WO2018044144A1 - 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018044144A1
WO2018044144A1 PCT/KR2017/009707 KR2017009707W WO2018044144A1 WO 2018044144 A1 WO2018044144 A1 WO 2018044144A1 KR 2017009707 W KR2017009707 W KR 2017009707W WO 2018044144 A1 WO2018044144 A1 WO 2018044144A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
remote
message
mme
service request
Prior art date
Application number
PCT/KR2017/009707
Other languages
English (en)
French (fr)
Inventor
김태훈
이재욱
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US16/330,738 priority Critical patent/US20190230723A1/en
Publication of WO2018044144A1 publication Critical patent/WO2018044144A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to a wireless communication system, and more particularly, signaling for layer 2 relaying when a connection between a remote user equipment (Remote UE) and a relay UE is set up. It relates to a method for performing a procedure and an apparatus supporting the same.
  • Remote UE remote user equipment
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present invention is to propose a method for performing a signaling procedure for layer 2 relaying when a connection is set up between a remote UE (eg, a wearable device) and a relay UE.
  • a remote UE eg, a wearable device
  • the present invention also proposes a method for performing a service request procedure for a remote UE and / or a relay UE when a connection is set up between a remote UE and a relay UE.
  • the present invention proposes a method for performing a paging procedure for a Remote UE and / or a Relay UE when a connection is established between the Remote UE and the Relay UE.
  • the present invention proposes a method for performing a tracking area update procedure for a remote UE and / or a relay UE when a connection is established between the remote UE and the relay UE.
  • a base station when a connection is set up between a relay user equipment (Relay UE) and a remote user equipment (Remote UE) in a wireless communication system, a base station is triggered by a remote UE.
  • a Radio Resource Management (RRC) message in which a service request message for a remote UE including an identifier of a remote UE is encapsulated from a relay UE is encapsulated.
  • RRC Radio Resource Management
  • a mobility management entity MME
  • UE radio capability information of the remote UE from the MME Receiving an S1 interface Initial Context Setup Request message for the Remote UE without a message; and And storing UE radio capability information of the relay UE as UE radio capability information of the remote UE.
  • MME mobility management entity
  • a base station may request a service request triggered by a remote UE (
  • a base station for performing a service request) comprising: a communication module for transmitting and receiving a signal and a processor for controlling the communication module, wherein the processor receives a remote UE including an identifier of a remote UE from a relay UE.
  • RRC radio resource management
  • the S1 interface initial context setup request message is an indicator indicating that the Remote UE is connected to the Relay UE so that the Relay UE transmits / receives traffic of the Remote UE, or an identifier and / or of the Relay UE. It may include an identifier of the Remote UE.
  • a radio bearer setup procedure for the relay UE and the remote UE may be performed based on UE radio capability information of the relay UE.
  • the radio bearer setup procedure includes: transmitting an RRC connection reconfiguration message to the relay UE to correct an RRC connection and an RRC to confirm successful completion of the RRC connection reconfiguration; And receiving a RRC Connection Reconfiguration Complete message from the relay UE.
  • the transmission of the service request message may be triggered.
  • the relay UE determines that communication with the remote UE is impossible, communication with the remote UE is impossible from the relay UE to the network. Can be notified.
  • the transmission of the service request message is triggered, and the paging message is for the relay UE and the remote UE. It may include a group identifier.
  • transmission of the service request message may be triggered.
  • the transmission of the service request message can be triggered.
  • the S1 interface initial context setup for the Remote UE when receiving the S1 interface initial context setup request message for the Remote UE following the S1 interface initial context setup request message for the Remote UE within the service request procedure, the S1 interface initial context setup for the Remote UE. Subsequent to the request message may include an indication that the S1 interface initial context setup request message for the relay UE is delivered.
  • the identifier of the Remote UE and the Relay UE in the single message are transmitted.
  • An identifier of may be included, and an information element may be separately included for each identifier.
  • the relay UE may be an Evolved Packet System (EPS) Mobility Management (EMS) -IDLE mode or an EMM-CONNECTED mode.
  • EPS Evolved Packet System
  • EMS Mobility Management
  • EMM-CONNECTED mode Evolved Packet System
  • the service request message may include an indicator or an active flag for requesting establishment of a data radio bearer for the remote UE.
  • a signaling procedure (RRC signaling and / or NAS signaling) for a Remote UE and / or a Relay UE may be efficiently performed in a layer 2 relaying environment.
  • an effective signaling procedure (RRC signaling and / or NAS) Signaling) can be defined.
  • FIG. 1 is a view briefly illustrating an EPS (Evolved Packet System) to which the present invention can be applied.
  • EPS Evolved Packet System
  • E-UTRAN evolved universal terrestrial radio access network
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 7 is a diagram illustrating a terminal trigger service request procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 8 is a diagram illustrating a network trigger service request procedure in a wireless communication system to which the present invention can be applied.
  • FIGS. 9 and 10 are diagrams illustrating a service request procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 11 illustrates a procedure for establishing a secure layer-2 link over a PC5 interface in a wireless communication system to which the present invention can be applied.
  • FIG. 12 illustrates a procedure of releasing a layer-2 link through a PC5 interface in a wireless communication system to which the present invention can be applied.
  • FIG. 13 is a diagram illustrating a UE network capability information element in a wireless communication system to which the present invention can be applied.
  • FIG. 14 illustrates an initial context setup procedure in a wireless communication system to which the present invention can be applied.
  • 15 illustrates an initial context setup procedure in a wireless communication system to which the present invention can be applied.
  • 16 is a diagram illustrating Layer 2 relay operation in a wireless communication system to which the present invention can be applied.
  • FIG. 17 is a diagram illustrating a method for exchanging capability information between a remote UE and a relay UE according to an embodiment of the present invention.
  • FIG. 18 is a diagram briefly illustrating a service request procedure according to an embodiment of the present invention.
  • 19 is a diagram illustrating a signaling flow of a layer 2 relay in a wireless communication system to which the present invention can be applied.
  • 20 is a diagram illustrating a service request procedure according to an embodiment of the present invention.
  • FIG. 21 illustrates a paging procedure for a layer 2 relay according to an embodiment of the present invention.
  • FIG. 22 illustrates a tracking area update procedure for layer 2 relay according to an embodiment of the present invention.
  • FIG. 23 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • 24 is a block diagram of a communication device according to one embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
  • a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
  • IMS IP Multimedia Subsystem
  • IMSI International Mobile Subscriber Identity
  • Machine Type Communication Communication performed by a machine without human intervention. It may also be referred to as M2M (Machine to Machine) communication.
  • MTC terminal MTC UE or MTC device or MTC device: a terminal (eg, vending machine, etc.) having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC UE or MTC device or MTC device a terminal having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC server A server on a network that manages an MTC terminal. It may exist inside or outside the mobile communication network. It may have an interface that an MTC user can access. In addition, the MTC server may provide MTC related services to other servers (Services Capability Server (SCS)), or the MTC server may be an MTC application server.
  • SCS Services Capability Server
  • MTC mobile broadband
  • services e.g., remote meter reading, volume movement tracking, weather sensors, etc.
  • (MTC) application server a server on a network where (MTC) applications run
  • MTC feature A function of a network to support an MTC application.
  • MTC monitoring is a feature for preparing for loss of equipment in an MTC application such as a remote meter reading
  • low mobility is a feature for an MTC application for an MTC terminal such as a vending machine.
  • the MTC user uses a service provided by the MTC server.
  • MTC subscriber An entity having a connection relationship with a network operator and providing a service to one or more MTC terminals.
  • MTC group A group of MTC terminals that share at least one MTC feature and belongs to an MTC subscriber.
  • SCS Services Capability Server
  • MTC-IWF MTC InterWorking Function
  • HPLMN Home PLMN
  • SCS provides the capability for use by one or more MTC applications.
  • External Identifier An identifier used by an external entity (e.g., an SCS or application server) of a 3GPP network to point to (or identify) an MTC terminal (or a subscriber to which the MTC terminal belongs). Globally unique.
  • the external identifier is composed of a domain identifier and a local identifier as follows.
  • Domain Identifier An identifier for identifying a domain in a control term of a mobile communication network operator.
  • One provider may use a domain identifier for each service to provide access to different services.
  • Local Identifier An identifier used to infer or obtain an International Mobile Subscriber Identity (IMSI). Local identifiers must be unique within the application domain and are managed by the mobile telecommunications network operator.
  • IMSI International Mobile Subscriber Identity
  • RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • RANAP RAN Application Part: between the RAN and the node in charge of controlling the core network (ie, Mobility Management Entity (MME) / Serving General Packet Radio Service (GPRS) Supporting Node) / MSC (Mobile Switching Center) Interface.
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • MSC Mobile Switching Center
  • PLMN Public Land Mobile Network
  • SEF Service Capability Exposure Function
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (SGW) (or S-GW), PDN GW (Packet Data Network Gateway) (or PGW or P-GW), A mobility management entity (MME), a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG) are shown.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • MME mobility management entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA Code Division Multiple Access
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an operator ie, an operator
  • 3GPP access based on 3GPP access as well as non-3GPP access.
  • IMS IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • various reference points may exist according to the network structure.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with relevant control and mobility resources between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
  • E-UTRAN evolved universal terrestrial radio access network
  • the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
  • Communication networks are widely deployed to provide various communication services, such as voice (eg, Voice over Internet Protocol (VoIP)) over IMS and packet data.
  • voice eg, Voice over Internet Protocol (VoIP)
  • VoIP Voice over Internet Protocol
  • an E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
  • the E-UTRAN consists of eNBs providing a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
  • X2 user plane interface (X2-U) is defined between eNBs.
  • the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
  • An X2 control plane interface (X2-CP) is defined between two neighboring eNBs.
  • X2-CP performs functions such as context transfer between eNBs, control of user plane tunnel between source eNB and target eNB, delivery of handover related messages, and uplink load management.
  • the eNB is connected to the terminal through a wireless interface and is connected to an evolved packet core (EPC) through the S1 interface.
  • EPC evolved packet core
  • the S1 user plane interface (S1-U) is defined between the eNB and the serving gateway (S-GW).
  • the S1 control plane interface (S1-MME) is defined between the eNB and the mobility management entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • the S1 interface supports a many-to-many-relation between eNB and MME / S-GW.
  • MME provides NAS signaling security, access stratum (AS) security control, inter-CN inter-CN signaling to support mobility between 3GPP access networks, and performing and controlling paging retransmission.
  • EWS Earthquake and Tsunami Warning System
  • CMAS Commercial Mobile Alert System
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • an eNB may select a gateway (eg, MME), route to the gateway during radio resource control (RRC) activation, scheduling of a broadcast channel (BCH), and the like. Dynamic resource allocation to the UE in transmission, uplink and downlink, and may perform the function of mobility control connection in the LTE_ACTIVE state.
  • the gateway is responsible for paging initiation, LTE_IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and NAS signaling encryption. It can perform the functions of ciphering and integrity protection.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 4 (a) shows the radio protocol structure for the control plane and FIG. 4 (b) shows the radio protocol structure for the user plane.
  • the layers of the air interface protocol between the terminal and the E-UTRAN are based on the lower three layers of the open system interconnection (OSI) standard model known in the art of communication systems. It may be divided into a first layer L1, a second layer L2, and a third layer L3.
  • the air interface protocol between the UE and the E-UTRAN consists of a physical layer, a data link layer, and a network layer horizontally, and vertically stacks a protocol stack for transmitting data information. (protocol stack) It is divided into a user plane and a control plane, which is a protocol stack for transmitting control signals.
  • the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • an application layer for example, voice data or Internet packet data
  • a physical layer which is a first layer (L1), provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer located at a higher level through a transport channel, and data is transmitted between the MAC layer and the physical layer through the transport channel.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • data is transmitted between different physical layers through a physical channel between a physical layer of a transmitter and a physical layer of a receiver.
  • the physical layer is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel is a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) to the UE. : informs hybrid automatic repeat request (HARQ) information associated with an uplink shared channel (HARQ).
  • the PDCCH may carry an UL grant that informs the UE of resource allocation of uplink transmission.
  • the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • a physical HARQ indicator channel (PHICH) carries a HARQ acknowledgment (ACK) / non-acknowledge (NACK) signal in response to uplink transmission.
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NACK, downlink request and channel quality indicator (CQI) for downlink transmission.
  • a physical uplink shared channel (PUSCH) carries a UL-SCH.
  • the MAC layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer multiplexes / demultiplexes into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • SDU MAC service data unit
  • the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
  • AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
  • the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
  • Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
  • IP Internet protocol
  • IPv4 Internet protocol version 4
  • IPv6 Internet protocol version 6
  • a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages with each other through the RRC layer.
  • the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
  • the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
  • Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the radio bearer may be further divided into two signaling radio bearers (SRBs) and data radio bearers (DRBs).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH for transmitting a paging message
  • DL-SCH for transmitting user traffic or control messages.
  • Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
  • RACH random access channel
  • UL-SCH uplink shared
  • the logical channel is on top of the transport channel and is mapped to the transport channel.
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • the control channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a dedicated control channel (DCCH), multicast And a control channel (MCCH: multicast control channel).
  • Traffic channels include a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • PCCH is a downlink channel that carries paging information and is used when the network does not know the cell to which the UE belongs.
  • CCCH is used by a UE that does not have an RRC connection with the network.
  • the DCCH is a point-to-point bi-directional channel used by a terminal having an RRC connection for transferring dedicated control information between the UE and the network.
  • DTCH is a point-to-point channel dedicated to one terminal for transmitting user information that may exist in uplink and downlink.
  • MTCH is a point-to-multipoint downlink channel for carrying traffic data from the network to the UE.
  • the DCCH may be mapped to the UL-SCH
  • the DTCH may be mapped to the UL-SCH
  • the CCCH may be mapped to the UL-SCH.
  • the BCCH may be mapped with the BCH or DL-SCH
  • the PCCH may be mapped with the PCH
  • the DCCH may be mapped with the DL-SCH.
  • the DTCH may be mapped with the DL-SCH
  • the MCCH may be mapped with the MCH
  • the MTCH may be mapped with the MCH.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • a physical channel transmits signaling and data through a radio resource including one or more subcarriers in a frequency domain and one or more symbols in a time domain.
  • One subframe having a length of 1.0 ms is composed of a plurality of symbols.
  • the specific symbol (s) of the subframe eg, the first symbol of the subframe
  • the PDCCH carries information about dynamically allocated resources (eg, a resource block, a modulation and coding scheme (MCS), etc.).
  • MCS modulation and coding scheme
  • the UE performs an RRC connection re-establishment procedure. Cases are performed.
  • a contention-based random access procedure in which the UE randomly selects and uses one preamble within a specific set And a non-contention based random access procedure using a random access preamble allocated by a base station only to a specific terminal.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • the UE randomly selects one random access preamble (RACH preamble) from a set of random access preambles indicated through system information or a handover command, and A physical RACH (PRACH) resource capable of transmitting a random access preamble is selected and transmitted.
  • RACH preamble random access preamble
  • PRACH physical RACH
  • the base station receiving the random access preamble from the terminal decodes the preamble and obtains an RA-RNTI.
  • the RA-RNTI associated with the PRACH in which the random access preamble is transmitted is determined according to the time-frequency resource of the random access preamble transmitted by the corresponding UE.
  • the base station transmits a random access response addressed to the RA-RNTI obtained through the preamble on the first message to the terminal.
  • the random access response includes a random access preamble index / identifier (UL preamble index / identifier), an UL grant indicating an uplink radio resource, a Temporary Cell RNTI (TC-RNTI), and a time synchronization value (TC-RNTI).
  • TAC time alignment commands
  • the TAC is information indicating a time synchronization value that the base station sends to the terminal to maintain uplink time alignment.
  • the terminal updates the uplink transmission timing by using the time synchronization value. When the terminal updates the time synchronization, a time alignment timer is started or restarted.
  • the UL grant includes an uplink resource allocation and a transmit power command (TPC) used for transmission of a scheduling message (third message), which will be described later. TPC is used to determine the transmit power for the scheduled PUSCH.
  • TPC transmit power command
  • the base station After the UE transmits the random access preamble, the base station attempts to receive its random access response within the random access response window indicated by the system information or the handover command, and PRACH
  • the PDCCH masked by the RA-RNTI corresponding to the PDCCH is detected, and the PDSCH indicated by the detected PDCCH is received.
  • the random access response information may be transmitted in the form of a MAC packet data unit (MAC PDU), and the MAC PDU may be transmitted through a PDSCH.
  • MAC PDU MAC packet data unit
  • the monitoring stops the random access response.
  • the random access response message is not received until the random access response window ends, or if a valid random access response having the same random access preamble identifier as the random access preamble transmitted to the base station is not received, the random access response is received. Is considered to have failed, and then the UE may perform preamble retransmission.
  • the terminal When the terminal receives a valid random access response to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC, and stores the TC-RNTI. In addition, by using the UL grant, data stored in the buffer of the terminal or newly generated data is transmitted to the base station.
  • an RRC connection request generated in the RRC layer and delivered through the CCCH may be included in the third message and transmitted.
  • the RRC connection reestablishment request delivered through the RRC connection reestablishment request may be included in the third message and transmitted. It may also include a NAS connection request message.
  • the third message should include the identifier of the terminal.
  • the first method if the UE has a valid cell identifier (C-RNTI) allocated in the corresponding cell before the random access procedure, the UE transmits its cell identifier through an uplink transmission signal corresponding to the UL grant. do.
  • the UE may include its own unique identifier (eg, SAE temporary mobile subscriber identity (S-TMSI) or random number). send.
  • S-TMSI temporary mobile subscriber identity
  • the unique identifier is longer than the C-RNTI.
  • the UE If the UE transmits data corresponding to the UL grant, it starts a timer for contention resolution (contention resolution timer).
  • the base station When the base station receives the C-RNTI of the terminal through the third message from the terminal, the base station transmits a fourth message to the terminal using the received C-RNTI.
  • the unique identifier ie, S-TMSI or random number
  • the fourth message is transmitted using the TC-RNTI allocated to the terminal in the random access response.
  • the fourth message may include an RRC connection setup message.
  • the terminal After transmitting the data including its identifier through the UL grant included in the random access response, the terminal waits for an instruction of the base station to resolve the collision. That is, it attempts to receive a PDCCH to receive a specific message.
  • the third message transmitted in response to the UL grant is its C-RNTI
  • the identifier is a unique identifier (that is, In the case of S-TMSI or a random number, it attempts to receive the PDCCH using the TC-RNTI included in the random access response.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure is normally performed, and terminates the random access procedure.
  • the terminal acquires the C-RNTI through the fourth message, and then the terminal and the network transmit and receive a terminal-specific message using the C-RNTI.
  • the random access procedure is terminated by only transmitting the first message and transmitting the second message.
  • the terminal before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message, and sends a random access response from the base station.
  • the random access procedure is terminated by receiving.
  • Dedicated bearer An EPS bearer associated with uplink packet filter (s) in the UE and downlink packet filter (s) in the P-GW. Here filter (s) only matches a particular packet.
  • Default bearer EPS bearer established with every new PDN connection. The context of the default bearer is maintained for the lifetime of the PDN connection.
  • EMM-NULL EPS Mobility Management
  • EMM-DEREGISTERED state In the EMM-DEREGISTERED state, no EMM context is established and the UE location is unknown to the MME. Thus, the UE is unreachable by the MME. In order to establish the EMM context, the UE must start an attach or combined attach procedure.
  • EMM-REGISTERED state In the EMM-REGISTERED state, an EMM context in the UE is established and a default EPS bearer context is activated. When the UE is in EMM-IDLE mode, the UE location is known to the MME with the accuracy of the list of TAs containing the specific number of the TA. The UE may initiate transmission and reception of user data and signaling information and may respond to paging. In addition, a TAU or combined TAU procedure is performed.
  • EMM-CONNECTED mode When a NAS signaling connection is established between the UE and the network, the UE is in EMM-CONNECTED mode.
  • EMM-CONNECTED may be referred to as the term of the ECM-CONNECTED state.
  • EMM-IDLE mode NAS signaling connection does not exist between the UE and the network (i.e. EMM-IDLE mode without reservation indication) or RRC connection suspend is indicated by the lower layer.
  • EMM-IDLE mode ie, EMM-IDLE mode with a reservation indication.
  • the term EMM-IDLE may also be referred to as the term of the ECM-IDLE state.
  • EMM context If the attach procedure is successfully completed, the EMM context is established in the UE and the MME.
  • Control plane CIoT EPS optimization Signaling optimization to enable efficient transport of user data (IP, non-IP or SMS) via the control plane via MME.
  • IP user data
  • non-IP or SMS control plane via MME.
  • header compression of IP data may be included.
  • User Plane CIoT EPS optimization Signaling optimization that enables efficient delivery of user data (IP or non-IP) through the user plane
  • EPS service (s) service (s) provided by the PS domain.
  • NAS signaling connection Peer-to-peer S1 mode connection between UE and MME.
  • the NAS signaling connection is composed of a concatenation of an RRC connection through the LTE-Uu interface and an S1AP connection through the S1 interface.
  • UEs using EPS services with control plane CIoT EPS optimization UEs attached for EPS services with control plane CIOT EPS optimization accepted by the network
  • Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
  • AS Access Stratum
  • AS Access Stratum
  • an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer may be collectively referred to, or any one of these layers may be referred to as an AS layer.
  • the PDCP layer, the RLC layer, the MAC layer, and the PHY layer may be collectively referred to, or any one of these layers may be referred to as an AS layer.
  • S1 mode A mode applied to a system having a functional separation according to the use of the S1 interface between the radio access network and the core network.
  • S1 mode includes WB-S1 mode and NB-S1 mode.
  • NB-S1 mode A serving radio access network of a UE allows access to network services (via E-UTRA) by narrowband (NB) -Internet of Things (NB). When providing, the UE applies this mode.
  • WB-S1 mode If the system is operating in S1 mode but not in NB-S1 mode, this mode is applied.
  • FIG. 7 is a diagram illustrating a terminal trigger service request procedure in a wireless communication system to which the present invention can be applied.
  • the service request procedure illustrated in FIG. 7 is triggered by the UE in ECM-IDLE state to establish user plane radio bearer (s) for the UE.
  • EOT Control Plane Cellular Internet of Things
  • the UE and MME support S1-U data delivery or when the UE and MME support the control plane CIoT EPS optimization as well as the user plane
  • the UE in ECM-IDLE state can use this procedure to establish a user plane radio bearer.
  • the UE sends to the MME a Service Request, which is a NAS message encapsulated in an RRC message to the eNB.
  • the eNB forwards the NAS message to the MME.
  • NAS messages are encapsulated within an Initial UE message, which is an S1-AP message.
  • the initial UE message may include a NAS message, a tracking area identifier (TAI) of the serving cell, an E-UTRAN Cell Global Identifier (ECGI), and a SAE-Temporary Mobile Subscription Identifier (S-TMSI: SAE).
  • TAI tracking area identifier
  • ECGI E-UTRAN Cell Global Identifier
  • S-TMSI SAE-Temporary Mobile Subscription Identifier
  • CSG ID Closed Subscriber Group Identifier
  • CSG Access Mode CSG Access Mode
  • RRC Establishment Reason RRC Establishment Reason
  • the MMR cannot process the service request, it is rejected.
  • the CSG ID is provided when the UE transmits a Service Request message through the CSG cell or the hybrid cell.
  • CSG mode is provided when the UE sends a Service Request message through the hybrid cell. If no CSG access mode is provided and a CSG ID is provided, the MME considers the CSG cell.
  • the MME rejects the Service Request for appropriate reasons. If the UE initiates the service request procedure from the allowed CSG list, the UE removes the PLMN associated with the cell's CSG ID.
  • the UE may be When not receiving, the MME deactivates all non-emergency bearers and accepts the Service Request.
  • ARP Allocation and Retention Priority
  • LIPA Local Internet Protocol
  • LIPA Packet Data Network
  • the MME does not request the eNB to establish a bearer of the LIPA PDN connection in step 4, and requests a disconnection of the LIPA PDN connection.
  • the MME rejects the Service Request with an appropriate cause value. As a result, the UE is detached, a later procedure is omitted, and release of core network resources is initiated according to an implicit MME-initiated Detach procedure.
  • the MME sends an event notification.
  • NAS authentication / security procedure may be performed.
  • S11-U-related information is a tunnel endpoint identifier (TEID) (downlink) for S11-U for control plane CIoT EPS optimization if the data in the MME is buffered, robust to control plane CIoT EPS optimization Robust header compression (ROHC) context and the like may be included, but header compression configuration (Header Compression Configuration) is not included.
  • TEID tunnel endpoint identifier
  • ROHC Robust header compression
  • the MME sends an S1-AP Initial Context Setup Request message to the eNB.
  • the Initial Context Setup Request message includes the S-GW address, S1-TEID (s) (uplink), EPS bearer QoS (s), security context, MME signaling connection identifier, handover restriction list, and CSG membership indication.
  • this message contains a correlation identifier (Correlation ID) to enable a user plane path directly between the home eNB (HeNB) and the L-GW.
  • Correlation ID correlation identifier
  • the eNB Activates the radio and S1 bearers for all activated EPS bearers.
  • the eNB stores the security context in the UE RAN context, the MME signaling connection identifier, the EPS bearer QoS (s) and S1-TEID (s). If access is not allowed to the cell where the UE initiated the service request procedure due to CSG access restriction, the MME should request only establishment of an emergency EPS bearer.
  • a CSG membership indication indicating whether the UE is a CSG member is included in the S1-AP message transmitted from the MME to the RAN. Based on this information, the RAN may handle CSG and non-CSG members differently.
  • the eNB performs a radio bearer establishment procedure. User plane security is established at this stage.
  • EPS bearer state synchronization is performed between the UE and the network. That is, the UE locally deletes EPS bearers for radio bearers that are not set up. And if a radio bearer for the primary EPS bearer is not established, the UE locally deactivates all the EPS bearers associated with the primary EPS bearer.
  • Uplink data from the UE can now be delivered to the S-GW by the eNB.
  • the eNB transmits uplink data to the S-GW address and the TEID provided in step 4.
  • the S-GW delivers uplink data to the P-GW.
  • the eNB sends an Initial Context Setup Complete message, which is an S1-AP message, to the MME.
  • the Initial Context Setup Complete message includes an eNB address, a list of accepted EPS bearers, a list of rejected EPS bearers, and an S1 TEID (s) (downlink). If the Correlation ID or SIPTO Correlation ID is included in step 4, establish a direct user plane path to the L-GW and uplink for LIPA or SIPTO in the local network with L-GW functionality collocated with (H) eNB.
  • the eNB uses the included information to convey the data.
  • the MME sends a Bearer Modify Request (Modify Bearer Request) message to the S-GW for each PDN connection.
  • the Modify Bearer Request message includes an eNB address, S1 TEID (s) (downlink) for the accepted EPS bearer, delayed downlink packet notification request, RAT type, and RRC establishment cause. If the S-GW supports the Modify Access Bearers Request procedure, and the S-GW does not need to send signaling to the P-GW, the MME requests a modification of the access bearer per UE to optimize the signaling. Bearers Request) message is sent to the S-GW.
  • the Modify Access Bearers Request message includes the eNB address (s) and TEID (s) for the downlink user plane for the accepted EPS bearer, and the Delay Downlink Packet Notification Request.
  • the S-GW may now send downlink data towards the UE. If the P-GW has requested the UE's location and / or user CSG information, and the UE's location and / or user CSG information has changed, the MME may request a User Location Information information element (IE: Information) in this message. Element) and / or User CSG Information IE. If Idle Mode Signaling Reduction (ISR) is enabled or if the Serving Network IE has changed compared to the last reported Serving Network IE, the MME includes the Serving Network IE in this message.
  • ISR Idle Mode Signaling Reduction
  • the MME includes the UE Time Zone IE in this message. If Pending Network Initiated PDN Connection Signaling, which is an internal flag, is set, the MME indicates a UE available for end-to-end signaling in the Modify Bearer Request message, and flags Reset Only when the RRC establishment cause is set to "Mobile Originated (MO) exception data" and the UE connects through a narrowband Internet of Things (NB-IoT), the MME causes the RRC establishment cause. Includes.
  • Pending Network Initiated PDN Connection Signaling which is an internal flag
  • the MME and S-GW If the DL Data Buffer Expiration Time is set in its UE context, it deletes it.
  • TAU Tracking Area Update
  • the primary EPS bearer is not accepted by the eNB, all EPS bearers associated with the primary bearer are treated as non-accepted bearers.
  • the MME releases a non-accepted bearer by triggering a bearer release procedure.
  • the S-GW receives a downlink packet for a non-accepted bearer, the S-GW drops the downlink packet and sends a downlink data notification to the MME. I never do that.
  • the S-GW sends a Modify Bearer Request message to the P-GW for each PDN connection.
  • the Modify Bearer Request message includes the RAT type and the reason for establishing the RRC. Also, if present in step 8, User Location Information IE and / or User CSG Information IE and / or Serving Network IE and / or UE Time Zone And / or UE indication available for end-to-end signaling.
  • Bearer Modify Request message is not sent and P-GW billing is paused for any of the above reasons, S-GW pauses PDN billing to inform P-GW that billing is no longer suspended.
  • Other IEs are not included in this message.
  • the S-GW directs the use of this RRC establishment cause in the Charging Data Record (CDR).
  • CDR Charging Data Record
  • the P-GW may use the PCEF initiated IP CAN (PCEF initiated IP CAN) procedure to obtain PCC rule (s) according to the RAT type. It interacts with the Policy and Charging Rules Function (PCRF) using the Internet Protocol Connectivity Access Network (SIP) Session Modification procedure. If dynamic PCC is not used, the P-GW may apply local QoS policy.
  • PCEF initiated IP CAN PCEF initiated IP CAN
  • PCRF Policy and Charging Rules Function
  • SIP Internet Protocol Connectivity Access Network
  • the P-GW directs the use of the "MO exception data" RRC establishment cause in the CDRs.
  • the P-GW sends a Bearer Modify Response (Modify Bearer Response) message to the S-GW.
  • Bearer Modify Response Modify Bearer Response
  • the S-GW transmits a bearer modification response (Modify Bearer Response) message to the MME in response to the bearer modification request (Modify Bearer Request) message.
  • the Modify Bearer Response message includes S-GW address and TEID for uplink traffic.
  • PMIP Proxy Mobile Internet Protocol
  • the S-GW may be included in the Modify Access Bearers Request, without S5 / S8 signaling or without corresponding Gxc signaling other than releasing the charging pause in the P-GW. If the MME request cannot be serviced, the S-GW responds to the MME that the modification is not restricted to the S1-U bearer, and the MME repeats its request using a Modify Bearer Request message for each PDN connection.
  • the SIPTO is enabled on the local network for PDN connections using a stand-alone gateway deployment, and the Local Home Network ID is the Local Home Network ID for the SIPTO @ LN PDN connection initiated by the UE. If different, the MME requests the disconnection of the SIPTO in the local network PDN connection (s) using the "reactivation requested" cause value. If the UE does not have another PDN connection, the MME initiates an "explicit detach with reattach required" procedure.
  • SIPTO is enabled in the local network for PDN connections using collocated L-GW deployment, and the L-GW core network address of the cell connected by the UE is the cell of the cell from which the UE initiated SIPTO on the local network PDN connection. If different from the L-GW core network address, the MME requests the disconnection of the SIPTO in the local network PDN connection (s) using the "reactivation requested" cause value. If the UE does not have another PDN connection, the MME initiates an "explicit detach with reattach required" procedure.
  • the current UE triggered service request procedure may cause an unnecessary downlink packet notification message that increases the MME load.
  • the MME receives Downlink Data Notification after step 2 and before step 9, the MME does not send the S1 interface paging message. However, for all UEs registered with the MME, the MME monitors the rate at which these events occur. If this ratio is significantly higher and the load of the MME exceeds the set value, the MME instructs the S-GW to "Delay Downlink Packet Notification Request" with parameter D. Where D is the requested delay given as an integer multiple of 50ms or zero. The S-GW then uses this delay between downlink data reception and downlink data notification message transmission.
  • the MME uses the Modify Access Bearers Request or Modify Bearer Request of step 8 in the UE initiated service request procedure to indicate the "Delay Downlink Packet Notification Request" to the S-GW.
  • the S-GW may use the last Modify Access Bearers Request or Modify Bearer Request message, or the S-GW may use the Modify Access Bearers Request Modify Bearer Request received within the previous 30 seconds. I use it.
  • the MME is responsible for setting the value of D.
  • the S-GW when receiving a downlink data packet without a DL TEID (DL-TEID) of the S1 user plane tunnel, the S-GW transmits a downlink data notification message to the MME without delay.
  • DL-TEID DL TEID
  • the S-GW determines that the MME requests a delay of Downlink Packet Notification by a delay of D from the last Modify Access Bearers Request or Modify Bearer Request message, the S-GW buffers the downlink data for the D period. If the DL-TEID and the eNB address are received before the timer expires, the timer is canceled and the network triggered service request procedure is completed without transmission to the MME of the downlink data notification message. That is, downlink data is transmitted to the UE. Otherwise, when the timer expires, a Downlink Data Notification message is sent to the MME.
  • FIG. 8 is a diagram illustrating a network trigger service request procedure in a wireless communication system to which the present invention can be applied.
  • the MME needs to signal to a UE in ECM-IDLE state (eg, to perform an MME / HSS-initiated detach procedure) for an ECM-IDLE UE, or S-
  • the GW receives the control signaling (eg, Create Bearer Request or Update Bearer Request)
  • the MME starts from step 3a of the Network Triggered Service request procedure.
  • the S-GW receives a Create Bearer Request or Update Bearer Request for the UE, the S-GW does not have a downlink S1-U, and the SGSN sends a request to the S-GW.
  • the S-GW buffers the signaling message and sends Downlink Data Notification to trigger the MME or SGSN to page the UE.
  • the S-GW is triggered to send a higher priority (ie ARP priority level) second Downlink Data Notification than the first Downlink Data Notification that has already been sent, the S-GW A new Downlink Data Notification message is sent to the MME indicating higher priority.
  • the S-GW When the S-GW receives an additional downlink signaling message for a bearer having the same or lower priority than the first Downlink Data Notification that has already been transmitted, or the S-GW receives a second Downlink Data Notification indicating a higher priority. Upon transmission and receiving additional downlink signaling messages for this UE, the S-GW buffers these downlink signaling messages and does not send new Downlink Data Notifications. The S-GW is not informed about the current RAT type based on the UE triggered service request procedure. The S-GW performs a dedicated bearer activation or dedicated bearer modification procedure.
  • the S-GW transmits the buffered signaling to the MME or SGSN in which the UE is currently located, and notifies the P-GW of the current RAT type if the RAT type is changed compared to the last reported RAT type. If dynamic PCC is used, current RAT type information is passed from the P-GW to the PCRF. If the PCRF response induces EPS bearer modifications, the P-GW initiates a bearer update procedure.
  • the S-GW When the S-GW sends downlink data notification, the S-GW includes an EPS bearer identifier (ID) and an ARP. If Downlink Data Notification is triggered by the arrival of the downlink data packet at the S-GW, the S-GW includes the EPS bearer ID and ARP associated with the bearer at which the downlink data packet was received. If Downlink Data Notification is triggered by the arrival of control signaling, the S-GW includes the EPS bearer ID and ARP present in the control signaling. If the ARP is not present in the control signaling, the S-GW includes the ARP in the stored EPS bearer context.
  • ID EPS bearer identifier
  • the L-GW when the L-GW receives downlink data for the UE in ECM-IDLE state, the L-GW sends a first downlink user packet to the S-GW and all other downlink users. Buffer the packet. The S-GW triggers the MME to page the UE.
  • the S-GW When the S-GW receives a downlink data packet / control signaling for a UE that the user plane is not connected to (ie, the S-GW context data indicates that there is no downlink user plane TEID), the S-GW Buffers the downlink data packet and identifies the MME or SGSN serving the UE.
  • the S-GW drops the downlink data. do.
  • the S-GW buffers the downlink data and waits for the timer to expire before step 2 proceeds. If the DL-TEID and eNB address for the UE are received before the timer expires, the timer is canceled and the Network triggered Service Request procedure ends without performing subsequent steps. That is, downlink data is transmitted to the UE.
  • the S-GW does not restart this timer.
  • the S-GW sends a Downlink Data Notification message to the MME and SGSN nodes having control plane connectivity for a given UE.
  • Downlink Data Notification includes ARP, EPS Bearer ID, and Paging Policy Indication.
  • ARP and EPS bearer IDs are always set in Data Notification.
  • the MME and SGSN respond to the S-GW with a Downlink Data Notification Ack message.
  • the S-GW indicates Paging Policy Indication related to downlink data that triggered a Downlink Data Notification message in the message.
  • the MME and SGSN which detects that the UE is in a power saving state (i.e., power saving mode (PSM) or extended idle mode discontinuous reception (DRX)) and are currently unable to access by paging, Start buffering.
  • the MME / SGSN derives the expected time before the radio bearer is established to the UE.
  • the MME / SGSN indicates the DL Buffering Requested to the S-GW in the Downlink Data Notification Ack message, includes the DL Buffering Duration time, and optionally, DL Buffering suggests. Include the DL Buffering Suggested Packet Count.
  • the MME / SGSN stores a new value for the DL Data Buffer Expiration Time in the Mobility Management (MM) context for the UE based on the DL Buffering Duration time and skips the remaining steps of this procedure.
  • the DL Data Buffer Expiration Time is used for the UE using the power saving state, indicates that there is buffered data in the S-GW, and also indicates that a user plane setup procedure is required when the UE signals to the network.
  • the MME / SGSN considers that there is no buffered downlink data, and the indication of the buffered downlink data waiting (Buffered DL Data Waiting) is not transmitted while the context is transmitted in the TAU procedure.
  • the MME / SGSN does not initiate extended buffering. Instead, the MME / SGSN sets the Notify-on-available-after-DDN-failure flag to remember sending the "Availability after DDN Failure" notification when the UE becomes available. If a "UE Reachability" monitoring event is set for a UE in the MME / SGSN, the MME / SGSN does not need to initiate extended buffering.
  • the MME / SGSN may use additional information based on service-level agreement (SLA) with the MTC user when initiating extended buffering. For example, launching only for a specific access point name (APN), not for a particular subscriber, initiating extended buffering with "Availability after DDN failure" and "UE reachability” monitoring events, etc.
  • SLA service-level agreement
  • the S-GW receives a DL Buffering Requested indication in a Downlink Data Notification Ack message, the S-GW stores a new value for the DL Data Buffer Expiration Time based on the DL Buffering Duration time, and the DL Data Buffer Expiration Time expires. Even if a subsequent downlink data packet for the corresponding UE in the S-GW is received, no additional downlink data notification is transmitted.
  • the S-GW receives an additional downlink data packet for a bearer having a priority equal to or lower than the first Downlink Data Notification that has already been transmitted, or a second Downlink Data Notification message indicating that the S-GW indicates a higher priority.
  • the S-GW buffers these downlink data packets and does not send new Downlink Data Notifications.
  • the S-GW may modify the Bearer Request even if the ISR is activated. Retransmit the Downlink Data Notification message only to the new MME or SGSN that received the message.
  • the old MME When the old MME receives a Downlink Data Notification, if a TAU procedure or Routing Area Update (RAU) procedure involving an MME change is in progress, the old MME indicates that the Downlink Data Notification message has been temporarily rejected. Reject the Downlink Data Notification message using the indication.
  • RAU Routing Area Update
  • an old SGSN receives a Downlink Data Notification
  • a RAU procedure or a TAU procedure involving an SGSN change is in progress
  • the old SGSN sends a Downlink Data Notification message with an indication that the Downlink Data Notification message has been temporarily rejected. refuse.
  • the S-GW When receiving a Downlink Data Notification Ack message with an indication that the Downlink Data Notification message has been temporarily rejected, and if Downlink Data Notification is triggered by the arrival of a downlink data packet in the S-GW, the S-GW is configured to guard locally. The timer starts, buffers all downlink user packets received by the UE, and waits for reception of a Modify Bearer Request message. When the Modify Bearer Request message is received, the S-GW resends the Downlink Data Notification only to the new MME or SGSN that the Modify Bearer Request was received even if the ISR is activated. Otherwise, the S-GW releases the buffered downlink user packet upon expiration of the guard timer or upon receiving a Delete Session Request message from the MME / SGSN.
  • the S-GW When receiving a Downlink Data Notification Ack message containing an indication that the Downlink Data Notification message has been temporarily rejected, and if Downlink Data Notification is triggered due to the arrival of a signaling message at the S-GW, the S-GW will temporarily reject the request.
  • a P-GW initiated EPS bearer request can be rejected with the same indication that the message has already been issued.
  • the P-GW may start a locally set guard timer. The P-GW may retry a predetermined number of times when the UE detects that the UE has accessed through the new S-GW or when the guard timer expires.
  • the MME sends a paging message to each eNB belonging to the tracking area (s) to which the UE is registered.
  • the paging message includes a NAS ID for paging, a TAI (s), a UE identifier based on the DRX index, a paging DRX length, a list of CSG IDs for paging, and a paging priority indication. If the MME has already had a signaling connection on the S1-MME towards the UE and the S1-U tunnel has not yet been established, steps 3-4 are omitted.
  • the MME pages the UE just before the occurrence of the next paging occasion of the UE.
  • MME When the MME receives a Downlink Data Notification or Create Bearer Request with an ARP priority level associated with a Multimedia Priority Service (MPS) or other priority service,
  • MPS Multimedia Priority Service
  • One paging priority level may use multiple ARP priority level values.
  • the eNB may prioritize paging of the UE according to the paging priority indication.
  • the MME Upon receipt of the MME, the MME sends another paging message with the appropriate paging priority.
  • the MME does not send a paging message to eNB (s) having a CSG cell for UEs that are not CSG subscribed. If the MME is configured to support CSG paging optimization in the HeNB subsystem, a list of CSG IDs for paging in the paging message is included. For CSG paging optimization, both the expired CSG subscription and the CSG ID (s) of valid CSG subscriptions are included in the list. If the UE has an emergency bearer service, the MME does not perform CSG paging optimization.
  • the MME When the MME supports LIPA paging for traffic arriving on a PDN connection with LTO-GW collocated with SIPTO and (H) eNB in the local network, the MME is responsible for eNB (s) that do not control a particular PDN connection. Paging only to (H) eNB without sending a paging message.
  • a paging strategy may be set in the MME from the S-GW for different APN combinations, paging policy indications, and other EPS bearer context information (eg, QoS Class Identifiers (QCIs)).
  • the APN and EPS bearer context information is identified by the EPS bearer ID received in the downlink data notification.
  • Paging strategies can include:
  • Paging retransmission scheme eg how often paging is repeated or how many time intervals are repeated
  • a paging based sub-area eg first paging in last known ECGI or TA and retransmission in all registered TA (s)).
  • the MME may additionally consider the paging time window length for the paging retransmission scheme.
  • MME and E-UTRAN may additionally support paging optimization to reduce the network resources and signaling load used to successfully page a UE using one or more of the following means:
  • the MME may implement a particular paging strategy (eg, an S1 paging message is sent to the eNB that served the last UE);
  • MME may consider Information On Recommended Cells And ENBs provided by E-UTRAN when transitioning to ECM-IDLE.
  • the MME may consider some of this information to determine which eNB is paged, and may provide each of these eNBs with information about the recommended cell in the S1 paging message;
  • Paging Attempt Count Information provided by the MME may be considered by the E-UTRAN during paging.
  • the MME In implementing the optimization / strategy, the MME considers a PSM active timer and a DRX interval for the UE.
  • the MME If UE Radio Capability for Paging Information for paging information is available in the MME, the MME includes the UE Radio Capability for Paging Information in the S1 paging message and transmits it to the eNB.
  • the MME If Information on Recommended Cells And ENBs is available within the MME, the MME considers this information to determine the eNB (s) for paging and when paging to the eNB The MME transparently delivers information about the cell recommended to the eNB.
  • the MME may include paging attempt count information in the S1AP paging message (s).
  • the paging attempt count information may be the same for all eNB (s) selected by the MME for paging.
  • the MME is storing information for Enhanced Coverage, it is included in the paging message for all eNB (s) selected by the MME for paging.
  • the SGSN transmits a paging message to the Radio Network Controller (RNC) / Base Station system (BSS).
  • RNC Radio Network Controller
  • BSS Base Station system
  • the eNB When the eNB receives a paging message from the MME, the UE is paged by the eNB.
  • the RNC / BSS node receives a paging message from the SGSN, the UE is paged by the RNC / BSS.
  • the UE When the UE is in the ECM-IDLE state, upon receiving the paging indication in the E-UTRAN access, the UE initiates the UE triggered Service Request procedure. Or if the UE is able to use user plane CIoT EPS optimization and a reserved access stratum context in the UE is stored, the UE initiates a Connection Resume procedure. If the MME already has a signaling connection on the S1-MME towards the UE but the S1-U tunnel has not yet been established, the message sequence begins with the step when the MME establishes the bearer (s).
  • the mobile station Upon receiving the paging indication in the UTRAN or GERAN, the mobile station (MS) responds to each access, and the SGSN notifies the S-GW.
  • MS mobile station
  • the MME and / or SGSN oversee the paging procedure using a timer. If the MME and / or SGSN do not receive a response from the UE for the paging request message, the MME and / or SGSN may repeat paging according to the applicable paging strategy described in step 2 above.
  • the MME and / or SGSN does not receive a response from the UE even after the paging iteration procedure, unless an MMM or SGSN is in the process of an MM procedure to prevent the UE from responding (i.e., the MME or SGSN indicates that the UE is another MME or SGSN). If a paging was triggered by a Downlink Data Notification message, the MME and / or SGSN refuses downlink data notification to inform the S-GW of the paging failure. Send Notification Reject).
  • the MME or SGSN rejects the control signaling.
  • the S-GW discards the buffered packet (s). If ISR is enabled and the S-GW receives a Serving GW receives Downlink Data Notification Reject message from both SGSN and MME, the S-GW discards the buffered packet (s) that triggers the Service Request procedure or rejects control signaling. . If the UE is in the ECM-IDLE state and the P-GW is available with a "PDN charging pause" function, the S-GW may initiate a P-GW charging pause procedure.
  • the S-GW sends a "Stop Paging" message to the SGSN.
  • the S-GW sends a "Stop Paging" message to the MME.
  • the S-GW transmits downlink data toward the UE through the RAT in which the service request procedure is performed.
  • the MME deactivates the LIPA PDN connection. If a network triggered service request fails due to no response from the UE, the MME and / or SGSN initiates a Dedicated Bearer Deactivation procedure for guaranteed guaranteed bit rate (GBR) bearers maintained based on operator policy. can do.
  • GBR guaranteed bit rate
  • the purpose of the service request procedure is to switch the EMM mode from EMM-IDLE to EMM-CONNECTED mode. If the UE does not use EPS service involving control plane CIoT EPS optimization, this procedure is used to establish radio and S1 bearers when user data or signaling is sent. If the UE uses an EPS service with control plane CIoT EPS optimization, this procedure may be used for delivery of user data initiated by the UE through the control plane. Another purpose of this procedure is to initiate a Mobile Originated (MO) / Mobile Terminated (MT) Circuit Switched (CS) Fallback or 1xCS Fallback procedure.
  • MO Mobile Originated
  • MT Mobile Terminated
  • CS Circuit Switched
  • Proximity Service Proximity Service
  • the service request procedure is initiated by the UE for signaling in the EMM-IDLE mode, cdma2000 signaling or downlink delivery of user data
  • a trigger is given by the network using a paging procedure.
  • the UE initiates a service request procedure when:
  • a UE in EMM-IDLE mode is set to use CS fallback and receives a paging request from the network with a CN domain indicator set to "CS" or a UE in EMM-CONNECTED mode is set to use CS fallback When receiving a CS SERVICE NOTIFICATION message;
  • UE in EMM-IDLE or EMM-CONNECTED mode is configured to use 1xCS fallback, accepts cdma2000® signaling messages including 1xCS paging requests received via cdma2000 1xRTT, and the network receives dual Rx CSFB (CS fallback) Or provide CS fallback registration parameters;
  • a UE in EMM-IDLE or EMM-CONNECTED mode has a pending uplink cdma2000 signaling to be transmitted via cdma2000 1xRTT, and the network supports dual Rx CSFB (CS fallback) or provides CS fallback registration parameters. when doing;
  • the service request procedure may only be initiated by the UE when the following conditions are met:
  • the EPS update status of the UE is EU1 UPDATED and the TAI of the current serving cell is included in the TAI list;
  • the service request attempt counter is used to limit the number of service request attempts and no response from the network.
  • the service request attempt counter is reset when:
  • FIGS. 9 and 10 are diagrams illustrating a service request procedure in a wireless communication system to which the present invention can be applied.
  • the UE initiates the service request procedure by sending a SERVICE REQUEST message to the MME;
  • the UE does not set the NAS signaling low priority and the last received ATTACH ACCEPT message or TRACKING AREA UPDATE ACCEPT message received from the network is extended for packet service (EXTENDED). If indicated that it supports the use of SERVICE REQUEST, the UE sends an Extended Service Request message with the service type set to "packet services via S1"; or
  • the UE does not set the NAS signaling low priority and the last received ATTACH ACCEPT message or TRACKING AREA UPDATE ACCEPT message received from the network is extended for packet service (EXTENDED). If not indicated to support the use of SERVICE REQUEST, the UE sends a SERVICE REQUEST message instead.
  • the UE after the transmission of the SERVICE REQUEST message or the EXTENDED SERVICE REQUEST message with the service type set to "packet services via S1", the UE performs a T3417 timer. Start and enter the EMM-SERVICE-REQUEST-INITIATED state.
  • the UE transmits an EXTENDED SERVICE REQUEST message, starts a T3417ext timer, and enters an EMM-SERVICE-REQUEST-INITIATED state.
  • the UE If the UE is in EMM-IDLE mode, the UE sends an EXTENDED SERVICE REQUEST message, starts the T3417ext timer and enters the EMM-SERVICE-REQUEST-INITIATED state;
  • the UE If the UE is in EMM-CONNECTED mode and the UE accepts paging, the UE sends an EXTENDED SERVICE REQUEST message containing a CSFB response IE indicating “CS Fallback Accepted by UE”, starts T3417ext, and starts the EMM- Enter the SERVICE-REQUEST-INITIATED state; or
  • the UE If the UE is in EMM-CONNECTED mode and the UE rejects paging, the UE sends an EXTENDED SERVICE REQUEST message including a CSFB response IE indicating "CS fallback rejected by the UE" and EMM-REGISTERED.NORMAL-SERVICE Enter the state. The network does not initiate the CS fallback procedure.
  • the UE transmits an EXTENDED SERVICE REQUEST message, starts a T3417 timer, and enters an EMM-SERVICE-REQUEST-INITIATED state.
  • One-to-one ProSe direct communication is realized by establishing a secure Layer-2 link through PC5 between two UEs.
  • Each UE has a Layer-2 Identifier (ID) for unicast communication.
  • This Layer-2 ID is included in the source Layer-2 ID field of every frame transmitted on the Layer-2 link, and also in the destination Layer-2 ID field of every frame received on the layer-2 link.
  • the UE needs to ensure that the Layer-2 ID for unicast communication is at least locally unique. To be effective, the UE must be prepared to handle Layer-2 ID collisions with neighboring UEs using an unspecified mechanism (eg, a new Layer-2 ID self-container for unicast communication when a collision is detected). Self-assign)
  • the layer-2 link for one-to-one ProSe direct communication is identified by a combination of Layer-2 IDs of two UEs. This means that the UE can participate in multiple layer-2 links for one-to-one ProSe direct communication using the same Layer-2 ID.
  • FIG. 11 illustrates a procedure for establishing a secure layer-2 link over a PC5 interface in a wireless communication system to which the present invention can be applied.
  • IP Internet Protocol
  • IP version IP version
  • UE-1 sends a Direct Communication Request message to UE-2 to trigger mutual authentication. This message includes User Info.
  • UE-1 sends a message to UE-2 in Dynamic Host Configuration Protocol version 4 (DHCPv4). ) Whether it can operate as a server, an IPv6 router, or both. If UE-1 does not support any IP address assignment mechanism, UE-1 includes a link-local IPv6 address in the message.
  • DHCPv4 Dynamic Host Configuration Protocol version 4
  • UE-2 initiates a procedure for mutual authentication. Successful completion of the authentication procedure completes the establishment of a secure layer-2 link (ie, establishment of a secure association) through PC5. As part of this step, UE- 2 includes User Info in response to UE- 1.
  • the link is set up for isolated one-to-one communication (that is, no UE is a relay), whether UE-2 can act as a DHCPv4 server, an IPv6 router, or both in a response message to UE-1.
  • UE-2 does not support any IP address allocation mechanism and UE-1 includes a link-local IPv6 address in step 1, UE-2 is not in conflict with the link-local. Include the IPv6 address in the response message.
  • both UE-1 and UE-2 chose to use a link-local IPv6 address, then both cannot use replicated address detection as defined in RFC 4862.
  • the PC5 signaling protocol functionally supports a keep-alive used to detect when the UE is not in range of ProSe communication. This is to proceed with implicit layer-2 link release.
  • FIG. 12 illustrates a procedure of releasing a layer-2 link through a PC5 interface in a wireless communication system to which the present invention can be applied.
  • This procedure is also used to release a layer-2 link between a remote UE and a UE-to-network relay and is initiated by either the remote UE or the relay (eg, to the network). Due to temporary loss of connectivity, low battery of relays, etc.).
  • UE-1 sends a Disconnect Request message to UE-2 to release the layer-2 link and delete all associated context data.
  • UE-2 Upon receiving the Disconnect Request message, UE-2 responds with a Disconnect Response message and deletes all context data associated with the layer-2 link.
  • the UE capability information is composed of UE radio capability information and UE core network capability information.
  • UE radio capability information for paging is distinguished from UE radio capability information and UE core network capability information.
  • UE radio capability information for paging may be used to improve paging within the E-UTRAN.
  • UE radio capability information includes information (eg, power class, frequency band, etc.) about the RAT (s) supported by the UE.
  • this information is sufficiently large that it is undesirable to be transmitted over the air interface at every transition from ECM-IDLE to ECM-CONNECTED.
  • the MME Mobility Management Entity
  • the UE capability information is also stored during the ECM-IDLE state, and if the UE is performing the attach procedure or the TAU procedure for the "first TAU after GERAN / UTRAN attach" or for the "UE radio capability update". If not, the MME sends the most recent UE radio capability information to the E-UTRAN in an S1 Interface Initial Context SETUP REQUEST message, if available.
  • the MME deletes all stored UE radio capability information. If the MME sends an S1 interface INITIAL CONTEXT SETUP REQUEST or UE RADIO CAPABILITY MATCH REQUEST message during this procedure, the MME does not send any UE radio capability information to the E-UTRAN within this message. . This triggers the E-UTRAN to request the UE radio capability to the UE and upload it to the MME in the S1 Interface UE Capability Information Instruction (UE CAPABILITY INFO INDICATION) message.
  • UE CAPABILITY INFO INDICATION S1 Interface UE Capability Information Instruction
  • the MME stores the UE radio capability information, and either the INITIAL CONTEXT SETUP REQUEST or the UE RADIO CAPABILITY MATCH REQUEST message for the "first TAU after GERAN / UTRAN Attach" or the attach procedure or TAU procedure for "UE radio capability update". Include it in
  • the MME sends an S1 interface INITIAL CONTEXT SETUP REQUEST message that does not contain any UE radio capability information to the E-UTRAN. . This triggers the E-UTRAN to request the UE radio capability to the UE and upload it to the MME in the S1 interface UE CAPABILITY INFO INDICATION message.
  • the MME does not send the S1 interface INITIAL CONTEXT SETUP REQUEST to the E-UTRAN during the Attach procedure or the TAU procedure (for example, "First TAU after GERAN / UTRAN Attach")
  • the MME does not support the UE radio capability UE radio capability information should be obtained by sending a connection establishment indication message without information to the E-UTRAN. This triggers the E-UTRAN to request the UE radio capability to the UE and upload it to the MME in the S1 interface UE CAPABILITY INFO INDICATION message.
  • the MME sends the UE radio capability information in the Connection Establishment Indication or Downlink NAS Transport message to the E-UTRAN. Send to.
  • UE radio capability is not provided directly from one CN node to another. This is uploaded to the MME when the E-UTRAN requests the UE radio capability information.
  • radio capability information between the source 3GPP RAT and the target 3GPP RAT is carried in a "source to target transparent container".
  • Information about additional 3GPP RATs is optionally delivered in a source to target transparent container. Delivery of radio capability information associated with the source and / or additional RAT (s) is effective because the target RAT eliminates the need to obtain information from the UE prior to the next inter-RAT handover.
  • the MME stores UE radio capability information.
  • the E-UTRAN stores the S1 interface INITIAL CONTEXT SETUP REQUEST message or the UE radio capability information obtained from the UE during the RRC connection of the corresponding UE. Prior to any handover from the E-UTRAN to the UTRAN, the E-UTRAN obtains the UTRAN radio capability of the UE from the UE.
  • the UE If UE radio capability information other than the UTRAN of the UE is changed during the ECM-IDLE state (when belonging to GERAN / UTRAN coverage), the UE performs a TAU indicating "UE radio capability update" when it recovers to E-UTRAN coverage. .
  • the MME may request Voice Support Match Information. If requested, the eNB derives and indicates whether the UE radio capability is compatible with the network configuration (e.g., whether the UE supports a frequency band for the UE to provide "full" PS voice coverage or if the UE is networked). Whether or not to support the Single Radio Voice Call Continuity (SRVCC) configuration of the MME.
  • the network configuration e.g., whether the UE supports a frequency band for the UE to provide "full" PS voice coverage or if the UE is networked.
  • SRVCC Single Radio Voice Call Continuity
  • UE core network capability is divided into UE Network Capability IE (mostly E-UTRAN connection related core network parameters) and MS Network Capability IE (mostly UTRAN / GERAN connection related core network parameters) And capabilities not associated with wireless (eg, NAS security algorithms, etc.). Both UE Network Capability and MS Network Capability are passed between CN nodes (MME to MME, MME to SGSN, SGSN to SGSN, SGSN to MME).
  • the UE In order to ensure that the UE core network capability information stored in the MME is up-to-date (for example, a universal subscriber identity module (USIM) is moved out of coverage between different devices, and the previous device does not send a Detach message).
  • a universal subscriber identity module USIM
  • the UE In order to control the unsuccessful situation (in case of inter-RAT TAU), the UE sends UE core network capability information to the MME in the NAS message during the Attach and non-periodic TAU procedures.
  • the MME always stores the most recent UE core network capability received from the UE.
  • a UE provides UE core network capability in Attach and TAU signaling
  • the UE core network capability received by the MME from the previous MME / SGSN is replaced. If the MS network capability is not included in the Attach or non-periodic TAU signaling (for example, if the UE can only connect to the E-UTRAN), the MME removes the stored MS network capability,
  • the UE core network capability information of the UE is changed (located in GERAN / UTRAN coverage and ISR enabled), when the UE returns to E-UTRAN coverage, the UE performs a TAU ('type' different from 'periodical') .
  • the purpose of the UE network capability IE is to provide the network with information about aspects of the UE that are associated with EPS or that interact with GPRS.
  • the content in this IE can affect the way the network controls the behavior of the UE.
  • the UE network capability IE indicates the characteristics of a general UE and is therefore independent of the frequency band of the channel over which the IE is transmitted except for the explicitly indicated fields.
  • FIG. 13 is a diagram illustrating a UE network capability information element in a wireless communication system to which the present invention can be applied.
  • the UE network capability IE is coded as shown in FIG. 13 and Table 2.
  • the UE network capability IE is a type 4 IE having a minimum of four octets and a maximum of 15 octets.
  • the purpose of this procedure is to assist the E-UTRAN in optimizing the radio paging procedure.
  • the eNB uploads the UE radio capability information for paging in the S1 interface UE CAPABILITY INFO INDICATION message (in an IE separate from the UE radio capability) to the MME.
  • the UE radio capability for paging includes UE radio paging information provided to the eNB by the UE and other information (eg, band assistance information) derived from the UE radio capability information by the eNB.
  • the MME stores UE radio capability information for paging in the MME context.
  • the MME provides the eNB radio capability information for paging to the eNB as part of the S1 paging message.
  • the eNB may use the UE radio capability information for paging to improve paging towards the UE.
  • the UE follows the same procedure as when the UE radio capability is changed.
  • UE radio capability information for paging as part of MM context information is transmitted to the target MME.
  • UE radio capability information for paging may be applied only to the MME and not to the SGSN. Therefore, this information is not included by the MME when conveying the context to the SGSN.
  • the purpose of the Initial Context Setup procedure is for the E-UTRAN Radio Access Bearer (E-RAB) context, Security Key, Handover Restriction List, and UE Radio capability. And to establish the necessary overall initial UE context, including UE Security Capabilities. This procedure uses UE-associated signaling.
  • E-RAB E-UTRAN Radio Access Bearer
  • FIG. 14 illustrates an initial context setup procedure in a wireless communication system to which the present invention can be applied.
  • the eNB receives an INITIAL CONTEXT SETUP REQUEST from the MME.
  • the eNB sends an initial context setup response (INITIAL CONTEXT SETUP RESPONSE) message to the MME in response to the INITIAL CONTEXT SETUP REQUEST.
  • INITIAL CONTEXT SETUP RESPONSE initial context setup response
  • Table 3 illustrates the INITIAL CONTEXT SETUP REQUEST message. This message is sent by the MME to request setup of the UE context.
  • the IE / Group Name indicates the name of an information element (IE) or an information element group (IE group).
  • IE information element
  • IE group information element group
  • 'M' in the presence field indicates an IE / IE group always included in the message as mandatory IE, and 'O' is an optional IE and may or may not be included in the message.
  • / IE group, 'C' represents a conditional (IE) IE / IE group included in the message only when a specific condition is satisfied.
  • the Range field indicates the number of repetitive IEs / IE groups that can be repeated.
  • the IE type and reference field indicates the type of the IE (eg, enumerated data (ENUMERATED), integer (INTEGER), octet string (OCTET STRING), etc.) and the value that the IE can have. If a range exists, a range of values is shown.
  • the Criticality field indicates criticality information applied to the IE / IE group.
  • the criticality information refers to information indicating how to operate at the receiver when the receiver does not understand all or a part of the IE / IE group.
  • '-' Indicates that criticality information is not applied, and 'YES' indicates that criticality information is applied.
  • 'GLOBAL' indicates that one of the criticality information is common to the repetition of the IE and the IE.
  • 'EACH' indicates that each of the repetitions of the IE has unique criticality information.
  • the assigned Criticality field indicates actual criticality information.
  • the EPC In the case of the establishment of an E-RAB, the EPC should be prepared to receive user data before an INITIAL CONTEXT SETUP RESPONSE message is received from the MME. If the UE-associated logical S1-connection does not exist, the UE-associated logical S1-connection should be established upon receipt of the INITIAL CONTEXT SETUP REQUEST message.
  • the INITIAL CONTEXT SETUP REQUEST message contains the information required by the eNB to build a new E-RAB configuration that includes at least one additional E-RAB in the E-RAB to be Setup List IE. do.
  • the E-RAB to be Setup IE may include the following:
  • the INITIAL CONTEXT SETUP REQUEST message may include:
  • Handover Restriction List IE which may include roaming or access restrictions.
  • LAI Registered Location Area Identity
  • GUMMEI Globally Unique MME Identifier
  • this IE indicates the MME UE S1AP ID assigned by the MME.
  • IET Management Based MDT Allowed IE
  • IMEISV IE Masked International Mobile Equipment Identity Software Version
  • V2X Vehicle-to-Everything
  • V2X Vehicle-to-Everything
  • the INITIAL CONTEXT SETUP REQUEST message may include Subscriber Profile ID for RAT / Frequency priority IE if available in the MME.
  • Correlation ID IE is included in the INITIAL CONTEXT SETUP REQUEST message directed to the eNB having the L-GW function for the LIPA operation, the eNB uses this information for the LIPA operation for the associated E-RAB.
  • the eNB uses this information for the SIPTO @ LN operation for the associated E-RAB.
  • Bearer Type IE in the INITIAL CONTEXT SETUP REQUEST is included and set to "non-IP"
  • the eNB does not perform header compression for the associated E-RAB.
  • the target eNB uses it to determine the characteristics of the UE for subsequent control.
  • the eNB can store this information and use it to determine the RRC connection time.
  • the eNB Upon receipt of the INITIAL CONTEXT SETUP REQUEST, the eNB does the following:
  • the eNB does not send a NAS PDU associated with the failed data radio bearer to the UE.
  • IE Allocation and Retention Priority IE
  • 15 illustrates an initial context setup procedure in a wireless communication system to which the present invention can be applied.
  • the eNB receives an INITIAL CONTEXT SETUP REQUEST from the MME.
  • the eNB sends an INITIAL CONTEXT SETUP FAILURE message to the MME in response to the INITIAL CONTEXT SETUP REQUEST.
  • the eNB If the eNB cannot establish an S1 UE context, or if the eNB cannot establish even one GBR bearer, the eNB regards this procedure as a failure and responds with an INITIAL CONTEXT SETUP FAILURE message.
  • Relay defined in 3GPP Rel-10 and Relay (eg, relay UE) in ProSe (Proximity based Service) of Rel-12 and Rel-13 are layer 3 relays.
  • the relay UE may perform processing (eg, user data regeneration processing or user data transmission processing) for traffic of a remote UE.
  • the processing includes ciphering for retransmitting on the air interface of the user data, user data concatenation / segmentation / reassembly, and then the base station (e.g., It may include an encoding / modulation process for transmission to an eNB, a base station.
  • the characteristics of the network layer from the layer 3 relay are as follows.
  • the -Relay UE can play the role of IP (Internet Protocol) router.
  • the relay UE may be involved in IP setting (eg, IP address assignment) to the remote UE.
  • IP setting eg, IP address assignment
  • the IP address assigned to the Remote UE is recognized as the IP address assigned to the Relay UE, and the Remote UE is not recognized as an individual UE.
  • This basic operation can also be checked in the UE-to-network relay operation in Rel-12 and Rel-13 ProSe.
  • a relay UE establishes a separate PDN connection for a remote UE and recognizes a mapping relationship between an IP address allocated to the corresponding PDN connection and an IP address assigned to the remote UE. Through this, when the relay UE receives data from the remote UE, the relay UE checks the IP address included in the header of the data and routes the data to the appropriate PDN connection. Data reception in the DL direction is also performed in the above manner.
  • a relay UE receives data from a network (e.g., eNB, base station), it checks the IP address included in the header of the data, checks the appropriate Remote UE, and transmits the data through a direct link established with the Remote UE. do. In this case, the relay UE transmits a link layer address of the remote UE for transmission to the direct link of the corresponding remote UE.
  • a network e.g., eNB, base station
  • 3GPP is working on a new study for wearable devices.
  • a remote UE eg, a wearable device, UE
  • UE basically communicates with a network through a relay UE.
  • a layer 2 relay is assumed.
  • Layer 2 relays have the following differences from layer 3 relays:
  • a relay UE may be referred to as an advanced relay UE (eRelay-UE), and a Remote UE may be referred to as an advanced remote UE (eRemote-UE).
  • eRelay-UE advanced relay UE
  • eRemote-UE advanced remote UE
  • eRealy-UE means a layer 2 relay that supports indirect 3GPP communication between the eRemote-UE and the 3GPP network by using E-UTRA, WLAN, or Bluetooth between the eRemote-UE and the relay.
  • eRemote-UE means a UE connected to the network using indirect 3GPP communication (Indirect 3GPP Communication).
  • Indirect 3GPP communication means signaling and communication between the UE and the 3GPP network in which an eRelay-UE exists between the eRemote-UE and the 3GPP network.
  • the Relay UE cannot process the traffic of the Remote UE.
  • Relay UE does not act as an IP router.
  • the relay UE when a relay UE receives data or signaling for a remote UE, the relay UE cannot process it.
  • the relay UE is not involved in IP setting (eg, IP address allocation) for the remote UE, and the relay UE is an IP layer of data of the remote UE allocated from the remote UE or the network. Does not handle (eg, IP router role: IP address checking and routing).
  • the Remote UE should use the IP address assigned from the network. This means that when a remote UE establishes a direct link through a relay UE and a PC5 interface and transmits / receives data / signaling through it, an IP address allocated from the network should be used.
  • the use of an IP address assigned to a remote UE by the network means that the network has a context of the remote UE and recognizes the remote UE.
  • the Remote UE must perform individual signaling with the network.
  • the individual means that the relay UE and the remote UE is distinguished in communication with the network.
  • 16 is a diagram illustrating Layer 2 relay operation in a wireless communication system to which the present invention can be applied.
  • UE1 operates as a relay UE
  • UE2 and UE3 operate as remote UEs
  • UE1 illustrates a state in which a direct link is established with UE2 and UE3, respectively.
  • the relay UE may be in coverage, while the Remote UE may be located in-coverage or out-of-coverage.
  • UE1 is located in in-coverage
  • UE2 is in-coverage
  • UE3 is located out-of-coverage.
  • the remote UEs ie, UE2 and UE3 must perform their respective signaling with the network after establishing a direct link with the relay UE.
  • the relay UE performs its signaling procedure (eg RRC procedure and / or NAS procedure) with the network (eg eNB and / or MME).
  • the Remote UE performs its signaling procedure (eg RRC procedure and / or NAS procedure) with the network (eg eNB and / or r MME).
  • the signaling message of the remote UE is transmitted to the network through the relay UE, and the relay UE does not perform processing (for example, read or modify) of the signaling message.
  • PC5 signaling in a direct link period is required to support separate signaling of a relay UE and a remote UE.
  • a relay service code is considered as one of conditions for selecting / discovering a relay UE.
  • the remote UE can check the connectivity service provided by the relay UE through the relay service code.
  • Relay Service Code is described below.
  • the 3GPP TS 24.334 v13.4.0 document is incorporated herein by reference.
  • the Relay Service Code parameter identifies a connectivity service provided by the UE-to-Network relay.
  • the value of the Relay Service Code parameter is a 24-bit long bit string.
  • the format of the Relay Service Code parameter is outside the scope of this specification.
  • the connectivity service may refer to a specific organization (for example, a police station) or a specific service.
  • a specific organization for example, a police station
  • this connectivity service indicates whether or not a connection (connection) can be made to a corresponding institution or application (server) of a relay UE. These are not related to the physical or functional capabilities of the relay UE.
  • the Remote UE is a service (eg, Voice over LTE (VoLTE), CIoT, eDRX, etc.) should also be performed in the form of connection with relay UE.
  • VoIP Voice over LTE
  • CIoT CIoT
  • eDRX eDRX
  • the Remote UE must select / discover a Relay UE having the capability to support a desired service.
  • the remote UE is connected to the relay UE and the relay UE transmits / receives traffic of the remote UE instead, the communication of the remote UE is dependent on the capability of the relay UE, not its own capability.
  • the present invention proposes a signaling procedure (ie, RRC signaling and / or NAS signaling procedure) with a network suitable for a layer 2 relay environment and PC5 signaling for supporting the same.
  • the present invention is described by illustrating one Remote UE and one Relay UE, but may have a connection between one Relay UE and a plurality of Remote UEs. In this case, the present invention described below may be equally applied.
  • the communication of the Remote UE is not the capability of its own, but the capability of the Relay UE. Subordinate to
  • the present invention proposes a method in which a remote UE communicates by checking a capability of a relay UE and a method of recognizing a relationship of a relay UE when performing a capability related operation of a remote UE in a network.
  • Capability in the present invention refers to UE-to-network capability, radio capability, ability to support specific functionality (e.g., eDRX, PSM) and the like. It can contain everything.
  • relay UE may be delivered to a remote UE in one of two ways. This will be described with reference to the drawings.
  • FIG. 17 is a diagram illustrating a method for exchanging capability information between a remote UE and a relay UE according to an embodiment of the present invention.
  • FIG. 17 illustrates a UE that UE1 operates (or wants to operate) as a Remote UE, and illustrates a UE that UE2 operates (or wants to operate or is capable of) as a Relay UE.
  • UE2 is illustrated as one UE for convenience of description, but UE2 may correspond to a plurality of UEs.
  • FIG. 17 (a) illustrates a method in which a Remote UE recognizes this when the Relay UE informs a capability it supports / has.
  • UE2 transmits a first message including its capability information to UE1 (S1701a).
  • a relay UE ie, a UE capable of operating as a relay UE
  • the Remote UE can know the capability of the UEs around its own through the broadcasted message.
  • the UE1 may select a relay UE that supports its desired capability (S1702a).
  • FIG. 17B illustrates a method of notifying the capability of the remote UE when the relay UE informs whether the capability of the remote UE is supported or not.
  • UE1 transmits a first message including its capability information to UE2 (S1701b).
  • the Remote UE may broadcast a message including its capability.
  • UE2 Upon receiving the first message from UE1, UE2 responds with a second message including an indication of whether it supports the corresponding capability (S1702b).
  • the remote UE can know the UE supporting the capability by receiving a message indicating whether the corresponding capability is supported from the neighboring UEs.
  • the UE1 may select a relay UE supporting the desired capability (S1703b).
  • the process of confirming the capability of the relay UE described with reference to FIG. 17 when the process of confirming the capability of the relay UE described with reference to FIG. 17 is performed within the discovery procedure, it may be implemented through a PC5 discovery message.
  • the process of confirming the capability of the relay UE when the process of confirming the capability of the relay UE is performed in the process of establishing a one-to-one connection, it may be implemented through a PC5 signaling protocol (eg, a direct link setup request / response).
  • a PC5 signaling protocol eg, a direct link setup request / response
  • a new protocol or a message may be used.
  • the relay UE may distinguish the capability of the relay UE and the capability of the remote UE to inform the network.
  • the capability of the remote UE may be regarded as the capability of the relay UE.
  • the UE radio capability information means radio capability information that can be supported by the UE for each RAT.
  • the UE Radio Capability information may include information about a RAT supported by the UE (eg, power class, frequency band, etc.).
  • the UE radio capability information is stored in the MME, and is included in an initial context setup request message in the process of switching from EMM-IDLE to EMM-CONNECTED and transmitted to the eNB.
  • the eNB may use this UE radio capability information for radio related operations (eg, power control, resource allocation, modulation, etc.).
  • radio related operations eg, power control, resource allocation, modulation, etc.
  • the UE radio capability may be delivered from the MME to the eNB.
  • the communication of the remote UE depends on the capability of the relay UE, not its own capability. So, in this case, when eNB wants to deliver traffic of Remote UE through Relay UE, eNB should use radio capability of Relay UE instead of radio capability of Remote UE.
  • FIG. 18 is a diagram briefly illustrating a service request procedure according to an embodiment of the present invention.
  • the relay UE transmits an RRC message in which a service request message for the remote UE including the identifier of the remote UE is encapsulated (S1801).
  • the base station transmits a service request message to the MME in the S1 interface message (S1802).
  • the base station receives an INITIAL CONTEXT SETUP REQUEST message from the MME (S1803).
  • radio capability may be delivered through an INITIAL CONTEXT SETUP REQUEST message.
  • the MME of the remote UE does not include the UE radio capability of the remote UE in the INITIAL CONTEXT SETUP REQUEST message. Can transmit
  • the MME of the remote UE includes the UE radio capability of the relay UE in the INITIAL CONTEXT SETUP REQUEST message. Can transmit
  • the MME of the Remote UE transmits the UE radio capability of the Remote UE in the INITIAL CONTEXT SETUP REQUEST message. Can be.
  • the base station stores the UE radio capability information of the relay UE as the UE radio capability information of the remote UE (S1804).
  • the base station may perform transmission and reception by applying the capability of the relay UE, even if the capability of the remote UE is not transmitted (even though the capability of the remote UE is received) even for transmission and reception for the DRB of the remote UE. (E.g., power control, resource allocation, modulation, etc.).
  • the base station must be aware that the relay UE and the remote UE are connected so that the relay UE transmits / receives traffic of the remote UE to / from the network (ie, the relationship between the relay UE and the remote UE). Therefore, the MME connects the relay UE and the remote UE to the base station in an S1AP message (for example, an INITIAL CONTEXT SETUP REQUEST message) so that the relay UE transmits / receives the remote UE's traffic to / from the network instead (ie.
  • an S1AP message for example, an INITIAL CONTEXT SETUP REQUEST message
  • the base station can be notified to the base station of the relationship between the Relay UE and the Remote UE. .
  • the relay UE and the remote UE are connected and the relay UE transmits / receives the traffic of the remote UE to / from the network instead, if the base station does not have the radio capability of the remote UE, the base station recognizes the relationship between the relay UE and the remote UE. If there is a radio capability of the relay UE, the radio capability of the relay UE is stored and used for traffic transmission of the remote UE, and if there is no capability of the relay UE, the radio capability of the relay UE is transmitted to the relay UE or the MME of the relay UE. You can request At this time, the requesting procedure / message may be delivered / performed according to the prior art or through a new procedure.
  • the base station may store radio capability information of the relay UE and may perform a radio bearer setup procedure for the relay UE and the remote UE based on this. For example, the base station transmits an RRC connection reconfiguration message for modifying the RRC connection to the relay UE, and sends an RRC connection reconfiguration complete message to confirm successful completion of the RRC connection reconfiguration. It can receive from a relay UE.
  • the RRC Connection Reconfiguration message is a command for modifying the RRC connection.
  • This message may carry information for measurement settings, mobility control, radio resource settings (including radio bearer (s), MAC main settings, physical channel settings), including associated dedicated NAS information and security settings.
  • the RRC Connection Reconfiguration Complete message is used to confirm successful completion of RRC connection configuration.
  • 19 is a diagram illustrating a signaling flow of a layer 2 relay in a wireless communication system to which the present invention can be applied.
  • UE1 operates as a relay UE
  • UE2 and UE3 operate as remote UEs
  • UE1 illustrates a state in which a direct link is established with UE2 and UE3, respectively.
  • the relay UE may be in coverage, while the Remote UE may be located in-coverage or out-of-coverage.
  • the Relay UE distinguishes its signaling from signaling for the Remote UE and transmits and receives it.
  • the remote UE transmits signaling to the relay UE via the direct link (i.e., side link), or the relay UE signals from the network.
  • the direct link i.e., side link
  • Embodiment 2 Network Signaling of Uu Interface Section Individually
  • An embodiment of the present invention first proposes a separate network signaling method between a remote UE and a relay UE in a Uu interface section.
  • the network signaling may include RRC signaling and / or NAS signaling.
  • the MME receiving the UE transmits the UE context in the INITIAL CONTEXT SETUP REQUEST message and the UE context.
  • the bearer context is transmitted to the eNB.
  • the eNB establishes a corresponding Data Radio Bearer (DRB) through a radio bearer establishment process based on a bearer context.
  • DRB Data Radio Bearer
  • the relay UE In the case of Layer 2 relay, the relay UE must configure not only its own bearer but also the bearer of the remote UE.
  • This setting may be performed through a NAS procedure.
  • a method of establishing a DRB for one or more UEs ie, a relay UE and a remote UE
  • Two methods are proposed, one to perform the Service Request procedure individually. Detailed description thereof will be described later.
  • the NAS procedure may be a conventional service request procedure.
  • the NAS message transmitted by the relay UE to perform a service request procedure may be a conventional SERVICE REQUEST message, an extended service request message, or a CONTROL PLANE SERVICE REQUEST message.
  • the NAS message transmitted by the relay UE to perform a service request procedure may be a newly defined NAS message.
  • the above NAS procedure may be a newly defined NAS procedure.
  • a direct link is established between a relay UE and a remote UE.
  • Relay UE may be in EMM-IDLE mode or EMM-CONNECTED mode.
  • any UE among the relay UE and the remote UE may have a state in which DRB is not established.
  • the relay UE when the relay UE is in the EMM-CONNECTED mode, only one UE of the relay UE or the remote UE may have a DRB established.
  • an optimized handling may be performed by recognizing a relationship between two UEs (ie, a relay UE and a remote UE) in a network (eg, MME).
  • a method of recognizing a relationship between two UEs in a network is as follows.
  • a relay UE may use the following method.
  • This method may be implemented through a conventional Remote UE report procedure.
  • the relay UE can inform the network whether the remote UE has directly connected or disconnected the network, and the network can recognize the relationship between the two UEs.
  • the RRC message and the S1-AP message may be a conventional message or a newly defined message.
  • the Relay UE can inform the MME by using a NAS message whether the Remote UE has directly connected or disconnected the link.
  • the NAS message may be a conventional NAS message (eg, SERVICE REQUEST, EXTENDED SERVICE REQUEST, CONTROL PLANE SERVICE REQUEST, TAU REQUEST) or may be a newly defined NAS message.
  • the relay UE may include a new identity instead of an indication of the remote UE or an identifier of the remote UE or an identifier of the relay UE.
  • the identifier (eg, IMSI or International Mobile Equipment Identity (IMEI)) of the remote UE may be a conventional PC5 procedure (eg, a direct discovery procedure or a direct communication procedure or a PC5).
  • the relay UE may acquire the signaling procedure), or the conventional PC5 procedure may be updated or a new PC5 message may be required to obtain the identifier of the remote UE such as GUTI or S-TMSI.
  • the new identifier may be an identifier allocated for the relay UE and the remote UE in the network.
  • This new identifier may be a temporary identifier (eg GUTI) assigned by the network for two UEs or a pre-configuration identifier (eg a group identifier).
  • the network may recognize the relationship between the relay UE and the remote UE. In this case, it may be recognized that the specific signaling transmitted by the relay UE includes the remote UE as well as the relay UE itself.
  • a method of establishing a DRB for one or more UEs may be used. This method can assume that the network is aware of the relationship of two UEs, and can be performed as follows.
  • Triggering conditions for the relay UE to perform the Service Request procedure are as follows.
  • the service request procedure of the relay UE may be triggered when the relay UE needs to switch from EMM-IDLE to EMM-CONNECTED.
  • the case where the relay UE needs to switch from EMM-IDLE to EMM-CONNECTED includes all the following cases.
  • the case where the relay UE receives the paging message in the EMM-IDLE mode also includes the following cases.
  • the relay UE When the relay UE receives a paging message for the remote UE
  • the paging message for the relay UE and the remote UE joint may include a group identifier for the two UEs.
  • the recognition method is as follows.
  • the relay UE When the relay UE performs a service request procedure, not only its own bearer but also the bearer of the remote UE may be established.
  • 20 is a diagram illustrating a service request procedure according to an embodiment of the present invention.
  • the MME / SGSN knows the mapping relationship between a relay UE and a remote UE.
  • R1 to R4 represent the random access procedure described with reference to FIG. 6. And, the relay UE is R5.
  • a SERVICE REQUEST message is encapsulated in a random access (RA) message 5 and transmitted to (e) NB.
  • RRC signaling ie, R1 to R5 in the radio section is transmitted from the relay UE to the eNB only once.
  • the eNB sends an S1 Initial UE message to the MME / SGSN.
  • the S1 Initial UE message may include a SERVICE REQUEST message and an S-TMSI of a relay UE (and / or a Remote UE).
  • the MME / SGSN Upon receiving the SERVICE REQUEST message, the MME / SGSN checks the mapping relationship between the relay UE and the remote UE.
  • the network checks the relationship between the two (step B in the following figure) and performs an Initial Context Setup Request (step 2-1 and step 2-2 in the following figure).
  • the network ie, MME / SGSN
  • the Service Request procedure is for a Remote UE as well as a Relay UE
  • signaling between network entities ie, eNB, MME, S-GW, P-GW
  • the signaling may be an existing signaling message (eg, an INITIAL UE message, an INITIAL CONTEXT SETUP REQUEST / RESPONSE message, or a MODIFY BEARER REQUEST / RESPONSE message) or a newly defined signaling message.
  • an existing signaling message eg, an INITIAL UE message, an INITIAL CONTEXT SETUP REQUEST / RESPONSE message, or a MODIFY BEARER REQUEST / RESPONSE message
  • the MME / SGSN transmits an INITIAL CONTEXT SETUP REQUEST message, which is an S1-AP message, to the eNB.
  • the INITIAL CONTEXT SETUP REQUEST message may include information such as an E-RAB context, a security key, and a UE radio / security capability (see Table 3 above).
  • Uplink data from the UE can now be delivered by the eNB to the S-GW.
  • the eNB sends an INITIAL CONTEXT SETUP COMPLETE message, which is an S1-AP message, to the MME.
  • the INITIAL CONTEXT SETUP REQUEST message may include a list of accepted E-RAB bearers.
  • the MME / SGSN sends a MODIFY BEARER REQUEST message to the S-GW for each PDN connection.
  • the S-GW sends a MODIFY BEARER REQUEST message to the P-GW for each PDN connection.
  • the P-GW sends a MODIFY BEARER RESPONSE message to the S-GW.
  • the S-GW sends a MODIFY BEARER RESPONSE message to the MME / SGSN.
  • the INITIAL CONTEXT SETUP REQUEST message, the INITIAL CONTEXT SETUP COMPLETE message, the MODIFY BEARER REQUEST message, and the MODIFY BEARER RESPONSE message are relayed as shown in FIG. 20. It may be transmitted for the UE and the Remote UE, respectively, and may be transmitted at a time (ie, one message) to reduce signaling overhead.
  • the first message may be a message for a relay UE and the second message may be a message for a remote UE, or vice versa.
  • the network entity transmitting the message may include an indication that a subsequent message is transmitted in the first message for efficient signaling at the network entity receiving the message. Therefore, the network entity that receives the first message may perform the next operation after receiving the second message instead of immediately performing the subsequent operation.
  • the MME / SGSN when the MME / SGSN confirms the relationship between the two UEs in step B, the MME / SGSN transmits an INITIAL CONTEXT SETUP REQUEST message, which is an S1-AP message for the Remote UE as well as the Relay UE, to the eNB.
  • the MME / SGSN transmits an INITIAL CONTEXT SETUP REQUEST message and includes an indication indicating that a subsequent message is transmitted
  • the eNB After receiving the INITIAL CONTEXT SETUP REQUEST message, three-step operation can be performed. This can reduce signaling overhead or waste resources.
  • an identifier for distinguishing a UE may be included in each message, and IEs may be distinguished and included for each UE identifier.
  • the relay UE may recognize that the Service Request procedure according to FIG. 20 was successfully completed by receiving an indication that a user plane bearer (ie, DRB) has been established in the AS layer.
  • the instruction may include the following information.
  • the object for which the user plane bearer has been successfully established information for specifying whether the object for which the user plane bearer has been successfully established is a Relay UE, a Remote UE, or both.
  • List of successfully established bearers may be indicated separately for each UE.
  • the network may reject the corresponding Service Request.
  • the SERVICE REJECT message transmitted by the network ie, MME / SGSN
  • the network may include the following information.
  • -Object of rejection Information for identifying whether the object of rejection of the service request is a relay UE, a remote UE, or both.
  • a reject cause may be specified and transmitted for each UE.
  • the Relay UE or Remote UE may release the direct link.
  • the triggering condition under which the relay UE performs a service request procedure is as follows.
  • a 'Service Request procedure for the relay UE' may be triggered.
  • a 'Service Request procedure for the relay UE' may be triggered.
  • a 'Service Request procedure for the remote UE' may be triggered.
  • a 'Service Request procedure for the remote UE' may be triggered.
  • a method of recognizing a relay UE is as follows.
  • the Remote UE Via the PC5 interface, the Remote UE sends the corresponding signaling (e.g. NAS signaling message) or data to the Relay UE, or via the PC5 interface the Remote UE sends an indication or message indicating that 'there is signaling or data to send to the network'.
  • the relay UE By transmitting to the relay UE, the relay UE can recognize.
  • Relay UE may be in EMM-IDLE mode or EMM-CONNECTED mode.
  • both 'Service Request procedure for relay UE' and 'Service Request procedure for remote UE' are performed.
  • a Service Request procedure may be sequentially performed for each UE.
  • Paging message for relay UE and remote UE common may include group identifier for two UEs
  • the above-described 'Service Request Procedure for Remote UE' is performed not only when the Relay UE is in EMM-IDLE mode but also when it is in EMM-CONNECTED mode.
  • the relay UE may perform a 'Service Request procedure for a relay UE' or 'Service request procedure for a remote UE'.
  • Relay UE is in EMM-IDLE mode
  • the successful completion of the service request procedure of the relay UE may be recognized by the relay UE when receiving an indication that a user plane bearer (DRB) has been established from the AS layer of the relay UE.
  • DRB user plane bearer
  • the relay UE switches to the EMM-CONNECTED mode.
  • the relay UE may switch to the EMM-CONNECTED mode.
  • Relay UE is in EMM-CONNCETED mode
  • the procedure performed may be an existing Service Request procedure or may be a newly defined NAS procedure.
  • the NAS message transmitted by the relay UE to perform the service request procedure may be a conventional SERVICE REQUEST message, EXTENDED SERVICE REQUEST message, and CONTROL PLANE SERVICE REQUEST message.
  • a TAU REQUEST message with an active flag set may be used.
  • the NAS message transmitted by the relay UE to perform a service request procedure may be a newly defined NAS message.
  • the relay UE When the paging message for the relay UE and the remote UE is received, the relay UE performs both the 'Service Request Procedure for the Relay UE' and the 'Service Request Procedure for the Remote UE'.
  • the relay UE may perform the 'Service Request procedure for the Remote UE' after performing and completing signaling through the PC5 interface while performing the 'Service Request procedure for the relay'. A more detailed execution procedure will be described later in '2. Relay UE operation of [2]'.
  • the relay UE when the above triggering condition is satisfied for both UEs and a service request procedure is performed, the relay UE performs a NAS signaling message (eg, a SERVICE REQUEST message and an EXTENDED SERVICE REQUEST message) to set up a DRB of a remote UE.
  • a NAS signaling message eg, a SERVICE REQUEST message and an EXTENDED SERVICE REQUEST message
  • an indication for example, an active flag for a remote UE may be added and transmitted.
  • the MME may perform an operation for establishing an SRB and a DRB of a relay UE and a DRB for a remote UE. That is, the above instruction plays a role for establishing the DRB of the remote UE.
  • the Relay UE If the triggering condition for the Remote UE is satisfied, if the Relay UE is in the EMM-IDLE mode, it is classified into the following case according to whether the DRB of the Relay UE is also established.
  • An indication in the NAS message (eg, an active flag for the Remote UE) or an identifier of the Remote UE (eg, GUTI or S-TMSI) may be included and transmitted.
  • the MME may perform an operation for establishing a DRB for the Remote UE.
  • the NAS message may be a TAU REQUEST message or a CONTROL PLANE SERVICE REQUEST message.
  • This NAS message may also be a newly defined NAS message.
  • an operation for establishing only the DRB of the Remote UE may be performed. This operation can be performed by the following procedure.
  • An indication in the NAS message (eg, an active flag for the Remote UE) or an identifier of the Remote UE (eg, GUTI or S-TMSI) may be included and transmitted.
  • the MME may perform an operation for establishing a DRB for the Remote UE.
  • the NAS message may be a TAU REQUEST message or a CONTROL PLANE SERVICE REQUEST message.
  • This NAS message may also be a newly defined NAS message.
  • the relay UE operates as if it is in the EMM-IDLE mode (that is, a DRB establishment request for the relay UE), and the relay UE recognizes that the relay UE is in the EMM-CONNECTED mode even if it receives the corresponding NAS message from the network.
  • the request to establish a DRB can be ignored.
  • the relay UE operates as if the triggering conditions for both UEs are satisfied, but the network (i.e., MME) recognizes that the relay UE is EMM-CONNECTED and can ignore the request for establishing the DRB of the relay UE. have.
  • the relay UE recognizes that the Remote UE should send signaling or data to the network as follows.
  • the Remote UE transmits the corresponding signaling (eg, NAS signaling message) or data to the Relay UE via the PC5 interface; or
  • the Relay UE can recognize the Remote UE by sending an indication or message indicating that there is signaling or data to be sent to the Network through the PC5 interface to the Relay UE.
  • the operation sequence of the Remote UE in this case is as follows.
  • Direct communication with the network through the Uu interface may be restricted until the Remote UE is released from the moment when the direct link with the Relay UE is established. In other words, even if the Remote UE is in coverage, it cannot communicate directly with the network.
  • the NAS layer of the Remote UE may recognize that the signaling or data to be transmitted to the network from the upper layer (eg, the application layer) has occurred in the Remote UE.
  • step a) the NAS layer of the Remote UE may not transmit NAS signaling to the network. Accordingly, the Remote UE may inform the Relay UE that it should transmit signaling or data to the network.
  • the method is as follows.
  • the NAS layer of the remote UE may generate NAS messages (eg, SERVICE REQUEST message, EXTENDED SERVICE REQUEST message, TAU REQUEST message, CONTROL PLANE SERVICE REQUEST message, etc.).
  • the NAS layer of the remote UE may also transmit an indication indicating 'there is signaling or data to be transmitted to the network' to the ProSe layer of the remote UE.
  • the ProSe layer of the Remote UE when the ProSe layer of the Remote UE receives a NAS message from the NAS layer, the ProSe layer encapsulates the corresponding NAS message in a PC5 message and passes it to a lower layer (ie, an AS layer). If the ProSe layer of the Remote UE receives the above-mentioned instruction from the NAS layer, the instruction is included in the PC5 message and passed to the lower layer (ie, the AS layer).
  • the lower layer (ie, AS layer) of the Remote UE that has received it from the ProSe layer may transmit the corresponding PC5 message to the Relay UE.
  • the network may recognize the relationship between the relay UE and the remote UE, perform optimized handling, and may operate in a conventional manner.
  • FIG. 21 illustrates a paging procedure for a layer 2 relay according to an embodiment of the present invention.
  • the MME when the MME receives a downlink data notification (DDN) from the S-GW (S2101), the MME transmits an S1 interface paging message to the base station (S2102), and the base station transmits an S1 interface paging message.
  • DDN downlink data notification
  • the RRC paging message is transmitted to the relay UE based on the operation S2103.
  • the MME when the MME receives a downlink data notification (DDN) for the remote UE, the MME sends a paging message to the relay UE to inform the relay UE that there is downlink data to be transmitted to the remote UE.
  • DDN downlink data notification
  • the MME may transmit a paging message for the relay UE or the remote UE to the relay UE.
  • the MME may transmit a paging message for both the relay UE and the remote UE to the relay UE.
  • the paging message for the relay UE and the remote UE joint may include a group identifier for the two UEs.
  • the network may transmit a paging message to the relay UE in the following manner.
  • the relay UE may monitor the paging message only at its paging occasion.
  • the network may include an indication whether the paging message in the paging message transmitted to the relay UE is for the relay UE or for the remote UE.
  • the relay UE may monitor a paging message at the paging time of the remote UE as well as its paging occasion.
  • the network may operate in the same manner as before.
  • the relay UE When the relay UE receives a paging message for the remote UE from the base station, the relay UE checks whether the remote UE can directly communicate (S2104).
  • the relay UE may perform a procedure of checking whether the remote UE can directly communicate as follows. That is, the relay UE should check whether the remote UE is alive or not. In other words, it may be checked whether the remote UE is in a communication enabled state (for example, a distance or a signaling strength between the remote UE and the relay UE).
  • the procedure can be carried out as follows.
  • this procedure may be performed before the relay UE transmits signaling or data to the remote UE.
  • the relay UE may transmit the PC5 first message to the remote UE.
  • the Remote UE may reply to the Relay UE through the PC5 second message.
  • the remote UE includes a NAS message (eg, a SERVICE REQUEST message, an EXTENDED SERVICE REQUEST message, a CONTROL PLANE SERVICE REQUEST message) in the corresponding PC5 second message, or the relay UE performs a service request procedure for the remote UE. It may include information for.
  • a NAS message eg, a SERVICE REQUEST message, an EXTENDED SERVICE REQUEST message, a CONTROL PLANE SERVICE REQUEST message
  • the relay UE performs a service request procedure for the remote UE. It may include information for.
  • the relay UE that has received the PC5 second message from the remote UE may recognize that the remote UE is alive. That is, it may be determined that communication with the Remote UE is possible.
  • the relay UE may retransmit the first PC5 message if it does not receive a response from the remote UE (ie, the second PC5 message). It can be considered not alive (ie communication is not possible).
  • the relay UE may perform a service request procedure for the remote UE.
  • the execution method is the same as the above-described [1-2] or [1-3].
  • the Relay UE when the Relay UE considers that the Remote UE is not alive, it notifies the network (ie, MME) that communication with the Remote UE is not possible. The network that has received this may stop the paging procedure for the corresponding Remote UE.
  • the method of transmitting the content of the remote UE is as follows.
  • FIG. 22 illustrates a tracking area update procedure for layer 2 relay according to an embodiment of the present invention.
  • the relay UE when a triggering condition for initiating a TAU procedure by the relay UE is satisfied (S2201), the relay UE transmits a TAU request message to the MME (S2202a and S2202b).
  • the contents of the Remote UE may be included and transmitted to the container in the TAU REQUEST message of the Relay UE.
  • the content of the remote UE may be included in a separate NAS message and transmitted to the MME.
  • an active flag or a signaling active flag in a TAU REQUEST message is included in order to prevent the NAS from disconnecting immediately after the TAU procedure of the relay UE is successfully completed. Can be sent. Thereafter, the separate NAS message carrying the content of the Remote UE may be a conventional TAU REQUEST message or may be a newly defined NAS message.
  • the present invention for convenience of description, it is described in relation to one relay UE and one remote UE, but the method according to the present invention described above is the same when one relay UE and several remote UEs are the same. Can be applied.
  • the present invention has been described under the assumption that the MME of the relay UE and the MME of the remote UE are the same. However, the present invention can also be applied when the MME of the relay UE and the MME of the remote UE are different.
  • FIG. 23 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a wireless communication system includes a network node 2310 and a plurality of terminals (UEs) 2320.
  • UEs terminals
  • the network node 2310 includes a processor 2311, a memory 2312, and a communication module 2313.
  • the processor 2311 implements the functions, processes, and / or methods proposed in FIGS. 1 to 22. Layers of the wired / wireless interface protocol may be implemented by the processor 2311.
  • the memory 2312 is connected to the processor 2311 and stores various information for driving the processor 2311.
  • the communication module 2313 is connected to the processor 2311 and transmits and / or receives a wired / wireless signal.
  • a base station an MME, an HSS, an SGW, a PGW, an SCEF, an SCS / AS, and the like may correspond thereto.
  • the communication module 2313 may include a radio frequency unit (RF) unit for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 2320 includes a processor 2321, a memory 2232, and a communication module (or RF unit) 2323.
  • the processor 2321 implements the functions, processes, and / or methods proposed in FIGS. 1 to 22. Layers of the air interface protocol may be implemented by the processor 2321. In particular, the processor may include a NAS layer and an AS layer.
  • the memory 2232 is connected to the processor 2321 and stores various information for driving the processor 2321.
  • the communication module 2323 is connected to the processor 2321 to transmit and / or receive a radio signal.
  • the memories 2312 and 2322 may be inside or outside the processors 2311 and 2321, and may be connected to the processors 2311 and 2321 by various well-known means.
  • the network node 2310 in the case of a base station
  • the terminal 2320 may have a single antenna or multiple antennas.
  • 24 is a block diagram of a communication device according to one embodiment of the present invention.
  • FIG. 24 is a diagram illustrating the terminal of FIG. 23 in more detail.
  • the terminal may include a processor (or a digital signal processor (DSP) 2410, an RF module (or RF unit) 2435, and a power management module 2405). ), Antenna 2440, battery 2455, display 2415, keypad 2420, memory 2430, SIM card Subscriber Identification Module card) 2425 (this configuration is optional), a speaker 2445 and a microphone 2450.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 2410 implements the functions, processes, and / or methods proposed in FIGS. 1 to 22.
  • the layer of the air interface protocol may be implemented by the processor 2410.
  • the memory 2430 is connected to the processor 2410 and stores information related to the operation of the processor 2410.
  • the memory 2430 may be inside or outside the processor 2410 and may be connected to the processor 2410 by various well-known means.
  • the user enters command information, such as a telephone number, for example by pressing (or touching) a button on keypad 2420 or by voice activation using microphone 2450.
  • the processor 2410 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 2425 or the memory 2430. In addition, the processor 2410 may display command information or driving information on the display 2415 for the user to recognize and for convenience.
  • the RF module 2435 is coupled to the processor 2410 to transmit and / or receive RF signals.
  • the processor 2410 communicates command information to the RF module 2435 to, for example, transmit a radio signal constituting voice communication data to initiate communication.
  • the RF module 2435 is composed of a receiver and a transmitter for receiving and transmitting a radio signal.
  • Antenna 2440 functions to transmit and receive wireless signals. Upon receiving a wireless signal, the RF module 2435 may forward the signal and convert the signal to baseband for processing by the processor 2410. The processed signal may be converted into audible or readable information output through the speaker 2445.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 릴레이 사용자 장치(Relay UE: Relay User Equipment)와 원격 사용자 장치(Remote UE) 간에 연결이 셋업되어 있는 경우, 기지국이 Remote UE에 의해 트리거된 서비스 요청(Service Request) 절차를 수행하는 방법에 있어서, Relay UE로부터 Remote UE의 식별자를 포함하는 Remote UE를 위한 서비스 요청(Service Request) 메시지가 인슐케이션된(encapsulated) 무선 자원 관리(RRC: Radio Resource Management) 메시지를 수신하는 단계, S1 인터페이스 메시지 내에서 상기 서비스 요청(Service Request) 메시지를 이동성 제어 개체(MME: Mobility Management Entity)에게 전송하는 단계, 상기 MME로부터 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)이 없는 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 수신하는 단계 및 상기 Relay UE의 UE 무선 능력 정보(UE Radio Capability information)를 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)로서 저장하는 단계를 포함할 수 있다.

Description

무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 원격 사용자 장치(Remote UE(User Equipment))와 릴레이 UE(Relay UE) 간의 연결이 셋업된 경우, 계층 2 릴레잉(layer 2 relaying)을 위한 시그널링 절차를 수행하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은, Remote UE(예를 들어, 웨어러블 장치 등)와 Relay UE 간에 연결이 셋업되어 있는 경우, 계층 2 릴레잉(layer 2 relaying)을 위한 시그널링 절차를 수행하기 위한 방법을 제안한다.
또한, 본 발명에서는 Remote UE와 Relay UE 간에 연결이 셋업되어 있는 경우, Remote UE 및/또는 Relay UE를 위한 서비스 요청(service request) 절차를 수행하기 위한 방법을 제안한다.
또한, 본 발명에서는 Remote UE와 Relay UE 간에 연결이 셋업되어 있는 경우, Remote UE 및/또는 Relay UE를 위한 페이징(paging) 절차를 수행하기 위한 방법을 제안한다.
또한, 본 발명에서는 Remote UE와 Relay UE 간에 연결이 셋업되어 있는 경우, Remote UE 및/또는 Relay UE를 위한 트래킹 영역 업데이트(Tracking Area Update) 절차를 수행하기 위한 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 릴레이 사용자 장치(Relay UE: Relay User Equipment)와 원격 사용자 장치(Remote UE) 간에 연결이 셋업되어 있는 경우, 기지국이 Remote UE에 의해 트리거된 서비스 요청(Service Request) 절차를 수행하는 방법에 있어서, Relay UE로부터 Remote UE의 식별자를 포함하는 Remote UE를 위한 서비스 요청(Service Request) 메시지가 인슐케이션된(encapsulated) 무선 자원 관리(RRC: Radio Resource Management) 메시지를 수신하는 단계, S1 인터페이스 메시지 내에서 상기 서비스 요청(Service Request) 메시지를 이동성 제어 개체(MME: Mobility Management Entity)에게 전송하는 단계, 상기 MME로부터 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)이 없는 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 수신하는 단계 및 상기 Relay UE의 UE 무선 능력 정보(UE Radio Capability information)를 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)로서 저장하는 단계를 포함할 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 릴레이 사용자 장치(Relay UE: Relay User Equipment)와 원격 사용자 장치(Remote UE) 간에 연결이 셋업되어 있는 경우, 기지국이 Remote UE에 의해 트리거된 서비스 요청(Service Request) 절차를 수행하는 기지국에 있어서, 신호를 송수신하기 위한 통신 모듈(communication module) 및 상기 통신 모듈을 제어하는 프로세서를 포함하고, 상기 프로세서는 Relay UE로부터 Remote UE의 식별자를 포함하는 Remote UE를 위한 서비스 요청(Service Request) 메시지가 인슐케이션된(encapsulated) 무선 자원 관리(RRC: Radio Resource Management) 메시지를 수신하고, S1 인터페이스 메시지 내에서 상기 서비스 요청(Service Request) 메시지를 이동성 제어 개체(MME: Mobility Management Entity)에게 전송하고, 상기 MME로부터 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)이 없는 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 수신하고, 상기 Relay UE의 UE 무선 능력 정보(UE Radio Capability information)를 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)로서 저장하도록 구성될 수 있다.
바람직하게, 상기 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지는 상기 Remote UE가 상기 Relay UE에 연결되어 상기 Relay UE가 상기 Remote UE의 트래픽을 송/수신하는 것임을 지시하는 지시자, 또는 상기 Relay UE의 식별자 및/또는 상기 Remote UE의 식별자를 포함할 수 있다.
바람직하게, 상기 Relay UE의 UE 무선 능력 정보(UE Radio Capability information)를 기반으로 상기 Relay UE와 상기 Remote UE를 위한 무선 베어러 셋업 절차(Radio Bearer Setup)가 수행될 수 있다.
바람직하게, 상기 무선 베어러 셋업 절차(Radio Bearer Setup)는, RRC 연결을 수정하기 위한 RRC 연결 재구성(RRC Connection Reconfiguration) 메시지를 상기 Relay UE에게 전송하는 단계 및 RRC 연결 재구성의 성공적인 완료를 확인하기 위한 RRC 연결 재구성 완료(RRC Connection Reconfiguration Complete) 메시지를 상기 Relay UE로부터 수신하는 단계를 포함할 수 있다.
바람직하게, 상기 Remote UE를 위한 페이징 메시지가 상기 Relay UE에게 전송되면, 상기 서비스 요청(Service Request) 메시지의 전송이 트리거될 수 있다.
바람직하게, 상기 Remote UE를 위한 페이징 메시지가 상기 Relay UE에게 전송된 경우, 상기 Relay UE가 상기 Remote UE와의 통신이 불가능하다고 판단하면, 상기 Relay UE로부터 상기 네트워크에게 상기 Remote UE와의 통신이 불가능함이 통지될 수 있다.
바람직하게, 상기 Relay UE와 상기 Remote UE 모두를 위한 페이징 메시지가 상기 Relay UE에게 전송되면, 상기 서비스 요청(Service Request) 메시지의 전송이 트리거되고, 상기 페이징 메시지는 상기 Relay UE와 상기 Remote UE를 위한 그룹 식별자를 포함할 수 있다.
바람직하게, 상기 Relay UE가 상기 Remote UE로부터 상기 Remote UE가 네트워크로 전송할 시그널링 또는 데이터를 수신하면, 상기 서비스 요청(Service Request) 메시지의 전송이 트리거될 수 있다.
바람직하게, 상기 Relay UE가 상기 Remote UE로부터 상기 Remote UE가 네트워크로 전송할 시그널링 또는 데이터가 있다는 지시를 수신하면, 상기 서비스 요청(Service Request) 메시지의 전송이 트리거될 수 있다.
바람직하게, 상기 서비스 요청 절차 내에서 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지에 이어서 상기 Relay UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지를 수신하는 경우, 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지 내 후속하여 상기 Relay UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지가 전달된다는 지시가 포함될 수 있다.
바람직하게, 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지와 상기 Relay UE를 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지가 단일의 메시지로 전송되는 경우, 상기 단일의 메시지 내 상기 Remote UE의 식별자 및 상기 Relay UE의 식별자가 포함되고, 각 식별자 별로 정보 요소(information element)가 구분되어 포함될 수 있다.
바람직하게, 상기 relay UE는 EMM(Evolved Packet System (EPS) Mobility Management)-IDLE 모드 또는 EMM-CONNECTED 모드일 수 있다.
바람직하게, 상기 서비스 요청(Service Request) 메시지는 상기 Remote UE를 위한 데이터 무선 베어러 확립을 요청하기 위한 지시자 혹은 액티브 플래그(active flag)를 포함할 수 있다.
본 발명의 실시예에 따르면, 계층 2 릴레잉(layer 2 relaying) 환경에서 Remote UE 및/또는 Relay UE를 위한 시그널링 절차(RRC 시그널링 및/또는 NAS 시그널링)가 효율적으로 수행될 수 있다.
특히, 본 발명의 실시예에 따르면, 계층 2 릴레잉(layer 2 relaying) 환경에서 Relay UE의 능력(capability)에 Remote UE의 통신이 종속되는 점을 고려하여 효과적인 시그널링 절차(RRC 시그널링 및/또는 NAS 시그널링)가 정의될 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 EPS(Evolved Packet System)을 간략히 예시하는 도면이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말 트리거 서비스 요청 절차를 예시하는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 네트워크 트리거 서비스 요청 절차를 예시하는 도면이다.
도 9 및 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 서비스 요청 절차를 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 PC5 인터페이스를 통한 안전한 계층-2 링크를 확립하는 절차를 예시한다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 PC5 인터페이스를 통한 계층-2 링크를 해제하는 절차를 예시한다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 UE 네트워크 능력 정보 요소를 예시하는 도면이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 초기 컨텍스트 셋업 절차를 예시한다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 초기 컨텍스트 셋업 절차를 예시한다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 계층 2 릴레이 동작을 예시하는 도면이다.
도 17은 본 발명의 일 실시예에 따른 원격 UE와 릴레이 UE 간의 능력 정보를 교환하는 방법을 예시하는 도면이다.
도 18은 본 발명의 일 실시예에 따른 서비스 요청 절차를 간략히 예시하는 도면이다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 계층 2 릴레이의 시그널링 흐름을 예시하는 도면이다.
도 20은 본 발명의 일 실시예에 따른 서비스 요청 절차를 예시하는 도면이다.
도 21은 본 발명의 일 실시예에 따른 계층 2 릴레이를 위한 페이징 절차를 예시한다.
도 22는 본 발명의 일 실시예에 따른 계층 2 릴레이를 위한 트래킹 영역 업데이트 절차를 예시한다.
도 23은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 24는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신(예를 들어, PLMN을 통해 MTC 서버와 통신) 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버. 이동 통신 네트워크의 내부 또는 외부에 존재할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한, MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고(SCS(Services Capability Server) 형태), 자신이 MTC 어플리케이션 서버일 수도 있다.
- (MTC) 어플리케이션(application): (MTC가 적용되는) 서비스(예를 들어, 원격 검침, 물량 이동 추적, 기상 관측 센서 등)
- (MTC) 어플리케이션 서버: (MTC) 어플리케이션이 실행되는 네트워크 상의 서버
- MTC 특징(MTC feature): MTC 어플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 어플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 단말에 대한 MTC 어플리케이션을 위한 특징이다.
- MTC 사용자(MTC User): MTC 사용자는 MTC 서버에 의해 제공되는 서비스를 사용한다.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 가지고 있으며, 하나 이상의 MTC 단말에게 서비스를 제공하는 엔티티(entity)이다.
- MTC 그룹(MTC group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
- 서비스 역량 서버(SCS: Services Capability Server): HPLMN(Home PLMN) 상의 MTC-IWF(MTC InterWorking Function) 및 MTC 단말과 통신하기 위한 엔티티로서, 3GPP 네트워크와 접속되어 있다. SCS는 하나 이상의 MTC 어플리케이션에 의한 사용을 위한 능력(capability)를 제공한다.
- 외부 식별자(External Identifier): 3GPP 네트워크의 외부 엔티티(예를 들어, SCS 또는 어플리케이션 서버)가 MTC 단말(또는 MTC 단말이 속한 가입자)을 가리키기(또는 식별하기) 위해 사용하는 식별자(identifier)로서 전세계적으로 고유(globally unique)하다. 외부 식별자는 다음과 같이 도메인 식별자(Domain Identifier)와 로컬 식별자(Local Identifier)로 구성된다.
- 도메인 식별자(Domain Identifier): 이동 통신 네트워크 사업자의 제어 항에 있는 도메인을 식별하기 위한 식별자. 하나의 사업자는 서로 다른 서비스로의 접속을 제공하기 위해 서비스 별로 도메인 식별자를 사용할 수 있다.
- 로컬 식별자(Local Identifier): IMSI(International Mobile Subscriber Identity)를 유추하거나 획득하는데 사용되는 식별자. 로컬 식별자는 어플리케이션 도메인 내에서는 고유(unique)해야 하며, 이동 통신 네트워크 사업자에 의해 관리된다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RANAP(RAN Application Part): RAN과 코어 네트워크의 제어를 담당하는 노드(즉, MME(Mobility Management Entity)/SGSN(Serving GPRS(General Packet Radio Service) Supporting Node)/MSC(Mobile Switching Center)) 사이의 인터페이스.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- SCEF(Service Capability Exposure Function): 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력(capability)을 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍쳐 내 엔티티.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway)(또는 S-GW), PDN GW(Packet Data Network Gateway)(또는 PGW 또는 P-GW), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
Figure PCTKR2017009707-appb-T000001
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다.
도 2를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 SGW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 3을 참조하면, eNB는 게이트웨이(예를 들어, MME)의 선택, 무선 자원 제어(RRC: radio resource control) 활성(activation) 동안 게이트웨이로의 라우팅, 방송 채널(BCH: broadcast channel)의 스케줄링 및 전송, 상향링크 및 하향링크에서 UE로 동적 자원 할당, 그리고 LTE_ACTIVE 상태에서 이동성 제어 연결의 기능을 수행할 수 있다. 상술한 바와 같이, EPC 내에서 게이트웨이는 페이징 개시(orgination), LTE_IDLE 상태 관리, 사용자 평면(user plane)의 암호화(ciphering), 시스템 구조 진화(SAE: System Architecture Evolution) 베어러 제어, 그리고 NAS 시그널링의 암호화(ciphering) 및 무결성(intergrity) 보호의 기능을 수행할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 4(a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 4(b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 4를 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PCFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 제어 채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel) 등이 있다. 트래픽 채널로는 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다. PCCH는 페이징 정보를 전달하는 하향링크 채널이고, 네트워크가 UE가 속한 셀을 모를 때 사용된다. CCCH는 네트워크와의 RRC 연결을 가지지 않는 UE에 의해 사용된다. MCCH 네트워크로부터 UE로의 MBMS(Multimedia Broadcast and Multicast Service) 제어 정보를 전달하기 위하여 사용되는 점-대-다점(point-to-multipoint) 하향링크 채널이다. DCCH는 UE와 네트워크 간에 전용 제어 정보를 전달하는 RRC 연결을 가지는 단말에 의해 사용되는 일-대-일(point-to-point) 양방향(bi-directional) 채널이다. DTCH는 상향링크 및 하향링크에서 존재할 수 있는 사용자 정보를 전달하기 위하여 하나의 단말에 전용되는 일-대-일(point-to-point) 채널이다. MTCH는 네트워크로부터 UE로의 트래픽 데이터를 전달하기 위하여 일-대-다(point-to-multipoint) 하향링크 채널이다.
논리 채널(logical channel)과 전송 채널(transport channel) 간 상향링크 연결의 경우, DCCH는 UL-SCH과 매핑될 수 있고, DTCH는 UL-SCH와 매핑될 수 있으며, CCCH는 UL-SCH와 매핑될 수 있다. 논리 채널(logical channel)과 전송 채널(transport channel) 간 하향링크 연결의 경우, BCCH는 BCH 또는 DL-SCH와 매핑될 수 있고, PCCH는 PCH와 매핑될 수 있으며, DCCH는 DL-SCH와 매핑될 수 있으며, DTCH는 DL-SCH와 매핑될 수 있으며, MCCH는 MCH와 매핑될 수 있으며, MTCH는 MCH와 매핑될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 5를 참조하면, 물리 채널은 주파수 영역(frequency domain)에서 하나 이상의 서브캐리어와 시간 영역(time domain)에서 하나 이상의 심볼로 구성되는 무선 자원을 통해 시그널링 및 데이터를 전달한다.
1.0ms 길이를 가지는 하나의 서브프레임은 복수의 심볼로 구성된다. 서브프레임의 특정 심볼(들)(예를 들어, 서브프레임의 첫번째 심볼)은 PDCCH를 위해 사용될 수 있다. PDCCH는 동적으로 할당되는 자원에 대한 정보(예를 들어, 자원 블록(Resource Block), 변조 및 코딩 방식(MCS: Modulation and Coding Scheme) 등)를 나른다.
랜덤 액세스 절차(Random Access Procedure)
이하에서는 LTE/LTE-A 시스템에서 제공하는 랜덤 액세스 절차(random access procedure)에 대해 살펴본다.
랜덤 액세스 절차는 단말이 기지국과의 RRC 연결(RRC Connection)이 없어, RRC 아이들 상태에서 초기 접속 (initial access)을 수행하는 경우, RRC 연결 재-확립 절차(RRC connection re-establishment procedure)를 수행하는 경우 등에 수행된다.
LTE/LTE-A 시스템에서는 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하는 과정에서, 특정한 집합 안에서 단말이 임의로 하나의 프리앰블을 선택하여 사용하는 경쟁 기반 랜덤 액세스 절차(contention based random access procedure)과 기지국이 특정 단말에게만 할당해준 랜덤 액세스 프리앰블을 사용하는 비 경쟁 기반 랜덤 액세스 절차(non-contention based random access procedure)을 모두 제공한다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
(1) 제1 메시지(Msg 1, message 1)
먼저, 단말은 시스템 정보(system information) 또는 핸드오버 명령(handover command)을 통해 지시된 랜덤 액세스 프리앰블의 집합에서 임의로(randomly) 하나의 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하고, 상기 랜덤 액세스 프리앰블을 전송할 수 있는 PRACH(physical RACH) 자원을 선택하여 전송한다.
단말로부터 랜덤 액세스 프리앰블을 수신한 기지국은 프리앰블을 디코딩하고, RA-RNTI를 획득한다. 랜덤 액세스 프리앰블이 전송된 PRACH와 관련된 RA-RNTI는 해당 단말이 전송한 랜덤 액세스 프리앰블의 시간-주파수 자원에 따라 결정된다.
(2) 제2 메시지(Msg 2, message 2)
기지국은 제1 메시지 상의 프리앰블을 통해서 획득한 RA-RNTI로 지시(address)되는 랜덤 액세스 응답(random access response)을 단말로 전송한다. 랜덤 액세스 응답에는 랜덤 액세스 프리앰블 구분자/식별자(RA preamble index/identifier), 상향링크 무선자원을 알려주는 상향링크 승인(UL grant), 임시 셀 식별자(TC-RNTI: Temporary Cell RNTI) 그리고 시간 동기 값(TAC: time alignment command)들이 포함될 수 있다. TAC는 기지국이 단말에게 상향링크 시간 정렬(time alignment)을 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, 상향링크 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(time alignment timer)를 개시 또는 재시작한다. UL grant는 후술하는 스케줄링 메시지(제3 메시지)의 전송에 사용되는 상향링크 자원 할당 및 TPC(transmit power command)를 포함한다. TPC는 스케줄링된 PUSCH를 위한 전송 파워의 결정에 사용된다.
단말은 랜덤 액세스 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 랜덤 액세스 응답 윈도우(random access response window) 내에서 자신의 랜덤 액세스 응답(random access response)의 수신을 시도하며, PRACH에 대응되는 RA-RNTI로 마스킹된 PDCCH를 검출하고, 검출된 PDCCH에 의해 지시되는 PDSCH를 수신하게 된다. 랜덤 액세스 응답 정보는 MAC PDU(MAC packet data unit)의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH을 통해 전달될 수 있다.
단말은 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자/식별자를 가지는 랜덤 액세스 응답을 성공적으로 수신하면, 랜덤 액세스 응답의 모니터링을 중지한다. 반면, 랜덤 액세스 응답 윈도우가 종료될 때까지 랜덤 액세스 응답 메시지를 수신하지 못하거나, 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자를 가지는 유효한 랜덤 액세스 응답을 수신하지 못한 경우 랜덤 액세스 응답의 수신은 실패하였다고 간주되고, 이후 단말은 프리앰블 재전송을 수행할 수 있다.
(3) 제3 메시지(Msg 3, message 3)
단말이 자신에게 유효한 랜덤 액세스 응답을 수신한 경우에는, 상기 랜덤 액세스 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, TC-RNTI를 저장한다. 또한, UL grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다.
단말의 최초 접속의 경우, RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 요청(RRC Connection Request)이 제3 메시지에 포함되어 전송될 수 있으며, RRC 연결 재확립 절차의 경우 RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 재확립 요청(RRC Connection Re-establishment Request)이 제3 메시지에 포함되어 전송될 수 있다. 또한, NAS 접속 요청 메시지를 포함할 수도 있다.
제3 메시지는 단말의 식별자가 포함되어야 한다. 단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 존재한다. 첫 번째 방법은 단말이 상기 랜덤 액세스 절차 이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자(C-RNTI)를 가지고 있었다면, 단말은 상기 UL grant에 대응하는 상향링크 전송 신호를 통해 자신의 셀 식별자를 전송한다. 반면에, 만약 랜덤 액세스 절차 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자(예를 들면, S-TMSI(SAE temporary mobile subscriber identity) 또는 임의 값(random number))를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 C-RNTI보다 길다.
단말은 상기 UL grant에 대응하는 데이터를 전송하였다면, 충돌 해결을 위한 타이머(contention resolution timer)를 개시한다.
(4) 제4 메시지(Msg 4, message 4)
기지국은 단말로부터 제3 메시지를 통해 해당 단말의 C-RNTI를 수신한 경우 수신한 C-RNTI를 이용하여 단말에게 제4 메시지를 전송한다. 반면, 단말로부터 제3 메시지를 통해 상기 고유 식별자(즉, S-TMSI 또는 임의 값(random number))를 수신한 경우, 랜덤 액세스 응답에서 해당 단말에게 할당한 TC-RNTI를 이용하여 제4 메시지를 단말에게 전송한다. 일례로, 제4 메시지는 RRC 연결 설정 메시지(RRC Connection Setup)가 포함할 수 있다.
단말은 랜덤 액세스 응답에 포함된 UL grant를 통해 자신의 식별자를 포함한 데이터를 전송한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 존재한다. 앞에서 언급한 바와 같이 상기 UL grant에 대응하여 전송된 제3 메시지가 자신의 식별자가 C-RNTI인 경우, 자신의 C-RNTI를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자(즉, S-TMSI 또는 임의 값(random number))인 경우에는, 랜덤 액세스 응답에 포함된 TC-RNTI를 이용하여 PDCCH의 수신을 시도한다. 그 후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 C-RNTI를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 TC-RNTI를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 제4 메시지를 통해 단말은 C-RNTI를 획득하고, 이후 단말과 네트워크는 C-RNTI를 이용하여 단말 특정 메시지(dedicated message)를 송수신하게 된다.
한편, 비경쟁 기반 임의접속 과정에서의 동작은 도 6에 도시된 경쟁 기반 임의접속 과정과 달리 제1 메시지 전송 및 제2 메시지 전송만으로 임의접속 절차가 종료되게 된다. 다만, 제1 메시지로서 단말이 기지국에 임의접속 프리앰블을 전송하기 전에 단말은 기지국으로부터 임의접속 프리앰블을 할당받게 되며, 이 할당받은 임의접속 프리앰블을 기지국에 제1 메시지로서 전송하고, 기지국으로부터 임의접속 응답을 수신함으로써 임의접속 절차가 종료되게 된다.
이하, 본 명세서에서 사용되는 용어에 대한 설명은 다음과 같다.
- 전용 베어러(Dedicated bearer): UE 내 상향링크 패킷 필터(들)과 P-GW 내 하향링크 패킷 필터(들)과 연관된 EPS 베어러이다. 여기서 필터(들)은 특정 패킷만이 매칭된다.
- 기본 베어러(Default bearer): 매 새로운 PDN 연결로 확립되는 EPS 베어러이다. Default bearer의 컨텍스트는 PDN 연결의 수명시간(lifetime) 동안에 유지된다.
- EMM(EPS Mobility Management)-널(EMM-NULL) 상태: UE 내 EPS 서비스가 비활성된다. 어떠한 EPS 이동성 관리 기능도 수행되지 않는다.
- EMM-비등록(EMM-DEREGISTERED) 상태: EMM-DEREGISTERED 상태에서, EMM 컨텍스트가 확립되지 않고, UE 위치는 MME에게 알려지지 않는다. 따라서, MME에 의해 UE가 접근 가능하지 않다(unreachable). EMM 컨텍스트를 확립하기 위해, UE는 어태치(Attach) 또는 결합된 어태치(combined Attach) 절차를 시작하여야 한다.
- EMM-등록(EMM-REGISTERED) 상태: EMM-REGISTERED 상태에서, UE 내 EMM 컨텍스트가 확립되어 있고, 기본(default) EPS 베어러 컨텍스트가 활성화되어 있다. UE가 EMM-IDLE 모드에 있을 때, UE 위치는 TA의 특정 번호를 포함하는 TA들의 리스트의 정확도로 MME에게 알려진다. UE는 사용자 데이터 및 시그널링 정보의 송수신을 개시할 수 있고, 페이징에 응답할 수 있다. 또한, TAU 또는 결합된 TAU(combined TAU) 절차가 수행된다.
- EMM-연결(EMM-CONNECTED) 모드: UE와 네트워크 간에 NAS 시그널링 연결이 확립될 때, UE는 EMM-CONNECTED 모드이다. EMM-CONNECTED의 용어는 ECM-CONNECTED 상태의 용어로 지칭될 수도 있다.
- EMM-아이들(EMM-IDLE) 모드: UE와 네트워크 간에 NAS 시그널링 연결이 존재하지 않거나(즉, 유보 지시가 없는 EMM-IDLE 모드) 또는 RRC 연결 유보(RRC connection suspend)가 하위 계층에 의해 지시되었을 때(즉, 유보 지시를 수반한 EMM-IDLE 모드), UE는 EMM-IDLE 모드이다. EMM-IDLE의 용어는 ECM-IDLE 상태의 용어로 지칭될 수도 있다.
- EMM 컨텍스트(EMM context): 어태치(Attach) 절차가 성공적으로 완료되면, EMM 컨텍스트는 UE 및 MME 내 확립된다.
- 제어 평면(Control plane) CIoT EPS optimization: MME를 경유하여 제어 평면을 통한 사용자 데이터(IP, non-IP 또는 SMS)의 효율적인 전달(transport)을 가능하게 하는 시그널링 최적화. 선택적으로 IP 데이터의 헤더 압축(header compression)을 포함할 수 있다.
- 사용자 평면(User Plane) CIoT EPS optimization: 사용자 평면을 통한 사용자 데이터(IP 또는 non-IP)의 효율적인 전달을 가능하게 하는 시그널링 최적화
- EPS 서비스(들): PS 도메인에 의해 제공되는 서비스(들).
- NAS 시그널링 연결: UE와 MME 간의 피어-대-피어(peer-to-peer) S1 모드 연결. NAS 시그널링 연결은 LTE-Uu 인터페이스를 경유하는 RRC 연결과 S1 인터페이스를 경유하는 S1AP 연결의 연접(concatenation)으로 구성된다.
- control plane CIoT EPS optimization를 수반하는 EPS 서비스(EPS services with control plane CIoT EPS optimization)를 사용하는 UE: 네트워크에 의해 승락된 control plane CIOT EPS optimization을 수반하는 EPS 서비스를 위해 어태치(attach)된 UE
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- AS(Access Stratum): E-UTRAN(eNB)과 UE 간 또는 E-UTRAN(eNB)와 MME 간 인터페이스 프로토콜(interface protocol) 상에서 NAS 계층 아래의 프로토콜 계층을 의미한다. 예를 들어, 제어평면 프로토콜 스택에서, RRC 계층, PDCP 계층, RLC 계층, MAC 계층, PHY 계층을 통칭하거나 이중 어느 하나의 계층을 AS 계층으로 지칭할 수 있다. 또는, 사용자 평면 프로토콜 스택에서, PDCP 계층, RLC 계층, MAC 계층, PHY 계층을 통칭하거나 이중 어느 하나의 계층을 AS 계층으로 지칭할 수 있다.
- S1 모드 (S1 mode): 무선 액세스 네트워크와 코어 네트워크 간의 S1 인터페이스의 사용에 따른 기능적인 분리를 가지는 시스템에 적용되는 모드를 의미한다. S1 모드는 WB-S1 모드와 NB-S1 모드를 포함한다.
- NB-S1 모드 (NB-S1 mode): UE의 서빙 무선 액세스 네트워크가 협대역(NB: Narrow Band)-IoT(Internet of Things)에 의한 (E-UTRA를 경유한) 네트워크 서비스로의 액세스를 제공할 때, UE는 이 모드가 적용된다.
- WB-S1 모드 (WB-S1 mode): 시스템이 S1 모드로 동작하지만 NB-S1 모드가 아니면, 이 모드가 적용된다.
서비스 요청 절차(Service Request Procedure)
1) UE 트리거 서비스 요청(UE triggered Service Request)
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말 트리거 서비스 요청 절차를 예시하는 도면이다.
도 7에서 예시되는 서비스 요청 절차는 UE를 위한 사용자 평면 무선 베어러(radio bearer)(들)을 확립하기 위하여 ECM-IDLE 상태인 UE에 의해 트리거된다.
UE가 제어 평면 CIoT EPS 최적화(Control Plane CIoT(Cellular Internet of Things) EPS optimization)를 적용하더라도, UE와 MME가 S1-U 데이터 전달을 지원할 때 또는 UE와 MME가 제어 평면 CIoT EPS 최적화뿐만 아니라 사용자 평면 EPS 최적화(User Plane EPS optimization)를 지원할 때, ECM-IDLE 상태인 UE는 사용자 평면 무선 베어러를 확립하기 위하여 이 절차를 이용할 수 있다.
UE는 eNB로의 RRC 메시지에 인캡슐레이션된(encapsulated) NAS 메시지인 서비스 요청(Service Request)을 MME에게 전송한다.
2. eNB는 NAS 메시지를 MME에게 전달한다. NAS 메시지는 S1-AP 메시지인 초기 UE 메시지(Initial UE message) 내 인캡슐레이션된다(encapsulated).
초기 UE 메시지는 NAS 메시지, 서빙 셀의 트래킹 영역 식별자(TAI: Tracking Area Identity)+ E-UTRAN 셀 전역 식별자(ECGI: E-UTRAN Cell Global Identifier), SAE-임시 모바일 가입 식별자(S-TMSI: SAE-Temporary Mobile Subscriber Identity), 폐쇄 가입 그룹 식별자(CSG ID: Closed Subscriber Group Identifier), CSG 액세스 모드, RRC 확립 원인을 포함한다.
만약, MMR가 Service Request을 처리할 수 없으면 거절한다. CSG ID는 CSG 셀 또는 하이브리드(hybrid) 셀을 통해 UE가 Service Request 메시지를 전송할 때 제공된다. CSG 모드는 UE가 하이브리드 셀을 통해 UE가 Service Request 메시지를 전송할 때 제공된다. CSG 액세스 모드가 제공되지 않고 CSG ID가 제공되면, MME는 CSG 셀로 간주한다.
CSG ID가 지시되고 CSG 액세스 모드가 제공되지 않으면, 그리고 이 CSG ID에 대한 가입 데이터가 존재하지 않고 관련된 PLMN 또는 CSG 가입이 만료되었으면, MME는 적절한 원인으로 Service Request을 거절한다. UE가 허용된 CSG 리스트로부터 서비스 요청 절차를 개시하였으면, UE는 셀의 CSG ID와 관련된 PLMN를 제거한다
긴급 EPS 베어러를 가진 UE의 경우(즉, 적어도 하나의 EPS 베어러가 긴급 서비스를 위해 할당 및 보유 우선순위(ARP: Allocation and Retention Priority) 값이 예약된 경우), CSG 액세스 제한으로 인해 UE가 일반적인 서비스를 받을 수 없을 때, MME는 모든 비-긴급(non-emergency) 베어러를 비활성화하고, Service Request을 수락한다.
PDN(Packet Data Network) 연결을 위해 로컬 인터넷 프로토콜 액세스(LIPA: Local IP(Internet Protocol) Access)가 활성화되면, 그리고 UE에 의해 액세스된 셀이 UE가 LIPA PDN 연결을 개시하였던 로컬 게이트웨이(L-GW: Local Gateway)로 링크되지 않으면, MME는 4 단계에서 eNB에게 LIPA PDN 연결의 베어러의 확립을 요청하지 않고, LIPA PDN 연결의 단절(disconnection)을 요청한다. UE가 다른 PDN 연결을 가지지 않는다면, MME는 적절한 원인 값으로 Service Request을 거절한다. 결과적으로 UE는 디태치(detach)되고, 이후의 과정은 생략되며, 암묵적인 MME 개시 디태치 절차(MME-initiated Detach procedure)에 따라 코어 네트워크 자원의 해제가 개시된다.
"DDN 실패 후 이용가능성(Availability after DDN Failure)" 모니터링 이벤트 또는 'UE 접근가능성(UE Reachability)" 모니터링 이벤트가 해당 UE에 대하여 MME에 설정되었다면, MME는 이벤트 통지를 전송한다.
3. NAS 인증/보안(authentication/security) 절차가 수행될 수 있다.
4. MME는 UE 컨텍스트 내 S11-U 관련 정보를 삭제한다. 이때, S11-U 관련 정보는 MME 내 데이터가 버퍼링되어 있다면 제어 평면 CIoT EPS 최적화를 위한 S11-U를 위한 터널 종단 식별자(TEID: tunnel endpoint identifier)(하향링크), 제어 평면 CIoT EPS 최적화를 위한 강인한 헤더 압축(ROHC: Robust Header Compression) 컨텍스트 등을 포함할 수 있지만, 헤더 압축 설정(Header Compression Configuration)은 포함되지 않는다.
MME는 S1-AP 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 eNB에게 전송한다.
Initial Context Setup Request 메시지는 S-GW 주소, S1-TEID(들)(상향링크), EPS 베어러 QoS(들), 보안 컨텍스트, MME 시그널링 연결 식별자, 핸드오버 제한 리스트, CSG 멤버십 지시를 포함한다.
LIPA를 위해 확립된 PDN 연결이 있다면, 이 메시지는 홈 eNB(HeNB: Home eNB) 및 L-GW 간에 직접 사용자 평면 경로를 가능하기 하기 위한 상관 식별자(Correlation ID)를 포함한다.
(H)eNB와 병치된(collocated) L-GW 기능을 가진 로컬 네트워크에 선택된 IP 트래픽 오프로드(SIPTO: Selected IP Traffic Offload)를 위해 확립된 PDN 연결이 있다면, 이 메시지는 (H)eNB와 L GW 간의 직접 사용자 평면 경로를 가능하게 하기 위한 SIPTO 상관 식별자(SIPTO Correlation ID)를 포함한다.
모든 활성화된 EPS 베어러에 대한 무선 및 S1 베어러를 활성화한다. eNB는 UE RAN 컨텍스트 내 보안 컨텍스트, MME 시그널링 연결 식별자, EPS 베어러 QoS(들) 및 S1-TEID(들)을 저장한다. CSG 액세스 제한으로 인하여 UE가 서비스 요청 절차를 개시하였던 셀에게 액세스가 허용되지 않으면, MME는 긴급 EPS 베어러 확립만을 요청하여야 한다.
Service Request이 하이브리드 셀을 통해 수행되면, UE가 CSG 멤버인지 여부를 지시하는 CSG 멤버십 지시가 MME로부터 RAN으로 전달되는 S1-AP 메시지 내 포함된다. 이 정보에 기초하여, RAN은 CSG 및 비-CSG(non-CSG) 멤버를 상이하게 취급할 수 있다.
5. eNB는 무선 베어러 확립 절차를 수행한다. 사용자 평면 보안이 이 단계에서 확립된다. 사용자 평면 무선 베어러가 셋업될 때, UE와 네트워크 간에 EPS 베어러 상태 동기화가 수행된다. 즉, UE는 셋업되지 않은 무선 베어러에 대한 EPS 베어러를 지역적으로 삭제한다. 그리고 기본 EPS 베어러를 위한 무선 베어러가 확립되지 않으면, UE는 지역적으로 기본 EPS 베어러와 관련된 모든 EPS 베어러를 비활성화한다.
6. UE로부터 상향링크 데이터가 이제 eNB에 의해 S-GW로 전달될 수 있다. eNB는 상향링크 데이터를 4 단계에서 제공된 S-GW 주소 및 TEID로 전송한다. S-GW는 상향링크 데이터를 P-GW로 전달한다.
7. eNB는 S1-AP 메시지인 초기 컨텍스트 셋업 완료(Initial Context Setup Complete) 메시지를 MME에게 전송한다. Initial Context Setup Complete 메시지는 eNB 주소, 수락된 EPS 베어러의 리스트, 거절된 EPS 베어러의 리스트, S1 TEID(들)(하향링크)를 포함한다. 4 단계에서 Correlation ID 또는 SIPTO Correlation ID가 포함되었으면, L-GW로의 직접 사용자 평면 경로를 확립하고 (H)eNB와 병치된(collocated) L-GW 기능을 가진 로컬 네트워크에서 LIPA 또는 SIPTO를 위한 상향링크 데이터를 전달하기 위하여 eNB는 포함된 정보를 사용한다.
8. MME는 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 S-GW에게 전송한다. Modify Bearer Request 메시지는 eNB 주소, 수락된 EPS 베어러에 대한 S1 TEID(들)(하향링크), 지연된 하향링크 패킷 통지 요청(Delay Downlink Packet Notification Request), RAT 타입, RRC 확립 원인을 포함한다. S-GW가 액세스 베어러 수정 요청(Modify Access Bearers Request) 절차를 지원하고, 또한 S-GW가 P-GW에게 시그널링을 전송할 필요가 없으면, MME는 시그널링 최적화를 위해 UE 별로 액세스 베어러 수정 요청(Modify Access Bearers Request) 메시지를 S-GW에게 전송한다. Modify Access Bearers Request 메시지는 수락된 EPS 베어러를 위한 하향링크 사용자 평면을 위한 eNB 주소(들) 및 TEID(들), 지연 하향링크 패킷 통지 요청(Delay Downlink Packet Notification Request)을 포함한다. S-GW는 이제 하향링크 데이터를 UE를 향해 전송할 수 있다. P-GW가 UE의 위치 및/또는 사용자 CSG 정보를 요청하였고, 그리고 UE의 위치 및/또는 사용자 CSG 정보가 변경되었으면, MME는 이 메시지 내 사용자 위치 정보(User Location Information) 정보 요소(IE: Information Element) 및/또는 사용자 CSG 정보(User CSG Information) IE를 포함시킨다. 아이들 모드 시그널링 감소(ISR: Idle mode Signalling Reduction)가 활성화되었으면 또는 서빙 네트워크(Serving Network) IE가 마지막에 보고된 Serving Network IE와 대비하여 변경되었으면, MME는 이 메시지 내 Serving Network IE를 포함시킨다. UE 시간 존(UE Time Zone)이 마지막에 보고된 UE Time Zone과 대비하여 변경되었으면, MME는 이 메시지 내 UE Time Zone IE를 포함시킨다. 내부적인 플래그인 대기 중인 네트워크 개시 PDN 연결 시그널링(Pending Network Initiated PDN Connection Signalling)이 셋팅되면, MME는 Modify Bearer Request 메시지 내 단대단(end-to-end) 시그널링을 위해 이용 가능한 UE를 지시하고, 플래그를 리셋한다. RRC 확립 원인이 "발신 제외 데이터(MO(Mobile Originated) exception data)"로 셋팅되고, UE가 협대역 IoT(NB-IoT: Narrow Band Internet of Things)를 통해 접속하는 때에만, MME는 RRC 확립 원인을 포함시킨다.
파워 세이빙 기능을 이용하는 UE를 위해 버퍼링된 어떠한 하향링크 데이터가 이미 전달되었고, 이후의 트래킹 영역 업데이트(TAU: Tracking Area Update)와 함께 불필요하게 사용자 평면이 셋업되는 것을 방지하기 위하여, MME와 S-GW는 자신의 UE 컨텍스트 내 하향링크 데이터 버퍼 만료 시간(DL Data Buffer Expiration Time)이 셋팅되었다면 이를 삭제한다.
기본 EPS 베어러가 eNB에 의해 수락되지 않으면, 기본 베어러와 연관된 모든 EPS 베어러가 수락되지 않은(non-accepted) 베어러로 취급된다. MME는 베어러 해제 절차를 트리거링함으로써 수락되지 않은(non-accepted) 베어러를 해제한다. S-GW가 수락되지 않은(non-accepted) 베어러에 대한 하향링크 패킷을 수신하면, S-GW는 해당 하향링크 패킷을 드랍(drop)하고, MME에게 하향링크 데이터 통지(Downlink Data Notification)를 전송하지 않는다.
9. 마지막에 보고된 RAT 타입과 비교하여 RAT 타입이 변경되었으면, 또는 8 단계에서, UE의 위치 및/또는 정보 IE 및/또는 UE Time Zone 및/또는 ISR이 활성화되지 않고 서빙 네트워크 ID 및/또는 단대단(end-to-end) 시그널링을 위해 이용 가능한 UE의 지시가 존재한다면, S-GW는 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 P-GW에게 전송한다. Modify Bearer Request 메시지는 RAT 타입, RRC 확립 원인을 포함한다. 또한, 8 단계에서 존재한다면, 사용자 위치 정보(User Location Information) IE 및/또는 사용자 CSG 정보(User CSG Information) IE 및/또는 서빙 네트워크(Serving Network) IE 및/또는 UE 시간 존(UE Time Zone) 및/또는 단대단(end-to-end) 시그널링을 위해 이용 가능한 UE 지시가 포함된다.
위와 같은 이유로 베어러 수정 요청(Modify Bearer Request) 메시지가 전송되지 않고 P-GW 과금이 일시 정지(pause)되면, S-GW는 P-GW에게 과금이 더 이상 일시 정지되지 않는다고 알리기 위하여 PDN 과금 일시 정지중단 지시(PDN Charging Pause Stop Indication)를 수반하는 베어러 수정 요청(Modify Bearer Request) 메시지를 전송한다. 이 메시지에 다른 IE들은 포함되지 않는다.
베어러 수정 요청(Modify Bearer Request) 메시지가 전송되지 않고 MME가 "발신 제외 데이터(MO exception data)"로 RRC 확립 원인을 지시하였다면, S-GW는 P-GW에게 이 RRC 확립 원인이 사용되었다고 통지한다.
S-GW는 과금 데이터 레코드(CDR: Charging Data Record)에 이 RRC 확립 원인의 사용을 지시한다.
10. 동적 정책 및 과금 제어(PCC: Policy and Charging Control)이 사용되면, P-GW는 RAT 타입에 따른 PCC 규칙(들)을 획득하기 위하여 PCEF 개시 IP-CAN 세션 수정 절차(PCEF initiated IP CAN(Internet Protocol Connectivity Access Network) Session Modification procedure)를 이용하여 정책 및 과금 규칙 기능(PCRF: Policy and Charging Rules Function)과 상호 동작한다. 동적 PCC가 사용되지 않으면, P-GW는 로컬 QoS 정책을 적용할 수 있다.
P-GW는 CDR에 "발신 제외 데이터(MO exception data)" RRC 확립 원인의 사용을 지시한다.
11. P-GW는 베어러 수정 응답(Modify Bearer Response) 메시지를 S-GW에게 전송한다.
12. S-GW는 베어러 수정 요청(Modify Bearer Request) 메시지에 대한 응답으로 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 전송한다. Modify Bearer Response 메시지는 상향링크 트래픽을 위한 S-GW 주소 및 TEID를 포함한다. PMIP(Proxy Mobile Internet Protocol)가 S5/S8 인터페이스 상에서 사용될 때, P-GW에서의 과금 일시 정지를 해제하는 것 이외의 S5/S8 시그널링 없이 또는 해당 Gxc 시그널링 없이, S-GW가 Modify Access Bearers Request 내 MME 요청을 서비스할 수 없으면, S-GW는 수정이 S1-U 베어러에 제한되지 않았다는 지시를 MME에게 응답하고, MME는 PDN 연결 별로 Modify Bearer Request 메시지를 이용하여 자신의 요청을 반복한다.
스탠드-얼론(stand-alone) 게이트웨이 배치를 이용하는 PDN 연결을 위해 로컬 네트워크에서 SIPTO가 활성화되고, 로컬 홈 네트워크 식별자(Local Home Network ID)가 UE가 개시하였던 SIPTO@LN PDN 연결에 대한 Local Home Network ID와 상이하면, MME는 "재활성화 요청(reactivation requested)" 원인 값을 이용하여 로컬 네트워크 PDN 연결(들)에서 SIPTO의 단절을 요청한다. UE가 다른 PDN 연결을 가지지 않으면, MME는 "재-어태치가 요구되는 명시적인 디태치(explicit detach with reattach required)" 절차를 개시한다.
병치된(collocated) L-GW 배치를 이용하는 PDN 연결을 위해 로컬 네트워크에서 SIPTO가 활성화되었고, UE에 의해 접속된 셀의 L-GW 코어 네트워크 주소가 UE가 로컬 네트워크 PDN 연결에서 SIPTO를 개시하였던 셀의 L-GW 코어 네트워크 주소와 상이하면, MME는 "재활성화 요청(reactivation requested)" 원인 값을 이용하여 로컬 네트워크 PDN 연결(들)에서 SIPTO의 단절을 요청한다. UE가 다른 PDN 연결을 가지지 않으면, MME는 "재-어태치가 요구되는 명시적인 디태치(explicit detach with reattach required)" 절차를 개시한다.
2) UE 트리거 서비스 요청(UE triggered Service Request) 내 비정상적인 상황 제어
특정 조건 하에서, 현재 UE triggered Service Request 절차는 MME 로드를 증가시키는 불필요한 하향링크 패킷 통지(Downlink Packet Notification) 메시지를 유발할 수 있다.
이것은 앞서 도 7의 6 단계에서 전송된 상향링크 데이터가 8 단계에서 Modify Bearer Request 메시지 이전에 S-GW에 도착한 하향링크의 응답을 유발할 때 발생될 수 있다. 이 데이터는 S-GW로부터 eNB에게 전달될 수 없으며, 따라서 Downlink Data Notification 메시지를 트리거한다.
MME가 2 단계 이후 9 단계 이전에 Downlink Data Notification를 수신하면, MME는 S1 인터페이스 페이징 메시지를 전송하지 않는다. 그러나, MME에 등록된 모든 UE에 대하여 MME는 이러한 이벤트가 발생되는 비율을 모니터링한다. 이 비율이 현저하게 높아지고 MME의 로드가 설정된 값을 초과하면, MME는 파라미터 D를 가지는 "지연 하향링크 패킷 통지 요청(Delay Downlink Packet Notification Request)"를 S-GW에게 지시한다. 여기서, D는 50ms의 정수배 또는 0으로 주어지는 요청되는 지연을 의미한다. S-GW는 이후 하향링크 데이터 수신과 Downlink Data Notification 메시지 전송 간에 이 지연을 이용한다.
MME는 S-GW에게 "Delay Downlink Packet Notification Request"을 지시하기 위하여 UE initiated Service Request 절차에서 8 단계의 Modify Access Bearers Request 또는 Modify Bearer Request을 이용한다.
MME에 의해 요구된 지연의 양을 결정하기 위하여, S-GW는 마지막 Modify Access Bearers Request 또는 Modify Bearer Request 메시지를 이용하거나, 또는 S-GW는 이전 30 초 내 수신한 Modify Access Bearers Request Modify Bearer Request를 이용한다. MME는 D의 값을 셋팅하는 역할을 담당한다.
일반적으로, S1 사용자 평면 터널의 하향링크 TEID(DL-TEID)가 없는 하향링크 데이터 패킷을 수신할 때, S-GW는 지연없이 MME에게 Downlink Data Notification 메시지를 전송한다.
S-GW는 마지막 Modify Access Bearers Request 또는 Modify Bearer Request 메시지로부터 MME가 D의 지연만큼 Downlink Packet Notification의 지연을 요청한다고 판단하면, S-GW는 D 기간 동안 하향링크 데이터를 버퍼링한다. 타이머가 만료되기 전에 DL-TEID 및 eNB 주소가 수신되면, 타이머는 취소되고, Downlink Data Notification message의 MME에게 전송 없이 네트워크 트리거 서비스 요청(Network triggered Service Request) 절차가 완료된다. 즉, 하향링크 데이터가 UE에게 전송된다. 그렇지 않으면, 타이머가 만료될 때, Downlink Data Notification 메시지가 MME에게 전송된다.
3) 네트워크 트리거 서비스 요청(Network triggered Service Request)
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 네트워크 트리거 서비스 요청 절차를 예시하는 도면이다.
MME가 ECM-IDLE 상태인 UE에게 시그널링할 필요가 있으면(예를 들어, ECM-IDLE UE를 위한 MME/HSS 개시 디태치 절차(MME/HSS-initiated detach procedure)를 수행하기 위해), 또는 S-GW가 제어 시그널링을 수신하면(예를 들어, 베어러 생성 요청(Create Bearer Request) 또는 베어러 업데이트 요청(Update Bearer Request)), MME는 Network Triggered Service request 절차의 3a 단계부터 시작한다.
ISR이 활성화되면, S-GW가 UE를 위한 베어러 생성 요청(Create Bearer Request) 또는 베어러 업데이트 요청(Update Bearer Request)을 수신하고 S-GW가 하향링크 S1-U를 가지지 않고 SGSN이 S-GW에게 UE가 PMM-IDLE 또는 STANDBY 상태로 변경되었다고 통지하였을 때, S-GW는 시그널링 메시지를 버퍼링하고, UE를 페이징하기 위해 MME 또는 SGSN을 트리거하기 위하여 Downlink Data Notification를 전송한다. 사용자 평면이 확립될 때까지 기다리는 동안에, S-GW가 이미 전송된 제1 Downlink Data Notification 보다 더 높은 우선순위(즉, ARP 우선순위 레벨) 제2 Downlink Data Notification를 전송하도록 트리거되면, S-GW는 MME에게 더 높은 우선순위를 지시하는 새로운 Downlink Data Notification 메시지를 전송한다. S-GW가 이미 전송된 제1 Downlink Data Notification 보다 같거나 낮은 우선순위를 가지는 베어러를 위한 추가적인 하향링크 시그널링 메시지를 수신하면, 또는 S-GW가 더 높은 우선순위를 지시하는 제2 Downlink Data Notification를 전송하였고 이 UE를 위한 추가적인 하향링크 시그널링 메시지를 수신하면, S-GW는 이들 하향링크 시그널링 메시지를 버퍼링하고, 새로운 Downlink Data Notification를 전송하지 않는다. S-GW는 UE triggered service request 절차에 기반하여 현재 RAT 타입에 대하여 통지되지 않는다. S-GW는 전용 베어러 활성화 또는 전용 베어러 수정 절차를 수행한다. 즉, S-GW는 UE가 현재 위치하는 MME 또는 SGSN에게 버퍼링된 시그널링을 전송하고, 마지막 보고된 RAT 타입과 비교하여 RAT 타입이 변경되었으면 현재 RAT 타입을 P-GW에게 알린다. 동적 PCC가 이용되면, 현재 RAT 타입 정보는 P-GW로부터 PCRF로 전달된다. PCRF 응답이 EPS 베어러 수정을 유도하면, P-GW는 베어러 업데이트 절차를 개시한다.
S-GW가 Downlink Data Notification를 전송할 때, S-GW는 EPS 베어러 식별자(ID: Identifier) 및 ARP를 포함시킨다. S-GW에 하향링크 데이터 패킷이 도착함으로써 Downlink Data Notification이 트리거되면, S-GW는 하향링크 데이터 패킷이 수신되었던 베어러와 연관된 EPS 베어러 ID 및 ARP를 포함시킨다. 제어 시그널링이 도착함으로써 Downlink Data Notification이 트리거되면, S-GW는 제어 시그널링 내 존재하는 EPS 베어러 ID 및 ARP를 포함시킨다. ARP가 제어 시그널링 내 존재하지 않으면, S-GW는 저장된 EPS 베어러 컨텍스트 내 ARP를 포함시킨다.
LIPA PDN 연결이 존재하면, L-GW가 ECM-IDLE 상태인 UE에 대한 하향링크 데이터를 수신할 때, L-GW는 제1 하향링크 사용자 패킷을 S-GW에게 전송하고, 모든 다른 하향링크 사용자 패킷을 버퍼링한다. S-GW는 UE를 페이징하기 위해 MME를 트리거한다.
1. S-GW가 사용자 평면이 연결되지 않았다고 알려진 UE를 위한 하향링크 데이터 패킷/제어 시그널링을 수신할 때(즉, S-GW 컨텍스트 데이터가 하향링크 사용자 평면 TEID가 없음을 지시), S-GW는 하향링크 데이터 패킷을 버퍼링하고, UE를 서비스하는 MME 또는 SGSN을 식별한다.
MME가 S-GW에게 하향링크 낮은 우선순위 트래픽을 봉쇄(throttle)하도록 요청하였고 하향링크 데이터 패킷이 봉쇄(throttle)된 낮은 우선순위 베어러 상에서 수신되면, S-GW는 하향링크 데이터를 드랍(drop)한다.
MME가 S-GW에게 Downlink Data Notification 전송을 지연하도록 요청하였으면, S-GW는 하향링크 데이터를 버퍼링하고 2 단계가 진행되기 전에 타이머가 만료될 때까지 기다린다. UE를 위한 DL-TEID 및 eNB 주소가 타이머가 만료되기 전에 수신되면, 타이머는 취소되고, Network triggered Service Request 절차는 이후 단계의 수행 없이 종료된다. 즉, 하향링크 데이터가 UE에게 전송된다.
S-GW가 타이머가 만료되기 전에 이 UE를 위한 추가적인 하향링크 데이터 패킷/제어 시그널링을 수신하면, S-GW는 이 타이머를 재시작하지 않는다.
2. S-GW는 주어진 UE를 위한 제어 평면 연결성을 가지는 MME 및 SGSN 노드에게 Downlink Data Notification 메시지를 전송한다. Downlink Data Notification는 ARP, EPS 베어러 ID, 페이징 정책 지시(Paging Policy Indication)를 포함한다. ARP 및 EPS 베어러 ID는 항상 Data Notification 내에서 셋팅된다. MME 및 SGSN은 S-GW에게 하향링크 데이터 통지 확인응답(Downlink Data Notification Ack) 메시지를 응답한다. 페이징 정책 구별(Differentiation)을 지원할 때, S-GW는 메시지 내 Downlink Data Notification 메시지를 트리거한 하향링크 데이터와 관련된 Paging Policy Indication를 지시한다.
UE가 파워 세이빙 상태(즉, 파워 세이빙 모드(PSM: Power Saving Mode) 또는 확장된 아이들 모드 불연속 수신(DRX: Discontinuous Reception))임을 감지하고 현재 페이징에 의해 접근될 수 없다고 판단한 MME와 SGSN는 확장된 버퍼링을 개시한다. MME/SGSN는 무선 베어러가 UE에게 확립되기 전에 예상된 시간을 도출한다. MME/SGSN은 Downlink Data Notification Ack 메시지 내에서 하향링크 버퍼링 요청(DL Buffering Requested)을 S-GW에게 지시하고, 하향링크 버퍼링 구간 시간(DL Buffering Duration time)을 포함시키며, 선택적으로 하향링크 버퍼링이 제안된 패킷 수(DL Buffering Suggested Packet Count)를 포함시킨다. MME/SGSN은 DL Buffering Duration time에 기반하여 UE에 대한 이동성 관리(MM: Mobility Management) 컨텍스트 내 DL Data Buffer Expiration Time에 대한 새로운 값을 저장하고, 이 절차의 남은 단계를 생략한다. DL Data Buffer Expiration Time은 파워 세이빙 상태를 이용하는 UE를 위해 사용되고, S-GW 내 버퍼링된 데이터가 있음을 지시하며, 또한 UE가 네트워크에게 시그널링할 때 사용자 평면 셋업 절차가 필요하다고 지시한다. DL Data Buffer Expiration Time가 만료되면, MME/SGSN은 버퍼링된 하향링크 데이터가 없다고 간주하고, TAU 절차에서 컨텍스트가 전달되는 동안에 버퍼링된 하향링크 데이터 대기(Buffered DL Data Waiting)의 지시가 전송되지 않는다.
MME/SGSN 내 UE에 대해 "Availability after DDN Failure" 모니터링 이벤트가 설정되면, MME/SGSN은 확장된 버퍼링을 개시하지 않는다. 대신, MME/SGSN는 UE가 이용 가능해질 때 "Availability after DDN Failure" 통지의 전송을 기억하기 위하여 DDN 실패 후 이용 가능성 통지(Notify-on-available-after-DDN-failure) 플래그를 셋팅한다. MME/SGSN 내 UE에 대해 "UE Reachability" 모니터링 이벤트가 설정되면, MME/SGSN은 확장된 버퍼링을 개시할 필요가 없다.
MME/SGSN은 확장된 버퍼링을 개시할 때 MTC 사용자와의 서비스 레벨 합의(SLA: service-level agreement)에 기반하여 추가적인 정보를 이용할 수 있다. 예를 들어, 특정 액세스 포인트 명칭(APN: Access Point Name)에 대해서만 개시하거나, 특정 가입자에 대해서는 개시하지 않거나, "Availability after DDN failure" 및 "UE reachability" 모니터링 이벤트와 함께 확장된 버퍼링을 개시하는 등
Downlink Data Notification Ack 메시지 내 하향링크 버퍼링 요청 지시(DL Buffering Requested indication)를 수신한 S-GW는 DL Buffering Duration time에 기반한 DL Data Buffer Expiration Time에 대한 새로운 값을 저장하고, DL Data Buffer Expiration Time이 만료되기 전에 S-GW 내 해당 UE에 대한 이후의 하향링크 데이터 패킷이 수신되더라도 추가적인 Downlink Data Notification를 전송하지 않는다.
사용자 평면이 확립될 때까지 기다리는 동안에, S-GW가 이미 전송되었던 제1 Downlink Data Notification에 비하여 더 높은 우선순위(즉, ARP 우선순위 레벨)을 가지는 베어러에 대한 제2 Downlink Data Notification를 전송하도록 트리거되면, S-GW는 MME에게 더 높은 우선순위를 지시하는 새로운 Downlink Data Notification 메시지를 전송한다. S-GW가 이미 전송되었던 제1 Downlink Data Notification와 같거나 낮은 우선순위를 가지는 베어러에 대한 추가적인 하향링크 데이터 패킷을 수신하면, 또는 S-GW가 더 높은 우선순위를 지시하는 제2 Downlink Data Notification message를 전송하였고 이 UE를 위한 추가적인 하향링크 데이터 패킷을 수신하면, S-GW는 이들 하향링크 데이터 패킷을 버퍼링하고, 새로운 Downlink Data Notification를 전송하지 않는다.
사용자 평면이 확립될 때까지 기다리는 동안에, S-GW가 Downlink Data Notification 메시지가 전송되었던 MME/SGSN 이외의 MME 또는 SGSN으로부터 Modify Bearer Request 메시지를 수신하면, S-GW는 심지어 ISR이 활성화되더라도 Modify Bearer Request 메시지가 수신된 새로운 MME 또는 SGSN에게만 Downlink Data Notification 메시지를 재전송한다.
이전(old) MME가 Downlink Data Notification을 수신하였을 때, MME 변경을 수반하는 TAU 절차 또는 라우팅 영역 업데이트(RAU: Routing Area Update) 절차가 진행 중이면, old MME는 Downlink Data Notification 메시지가 일시적으로 거절되었다는 지시를 이용하여 Downlink Data Notification 메시지를 거절한다.
유사하게, old SGSN이 Downlink Data Notification을 수신하였을 때, SGSN 변경을 수반하는 RAU 절차 또는 TAU 절차가 진행 중이면, old SGSN은 Downlink Data Notification 메시지가 일시적으로 거절되었다는 지시를 이용하여 Downlink Data Notification 메시지를 거절한다.
Downlink Data Notification 메시지가 일시적으로 거절되었다는 지시를 가지는 Downlink Data Notification Ack 메시지를 수신할 때, 그리고 Downlink Data Notification가 S-GW에서 하향링크 데이터 패킷의 도착에 의해 트리거되면, S-GW는 지역적으로 설정된 가드 타이머를 시작하고, 해당 UE로 수신되는 모든 하향링크 사용자 패킷을 버퍼링하고, Modify Bearer Request 메시지의 수신을 기다린다. Modify Bearer Request 메시지가 수신할 때, S-GW는 심지어 ISR이 활성화되더라도 Modify Bearer Request가 수신되었던 new MME 또는 SGSN에게만 Downlink Data Notification를 재전송한다. 그렇지 않으면, S-GW는 가드 타이머의 만료 시 또는 MME/SGSN으로부터 세션 삭제 요청(Delete Session Request) 메시지를 수신할 때 버퍼링된 하향링크 사용자 패킷을 해제한다.
Downlink Data Notification 메시지가 일시적으로 거절되었다는 지시를 포함하는 Downlink Data Notification Ack 메시지를 수신할 때, 그리고 Downlink Data Notification가 S-GW에서 시그널링 메시지의 도착으로 인하여 트리거되면, S-GW는 요청이 일시적으로 거절되었다는 동일한 지시를 가지고 P-GW 개시 EPS 베어러 요청을 거절할 수 있다. 요청이 일시적으로 거절되었다는 지시를 수반하는 EPS 베어러 P-GW 개시 절차에 대한 거절을 수신하면, P-GW는 지역적으로 설정된 가드 타이머를 시작할 수 있다. P-GW는 UE가 새로운 S-GW를 통해 액세스하였음을 감지할 때 또는 가드 타이머가 만료 시 미리 설정된 횟수까지 재시도할 수 있다.
3a. UE가 MME 내 등록되고, 페이징으로 접근 가능하다고 간주되면, MME는 페이징(Paging) 메시지를 UE가 등록된 트래킹 영역(들)에 속한 각 eNB에게 전송한다. Paging 메시지는 페이징을 위한 NAS ID, TAI(들), DRX 인덱스에 기반한 UE 식별자, 페이징 DRX 길이, 페이징을 위한 CSG ID들의 리스트, 페이징 우선순위 지시를 포함한다. MME가 UE를 향하여 S1-MME 상에서 이미 시그널링 연결을 가졌으며, S1-U 터널이 아직 확립되지 않았으면, 3-4 단계를 생략된다.
extended idle mode DRX가 UE에게 이용 가능하면, MME는 UE의 다음 페이징 시점(paging occasion)의 발생 직전에 MME는 UE를 페이징한다.
페이징 우선순위 지시는 다음과 같은 경우에서만 포함된다:
- MME가 멀티미디어 우선순위 서비스(MPS: Multimedia Priority Service) 또는 다른 우선순위 서비스와 연관된 ARP 우선순위 레벨을 가지는 Downlink Data Notification 또는 Create Bearer Request를 수신할 때,
- 하나의 페이징 우선순위 레벨이 다중 ARP 우선순위 레벨 값들을 이용할 수 있다.
혼잡한 상황에서, eNB는 페이징 우선순위 지시에 따라 UE의 페이징에 우선순위를 매길 수 있다.
페이징 우선순위 지시가 없는 페이징 요청(Paging Request) 메시지에 대한 UE의 응답을 기다리는 동안에, MME가 MPS 또는 다른 우선순위 서비스와 연관된 ARP 우선순위 레벨을 지시하는 Update Bearer Request, Create Bearer Request 또는 Downlink Data Notification를 수신하면, MME는 적합한 페이징 우선순위를 가지는 또 다른 페이징 메시지를 전송한다.
MME가 코어 네트워크(CN: Core Network) 내 CSG 페이징 최적화를 지원하도록 설정되면, MME는 CSG 가입되지 않은 UE에 대하여 CSG 셀을 가지는 eNB(들)에게 페이징 메시지를 전송하지 않는다. MME가 HeNB 서브시스템 내 CSG 페이징 최적화를 지원하도록 설정되면, 페이징 메시지 내 페이징을 위한 CSG ID들의 리스트가 포함된다. CSG 페이징 최적화의 경우, 만료된 CSG 가입 및 유효한 CSG 가입의 CSG ID(들) 모두 리스트에 포함된다. UE가 긴급 베어러 서비스를 가지면, MME는 CSG 페이징 최적화를 수행하지 않는다.
MME가 로컬 네트워크에서 SIPTO 그리고 (H)eNB와 병치된(collocated) L-GW 기능을 가지는 PDN 연결 상에서 도착한 트래픽을 위한 LIPA 페이징을 지원할 때, MME는 특정 PDN 연결을 제어하지 않은 eNB(들)에게는 페이징 메시지를 전송하지 않고 (H)eNB에게만 페이징한다.
서로 다른 APN 조합, 페이징 정책 지시 그리고 다른 EPS 베어러 컨텍스트 정보(예를 들어, QoS 클래스 식별자(QCI: Class Identifier))를 위해 페이징 전략이 S-GW로부터 MME 내 설정될 수 있다. APN 및 EPS 베어러 컨텍스트 정보는 Downlink Data Notification 내 수신한 EPS 베어러 ID에 의해 식별된다. 페이징 전략은 다음을 포함할 수 있다:
- 페이징 재전송 기법(예를 들어, 얼마나 자주 페이징이 반복되는지 또는 얼마의 시간 간격으로 페이징이 반복되는지);
- 특정 MME가 높은 로드 상태인 동안에 eNB에게 페이징 메시지를 전송하는지 여부에 대한 결정;
- 페이징 기반 서브-영역을 적용하는지 여부(예를 들어, 마지막 알려진 ECGI 또는 TA 내 최초 페이징 및 모든 등록된 TA(들) 내 재전송).
UE 내 extended idle mode DRX가 이용 가능하면, MME는 추가적으로 페이징 재전송 기법을 위해 페이징 시간 윈도우(Paging Time Window) 길이를 고려할 수 있다.
MME 및 E-UTRAN은 추가적으로 하나 또는 그 이상의 다음과 같은 수단을 이용하여 UE를 성공적으로 페이징하기 위해 사용되는 네트워크 자원 및 시그널링 로드를 감소시키기 위해 페이징 최적화를 지원할 수 있다:
- MME가 특정 페이징 전략(예를 들어, S1 페이징 메시지가 마지막 UE를 서비스한 eNB에게 전송됨)을 구현할 수 있다;
- MME가 ECM-IDLE로 천이 시 E-UTRAN에 의해 제공된 추천된 셀 및 eNB 정보(Information On Recommended Cells And ENBs)를 고려할 수 있다. MME는 페이징되는 eNB를 결정하기 위하여 이 정보의 일부를 고려할 수 있으며, 이들 eNB 각각에에 S1 페이징 메시지 내 추천된 셀에 대한 정보를 제공할 수 있다;
- E-UTRAN이 페이징 시 MME에 의해 제공되는 페이징 시도 카운트 정보(Paging Attempt Count Information)를 고려할 수 있다.
최적화/전략의 구현 시, MME는 UE에 대한 PSM 활성 타이머(PSM active timer) 및 DRX 간격(DRX interval)을 고려한다.
페이징 정보를 위한 UE 무선 능력(UE Radio Capability for Paging Information)이 MME 내에서 이용 가능하면, MME는 UE Radio Capability for Paging Information를 S1 페이징 메시지에 포함시켜 eNB에게 전송한다.
페이징을 위해 추천되는 셀 및 eNB에 대한 정보(Information On Recommended Cells And ENBs)가 MME 내에서 이용 가능하면, MME는 페이징을 위해 eNB(들)을 결정하기 위해 이 정보를 고려하고, eNB에게 페이징 시 MME는 eNB에게 추천된 셀에 대한 정보를 트랜스패런트하게(transparently) 전달한다.
MME가 S1AP 페이징 메시지(들) 내 paging attempt count 정보를 포함시킬 수 있다. paging attempt count 정보는 페이징을 위해 MME에 의해 선택된 모든 eNB(들)에게 동일할 수 있다.
MME가 진보된 커버리지(Enhanced Coverage)를 위한 정보를 저장하고 있으면, MME를 페이징을 위해 MME에 의해 선택된 모든 eNB(들)을 위해 이것을 페이징 메시지 내 포함시킨다.
3b. UE가 SGSN 내 등록되면, SGSN은 페이징 메시지는 RNC(Radio Network Controller)/BSS(Base Station system)에게 전송한다.
4a. eNB가 MME로부터 페이징 메시지를 수신하면, UE는 eNB에 의해 페이징된다.
4b. RNC/BSS 노드가 SGSN으로부터 페이징 메시지를 수신하면, UE는 RNC/BSS에 의해 페이징된다.
5. UE가 ECM-IDLE 상태일 때, E-UTRAN 액세스 내 페이징 지시를 수신할 때, UE는 UE triggered Service Request 절차를 개시한다. 또는 UE가 사용자 평면 CIoT EPS 최적화를 이용 가능하고, UE 내 유보된 액세스 스트라텀(stratum) 컨텍스트가 저장되어 있으면, UE는 연결 재개(Connection Resume) 절차를 개시한다. MME가 이미 UE를 향해 S1-MME 상에서 시그널링 연결을 가졌으나 S1-U 터널은 아직 확립되지 않았으면, 메시지 시퀀스는 MME가 베어러(들)을 확립할 때의 단계로부터 시작된다.
UTRAN 또는 GERAN 내 페이징 지시를 수신할 때, MS(Mobile Station)은 각각의 액세스에 대하여 응답하고, SGSN은 S-GW에게 알린다.
MME 및/또는 SGSN은 타이머를 이용하는 페이징 절차를 감독한다. MME 및/또는 SGSN이 페이징 요청 메시지에 대한 UE로부터 응답을 수신하지 못하면, MME 및/또는 SGSN은 앞서 2 단계에서 설명한 적용 가능한 페이징 전략에 따라 페이징을 반복할 수 있다.
MME 및/또는 SGSN가 페이징 반복 절차 후에도 UE로부터 응답을 수신하지 못하면, MME 또는 SGSN이 UE의 응답을 방지하는 MM 절차가 진행 중이지 않은 한(즉, MME 또는 SGSN이 UE가 또 다른 MME 또는 SGSN과 TAU 또는 RAU를 수행한다는 컨텍스트 요청 메시지를 수신한 경우), 페이징이 Downlink Data Notification 메시지에 의해 트리거되었으면, MME 및/또는 SGSN은 페이징 실패를 S-GW에게 알리기 위하여 하향링크 데이터 통지 거절(Downlink Data Notification Reject)를 전송한다. 페이징이 S-GW로부터 제어 시그널링에 의해 트리거되었으며, MME 또는 SGSN이 페이징 반복 절차 이후에도 UE로부터 응답을 수신하지 못하였으면, MME 또는 SGSN은 제어 시그널링을 거절한다. Downlink Data Notification Reject 메시지가 수신되면, ISR이 비활성되었으면, S-GW는 버퍼링된 패킷(들)을 삭제한다. ISR이 활성화되었고 S-GW가 Serving GW receives Downlink Data Notification Reject 메시지를 SGSN 및 MME 모두로부터 수신하였으면, S-GW는 Service Request 절차를 트리거링하는 버퍼링된 패킷(들)을 삭제하거나 또는 제어 시그널링을 거절한다. UE가 ECM-IDLE 상태이고 P-GW가 "PDN 과금 일시중지(PDN charging pause)" 기능을 이용 가능하면, S-GW는 P-GW 과금의 일시중지 절차를 개시할 수 있다.
6a. ISR이 활성화되었고 페이징 응답이 E-UTRAN 액세스 내에서 수신되었으면, S-GW는 "페이징 중단(Stop Paging)" 메시지를 SGSN에게 전송한다.
6b. ISR이 활성화되었고 페이징 응답이 UTRAN 또는 GERAN 액세스 내에서 수신되었으면, S-GW는 "페이징 중단(Stop Paging)" 메시지를 MME에게 전송한다.
S-GW는 Service Request 절차가 수행된 RAT을 통해 UE를 향하여 하향링크 데이터를 전송한다.
LIPA PDN 연결의 경우, UE가 연결 모드로 진입한 후, L-GW 내 버퍼링된 패킷은 직접 경로 상에서 HeNB에게 전달된다. UE가 L-GW이 병치된(collocated) 셀 이외에 서로 다른 셀에서 연결 모드로 진입하면, MME는 LIPA PDN 연결을 비활성화한다. UE로부터 응답이 없어 network triggered service request가 실패되면, MME 및/또는 SGSN은 운영자 정책에 기초하여 유지되는 보장된 비트율(GBR: Guaranteed Bit Rate) 베어러에 대한 전용 베어러 비활성화(Dedicated Bearer Deactivation) 절차를 개시할 수 있다.
이하, 앞서 설명한 서비스 요청 절차 내에서 UE와 MME 간의 동작에 대하여 보다 구체적으로 살펴본다.
1) 일반
service request 절차의 목적은 EMM-IDLE로부터 EMM-CONNECTED 모드로의 EMM 모드의 전환을 위함이다. UE가 제어 평면 CIoT EPS 최적화를 수반하는 EPS 서비스를 이용하지 않으면, 사용자 데이터 또는 시그널링이 전송될 때, 이 절차는 무선 및 S1 베어러를 확립하기 위하여 사용된다. UE가 제어 평면 CIoT EPS 최적화를 수반한 EPS 서비스를 이용하면, 이 절차는 제어 평면을 통한 UE에 의해 개시된 사용자 데이터의 전달을 위해 사용될 수 있다. 이 절차의 또 다른 목적은 발신(MO: Mobile Originated)/착신(MT: Mobile Terminated) 회선교환(CS: Circuit Switched) 폴백 또는 1xCS 폴백 절차를 개시하기 위함이다.
이 절차는 다음과 같을 때 이용된다:
- 네트워크가 대기 중인(pending) 하향링크 시그널링을 가질 때;
- UE가 대기 중인(pending) 상향링크 시그널링을 가질 때;
- UE 또는 네트워크가 대기 중인(pending) 사용자 데이터를 가지고, UE가 EMM-IDLE 모드일 때;
- UE가 EMM-CONNECTED 모드이고 NAS 시그널링 연결만을 가질 때; UE가 제어 평면 CIoT EPS 최적화를 수반하는 EPS 서비스를 이용 중이고, 사용자 평면 무선 베어러를 경유하여 전송될 대기 중인(pending) 사용자 데이터를 가질 때;
- EMM-IDLE 또는 EMM-CONNECTED 모드인 UE가 MO/MT CS 폴백 또는 1xCS 폴백을 수행하도록 요구할 때;
- 네트워크가 대기 중인(pending) 하향링크 cdma2000 시그널링을 가질 때;
- UE가 대기 중인(pending) 상향링크 cdma2000을 가질 때; 또는
- UE가 근접성 서비스(Prose: Proximity Service) 직접 디스커버리 또는 Prose 직접 통신을 위해 자원을 요청해야 할 때.
EMM-IDLE 모드 내 시그널링, cdma2000 시그널링 또는 사용자 데이터의 하향링크 전달을 위해 service request 절차가 UE에 의해 개시되지만, 페이징 절차를 이용하여 트리거는 네트워크에 의해 주어진다.
UE는 다음과 같을 때 service request 절차를 개시한다:
a) EMM-IDLE 모드인 UE가 네트워크로부터 "패킷 교환(PS: Packet Switched)"으로 셋팅된 CN 도메인 지시자를 가지는 페이징 요청을 수신할 때;
b) EMM-IDLE 모드인 UE가 전송할 대기 중인(pending) 사용자 데이터를 가질 때;
c) EMM-IDLE 모드인 UE가 대기 중인(pending) 상향링크 시그널링을 가질 때;
d) EMM-IDLE 또는 EMM-CONNECTED 모드인 UE가 CS 폴백을 이용하도록 설정되고, 상위 계층으로부터 발신 CS 폴백 요청(mobile originating CS fallback request)을 가질 때;
e) EMM-IDLE 모드인 UE가 CS 폴백을 사용하도록 설정되고, 네트워크로부터 "CS"로 셋팅된 CN 도메인 지시자를 가지는 페이징 요청을 수신하거나 또는 EMM-CONNECTED 모드인 UE가 CS 폴백을 이용하도록 설정되고 CS 서비스 통지(CS SERVICE NOTIFICATION) 메시지를 수신할 때;
f) EMM-IDLE 또는 EMM-CONNECTED 모드인 UE가 1xCS 폴백을 이용하도록 설정되고, 상위 계층으로부터 발신 1xCS 폴백 요청(mobile originating 1xCS fallback request)을 가질 때;
g) EMM-CONNECTED 모드인 UE가 1xCS 폴백을 이용하도록 설정되고, E-UTRAN을 통해 수신한 1xCS 페이징 요청을 포함하는 cdma2000 시그널링 메시지를 수락할 때;
h) EMM-IDLE 모드인 UE가 E-UTRAN을 통해 전송될 대기 중인(pending) 상향링크 cdma2000 시그널링을 가질 때;
i) EMM-IDLE 또는 EMM-CONNECTED 모드인 UE가 1xCS 폴백을 이용하도록 설정되고, cdma2000 1xRTT를 통해 수신된 1xCS 페이징 요청을 포함하는 cdma2000® 시그널링 메시지를 수락하고, 네트워크가 듀얼 Rx CSFB(CS fallback)를 지원하거나 또는 CS 폴백 등록 파라미터를 제공할 때;
j) EMM-IDLE 또는 EMM-CONNECTED 모드인 UE가 cdma2000 1xRTT를 통해 전송될 대기 중인(pending) 상향링크 cdma2000 시그널링을 가지고, 네트워크가 듀얼 Rx CSFB(CS fallback)를 지원하거나 또는 CS 폴백 등록 파라미터를 제공할 때;
k) UE가 S101 모드로부터 S1 모드로의 시스템 간(inter-system) 변경을 수행하고, 대기 중인(pending) 사용자 데이터를 가질 때;
l) EMM-IDLE 모드인 UE가 ProSe 직접 디스커버리 또는 ProSe 직접 통신을 위한 자원을 요청하여야 할 때; 또는
m) EMM-CONNECTED 모드이고 NAS 시그널링 연결만을 가지는 UE가 제어 평면 CIoT EPS 최적화를 수반하는 EPS 서비스를 이용하는 중이고, 사용자 평면 무선 베어러를 경유하여 전송될 대기 중인(pending) 사용자 데이터를 가질 때.
service request 절차를 개시하기 위한 앞서 설명한 기준 중에 하나가 만족하면, 다음과 같은 조건이 만족될 때, service request 절차는 UE에 의해서만 개시될 수 있다:
- UE의 EPS update status가 EU1 UPDATED이고, 현재 서빙 셀의 TAI가 TAI 리스트 내 포함되고; 그리고
- EMM 특정 절차가 진행 중이지 않은 경우.
서비스 요청 시도 카운터(service request attempt counter)는 service request 시도 및 네트워크로부터의 무응답의 횟수를 제한하기 위해 사용된다.
service request attempt counter는 다음과 같을 때 리셋(reset)된다:
- 어태치(attach) 또는 결합된 어태치(combined attach) 절차가 성공적으로 완료될 때;
- 일반적인 또는 주기적인 TAU 또는 결합된 TAU 절차가 성공적으로 완료될 때; 또는
- 패킷 서비스를 획득하기 위한 service request 절차가 성공적으로 완료될 때.
2) 서비스 요청 절차 개시(Service request procedure initiation)
이하, UE가 제어 평면 CIoT EPS 최적화를 이용하지 않는 경우에 대하여 살펴본다.
도 9 및 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 서비스 요청 절차를 예시하는 도면이다.
앞서 설명한 a), b), c), h), k) 및 l)의 경우:
- UE가 NAS 시그널링 낮은 우선순위가 설정되지 않으면, UE는 서비스 요청(SERVICE REQUEST) 메시지를 MME에게 전송함으로써 service request 절차를 개시한다;
- UE가 NAS 시그널링 낮은 우선순위가 설정되지 않고, 네트워크로부터 마지막에 수신된 어태치 승인(ATTACH ACCEPT) 메시지 또는 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지가 패킷 서비스를 위해 확장된 서비스 요청(EXTENDED SERVICE REQUEST)의 사용을 지원한다고 지시하였으면, UE는 서비스 타입이 "S1을 경유한 패킷 서비스(packet services via S1)"로 셋팅된 확장된 서비스 요청(EXTENDED SERVICE REQUEST) 메시지를 전송한다; 또는
- UE가 NAS 시그널링 낮은 우선순위가 설정되지 않고, 네트워크로부터 마지막에 수신된 어태치 승인(ATTACH ACCEPT) 메시지 또는 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지가 패킷 서비스를 위해 확장된 서비스 요청(EXTENDED SERVICE REQUEST)의 사용을 지원한다고 지시하지 않았으면, UE는 대신에 서비스 요청(SERVICE REQUEST) 메시지를 전송한다.
앞서 설명한 a), b), c), h), k) 및 l)의 경우, 서비스 타입이 "packet services via S1"으로 셋팅된 SERVICE REQUEST 메시지 또는 EXTENDED SERVICE REQUEST 메시지의 전송 후, UE는 T3417 타이머를 시작하고, EMM-SERVICE-REQUEST-INITIATED 상태로 진입한다.
앞서 설명한 d)의 경우, UE는 EXTENDED SERVICE REQUEST 메시지를 전송하고, T3417ext 타이머를 시작하며, EMM-SERVICE-REQUEST-INITIATED 상태로 진입한다.
앞서 설명한 e)의 경우:
- UE가 EMM-IDLE 모드이면, UE는 EXTENDED SERVICE REQUEST 메시지를 전송하고, T3417ext 타이머를 시작하고, EMM-SERVICE-REQUEST-INITIATED 상태로 진입한다;
- UE가 EMM-CONNECTED 모드이고 UE가 페이징을 수락하면, UE는 "UE에 의해 수락된 CS 폴백"을 지시하는 CSFB 응답 IE를 포함하는 EXTENDED SERVICE REQUEST 메시지를 전송하고, T3417ext를 시작하고, EMM-SERVICE-REQUEST-INITIATED 상태로 진입한다; 또는
- UE가 EMM-CONNECTED 모드이고 UE가 페이징을 거절하면, UE는 "UE에 의해 거절된 CS 폴백"을 지시하는 CSFB 응답 IE를 포함하는 EXTENDED SERVICE REQUEST 메시지를 전송하고, EMM-REGISTERED.NORMAL-SERVICE 상태로 진입한다. 네트워크는 CS 폴백 절차를 개시하지 않는다.
앞서 설명한 f, g, i and j의 경우, UE는 EXTENDED SERVICE REQUEST 메시지를 전송하고, T3417 타이머를 시작하며, EMM-SERVICE-REQUEST-INITIATED 상태로 진입한다.
일대일 ProSe 직접 통신(One-to-one ProSe Direct Communication)
1) 일반
One-to-one ProSe 직접 통신은 2개의 UE 간에 PC5를 통해 안전한(secure) 계층-2(Layer-2) 링크를 확립함으로써 실현된다.
각 UE는 유니캐스트 통신을 위한 Layer-2 식별자(ID: Identifier)를 가진다. 이 Layer-2 ID는 Layer-2 링크 상에서 전송되는 매 프레임의 소스 Layer-2 ID 필드 내 포함되고, 또한 계층-2 링크 상에서 수신되는 매 프레임의 목적지 Layer-2 ID 필드 내 포함된다.
UE는 유니캐스트 통신을 위한 Layer-2 ID가 적어도 지역적으로 고유함을 보장할 필요가 있다. 그 효과를 위해 UE는 지정되지 않은 메커니즘을 사용하여 인접한 UE와의 Layer-2 ID 충돌을 처리 할 준비가 되어있어야 한다(예를 들어, 충돌이 감지될 때 유니캐스트 통신을 위한 새로운 Layer-2 ID 자기-지정(self-assign))
one-to-one ProSe 직접 통신을 위한 layer-2 링크는 2개의 UE의 Layer-2 ID들의 조합에 의해 식별된다. 이는 UE가 동일한 Layer-2 ID를 사용하여 one-to-one ProSe 직접 통신을 위한 다중의 layer-2 링크에 참여할 수 있음을 의미한다.
2) PC5를 통한 안전한 계층-2 링크 확립(Establishment of secure layer-2 link over PC5)
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 PC5 인터페이스를 통한 안전한 계층-2 링크를 확립하는 절차를 예시한다.
고립된(isolated)(즉, 릴레이 없음) 일대일 통신에 참여하는 UE들은 IP(Internet Protocol) 주소 할당 메커니즘을 협상하고, 선택적으로 링크 확립 절차 동안에 필요하다면 지역적-링크(link-local) IPv6(IP version 6) 주소들을 교환한다.
1. UE-1은 상호간의 인증을 트리거하기 위해 직접 통신 요청(Direct Communication Request) 메시지를 UE-2에게 전송한다. 이 메시지는 사용자 정보(User Info)를 포함한다.
링크가 고립된(isolated) 일대일 통신(즉, 어느 UE도 릴레이가 아님)을 위해 셋업되면, UE-1은 UE-2에게 메시지 내에서 동적 호스트 구성 프로토콜 버전 4(DHCPv4: Dynamic Host Configuration Protocol version 4) 서버, IPv6 라우터, 또는 모두로서 동작할 수 있는지 여부를 지시한다. UE-1이 어떠한 IP 주소 할당 메커니즘을 지원하지 않으면, UE-1은 지역적-링크(link-local) IPv6 주소를 메시지 내 포함시킨다.
2. UE-2는 상호 인증을 위한 절차를 개시한다. 인증 절차의 성공적인 완료는 PC5를 통한 안전한 layer-2 링크의 확립(즉, 보안 연계(secure association)의 확립)을 완료시킨다. 이 단계의 일부로서, UE-2는 UE-1에게 응답으로 사용자 정보(User Info)를 포함시킨다.
링크가 고립된(isolated) 일대일 통신(즉, 어느 UE도 릴레이가 아님)을 위해 셋업되면, UE-2는 UE-1에게 응답 메시지 내에서 DHCPv4 서버, IPv6 라우터, 또는 모두로서 동작할 수 있는지 여부를 지시한다. UE-2가 어떠한 IP 주소 할당 메커니즘을 지원하지 않고 또한 1 단계에서 UE-1이 지역적-링크(link-local) IPv6 주소를 포함시켰다면, UE-2는 충돌되지 않은 지역적-링크(link-local) IPv6 주소를 응답 메시지 내 포함시킨다.
UE-1 및 UE-2 모두 지역적-링크(link-local) IPv6 주소의 사용을 선택하였으면, 둘 모두 RFC 4862에서 정의된 복제된 주소 검출을 이용할 수 없다.
3) PC5를 통한 계층-2 링크 유지(Layer-2 link maintenance over PC5)
PC5 시그널링 프로토콜은 기능적으로 UE가 ProSe 통신 범위 내 있지 않을 때 이를 감지하기 위해 사용되는 킵-얼라이브(keep-alive)를 지원한다. 이는 암묵적인 layer-2 링크 해제를 진행하기 위함이다.
4) PC5를 통한 계층-2 링크 해제(Layer-2 link release over PC5)
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 PC5 인터페이스를 통한 계층-2 링크를 해제하는 절차를 예시한다.
이 절차는 또한 원격 UE와 UE와 네트워크 간(UE-to-Network) 릴레이 간에 layer-2 링크를 해제하기 위해 사용되며, 원격 UE 또는 릴레이 중 어느 하나에 의해 개시된다(예를 들어, 네트워크로의 연결성의 일시적인 손실, 릴레이의 배터리 부족 등으로 인하여).
1. UE-1은 layer-2 링크를 해제하고 연계된 모든 컨텍스트 데이터를 삭제하기 위하여 단절 요청(Disconnect Request) 메시지를 UE-2에게 전송한다.
2. Disconnect Request 메시지를 수신할 때, UE-2는 단절 응답(Disconnect Response) 메시지로 응답하고, layer-2 링크와 연계된 모든 컨텍스트 데이터를 삭제한다.
UE 능력 제어(UE Capability Handling)
1) 일반
UE 능력 정보는 UE 무선 능력 정보(UE Radio Capability information)와 UE 코어 네트워크 능력 정보(UE Core Network Capability information)로 구성된다.
페이징을 위한 UE 무선 능력 정보는 UE 무선 능력 정보와 UE 코어 네트워크 능력 정보와 구별된다. 페이징을 위한 UE 무선 능력 정보는 E-UTRAN 내에서 페이징을 향상시키기 위해 사용될 수 있다.
2) UE 무선 능력 제어(UE Radio Capability Handling)
UE 무선 능력 정보는 UE가 지원하는 RAT(들)에 대한 정보(예를 들어, 파워 클래스, 주파수 밴드, 등)를 포함한다. 그 결과, 이 정보는 충분히 커서 ECM-IDLE로부터 ECM-CONNECTED로 매 전환 시에 무선 인터페이스를 통해 전송되기에 바람직하지 않다. 이러한 무선 오버헤드를 방지하기 위하여, MME는
UE 능력 정보를 ECM-IDLE 상태 동안에도 저장하고, 만약 "GERAN/UTRAN 어태치(Attach) 이후 최초 TAU"를 위해 또는 "UE 무선 능력 업데이트"를 위해 UE가 Attach 절차를 수행하는 중 또는 TAU 절차를 수행하는 중이 아니라면, 이용 가능하면, MME는 S1 인터페이스 초기 컨텍스트 셋업 요청(INITIAL CONTEXT SETUP REQUEST) 메시지 내에서 가장 최근의 UE 무선 능력 정보를 E-UTRAN에게 전송한다.
만약 UE가 "GERAN/UTRAN Attach 이후 최초 TAU"를 위해 또는 "UE 무선 능력 업데이트"를 위해 Attach 절차 또는 TAU 절차를 수행하는 중이라면, MME는 저장되어 있던 UE 무선 능력 정보를 모두 삭제한다. 만약, MME가 이 절차 도중에 S1 인터페이스 INITIAL CONTEXT SETUP REQUEST 또는 UE 무선 능력 매칭 요청(UE RADIO CAPABILITY MATCH REQUEST) 메시지를 전송하면, MME는 이 메시지 내에서 E-UTRAN에게 어떠한 UE 무선 능력 정보를 전송하지 않는다. 이는 E-UTRAN이 UE 무선 능력을 UE에게 요청하고, 그것을 S1 인터페이스 UE 능력 정보 지시(UE CAPABILITY INFO INDICATION) 메시지 내에서 MME에게 업로드하도록 트리거한다. MME는 UE 무선 능력 정보를 저장하고, "GERAN/UTRAN Attach 이후 최초 TAU"를 위해 또는 "UE 무선 능력 업데이트"를 위한 Attach 절차 또는 TAU 절차가 아닌 경우, INITIAL CONTEXT SETUP REQUEST 또는 UE RADIO CAPABILITY MATCH REQUEST 메시지에 포함시킨다.
UE가 Servie Request 또는 다른 절차를 수행하는 중이고, MME가 이용 가능한 UE 무선 능력 정보를 가지고 있지 않다면, MME는 어떠한 UE 무선 능력 정보를 포함하지 않는 S1 인터페이스 INITIAL CONTEXT SETUP REQUEST 메시지는 E-UTRAN에게 전송한다. 이는 E-UTRAN이 UE 무선 능력을 UE에게 요청하고, 그것을 S1 인터페이스 UE CAPABILITY INFO INDICATION 메시지 내에서 MME에게 업로드하도록 트리거한다.
EPS CIoT 최적화의 경우, Attach 절차 또는 TAU 절차 중에(예를 들어, "GERAN/UTRAN Attach 이후 최초 TAU"), MME가 S1 인터페이스 INITIAL CONTEXT SETUP REQUEST를 E-UTRAN에게 전송하지 않으면, MME는 UE 무선 능력 정보가 없는 연결 확립 지시(Connection Establishment Indication) 메시지를 E-UTRAN에게 전송함으로써, UE 무선 능력 정보를 획득하여야 한다. 이는 E-UTRAN이 UE 무선 능력을 UE에게 요청하고, 그것을 S1 인터페이스 UE CAPABILITY INFO INDICATION 메시지 내에서 MME에게 업로드하도록 트리거한다. 이후 ECM 연결 내에서, MME가 S1 인터페이스 INITIAL CONTEXT SETUP REQUEST를 E-UTRAN에게 전송하지 않으면, MME는 Connection Establishment Indication 메시지 또는 하향링크 NAS 전달(Downlink NAS Transport) 메시지 내에서 UE 무선 능력 정보를 E-UTRAN에게 전송한다.
UE 무선 능력은 하나의 CN 노드로부터 다른 노드에게 직접적으로 제공되지 않는다. 이것은 E-UTRAN이 UE 무선 능력 정보를 UE에게 요청할 때 MME에게 업로드된다.
MME를 경유한 핸드오버 중에(인트라 RAT 또는 인터 RAT 모두), 소스 3GPP RAT과 타겟 3GPP RAT 간에 무선 능력 정보는 "소스로부터 타겟으로 트랜스패런트 컨테이너(source to target transparent container)" 내에서 전달된다. 추가적인 3GPP RAT에 대한 정보는 선택적으로 source to target transparent container 내에서 전달된다. 소스 및/또는 추가적인 RAT(들)과 관련된 무선 능력 정보의 전달은 타겟 RAT이 다음의 인터-RAT 핸드오버 이전에 UE로부터 정보를 획득해야 하는 필요를 없애기 때문에 효과적이다.
동적인 UTRAN 보안 파라미터에 대한 이슈로 인하여, 인터-RAT 핸드오버 시 특별한 규칙이 UTRAN 무선 능력 정보의 제어에 적용된다.
미래의 무선 기술들, 주파수 밴드 또는 또 다른 진보를 반영할 수 있도록, MME는 UE 무선 능력 정보를 저장한다.
E-UTRAN은 해당 UE의 RRC 연결 동안에 S1 인터페이스 INITIAL CONTEXT SETUP REQUEST 메시지 또는 UE로부터 획득한 UE 무선 능력 정보를 저장한다. E-UTRAN으로부터 UTRAN으로의 어떠한 핸드오버 이전에, E-UTRAN은 UE의 UTRAN 무선 능력을 UE로부터 획득한다.
UE의 UTRAN이 아닌 UE 무선 능력 정보가 ECM-IDLE 상태 중에 변경되면(GERAN/UTRAN 커버리지에 속하는 경우), UE는 E-UTRAN 커버리지로 복위하였을 때 "UE 무선 능력 업데이트"를 지시하는 TAU를 수행한다.
MME는 음성 지원 매칭 정보(Voice Support Match Information)를 요청할 수 있다. 요청되면, eNB는 도출하고, UE 무선 능력이 네트워크 설정과 양립되는지 여부에 대한 지시(예를 들어, UE가 "전체" PS 음성 커버리지를 제공하기 위한 주파수 밴드를 UE가 지원하는지 여부 또는 UE가 네트워크의 SRVCC(Single Radio Voice Call Continuity) 설정을 지원하는지 여부)를 MME에게 제공한다.
3) UE 코어 네트워크 능력(UE Core Network Capability)
UE 코어 네트워크 능력은 UE 네트워크 능력(UE Network Capability) IE(대부분 E-UTRAN 접속 관련 코어 네트워크 파라미터들) 및 MS 네트워크 능력(MS Network Capability) IE(대부분 UTRAN/GERAN 접속 관련 코어 네트워크 파라미터들)로 구분되고, 무선과 관련되지 않은 능력들(예를 들어, NAS 보안 알고리즘 등)을 포함한다. UE Network Capability 및 MS Network Capability 모두 CN 노드들 간에 전달된다(MME에게 MME로, MME에서 SGSN으로, SGSN에서 SGSN으로, SGSN에서 MME로).
MME에 저장된 UE 코어 네트워크 능력 정보가 최신의 정보임을 보장하기 위하여(예를 들어, USIM(universal subscriber identity module)이 커버리지 밖에서 서로 다른 장치 간에 이동되고, 이전 장치는 디태치(Detach) 메시지를 전송하지 않은 상황을 제어하기 위하여; 인터-RAT TAU의 경우), UE는 UE 코어 네트워크 능력 정보를 MME에게 Attach 및 비-주기적인 TAU 절차 중에 NAS 메시지 내에서 전송한다.
MME는 항상 UE로부터 수신한 가장 최신의 UE 코어 네트워크 능력을 저장한다. UE가 UE 코어 네트워크 능력을 Attach 및 TAU 시그널링에서 제공할 때, MME가 이전 MME/SGSN으로부터 수신한 UE 코어 네트워크 능력은 대체된다. 만약, Attach 또는 비-주기적인 TAU 시그널링에 MS 네트워크 능력이 포함되지 않으면(예를 들어, UE가 E-UTRAN만 접속할 수 있는 경우), MME는 저장된 MS 네트워크 능력을 제거하고,
UE의 UE 코어 네트워크 능력 정보가 변경되면(GERAN/UTRAN 커버리지 내 위치하고 ISR 활성화된 경우), UE가 E-UTRAN 커버리지에 복귀할 때, UE는 TAU ('주기적'과 상이한 '타입')를 수행한다.
이하, UE 네트워크 능력(UE network capability)에 대하여 보다 구체적으로 살펴본다.
UE network capability IE의 목적은 EPS와 관련된 또는 GPRS와 상호동작하는 UE의 측면에 대한 정보를 네트워크에게 제공하기 위함이다. 이 IE 내 컨텐츠는 네트워크가 UE의 동작을 제어하는 방식으로 영향을 미칠 수 있다. UE network capability IE는 일반적인 UE의 특성을 지시하고, 따라서 명시적으로 지시된 필드를 제외하고 IE가 전송되는 채널의 주파수 밴드와는 독립적이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 UE 네트워크 능력 정보 요소를 예시하는 도면이다.
UE network capability IE는 도 13 및 표 2와 같이 코딩된다.
UE network capability IE는 최소 4 옥텟(octet) 최대 15 옥텟 길이를 가지는 타입 4 IE이다.
Figure PCTKR2017009707-appb-T000002
Figure PCTKR2017009707-appb-I000001
Figure PCTKR2017009707-appb-I000002
Figure PCTKR2017009707-appb-I000003
Figure PCTKR2017009707-appb-I000004
Figure PCTKR2017009707-appb-I000005
4) 페이징을 위한 UE 무선 능력 정보(UE Radio Capability for Paging Information)
이 절차의 목적은 무선 페이징 절차를 최적화하는데 E-UTRAN을 보조하기 위함이다.
eNB는 S1 인터페이스 UE CAPABILITY INFO INDICATION 메시지 내에서 (UE 무선 능력과 별개의 IE 내에서) 페이징을 위한 UE 무선 능력 정보를 MME에게 업로드한다. 페이징을 위한 UE 무선 능력은 UE에 의해 eNB에게 제공되는 UE 무선 페이징 정보를 포함하고, eNB에 의해 UE 무선 능력 정보로부터 도출되는 다른 정보(예를 들어, 밴드 지원 정보)를 포함한다.
일반적으로 eNB가 UE 무선 능력 정보를 업로드할 때 동시에 수행된다. MME는 MME 컨텍스트 내 페이징을 위한 UE 무선 능력 정보를 저장한다. MME가 페이징할 필요가 있을 때, MME는 S1 페이징(Paging) 메시지의 일부로서 페이징을 위한 UE 무선 능력 정보를 eNB에게 제공한다. eNB는 UE를 향한 페이징을 향상시키기 위하여 페이징을 위한 UE 무선 능력 정보를 사용할 수 있다.
페이징을 위한 UE 무선 능력 정보가 변경되면, UE는 UE 무선 능력이 변경되었을 때와 동일한 절차를 따른다.
연결 모드에서 MME 간 변경되는 상황을 제어하기 위하여, MM 컨텍스트 정보(MM Context information)의 일부로서 페이징을 위한 UE 무선 능력 정보는 타겟 MME에게 전송된다. 페이징을 위한 UE 무선 능력 정보는 MME에게만 적용될 수 있으며, SGSN에게는 적용되지 않는다. 따라서, SGSN에게 컨텍스트를 전달할 때는 MME에 의해 이 정보는 포함되지 않는다.
초기 컨텍스트 셋업(Initial Context Setup)
1) 일반
초기 컨텍스트 셋업(Initial Context Setup) 절차의 목적은 E-RAB(E-UTRAN Radio Access Bearer) 컨텍스트, 보안 키(Security Key), 핸드오버 제한 리스트(Handover Restriction List), UE 무선 능력(UE Radio capability) 및 UE 보안 능력들(UE Security Capabilities) 등을 포함하는 필요한 전반적인 초기 UE 컨텍스트를 확립하기 위함이다. 이 절차는 UE 관련 시그널링(UE-associated signaling)을 이용한다.
2) 성공적인 동작(successful operation)
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 초기 컨텍스트 셋업 절차를 예시한다.
eNB는 MME로부터 초기 컨텍스트 셋업 요청(INITIAL CONTEXT SETUP REQUEST)를 수신한다.
eNB는 INITIAL CONTEXT SETUP REQUEST에 대한 응답으로 초기 컨텍스트 셋업 응답(INITIAL CONTEXT SETUP RESPONSE) 메시지를 MME에게 전송한다.
표 3은 INITIAL CONTEXT SETUP REQUEST 메시지를 예시한다. 이 메시지는 UE 컨텍스트의 셋업을 요청하기 위하여 MME에 의해 전송된다.
Figure PCTKR2017009707-appb-T000003
Figure PCTKR2017009707-appb-I000006
Figure PCTKR2017009707-appb-I000007
표 3을 참조하면, IE/Group Name은 정보 요소(IE: information element) 또는 정보 요소 그룹(IE group)의 명칭을 나타낸다. 존재(Presence) 필드의 'M'은 필수적(mandatory)인 IE로서 항상 메시지에 포함되는 IE/IE group를 나타내고, 'O'는 선택적(optional)인 IE로서 메시지에 포함되거나 포함되지 않을 수 있는 IE/IE group를 나타내며, 'C'는 조건적인(conditional) IE로서 특정 조건이 만족될 때만 메시지에 포함되는 IE/IE group를 나타낸다. Range 필드는 반복적인 IEs/IE groups가 반복될 수 있는 수를 나타낸다.
IE 타입 및 참조(IE type and reference) 필드는 해당 IE의 타입(예를 들어, 열거 데이터(ENUMERATED), 정수(INTEGER), 옥텟 스트링(OCTET STRING) 등)을 나타내고, 해당 IE가 가질 수 있는 값의 범위가 존재하는 경우, 값의 범위를 나타낸다.
임계(Criticality) 필드는 IE/IE group에 적용되는 임계(criticality) 정보를 나타낸다. criticality 정보는 수신단에서 IE/IE group의 전체 또는 일부분을 이해하지 못하는 경우에 수신단에서 어떻게 동작해야 하는지 지시하는 정보를 의미한다. '-'는 criticality 정보가 적용되지 않은 것을 나타내고, 'YES'는 criticality 정보가 적용된 것을 나타낸다. 'GLOBAL'은 IE 및 해당 IE의 반복에 공통적으로 하나의 criticality 정보를 가지는 것을 나타낸다. 'EACH'는 IE의 각 반복 별로 고유의 criticality 정보를 가지는 것을 나타낸다. 지정된 임계(Assigned Criticality) 필드는 실제 criticality 정보를 나타낸다.
표 3에 예시되는 IE에 대한 상세한 설명과 관련하여, 3GPP TS 36.413 v14.3.0 문서가 본 명세서에서 참조로서 병합(incorporated by reference)된다.
E-RAB의 확립의 경우, EPC는 초기 컨텍스트 셋업 응답(INITIAL CONTEXT SETUP RESPONSE) 메시지가 MME로부터 수신되기 전에 사용자 데이터를 수신할 준비를 하여야 한다. UE 관련(UE-associated) 논리적 S1-연결이 존재하지 않으면, INITIAL CONTEXT SETUP REQUEST 메시지 수신 시 UE-associated 논리적 S1-연결이 확립되어야 한다.
INITIAL CONTEXT SETUP REQUEST 메시지는 셋업될 E-RAB 리스트(E-RAB to be Setup List) IE 내 적어도 하나의 추가적인 E-RAB을 포함하는 새로운 E-RAB 구성을 구축하기 위하여 eNB에 의해 요구되는 정보를 포함한다.
셋업될 E-RAB 아이템(E-RAB to be Setup) IE는 다음을 포함할 수 있다:
- NAS-PDU IE,
- LIPA 동작의 경우, 상관 ID(Correlation ID),
- SIPTO@LN 동작의 경우, SIPTO 상관 ID(SIPTO Correlation ID),
- 베어러 타입 IE(Bearer Type IE).
INITIAL CONTEXT SETUP REQUEST 메시지는 다음을 포함할 수 있다:
- 추적 활성화 IE(Trace Activation IE).
- 핸드오버 제한 리스트 IE(Handover Restriction List IE), 이 IE는 로밍 또는 액세스 제한을 포함할 수 있다.
- UE 무선 능력 IE(UE Radio Capability IE).
- RAT/주파수 우선순위를 위한 가입자 프로필 ID IE(Subscriber Profile ID for RAT/Frequency priority IE).
- CS 폴백 지시자 IE(CS Fallback Indicator IE).
- SRVCC 동작 가능 IE(SRVCC Operation Possible IE).
- CSG 멤버십 상태 IE(CSG Membership Status IE).
- 등록된 위치 영역 식별자(LAI: Location Area Identity) IE(Registered LAI IE).
- GUMMEI(Globally Unique MME Identifier) IE, 이 IE는 UE를 서빙하는 MME를 지시한다.
- MME UE S1AP ID 2 IE, 이 IE는 MME에 의해 할당된 MME UE S1AP ID를 지시한다.
- 관리 기반 MDT(Minimization of Drive-Tests) 허용 IE(Management Based MDT Allowed IE).
- 관리 기반 MDT PLMN 리스트 IE(Management Based MDT PLMN List IE).
- 추가적인 CS 폴백 지시자 IE(Additional CS Fallback Indicator IE).
- 마스크된 IMEISV(International Mobile Equipment Identity Software Version) IE(Masked IMEISV IE).
- 예상된 UE 동작 IE(Expected UE Behaviour IE).
- ProSe 인증 IE(ProSe Authorized IE).
- UE 사용자 평면 CIoT 지원 지시자 IE(UE User Plane CIoT Support Indicator IE).
- V2X(Vehicle-to-Everything) 서비스 인증 IE(V2X Services Authorized IE).
- UE 사이드링크 병합된 최대 비트율 IE(UE Sidelink Aggregate Maximum Bit Rate IE).
INITIAL CONTEXT SETUP REQUEST 메시지는 MME 내에서 이용 가능하면, Subscriber Profile ID for RAT/Frequency priority IE를 포함할 수 있다.
LIPA 동작을 위한 L-GW 기능을 가지는 eNB로 향하는 INITIAL CONTEXT SETUP REQUEST 메시지 내 Correlation ID IE가 포함되면, eNB는 관련된 E-RAB을 위한 LIPA 동작을 위해 이 정보를 이용한다.
SIPTO@LN 동작을 위한 L-GW 기능을 가지는 eNB로 향하는 INITIAL CONTEXT SETUP REQUEST 메시지 내 SIPTO Correlation ID IE가 포함되면, eNB는 관련된 E-RAB을 위한 SIPTO@LN 동작을 위해 이 정보를 이용한다.
INITIAL CONTEXT SETUP REQUEST 내 Bearer Type IE가 포함되고 "논-IP(non IP)"로 셋팅되면, eNB는 관련된 E-RAB을 위한 헤더 압축을 수행하지 않는다.
INITIAL CONTEXT SETUP REQUEST 내 Masked IMEISV IE가 포함되면, 타겟 eNB는 이후의 제어를 위해 UE의 특징을 결정하기 위하여 이를 이용한다.
INITIAL CONTEXT SETUP REQUEST 메시지 내 Expected UE Behaviour IE가 포함되면, eNB는 이 정보를 저장하고, RRC 연결 시간을 결정하기 위하여 이를 이용할 수 있다.
INITIAL CONTEXT SETUP REQUEST 수신 시 eNB는 다음을 수행한다:
- 요청된 E-RAB 구성의 실행을 시도한다.
- UE 컨텍스트 내 UE Aggregate Maximum Bit Rate를 저장하고, 해당 UE에 대한 non-GBR 베어러에 대해 수신한 UE Aggregate Maximum Bit Rate를 이용한다.
- 각 확립된 데이터 베어러에 대한 NAS-PDU IE 및 E-RAB ID IE에 포함된 값을 무선 인터페이스 프로토콜로 패스시킨다. eNB는 UE에게 실패한 데이터 무선 베어러와 연관된 NAS PDU를 전송하지 않는다.
- 수신한 Handover Restriction List를 UE 컨텍스트 내 저장한다.
- 수신한 UE Radio Capability를 UE 컨텍스트 내 저장한다.
- 수신한 Subscriber Profile ID for RAT/Frequency priority를 UE 컨텍스트 내 저장한다.
- 수신한 SRVCC Operation Possible를 UE 컨텍스트 내 저장한다.
- 수신한 UE Security Capabilities를 UE 컨텍스트 내 저장한다.
- 수신한 Security Key를 UE 컨텍스트 내 저장한다.
- 수신한 CSG Membership Status를 UE 컨텍스트 내 저장한다.
- 수신한 Management Based MDT Allowed 정보를 UE 컨텍스트 내 저장한다.
- 수신한 Management Based MDT PLMN List 정보를 UE 컨텍스트 내 저장한다.
- 수신한 ProSe Authorization 정보를 UE 컨텍스트 내 저장한다.
- 수신한 V2X Services Authorization 정보를 UE 컨텍스트 내 저장한다.
- 수신한 UE Sidelink Aggregate Maximum Bit Rate를 UE 컨텍스트 내 저장하고, V2X 서비스를 위한 네트워크 스케줄링 모드에서 연관된 UE의 사이드링크 통신을 위해 이를 사용한다.
- Initial Context Setup을 위하여, 다음 홉 체이닝 카운트(Next Hop Chaining Count)를 위한 초기 값이 UE 컨텍스트 내 저장된다.
할당 및 보유 우선순위 IE(Allocation and Retention Priority IE)의 값에 따른 자원의 할당은 E-RAB 셋업 절차에서 기술되는 규칙으로 이용된다.
3) 성공적이지 않은 동작(unsuccessful operation)
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 초기 컨텍스트 셋업 절차를 예시한다.
eNB는 MME로부터 초기 컨텍스트 셋업 요청(INITIAL CONTEXT SETUP REQUEST)를 수신한다.
eNB는 INITIAL CONTEXT SETUP REQUEST에 대한 응답으로 초기 컨텍스트 셋업 실패(INITIAL CONTEXT SETUP FAILURE) 메시지를 MME에게 전송한다.
eNB가 S1 UE 컨텍스트를 확립할 수 없으면, 또는 eNB가 하나의 GBR 베어러도 확립할 수 없으면, eNB는 이 절차를 실패로 간주하고, INITIAL CONTEXT SETUP FAILURE 메시지로 응답한다.
계층 2 릴레이(Layer 2 Relay) 시그널링 절차
3GPP Rel-10에서 정의한 릴레이(Relay)와 Rel-12와 Rel-13의 ProSe(Proximity based Service)에서의 Relay(예를 들어, relay UE)는 계층 3 릴레이(layer 3 relay)로써, 무선 계층(Radio layers)(또는 인터페이스) 관점에서의 특징은 다음과 같다.
Relay UE가 원격 UE(Remote UE)의 트래픽에 대한 처리(processing)(예를 들어, 사용자 데이터 재생(regeneration) 처리 또는 사용자 데이터 전송 처리)를 수행할 수 있다. 상기 처리는 사용자 데이터의 무선 인터페이스에서의 재전송(retransmitting)을 위한 암호화(ciphering), 사용자 데이터 연접/분할/재결합(user-data concatenation/segmentation/reassembly)을 포함하며, 그 이후 기지국(예를 들어, eNB, base station)에 전송을 위한 인코딩/변조(encoding/modulation) 과정을 포함할 수 있다.
계층 3 릴레이의 네트워크 계층 관점에서의 특징은 다음과 같다.
- Relay UE가 IP(Internet Protocol) 라우터 역할을 담당할 수 있다. 이를 위해, Relay UE가 Remote UE에게 IP 설정(예를 들어, IP 주소(address) 할당)에 관여할 수 있다. 이때, 네트워크(예를 들어, EPS)에서는 Remote UE에게 할당된 IP address는 Relay UE에게 할당된 IP address로 인지하고, Remote UE를 개별적인 UE로 인식하지 못한다. 이러한 기본동작은 Rel-12, Rel-13 ProSe에서 UE-대-네트워크 릴레이(UE-to-network relay) 동작에서도 확인할 수 있고 그 내용은 아래와 같다.
Rel-12, Rel-13 ProSe에서 Relay UE는 Remote UE를 위해서 별도의 PDN 연결을 확립하고, 해당 PDN 연결에 할당된 IP address와 Remote UE에게 할당된 IP address간의 매핑 관계를 인지한다. 이를 통해, Relay UE는 Remote UE으로부터 데이터를 받으면 데이터의 헤더에 포함된 IP address를 확인하여 적절한 PDN 연결로 라우팅하여 해당 데이터를 전송한다. DL 방향의 데이터 수신도 위와 같은 방식으로 진행된다. Relay UE는 네트워크(예를 들어, eNB, base station)로부터 데이터를 받으면 데이터의 헤더에 포함된 IP address를 확인하여 적절한 Remote UE를 확인하여 Remote UE와 설정된 직접 링크(direct link)를 통해서 데이터를 전송한다. 이때, Relay UE는 해당 Remote UE의 direct link로의 전송을 위해 Remote UE의 링크 계층 주소(link layer address)를 포함하여 전송한다.
3GPP에서는 웨어러블 장치(wearable device)를 위한 새로운 스터디를 진행 중이다. 이 스터디에서도 기본적으로 Remote UE(예를 들어, Wearable device, UE)가 Relay UE를 통해서 네트워크와 통신하는 모델을 가정한다. 다만, Rel-10 Relay 또는 Rel-12, Rel-13 ProSe의 Relay와는 달리 계층 2 릴레이(layer 2 relay)를 가정하고 있다. Layer 2 relay는 앞서 설명한 layer 3 relay와는 다음과 같은 차이점이 있다.
Layer 2 relay 방법이 이용되는 경우, Relay UE는 진보된 릴레이 UE(eRelay-UE), Remote UE는 진보된 원격 UE(eRemote-UE)로 지칭될 수 있다.
즉, eRealy-UE는 eRemote-UE와 릴레이 간에 E-UTRA, WLAN 또는 블루투스를 이용하여, eRemote-UE와 3GPP 네트워크 간에 간접적 3GPP 통신(Indirect 3GPP Communication)을 지원하는 layer 2 relay를 의미한다.
그리고, eRemote-UE는 간접적 3GPP 통신(Indirect 3GPP Communication)를 이용하여 네트워크에 연결되는 UE를 의미한다.
그리고, 간접적 3GPP 통신(Indirect 3GPP Communication)은 eRemote-UE와 3GPP 네트워크 간에 eRelay-UE가 존재하는, UE와 3GPP 네트워크 간의 시그널링 및 통신을 의미한다.
A) Relay UE가 Remote UE의 트래픽에 대한 처리(processing)을 할 수 없으며,
B) Relay UE가 IP 라우터로서의 역할도 하지 않는다.
상기 A)의 특징으로 인해, Relay UE는 Remote UE에 대한 데이터나 시그널링을 수신하면, 이를 processing 할 수 없다. 또한, 상기 B)의 특징으로 인해, Relay UE는 Remote UE를 위한 IP 설정(예를 들어, IP address 할당)에 관여하지 않고, Relay UE는 Remote UE나 네트워크로부터 할당 받은 Remote UE의 데이터의 IP 계층의 처리(Handling)(예를 들어, IP router 역할: IP address를 확인하고 라우팅)를 수행하지 않는다.
따라서, Remote UE는 Network로부터 할당 받은 IP address를 사용해야 한다. 이는 Remote UE가 Relay UE와 PC5 인터페이스를 통해서 direct link를 설정하고 이를 통해서 데이터/시그널링을 송수신할 때, Network에서 할당 받았던 IP address를 사용해야 함을 의미한다. Remote UE가 Network에서 할당 받았던 IP address를 사용한다는 의미는 Network에서 Remote UE의 컨텍스트를 가지고 있고, Remote UE를 인지하고 있음을 의미한다.
이러한 환경에는 Remote UE는 Network과의 개별적인 시그널링을 해야 한다. 이때, 개별적이라 함은 Network과의 통신에서 Relay UE와 Remote UE가 구별된다는 의미이다.
종래의 UE와 Network과의 시그널링(예를 들어, RRC 절차 또는 NAS 절차)은 하나의 UE와 Network과의 시그널링을 위해 정의/설계되었다. 그래서, 종래의 시그널링 방식은 Relay UE와 Remote UE가 direct link를 설정한 상황에서 Relay UE와 Remote UE와의 개별적인 시그널링에는 적합하지 않을 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 계층 2 릴레이 동작을 예시하는 도면이다.
도 16에서 UE1은 릴레이 UE(relay UE)로 동작하고, UE2 및 UE3는 원격 UE(remote UE)로 동작하며, UE1은 UE2 및 UE3과 각각 직접 링크(direct link)를 확립한 상태를 예시한다.
relay UE는 커버리지 내(in-coverage)에 있는 반면, Remote UE는 커버리지 내(in-coverage) 혹은 커버리지 밖(out-of-coverage)에 위치할 수 있다.
도 16에서는 UE1은 in-coverage에 위치하며, UE2는 in-coverage, UE3은 out-of-coverage에 위치한다고 예시한다.
relay UE가 계층 2 relay인 경우, Remote UE(즉, UE2, UE3)는 Relay UE와 direct link를 설정한 이후에 각자의 개별적인 시그널링을 Network과 수행해야 한다.
Relay UE는 자신의 시그널링 절차(예를 들어, RRC 절차 및/또는 NAS 절차)를 네트워크(예를 들어, eNB 및/또는 MME)와 수행한다. 또한, Remote UE는 자신의 시그널링 절차(예를 들어, RRC 절차 및/또는 NAS 절차)를 네트워크(예를 들어, eNB 및/또는r MME)와 수행한다. 이때, Remote UE의 시그널링 메시지는 Relay UE를 통해서 Network로 전달되고, Relay UE는 시그널링 메시지에 대한 processing(예를 들어, 읽기(read) 또는 수정(modify))를 수행하지 않는다.
그리고, Relay UE와 Remote UE의 개별적인 시그널링을 지원하기 위한 direct link 구간의 PC5 시그널링이 필요하다.
추가적으로, 종래 ProSe에서는 Relay UE를 선택/발견(discover)하는 조건 중의 하나로 릴레이 서비스 코드(Relay Service Code)가 고려된다. Remote UE는 Relay Service Code를 통해서 Relay UE가 제공하는 연결성 서비스(connectivity service)를 확인할 수 있다. Relay Service Code에 대한 설명은 아래와 같다. 이에 대하여 3GPP TS 24.334 v13.4.0 문서가 본 명세서에서 참조로서 병합(incorporated by reference)된다.
- Relay Service Code 파라미터는 UE-to-Network relay가 제공하는 연결성 서비스(connectivity service)를 식별한다. Relay Service Code 파라미터의 값은 24 비트 길이의 비트 스트링이다. Relay Service Code 파라미터의 포맷은 이 규격의 범위를 벗어난다.
여기서, 연결성 서비스(connectivity service)라고 하는 것은 특정한 기관(organization)(예를 들어, 경찰서)나 특정 서비스를 지칭할 수 있다. 이때, 기관의 경우, 나라별 지역별 세부 조직별로 구분되어 나타낼 수 있으며, 또한 서비스의 경우, 특정한 어플리케이션을 지원하는 서비스를 나타낼 수 있다. 다시 말해, 이러한 connectivity service는 Relay UE의 해당 기관이나 어플리케이션 (서버)로 접속(연결)할 수 있는지 여부를 나타낸다. 이는 Relay UE의 물리 또는 기능적인 능력과는 관계 없는 것들이다.
하지만, 본 발명에서 고려하고 있는 layer 2 relay의 경우, Remote UE는 network와 직접 수행했던 여러 가지 능력(capability)이나 기능(functionality)이 필요한 서비스(예를 들어, VoLTE(Voice over LTE), CIoT, eDRX 등)를 Relay UE와 연결된 형태에서도 수행해야 한다. 이를 위해서, Remote UE는 원하는 서비스를 지원할 수 있는 capability을 가지고 있는 Relay UE를 선택/발견(discover)해야 한다.
하지만, 현재 이를 지원할 방법이 없다. 즉, Remote UE가 Relay UE에 연결되어 Relay UE가 Remote UE의 트래픽을 대신 전송/수신하는 경우, Remote UE의 통신을 자신의 capability가 아닌 Relay UE의 capability에 종속되게 된다.
이러한 문제를 해결하기 위하여, 본 발명에서 layer 2 relay 환경에 맞는 Network과의 시그널링 절차(즉, RRC 시그널링 및/또는 NAS 시그널링 절차)와 이를 지원하기 위한 PC5 시그널링을 제안한다.
이하, 본 발명의 설명에 있어서, 설명의 편의를 위해 하나의 Remote UE와 하나의 Relay UE를 예시하여 본 발명을 설명하고 있으나, 하나의 Relay UE와 다수의 Remote UE 간에 연결을 가질 수도 있으며, 이 경우에도 후술하는 본 발명이 동일하게 적용될 수 있다.
실시예 1) Relay UE의 capability 확인 후 선택 및 Network에서 capability 제어(handling)
앞서 문제점으로 지적된 바와 같이, Remote UE가 Relay UE에 연결되고, Relay UE가 Remote UE의 트래픽을 대신 네트워크에게/로부터 전송/수신하는 경우, Remote UE의 통신은 자신의 capability가 아닌 Relay UE의 capability에 종속된다.
본 발명에서는 Remote UE가 Relay UE의 capability를 확인하여 통신하는 방법 및 Network에서 Remote UE의 capability 관련된 동작 수행 시, Relay UE의 관계를 인지하여 수행하는 방법을 제안한다.
본 발명에서 능력(capability)는 UE-대-네트워크(UE-to-Network) 능력, 무선 능력(radio capability), 특정 기능성(functionality)을 지원할 수 있는 능력 (예를 들어, eDRX, PSM) 등을 모두 포함할 수 있다.
[1] Relay UE의 capability 확인 및 Relay UE 선택하는 방법
Relay UE의 capability는 다음의 두 가지 방식 중 하나의 방식으로 Remote UE에게 전달될 수 있다. 이에 대하여 도면을 참조하여 설명한다.
도 17은 본 발명의 일 실시예에 따른 원격 UE와 릴레이 UE 간의 능력 정보를 교환하는 방법을 예시하는 도면이다.
도 17에서는 UE1이 Remote UE로서 동작하는(또는 동작하길 원하는) UE를 예시하고, UE2가 Relay UE로서 동작하는(또는 동작하길 원하는, 또는 동작이 가능한) UE를 예시한다. 도 17에서는 설명의 편의를 위해 UE2를 하나의 UE로 도시하였으나, UE2는 복수의 UE에 해당할 수 있다.
도 17(a)는 Relay UE가 자신이 지원하는/가지고 있는 capability를 알리면, Remote UE가 이를 인지하는 방법을 예시한다.
도 17(a)를 참조하면, UE2는 자신의 능력 정보를 포함하는 제1 메시지를 UE1에게 전송한다(S1701a).
예를 들어, Relay UE(즉, Relay UE로 동작 가능한 UE)는 자신이 지원하는/가지고 있는 capability를 포함하는 메시지를 브로드캐스팅(broadcasting)할 수 있다.
그리고, Remote UE는 브로드캐스팅된 메시지를 통해 자신의 주변의 UE의 capability를 알 수 있다.
UE1은 주변의 UE들의 capability를 확인/인지하면, 자신이 원하는 capability를 지원하는 Relay UE를 선택할 수 있다(S1702a).
도 17(b)는 Remote UE의 capability를 알리면 Relay UE가 해당 capability의 지원여부를 알리면 Remote UE가 이를 인지하는 방법을 예시한다.
도 17(b)를 참조하면, UE1은 자신의 능력 정보를 포함하는 제1 메시지를 UE2에게 전송한다(S1701b).
예를 들어, Remote UE는 자신의 capability를 포함하는 메시지를 브로드캐스팅(broadcasting)할 수 있다.
이때, Remote UE의 capability를 알리는 경우, Remote UE가 지원하는/가지고 있는 모든 capability를 알릴 수도 있고, Remote UE가 원하는 서비스에 필요한 capability만 선택해서 알릴 수도 있다. 이처럼, 선택적으로 capability를 알리는 경우, 시그널링 오버헤드를 줄일 수 있는 효과가 있다.
UE1으로부터 제1 메시지를 수신하면, UE2는 자신이 해당 capability를 지원하는지 여부에 대한 지시를 포함하는 제2 메시지로 응답한다(S1702b).
Remote UE는 주변의 UE로부터 해당 capability 지원 여부에 대한 메시지를 수신함으로써 capability를 지원하는 UE를 알 수 있다.
UE1은 주변의 UE들의 capability를 확인/인지하면, 자신이 원하는 capability를 지원하는 Relay UE를 선택할 수 있다(S1703b).
이때, 도 17에서 설명한 Relay UE의 capability를 확인하는 과정이 디스커버리 절차 내에서 수행되는 경우, PC5 발견(Discovery) 메시지를 통해서 구현될 수 있다.
또한, 앞서 Relay UE의 capability를 확인하는 과정이 일대일 연결을 맺는 과정 내에서 수행되는 경우, PC5 시그널링 프로토콜(예를 들어, 직접 링크 셋업 요청/응답)을 통해서 구현될 수 있다.
또한, 이외에도 앞서 Relay UE의 capability를 확인하는 과정은 새로운 프로토콜이나 메시지가 이용될 수도 있다.
상기 과정을 통해서, Remote UE가 Relay UE를 선택한 경우, Relay UE가 capability를 네트워크에게 알릴 때, Relay UE 자신의 capability와 Remote UE의 capability를 구분 지어서 네트워크에게 알릴 수 있다.
이때, 네트워크가 Remote UE와 Relay UE 간의 관계를 인지한 경우, Remote UE의 capability는 Relay UE의 capability로 간주할 수 있다.
[2] Network에서 무선 능력 제어(radio capability handling)
UE radio capability 정보는 RAT 별로 UE가 지원할 수 있는 radio capability 정보를 의미한다. 예를 들어, UE Radio Capability 정보는 UE가 지원하는 RAT에 대한 정보(예를 들어, 파워 클래스, 주파수 밴드 등)을 포함할 수 있다.
이러한, UE radio capability 정보는 MME에 저장되어 있으며, EMM-IDLE에서 EMM-CONNECTED로 전환되는 과정에서 초기 컨텍스트 셋업 요청(INITIAL CONTEXT SETUP REQUEST) 메시지에 포함되어 eNB에게 전송된다.
eNB는 이 UE radio capability 정보를 이용하여 무선 관련 동작(예를 들어, 파워 제어, 자원 할당, 변조 등)을 위해 사용할 수 있다.
또한, 이외에도 INITIAL CONTEXT SETUP REQUEST 메시지 이외에도 UE radio capability가 MME에서 eNB도 전달될 수 있다.
Remote UE가 Relay UE에 연결되어 Relay UE가 Remote UE의 트래픽을 네트워크에게/로부터 대신 전송/수신하는 경우, Remote UE의 통신은 자신의 capability가 아닌 Relay UE의 capability에 종속된다. 그래서, 이 경우, eNB는 Relay UE를 통해서 Remote UE의 트래픽을 전달하고자 하는 경우, Remote UE의 radio capability가 아닌 Relay UE의 radio capability를 이용해야 한다.
이에 대하여 아래 도면을 참조하여 설명한다.
도 18은 본 발명의 일 실시예에 따른 서비스 요청 절차를 간략히 예시하는 도면이다.
도 18에서는 후술하는 본 발명에서 제안하는 서비스 요청 절차 내에서 수행될 수 있다.
도 18을 참조하면, Relay UE는 Remote UE의 식별자를 포함하는 Remote UE를 위한 서비스 요청(Service Request) 메시지가 인슐케이션된(encapsulated) RRC 메시지를 기지국에게 전송한다(S1801).
서비스 요청(Service Request) 절차가 트리거링되는 조건에 대하여 보다 상세한 설명은 후술한다.
기지국은 S1 인터페이스 메시지 내에서 서비스 요청(Service Request) 메시지를 MME에게 전송한다(S1802).
기지국은 MME로부터 INITIAL CONTEXT SETUP REQUEST 메시지를 수신한다(S1803).
상술한 바와 같이, INITIAL CONTEXT SETUP REQUEST 메시지를 통해 radio capability가 전달 될 수 있다.
다만, Remote UE가 Relay UE에 연결되어 Relay UE가 Remote UE의 트래픽을 네트워크에게/로부터 대신 전송/수신하는 경우, Remote UE의 MME는 INITIAL CONTEXT SETUP REQUEST 메시지 내 Remote UE의 UE radio capability를 포함하지 않고 전송할 수 있다.
또는, Remote UE가 Relay UE에 연결되어 Relay UE가 Remote UE의 트래픽을 네트워크에게/로부터 대신 전송/수신하는 경우라도, Remote UE의 MME는 INITIAL CONTEXT SETUP REQUEST 메시지 내 Relay UE의 UE radio capability를 포함하여 전송할 수 있다.
또는, Remote UE가 Relay UE에 연결되어 Relay UE가 Remote UE의 트래픽을 네트워크에게/로부터 대신 전송/수신하는 경우, Remote UE의 MME는 INITIAL CONTEXT SETUP REQUEST 메시지 내 Remote UE의 UE radio capability를 포함하여 전송할 수 있다.
기지국은 Relay UE의 UE radio capability 정보를 Remote UE의 UE radio capability 정보로서 저장한다(S1804).
다시 말해, 상기에 기술된 경우가 발생하면, 기지국은 Remote UE의 DRB를 위한 송수신에도 Remote UE의 capability가 아닌(Remote UE의 capability를 수신하였더라도) Relay UE의 capability를 적용하여 송수신을 수행할 수 있다(예를 들어, 파워 제어, 자원 할당, 변조 등).
이때, 기지국은 Relay UE와 Remote UE가 연결되어 Relay UE가 Remote UE의 트래픽을 네트워크에게/로부터 대신 전송/수신하는 것(즉, Relay UE와 Remote UE 간의 관계)을 인지해야 한다. 따라서, MME가 이를 기지국에게 S1AP 메시지(예를 들어, INITIAL CONTEXT SETUP REQUEST 메시지 등)에서 Relay UE와 Remote UE가 연결되어 Relay UE가 Remote UE의 트래픽을 네트워크에게/로부터 대신 전송/수신하는 것(즉, 해당 S1AP 메시지가 Remote UE를 위한 것)임을 나타내는 지시 또는 UE 식별자(identifier)(즉, Relay UE 식별자 및/또는 Remote UE 식별자)를 포함시킴으로써, Relay UE와 Remote UE 간의 관계를 기지국에게 알릴 수 있다.
또한, Relay UE와 Remote UE가 연결되어 Relay UE가 Remote UE의 트래픽을 네트워크에게/로부터 대신 전송/수신하는 경우, 기지국이 Remote UE의 radio capability가 없으면, 기지국이 Relay UE와 Remote UE 간의 관계를 인지하여, Relay UE의 radio capability가 있는 경우 그 Relay UE의 radio capability를 저장 및 Remote UE의 traffic 전송에 사용하고, Relay UE의 capability가 없는 경우, Relay UE 혹은 Relay UE의 MME에게 Relay UE의 radio capability를 요청할 수 있다. 이때, 요청하는 절차/메시지는 종래 기술을 따르거나 새로운 procedure를 통해 전달/수행될 수 있다.
이하, 도 18에서는 도시되지 않았으나 기지국은 Relay UE의 radio capability 정보를 저장하고, 이를 기반으로 Relay UE와 Remote UE를 위한 무선 베어러 셋업(radio bearer setup) 절차를 수행할 수 있다. 예를 들어, 기지국은 RRC 연결을 수정하기 위한 RRC 연결 재구성(RRC Connection Reconfiguration) 메시지를 Relay UE에게 전송하고, RRC 연결 재구성의 성공적인 완료를 확인하기 위한 RRC 연결 재구성 완료(RRC Connection Reconfiguration Complete) 메시지를 Relay UE로부터 수신할 수 있다.
여기서, RRC Connection Reconfiguration 메시지는 RRC 연결을 수정하기 위한 명령이다. 이 메시지는 관련된 전용 NAS 정보 및 보안 설정을 포함하여 측정 설정, 이동성 제어, 무선 자원 설정(무선 베어러(들), MAC 메인 설정, 물리 채널 설정 포함)을 위한 정보를 나를 수 있다. RRC Connection Reconfiguration Complete 메시지는 RRC 연결 설정의 성공적인 완료를 확인(confirm)하기 위해 사용되는 메시지이다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 계층 2 릴레이의 시그널링 흐름을 예시하는 도면이다.
도 19에서 UE1은 릴레이 UE(relay UE)로 동작하고, UE2 및 UE3는 원격 UE(remote UE)로 동작하며, UE1은 UE2 및 UE3과 각각 직접 링크(direct link)를 확립한 상태를 예시한다.
relay UE는 커버리지 내(in-coverage)에 있는 반면, Remote UE는 커버리지 내(in-coverage) 혹은 커버리지 밖(out-of-coverage)에 위치할 수 있다.
Uu 인터페이스(즉, UE와 기지국 간의 무선 인터페이스) 구간을 살펴보면 Relay UE는 자신의 시그널링과 Remote UE를 위한 시그널링을 구분하여 송수신한다.
또한, PC5 인터페이스(즉, UE와 UE 간의 무선 인터페이스) 구간을 살펴보면, 직접 링크(즉, 사이드링크)를 통해서 Remote UE가 네트워크로 향하는 시그널링을 Relay UE에게 전송하거나, 또는 Relay UE가 네트워크로부터의 시그널링을 Remote UE에게 전송한다.
실시예 2) Uu 인터페이스 구간의 개별적으로 네트워크 시그널링
본 발명의 일 실시예에서는 먼저 Uu 인터페이스 구간에서의 Remote UE와 Relay UE 간에 개별적인 네트워크 시그널링 방법을 제안한다.
이때, 네트워크 시그널링을 RRC 시그널링 및/또는 NAS 시그널링을 포함할 수 있다.
[1] 계층 2 릴레이를 위한 서비스 요청 절차(Service Request procedure for Layer 2 Relay)
먼저, NAS 시그널링에서 Service Request 절차를 제안한다.
다시 도 7을 참조하면(즉, 종래의 Service Request 절차), UE가 네트워크에게 SERVICE REQUEST 메시지를 전송하면, 이를 수신한 MME는 초기 컨텍스트 셋업 요청(INITIAL CONTEXT SETUP REQUEST) 메시지 내 UE 컨텍스트와 해당 UE의 베어러 컨텍스트를 포함하여 eNB에게 전송한다. 이를 수신한 eNB는 베어러 컨텍스트에 기반하여 무선 베어러 확립(Radio Bearer Establishment) 과정을 통해 이에 해당하는 DRB(Data Radio Bearer)를 확립한다.
Layer 2 relay의 경우, Relay UE는 자신의 베어러 뿐만 아니라 Remote UE의 베어러도 설정하여야 한다.
이러한 설정은 NAS 절차를 통해 수행될 수 있으며, 설정 방법에 따라 [1-2] 한번의 Service Request 절차 수행 시 하나 이상의 UE(즉, Relay UE와 Remote UE)에 대한 DRB를 확립하는 방법, [1-3] 개별적으로 Service Request 절차를 수행하는 방법, 2가지의 방법을 제안한다. 이에 대한 상세한 설명은 후술한다.
1. 상기의 NAS 절차는 종래의 Service Request 절차일 수 있다.
이때, Relay UE가 Service Request 절차 수행을 위해서 전송하는 NAS 메시지는 종래 SERVICE REQUEST 메시지, 확장된 서비스 요청(EXTENDED SERVICE REQUEST) 메시지 또는 제어 평면 서비스 요청(CONTROL PLANE SERVICE REQUEST) 메시지일 수 있다.
또한, Relay UE가 Service Request 절차 수행을 위해서 전송하는 NAS 메시지는 새롭게 정의된 NAS 메시지일 수 있다.
2. 상기의 NAS 절차는 새롭게 정의된 NAS 절차일 수 있다.
3. 상기의 NAS 절차를 수행하기 전에 다음의 상황이 만족될 수 있다.
A. Relay UE와 Remote UE는 직접 링크가 확립되어 있다.
B. Relay UE는 EMM-IDLE 모드이거나 EMM-CONNECTED 모드일 수 있다.
이때, Relay UE가 EMM-IDLE 모드인 경우에는 Relay UE나 Remote UE 중 어느 UE도 DRB가 확립되지 않은 상태일 수 있다.
또는, Relay UE가 EMM-CONNECTED 모드인 경우에는 Relay UE나 Remote UE 중 하나의 UE만 DRB가 확립된 상태일 수 있다.
[1-1] 네트워크에서 두 UE의 관계를 인지방법
Network에서 Relay UE와 Remote UE간의 관계를 인지해야 한다. 즉, 네트워크(예를 들어, MME)에서 두 UE(즉, Relay UE 및 Remote UE)의 관계를 인지함으로써 최적화된 제어(handling)를 할 수 있다.
네트워크(예를 들어, MME)에서 두 UE의 관계를 인지하는 방법은 다음과 같다.
네트워크(예를 들어, MME)에서 두 UE의 관계를 인지하기 위해, Relay UE는 다음의 방법을 이용할 수 있다.
1. 전제조건(Pre-condition): 네트워크가 Relay UE와 Remote UE의 관계를 인지하는 방법
1) Remote UE 보고 절차(Remote UE report procedure)를 이용하는 방법
이 방법은 종래의 Remote UE report procedure를 통해 구현될 수 있다. 이 절차를 통해 Relay UE는 Remote UE가 직접 링크를 연결하였는지 단절하였는지 네트워크에게 알릴 수 있으며, 네트워크는 두 UE 간의 관계를 인지할 수 있다.
2) 다른 시그널링 절차를 이용하는 방법
A. RRC 메시지와 S1-AP 메시지를 통해서 알리는 방법: Relay UE는 Remote UE가 직접 링크를 연결하였는지 단절하였는지 RRC 메시지를 이용하여 eNB에게 알리고, eNB는 이를 S1-AP 메시지를 이용하여 MME에게 알릴 수 있다.
이때, RRC 메시지와 S1-AP 메시지는 종래 메시지일 수도 있고 또는 새롭게 정의된 메시지일 수도 있다.
B. NAS 메시지를 통해서 알리는 방법: Relay UE는 Remote UE가 직접 링크를 연결하였는지 단절하였는지 NAS 메시지를 이용하여 MME에게 알릴 수 있다.
이때, NAS 메시지는 종래의 NAS 메시지(예를 들어, SERVICE REQUEST, EXTENDED SERVICE REQUEST, CONTROL PLANE SERVICE REQUEST, TAU REQUEST)일 수도 있고 또는 새롭게 정의된 NAS 메시지일 수 있다.
C. 앞서 A와 B에서 Relay UE는 해당 메시지 내 Remote UE가 직접 링크를 연결하였는지 단절하였는지 지시하는 지시 또는 Remote UE의 식별자 또는 Relay UE의 식별자 대신 새로운 identity를 포함시킬 수 있다.
이때, Remote UE의 식별자(예를 들어, IMSI 또는 IMEI((International Mobile Equipment Identity))는 종래 PC5 절차(예를 들어, 직접 발견 절차(direct discovery procedure) 또는 직접 통신 절차(direct communication procedure) 또는 PC5 시그널링 절차)를 통해서 Relay UE가 획득할 수 있다. GUTI나 S-TMSI와 같은 Remote UE의 식별자를 획득하기 위해서 종래 PC5 절차가 업데이트되거나 새로운 PC5 메시지가 필요할 수 있다.
또한, 기존 Relay UE의 식별자 대신에 새로운 식별자를 포함하는 경우, 이 새로운 식별자는 네트워크에서 Relay UE와 Remote UE를 위해 할당한 식별자일 수 있다. 이 새로운 식별자는 두 UE를 위해 네트워크에서 할당한 임시 식별자(예를 들어, GUTI) 이거나 미리 설정된(pre-configuration) 식별자(예를 들어, 그룹 식별자)일 수 있다.
3) 앞서 설명한 1) 또는 2) 방법으로 네트워크는 Relay UE와 Remote UE의 관계를 인지할 수 있다. 이 경우, Relay UE가 전송하는 특정 시그널링이 Relay UE 자신 뿐만 아니라 Remote UE를 포함한 것임을 인지할 수 있다.
[1-2] 한번의 Service Request 절차 수행 시 하나 이상의 UE(즉, Relay UE와 Remote UE)에 대한 DRB를 확립하는 방법
Service Request 절차 수행 시 하나 이상의 UE(즉, Relay UE와 Remote UE)에 대한 DRB를 확립하는 방법을 사용할 수 있다. 이 방법은 네트워크에서 두 UE의 관계를 인지함을 가정할 수 있고, 다음과 같이 수행될 수 있다.
1. Service Request 절차를 위한 트리거링 조건
Relay UE가 Service Request 절차를 수행하는 트리거링 조건(triggering condition)은 다음과 같다.
- Relay UE의 Service Request 절차는 Relay UE가 EMM-IDLE에서 EMM-CONNECTED로 전환해야 하는 경우에 트리거링될 수 있다.
여기서, Relay UE가 EMM-IDLE에서 EMM-CONNECTED로 전환해야 하는 경우는 하기의 모든 경우를 포함한다.
A. Relay UE 자신의 Service Request 절차의 트리거링 조건(앞서 설명한 Service Request 절차가 개시/트리거링되는 조건 참조)이 만족하는 경우
Relay UE 자신의 Service Request 절차의 트리거링 조건 중에서, Relay UE가 EMM-IDLE 모드에서 페이징 메시지를 수신한 경우는 하기의 경우도 포함한다.
- Relay UE가 자신에 대한 페이징 메시지를 수신한 경우
- Relay UE가 Remote UE에 대한 페이징 메시지를 수신한 경우
- Relay UE와 Remote UE 공동을 위한 페이징 메시지를 수신한 경우
이때, Relay UE와 Remote UE 공동을 위한 페이징 메시지는 두 UE를 위한 그룹 식별자를 포함할 수 있다.
B. Relay UE가 EMM-IDLE 모드인 경우, Remote UE가 네트워크로 시그널링이나 데이터를 전송할 필요가 있음(또는 전송을 원함)을 Relay UE가 인지한 경우: 그 인지 방법은 다음과 같다.
- PC5 인터페이스를 통해 Remote UE가 해당 시그널링이나 데이터를 Relay UE에게 전송한 경우
- PC5 인터페이스를 통해 Remote UE가 '네트워크에게 전송할 시그널링이나 데이터가 있다'는 지시나 메시지를 Relay UE에게 보낸 경우
2. Service Request 절차의 수행
Relay UE가 Service Request 절차 수행 시, 자신의 베어러 뿐만 아니라 Remote UE의 베어러도 확립될 수 있다.
도 20은 본 발명의 일 실시예에 따른 서비스 요청 절차를 예시하는 도면이다.
도 20에 대한 설명이 앞서 도 7에 대한 설명과 명확히 배치되지 않는 한 앞서 도 7의 설명이 도 20에 대한 설명에 병합될 수 있다.
A. MME/SGSN은 Relay UE와 Remote UE와의 매핑 관계를 알고 있다고 가정한다.
R1 내지 R4는 앞서 도 6에서 설명한 랜덤 액세스 절차를 나타낸다. 그리고, Relay UE는 R5. 랜덤 액세스(RA) 메시지 5에 SERVICE REQUEST 메시지를 인캡슐레이션하여 (e)NB에게 전송한다.
여기서, Relay UE와 Remote UE에 대한 한번의 Service Request 절차의 수행을 가정하고 있으므로, 무선 구간의 RRC 시그널링(즉, R1 내지 R5)는 한번만 Relay UE에서 eNB로 전송됨을 가정한다.
1. (e)NB는 S1 초기 UE(S1 Initial UE) 메시지를 MME/SGSN에게 전송한다.
이때, S1 Initial UE 메시지는 SERVICE REQUEST 메시지, relay UE(및/또는 Remote UE)의 S-TMSI를 포함할 수 있다.
여기서, Initial UE 메시지의 경우, Relay UE와 Remote UE에 대한 한번의 Service Request 절차의 수행을 가정하고 있으므로, 한번만 eNB에서 MME/SGSN으로 전송된다.
B. SERVICE REQUEST 메시지 수신하면, MME/SGSN는 Relay UE와 Remote UE 간의 매핑 관계를 확인한다.
a. Relay UE로부터 Service Request message를 수신한 경우, Network는 둘 간의 관계를 확인(하기 그림에서 step B)하고, Initial Context Setup Request를 수행한다(하기 그림에서 step 2-1, step 2-2).
만약, 네트워크(즉, MME/SGSN)가 Service Request 절차가 Relay UE 뿐만 아니라 Remote UE를 위한 것임을 인지하면, 두 UE를 위한 네트워크 개체(즉, eNB, MME, S-GW, P-GW)간의 시그널링을 수행할 수 있다.
여기서, 시그널링은 기존의 시그널링 메시지(예를 들어, INITIAL UE 메시지, INITIAL CONTEXT SETUP REQUEST/RESPONSE 메시지, MODIFY BEARER REQUEST/RESPONSE 메시지)이거나 새롭게 정의된 시그널링 메시지일 수 있다.
2-1, 2-2. MME/SGSN이 두 UE 간의 관계를 확인하면, MME/SGSN는 S1-AP 메시지인 INITIAL CONTEXT SETUP REQUEST 메시지를 eNB에게 전송한다.
이때, INITIAL CONTEXT SETUP REQUEST 메시지는 E-RAB 컨텍스트, 보안 키, UE 무선/보안 능력 등의 정보를 포함할 수 있다(앞서 표 3 참조).
3. (e)NB는 Relay UE와 무선 베어러 확립 절차를 수행한다.
이때, Relay UE의 베어러 뿐만 아니라 Remote UE의 베어러도 확립될 수 있다.
4. UE로부터 상향링크 데이터가 이제 eNB에 의해 S-GW로 전달될 수 있다.
7-1, 7-2. eNB는 S1-AP 메시지인 INITIAL CONTEXT SETUP COMPLETE 메시지를 MME에게 전송한다.
이때, INITIAL CONTEXT SETUP REQUEST 메시지는 수락된 E-RAB 베어러의 리스트 등을 포함할 수 있다.
8-1, 8-2. MME/SGSN은 PDN 연결 별로 MODIFY BEARER REQUEST 메시지를 S-GW에게 전송한다.
9-1, 9-2. S-GW는 PDN 연결 별로 MODIFY BEARER REQUEST 메시지를 P-GW에게 전송한다.
10-1, 10-2. P-GW는 MODIFY BEARER RESPONSE 메시지를 S-GW에게 전송한다.
11-1, 11-2. S-GW는 MODIFY BEARER RESPONSE 메시지를 MME/SGSN에게 전송한다.
여기서, 앞서 2 단계, 7 단계, 8 단계, 9 단계, 10단계 및 11 단계에서, INITIAL CONTEXT SETUP REQUEST 메시지, INITIAL CONTEXT SETUP COMPLETE 메시지, MODIFY BEARER REQUEST 메시지, MODIFY BEARER RESPONSE 메시지는 도 20 예시와 같이 Relay UE 및 Remote UE에 대해 각각 전송될 수도 있으며, 시그널링 오버헤드를 줄이기 위해 한번에(즉, 하나의 메시지) 전송될 수도 있다.
만약, 각각 전송되는 경우, 첫 번째 메시지가 Relay UE를 위한 메시지이고 두 번째 메시지가 Remote UE를 위한 메시지일 수도 있으며, 그 반대일 수 있다.
또한, 각각 전송되는 경우, 메시지를 전송하는 네트워크 개체는 메시지를 수신하는 네트워크 개체에서의 효율적인 시그널링을 위해, 첫 번째 메시지에 후속 메시지가 전송되는 지시를 포함시킬 수 있다. 따라서, 첫 번째 메시지를 수신한 네트워크 개체는 이후 동작을 바로 수행하지 않고 두 번째 메시지를 수신한 후 다음 동작을 수행할 수 있다.
예를 들어, 앞서 B 단계에서 MME/SGSN이 두 UE 간의 관계를 확인하면, MME/SGSN는 Relay UE뿐 아니라 Remote UE를 위한 S1-AP 메시지인 INITIAL CONTEXT SETUP REQUEST 메시지를 eNB에게 전송한다. 이때, 2-1 단계에서, MME/SGSN이 INITIAL CONTEXT SETUP REQUEST 메시지를 전송 시, 후속 메시지가 전송됨을 지시하는 지시를 포함하여 전송하면, eNB는 3 단계를 바로 수행하지 않고, 2-2 단계에서 INITIAL CONTEXT SETUP REQUEST 메시지를 수신한 후 3 단계 동작을 수행할 수 있다. 이를 통해, 시그널링 오버헤드를 줄이거나 자원 낭비를 줄일 수 있다.
반면, Relay UE와 Remote UE를 위한 한 번의 메시지가 전송되는 경우, 각 메시지에 UE를 구분하기 위한 식별자가 포함될 수 있으며, 각 UE 식별자 별로 IE들이 구별되어 포함될 수 있다.
Relay UE는 AS 계층에서 사용자 평면 베어러(즉, DRB)가 확립되었다는 지시를 수신함으로써 도 20에 따른 Service Request 절차가 성공적으로 완료되었음을 인지할 수 있다. 이때, 지시는 다음 정보를 포함할 수 있다.
- 사용자 평면 베어러가 성공적으로 확립된 대상: 사용자 평면 베어러가 성공적으로 확립된 대상이 Relay UE인지 Remote UE인지 혹은 둘 모두인지 특정하기 위한 정보가 포함될 수 있다.
- 성공적으로 확립된 베어러의 리스트는 각 UE 별로 구분하여 지시될 수 있다.
한편, 도 20에 따른 Service Request 절차 수행 시, 네트워크는 해당 Service Request를 거절할 수 있다. 이때, 네트워크(즉, MME/SGSN)이 전송하는 서비스 거절(SERVICE REJECT) 메시지는 다음과 같은 정보를 포함할 수 있다.
- 거절의 대상: service request의 거절 대상이 Relay UE인지 Remote UE인지 혹은 둘 모두인지 식별하기 위한 정보가 포함될 수 있다. 이때, 각 UE별로 거절 원인(reject cause)이 명시하여 전달될 수 있다.
- 거절 원인에 따라 Relay UE나 Remote UE는 직접 링크를 해제할 수도 있다.
[1-3] 개별적으로 Service Request 절차를 수행하는 방법
본 발명에서는 Relay UE가 Service Request 절차를 수행하는 경우, 'Relay UE를 위한 Service Request 절차'와 'Remote UE를 위한 Service Request 절차'가 구분되어 개별적으로 수행하는 것을 가정한다.
1.Service Request 절차를 위한 트리거링 조건
Relay UE가 Service Request 절차를 수행하는 트리거링 조건은 다음과 같다.
1) 'Relay UE를 위한 Service Request 절차'를 위한 트리거링 조건
- Relay UE가 EMM-IDLE 모드에서 EMM-CONNECTED 모드로 전환해야 하는 경우, 'Relay UE를 위한 Service Request 절차'가 트리거될 수 있다.
이때, Relay UE 자신이 Service Request 절차의 트리거링 조건(앞서 설명한 Service Request 절차가 개시/트리거링되는 조건 참조)이 만족하는 경우를 의미한다.
- Relay UE가 EMM-CONNECTED 모드에서 자신에 대한 페이징 메시지를 수신한 경우, 'Relay UE를 위한 Service Request 절차'가 트리거될 수 있다.
2) 'Remote UE를 위한 Service Request 절차'를 위한 트리거링 조건
- Relay UE가 Remote UE에 대한 페이징 메시지를 수신한 경우, 'Remote UE를 위한 Service Request 절차'가 트리거될 수 있다.
- Remote UE가 Network으로 시그널링이나 데이터를 보내야 하는 것을 Relay UE가 인지한 경우, 'Remote UE를 위한 Service Request 절차'가 트리거될 수 있다.
이때, Relay UE가 인지하는 방법은 다음과 같다.
PC5 인터페이스를 통해 Remote UE가 해당 시그널링(예를 들어, NAS 시그널링 메시지)이나 데이터를 Relay UE에게 전송하거나, 또는 PC5 인터페이스를 통해 Remote UE가 '네트워크에게 전송할 시그널링이나 데이터가 있다'는 지시 혹은 메시지를 Relay UE에게 전송함으로써, Relay UE가 인지할 수 있다.
- Relay UE는 EMM-IDLE 모드이거나 EMM-CONNECTED 모드일 수 있다.
2) 'Remote UE 및 Relay UE 모두를 위한 Service Request 절차'를 위한 트리거링 조건
- Relay UE와 Remote UE 공동을 위한 페이징 메시지를 수신한 경우, 'Relay UE를 위한 Service Request 절차'와 'Remote UE를 위한 Service Request 절차'가 모두 수행된다.
이때, 두 Service Request 절차가 동시에(함께) 수행되는 경우, 앞서 [1-2]에 기술된 방법이 적용된다.
또는, 이때 각 UE를 Service Request 절차가 순차적으로 수행될 수 있다.
- Relay UE와 Remote UE 공동을 위한 페이징 메시지는 두 UE를 위한 그룹 식별자를 포함할 수 있다
앞서 설명한 'Remote UE를 위한 Service Request 절차'는 Relay UE가 EMM-IDLE 모드일 때뿐만 아니라 EMM-CONNECTED 모드인 경우에도 수행된다.
2. Service Request 절차의 수행
1) Relay UE가 EMM-IDLE 모드 또는 EMM-CONNECTED 모드인 경우에도, Relay UE는 'Relay UE를 위한 Service Request 절차' 또는 'Remote UE를 위한 Service Request 절차'를 수행할 수 있다.
2) Relay UE의 각 모드에 따른 Service Request 절차의 수행 동작은 다음과 같다.
A. Relay UE가 EMM-IDLE 모드인 경우
Relay UE의 Service Request 절차의 수행이 성공적으로 완료되었음은 Relay UE의 AS 계층으로부터 사용자 평면 베어러(DRB)가 확립되었다는 지시를 수신했을 때 Relay UE가 인지할 수 있다.
이때, 성공적으로 Service Request 절차를 수행한 경우, Relay UE는 EMM-CONNECTED 모드로 전환한다.
즉, 'Remote UE를 위한 Service Request 절차'가 성공적으로 완료된 경우에도 Relay UE는 EMM-CONNECTED 모드로 전환할 수 있다.
B. Relay UE가 EMM-CONNCETED 모드인 경우
이때 수행되는 절차는 기존의 Service Request 절차일 수 있으며, 또는 새롭게 정의된 NAS 절차일 수도 있다.
이때, Relay UE가 Service Request 절차의 수행을 위해서 전송하는 NAS 메시지는 종래 SERVICE REQUEST 메시지, EXTENDED SERVICE REQUEST 메시지, CONTROL PLANE SERVICE REQUEST 메시지일 수 있다. 또한, 액티브 플레그(active flag)가 셋팅된 TAU REQUEST 메시지가 이용될 수도 있다.
또한, Relay UE가 Service Request 절차의 수행을 위해서 전송하는 NAS 메시지는 새롭게 정의된 NAS 메시지일 수도 있다.
3) Relay UE와 Remote UE 공동을 위한 페이징 메시지를 수신한 경우는 Relay UE는 'Relay UE를 위한 Service Request 절차'와 'Remote UE를 위한 Service Request 절차'를 모두 수행한다.
A. 각 Service Request 절차가 순차적으로 수행하는 경우, 'Relay UE를 위한 Service Request 절차'가 먼저 수행될 수 있다.
이는 'Remote UE를 위한 Service Request 절차'를 수행하기 위해서는 PC5 인터페이스를 통해서 Remote UE의 시그널링이 필요할 수 있으므로 이로 인하여 지연이 발생할 수 있기 때문이다. Relay UE는 'Relay를 위한 Service Request 절차'를 수행하면서 PC5 인터페이스를 통한 시그널링을 진행하고 완료한 후 'Remote UE를 위한 Service Request 절차'를 수행할 수 있다. 이에 대하여 보다 상세한 수행 순서는 '[2]의 2. Relay UE 동작'에서 후술한다.
3. 추가 사항
앞서 설명에서 두 UE 모두를 위한 상기에서 트리거링 조건이 만족되어 Service request 절차가 수행될 때, Remote UE의 DRB를 셋업하기 위해서 Relay UE는 NAS 시그널링 메시지(예를 들어, SERVICE REQUEST 메시지, EXTENDED SERVICE REQUEST 메시지, TAU REQUEST 메시지, CONTROL PLANE SERVICE REQUEST 메시지)와 함께 지시(예를 들어, remote UE를 위한 active flag)을 추가하여 전송할 수 있다.
이 지시를 수신한 MME는 Relay UE의 SRB와 DRB와 Remote UE에 대한 DRB를 확립하기 위한 동작을 수행할 수 있다. 즉, 위의 지시는 Remote UE의 DRB을 확립하기 위한 역할을 수행한다.
만약, Remote UE를 위한 트리거링 조건이 만족한 경우, Relay UE가 EMM-IDLE 모드이면, Relay UE의 DRB도 확립하는지 여부에 따라 다음의 경우로 분류된다.
- Relay UE의 DRB도 확립하는 경우: 앞서 설명한 두 UE 모두를 위한 트리거링 조건이 만족한 경우에 마찬가지로 동작된다.
- Relay UE의 DRB는 확립하지 않는 경우: Relay UE의 SRB와 Remote UE의 DRB만 확립하기 위한 동작을 수행한다 이 동작은 다음의 절차를 통해 수행될 수 있다.
NAS 메시지 내 지시(예를 들어, Remote UE를 위한 active flag) 또는 Remote UE의 식별자(예를 들어, GUTI 또는 S-TMSI)가 포함되어 전송될 수 있다. 이 지시나 Remote UE의 식별자를 수신한 MME는 Remote UE에 대한 DRB를 확립하기 위한 동작을 수행할 수 있다. 이때, NAS 메시지는 TAU REQUEST 메시지, CONTROL PLANE SERVICE REQUEST 메시지일 수 있다. 또한, 이 NAS 메시지는 새롭게 정의된 NAS 메시지일 수도 있다.
반면, Remote UE를 위한 트리거링 조건이 만족한 경우, Relay UE가 EMM-CONNECTED 모드이면, Remote UE의 DRB만 확립하기 위한 동작이 수행될 수 있다. 이 동작은 다음의 절차를 통해 수행될 수 있다.
NAS 메시지 내 지시(예를 들어, Remote UE를 위한 active flag) 또는 Remote UE의 식별자(예를 들어, GUTI 또는 S-TMSI)가 포함되어 전송될 수 있다. 이 지시나 Remote UE의 식별자를 수신한 MME는 Remote UE에 대한 DRB를 확립하기 위한 동작을 수행할 수 있다. 이때, NAS 메시지는 TAU REQUEST 메시지, CONTROL PLANE SERVICE REQUEST 메시지일 수 있다. 또한, 이 NAS 메시지는 새롭게 정의된 NAS 메시지일 수도 있다.
또한, 이 경우에 Relay UE는 EMM-IDLE 모드인 것처럼 동작하고(즉, Relay UE에 대한 DRB 확립 요청), 네트워크에서 해당 NAS 메시지를 수신하더라도, Relay UE가 EMM-CONNECTED 모드인 것을 인지하여 Relay UE의 DRB 확립에 대한 요청은 무시할 수 있다. 이 경우, Relay UE는 두 UE 모두를 위한 트리거링 조건이 만족한 경우와 같이 동작하지만, 네트워크(즉, MME)는 Relay UE가 EMM-CONNECTED인 것을 인지하여 Relay UE의 DRB 확립에 대한 요청은 무시할 수 있다.
[1-4] 앞서 [1-2] 및 [1-3]에 공통적으로 적용되는 사항
앞서 설명한 바에 따르면,
A. Remote UE가 네트워크로 시그널링이나 데이터를 보내야 하는 것을 Relay UE가 인지하는 방법은 다음과 같다.
- PC5 인터페이스를 통해 Remote UE가 해당 시그널링(예를 들어, NAS 시그널링 메시지) 또는 데이터를 Relay UE에게 전송하거나 또는
- PC5 인터페이스를 통해 Remote UE가 'Network으로 보낼 시그널링이나 데이터가 있다'는 지시 혹은 메시지를 Relay UE에게 보냄으로서 Relay UE가 인지할 수 있다.
이 경우의 Remote UE의 동작 순서는 다음과 같다.
a) Remote UE는 Relay UE와의 직접 링크가 확립된 순간부터 해제되기 전까지 Uu 인터페이스를 통한 네트워크와의 직접 통신이 제한될 수 있다. 다시 말해, Remote UE가 커버리지 내(in-coverage)에 있더라도 네트워크와의 직접 통신을 할 수 없다.
b) Remote UE에서 상위 계층(예를 들어, 어플리케이션 계층)으로부터 네트워크에게 전송할 시그널링 또는 데이터가 발생하였음을 Remote UE의 NAS 계층이 인지할 수 있다.
c) Remote UE의 NAS 계층은 네트워크로 NAS 시그널링을 전송할 수 없음을 앞서 a) 단계에서 인지할 수 있다. 따라서, Remote UE는 네트워크로 시그널링이나 데이터를 전송해야 함을 Relay UE에게 알릴 수 있다. 그 방법은 다음과 같다.
Remote UE의 NAS 계층은 기존과 마찬가지로 NAS 메시지(예를 들어, SERVICE REQUEST 메시지, EXTENDED SERVICE REQUEST 메시지, TAU REQUEST 메시지, CONTROL PLANE SERVICE REQUEST 메시지 등)를 생성할 수 있다. 이때, Remote UE의 NAS 계층은 '네트워크로 전송할 시그널링이나 데이터가 있음'을 나타내는 지시도 함께 Remote UE의 ProSe 계층으로 전달할 수 있다.
이때, Remote UE의 ProSe 계층은 NAS 계층으로부터 NAS 메시지를 수신한 경우, 해당 NAS 메시지를 PC5 메시지에 인캡슐레이션(encapsulation)하여 하위 계층(즉, AS 계층)에게 전달(pass)한다. 만약, Remote UE의 ProSe 계층이 NAS 계층으로부터 상술한 지시를 수신한 경우, 해당 지시를 PC5 메시지에 포함시켜 하위 계층(즉, AS 계층)에 전달(pass)한다
ProSe 계층으로부터 이를 수신한 Remote UE의 lower 계층(즉, AS 계층)은 해당 PC5 message를 Relay UE에게 전송할 수 있다.
[2] Layer 2 Relay를 위한 페이징 절차
네트워크에서 Relay UE와 Remote UE의 관계를 인지하고, 최적화된 제어(optimized handling)를 할 수도 있고, 종래대로 동작할 수도 있다.
도 21은 본 발명의 일 실시예에 따른 계층 2 릴레이를 위한 페이징 절차를 예시한다.
도 21을 참조하면, MME는 S-GW로부터 하향링크 데이터 통지(DDN: Downlink Data Notification)을 수신하면(S2101), 기지국에게 S1 인터페이스 페이징 메시지를 전송하고(S2102), 기지국은 S1 인터페이스 페이징 메시지에 기초하여 RRC 페이징 메시지를 릴레이 UE에게 전송한다(S2103).
이때, Relay UE가 EMM-CONNECTED 모드인 경우라도, MME는 Remote UE에 대한 DDN(Downlink Data Notification)을 수신하면, MME는 Remote UE에게 전송될 하향링크 데이터가 있음을 알리기 위한 페이징 메시지를 Relay UE에게 전송할 수 있다.
반면, Relay UE가 EMM-IDLE 모드인 경우, MME는 Relay UE 또는 Remote UE에 대한 DDN을 수신하면, MME는 Relay UE 또는 Remote UE에 대한 페이징 메시지를 Relay UE에게 전송할 수 있다.
또한, Relay UE가 EMM-IDLE 모드인 경우, MME는 Relay UE와 Remote UE 모두에 대한 DDN을 수신하면, MME는 Relay UE와 Remote UE 모두를 위한 페이징 메시지를 Relay UE에게 전송할 수 있다. 이때, Relay UE와 Remote UE 공동을 위한 페이징 메시지는 두 UE를 위한 그룹 식별자를 포함할 수 있다.
여기서, 네트워크는 다음의 방식으로 페이징 메시지를 Relay UE에게 전송할 수 있다.
- Relay UE는 자신의 페이징 시점(paging occasion)에서만 페이징 메시지를 모니터링할 수 있다. 이때, 네트워크는 Relay UE에게 전달되는 페이징 메시지 내 이 페이징 메시지가 Relay UE를 위한 것인지 Remote UE를 위한 것인지 지시를 포함할 수 있다.
- 또는, Relay UE는 자신의 페이징 시점(paging occasion)과 더불어 Remote UE의 페이징 시점에서도 페이징 메시지를 모니터링할 수 있다. 이때, 네트워크는 기존과 동일한 방식으로 동작할 수 있다.
Relay UE가 기지국으로부터 Remote UE에 대한 페이징 메시지를 수신하면, Relay UE는 Remote UE가 직접 통신이 가능한지 여부를 체크한다(S2104).
여기서, Relay UE는 Remote UE가 직접 통신이 가능한지 여부를 체크하는 절차를 다음과 같이 수행될 수 있다. 즉, Relay UE는 Remote UE와 얼라이브(alive) 여부를 확인해야 한다. 다시 말해, Remote UE가 통신이 가능한 상태(예를 들어, Remote UE와 Relay UE 간의 거리나 시그널링 강도 등)인지 확인할 수 있다. 해당 절차는 다음과 같이 수행될 수 있다.
이때, 이 절차는 Relay UE가 Remote UE에게 시그널링이나 데이터를 전송하기 전에 수행될 수 있다.
a) Relay UE는 Remote UE에게 PC5 제1 메시지를 전송할 수 있다.
b) Remote UE가 해당 PC5 제1 메시지를 수신한 경우, PC5 제2 메시지를 통해 Relay UE에게 응답할 수 있다.
이때, Remote UE는 해당 PC5 제2 메시지에 NAS 메시지(예를 들어, SERVICE REQUEST 메시지, EXTENDED SERVICE REQUEST 메시지, CONTROL PLANE SERVICE REQUEST 메시지)를 포함하거나 또는 Relay UE가 Remote UE를 위한 Service Request 절차의 수행을 위한 정보를 포함할 수 있다.
c) Remote UE로부터 해당 PC5 제2 메시지를 수신한 Relay UE는 Remote UE가 얼라이브(alive)하다고 인지할 수 있다. 즉, Remote UE와 통신이 가능하다고 판단할 수 있다.
이때, Relay UE는 Remote UE로부터 응답(즉, PC5 제2 메시지)를 수신하지 못한 경우 PC5 제1 메시지를 재전송을 할 수 있고, 일정 횟수 재전송 후에도 Remote UE로부터 응답을 수신하지 못한 경우는 Remote UE가 얼라이브(alive)하지 않다(즉, 통신이 가능하지 않다)고 간주할 수 있다.
만약, Relay UE가 Remote UE가 얼라이브(alive)하다고 확인한 경우, Relay UE는 Remote UE를 위한 service request 절차를 수행할 수 있다. 이때, 수행 방법은 앞서 설명한 [1-2] 또는 [1-3]와 같다.
반면, Relay UE가 Remote UE가 얼라이브(alive)하지 않다고 간주한 경우, 네트워크(즉, MME)에게 Remote UE와 통신이 가능하지 않음을 알려준다. 이를 수신한 네트워크는 해당 Remote UE에 대한 페이징 절차를 중단할 수 있다.
[3] Layer 2 Relay를 위한 TAU 절차
Relay UE가 TAU 절차를 수행할 때, Remote UE의 컨텐츠(즉, 상향링크 데이터 또는 시그널링)을 함께 전송하고자 하는 경우, Remote UE의 컨텐츠의 전송 방법은 다음과 같다.
도 22는 본 발명의 일 실시예에 따른 계층 2 릴레이를 위한 트래킹 영역 업데이트 절차를 예시한다.
도 22를 참조하면, Relay UE가 TAU 절차를 개시하기 위한 트리거링 조건이 만족하면(S2201), Relay UE는 MME에게 TAU 요청 메시지를 전송한다(S2202a, S2202b).
이때, S2202a와 같이, Relay UE의 TAU REQUEST 메시지와 함께 Remote UE의 컨텐츠를 함께 전송하는 경우, Relay UE의 TAU REQUEST 메시지 내 컨테이너로 Remote UE의 컨텐츠가 포함되어 전송될 수 있다.
또는, Relay UE의 TAU 절차가 성공적으로 끝난 후에 별도의 NAS 메시지에 Remote UE의 컨텐츠가 포함되어 MME에게 전달할 수 있다.
이 경우, S2202b와 같이, Relay UE의 TAU 절차가 성공적으로 끝난 후에, 바로 NAS 연결이 해제되는 것을 방지하기 위해서, TAU REQUEST 메시지 내 액티브 플래그(active flag) 또는 시그널링 액티브 플래그(signalling active flag)가 포함되어 전송될 수 있다. 이후, Remote UE의 컨텐츠를 나르는 별도의 NAS 메시지는 종래의 TAU REQUEST 메시지일 수도 있으며 또는 새롭게 정의된 NAS 메시지일 수도 있다.
한편, 앞서 본 발명의 설명에 있어서, 설명의 편의를 위해 하나의 Relay UE와 하나의 Remote UE의 관계로 기술되었으나, 하나의 Relay UE와 여러 Remote UE 일 때도 앞서 설명한 본 발명에 따른 방법이 동일하게 적용될 수 있다. 본 발명은 Relay UE의 MME와 Remote UE의 MME가 동일하다는 가정 하에 기술되었다. 하지만, Relay UE의 MME와 Remote UE의 MME가 서로 다른 경우에도 적용할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 23은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 23을 참조하면, 무선 통신 시스템은 네트워크 노드(2310)와 다수의 단말(UE)(2320)을 포함한다.
네트워크 노드(2310)는 프로세서(processor, 2311), 메모리(memory, 2312) 및 통신 모듈(communication module, 2313)을 포함한다. 프로세서(2311)는 앞서 도 1 내지 도 22에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(2311)에 의해 구현될 수 있다.
메모리(2312)는 프로세서(2311)와 연결되어, 프로세서(2311)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2313)은 프로세서(2311)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(2310)의 일례로, 기지국, MME, HSS, SGW, PGW, SCEF, SCS/AS 등이 이에 해당될 수 있다. 특히, 네트워크 노드(2310)가 기지국인 경우, 통신 모듈(2313)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(2320)은 프로세서(2321), 메모리(2322) 및 통신 모듈(또는 RF부)(2323)을 포함한다. 프로세서(2321)는 앞서 도 1 내지 도 22에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2321)에 의해 구현될 수 있다. 특히, 프로세서는 NAS 계층 및 AS 계층을 포함할 수 있다. 메모리(2322)는 프로세서(2321)와 연결되어, 프로세서(2321)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2323)는 프로세서(2321)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2312, 2322)는 프로세서(2311, 2321) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2311, 2321)와 연결될 수 있다. 또한, 네트워크 노드(2310)(기지국인 경우) 및/또는 단말(2320)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 24는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 24에서는 앞서 도 23의 단말을 보다 상세히 예시하는 도면이다.
도 24를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(2410), RF 모듈(RF module)(또는 RF 유닛)(2435), 파워 관리 모듈(power management module)(2405), 안테나(antenna)(2440), 배터리(battery)(2455), 디스플레이(display)(2415), 키패드(keypad)(2420), 메모리(memory)(2430), 심카드(SIM(Subscriber Identification Module) card)(2425)(이 구성은 선택적임), 스피커(speaker)(2445) 및 마이크로폰(microphone)(2450)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(2410)는 앞서 도 1 내지 도 22에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(2410)에 의해 구현될 수 있다.
메모리(2430)는 프로세서(2410)와 연결되고, 프로세서(2410)의 동작과 관련된 정보를 저장한다. 메모리(2430)는 프로세서(2410) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2410)와 연결될 수 있다.
사용자는 예를 들어, 키패드(2420)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(2450)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(2410)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(2425) 또는 메모리(2430)로부터 추출할 수 있다. 또한, 프로세서(2410)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(2415) 상에 디스플레이할 수 있다.
RF 모듈(2435)는 프로세서(2410)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(2410)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(2435)에 전달한다. RF 모듈(2435)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(2440)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(2435)은 프로세서(2410)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(2445)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템, 특히 5G(5 generation) 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서 릴레이 사용자 장치(Relay UE: Relay User Equipment)와 원격 사용자 장치(Remote UE) 간에 연결이 셋업되어 있는 경우, 기지국이 Remote UE에 의해 트리거된 서비스 요청(Service Request) 절차를 수행하는 방법에 있어서,
    Relay UE로부터 Remote UE의 식별자를 포함하는 Remote UE를 위한 서비스 요청(Service Request) 메시지가 인슐케이션된(encapsulated) 무선 자원 관리(RRC: Radio Resource Management) 메시지를 수신하는 단계;
    S1 인터페이스 메시지 내에서 상기 서비스 요청(Service Request) 메시지를 이동성 제어 개체(MME: Mobility Management Entity)에게 전송하는 단계;
    상기 MME로부터 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)이 없는 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 수신하는 단계; 및
    상기 Relay UE의 UE 무선 능력 정보(UE Radio Capability information)를 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)로서 저장하는 단계를 포함하는 서비스 요청 방법.
  2. 제1항에 있어서,
    상기 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지는 상기 Remote UE가 상기 Relay UE에 연결되어 상기 Relay UE가 상기 Remote UE의 트래픽을 송/수신하는 것임을 지시하는 지시자, 또는 상기 Relay UE의 식별자 및/또는 상기 Remote UE의 식별자 를 포함하는 서비스 요청 방법.
  3. 제1항에 있어서,
    상기 Relay UE의 UE 무선 능력 정보(UE Radio Capability information)를 기반으로 상기 Relay UE와 상기 Remote UE를 위한 무선 베어러 셋업 절차(Radio Bearer Setup)를 수행하는 단계를 더 포함하는 서비스 요청 방법.
  4. 제3항에 있어서, 상기 무선 베어러 셋업 절차(Radio Bearer Setup)를 수행하는 단계는,
    RRC 연결을 수정하기 위한 RRC 연결 재구성(RRC Connection Reconfiguration) 메시지를 상기 Relay UE에게 전송하는 단계; 및
    RRC 연결 재구성의 성공적인 완료를 확인하기 위한 RRC 연결 재구성 완료(RRC Connection Reconfiguration Complete) 메시지를 상기 Relay UE로부터 수신하는 단계를 포함하는 서비스 요청 방법.
  5. 제1항에 있어서,
    상기 Remote UE를 위한 페이징 메시지가 상기 Relay UE에게 전송되면, 상기 서비스 요청(Service Request) 메시지의 전송이 트리거되는 서비스 요청 방법.
  6. 제5항에 있어서,
    상기 Remote UE를 위한 페이징 메시지가 상기 Relay UE에게 전송된 경우, 상기 Relay UE가 상기 Remote UE와의 통신이 불가능하다고 판단하면, 상기 Relay UE로부터 상기 네트워크에게 상기 Remote UE와의 통신이 불가능함이 통지되는 서비스 요청 방법.
  7. 제1항에 있어서,
    상기 Relay UE와 상기 Remote UE 모두를 위한 페이징 메시지가 상기 Relay UE에게 전송되면, 상기 서비스 요청(Service Request) 메시지의 전송이 트리거되고,
    상기 페이징 메시지는 상기 Relay UE와 상기 Remote UE를 위한 그룹 식별자를 포함하는 서비스 요청 방법.
  8. 제1항에 있어서,
    상기 Relay UE가 상기 Remote UE로부터 상기 Remote UE가 네트워크로 전송할 시그널링 또는 데이터를 수신하면, 상기 서비스 요청(Service Request) 메시지의 전송이 트리거되는 서비스 요청 방법.
  9. 제1항에 있어서,
    상기 Relay UE가 상기 Remote UE로부터 상기 Remote UE가 네트워크로 전송할 시그널링 또는 데이터가 있다는 지시를 수신하면, 상기 서비스 요청(Service Request) 메시지의 전송이 트리거되는 서비스 요청 방법.
  10. 제1항에 있어서,
    상기 서비스 요청 절차 내에서 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지에 이어서 상기 Relay UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지를 수신하는 경우,
    상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지 내 후속하여 상기 Relay UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지가 전달된다는 지시가 포함되는 서비스 요청 방법.
  11. 제1항에 있어서,
    상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지와 상기 Relay UE를 S1 인터페이스 초기 컨텍스트 셋업 요청 메시지가 단일의 메시지로 전송되는 경우,
    상기 단일의 메시지 내 상기 Remote UE의 식별자 및 상기 Relay UE의 식별자가 포함되고, 각 식별자 별로 정보 요소(information element)가 구분되어 포함되는 서비스 요청 방법.
  12. 제1항에 있어서,
    상기 relay UE는 EMM(Evolved Packet System (EPS) Mobility Management)-IDLE 모드 또는 EMM-CONNECTED 모드인 서비스 요청 방법.
  13. 제1항에 있어서,
    상기 서비스 요청(Service Request) 메시지는 상기 Remote UE를 위한 데이터 무선 베어러 확립을 요청하기 위한 지시자 혹은 액티브 플래그(active flag)를 포함하는 서비스 요청 방법.
  14. 무선 통신 시스템에서 릴레이 사용자 장치(Relay UE: Relay User Equipment)와 원격 사용자 장치(Remote UE) 간에 연결이 셋업되어 있는 경우, 기지국이 Remote UE에 의해 트리거된 서비스 요청(Service Request) 절차를 수행하는 기지국에 있어서,
    신호를 송수신하기 위한 통신 모듈(communication module); 및
    상기 통신 모듈을 제어하는 프로세서를 포함하고,
    상기 프로세서는 Relay UE로부터 Remote UE의 식별자를 포함하는 Remote UE를 위한 서비스 요청(Service Request) 메시지가 인슐케이션된(encapsulated) 무선 자원 관리(RRC: Radio Resource Management) 메시지를 수신하고,
    S1 인터페이스 메시지 내에서 상기 서비스 요청(Service Request) 메시지를 이동성 제어 개체(MME: Mobility Management Entity)에게 전송하고,
    상기 MME로부터 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)이 없는 상기 Remote UE를 위한 S1 인터페이스 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 수신하고,
    상기 Relay UE의 UE 무선 능력 정보(UE Radio Capability information)를 상기 Remote UE의 UE 무선 능력 정보(UE Radio Capability information)로서 저장하도록 구성되는 기지국.
PCT/KR2017/009707 2016-09-05 2017-09-05 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치 WO2018044144A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/330,738 US20190230723A1 (en) 2016-09-05 2017-09-05 Method for performing service request procedure in wireless communication system and device therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662383584P 2016-09-05 2016-09-05
US62/383,584 2016-09-05
US201662406958P 2016-10-12 2016-10-12
US62/406,958 2016-10-12

Publications (1)

Publication Number Publication Date
WO2018044144A1 true WO2018044144A1 (ko) 2018-03-08

Family

ID=61309280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009707 WO2018044144A1 (ko) 2016-09-05 2017-09-05 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US20190230723A1 (ko)
WO (1) WO2018044144A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110958721A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 终端能力的传输方法及相关设备
WO2020091281A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템 엑세스 허가를 위한 단말의 대행 인증 방법 및 장치
WO2020221339A1 (en) * 2019-04-30 2020-11-05 Mediatek Singapore Pte. Ltd. Method and apparatus for user equipment-assisted coverage enhancement in mobile communications
CN112087732A (zh) * 2019-06-12 2020-12-15 华为技术有限公司 一种通信方法及装置
CN112335301A (zh) * 2018-06-25 2021-02-05 瑞典爱立信有限公司 用于寻呼策略区分的无线电网络节点、用户平面功能(upf)以及在其中执行的方法
EP3840448A4 (en) * 2018-08-29 2021-08-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION PROCESS AND COMMUNICATION DEVICE
EP3777451A4 (en) * 2018-04-04 2021-11-24 ZTE Corporation METHOD AND SYSTEMS FOR EXCHANGING MESSAGES IN A WIRELESS NETWORK
CN115152312A (zh) * 2020-03-06 2022-10-04 高通股份有限公司 层2中继单播链路建立

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4231678A3 (en) * 2015-02-23 2023-11-08 Panasonic Intellectual Property Corporation of America Application specific integrated circuit for improved paging procedures for user equipments requiring coverage extension
WO2018070911A1 (en) * 2016-10-13 2018-04-19 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device, a network node and methods therein for optimizing paging in a communications network
EP3319393B1 (en) * 2016-11-07 2019-08-07 Koninklijke KPN N.V. Establishing a connection between a remote user equipment, ue, and a telecommunication network via a relay capable ue
EP3609250B1 (en) * 2017-04-28 2023-06-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Message transmission method, apparatus and system
TWI685272B (zh) * 2017-09-27 2020-02-11 關隆股份有限公司 無線系統的連線方法
EP3782383A4 (en) 2018-05-11 2021-03-10 Samsung Electronics Co., Ltd. METHOD AND SYSTEM FOR HANDLING DYNAMIC GROUP FORMATION IN A V2X SYSTEM
US20190364424A1 (en) * 2018-05-28 2019-11-28 Qualcomm Incorporated Roll-over of identifiers and keys for unicast vehicle to vehicle communication links
CN110798883B (zh) * 2018-08-01 2021-12-21 维沃移动通信有限公司 控制方法、终端及网络侧网元
CN110831253B (zh) * 2018-08-08 2022-01-14 华为技术有限公司 连接重建方法、设备及系统
US12089248B2 (en) * 2018-08-08 2024-09-10 Sony Corporation Communication device
CN110536316A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 一种路测方法及其控制方法、装置、设备、存储介质
US20220167244A1 (en) * 2019-03-15 2022-05-26 Apple Inc. Method, computer readable medium and apparatus to determine support of ims voice service in a 5g mobile network
US20240056870A1 (en) * 2019-09-18 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Subscriber/service based radio access network reliability
EP4057766A4 (en) * 2019-11-07 2023-12-20 LG Electronics Inc. METHOD AND DEVICE FOR CONTROLLING THE CONFIGURATION IN CONNECTION WITH SIDELINK COMMUNICATIONS IN A WIRELESS COMMUNICATIONS SYSTEM
CN113596804B (zh) * 2020-04-30 2022-07-08 维沃移动通信有限公司 状态指示方法、设备及系统
WO2022040828A1 (en) * 2020-08-23 2022-03-03 Qualcomm Incorporated Layer 2 relay initial configuration
WO2022151461A1 (en) * 2021-01-18 2022-07-21 Qualcomm Incorporated Remote ue group paging for relay power saving
CN116602048A (zh) * 2021-04-02 2023-08-15 Oppo广东移动通信有限公司 一种中继连接建立方法、电子设备及存储介质
CN115209521B (zh) * 2021-04-12 2024-03-22 维沃移动通信有限公司 消息处理方法、装置、设备和存储介质
US11877354B2 (en) * 2021-07-08 2024-01-16 Qualcomm Incorporated Assistance information for full-duplex relay user equipment selection
WO2023137579A1 (zh) * 2022-01-18 2023-07-27 Oppo广东移动通信有限公司 紧急业务的提供方法、装置、设备及存储介质
GB202411553D0 (en) * 2022-02-10 2024-09-18 Lenovo Beijing Ltd Methods and apparatuses for handling a relay link with tau and rnau in l2 u2n relay case

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140198714A1 (en) * 2013-01-15 2014-07-17 Tejas Networks Limited Method for associating and consolidating mme bearer management functions
US20150094025A1 (en) * 2012-05-07 2015-04-02 Telefonaktiebolaget L M Ericsson (Publ) Base station and method in relay node mobility
KR20160008534A (ko) * 2013-05-12 2016-01-22 엘지전자 주식회사 근접 서비스 수행 방법 및 이를 위한 장치
WO2016015296A1 (zh) * 2014-07-31 2016-02-04 华为技术有限公司 中继实现方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2797552T3 (es) * 2012-02-06 2020-12-02 Alcatel Lucent Un aparato y un método para un transceptor de estación repetidora móvil y una estación base para un sistema de comunicación móvil
JPWO2016056154A1 (ja) * 2014-10-07 2017-07-27 日本電気株式会社 リレー無線端末、コアネットワーク装置、及びこれらの方法
RU2703512C2 (ru) * 2014-11-07 2019-10-18 Интердиджитал Пэйтент Холдингз, Инк. Оптимизации для ретрансляционной связи
US10531329B2 (en) * 2015-04-13 2020-01-07 Samsung Electronics Co., Ltd. Method and apparatus for controlling relay traffic in wireless communication system supporting D2D communication
JP6709459B2 (ja) * 2015-04-20 2020-06-17 京セラ株式会社 通信制御方法、無線端末及びプロセッサ
CN106255227A (zh) * 2015-06-11 2016-12-21 阿尔卡特朗讯 一种用于d2d中继的方法、设备与系统
US10257677B2 (en) * 2015-10-16 2019-04-09 Qualcomm Incorporated System and method for device-to-device communication with evolved machine type communication
US10433286B2 (en) * 2016-07-14 2019-10-01 Nokia Of America Corporation Layer 2 relay to support coverage and resource-constrained devices in wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150094025A1 (en) * 2012-05-07 2015-04-02 Telefonaktiebolaget L M Ericsson (Publ) Base station and method in relay node mobility
US20140198714A1 (en) * 2013-01-15 2014-07-17 Tejas Networks Limited Method for associating and consolidating mme bearer management functions
KR20160008534A (ko) * 2013-05-12 2016-01-22 엘지전자 주식회사 근접 서비스 수행 방법 및 이를 위한 장치
WO2016015296A1 (zh) * 2014-07-31 2016-02-04 华为技术有限公司 中继实现方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Study on Architecture Enhancements to Support Proximity-based Services (ProSe) (Release 12", 3GPP TR 23.703 V12.0.0, 10 March 2014 (2014-03-10) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11558849B2 (en) 2018-04-04 2023-01-17 Zte Corporation Method and systems for exchanging messages in a wireless network
EP3777451A4 (en) * 2018-04-04 2021-11-24 ZTE Corporation METHOD AND SYSTEMS FOR EXCHANGING MESSAGES IN A WIRELESS NETWORK
CN112335301A (zh) * 2018-06-25 2021-02-05 瑞典爱立信有限公司 用于寻呼策略区分的无线电网络节点、用户平面功能(upf)以及在其中执行的方法
EP3840448A4 (en) * 2018-08-29 2021-08-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION PROCESS AND COMMUNICATION DEVICE
US11877326B2 (en) 2018-08-29 2024-01-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and communication device
CN110958721A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 终端能力的传输方法及相关设备
WO2020091281A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템 엑세스 허가를 위한 단말의 대행 인증 방법 및 장치
WO2020221339A1 (en) * 2019-04-30 2020-11-05 Mediatek Singapore Pte. Ltd. Method and apparatus for user equipment-assisted coverage enhancement in mobile communications
US11388764B2 (en) 2019-04-30 2022-07-12 Mediatek Singapore Pte. Ltd. Method and apparatus for user equipment-assisted coverage enhancement in mobile communications
CN112087732A (zh) * 2019-06-12 2020-12-15 华为技术有限公司 一种通信方法及装置
CN112087732B (zh) * 2019-06-12 2022-02-11 华为技术有限公司 一种通信方法及装置
US11943835B2 (en) 2019-06-12 2024-03-26 Huawei Technologies Co., Ltd. Communication method and communications apparatus for PC5 V2X
CN115152312A (zh) * 2020-03-06 2022-10-04 高通股份有限公司 层2中继单播链路建立

Also Published As

Publication number Publication date
US20190230723A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018044144A1 (ko) 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치
WO2018155908A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018117775A1 (ko) 무선 통신 시스템에서 v2x 통신을 수행하기 방법 및 이를 위한 장치
WO2018131984A1 (ko) 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치
WO2018147698A1 (ko) 무선 통신 시스템에서 nas 메시지 송수신 방법 및 이를 위한 장치
WO2018164552A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018128505A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018128528A1 (ko) 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치
WO2018169244A1 (ko) 무선 통신 시스템에서 이동성 이벤트 통지 방법 및 이를 위한 장치
WO2018174524A1 (ko) 무선 통신 시스템에서 계층간 상호작용 방법 및 이를 위한 장치
WO2018080230A1 (ko) 무선 통신 시스템에서 emm 모드를 결정하는 방법 및 이를 위한 장치
WO2017200269A1 (ko) 무선 통신 시스템에서 착신 데이터 제어 방법 및 이를 위한 장치
WO2018231029A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2016190641A1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
WO2018097599A1 (ko) 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치
WO2018231028A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2018128529A1 (ko) 무선 통신 시스템에서 네트워크간 상호연동 방법 및 이를 위한 장치
WO2016111591A1 (ko) 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치
WO2017003235A1 (ko) 무선 통신 시스템에서 그룹 메시지를 전송하기 위한 방법 및 이를 위한 장치
WO2017164679A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
WO2016208997A1 (ko) 무선 통신 시스템에서 단말의 영역 관리 방법 및 이를 위한 장치
WO2018070689A1 (ko) 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치
WO2018110939A1 (ko) 무선 통신 시스템에서의 트래킹 영역 할당 방법 및 이를 위한 장치
WO2018008980A1 (ko) 무선 통신 시스템에서 사용자가 선호하는 자원 운용 선택 방법 및 이를 위한 장치
WO2017188758A1 (ko) 무선 통신 시스템에서 nas 시그널링 유보/재개를 수행하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17847069

Country of ref document: EP

Kind code of ref document: A1