일로 매핑된다. 데이터 무선 베어러(DRB: data radio bearer)는 단말과 eNB 간에 EPS bearer의 패킷을 전달한다. DRB가 존재하면, DRB와 EPS bearer/E-RAB 는 일대일로 매핑된다. S1 bearer는 eNB와 S-GW 간에 EPS bearer의 패킷을 전달한다. S5/S8 bearer는 S-GW와 P-GW 간에 EPS bearer 패킷을 전달한다.
단말은 상향링크 방향의 EPS bearer 에 서비스 데이터 플로우(SDF: service data flow)를 바인딩(binding) 한다. SDF는 사용자 트래픽을 서비스 별로 분류(또는 필터링) 한 IP 플로우(flow) 또는 IP flow들의 모임이다. 복수의 SDF들은 복수의 상향링크 패킷 필터들을 포함함으로써 동일한 EPS bearer에 다중화될 수 있다. 단말은 상향링크에서 SDF와 DRB 간 binding하기 위하여 상향링크 패킷 필터와 DRB 간 매핑 정보를 저장한다.
P-GW 은 하향링크 방향의 EPS bearer에 SDF를 binding한다. 복수의 SDF들은 복수의 하향링크 패킷 필터들을 포함함으로써 동일한 EPS bearer에 다중화될 수 있다. P-GW는 하향링크에서 SDF와 S5/S8 bearer 간 binding 하기 위하여 하향링크 패킷 필터와 S5/S8 bearer 간 매핑 정보를 저장한다.
eNB은 상/하향링크에서 DRB와 S1 bearer 간 binding 하기 위하여 DRB와 S1 bearer 간 일대일 매핑을 저장한다. S-GW는 상/하향링크에서 S1 bearer와 S5/S8 bearer 간 binding 하기 위하여 S1 bearer와 S5/S8 bearer 간 일대일 매핑 정보를 저장한다.
EPS bearer는 기본 베어러(default bearer)와 전용 베어러(dedicated bearer) 두 종류로 구분된다. 단말은 PDN 당 하나의 default bearer와 하나 이상의 dedicated bearer 를 가질 수 있다. 하나의 PDN에 대하여 EPS 세션이 갖는 최소한의 기본 베어러를 default bearer라 한다.
EPS bearer는 식별자(identity)를 기반으로 구분될 수 있다. EPS bearer identity는 단말 또는 MME에 의해 할당된다. dedicated bearer(s)은 LBI(Linked EPS Bearer Identity)에 의해 default bearer와 결합된다.
단말은 초기 어태치 절차(initial attach procedure)를 통해 네트워크에 초기 접속하면, IP 주소를 할당 받아 PDN connection이 생성되고, EPS 구간에서 default bearer가 생성된다. default bearer는 단말과 해당 PDN 간 트래픽이 없는 경우에도 단말이 PDN 연결이 종료되지 않는 한 해제되지 않고 유지되며, 해당 PDN 연결을 종료될 때 default bearer도 해제된다. 여기서, 단말과 default bearer를 구성하는 모든 구간의 bearer가 활성화되는 것은 아니고, PDN과 직접 연결되어 있는 S5 bearer는 유지되고, 무선 자원과 연관이 있는 E-RAB bearer (즉, DRB and S1 bearer)는 해제된다. 그리고, 해당 PDN에서 새로운 트래픽이 발생되면 E-RAB bearer가 재설정되어 트래픽을 전달한다.
단말이 default bearer를 통해 서비스(예를 들어, 인터넷 등)를 이용하는 중에, default bearer만으로 QoS(Quality of Service)를 제공 받기 불충분한 서비스(예를 들어, VoD(Videon on Demand) 등)를 이용하게 되면 단말에서 요구할 때(on-demand) dedicated bearer가 생성된다. 단말의 트래픽이 없는 경우 dedicated bearer는 해제된다. 단말이나 네트워크는 필요에 따라 복수의 dedicated bearer를 생성할 수 있다.
단말이 어떠한 서비스를 이용하는지에 따라 IP flow는 다른 QoS 특성을 가질 수 있다. 네트워크는 단말을 위한 EPS session을 확립/변경(establish/modification) 시 네트워크 자원의 할당 내지 QoS 에 대한 제어 정책을 결정하여 EPS session이 유지되는 동안 이를 적용한다. 이를 PCC (Policy and Charging Control)라 한다. PCC 규칙(PCC rule)은 오퍼레이터 정책(예를 들어, QoS 정책, 게이트 상태(gate status), 과금 방법 등)을 기반으로 결정된다.
PCC 규칙은 SDF 단위로 결정된다. 즉, 단말이 이용하는 서비스에 따라 IP flow는 다른 QoS 특성을 가질 수 있으며, 동일한 QoS를 가진 IP flow들은 동일한 SDF로 맵핑되고, SDF는 PCC 규칙을 적용하는 단위가 된다.
이와 같은 PCC 기능을 수행하는 주요 엔터티로 PCRF(Policy and Charging Control Function)와 PCEF(Policy and Charging Enforcement Function)가 이에 해당될 수 있다.
PCRF는 EPS session을 생성 또는 변경할 때 SDF 별로 PCC 규칙을 결정하여 P-GW(또는 PCEF)로 제공한다. P-GW는 해당 SDF에 대해 PCC 규칙을 설정한 뒤, 송/수신되는 IP 패킷마다 SDF를 검출하여 해당 SDF에 대한 PCC 규칙을 적용한다. SDF가 EPS을 거쳐 단말에게 전송될 때 P-GW에 저장되어 있는 QoS 규칙에 따라 적합한 QoS를 제공해 줄 수 있는 EPS bearer로 맵핑된다.
PCC 규칙은 동적 PCC 규칙(dynamic PCC rule)과 미리 정의된 PCC 규칙(pre-defined PCC rule)으로 구분된다. 동적 PCC 규칙은 EPS session 확립/변경(establish/modification) 시 PCRF에서 P-GW로 동적으로 제공된다. 반면, 미리 정의된 PCC 규칙은 P-GW에 미리 설정되어 있어 PCRF에 의해 활성화/비활성화된다.
EPS 베어러는 기본 QoS 파라미터로 QoS 클래스 식별자(QCI: QoS Class Identifier)와 할당 및 보유 우선 순위(ARP: Allocation and Retention Priority)를 포함한다.
QCI는 bearer 레벨 패킷 포워딩 처리(treatment)를 제어하는 노드-특정(node-specific) 파라미터들에 접근하기 위한 기준으로 사용되는 스칼라(scalar)로서, 스칼라 값은 네트워크 오퍼레이터에 의하여 미리 설정(pre-configured)되어 있다. 예를 들어, 스칼라는 정수값 1 내지 9 중 어느 하나로 미리 설정될 수 있다.
ARP의 주된 목적은 자원이 제한되는 경우, bearer의 establishment 또는 modification 요청이 받아들여질 수 있는지 또는 거절되어야 하는지 결정하기 위함이다. 또한, ARP는 예외적인 자원 제한(예를 들어, 핸드오버 등) 상황에서, eNB에 의해 어떠한 bearer(s)를 드랍(drop)할 지 결정하는데 사용될 수 있다.
EPS bearer는 QCI 자원 형태에 따라 보장된 비트율(GBR: Guaranteed Bit Rate)형 bearer와 비 보장된 비트율(non-GBR) 형 bearer로 구분된다. Default bearer는 항상 non-GBR 형 bearer이고, dedicated bearer는 GBR형 또는 non-GBR형 bearer일 수 있다.
GBR 형 베어러는 QCI와 ARP 외에 QoS 파라미터로써 GBR과 최대 비트율(MBR: Maximum Bit Rate)를 가진다. MBR은 bearer별로 고정된 자원을 할당(대역폭 보장) 받는 것을 의미한다. 반면, non-GBR형 bearer는 QCI와 ARP 이외에 QoS 파라미터로서 결합된 MBR(AMBR: Aggregated MBR)을 가진다. AMBR은 자원을 bearer 별로 할당 받지 못하는 대신 다른 non-GBR형 bearer들과 같이 사용할 수 있는 최대 대역폭을 할당 받는 것을 의미한다.
위와 같이 EPS bearer의 QoS가 정해지면, 각 인터페이스마다 각각의 bearer의 QoS가 정해진다. 각 인터페이스의 bearer는 EPS bearer의 QoS를 인터페이스 별로 제공하므로, EPS bearer와 RB, S1 bearer 등은 모두 일대일 관계를 가진다.
단말이 default bearer를 통해 서비스를 이용하는 중에, default bearer만으로 QoS를 제공 받기 불충분한 서비스를 이용하게 되면 단말의 요청에 의해(on-demand)로 dedicated bearer가 생성된다.
도 10은 본 발명의 적용될 수 있는 무선 통신 시스템에서 EMM 등록 상태에서 제어 평면(control plane) 및 사용자 평면(user plane)의 전송 경로를 예시하는 도이다.
상기 도 10의 (a)는 ECM-CONNECTED 상태를 예시하고, 상기 도 10의 (b)는 ECM-IDLE를 예시한다.
단말이 네트워크에 성공적으로 어태치(attach)하여 EMM-Registered 상태가 되면 EPS 베어러를 이용하여 서비스를 제공받는다. 상술한 바와 같이, EPS 베어러는 구간 별로 DRB, S1 베어러, S5 베어러로 나뉘어져 구성된다.
상기 도 10의 (a)와 같이, 사용자 트래픽이 있는 ECM-CONNECTED 상태에서는 NAS 시그널링 연결 즉, ECM 연결(즉, RRC 연결과 S1 시그널링 연결)이 설정된다. 또한, MME와 SGW 간에 S11 GTP-C(GPRS Tunneling Protocol Control Plane) 연결이 설정되고, SGW와 PDN GW 간에 S5 GTP-C 연결이 설정된다.
또한, ECM-CONNECTED 상태에서는 DRB, S1 베어러 및 S5 베어러가 모두 설정(즉, 무선 또는 네트워크 자원 할당)된다.
상기 도 10의 (b)와 같이, 사용자 트래픽이 없는 ECM-IDLE 상태에서는 ECM 연결(즉, RRC 연결과 S1 시그널링 연결)은 해제된다. 다만, MME와 SGW 간의 S11 GTP-C 연결 및 SGW와 PDN GW 간의 S5 GTP-C 연결은 설정이 유지된다.
또한, ECM-IDLE 상태에서는 DRB와 S1 베어러는 모두 해제되나, S5 베어러는 설정(즉, 무선 또는 네트워크 자원 할당)을 유지한다.
도 11은 기본 베어러 활성화(activation) 절차의 일례를 나타낸 도이다.
MME는 기본 베어러(Default bearer)를 활성화 시키기 위해서 an ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message를 전송함으로써 default bearer context activation 절차를 수행할 수 있으며, BEARER CONTEXT ACTIVE PENDING 상태로 진입할 수 있다(S11010).
어태치 절차의 일부로 기본 베어러가 활성화되는 경우, 상기 MME는 the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지를 ATTACH ACCEPT 메시지와 함께 전송하고, T3485 timer를 시작하지 않을 수 있다.
상기 어태치 절차를 제외하고 a stand-alone PDN CONNECTIVITY REQUEST message의 응답으로써 상기 기본 베어러가 활성화 되는 경우, 상기 MME는 상기 ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지를 단독으로 보내고, T3485 timer를 시작한다.
상기 MME는 EPS bearer 식별자를 할당하고 상기 the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지에 포함시킬 수 있다. 상기 MME는 상기 PDN CONNECTIVITY REQUEST로부터 PTI를 획득하고, 상기 ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지에 이를 포함시킨다.
the network identifier part 및 the operator identifier part는 모두 the Access Point Name IE에 포함될 수 있다.
상기 ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지를 수신한 뒤, 만약 상기 메시지의 지시된 APN을 위한 타이머가 동작하고 있는 경우, 상기 UE는 T3396 timer를 멈출 수 있으며, ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT 메시지를 전송하고, BEARER CONTEXT ACTIVE 상태로 진입할 수 있다(S11020).
상기 어태치 절차의 일부로 상기 기본 베어러가 활성화 되는 경우, 상기 UE는 ATTACH COMPLETE 메시지와 함께 ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT를 전송할 수 있다.
상기 기본 베어러가 상기 stand-alone PDN CONNECTIVITY REQUEST 메시지의 응답으로써 활성화 되는 경우, 상기 UE는 ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT 메시지를 단독으로 전송할 수 있다.
만약 WLAN 오프로드 식별 정보 요소(offload indication information element)가 상기 ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지에 포함되는 경우, 상기 UE는 PDN 연결을 위한 상기 WLAN 오프로드 수용가능성 값들(WLAN offload acceptability values)을 저장하고, PDN 연결이 오프로더블(offloadble)될지 여부를 결정하기 위해서 상기 E-UTRAN 오프로드 수용가능성 값(E-UTRAN offload acceptability value)을 사용할 수 있다.
상기 UE는 상기 기본 베어러 컨텍스트 활성화와 관련된 UE requested PDN connectivity 절차를 식별하기 위해서 상기 ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지의 PTI를 확인할 수 있다.
상기 ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT 메시지를 수신한 뒤, 상기 MME는 BEARER CONTEXT ACTIVE 상태로 진입하고, T3485 timer가 동작하고 있는 경우 이를 멈출 수 있다.
만약 상기 PDN CONNECTIVITY REQUEST message가 "MS is configured for NAS signalling low priority"로 설정된 low priority indicator를 포함하고 있는 경우, 상기 MME는 상기 NAS signaling low priority indication을 상기 default EPS bearer context에 저장할 수 있다.
만약 상기 default EPS bearer context activation이 상기 어태치 절차의 일부인 경우, ESM 서브 레이어는 EMM 서브레이어에게 ESM failure를 알릴 수 있다.
만약 상기 default EPS bearer context activation이 어태치 절차의 일부가 아닌 경우, 상기 UE는 ACTIVATE DEFAULT EPS BEARER CONTEXT REJECT 메시지를 전송하고, BEARER CONTEXT INACTIVE 상태로 진입할 수 있다(S11030).
상기 ACTIVATE DEFAULT EPS BEARER CONTEXT REJECT 메시지는 일반적으로 아래와 같은 원인 값들 중 하나로 나타내어지는 ESM 원인을 포함할 수 있다.
#26: insufficient resources;
#31: request rejected, unspecified; or
#95 ? 111: protocol errors.
상기 ACTIVATE DEFAULT EPS BEARER CONTEXT REJECT 메시지를 수신한 뒤, 상기 MME는 state BEARER CONTEXT INACTIVE 상태로 진입할 수 있으며, T3485 타이머가 동작하고 있는 경우, 이를 중지할 수 있다.
도 12는 전용 베어러 비활성화(deactivation) 절차의 일례를 나타낸 도이다.
상기 도 12는 GTP(GPRS Tunneling Protocol) 기반의 S5/S8에 대한 전용 베어러 활성화(dedicated bearer activation) 절차를 나타낸 흐름도이다.
먼저, 동적 PCC가 배치되는 경우, PCRF는 PCC decision provision (QoS policy) 메시지를 PDN GW로 전송한다.
다음, 상기 PDN GW는 베어러 생성을 요청하기 위한 Create Bearer Request message (IMSI, PTI, EPS Bearer QoS, TFT, S5/S8 TEID, Charging Id, LBI, Protocol Configuration Options)를 Serving GW로 전송한다.
다음, 상기 Serving GW는 상기 Create Bearer Request (IMSI, PTI, EPS Bearer QoS, TFT, S1-TEID, PDN GW TEID (GTP-based S5/S8), LBI, Protocol Configuration Options) message를 MME로 전송한다.
다음, 상기 MME는 베어러 설정을 요청하기 위한 Bearer Setup Request (EPS Bearer Identity, EPS Bearer QoS, Session Management Request, S1-TEID) message를 eNodeB로 전송한다.
다음, 상기 eNodeB는 RRC Connection Reconfiguration (Radio Bearer QoS, Session Management Request, EPS RB Identity) message 를 UE로 전송한다.
다음, 상기 UE는 무선 베어러 활성화(radio bearer activation)를 알리기 위해 eNodeB로 RRC Connection Reconfiguration Complete message를 전송한다.
다음, 상기 eNodeB는 단말에서의 무선 베어러 활성화(radio bearer activation)를 알리기 위해 Bearer Setup Response (EPS Bearer Identity, S1-TEID) message를 MME로 전송한다.
다음, 상기 UE는 Direct Transfer (Session Management Response) message를 상기 eNodeB로 전송한다.
다음, 상기 eNodeB는 Uplink NAS Transport (Session Management Response) message를 상기 MME로 전송한다.
다음, 상기 MME는 Serving GW로 베어러 활성화(bearer activation)을 알리기 위해 Create Bearer Response (EPS Bearer Identity, S1-TEID, User Location Information (ECGI)) message를 상기 Serving GW로 전송한다.
다음, 상기 Serving GW는 상기 PDN GW 로 베어러 활성화(bearer activation)을 알리기 위해 Create Bearer Response (EPS Bearer Identity, S5/S8-TEID, User Location Information (ECGI)) message를 상기 PDN GW로 전송한다.
만약 전용 베어러 활성화 절차(dedicated bearer activation procedure)가 상기 PCRF로부터 PCC Decision Provision message에 의해 트리거된 경우, 상기 PDN GW는 요청된 PCC decision (QoS policy)가 수행되었는지 여부를 상기 PCRF로 지시한다.
도 13은 전용 베어러 비활성화(deactivation) 절차의 일례를 나타낸 도이다.
상기 도 13은 GTP(GPRS Tunneling Protocol) 기반의 S5/S8에 대한 전용 베어러 비활성화(dedicated bearer deactivation) 절차를 나타낸 흐름도이다.
상기 도 13의 절차는 전용 베어러(dedicated bearer)를 비활성화하거나 또는 PDN 어드레스(address)에 속하는 모든 bearer들을 비활성화하기 위해 사용될 수 있다.
만약, PDN 연결에 속하는 디폴트 베어러(default bearer)가 비활성화되는 경우, PDN GW는 상기 PDN 연결에 속하는 모든 bearer들을 비활성화시킨다. 구체적인 절차는 상기 도 13을 참조하기로 한다.
도 14는 QoS(Quality of Service) 관리를 위한 파라미터 구성의 일 예를 나타낸 도이다.
상기 도 14를 참조하면, 무선 통신 시스템은 사용자 트래픽을 서비스 별로 분류한 하나 이상의 IP flow로 구성된 SDF(Service Data Flow) 단위와 하나 이상의 SDF가 전송되는 논리적 경로인 EPS 베어러 단위로 QoS 정책을 적용한다. 즉, 아래와 같은 QoS 파라메터에 의해 송수신되는 데이터의 QoS가 관리된다.
- Resource type: 대역폭 보장여부
- GBR(Guaranteed bit rate): 보장된 최소 대역폭
- MBR(Maximum bit rate): 허용된 최대 대역폭
- APN-AMBR(Access Point Name-Aggregate Maximum Bit Rate): APN당 허용된 최대 대역푝
- UE-AMBR: UE 당 허용된 최대 대역폭
상기 QoS 파라미터인 MBR, APN-AMBR, UE-AMBR에서 명시한 대역폭 이상으로 패킷이 유입되면, 아래 언급된 각 개체들은 초과 유입된 패킷을 폐기한다.
- 하향링크 데이터에 대한 rate policing
1차: P-GW는 유입된 각 SDF에 대한 MBR을 초과하는 패킷 폐기
2차: P-GW는 각 GBR EPS 베어러에 에 유입된 하나 이상의 SDF에 대한 MBR을 초과하는 패킷 폐기 및 모든 Non-GBR EPS 베어러에 유입된 하나 이상의 SDF에 대한 APN-AMBR을 초과하는 패킷 폐기
3차: 기지국은 모든 NoN-GBR EPS 베어러에 유입된 하나 이상의 SDF에 대한 UE-AMBR을 초과하는 패킷 폐기
- 상향링크 데이터에 대한 rate policing
1차: 단말은 MBR(GBR) 및 APN-AMBR(Non-GBR)을 초과하는 패킷 폐기
2차: 기지국은 MBR(GBR) 및 UE-AMBR(Non-GBR)을 초과하는 패킷 폐기
3차: P-GW은 모든 Non-GBR EPS 베어러에 유입된 하나 이상의 SDF에 대한 APN-AMBR을 초과하는 폐기 및 각 SDF 에 대한 MBR을 초과하는 패킷 폐기
앞에서 설명한 바와 같이 특정 서비스를 제공하기 위한 데이터를 송수신하기 위해서는 서비스 마다 별도의 전용 베어러(예를 들면, EPS 베어러 등)를 설정해야 데이터를 송수신할 수 있다.
하지만, 서비스 마다 별도의 베어러를 생성한 뒤에만 데이터를 송수신하는 경우, 저 지연을 요구하는 서비스(예를 들면, 긴급한 상황을 알리기 위한 서비스 등)의 데이터 전송에 지연이 발생하는 문제점이 있다.
즉, 저 지연을 요구하는 서비스들의 지연 요구를 만족 시킬 수 없다는 문제점이 존재한다.
따라서, 본 발명은 이와 같은 문제점을 해결하기 위해서 기지국과 망 노드간에 단말 별로 별도의 세션을 설정하지 않고, 동일한 세션을 통해서 특정 서비스를 제공하기 위한 복수의 단말들의 데이터를 송수신하기 위한 방법을 제안한다.
도 15는 본 명세서에서 제안하는 세션을 설정하여 복수의 단말들의 데이터를 송수신하기 위한 방법의 일 예를 나타내는 도이다.
도 15를 참조하면, 저 지연을 요구하는 특정 서비스를 제공하기 위한 데이터를 송수신하는 경우, 단말은 기지국과 특정 서비스를 제공하기 위한 무선 베어러를 설정하여 데이터를 송수신하고, 기지국과 게이트웨이는 특정 서비스를 제공하기 위한 세션을 설정하여 복수의 단말의 데이터를 동일한 세션을 통해서 송수신할 수 있다.
구체적으로, 일반적인 서비스를 제공하기 위한 경우, 단말은 게이트웨이와 서비스 별로 EPS 베어러를 설정하여 데이터를 송수신한다. 하지만, 서비스 별로 별도의 베어러를 설정하여 데이터를 송수신하는 경우, 저 지연을 요구하는 서비스들(예를 들면, 긴급 메시지를 전송하기 위한 긴급 서비스 등)의 요구 지연을 만족 시킬 수 없다.
따라서, 저 지연을 요구하는 서비스들의 요구 지연을 만족 시키기 위해서 기지국과 게이트웨이 간에 동일한 또는 서로 다른 서비스 품질(Quality of Service)을 요구하는 데이터들을 송수신하기 위한 세션을 설정하여 다수의 데이터를 송수신할 수 있다.
이때, 기지국과 게이트웨이 간에 설정된 세션은 복수의 단말로부터 전송된 상향링크 데이터를 게이트웨이로 전송하기 위해 사용되거나, 복수의 단말들에게 전송되는 하향링크 데이터들을 게이트웨이로부터 기지국으로 전송하기 위해 사용된다.
즉, 기지국은 저 지연을 요구하는 특정 서비스를 위한 상향링크 데이터들을 복수의 단말들로부터 수신하고, 수신된 데이터들을 동일한 세션을 통해서 게이트웨이로 전송할 수 있다.
또한, 기지국은 저 지연을 요구하는 특정 서비스를 위한 하향링크 데이터들을 게이트웨이로부터 수신하고, 수신된 데이터들을 동일한 세션을 통해서 복수의 단말들에게 전송할 수 있다.
이때, 단말과 기지국은 연결 상태에서 무선 베어러를 이용하여 데이터를 송수신하거나, 비 연결 상태에서 무선 베어러 형성 없이 데이터를 송수신할 수 있다.
예를 들면, 도 15에 도시된 바와 같이, UE 1, UE 2 및 UE 3이 저 지연을 요구하는 특정 서비스를 위한 데이터를 송수신하는 경우, UE 1 및 UE 2는 eNB와 연결 상태에서 무선 베어러를 이용하여 eNB와 데이터를 송수신할 수 있다.
UE 3의 경우, eNB와 연결이 되어 있지 않은 비 연결 상태이기 때문에 비 연결 상태에서 저 지연을 요구하는 특정 서비스를 위한 데이터를 eNB와 송수신할 수 있다.
eNB는 UE 1, UE 2 및 UE 3로부터 전송된 데이터를 게이트웨이로 전송하거나, UE 1, UE 2 및 UE로 전송되는 데이터를 게이트웨이로부터 전송 받을 수 있다.
eNB와 게이트웨이는 단말 별로 별도의 세션을 설정하지 않고, 동일한 서비스를 위한 데이터 또는 서로 다른 서비스를 위한 데이터를 동일한 세션을 이용하여 송수신할 수 있다.
즉, 도 15에 도시된 바와 같이 eNB는 UE 1 및 UE 2로부터 전송되거나, UE 1 및 UE 2로 전송될 데이터를 세션 2를 이용하여 송수신하고, UE 3으로부터 전송되거나, UE 3으로 전송될 데이터를 세션 2를 이용하여 송수신할 수 있다.
동일한 세션을 이용하여 데이터를 송수신하는 경우, 단말 별로 세션을 설정하지 않고도 이미 설정되어 있는 세션을 이용하여 데이터를 송수신할 수 있기 때문에 데이터 송수신의 지연을 감소시킬 수 있다.
따라서, 이와 같은 방법을 사용하는 경우, 저 지연을 요구하는 서비스의 지연 요구를 만족 시킬 수 있다.
본 발명에서 게이트웨이는 U-plane 기능이 탑재된 망 노드로써, 예를 들어 3GPP 4G 시스템에서 S-GW/P-GW로 명명된 노드일 수 있으며, 다른 호칭으로 불릴 수 있다.
도 16은 본 명세서에서 제안하는 세션을 설정하여 복수의 단말들의 데이터를 송수신하기 위한 방법의 일 예를 나타내는 순서도이다.
도 16을 참조하면, 기지국은 복수의 연결 상태 또는 비 연결 상태의 단말로부터 전송되거나, 복수의 연결 상태 또는 비 연결 상태의 단말로 전송될 데이터를 동일한 세션을 통해서 송수신함으로써, 데이터 송수신의 지연 시간을 단축 시킬 수 있다.
구체적으로, 기지국은 코어 망 노드(예를 들면, MME(Mobility Management Entity) 등)와 동일하거나 서로 다른 서비스 품질을 요구하는 서비스를 위한 데이터를 송수신하기 위한 세션을 설정한다(S16010).
이때, 기지국과 게이트웨이 간에 생성된 세션은 인터페이스 설정 절차를 통해서 설정될 수 있으며, 동일하거나 서로 다른 서비스 품질을 요구하는 서비스를 위한 복수의 단말들의 상향링크 데이터 또는 하향링크 데이터를 송수신하기 위해 사용될 수 있다.
이하, 동일하거나 서로 다른 서비스 품질을 요구하는 서비스를 위한 복수의 단말들의 상향링크 데이터 또는 하향링크 데이터를 송수신하기 위해 사용되는 세션을 긴급 세션이라 호칭한다.
기지국은 단말과 연결 상태에서 데이터를 송수신하고자 하는 경우, 단말(들)과 앞에서 살펴본 연결 설정 과정 또는 환경 설정 과정을 통해서 무선 베어러를 생성할 수 있다(S16020).
기지국과 단말간에 생성된 무선 베어러는 단말마다 서비스 별로 설정될 수 있으며, 특정 서비스를 위한 데이터를 송수신하기 위해서 사용될 수 있다.
상향링크 데이터를 송수신하는 경우, 기지국은 생성된 무선 베어러를 이용하여 단말(들)로부터 상향링크 데이터를 전송 받을 수 있다(S16030).
하지만, 기지국과 단말간에 비 연결 상태에서 데이터를 송수신하는 경우, 단계 S16020은 수행되지 않으며, 단계 S16030에서 기지국은 무선 베어러가 형성되지 않았기 때문에 단말로부터 비 연결 상태에서 상향링크 데이터를 전송 받을 수 있다.
단말은 비 연결 상태에서 기지국으로 상향링크 데이터를 전송하는 경우, 상향링크 데이터는 상향링크 데이터가 긴급 세션을 이용하여 게이트웨이로 전송된다는 것을 지시하는 지시자 및 상향링크 데이터의 데이터 타입과 함께 기지국으로 전송될 수 있다.
기지국은 단말로부터 전송된 상향링크 데이터의 데이터 타입에 따라 상향링크 데이터를 게이트웨이로 전송하기 위한 라우팅 세션을 결정한다(S16040).
즉, 기지국은 상향링크 데이터가 어떤 서비스를 위한 데이터인지 여부를 데이터 타입을 통해서 판단하고, 긴급 세션이 복수 개 생성되어 있는 경우, 상향링크 데이터를 전송할 긴급 세션을 선택한다.
기지국은 결정된 라우팅 세션을 이용하여 단말(들)로부터 전송 받은 상향링크 데이터(들)을 게이트웨이로 전송한다(S16050).
이와 같은 방법을 이용하는 경우, 단말과 기지국간에 무선 베어러와 기지국과 게이트웨이 간의 세션이 각각 별도로 생성되게 되며, 기지국과 게이트웨이 간의 세션을 통해서 복수의 단말의 데이터들을 송수신할 수 있다.
따라서, 단말에 따라 데이터 송수신을 위해서 별도의 세션을 생성하지 않아도 되므로 데이터 송수신의 지연이 감소한다.
도 16에서 설명한 발명은 상향링크 데이터를 예로 들어 설명하였지만, 하향링크 데이터의 송수신에도 적용됨은 물론이다.
하지만, 동일한 세션을 통해서 복수의 단말들의 데이터를 전송하는 경우, 게이트웨이는 전송된 데이터가 어느 단말로부터 전송되었는지 여부를 식별할 수 없다.
즉, 단말마다 별도의 세션을 생성하여 데이터를 전송하지 않고 동일한 세션을 통해서 복수의 단말들의 데이터를 전송하는 경우 게이트웨이는 전송된 데이터가 어느 단말로부터 전송되었는지 여부를 식별하지 못하는 경우가 발생할 수 있다.
또한, 상향링크 데이터를 전송한 단말로 전송할 하향링크 데이터가 발생한 경우, 게이트웨이가 상향링크 데이터를 전송한 단말을 식별할 수 없기 때문에 정확한 단말로 하향링크 데이터를 전송할 수 없다는 문제점이 발생한다.
이와 같은 문제점을 해결하기 위해서 긴급 세션을 통해서 데이터를 송수신하는 경우, 단말을 식별하기 위한 식별자 및 데이터를 송수신하기 위한 IP 주소를 할당하는 방법을 제안한다.
기지국에 의해 할당된 단말을 식별하기 위한 단말 식별자 및 기지국을 식별하기 위한 기지국 식별자를 포함하는 필드는 아래 표 1과 같이 구성될 수 있다.
표 1에서 단말 식별자는 단말 식별자를 할당한 기지국 내에서만 단말을 식별하기 위해서 고유하기 사용될 수 있으며, 기지국 식별자 및 단말 식별자 전체는 망 내에서 또는 모든 망에서 고유하게 단말 및 기지국을 식별하기 위해서 사용될 수 있다.
기존의 LTE를 예로 들어 설명하면 단말 식별자의 경우, C-RNTI(Cell Radio Network Temporary Identities) 또는 Temporary C-RNTI 등이 될 수 있다.
단말 식별자가 C-RNTI 또는 Temporary C-RNTI인 경우, 기지국은 임의 접속을 수행한 단말에게 Temporary C-RNTI를 일시적으로 할당하며, 해당 단말이 RRC 연결 상태로 진입하면 Temporary C-RNTI를 C-RNTI로써 대체한다.
즉, 임시/일시적인 할당이 아닌, 해당 단말의 연결이 해제되거나 핸드오버하기 전까지 지속적으로 식별자를 할당한다.
표 1에서 기지국 식별자의 일 예로 아래와 같은 식별자들이 존재할 수 있다.
- 긴급 세션을 생성하는 과정에서 기지국에게 할당된 IP 주소
- 기지국과 게이트웨이 간의 터널링 프로토콜이 적용된 경우 터널 식별자
- 망 내부적인 시그널링 송수신을 위한 목적으로 기지국에게 할당된 IP 주소
- 기지국에게 부여된 아이디(예를 들면, ECGI(E-UTRAN Cell Global Identifier) 등)
이하, 도 15에서 설명한 바와 같이 저 지연을 요구하는 서비스를 위한 복수의 단말들의 상향링크 데이터 또는 하향링크 데이터를 송수신하기 위해 사용되는 긴급 세션(세션 1 및 세션 2)가 설정되어 있다고 가정하고 설명하도록 한다.
도 17은 본 명세서에서 제안하는 세션을 설정하여 상향링크 데이터를 송수신하기 위한 방법의 일 예를 나타내는 도이다.
도 17을 참조하면, 단말이 긴급 세션을 통해서 상향링크 데이터를 전송하는 경우, 기지국은 단말을 식별하기 위한 식별자를 할당하고, 게이트웨이는 식별자를 통해서 상향링크 데이터를 전송한 단말을 식별하여 데이터를 송수신하기 위한 IP 주소를 할당할 수 있다.
구체적으로, ① 도 17의 (a)에 도시된 바와 같이, eNB는 저 지연을 요구하는 특정 서비스를 위한 상향링크 데이터를 무선 베어러를 통해서 UE 1으로부터 수신한다.
② eNB는 수신된 상향링크 데이터의 전송을 위해서 이용할 세션을 선택한다. 이때, eNB는 수신된 상향링크 데이터의 데이터 타입, 서비스 품질 또는 상향링크 데이터를 통해 제공하고자 하는 서비스의 서비스 타입 중 적어도 하나에 기초하여 세션을 선택할 수 있다.
③ eNB는 단말을 식별하기 위한 단말 식별자를 포함하는 적어도 하나의 단말 식별 필드 및 기지국을 식별하기 위한 기지국 식별자를 포함하는 적어도 하나의 기지국 식별 필드를 상향링크 데이터에 추가하고, 필드가 추가된 상향링크 데이터를 선택된 세션을 이용하여 게이트웨이로 전송한다. 이때, eNB는 수신된 상향링크 데이터의 타입에 따라 상향링크 데이터의 최종 서비스 수신자들을 결정할 수 있다.
도 17의 (b)는 eNB가 게이트웨이로 전송하는 상향링크 데이터의 패킷 포맷의 일 예를 도시한다. 도 17의 (b)에서 Gateway IP Address 필드는 eNB가 상향링크 데이터를 전송하는 게이트웨이의 주소를 포함한다.
④ eNB로부터 상향링크 데이터를 수신한 게이트웨이는 상향링크 데이터의 단말 식별자 및 기지국 식별자에 기초하여 UE 1에게 데이터 송수신을 위한 IP 주소를 할당한다. 이후, eNB는 할당된 IP 주소를 상향링크 데이터의 Source IP 주소로 설정하여 상향링크 데이터를 전송한다.
아래 표 2는 기지국 식별자 및 단말 식별자에 기초하여 게이트웨이에 의해서 할당된 단말의 IP 주소의 일 예를 나타낸다.
이후, 게이트웨이는 긴급 세션을 통해서 전송할 데이터가 발생한 경우, 할당된 IP 주소를 이용하여 데이터가 전송될 기지국 및 단말을 결정할 수 있다.
이와 같은 방법을 이용하여 복수의 단말의 데이터를 동일한 세션을 이용하여 전송하는 경우, 송수신되는 데이터가 어떤 단말로부터 전송되었는지 여부를 식별할 수 있다.
또한, 식별된 단말에게 IP 주소를 할당함으로써 추후 긴급 세션을 통해서 데이터를 전송할 경우, 데이터를 전송할 단말을 결정할 수 있다.
도 18은 본 명세서에서 제안하는 세션을 설정하여 상향링크 데이터를 송수신하기 위한 방법의 또 다른 일 예를 나타내는 도이다.
도 18을 참조하면, 단말과 기지국이 연결 상태가 아닌 경우, 임시 식별자를 할당하여 단말을 식별할 수 있다.
구체적으로, ① 도 18의 (a)에 도시된 바와 같이, eNB는 UE 3과 연결되어 있지 않기 때문에 비 연결 상태에서 UE 3으로부터 저 지연을 요구하는 특정 서비스를 위한 상향링크 데이터를 무선 베어러를 통해서 수신한다.
이때, UE 3은 상향링크 데이터는 상향링크 데이터가 긴급 세션을 이용하여 게이트웨이로 전송된다는 것을 지시하는 지시자 및 상향링크 데이터의 데이터 타입을 상향링크 데이터와 함께 기지국으로 전송할 수 있다.
② eNB는 수신된 상향링크 데이터의 전송을 위해서 이용할 세션을 선택한다. 이때, eNB는 수신된 상향링크 데이터의 데이터 타입, 서비스 품질 또는 상향링크 데이터를 통해 제공하고자 하는 서비스의 서비스 타입 중 적어도 하나에 기초하여 세션을 선택할 수 있다.
③ eNB는 단말을 식별하기 위한 단말 식별자를 포함하는 적어도 하나의 단말 식별 필드 및 기지국을 식별하기 위한 기지국 식별자를 포함하는 적어도 하나의 기지국 식별 필드를 상향링크 데이터에 추가하고, 필드가 추가된 상향링크 데이터를 선택된 세션을 이용하여 게이트웨이로 전송한다. 이때, eNB는 단말과 연결된 상태가 아니기 때문에 단말에게 임시적으로 할당되는 식별자인 임시 식별자(예를 들면, Temporary C-RNTI 등)를 할당할 수 있다.
또한, eNB는 수신된 상향링크 데이터의 타입에 따라 상향링크 데이터의 최종 서비스 수신자들을 결정할 수 있다.
도 18의 (b)는 eNB가 게이트웨이로 전송하는 상향링크 데이터의 패킷 포맷의 일 예를 도시한다. 도 17의 (b)에서 Gateway IP Address 필드는 eNB가 상향링크 데이터를 전송하는 게이트웨이의 주소를 포함한다.
④ eNB로부터 상향링크 데이터를 수신한 게이트웨이는 상향링크 데이터의 단말 식별자 및 기지국 식별자에 기초하여 UE 1에게 데이터 송수신을 위한 IP 주소를 할당한다. 이후, eNB는 할당된 IP 주소를 상향링크 데이터의 Source IP 주소로 설정하여 상향링크 데이터를 전송한다.
아래 표 3은 기지국 식별자 및 단말 식별자에 기초하여 게이트웨이에 의해서 할당된 단말의 IP 주소의 일 예를 나타낸다.
이후, 게이트웨이는 긴급 세션을 통해서 전송할 데이터가 발생한 경우, 할당된 IP 주소를 이용하여 데이터가 전송될 기지국 및 단말을 결정할 수 있다.
이와 같은 방법을 이용하여 복수의 단말 중 비 연결 상태의 단말의 데이터를 동일한 세션을 이용하여 전송하는 경우, 임시 식별자를 할당하여 송수신되는 데이터가 어떤 단말로부터 전송되었는지 여부를 식별할 수 있다.
또한, 동일한 세션을 이용하여는 단말들에게 서로 다른 IP 주소를 할당함으로써 추후 긴급 세션을 통해서 데이터를 전송할 경우, 데이터를 전송할 단말을 결정할 수 있다.
도 19는 본 명세서에서 제안하는 세션을 설정하여 하향링크 데이터를 송수신하기 위한 방법의 일 예를 나타내는 도이다.
도 19를 참조하면, 게이트웨이는 긴급 세션을 이용하여 전송할 하향링크 데이터가 발생한 경우, 단말 식별자 및 기지국 식별자에 기초하여 할당한 IP 주소를 통해서 하향링크 데이터를 전송할 단말을 식별할 수 있다.
구체적으로, ① 도 19의 (a)에 도시된 바와 같이, 게이트웨이는 단말 식별자 및 기지국 식별자에 기초하여 UE 1에게 할당된 IP 주소가 목적지 주소로 설정된 하향링크 데이터를 수신한다.
② 게이트웨이는 IP 주소에 기초하여 수신된 하향링크 데이터를 전송할 기지국 및 단말을 식별할 수 있다.
또한, 게이트웨이는 수신된 하향링크 데이터가 긴급 세션을 이용하여 전송되는 데이터인지 여부를 결정할 수 있다.
예를 들면 게이트웨이는 할당된 IP 주소, 하향링크 데이터의 데이터 타입, 서비스 품질 또는 상향링크 데이터를 통해 제공하고자 하는 서비스의 서비스 타입 중 적어도 하나에 기초하여 세션을 선택할 수 있다.
게이트웨이는 IP 주소에 대응되는 단말에게 하향링크 데이터가 전송될 수 있도록 하향링크 데이터에 단말 식별자를 포함하는 적어도 하나의 단말 식별자 필드 및 기지국 식별자를 포함하는 적어도 하나의 기지국 식별자 필드를 추가하여 식별된 기지국으로 전송한다.
예를 들면, 표 1에 도시된 바와 같이 IP 주소가 x.x.x.x로 설정된 하향링크 데이터를 게이트웨이가 수신하면, 게이트웨이는 수신된 하향링크 데이터의 목적지가 UE 1이라는 것을 인식할 수 있다.
하향링크 데이터의 목적지가 UE 1이라는 것을 인식한 게이트웨이는 하향링크 데이터에 UE 1을 식별하기 위한 단말 식별자 및 UE 1의 eNB를 식별하기 위한 기지국 식별자를 추가하여 긴급 세션인 세션 2를 이용하여 eNB로 하향링크 데이터를 전송할 수 있다.
도 19의 (b)는 하향링크 데이터의 패킷 포맷의 일 예를 도시한다.
③ 게이트웨이로부터 세션 2를 통해 하향링크 데이터를 수신한 eNB는 단말 식별자 필드를 통해서 하향링크 데이터를 전송할 단말을 결정할 수 있으며, 결정된 단말로 하향링크 데이터를 전송한다.
이와 같은 방법을 통해서 게이트웨이는 복수의 단말들의 데이터를 송수신하는 세션을 이용하여 전송할 하향링크 데이터가 발생한 경우, 하향링크 데이터를 전송할 기지국 및 단말을 식별할 수 있다.
도 20은 본 명세서에서 제안하는 세션을 설정하여 하향링크 데이터를 송수신하기 위한 방법의 또 다른 일 예를 나타내는 도이다.
도 20을 참조하면, 게이트웨이는 비 연결 상태의 단말로 긴급 세션을 이용하여 전송할 하향링크 데이터가 발생한 경우, 임시 단말 식별자 및 기지국 식별자에 기초하여 할당한 IP 주소를 통해서 하향링크 데이터를 전송할 단말을 식별할 수 있다.
구체적으로, ① 도 20의 (a)에 도시된 바와 같이, 게이트웨이는 단말 식별자 및 기지국 식별자에 기초하여 UE 1에게 할당된 IP 주소가 목적지 주소로 설정된 하향링크 데이터를 수신한다.
② 게이트웨이는 IP 주소에 기초하여 수신된 하향링크 데이터를 전송할 기지국 및 단말을 식별할 수 있다.
또한, 게이트웨이는 수신된 하향링크 데이터가 긴급 세션을 이용하여 전송되는 데이터인지 여부를 결정할 수 있다.
예를 들면 게이트웨이는 할당된 IP 주소, 하향링크 데이터의 데이터 타입, 서비스 품질 또는 상향링크 데이터를 통해 제공하고자 하는 서비스의 서비스 타입 중 적어도 하나에 기초하여 세션을 선택할 수 있다.
게이트웨이는 IP 주소에 대응되는 단말에게 하향링크 데이터가 전송될 수 있도록 하향링크 데이터에 단말 식별자를 포함하는 적어도 하나의 단말 식별자 필드 및 기지국 식별자를 포함하는 적어도 하나의 기지국 식별자 필드를 추가하여 식별된 기지국으로 전송한다.
이때, 단말에게 할당된 IP 주소는 임시 단맘 식별자에 기초하여 할당되었으므로, 게이트웨이는 하향링크 데이터에 임시 단말 식별자를 포함하는 임시 단말 식별자 필드를 추가할 수 있다.
예를 들면, 표 2에 도시된 바와 같이 IP 주소가 x.x.x.y로 설정된 하향링크 데이터를 게이트웨이가 수신하면, 게이트웨이는 수신된 하향링크 데이터의 목적지가 eNB와 연결이 형성되지 않은 UE 3이라는 것을 인식할 수 있다.
하향링크 데이터의 목적지가 UE 3이라는 것을 인식한 게이트웨이는 하향링크 데이터에 UE 3을 임시적으로 식별하기 위한 임시 단말 식별자 및 UE 3의 eNB를 식별하기 위한 기지국 식별자를 추가하여 긴급 세션인 세션 2를 이용하여 eNB로 하향링크 데이터를 전송할 수 있다.
도 20의 (b)는 하향링크 데이터의 패킷 포맷의 일 예를 도시한다.
③ 게이트웨이로부터 세션 2를 통해 하향링크 데이터를 수신한 eNB는 임시 단말 식별자 필드를 통해서 하향링크 데이터를 전송할 단말을 결정할 수 있으며, 단말이 비 연결 상태라는 것을 인식할 수 있다.
이후, eNb는 결정된 단말로 비 연결 상태에서 하향링크 데이터를 전송한다.
도 21은 본 명세서에서 제안하는 세션을 설정하여 하향링크 데이터를 송수신하기 위한 방법의 또 다른 일 예를 나타내는 도이다.
도 21을 참조하면, 게이트웨이는 상향링크 데이터를 전송하지 않은 단말도 IP 주소가 할당되어 있는 경우, 할당된 IP 주소에 기초하여 긴급 세션을 통해 하향링크 데이터를 전송할 수 있다.
구체적으로, ① 도 21의 (a)에 도시된 바와 같이, 게이트웨이는 단말 식별자 및 기지국 식별자에 기초하여 UE 1에게 할당된 IP 주소가 목적지 주소로 설정된 하향링크 데이터를 수신한다.
이때, 단말은 상향링크 데이터를 전송하지는 않았지만, 게이트웨이에 의해서 IP 주소가 할당된 단말이다.
예를 들면, 상향링크 데이터를 전송한 UE 1 및 UE 3뿐만 아니라, 상향링크 데이터를 전송하지 않은 UE 5도 아래 표 4와 같이 게이트웨이에 의해서 IP 주소가 할당될 수 있다.
② 게이트웨이는 IP 주소에 기초하여 수신된 하향링크 데이터를 전송할 기지국 및 단말을 식별할 수 있다.
또한, 게이트웨이는 수신된 하향링크 데이터가 긴급 세션을 이용하여 전송되는 데이터인지 여부를 결정할 수 있다.
예를 들면 게이트웨이는 할당된 IP 주소, 하향링크 데이터의 데이터 타입, 서비스 품질 또는 상향링크 데이터를 통해 제공하고자 하는 서비스의 서비스 타입 중 적어도 하나에 기초하여 세션을 선택할 수 있다.
게이트웨이는 IP 주소에 대응되는 단말에게 하향링크 데이터가 전송될 수 있도록 하향링크 데이터에 단말 식별자를 포함하는 적어도 하나의 단말 식별자 필드 및 기지국 식별자를 포함하는 적어도 하나의 기지국 식별자 필드를 추가하여 식별된 기지국으로 전송한다.
이때, 단말에게 할당된 IP 주소는 임시 단맘 식별자에 기초하여 할당되었으므로, 게이트웨이는 하향링크 데이터에 임시 단말 식별자를 포함하는 임시 단말 식별자 필드를 추가할 수 있다.
예를 들면, 표 1에 도시된 바와 같이 IP 주소가 X.X.X.Z로 설정된 하향링크 데이터를 게이트웨이가 수신하면, 게이트웨이는 수신된 하향링크 데이터의 목적지가 UE 5이라는 것을 인식할 수 있다.
하향링크 데이터의 목적지가 UE 5이라는 것을 인식한 게이트웨이는 하향링크 데이터에 UE 5을 식별하기 위한 단말 식별자 및 UE 5의 eNB를 식별하기 위한 기지국 식별자를 추가하여 긴급 세션인 세션 2를 이용하여 eNB로 하향링크 데이터를 전송할 수 있다.
도 21의 (b)는 하향링크 데이터의 패킷 포맷의 일 예를 도시한다.
③ 게이트웨이로부터 세션 2를 통해 하향링크 데이터를 수신한 eNB는 단말 식별자 필드를 통해서 하향링크 데이터를 전송할 단말을 결정할 수 있으며, 결정된 단말로 하향링크 데이터를 전송한다.
도 22는 본 명세서에서 제안하는 단말의 식별자를 갱신하기 위한 방법의 일 예를 나타내는 흐름도이다.
도 22를 참조하면, 기지국에 의해서 할당된 단말 식별자가 갱신될 필요가 있는 경우, Serving eNB는 게이트웨이로 단말 식별자의 갱신을 위한 메시지를 전송하여 단말 식별자를 갱신할 수 있다.
구체적으로, 단말의 서빙 기지국이 변경되거나, 단말의 상태가 변경되는 경우, 서빙 기지국은 자신이 할당한 단말 식별자를 갱신해야 한다.
즉, 단말 식별자를 갱신해야 되는 특정 이벤트가 발생한 경우, 서빙 기지국은 단말 식별자를 갱신해야 된다. 따라서, 서빙 기지국은 단말 식별자를 갱신해야 하는 특정 이벤트가 발생하였다는 것을 기지국에게 보고하여 단말 식별자를 갱신할 수 있다.
도 22의 (a)는 서빙 기지국이 직접 게이트웨이에게 특정 이벤트가 발생하였다는 것을 보고하는 일 예를 나타내고, 도 22의 (b)는 서빙 기지국이 간접적으로 보고하는 일 예를 나타낸다.
아래 표 5는 단말 식별자를 갱신해야 하는 특정 이벤트 및 기지국이 보고하는 정보의 일 예를 나타낸 표이다.
표 5와 같은 특정 이벤트가 발생한 경우, 기지국 식별자 및/또는 단말 식별자가 변경될 수 있기 때문에, 게이트웨이가 기지국 식별자 및 단말 식별자에 기초하여 할당한 IP 주소는 변경되는 정보에 따라 갱신되어야 한다.
따라서, 서빙 기지국은 변경되는 정보를 게이트웨이로 전송하고, 게이트웨이는 변경된 정보에 기초하여 할당된 IP 주소를 갱신한다.
도 22의 (a)에 도시된 바와 같이, 서빙 기지국(Serving eNB)이 직접 게이트웨이에게 변경된 정보를 전송하는 경우, 서빙 기지국은 발생된 이벤트를 나타내는 이벤트 정보 및 이벤트에 따라 표 5의 보고 정보를 포함하는 보고 메시지(Report message)를 게이트웨이로 전송한다(S22010).
또는 도 22의 (b)에 도시된 바와 같이, 서빙 기지국이 간접적으로 게이트웨이에게 변경된 정보를 전송하는 경우, 서빙 기지국은 발생된 이벤트를 나타내는 이벤트 정보 및 이벤트에 따라 표 5의 보고 정보를 포함하는 보고 메시지를 망 제어 기능을 수행하는 코어 망 노드(예를 들면, MME 등)으로 전송한다(S22110).
서빙 기지국으로부터 보고 메시지를 수신한 코어 망 노드는 이를 게이트 웨이로 전송한다(S22120).
게이트웨이는 보고 메시지를 통해서 발생된 이벤트 및 변경된 정보를 인식할 수 있으며, 변경된 정보에 따라 IP 주소를 갱신한다.
예를 들면, 발생된 이벤트가 핸드오버인 경우, 게이트웨이는 기지국 식별자를 서빙 기지국의 식별자에서 타겟 기지국의 식별자로 변경하고, 단말 식별자가 변경된 경우, 단말 식별자를 기존 단말 식별자에서 변경된 단말 식별자로 갱신한다.
또는, 단말의 상태가 변경되거나, 임시 단말 식별자를 회수하는 경우, 게이트웨이는 기지국 식별자를 서빙 기지국의 식별자에서 단말의 이동성을 제어하는 기능을 수행하는 망 노드의 식별자 변경하고, 단말 식별자를 기존 단말 식별자에서 망 노드에서 단말의 식별자로 갱신한다.
즉, 단말의 상태가 연결 상태에서 유휴 상태로 변경되거나, 임시 단말 식별자를 회수하는 경우, 서빙 기지국이 더 이상 관리하지 않고, 단말의 이동성을 제어하는 기능을 수행하는 망 노드가 단말을 관리하게 되므로, 기지국 식별자를 망 노드의 식별자로 갱신한다.
이를 통해서 기지국 식별자 및/또는 단말 식별자가 변경되더라도 게이트웨이는 할당된 IP 주소의 갱신을 통해서 긴급 세션을 이용하여 데이터를 송수신할 단말을 식별할 수 있다.
도 23은 본 명세서에서 제안하는 단말의 IP 주소를 해제하기 위한 방법의 일 예를 나타내는 흐름도이다.
도 23을 참조하면, 게이트웨이에 의해서 할당된 IP 주소는 서빙 기지국 또는 게이트웨이에 의해서 트리거된 해제 절차를 통해서 해제될 수 있다.
도 23의 (a)는 기지국에 의해서 트리거 되는 IP 주소의 해제 절차의 일 예를 나타내고, 도 23의 (b)는 게이트웨이에 의해서 트리거 되는 IP 주소의 해제 절차의 일 예를 나타낸다.
도 17 내지 도 22에서 설명한 게이트웨이에 의해서 할당되거나 갱신된 IP 주소는 IP 주소의 해제를 위한 별도의 제어 메시지를 정상적으로 송수신할 때까지 유효하다. 따라서, 기지국 또는 게이트웨이는 할당된 IP 주소를 해제하기 위해서 해제 절차를 수행하여야 한다.
도 23의 (a)에 도시된 바와 같이 기지국에 의해서 해제 절차가 트리거 되는 경우, 서빙 기지국(Serving eNB)는 게이트웨이에 의해서 할당된 IP 주소의 해제를 요청하기 위한 해제 요청 메시지를 MME로 전송한다.
이때, MME는 제어 기능을 수행하는 망 노드를 의미하며, 다른 명칭으로 호칭될 수 있다.
서빙 기지국으로부터 해제 요청 메시지를 수신한 MME는 이를 게이트웨이로 전송한다(S23010).
MME로부터 해제 요청 메시지를 수신한 게이트웨이는 해당 단말의 단말 식별자 및 서빙 기지국의 기지국 식별자에 기초하여 할당된 IP 주소를 해제하고, MME로 해제 응답 메시지를 전송한다.
해제 응답 메시지를 수신한 MME는 이를 서빙 기지국으로 전송한다(S23020).
해제 응답 메시지를 수신한 서빙 기지국은 할당된 IP 주소가 성공적으로 해제되었다는 것을 인식할 수 있다.
도 23의 (b)에 도시된 바와 같이 게이트웨이에 의해서 해제 절차가 트리거 되는 경우, 게이트웨이는 서빙 기지국의 해당 단말의 단말 식별자 및 서빙 기지국의 기지국 식별자에 기초하여 할당된 IP 주소를 해제하고, MME로 IP 주소의 해제를 지시하는 해제 지시 메시지를 전송한다.
서빙 기지국으로부터 해제 지시 메시지를 수신한 MME는 이를 서빙 기지국 전송한다(S23110).
MME로부터 해제 지시 메시지를 수신한 기지국은 해당 단말 및 서빙 기지국의 기지국 식별자에 기초하여 할당된 IP 주소가 해제 되었음을 인식할 수 있다.
서빙 기지국은 MME를 통해 해제 지시 메시지에 대한 응답으로 해제 응답 메시지를 게이트웨이로 전송하고, IP 주소 해제를 위한 해제 절차는 종료되게 된다(S23120).
본 발명의 또 다른 실시 예로, 타이머에 기초하여 할당된 IP 주소를 해제할 수 있다.
구체적으로 도 23에서 살펴본 별도의 제어 메시지 송수신에 의한 해제 절차 없이 할당된 IP 주소는 특정 타이머가 종료될 때까지 유효할 수 있다.
즉, 특정 타이머가 종료되면 할당된 IP 주소는 해제될 수 있다.
기지국과 게이트웨이 간의 각 단말 식별자에 대한 유효시간 타이머의 시작 및 리셋 조건에 따라 IP 주소가 해제될 수 있다.
구체적으로, 긴급 세션을 통해서 상향링크 데이터 및/또는 하향링크 데이터가 송수신될 때마다 유효시간 타이머는 (재)시작/리셋 되며, 타이머가 종료될 때까지 긴급 세션을 이용한 상향링크 데이터 및/또는 하향링크 데이터의 송수신이 없는 경우, 해당 단말에게 할당된 IP 주소는 해제된다.
이때, 유효시간 타이머는 데이터와 함께 전송되는 유동적인 값(예를 들면, 데이터의 종류에 따라 설정되는 값 등)으로 설정되거나, 미리 정의된 고정 값으로 설정될 수 있다.
또한, 도 22에서 설명한 단말 식별자의 갱신 절차가 발생한 경우, 유효시간 타이머는 아래와 같이 동작할 수 있다.
- 핸드오버에 의한 단말 식별자의 갱신의 경우, 유효 시간 타이머는 리셋 되지 않고, 계속해서 타겟 기지국에서 동작한다. 따라서, 핸드오버가 발생하면 서빙 기지국은 유효시간 타이머 값을 타겟 기지국으로 전송하고, 타겟 기지국은 계속해서 타이머 값을 진행시키게 된다.
- 단말의 상태가 연결 상태에서 유휴 상태로 천이되거나, 단말의 임시 단말 식별자를 회수에 의한 단말 식별자의 갱신의 경우, 기지국은 해당 단말의 유효시간 타이머의 동작을 중지하고, 게이트웨이의 유효시간 타이머만 계속해서 동작하게 된다.
즉, 단말의 상태가 연결 상태에서 유휴 상태로 천이되거나, 단말의 임시 단말 식별자를 회수에 의한 단말 식별자의 갱신의 경우에는 더 이상 서빙 기지국이 단말을 관리하지 않게 된다.
따라서, 기지국은 긴급 세션을 이용한 단말의 데이터 송수신을 위한 유요시간 타이머의 동작을 중지 시키고, 게이트웨이만 유효시간 타이머를 계속해서 동작시키게 된다.
이와 같은 방법을 통해서 게이트웨이는 할당된 IP 주소를 해제할 수 있다.
도 24는 본 명세서에서 제안하는 기지국이 세션을 설정하여 단말의 데이터를 송수신하기 위한 방법의 일 예를 나타내는 순서도이다.
도 24를 참조하면, 기지국은 단말을 식별하기 위한 단말 식별자를 할당하여 복수의 단말의 데이터를 송수신하기 위한 세션을 통해서 데이터를 송수신할 수 있다.
구체적으로, 기지국은 제어 기능을 수행하는 망 노드인 제 1 네트워크 노드(예를 들면, MME)와 데이터를 송수신하기 위한 제 1 세션을 형성한다(S24010).
제 1 세션은 도 15 내지 도 21에서 설명한 긴급 세션과 동일한 세션으로써 복수의 단말로부터 전송된 동일하거나 서로 다른 서비스 품질을 갖는 상향링크 데이터를 게이트웨이로 전송하기 위해 사용되거나, 복수의 단말들에게 전송되는 동일하거나 서로 다른 서비스 품질을 갖는 하향링크 데이터들을 게이트웨이로부터 기지국으로 전송하기 위해 사용된다.
이후, 기지국은 연결 상태 또는 비 연결 상태의 단말로부터 특정 서비스를 제공하기 위한 상향링크 데이터를 수신한다(S24020). 만약, 상향링크 데이터가 비 연결 상태에서 전송되는 경우, 상향링크 데이터는 상향링크 데이터가 제 1 세션을 이용하여 게이트웨이로 전송된다는 것을 지시하는 지시자 및 상향링크 데이터의 데이터 타입과 함께 기지국으로 전송될 수 있다.
이후, 기지국은 제 2 네트워크 노드(게이트 웨이)가 상향링크 데이터를 전송하는 단말을 식별하기 위한 제 1 단말 식별자를 할당한다(S24030). 즉, 단말 별로 서비스에 따라 기지국과 제 2 네트워크 노드간에 세션이 설정되지 않고, 동일한 세션을 통해서 복수의 단말로부터 전송되는 상향링크 데이터가 게이트웨이로 전송되기 때문에 기지국은 게이트웨이가 상향링크 데이터를 전송한 단말을 식별할 수 있도록 단말 식별자를 할당한다.
이후, 기지국은 상향링크 데이터를 제 1 단말 식별자 및 기지국을 식별하기 위한 기지국 식별자와 함께 제 2 네트워크 노드로 전송한다(S24040). 제 2 네트워크는 전송된 제 1 단말 식별자 및 기지국 식별자에 기초하여 IP 주소를 할당하며, 이후, 제 1 세션을 이용하여 전송할 하향링크 데이터가 발생한 경우, 할당된 IP 주소를 통해서 발생된 하향링크 데이터를 단말로 전송할 수 있다.
도 25는 본 발명이 적용될 수 있는 무선 장치의 내부 블록도의 일 예를 나타낸 도이다.
여기서, 상기 무선 장치는 기지국 및 UE일 수 있으며, 기지국은 매크로 기지국 및 스몰 기지국을 모두 포함한다.
상기 도 25에 도시된 바와 같이, 기지국(2510) 및 UE(2520)는 통신부(송수신부, RF 유닛, 2513, 2523), 프로세서(2511, 2521) 및 메모리(2512, 2522)를 포함한다.
이외에도 상기 기지국 및 UE는 입력부 및 출력부를 더 포함할 수 있다.
상기 통신부(2513, 2523), 프로세서(2511, 2521), 입력부, 출력부 및 메모리(2512, 2522)는 본 명세서에서 제안하는 방법을 수행하기 위해 기능적으로 연결되어 있다.
통신부(송수신부 또는 RF유닛, 2513,2523)는 PHY 프로토콜(Physical Layer Protocol)로부터 만들어진 정보를 수신하면, 수신한 정보를 RF 스펙트럼(Radio-Frequency Spectrum)으로 옮기고, 필터링(Filtering), 증폭(Amplification) 등을 수행하여 안테나로 송신한다. 또한, 통신부는 안테나에서 수신되는 RF 신호(Radio Frequency Signal)을 PHY 프로토콜에서 처리 가능한 대역으로 옮기고, 필터링을 수행하는 기능을 한다.
그리고, 통신부는 이러한 송신과 수신 기능을 전환하기 위한 스위치(Switch) 기능도 포함할 수 있다.
프로세서(2511,2521)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다.
상기 프로세서는 제어부, controller, 제어 유닛, 컴퓨터 등으로 표현될 수도 있다.
메모리(2512,2522)는 프로세서와 연결되어, 상향링크 자원 할당 방법을 수행하기 위한 프로토콜이나 파라미터를 저장한다.
프로세서(2511,2521)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 통신부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다.
모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
출력부(디스플레이부 또는 표시부)는 프로세서에 의해 제어되며, 키 입력부에서 발생되는 키 입력 신호 및 프로세서로부터의 각종 정보 신호와 함께, 상기 프로세서에서 출력되는 정보들을 출력한다.
나아가, 설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 당업자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 본 발명의 권리범위에 속한다.
본 명세서에 따른 방향 기반 기기 검색 방법은 상기한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
한편, 본 명세서의 방향 기반 기기 검색 방법은 네트워크 디바이스에 구비된 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 본 명세서의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
그리고, 당해 명세서에서는 물건 발명과 방법 발명이 모두 설명되고 있으며, 필요에 따라 양 발명의 설명은 보충적으로 적용될 수가 있다.
본 발명의 무선 통신 시스템에서 RRC 연결 방법은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (20)
- 무선 통신 시스템에서 기지국이 데이터를 송수신하기 위한 방법에 있어서,제 1 네트워크 노드와 데이터를 송수신하기 위한 제 1 세션을 형성하는 단계;연결 상태 또는 비 연결 상태의 단말로부터 특정 서비스를 제공하기 위한 상향링크 데이터를 수신하는 단계;제 2 네트워크 노드가 상기 단말을 식별하기 위한 제 1 단말 식별자를 할당하는 단계; 및상기 상향링크 데이터를 상기 제 1 단말 식별자 및 상기 기지국을 식별하기 위한 기지국 식별자와 함께 상기 제 2 네트워크 노드로 전송하는 단계를 포함하되,상기 제 1 세션은 복수의 단말로부터 전송되거나, 상기 복수의 단말로 전송되는 동일한 서비스 품질을 갖는 데이터를 송수신하기 위한 무선 경로인 방법.
- 제 1 항에 있어서,상기 제 1 단말 식별자는 상기 상향링크 데이터가 상기 제 1 세션을 통해서 전송되는 경우, 상기 제 2 네트워크 노드가 상기 상향링크 데이터를 전송한 단말을 식별하기 위한 식별자인 방법.
- 제 1 항에 있어서,상기 단말과 상기 특정 서비스의 데이터를 송수신하기 위한 제 2 세션을 형성하는 단계를 더 포함하되,상기 상향링크 데이터는 상기 제 2 세션을 통해서 상기 기지국으로 전송되는 방법.
- 제 3 항에 있어서, 상기 제 2 세션을 형성하는 단계는,상기 단말로부터 상기 제 2 세션을 형성하기 위한 연결 요청 메시지를 수신하는 단계; 및상기 연결 요청 메시지에 대한 응답으로 연결 응답 메시지를 전송하는 단계를 포함하는 방법.
- 제 1 항에 있어서,상기 단말이 비 연결 상태에서 상기 상향링크 데이터를 전송하는 경우, 상기 상향링크 데이터는 상기 상향링크 데이터가 상기 제 1 세션을 이용한다는 것을 나타내는 제 1 지시자 및 상기 상향링크 데이터의 데이터 타입 정보와 함께 전송되는 방법.
- 제 1 항에 있어서,특정 이벤트가 발생한 경우, 상기 제 2 네트워크 노드 또는 망 노드를 제어하는 기능을 수행하는 제 3 네트워크 노드로 상기 특정 이벤트에 의한 상기 제 1 단말 식별자의 갱신을 보고하기 위한 보고 메시지를 전송하는 단계를 포함하되,상기 특정 이벤트는 상기 단말의 핸드오버, 상기 단말의 연결 상태 천이 또는 상기 단말에게 할당된 임시 단말 식별자의 해제 중 하나이고,상기 보고 메시지는 상기 제 1 단말 식별자를 포함하는 방법.
- 제 6 항에 있어서,상기 특정 이벤트가 상기 핸드오버인 경우, 상기 보고 메시지는 타겟 기지국을 식별하기 위한 타겟 기지국 식별자, 및 상기 타겟 기지국이 할당한 제 2 단말 식별자를 더 포함하는 방법.
- 제 1 항에 있어서,상기 제 2 네트워크 노드로부터 하향링크 데이터를 수신하는 단계를 더 포함하되,상기 하향링크 데이터는 상기 제 1 단말 식별자 및 상기 하향링크 데이터의 목적지를 나타내는 IP 주소와 함께 전송되는 방법.
- 제 8 항에 있어서,상기 IP 주소는 상기 제 1 단말 식별자 및 상기 기지국 식별자에 기초하여 상기 제 2 네트워크 노드에 의해서 할당되는 방법.
- 제 9 항에 있어서,상기 IP 주소는 상기 제 2 네트워크 노드와의 IP 주소 해제 절차 또는 특정 시간 동안 상기 제 1 세션을 통해서 상기 단말의 데이터가 송수신되지 않는 경우 해제되는 방법.
- 무선 통신 시스템에서 데이터를 송수신하기 위한 기지국에 있어서외부와 무선 신호를 송신 및 수신하는 통신부; 및상기 통신부와 기능적으로 결합되어 있는 프로세서를 포함하되, 상기 프로세서는,제 1 네트워크 노드와 데이터를 송수신하기 위한 제 1 세션을 형성하며,연결 상태 또는 비 연결 상태의 단말로부터 특정 서비스를 제공하기 위한 상향링크 데이터를 수신하고,제 2 네트워크 노드가 상기 단말을 식별하기 위한 제 1 단말 식별자를 할당하며,상기 상향링크 데이터를 상기 제 1 단말 식별자 및 상기 기지국을 식별하기 위한 기지국 식별자와 함께 상기 제 2 네트워크 노드로 전송하되,상기 제 1 세션은 복수의 단말로부터 전송되거나, 상기 복수의 단말로 전송되는 동일한 서비스 품질을 갖는 데이터를 송수신하기 위한 무선 경로인 기지국.
- 제 11 항에 있어서,상기 제 1 단말 식별자는 상기 상향링크 데이터가 상기 제 1 세션을 통해서 전송되는 경우, 상기 제 2 네트워크 노드가 상기 상향링크 데이터를 전송한 단말을 식별하기 위한 식별자인 기지국.
- 제 11 항에 있어서, 상기 프로세서는상기 단말과 상기 특정 서비스의 데이터를 송수신하기 위한 제 2 세션을 형성하되,상기 상향링크 데이터는 상기 제 2 세션을 통해서 상기 기지국으로 전송되는 기지국.
- 제 13 항에 있어서, 상기 프로세서는,상기 단말로부터 상기 제 2 세션을 형성하기 위한 연결 요청 메시지를 수신하고,상기 연결 요청 메시지에 대한 응답으로 연결 응답 메시지를 전송하는 기지국.
- 제 11 항에 있어서,상기 단말이 비 연결 상태에서 상기 상향링크 데이터를 전송하는 경우, 상기 상향링크 데이터는 상기 상향링크 데이터가 상기 제 1 세션을 이용한다는 것을 나타내는 제 1 지시자 및 상기 상향링크 데이터의 데이터 타입 정보와 함께 전송되는 기지국.
- 제 11 항에 있어서, 상기 프로세서는특정 이벤트가 발생한 경우, 상기 제 2 네트워크 노드 또는 망 노드를 제어하는 기능을 수행하는 제 3 네트워크 노드로 상기 특정 이벤트에 의한 상기 제 1 단말 식별자의 갱신을 보고하기 위한 보고 메시지를 전송하되,상기 특정 이벤트는 상기 단말의 핸드오버, 상기 단말의 연결 상태 천이 또는 상기 단말에게 할당된 임시 단말 식별자의 해제 중 하나이고,상기 보고 메시지는 상기 제 1 단말 식별자를 포함하는 기지국.
- 제 16 항에 있어서,상기 특정 이벤트가 상기 핸드오버인 경우, 상기 보고 메시지는 타겟 기지국을 식별하기 위한 타겟 기지국 식별자, 및 상기 타겟 기지국이 할당한 제 2 단말 식별자를 더 포함하는 기지국.
- 제 11 항에 있어서, 상기 프로세서는상기 제 2 네트워크 노드로부터 하향링크 데이터를 수신하되,상기 하향링크 데이터는 상기 제 1 단말 식별자 및 상기 하향링크 데이터의 목적지를 나타내는 IP 주소와 함께 전송되는 방법.
- 제 18 항에 있어서,상기 IP 주소는 상기 제 1 단말 식별자 및 상기 기지국 식별자에 기초하여 상기 제 2 네트워크 노드에 의해서 할당되는 기지국.
- 제 19 항에 있어서,상기 IP 주소는 상기 제 2 네트워크 노드와의 IP 주소 해제 절차 또는 특정 시간 동안 상기 제 1 세션을 통해서 상기 단말의 데이터가 송수신되지 않는 경우 해제되는 기지국.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/310,767 US10849173B2 (en) | 2016-06-16 | 2017-06-16 | Method for transmitting/receiving data in wireless communication system and apparatus supporting same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662351278P | 2016-06-16 | 2016-06-16 | |
US62/351,278 | 2016-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017217802A1 true WO2017217802A1 (ko) | 2017-12-21 |
Family
ID=60664351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/006304 WO2017217802A1 (ko) | 2016-06-16 | 2017-06-16 | 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10849173B2 (ko) |
WO (1) | WO2017217802A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111567134A (zh) * | 2017-12-28 | 2020-08-21 | 夏普株式会社 | 终端装置、方法以及集成电路 |
CN114631275A (zh) * | 2019-10-25 | 2022-06-14 | 高通股份有限公司 | 减少无线回程通信网络中的网络编码的反馈延迟 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10771981B2 (en) * | 2015-09-06 | 2020-09-08 | Mariana Goldhamer | Virtualization and central coordination in wireless networks |
CN109842570B (zh) * | 2017-11-27 | 2021-10-22 | 华为技术有限公司 | 聚合速率控制方法、设备以及系统 |
CN109982391B (zh) * | 2017-12-28 | 2023-04-11 | 华为技术有限公司 | 数据的处理方法及装置 |
KR102418565B1 (ko) * | 2018-03-13 | 2022-07-07 | 삼성전자주식회사 | 통신을 수행하는 방법 및 이를 위한 장치 |
CN110798897B (zh) * | 2018-08-02 | 2021-06-22 | 华为技术有限公司 | 一种网络资源的调度方法和装置 |
WO2021040724A1 (en) * | 2019-08-29 | 2021-03-04 | Nokia Technologies Oy | Passive mode transition for user equipment based on control plane monitoring |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080132269A1 (en) * | 2006-12-01 | 2008-06-05 | Cingular Wireless Ii, Llc | Non-intrusive in-session QoS parameter modification method |
WO2012011776A2 (ko) * | 2010-07-22 | 2012-01-26 | 엘지전자 주식회사 | 무선통신 시스템에서 이동성이 없는 유휴상태 단말용 식별자를 송수신하기 위한 장치 및 그 방법 |
US20120302196A1 (en) * | 2010-01-08 | 2012-11-29 | Research In Motion Limited | Routing of Messages for Mobile Communication Devices During Emergency Calls |
US20130034071A1 (en) * | 2010-04-28 | 2013-02-07 | Lg Electronics Inc. | Uplink signal transmission method using contention-based identifiers |
WO2015137632A1 (en) * | 2014-03-11 | 2015-09-17 | Lg Electronics Inc. | Method for allocating temporary identifier to terminal in random access procedure in wireless communication system and apparatus tehrefor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105163398B (zh) * | 2011-11-22 | 2019-01-18 | 华为技术有限公司 | 连接建立方法和用户设备 |
KR102476574B1 (ko) * | 2015-07-31 | 2022-12-09 | 인텔 코포레이션 | 비 ip 기반 eps 베어러를 사용하는 장치, 시스템 및 방법 |
-
2017
- 2017-06-16 US US16/310,767 patent/US10849173B2/en active Active
- 2017-06-16 WO PCT/KR2017/006304 patent/WO2017217802A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080132269A1 (en) * | 2006-12-01 | 2008-06-05 | Cingular Wireless Ii, Llc | Non-intrusive in-session QoS parameter modification method |
US20120302196A1 (en) * | 2010-01-08 | 2012-11-29 | Research In Motion Limited | Routing of Messages for Mobile Communication Devices During Emergency Calls |
US20130034071A1 (en) * | 2010-04-28 | 2013-02-07 | Lg Electronics Inc. | Uplink signal transmission method using contention-based identifiers |
WO2012011776A2 (ko) * | 2010-07-22 | 2012-01-26 | 엘지전자 주식회사 | 무선통신 시스템에서 이동성이 없는 유휴상태 단말용 식별자를 송수신하기 위한 장치 및 그 방법 |
WO2015137632A1 (en) * | 2014-03-11 | 2015-09-17 | Lg Electronics Inc. | Method for allocating temporary identifier to terminal in random access procedure in wireless communication system and apparatus tehrefor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111567134A (zh) * | 2017-12-28 | 2020-08-21 | 夏普株式会社 | 终端装置、方法以及集成电路 |
CN111567134B (zh) * | 2017-12-28 | 2024-03-19 | 夏普株式会社 | 终端装置、方法以及集成电路 |
CN114631275A (zh) * | 2019-10-25 | 2022-06-14 | 高通股份有限公司 | 减少无线回程通信网络中的网络编码的反馈延迟 |
CN114631275B (zh) * | 2019-10-25 | 2024-01-19 | 高通股份有限公司 | 减少无线回程通信网络中的网络编码的反馈延迟 |
Also Published As
Publication number | Publication date |
---|---|
US20190182874A1 (en) | 2019-06-13 |
US10849173B2 (en) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017078258A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치 | |
WO2017078259A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치 | |
WO2018164552A1 (ko) | 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치 | |
WO2018044144A1 (ko) | 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치 | |
WO2018097601A1 (ko) | 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치 | |
WO2018147698A1 (ko) | 무선 통신 시스템에서 nas 메시지 송수신 방법 및 이를 위한 장치 | |
WO2017047878A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하기 위한 베어러 설정 방법 및 이를 지원하는 장치 | |
WO2018131984A1 (ko) | 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치 | |
WO2018070689A1 (ko) | 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치 | |
WO2018110939A1 (ko) | 무선 통신 시스템에서의 트래킹 영역 할당 방법 및 이를 위한 장치 | |
WO2018155908A1 (ko) | 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치 | |
WO2017188758A1 (ko) | 무선 통신 시스템에서 nas 시그널링 유보/재개를 수행하기 위한 방법 및 이를 위한 장치 | |
WO2016182168A1 (en) | Method of configuring bearer for sending and receiving data in wireless communication system and apparatus supporting the method | |
WO2016099138A1 (ko) | 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치 | |
WO2016111591A1 (ko) | 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치 | |
WO2018008980A1 (ko) | 무선 통신 시스템에서 사용자가 선호하는 자원 운용 선택 방법 및 이를 위한 장치 | |
WO2018080230A1 (ko) | 무선 통신 시스템에서 emm 모드를 결정하는 방법 및 이를 위한 장치 | |
WO2017217802A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치 | |
WO2018117313A1 (ko) | 무선 통신 시스템에서 단말의 무선 링크 및 무선 연결을 제어하기 위한 방법 및 이를 지원하는 장치 | |
WO2017138769A1 (ko) | 무선 통신 시스템에서 단말의 위치 갱신 방법 및 이를 지원하는 장치 | |
WO2019054783A1 (ko) | 무선 통신 시스템에서 v2x 통신을 수행하기 방법 및 이를 위한 장치 | |
WO2017126884A1 (ko) | 무선 통신 시스템에서 혼잡 제어 방법 및 이를 위한 장치 | |
WO2016190641A1 (ko) | 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치 | |
WO2017039042A1 (ko) | 무선 통신 시스템에서 단말의 데이터 송수신 방법 및 장치 | |
WO2017159972A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17813625 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17813625 Country of ref document: EP Kind code of ref document: A1 |