WO2017164679A1 - 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017164679A1
WO2017164679A1 PCT/KR2017/003157 KR2017003157W WO2017164679A1 WO 2017164679 A1 WO2017164679 A1 WO 2017164679A1 KR 2017003157 W KR2017003157 W KR 2017003157W WO 2017164679 A1 WO2017164679 A1 WO 2017164679A1
Authority
WO
WIPO (PCT)
Prior art keywords
mme
tau
procedure
message
request message
Prior art date
Application number
PCT/KR2017/003157
Other languages
English (en)
French (fr)
Inventor
류진숙
박상민
김래영
김태훈
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to EP17770649.6A priority Critical patent/EP3435696B1/en
Priority to KR1020187030609A priority patent/KR102168676B1/ko
Priority to US16/087,487 priority patent/US10721612B2/en
Priority to CN201780025280.3A priority patent/CN109076330B/zh
Publication of WO2017164679A1 publication Critical patent/WO2017164679A1/ko
Priority to US16/904,232 priority patent/US11496880B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/32Release of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for performing or supporting a tracking area update procedure and an apparatus for supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present invention is to propose a tracking area update method for efficient data transmission when the terminal has user data to transmit when the terminal initiates a tracking area update procedure.
  • the present invention proposes a method for maintaining a signaling connection between the terminal and the MME after the tracking area update procedure when the previous state of the terminal is a suspension.
  • An aspect of the present invention provides a method for performing a tracking area update (TAU) procedure by a user equipment (UE) in a wireless communication system, comprising: transmitting a TAU request message to a mobility management entity; (MME: sending to a Mobility Management Entity) and receiving a TAU Accept message from the MME, wherein the UE enables delivery of user data via a control plane via the MME.
  • TAU request message if signaling optimization is used and the UE has no pending user data to be transmitted via the user plane and has pending user data to be transmitted via the control plane via MME.
  • My first active flag may be set.
  • the first active flag may indicate a request for maintaining a Non-Access Stratum (NAS) signaling connection between the UE and the MME after completion of the TAU procedure.
  • NAS Non-Access Stratum
  • the first active flag may be included in an additional update type information element for providing additional information about a type of a request for the TAU procedure in the TAU request message.
  • Non-Access Stratum (NAS) signaling connection between the UE and the MME may not be maintained after completion of the TAU procedure.
  • NAS Non-Access Stratum
  • Non-Access Stratum (NAS) signaling connection between the UE and the MME may be maintained after completion of the TAU procedure.
  • NAS Non-Access Stratum
  • the method may further include determining whether to run a predefined timer according to whether the first active flag is set in the TAU request message.
  • the timer is started, and when the timer expires, a non-access stratum (NAS) signaling connection between the UE and the MME is released by the UE. Can be.
  • NAS non-access stratum
  • the TAU request Can be sent.
  • MM mobility management
  • a second active flag in the TAU request message may be set.
  • Another aspect of the present invention is a method for a mobility management entity (MME) to perform a tracking area update (TAU) procedure in a wireless communication system, the user equipment (UE) Receiving a TAU Request message from the UE and transmitting a TAU Accept message to the UE, wherein a first active flag in the TAU Request message is set
  • the first active flag maintains the non-access stratum (NAS) signaling connection after completion of the TAU procedure. Can direct the request to do so.
  • NAS non-access stratum
  • the first active flag may be included in an additional update type information element for providing additional information about a type of a request for the TAU procedure in the TAU request message.
  • Non-Access Stratum (NAS) signaling connection between the UE and the MME may not be maintained after completion of the TAU procedure.
  • NAS Non-Access Stratum
  • Non-Access Stratum (NAS) signaling connection between the UE and the MME may be maintained after completion of the TAU procedure.
  • NAS Non-Access Stratum
  • the terminal may efficiently use the user data via the control plane after the tracking area update procedure is completed. Can transmit
  • the terminal in the case of a terminal using user plane CIoT EPS optimization, can efficiently transmit user data via the user plane after the tracking area update procedure is completed.
  • FIG. 1 is a view briefly illustrating an EPS (Evolved Packet System) to which the present invention can be applied.
  • EPS Evolved Packet System
  • E-UTRAN evolved universal terrestrial radio access network
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • MTC Machine-Type Communication
  • FIG. 8 illustrates an architecture for service capability exposure in a wireless communication system to which the present invention can be applied.
  • FIG. 9 illustrates a legacy RRC connection procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 10 is a diagram illustrating an end-to-end small data flow in a wireless communication system to which the present invention can be applied.
  • FIG. 11 is a diagram illustrating CP CIoT EPS optimization and UP CIoT EPS optimization for mobile originated data in a wireless communication system to which the present invention can be applied.
  • FIG. 12 is a diagram illustrating CP CIoT EPS optimization and UP CIoT EPS optimization for incoming data in a wireless communication system to which the present invention can be applied.
  • FIG. 13 is a diagram illustrating a release assistance indication / information information element in a wireless communication system to which the present invention can be applied.
  • FIG. 14 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 15 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 16 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 17 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 18 is a diagram illustrating an S1 release procedure in a wireless communication system to which the present invention can be applied.
  • 19 is a diagram illustrating control plane optimization and user plane optimization in a wireless communication system to which the present invention may be applied.
  • FIG. 20 illustrates a tracking area update procedure according to an embodiment of the present invention.
  • FIG. 21 illustrates a tracking area update procedure according to an embodiment of the present invention.
  • 22 is a diagram illustrating an additional update type information element according to an embodiment of the present invention.
  • FIG. 23 is a diagram illustrating an EPS update type information element according to an embodiment of the present invention.
  • 24 is a diagram illustrating a new indication information element for disconnection according to an embodiment of the present invention.
  • 25 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
  • a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
  • IMS IP Multimedia Subsystem
  • IMSI International Mobile Subscriber Identity
  • Machine Type Communication Communication performed by a machine without human intervention. It may also be referred to as M2M (Machine to Machine) communication.
  • MTC terminal MTC UE or MTC device or MTC device: a terminal (eg, vending machine, etc.) having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC UE or MTC device or MTC device a terminal having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC server A server on a network that manages an MTC terminal. It may exist inside or outside the mobile communication network. It may have an interface that an MTC user can access. In addition, the MTC server may provide MTC related services to other servers (Services Capability Server (SCS)), or the MTC server may be an MTC application server.
  • SCS Services Capability Server
  • MTC mobile broadband
  • services e.g., remote meter reading, volume movement tracking, weather sensors, etc.
  • (MTC) application server a server on a network where (MTC) applications run
  • MTC feature A function of a network to support an MTC application.
  • MTC monitoring is a feature for preparing for loss of equipment in an MTC application such as a remote meter reading
  • low mobility is a feature for an MTC application for an MTC terminal such as a vending machine.
  • the MTC user uses a service provided by the MTC server.
  • MTC subscriber An entity having a connection relationship with a network operator and providing a service to one or more MTC terminals.
  • MTC group A group of MTC terminals that share at least one MTC feature and belongs to an MTC subscriber.
  • SCS Services Capability Server
  • MTC-IWF MTC InterWorking Function
  • HPLMN Home PLMN
  • SCS provides the capability for use by one or more MTC applications.
  • External Identifier An identifier used by an external entity (e.g., an SCS or application server) of a 3GPP network to point to (or identify) an MTC terminal (or a subscriber to which the MTC terminal belongs). Globally unique.
  • the external identifier is composed of a domain identifier and a local identifier as follows.
  • Domain Identifier An identifier for identifying a domain in a control term of a mobile communication network operator.
  • One provider may use a domain identifier for each service to provide access to different services.
  • Local Identifier An identifier used to infer or obtain an International Mobile Subscriber Identity (IMSI). Local identifiers must be unique within the application domain and are managed by the mobile telecommunications network operator.
  • IMSI International Mobile Subscriber Identity
  • RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • RANAP RAN Application Part: between the RAN and the node in charge of controlling the core network (ie, Mobility Management Entity (MME) / Serving General Packet Radio Service (GPRS) Supporting Node) / MSC (Mobile Switching Center) Interface.
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • MSC Mobile Switching Center
  • PLMN Public Land Mobile Network
  • Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
  • SEF Service Capability Exposure Function
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (SGW) (or S-GW), PDN GW (Packet Data Network Gateway) (or PGW or P-GW), A mobility management entity (MME), a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG) are shown.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • MME mobility management entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA Code Division Multiple Access
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an operator ie, an operator
  • 3GPP access based on 3GPP access as well as non-3GPP access.
  • IMS IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • various reference points may exist according to the network structure.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with relevant control and mobility resources between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
  • E-UTRAN evolved universal terrestrial radio access network
  • the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
  • Communication networks are widely deployed to provide various communication services, such as voice (eg, Voice over Internet Protocol (VoIP)) over IMS and packet data.
  • voice eg, Voice over Internet Protocol (VoIP)
  • VoIP Voice over Internet Protocol
  • an E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
  • the E-UTRAN consists of eNBs providing a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
  • X2 user plane interface (X2-U) is defined between eNBs.
  • the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
  • An X2 control plane interface (X2-CP) is defined between two neighboring eNBs.
  • X2-CP performs functions such as context transfer between eNBs, control of user plane tunnel between source eNB and target eNB, delivery of handover related messages, and uplink load management.
  • the eNB is connected to the terminal through a wireless interface and is connected to an evolved packet core (EPC) through the S1 interface.
  • EPC evolved packet core
  • the S1 user plane interface (S1-U) is defined between the eNB and the serving gateway (S-GW).
  • the S1 control plane interface (S1-MME) is defined between the eNB and the mobility management entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • the S1 interface supports a many-to-many-relation between eNB and MME / S-GW.
  • MME provides NAS signaling security, access stratum (AS) security control, inter-CN inter-CN signaling to support mobility between 3GPP access networks, and performing and controlling paging retransmission.
  • EWS Earthquake and Tsunami Warning System
  • CMAS Commercial Mobile Alert System
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • an eNB may select a gateway (eg, MME), route to the gateway during radio resource control (RRC) activation, scheduling of a broadcast channel (BCH), and the like. Dynamic resource allocation to the UE in transmission, uplink and downlink, and may perform the function of mobility control connection in the LTE_ACTIVE state.
  • the gateway is responsible for paging initiation, LTE_IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and NAS signaling encryption. It can perform the functions of ciphering and integrity protection.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 4 (a) shows the radio protocol structure for the control plane and FIG. 4 (b) shows the radio protocol structure for the user plane.
  • the layers of the air interface protocol between the terminal and the E-UTRAN are based on the lower three layers of the open system interconnection (OSI) standard model known in the art of communication systems. It may be divided into a first layer L1, a second layer L2, and a third layer L3.
  • the air interface protocol between the UE and the E-UTRAN consists of a physical layer, a data link layer, and a network layer horizontally, and vertically stacks a protocol stack for transmitting data information. (protocol stack) It is divided into a user plane and a control plane, which is a protocol stack for transmitting control signals.
  • the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • an application layer for example, voice data or Internet packet data
  • a physical layer which is a first layer (L1), provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer located at a higher level through a transport channel, and data is transmitted between the MAC layer and the physical layer through the transport channel.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • data is transmitted between different physical layers through a physical channel between a physical layer of a transmitter and a physical layer of a receiver.
  • the physical layer is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel is a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) to the UE. : informs hybrid automatic repeat request (HARQ) information associated with an uplink shared channel (HARQ).
  • the PDCCH may carry an UL grant that informs the UE of resource allocation of uplink transmission.
  • the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • a physical HARQ indicator channel (PHICH) carries a HARQ acknowledgment (ACK) / non-acknowledge (NACK) signal in response to uplink transmission.
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NACK, downlink request and channel quality indicator (CQI) for downlink transmission.
  • a physical uplink shared channel (PUSCH) carries a UL-SCH.
  • the MAC layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer multiplexes / demultiplexes into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • SDU MAC service data unit
  • the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
  • AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
  • the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
  • Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
  • IP Internet protocol
  • IPv4 Internet protocol version 4
  • IPv6 Internet protocol version 6
  • a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages with each other through the RRC layer.
  • the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
  • the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
  • Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the radio bearer may be further divided into two signaling radio bearers (SRBs) and data radio bearers (DRBs).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH for transmitting a paging message
  • DL-SCH for transmitting user traffic or control messages.
  • Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
  • RACH random access channel
  • UL-SCH uplink shared
  • the logical channel is on top of the transport channel and is mapped to the transport channel.
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • the control channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a dedicated control channel (DCCH), multicast And a control channel (MCCH: multicast control channel).
  • Traffic channels include a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • PCCH is a downlink channel that carries paging information and is used when the network does not know the cell to which the UE belongs.
  • CCCH is used by a UE that does not have an RRC connection with the network.
  • the DCCH is a point-to-point bi-directional channel used by a terminal having an RRC connection for transferring dedicated control information between the UE and the network.
  • DTCH is a point-to-point channel dedicated to one terminal for transmitting user information that may exist in uplink and downlink.
  • MTCH is a point-to-multipoint downlink channel for carrying traffic data from the network to the UE.
  • the DCCH may be mapped to the UL-SCH
  • the DTCH may be mapped to the UL-SCH
  • the CCCH may be mapped to the UL-SCH.
  • the BCCH may be mapped with the BCH or DL-SCH
  • the PCCH may be mapped with the PCH
  • the DCCH may be mapped with the DL-SCH.
  • the DTCH may be mapped with the DL-SCH
  • the MCCH may be mapped with the MCH
  • the MTCH may be mapped with the MCH.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • a physical channel transmits signaling and data through a radio resource including one or more subcarriers in a frequency domain and one or more symbols in a time domain.
  • One subframe having a length of 1.0 ms is composed of a plurality of symbols.
  • the specific symbol (s) of the subframe eg, the first symbol of the subframe
  • the PDCCH carries information about dynamically allocated resources (eg, a resource block, a modulation and coding scheme (MCS), etc.).
  • MCS modulation and coding scheme
  • the UE performs an RRC connection re-establishment procedure. Cases are performed.
  • a contention-based random access procedure in which the UE randomly selects and uses one preamble within a specific set And a non-contention based random access procedure using a random access preamble allocated by a base station only to a specific terminal.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • the UE randomly selects one random access preamble (RACH preamble) from a set of random access preambles indicated through system information or a handover command, and A physical RACH (PRACH) resource capable of transmitting a random access preamble is selected and transmitted.
  • RACH preamble random access preamble
  • PRACH physical RACH
  • the base station receiving the random access preamble from the terminal decodes the preamble and obtains an RA-RNTI.
  • the RA-RNTI associated with the PRACH in which the random access preamble is transmitted is determined according to the time-frequency resource of the random access preamble transmitted by the corresponding UE.
  • the base station transmits a random access response addressed to the RA-RNTI obtained through the preamble on the first message to the terminal.
  • the random access response includes a random access preamble identifier (RA preamble index / identifier), an uplink grant (UL grant) indicating an uplink radio resource, a temporary cell identifier (TC-RNTI), and a time synchronization value ( TAC: time alignment commands) may be included.
  • the TAC is information indicating a time synchronization value that the base station sends to the terminal to maintain uplink time alignment.
  • the terminal updates the uplink transmission timing by using the time synchronization value. When the terminal updates the time synchronization, a time alignment timer is started or restarted.
  • the UL grant includes an uplink resource allocation and a transmit power command (TPC) used for transmission of a scheduling message (third message), which will be described later. TPC is used to determine the transmit power for the scheduled PUSCH.
  • TPC transmit power command
  • the base station After the UE transmits the random access preamble, the base station attempts to receive its random access response within the random access response window indicated by the system information or the handover command, and PRACH
  • the PDCCH masked by the RA-RNTI corresponding to the PDCCH is detected, and the PDSCH indicated by the detected PDCCH is received.
  • the random access response information may be transmitted in the form of a MAC packet data unit (MAC PDU), and the MAC PDU may be transmitted through a PDSCH.
  • MAC PDU MAC packet data unit
  • the monitoring stops the random access response.
  • the random access response message is not received until the random access response window ends, or if a valid random access response having the same random access preamble identifier as the random access preamble transmitted to the base station is not received, the random access response is received. Is considered to have failed, and then the UE may perform preamble retransmission.
  • the terminal When the terminal receives a valid random access response to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC, and stores the TC-RNTI. In addition, by using the UL grant, the data stored in the buffer of the terminal or newly generated data is transmitted to the base station.
  • an RRC connection request generated in the RRC layer and delivered through the CCCH may be included in the third message and transmitted.
  • the RRC layer is generated in the RRC layer and CCCH.
  • the RRC connection reestablishment request delivered through the RRC connection reestablishment request may be included in the third message and transmitted. It may also include a NAS connection request message.
  • the third message should include the identifier of the terminal.
  • the first method if the UE has a valid cell identifier (C-RNTI) allocated in the corresponding cell before the random access procedure, the UE transmits its cell identifier through an uplink transmission signal corresponding to the UL grant. do.
  • the UE may include its own unique identifier (eg, SAE temporary mobile subscriber identity (S-TMSI) or random number). send.
  • S-TMSI temporary mobile subscriber identity
  • the unique identifier is longer than the C-RNTI.
  • the UE If the UE transmits data corresponding to the UL grant, it starts a timer for contention resolution (contention resolution timer).
  • the base station When the base station receives the C-RNTI of the terminal through the third message from the terminal, the base station transmits a fourth message to the terminal using the received C-RNTI.
  • the unique identifier ie, S-TMSI or random number
  • the fourth message is transmitted using the TC-RNTI allocated to the terminal in the random access response.
  • the fourth message may include an RRC connection setup message.
  • the terminal After transmitting the data including its identifier through the UL grant included in the random access response, the terminal waits for an instruction of the base station to resolve the collision. That is, it attempts to receive a PDCCH to receive a specific message.
  • the third message transmitted in response to the UL grant is its C-RNTI
  • the identifier is a unique identifier (that is, In the case of S-TMSI or a random number, it attempts to receive the PDCCH using the TC-RNTI included in the random access response.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure is normally performed, and terminates the random access procedure.
  • the terminal acquires the C-RNTI through the fourth message, and then the terminal and the network transmit and receive a terminal-specific message using the C-RNTI.
  • the random access procedure is terminated by only transmitting the first message and transmitting the second message.
  • the terminal before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message, and sends a random access response from the base station.
  • the random access procedure is terminated by receiving.
  • MTC Machine-Type Communication
  • An end-to-end application between a terminal (or MTC terminal) used for MTC and an MTC application may use services provided by the 3GPP system and optional services provided to the MTC server.
  • the 3GPP system may provide transport and communication services (including 3GPP bearer service, IMS and Short Message Service) including various optimizations to facilitate MTC.
  • a terminal used for MTC is connected to a 3GPP network (UTRAN, E-UTRAN, GERAN, I-WLAN, etc.) through a Um / Uu / LTE-Uu interface.
  • the architecture of FIG. 7 includes various MTC models (Direct Model, Indirect Model, Hybrid Model).
  • the application server is a server on a network on which an MTC application is executed.
  • the MTC application server the above-described technology for implementing various MTC applications may be applied, and a detailed description thereof will be omitted.
  • the MTC application server may access the MTC server through a reference point API, and a detailed description thereof will be omitted.
  • the MTC Application Server may be collocated with the MTC Server.
  • the MTC server (eg, the SCS server of FIG. 7) is a server on a network managing the MTC terminal, and is connected to the 3GPP network to communicate with terminals and PLMN nodes used for MTC.
  • the MTC-Interworking Function manages the interworking between the MTC server and the operator core network and may serve as a proxy for the MTC operation.
  • the MTC-IWF can relay or interpret the signaling protocol on the reference point Tsp to activate certain functions in the PLMN.
  • the MTC-IWF performs the functions of authenticating the MTC server before the MTC server establishes communication with the 3GPP network, authenticating the control plane request from the MTC server, and various functions related to trigger instructions described below. can do.
  • SMS-SC Short Message Service-Service Center
  • IP-SM-GW Internet Protocol Short Message GateWay
  • SME Short Message Entity
  • IP-SM-GW Internet Protocol Short Message GateWay
  • the charging data function (CDF) / charging gateway function (CGF) may perform an operation related to charging.
  • the HLR / HSS may function to store subscriber information (IMSI, etc.), routing information, configuration information, and the like and provide the MTC-IWF.
  • IMSI subscriber information
  • HSS may function to store subscriber information (IMSI, etc.), routing information, configuration information, and the like and provide the MTC-IWF.
  • the MSC / SGSN / MME may perform a control function such as mobility management, authentication, resource allocation, etc. for the UE's network connection.
  • a function of receiving a trigger instruction from the MTC-IWF and processing the message in the form of a message provided to the MTC terminal may be performed.
  • the Gateway GPRS Support Node (GGSN) / Serving-Gateway (S-GW) + Packet Date Network-Gateway (P-GW) may function as a gateway that manages the connection between the core network and the external network.
  • T5a one or more reference points of T5a, T5b, and T5c are referred to as T5.
  • user plane communication with the MTC server in the case of indirect and hybrid models, and communication with the MTC application server in the case of direct and hybrid models may be performed using existing protocols through reference points Gi and SGi. .
  • FIG. 8 illustrates an architecture for service capability exposure in a wireless communication system to which the present invention can be applied.
  • the architecture for Service Capability Exposure illustrated in FIG. 8 allows the 3GPP network to securely expose its services and capabilities provided by the 3GPP network interface to external third party service provider applications. Makes it possible to do
  • SCEF Service Capability Exposure Function
  • SCEF is a key entity within the 3GPP architecture for service capability exposure that provides a means to securely expose the services and capabilities provided by the 3GPP network interface. )to be.
  • the SCEF is a key entity for providing a service function belonging to a trust domain operated by a mobile communication operator.
  • SCEF provides an API interface to third party service providers and provides 3GPP service functions to third party service providers through connection with various entities of 3GPP.
  • SCEF functionality may be provided by the SCS.
  • the MTC-IWF may be co-located with the SCEF.
  • a protocol eg DIAMETER, RESTful APIs, XML over HTTP, etc.
  • DIAMETER e.g. DIAMETER, RESTful APIs, XML over HTTP, etc.
  • the SCEF is an entity belonging to a trust domain, and may be operated by a cellular operator or may be operated by a third party operator that has a trusted relationship.
  • a node for service architecture exposing under work items such as Monitoring Enhancement (MONTE) and Architecture Enhancements for Service Capability Exposure (AESE) of 3GPP Release 13, the service is provided as shown in FIG. It is connected with 3GPP entities to provide various monitoring and billing functions to external third parties, and manages third party operators' communication patterns in EPS.
  • MONTE Monitoring Enhancement
  • AESE Architecture Enhancements for Service Capability Exposure
  • RRC connection set up Procedure RRC connection setup procedure
  • FIG. 9 illustrates a legacy RRC connection procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 9 illustrates the current S1 / EPS architecture based procedure required for establishing and tearing down a connection so that the UE can transmit / receive user planes (ie, applicable procedures in the transition of UE idle / connected state). To illustrate.
  • the UE sends a random access (RA) first message Msg 1 (ie, preamble) to the eNB.
  • RA random access
  • the eNB sends an RA second message Msg 2 (ie, a random access response) to the UE.
  • the UE sends an RA third message (Msg 3) to the eNB.
  • an RRC connection request for requesting an RRC connection may be included in the RA Msg 3 and transmitted.
  • the RRC Connection Request message includes a UE ID (eg, SAE temporary mobile subscriber identity (S-TMSI) or random ID) and an establishment cause.
  • UE ID eg, SAE temporary mobile subscriber identity (S-TMSI) or random ID
  • the RRC establishment cause may be a NAS procedure (e.g., attach, detach, tracking area update, service request, extended service request). Is determined by).
  • NAS procedure e.g., attach, detach, tracking area update, service request, extended service request. Is determined by).
  • the eNB sends an RA fourth message (Msg 4) to the UE.
  • the eNB may transmit an RRC connection setup message to the RA Msg 4 to the UE in response to the RRC connection request message.
  • the UE transitions to the RRC_CONNECTED state after receiving the RRC Connection Setup message.
  • the UE sends an RRC Connection Setup Complete message to the eNB to confirm successful completion of the RRC connection establishment.
  • the UE may transmit a NAS message (eg, an initial attach message, a service request message (in case of FIG. 9), etc.) to the eNB in the RRC Connection Setup Complete message.
  • a NAS message eg, an initial attach message, a service request message (in case of FIG. 9), etc.
  • the eNB obtains a Service Request message from the RRC Connection Setup Complete message and delivers it to the MME through an S1AP Initial UE Message.
  • the Initial UE Message is a NAS message (e.g., a Service Request message), a Tracking Area Identifier (TAI) of the serving cell + an E-UTRAN Cell Global Identifier (ECGI), S-TMSI , Closed Subscriber Group (CSG: Identifier), CSG Access Mode (CSG access Mode), and RRC establishment cause.
  • NAS message e.g., a Service Request message
  • TAI Tracking Area Identifier
  • ECGI E-UTRAN Cell Global Identifier
  • S-TMSI Closed Subscriber Group
  • CSG Access Mode CSG access Mode
  • the MME sends an S1-AP Initial Context Setup Request message to the eNB.
  • the Initial Context Setup Request message includes the S-GW address, the S1-tunnel endpoint identifier (s) (TEID), the EPS bearer QoS (s), the security context, and the MME signaling connection. It includes an identifier (MME Signaling Connection Id), a Handover Restriction List, and a CSG Membership Indication.
  • the eNB sends an RRC Security Mode Command message including the selected Access Stratum (AS) algorithm to the UE.
  • AS Access Stratum
  • the RRC Security Mode Command message is integrity protected with an RRC integrity key based on the current Access Security Management Entity key (ie, K_ASME).
  • the UE sends an RRC security mode command complete message to the eNB.
  • the RRC security mode complete message is integrity protected with the RRC integrity key based on the selected algorithm and K_ASME indicated in the RRC Security Mode Command message.
  • the eNB sends an RRC Connection Reconfiguration message to the UE to establish a radio bearer.
  • the UE sends an RRC Connection Reconfiguration Complete message to the eNB in response to the RRC Connection Reconfiguration message to confirm successful completion of radio bearer establishment.
  • uplink data from the UE may be delivered by the eNB to the S-GW.
  • the eNB may transmit the uplink data provided in step 7 to the S-GW address and the TEID.
  • the eNB sends an S1-AP Initial Context Setup Complete message to the MME.
  • the Initial Context Setup Complete message includes an eNB address, a list of accepted EPS bearers, a list of rejected EPS bearers, and an S1 TEID (s) (DL).
  • the MME sends a Bearer Modify Request (Modify Bearer Request) message to the S-GW for each PDN connection.
  • Bearer Modify Request Modify Bearer Request
  • the Modify Bearer Request message includes an eNB address, S1 TEID (s) (DL) for accepted EPS bearers, Delay Downlink Packet Notification Request, RAT Type, and the like.
  • the S-GW sends a Modify Bearer Response message to the MME in response to the Modify Bearer Request.
  • the Modify Bearer Response message includes S-GW address and TEID for uplink traffic.
  • downlink data from the S-GW may be delivered by the eNB to the UE.
  • an S1 release procedure may be performed.
  • the eNB If the eNB detects that the signaling connection of the UE and all radio bearers for the UE need to be released, the eNB sends an S1-AP UE Context Release Request message to the MME.
  • the UE Context Release Request message includes a Cause, and Cause indicates a release reason (for example, user inactivity).
  • the MME sends a Release Access Bearers Request message to the S-GW to request the release of all S1-U bearers for the UE.
  • the S-GW When the S-GW receives the Release Access Bearers Request message, it releases all eNB related information (i.e. address and TEID (s)) for the UE and sends the Release Access Bearers Response message to the MME. Answer
  • the MME releases S1 by sending an S1-AP UE Context Release Command message to the eNB.
  • the eNB sends an RRC Connection Release message to the UE. If this message is acknowledged by the UE, the eNB deletes the context of the UE.
  • the eNB confirms S1 release by sending an S1-AP UE Context Release Complete message to the MME.
  • IOT Internet of Things
  • 3GPP is discussing an architecture for a new core network for efficient small data transmission to support narrow-band Internet of Things (NB-IoT).
  • NB-IoT narrow-band Internet of Things
  • FIG. 10 is a diagram illustrating an end-to-end small data flow in a wireless communication system to which the present invention can be applied.
  • non-IP (non-Internet Protocol) data may be transmitted and received between a AS and a CI Serving Gateway Node (C-SGN) in a point-to-point tunnel manner.
  • C-SGN is an integrated node that includes the main functions of MME and the main functions of S-GW for efficient support of CIoT.
  • the SCEF framework can be used for sending and receiving Non-IP packets.
  • transmission and reception of Non-IP data may be performed between the AS / SCS and the C-SGN via the SCEF.
  • non-IP data may be transmitted and received between the C-SGN and the UE through the S1-MME reference point. That is, small data (eg, non-IP data) encrypted at the NAS layer may be transmitted and received between the UE and the C-SGN.
  • small data eg, non-IP data
  • C-SGN is a new logical entity and can be implemented to support only the essential functionality required for CIoT use cases as follows:
  • SMS Short Message Service
  • IP data For intermittent (infrequent) small data transmission (IP data, non-IP data and SMS), NAS PDU via signaling radio bearer (SRB) between the terminal and the network based on the architecture as shown in FIG.
  • SRB signaling radio bearer
  • DRB data radio bearer
  • the present invention can be applied to a C-SGN defined as a new node, and can also be applied to a form in which a CIoT function is added to an existing MME and S-GW combination.
  • CIoT Cellular Internet of Things
  • EPS Optimization Optimization
  • CIoT EPS optimization provides improved support for small data transmission.
  • CP Control Plane
  • CIoT EPS Optimization CP CIoT EPS Optimization or CIoT EPS CP Optimization
  • UP CIoT EPS User Plane
  • UP CIoT EPS Optimization or CIoT EPS
  • CP CIoT EPS optimization supports efficient delivery of user data (IP, non-IP or SMS) via a control plane via the MME without triggering data radio bearer establishment.
  • header compression of IP data may be applied to an IP PDN type PDN connection configured to support header compression.
  • UP CIoT EPS optimization supports the change from EMM-IDLE mode to EMM-CONNECTED mode without the need of using the Service Request procedure.
  • CIoT EPS optimization supported by UE and / or MME Mobility Management Entity
  • CIoT EPS optimization during attach or tracking area update (TAU) procedure of UE. negotiation ie CIoT EPS optimization supported by UE and / or MME
  • TAU tracking area update
  • the UE supporting the CIoT EPS optimization may support the CIoT network operation that the UE supports and prefers to use during the Attach or TAU procedure.
  • MME can also approve the PDN connection capable of two CIoT EPS optimization. For example, in the case of a PDN connection requiring data transmission and reception through the SCEF, the MME may transmit an instruction to communicate to CP only (that is, use only CP CIoT EPS optimization). In this case, the terminal may select a transmission type according to an application currently requesting Mobile Originated (MO) transmission and a policy of a corresponding APN (Access Point Name).
  • MO Mobile Originated
  • the UE may request an appropriate data transmission form (ie, CP CIoT EPS optimization or UP CIoT EPS optimization) for RRC connection switching.
  • an appropriate data transmission form ie, CP CIoT EPS optimization or UP CIoT EPS optimization
  • FIG. 11 is a diagram illustrating CP CIoT EPS optimization and UP CIoT EPS optimization for mobile originated data in a wireless communication system to which the present invention can be applied.
  • the UE is EPS Connection Management (ECM) -IDLE.
  • ECM EPS Connection Management
  • the UE establishes an RRC connection and sends an integrity protected NAS PDU to the eNB as part of the establishment of the RRC connection.
  • the NAS PDU carries an EPS bearer ID and encrypted uplink data.
  • the NAS PDU transmitted in step 1 above is relayed by the eNB to the MME using an S1-AP Initial UE message.
  • the MME checks the integrity of the received NAS PDU and decrypts the data contained in the NAS PDU.
  • the MME transmits a Bearer Modify Request message to the S-GW for each PDN connection.
  • the Modify Bearer Request message includes an MME address, an MME TEID DL, a Downlink Packet Notification Request, a RAT type, and the like.
  • the S-GW may now send downlink data towards the UE.
  • the S-GW sends a bearer modification request (Modify Bearer Request) message to the P-GW, and the P-GW sends a bearer modification response (Modify Bearer Response) message to the S-GW.
  • a bearer modification request Modify Bearer Request
  • a bearer modification response Modify Bearer Response
  • the S-GW sends a Modify Bearer Response message to the MME as a response to the Modify Bearer Request message.
  • the Modify Bearer Response message includes the S-GW address and TEID for UL traffic.
  • the S-GW address and the S-GW TEID for the S11-U user plane are used by the MME to convey uplink data to the S-GW.
  • the MME transmits uplink data to the P-GW via the S-GW.
  • the MME may send a Connection Establishment Indication message to the eNB.
  • the UE may transmit to the eNB in an UL Info Transfer message that includes an NAS PDU with integrity protection.
  • the NAS PDU transmitted in step 10 may be relayed to the MME by the eNB using an S1-AP uplink NAS transport (UL NAS Transport) message.
  • UL NAS Transport uplink NAS transport
  • the MME may transmit uplink data to the P-GW via the S-GW.
  • the UE establishes an RRC connection and sends a NAS Service Request message to the eNB as part of the establishment of the RRC connection.
  • the eNB obtains a NAS Service Request message from the RRC Connection Setup Complete message and delivers it to the MME through an S1AP Initial UE Message.
  • NAS authentication / security procedures may be performed.
  • the MME sends a Bearer Modify Request (Modify Bearer Request) message to the S-GW for each PDN connection.
  • Bearer Modify Request Modify Bearer Request
  • the Modify Bearer Request message includes an eNB address, S1 TEID (s) (DL) for accepted EPS bearers, Delay Downlink Packet Notification Request, RAT Type, and the like.
  • the S-GW sends a bearer modification request (Modify Bearer Request) message to the P-GW, and the P-GW sends a bearer modification response (Modify Bearer Response) message to the S-GW.
  • a bearer modification request Modify Bearer Request
  • a bearer modification response Modify Bearer Response
  • the S-GW sends a Bearer Modify Response (Modify Bearer Response) message to the MME in response to the Modify Bearer Request.
  • Bearer Modify Response Modify Bearer Response
  • the Modify Bearer Response message includes S-GW address and TEID for uplink traffic.
  • the MME sends an S1-AP Initial Context Setup Request message to the eNB.
  • a radio bearer is set up between the UE and the eNB.
  • Uplink data from the UE is delivered by the eNB to the S-GW and delivered to the P-GW via the S-GW.
  • MME can also select the appropriate CIoT EPS optimization mode for the incoming (MT: Mobile Terminated) data.
  • FIG. 12 is a diagram illustrating CP CIoT EPS optimization and UP CIoT EPS optimization for incoming data in a wireless communication system to which the present invention can be applied.
  • the UE is EPS attached and is in ECM-Idle mode.
  • the S-GW When the S-GW receives the downlink data packet / control signaling for the UE, the S-GW buffers the downlink data packet and identifies which MME is serving the UE.
  • the S-GW If the S-GW is buffering data in step 1, the S-GW transmits a downlink data notification message to the MME having control plane connectivity for the UE.
  • the Downlink Data Notification message includes Allocation / Retention Priority (ARP) and EPS Bearer ID (EPS Bearer ID).
  • ARP Allocation / Retention Priority
  • EPS Bearer ID EPS Bearer ID
  • the MME responds to the S-GW with a Downlink Data Notification Ack message.
  • the MME sends a paging message to each eNB belonging to the tracking area (s) to which the UE is registered.
  • Paging messages include a NAS identifier (ID) for paging, a TAI (s), a discontinuous reception (DRX) index based UE identifier, a paging DRX length, and a CSG for paging.
  • ID NAS identifier
  • TAI s
  • DRX discontinuous reception
  • CSG CSG
  • the UE When the eNB receives a Paging message from the MME, the UE is paged by the eNB.
  • the UE Since the UE is in the ECM-IDLE state, upon receiving the paging indication, the UE sends a NAS Control Plane Service Request message to the RRC Connection request and the S1-AP initial UE message (S1-). AP initial UE message).
  • the eNB acquires a Control Plane Service Request message from the RRC Connection request message and delivers it to the MME through an S1-AP initial UE message.
  • the MME sends a Bearer Modify Request message to the S-GW for each PDN connection.
  • the Modify Bearer Request message includes an MME address, an MME TEID DL, a Downlink Packet Notification Request, a RAT type, and the like.
  • the S-GW may now send downlink data towards the UE.
  • the S-GW sends a bearer modification request (Modify Bearer Request) message to the P-GW, and the P-GW sends a bearer modification response (Modify Bearer Response) message to the S-GW.
  • a bearer modification request Modify Bearer Request
  • a bearer modification response Modify Bearer Response
  • the S-GW sends a Modify Bearer Response message to the MME as a response to the Modify Bearer Request message.
  • the Modify Bearer Response message includes the S-GW address and TEID for UL traffic.
  • the S-GW address and the S-GW TEID for the S11-U user plane are used by the MME to convey uplink data to the S-GW.
  • Buffered (if S11-U is not established) downlink data is sent by the S-GW to the MME.
  • the MME encrypts downlink data and protects its integrity.
  • the MME transmits downlink data to the eNB using a NAS PDU delivered by a downlink S1-AP message.
  • NAS PDUs carrying data are delivered to the UE via downlink RRC messages. This is treated by the UE as an implicit acknowledgment of the Service Request message sent in step 5 above.
  • Step 15 illustrates uplink data delivery using an uplink RRC message that encapsulates a NAS PDU with data.
  • the NAS PDU with data is sent to the MME in an uplink S1-AP message.
  • Data is checked for integrity and decrypted.
  • the MME transmits uplink data to the P-GW via the S-GW.
  • step 20 is performed.
  • the eNB starts an eNodeB initiated S1 release procedure.
  • NAS authentication / security procedures may be performed.
  • the MME sends an S1-AP Initial Context Setup Request message to the eNB.
  • An RRC reconfiguration procedure is performed between the UE and the eNB.
  • Uplink data from the UE is delivered to the S-GW by the eNB.
  • the eNB sends an S1-AP Initial Context Setup Complete message to the MME.
  • the Initial Context Setup Complete message includes an eNB address, a list of accepted EPS bearers, a list of rejected ESP bearers, and an S1 TEID (s) (DL).
  • the MME sends a Bearer Modify Request (Modify Bearer Request) message to the S-GW for each PDN connection.
  • Bearer Modify Request Modify Bearer Request
  • the Modify Bearer Request message includes an eNB address, S1 TEID (s) (DL) for accepted EPS bearers, Delay Downlink Packet Notification Request, RAT Type, and the like.
  • the S-GW sends a bearer modification request (Modify Bearer Request) message to the P-GW, and the P-GW sends a bearer modification response (Modify Bearer Response) message to the S-GW.
  • a bearer modification request Modify Bearer Request
  • a bearer modification response Modify Bearer Response
  • the S-GW sends a Modify Bearer Response message to the MME in response to the Modify Bearer Request.
  • the Modify Bearer Response message includes S-GW address and TEID for uplink traffic.
  • step 19 is performed.
  • the eNB starts an eNodeB initiated S1 release procedure.
  • RAI means help information for quick disconnection of UE.
  • the UE may additionally include the RAI.
  • the UE may transmit an RAI in the NAS PDU.
  • An RAI Information Element is used to predict whether only a single downlink data transmission (eg, acknowledgment or response to uplink data) is expected following uplink data transmission, or additional uplink or It is used to inform the network whether downlink transmission is expected.
  • the RAI IE may be coded as illustrated in FIG. 13 and Table 3.
  • FIG. 13 The RAI IE may be coded as illustrated in FIG. 13 and Table 3.
  • RAI IE is a type 1 IE.
  • FIG. 13 is a diagram illustrating a release assistance indication / information information element in a wireless communication system to which the present invention can be applied.
  • the RAI IE has a length of one octet, and is 4 bits (ie, 5-8 times) from the Most Significant Bit (MSB) (or left-most bit). Bit) indicates an Information Element Identifier (IEI), the next 1 bit (ie bit 4) is a spare bit, and the next 1 bit (ie bit 3) is It is a spare bit, and the next two bits represent downlink data expected (DDX).
  • MSB Most Significant Bit
  • IEI Information Element Identifier
  • Table 3 illustrates the description according to the value of DDX.
  • the TAU procedure is one of mobility management procedures performed by the MME and is one of important functions for managing mobility of UEs in EPS.
  • the mobility based TAU detects that it has entered a new tracking area (TA) that does not exist in the list of tracking area identity (TAI) (ie, the tracking area is If changed).
  • TA tracking area
  • TAI tracking area identity
  • a periodic TAU procedure may be performed.
  • This periodic TAU can be said to be a method for checking reachability (reachability) to check whether the terminal validly exists in the network in the network.
  • FIG. 14 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • One of the predefined triggers for starting the TAU procedure is generated, such as when the TAU timer of a UE that is in an EPS Connection Management (ECM) -IDLE state has elapsed or when the UE has moved to another tracking area. .
  • ECM EPS Connection Management
  • the UE initiates the TAU procedure by sending a TAU Request message to the eNB with an RRC parameter indicating the selected network and the old globally unique MME Identifier (GUMMEI). do.
  • TAU Request messages include UE Core Network Capability (UE), Mobile Station (MS) Mobile Capability (MS Network Capability), Preferred Network Behavior, and Old Global Globally Unique Temporary Identity (GUTI), Old GUTI type, Last visited TAI, Active flag, EPS bearer status, Packet temporary mobile subscription Packet Temporary Mobile Subscriber Identity (P-TMSI) signature, additional GUTI, Key Set Identifier for E-UTRAN (eKSI), NAS sequence number (NAS sequence) number), NAS Message Authentication Code (NAS-MAC), Key Set Identifier (KSI), Voice domain preference and UE's usage setting (UE). .
  • UE UE Core Network Capability
  • MS Mobile Station
  • MS Network Capability Mobile Capability
  • Preferred Network Behavior Preferred Network Behavior
  • GUTI Old Global Globally Unique Temporary Identity
  • Old GUTI type Old GUTI type
  • Last visited TAI Active flag
  • P-TMSI Packet temporary mobile subscription Packet Temporary Mobile Subscriber Identity
  • the active flag is a request by the UE to activate the radio bearer and S1 bearer (s) for all active EPS bearer (s) by the TAU procedure when the UE is in the ECM-IDLE state.
  • the EPS bearer state indicates each bearer active in the UE.
  • the eNB derives the MME address from the RRC parameters carrying the old GUMMEI, the indicated Selected Network and the RAT.
  • the MME address may be derived based on the RRC CIoT EPS Optimization information.
  • the eNB transmits the TAU Request message to the MME together with the CSG access mode, the CSG ID, the TAI + ECGI, the RAT type of the cell in which the TAU Request message is received, and the selected network.
  • the new MME differentiates the type of the old node (ie, MME or SGSN) and uses the GUTI received from the UE to derive the old MME / S4 SGSN address.
  • the new MME sends a context request message to the old MME / old S4 SGSN to obtain user information.
  • the Context Request message may include the old GUTI, the complete TAU Request message, the P TMSI Signature, the MME Address, the UE validated, the CIoT EPS Optimization support indication. .
  • the CIoT EPS Optimization support instruction is included in the Context Request message indicating the support of various CIoT EPS Optimization (eg, header compression for CP optimization).
  • the old MME responds with a context response message.
  • Context Response messages include IMSI, Mobile Equipment (ME) Identifier (ME Identity), International Mobile Station Equipment Identity and Software Version Number (IMEISV), Mobility Management (MM) Context (MM Context), EPS Bearer Context (S) (EPS Bearer Context (s)), S-GW signaling address and TEID (s), Idle mode signaling reduction (ISR) supported (ISR Supported), MS information change reporting operation (MS Info) Change Reporting Action (if available), CSG Information Reporting Action (if available), UE Time Zone, UE Core Network Capability, UE-specific DRX Parameters (S) (UE Specific DRX Parameters).
  • the Context Response message includes a Header Compression Configuration.
  • EPS bearer context (s) is not included in the Context Response message.
  • the old MME Based on the CIoT EPS Optimization support indication, the old MME only delivers EPS bearer context (s) supported by the new MME. If the new MME does not support CIoT EPS Optimization, the EPS bearer context (s) of the non-IP PDN connection is not delivered to the new MME. If the EPS bearer context (s) of the PDN connection are not passed, the old MME considers all bearers for that PDN connection to fail and triggers the MME requested PDN disconnection procedure to trigger the PDN connection. Disconnect. The buffered data in the old MME is discarded after receiving a context acknowledgment message.
  • the MME determines the relocation of the S-GW. When the old S-GW cannot continue to serve the UE, the S-GW is relocated.
  • the MME i.e. when the MME is changed and is a new MME
  • the relocation of the S-GW can be determined if the -GW can be co-located with the P-GW.
  • the new MME sends a context acknowledgment message to the old MME / old S4 SGSN.
  • the Context Acknowledge message contains an S-GW change indication.
  • steps 8, 9, 10, 11, 18 and 19 are skipped.
  • the new MME verifies the EPS bearer status received from the UE using the bearer context received from the old MME / old S4 SGSN. If the MME has not changed, the MME verifies the EPS bearer status from the UE using the bearer context available in the MM context.
  • the MME releases any network resources associated with unactivated EPS bearer (s) in the UE. If there is no bearer context at all, the MME rejects the TAU Request.
  • the MME sends a Create Session Request message to the selected new S-GW for each PDN connection.
  • Create Session Request message includes IMSI, bearer context (s), MME Address and TEID, Type, Protocol Type over S5 / S8, RAT type, Serving Network ), And may include a UE time zone.
  • the new MME When the new MME receives the EPS bearer context accompanying the SCEF, the new MME updates the SCEF.
  • the S-GW transmits a Bearer Modify Request message to the P-GW (s) for each PDN connection.
  • the Modify Bearer Request message may include an S-GW address, a TEID, a RAT type, a Serving Network, and a PDN Charging Pause Support Indication.
  • PCC Policy and Charging Control
  • PCRF Policy and Charging Rules Function
  • the P-GW updates its bearer context and sends a Bearer Modify Response (Modify Bearer Response) message to the S-GW.
  • Bearer Modify Response Modify Bearer Response
  • the Modify Bearer Response message may include an MSISDN, a Charging Id, a PDN Charging Pause Enabled Indication (when the P-GW has selected this function activation).
  • the S-GW updates its bearer context. This allows the S-GW to route the bearer PDU (s) to the P-GW when it receives it from the eNB.
  • the S-GW sends a Create Session Response message to the MME.
  • the Create Session Response message may contain the S-GW address and TEID for the user and control planes, the P-GW TEID (s) for uplink traffic and the control plane (for GPRS Tunnelling Protocol (GTP) -based S5 / S8) or GRE key (s) (for Proxy Mobile IP (PMIP) -based S5 / S8), MS Info Change Reporting Action (MS Info).
  • GTP GPRS Tunnelling Protocol
  • PMIP Proxy Mobile IP
  • the new MME checks whether there is subscription data for the UE identified by IMSI received with context data from the GUTI, additional GUTI or old CN node.
  • the new MME sends an Update Location Request message to the HSS.
  • Update Location Request messages support homogeneous support of IMS voices on MME Identity, IMSI, ULR- Flag (s) (Update Location Request Flags), MME Capabilities, Packet Switched (PS) sessions (Homogeneous Support of IMS Voice over PS Sessions), UE SRVCC capability (UE Single Radio Voice Call Continuity (SRVCC) capability), equivalent PLMN list, and ME Identity (IMEISV). .
  • the HSS sends a Cancel Location message accompanied by a Cancel Type set by the update procedure to the old MME.
  • the Cancel Location message may include an IMSI and a cancellation type.
  • step 14 If the timer started in step 4 above is not running, old MME removes the MM context. Otherwise, the context is removed when the timer expires.
  • the old MME responds to the HSS with a Cancel Location Ack message containing the IMSI.
  • the old S4 SGSN When the old S4 SGSN receives the Context Acknowledge message and the UE is in the Iu connection state, the old S4 SGSN sends an Iu Release Command message to the RNC after the timer started in step 4 expires. .
  • the RNC responds with an Iu Release Complete message.
  • the HSS acknowledges the Location Update Request message by sending an Update Location Ack message containing the IMSI and Subscription Data to the new MME.
  • the old MME / old S4 SGSN releases the local MME or SGSN bearer resource. Additionally, if the S-GW change indication in the Context Acknowledge message is received in step 7, the old MME / old S4 SGSN sends a Delete Session Request message including a cause and an operation indication. The EPS bearer resource is deleted by sending to the old S-GW.
  • step 11 triggers the release of EPS bearer resources in the old S-GW.
  • the S-GW acknowledges with a Delete Session Response message that includes the Cause.
  • the S-GW discards any packets buffered for that UE.
  • the MME sends a TAU Accept message to the UE.
  • TAU Accept messages include GUTI, TAI list, EPS bearer status, NAS sequence number, NAS-MAC, IMS Voice over PS session supported, and emergency service support indication.
  • Emergency Service Support indicator location service support indication (LCS (Location Service) Support Indication)
  • LCS Location Service Support Indication
  • the MME may provide a Handover Restriction List to the eNB. If the MME allocates a new GUTI, it is included in the TAU Accept message. If the active flag is set in the TAU Request message, the user plane setup procedure is activated with the TAU Accept message. When the DL Data Buffer Expiration Time for the UE in the MME expires, the user plane setup procedure is activated even if the MME has not received an active flag in the TAU Request message. If the new MME receives a Downlink Data Notification message or any downlink signaling message while the UE is still connected, the user plane may be present even if the new MME has not received an active flag in the TAU Request message. The setup procedure is activated.
  • EPS bearer status in the TAU Accept message is not included.
  • the UE acknowledges the received message by sending a TAU Complete message to the MME.
  • the new MME releases the signaling connection with the UE according to the S1 release procedure.
  • the new MME may initiate establishment of an E-RAB (E-UTRAN Radio Access Bearer) after performing a security function or waiting for the TAU procedure to complete.
  • E-RAB E-UTRAN Radio Access Bearer
  • E-RAB establishment may occur at any time after the TAU request is sent.
  • FIG. 15 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • Procedures (A) and (B) in FIG. 15 are previously defined in FIG. 14. In step 15 of FIG. 15, only one additional parameter is different from that of FIG. 14, which will be described below.
  • the old MME / old S4-SGSN waits for the buffered downlink data in the Context Response message. (Buffered DL Data Waiting). This triggers the new MME to set up the user plane and invoke the data transfer.
  • the old MME discards the buffered downlink data.
  • the user plane is set up.
  • step 11 is skipped.
  • the MME includes the MME address and the MME DL TEID in the Modify Bearer Request message
  • the S-GW includes the S-GW address and the S-GW uplink TEID in the Modify Bearer Response message.
  • step 13 Since the downlink data buffered in step 5 has been indicated to be waiting, the new MME sends a Create Indirect Data Forwarding Tunnel Request to the S-GW, thereby forwarding parameter. Set up.
  • the Create Indirect Data Forwarding Tunnel Request message may include target eNB address (s) and TEID for forwarding.
  • the S-GW sends a Create Indirect Data Forwarding Tunnel Response message to the target MME.
  • the Create Indirect Data Forwarding Tunnel Response message may include target S-GW address (s) and TEID (s) for forwarding.
  • the new MME sets up a forwarding parameter by sending a Create Indirect Data Forwarding Tunnel Request message to the S-GW.
  • the Create Indirect Data Forwarding Tunnel Request message may include target MME address (s) and TEID for forwarding.
  • the new MME includes a F-TEID and a forwarding indication to which buffered downlink data in the Context Acknowledge message should be delivered.
  • the F-TEID may be an F-TEID for indirect delivery received from step 13 above, or may be an F-TEID of an eNB (when an eNB supports forwarding).
  • a Modify Bearer Request (including F-TEID) message is sent to the old S-GW.
  • the F-TEID is a forwarding F-TEID to which buffered downlink data should be delivered.
  • the old S-GW forwards its buffered data towards the F-TEID received in step 15 above.
  • the buffered downlink data is transmitted to the UE through the radio bearer established in step 11 above.
  • the buffered downlink data is transmitted from new S-GW to new MME and transmitted to UE.
  • FIG. 16 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • One of the predefined triggers for starting the TAU procedure is generated, such as when the TAU timer has elapsed or the UE has moved to another tracking area.
  • the UE initiates the TAU procedure by sending a TAU Request message to the eNB with an RRC parameter indicating the selected network and old GUMMEI.
  • the TAU Request message includes UE Core Network Capability, MS Network Capability, Preferred Network Behavior, Old GUTI, and Old GUTI Type. type), last visited TAI, active flag, EPS bearer status, P-TMSI signature, additional GUTI, KSI_SGSN, KSI_ASME, NAS sequence number (NAS sequence number), NAS Message Authentication Code (NAS-MAC), Voice domain preference and UE's usage setting.
  • the active flag is a request by the UE to activate the radio bearer and S1 bearer (s) for all active EPS bearer (s) by the TAU procedure.
  • the EPS bearer state indicates each bearer active in the UE.
  • the eNB derives the MME address from the RRC parameters carrying the old GUMMEI, the indicated Selected Network and the RAT.
  • the MME address may be derived based on the RRC CIoT EPS Optimization information.
  • the eNB transmits the TAU Request message to the MME together with the CSG access mode, the CSG ID, the TAI + ECGI, the RAT type of the cell in which the TAU Request message is received, and the selected network.
  • the new MME differentiates the type of the old node (ie, MME or SGSN) and uses the GUTI received from the UE to derive the old MME / S4 SGSN address.
  • the new MME sends a context request message to the old MME / old S4 SGSN to obtain user information.
  • the Context Request message may include old GUTI, complete TAU Request message, P TMSI Signature, MME Address, UE validated, CIoT EPS Optimization support indication.
  • the CIoT EPS Optimization support instruction is included in the Context Request message indicating the support of various CIoT EPS Optimization (eg, header compression for CP optimization).
  • the old MME responds with a context response message.
  • Context Response messages include IMSI, ME Identity, IMEISV, unused EPS Authentication Vectors, KSI_ASME, K_ASME, EPS Bearer Context (s), S-GW Signaling address and TEID (s) of the MS, MS Info Change Reporting Action (if available), CSG Information Reporting Action (if available), UE Time Zone ), UE Core Network Capability, UE Specific DRX Parameters (s).
  • the Context Response message includes a Header Compression Configuration.
  • EPS bearer context (s) is not included in the Context Response message.
  • the old MME Based on the CIoT EPS Optimization support indication, the old MME only delivers EPS bearer context (s) supported by the new MME. If the new MME does not support CIoT EPS Optimization, the EPS bearer context (s) of the non-IP PDN connection is not delivered to the new MME. If the EPS bearer context (s) of the PDN connection are not passed, the old MME considers all bearers for that PDN connection to fail and triggers the MME requested PDN disconnection procedure to trigger the PDN connection. Disconnect. The buffered data in the old MME is discarded after receiving a context acknowledgment message.
  • the new MME sends a Context Acknowledge message to the old MME.
  • the MME sends a Context Acknowledge message to the old SGSN.
  • steps 9, 10, 11, 12 and 13 are skipped.
  • the new MME adopts the bearer context received from the old MME / SGSN as the EPS bearer context of the UE to be maintained by the new MME.
  • the MME verifies the EPS bearer status received from the UE in the EPS bearer context and releases any network resources associated with the EPS bearers that are not active in the UE. If there is no bearer context at all, the MME rejects the TAU Request.
  • the new MME sends a Modify Bearer Request message to the S-GW for each PDN connection.
  • the Modify Bearer Request message may include a new MME address and TEID, ISR Activated, and RAT type.
  • downlink data is buffered to the S-GW, this procedure is a TAU procedure without MME change, and DL Data Buffer Expiration Time in MM context for UEs in MME is If it does not expire, or if this procedure is a TAU procedure involving an MME change and the old MME / old S4-SGSN previously indicated Buffered DL Data Waiting buffered in the Context Response message in step 5, then the MME Includes the MME address and the MME downlink TEID in the Modify Bearer Request.
  • the S-GW transmits a bearer modification request message (including a RAT type) to the P-GW (s) for each PDN connection.
  • the P-GW sends this information to the IP CAN Session Modification procedure. Send to the PCRF.
  • the P-GW updates its own context field so that the downlink PDUs are routed to the correct S-GW and sends a Modify Bearer Response message (including MSISDN) to the S-GW.
  • a Modify Bearer Response message including MSISDN
  • the S-GW updates its bearer context.
  • the S-GW sends a Modify Bearer Response message to the MME as a response to the Modify Bearer Request message.
  • the Modify Bearer Response message may include an S-GW address, a TEID, and an MS Info Change Reporting Action for uplink traffic.
  • the S-GW includes the S-GW address and the S-GW uplink TEID in the Modify Bearer Response message. Downlink data is transmitted from the S-GW to the MME.
  • the new MME checks whether there is subscription data for the UE identified by IMSI received with context data from the GUTI, additional GUTI or old CN node.
  • the new MME If there is no subscription data for this UE in the new MME, the new MME notifies the HSS of the change of the MME by sending an Update Location Request message to the HSS.
  • Update Location Request messages include MME Identity, IMSI, ULR-Flag (s) (Update Location Request Flags), MME Capabilities, and Homogeneous Support of IMS Voice over PS sessions. PS Sessions), UE SRVCC capability, equivalent PLMN list, and ME Identity (IMEISV).
  • the HSS sends a Cancel Location message accompanied by a Cancel Type set by the update procedure to the old MME.
  • the Cancel Location message may include an IMSI and a cancellation type.
  • the old MME responds to the HSS with a Cancel Location Ack message containing the IMSI.
  • the old S4 SGSN When the old S4 SGSN receives the Context Acknowledge message and the UE is in the Iu connection state, the old S4 SGSN sends an Iu Release Command message to the RNC after the timer started in step 4 expires. .
  • the RNC responds with an Iu Release Complete message.
  • the HSS acknowledges the Location Update Request message by sending an Update Location Ack message containing the IMSI and Subscription Data to the new MME.
  • the MME sends a TAU Accept message to the UE.
  • TAU Accept messages include GUTI, TAI list, EPS bearer status, NAS sequence number, NAS-MAC, ISR Activated, and IMS Voice over PS session. It may include supported, emergency service support indicator (Emergency Service Support indicator), location service support indication (LCS Support Indication), supported network behavior (Supported Network Behavior).
  • Emergency Service Support indicator Emergency Service Support indicator
  • location service support indication LCS Support Indication
  • supported network behavior Supported Network Behavior
  • the MME may provide a Handover Restriction List to the eNB. If the active flag is set in the TAU Request message, the user plane setup procedure is activated with the TAU Accept message. If this procedure is a TAU procedure without an MME change and the DL Data Buffer Expiration Time in the MM context for the UE in the MME does not expire, or this procedure is a TAU procedure with an MME change, If old S4-SGSN indicates buffered DL data waiting, the user plane setup procedure is activated even if the MME does not receive an active flag in the TAU Request message. If the new MME receives a Downlink Data Notification message or any downlink signaling message while the UE is still connected, the user plane setup procedure may be performed even if the new MME does not receive an active flag in the TAU Request message. Can be activated.
  • EPS bearer status in the TAU Accept message is not included.
  • the MME indicates, in the Supported Network Behavior information, the CIoT EPS Optimization supported and preferred by the MME.
  • the UE acknowledges the received message by sending a TAU Complete message to the MME.
  • the MME releases the signaling connection with the UE according to the S1 release procedure.
  • the new MME may initiate establishment of an E-RAB (E-UTRAN Radio Access Bearer) after performing a security function or waiting for the TAU procedure to complete.
  • E-RAB E-UTRAN Radio Access Bearer
  • E-RAB establishment may occur at any time after the TAU request is sent.
  • FIG. 17 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • a UE in an EMM-REGISTERED state initiates a TAU procedure by transmitting a TRACKING AREA UPDATE REQUEST message to the MME in the following cases (S1701a and S1701b):
  • the UE enters the EMM-REGISTERED.NORMAL-SERVICE (selected by the UE as the default substate when the UE enters the EMM-REGISTERED state) and a temporary identifier (TIN :) used for the next update of the UE. Temporary Identity used in Next update) indicates "P-TMSI";
  • the UE performs an inter-system change from the S101 mode (ie, using the S101 reference point) to the S1 mode (ie, using the S1 interface between the access network and the core network), and user data is pending pending);
  • UE supports from SRVCC to GERAN or UTRAN, or supports Single Radio Video Call Continuity (vSRVCC) to UTRAN and changes mobile station classmark 2 or supported codecs, or UE supports from SRVCC to GERAN When changing mobile station classmark 3;
  • vSRVCC Single Radio Video Call Continuity
  • Timer T3346 (Mobility Management Back-off Timer) is running, UE is in EMM-REGISTERED.ATTEMPTING-TO-UPDATE state (TAU or combined TAU procedure loses response from network, etc.) If failed for any reason), when receiving a paging indication using S-TMSI;
  • the UE sets the EPS update type IE in the TRACKING AREA UPDATE REQUEST message to "TA updating”. In the case of b, the UE sets the EPS update type IE to "periodic updating”.
  • the UE includes UE radio capability information update needed IE (IE) in the TRACKING AREA UPDATE REQUEST message.
  • IE UE radio capability information update needed IE
  • the UE sets the TIN to "P-TMSI" before initiating the TAU procedure.
  • the "active" flag in the EPS update type IE is set to one.
  • the "active" flag in the EPS update type IE is set to zero.
  • the UE fails to successfully perform the TAU or the like and is in the EMM-REGISTERED.ATTEMPTING-TO-UPDATE state and receives the MT paging from the network while the mobility management (MM) back-off timer T3346 is running.
  • the terminal may respond to paging through the TAU.
  • the terminal necessarily sets the "active" flag to 1 and transmits a TAU request message to the MME.
  • a UE When a UE initiates a TAU procedure, if the UE has an established PDN connection (s) and pending uplink user data, or if it has uplink signaling not associated with the TAU procedure, then the UE sends a user to the network. You can set the "active" flag in the TRACKING AREA UPDATE REQUEST to indicate the request to establish the plane and to maintain the NAS signaling connection after completion of the TAU procedure.
  • the MME If the TAU request is accepted by the network, the MME transmits a TRACKING AREA UPDATE ACCEPT message to the UE (S1702a).
  • the MME may include a new TAI list for the UE in the TRACKING AREA UPDATE ACCEPT.
  • the GUTI is included in a TRACKING AREA UPDATE ACCEPT message.
  • the MME is responsible for EPS bearer context status IE in the TRACKING AREA UPDATE ACCEPT message. inform the UE of the EPS bearer context (s) deactivated by including context status IE).
  • the MME re-establishes the radio bearer and S1 bearer for all active EPS bearer context (s).
  • the MME will radio for all active EPS bearer context (s) due to downlink pending data or downlink pending signaling.
  • the bearer and the S1 bearer may be re-established.
  • the UE responds to the MME with a TRACKING AREA UPDATE COMPLETE to acknowledge the received GUTI (S1703a).
  • the MME sends a TRACKING AREA UPDATE REJECT message to the UE, including the appropriate EMM cause value (S1702b).
  • the S1 release procedure is used to release the logical S1-AP signaling connection (via S1-MME) and all S1 bearer (s) (in S1-U) to the UE.
  • This procedure releases the S11-U bearer (except for buffering in the MME) in CP CIoT EPS Optimization instead of the S1-U bearer.
  • This procedure changes the UE from ECM-CONNNECTED to ECM-IDLE in both the UE and the MME, and all UE related context information is deleted in the eNB.
  • the S1 release procedure is performed by the eNB and / or by the MME.
  • the S1 release procedure is performed locally by the eNB or by the MME, and each node performs the operation locally without direct signaling between the eNB and the MME.
  • the S1 release procedure is initiated by one of the following:
  • RRC Signaling Integrity Check Failure Release due to UE generated signaling connection release, CS Fallback triggered, Inter-RAT Redirection, etc .; or
  • FIG. 18 is a diagram illustrating an S1 release procedure in a wireless communication system to which the present invention can be applied.
  • the eNB may release the signaling connection of the UE before or concurrently with requesting the SME context release to the MME. For example, the eNB may initiate RRC Connection Release for CS fallback by redirection.
  • the eNB If the eNB detects that it needs to release the signaling connection of the UE and all radio bearers for the UE, the eNB sends an S1 UE Context Release Request message (including cause) to the MME.
  • the cause indicates the reason for the release (e.g. O & M intervention, unspecified failure, user inactivity, repeated integrity checking failure, or release due to UE generated signaling connection release).
  • the first step is performed only in the S1 release procedure initiated by the eNB, and the S1 release procedure initiated by the MME is performed from step 2.
  • steps 2 and 3 are skipped.
  • the MME requests release of an access bearer from the S-GW to request release of all S1-U bearer (s) for the UE or S11-U in CP CIoT EPS Optimization if it is buffering in the S-GW.
  • Request) message (Abnormal Release of Radio Link Indication) is transmitted. This message is triggered by the S1 Release Request message from the eNB or by another MME event.
  • the S-GW When the S-GW receives the Release Access Bearers Request message, the S-GW releases all eNB related information (address and TEID (s)) for the UE or MME TEID (s) information in CP CIoT EPS Optimization. And responds to the MME with a Release Access Bearers Release message. Other elements of the S-GW context of the UE are not affected.
  • the S-GW maintains the S1-U configuration that the S-GW assigned to the bearer (s) of the UE.
  • the MME releases S1 by sending an S1 UE Context Release Command message (including Cause) to the eNB.
  • the eNB sends an RRC Connection Release message to the UE in an acknowledgment mode (AM). If this message is acknowledged by the UE, the eNB deletes the context of the UE.
  • AM acknowledgment mode
  • the eNB confirms S1 release by sending an S1 UE Context Release Complete message (including ECGI, TAI) to the MME.
  • S1 UE Context Release Complete message including ECGI, TAI
  • the signaling connection between the MME and the eNB for the UE is released. This step is performed immediately after step 4 above.
  • the MME deletes any eNB related information (ie eNB address used for S1-MME, MME UE S1 AP ID, eNB UE S1AP ID) from the MME context of the UE, but includes S1-G configuration information of the S-GW. Remaining information (address and TEID (s)) of the MME context of the UE is maintained.
  • eNB related information ie eNB address used for S1-MME, MME UE S1 AP ID, eNB UE S1AP ID
  • the UE When the UE initiates the TAU procedure, when uplink data to be transmitted to the network is pending, the UE may set an active flag in a TRACKING AREA UPDATE REQUEST message.
  • a user plane setup procedure is performed. This is a path for transmitting uplink data of the UE (ie, uplink) during the TAU procedure). Since the entities in the network for link data transmission and the context of the terminal within the entity are determined, the terminal cannot transmit uplink data to the network during the TAU procedure, and the user plane setup procedure is performed after the TAU procedure is completed.
  • the NAS layer of the UE has data that is buffered (ie, pending) in the UE at the time of transmitting the TRACKING AREA UPDATE REQUEST message.
  • the active flag in the TRACKING AREA UPDATE REQUEST message can be set.
  • the MME may set up the DRB by performing an initial context setup instead of performing an S1 release procedure after transmitting a TRACKING AREA UPDATE ACCEPT message to the UE. That is, if the active flag is set in the TAU Request message, the user plane setup procedure is activated with the TRACKING AREA UPDATE ACCEPT message. In other words, if an active flag is included in the TRACKING AREA UPDATE REQUEST message, the MME re-establishes the radio bearer (ie, DRB) and S1 bearer for all active EPS bearer context (s).
  • the radio bearer ie, DRB
  • S1 bearer for all active EPS bearer context
  • the terminal may transmit uplink data to the network.
  • the eNB may terminate the connection by requesting the MME to release the S1.
  • 19 is a diagram illustrating control plane optimization and user plane optimization in a wireless communication system to which the present invention may be applied.
  • the UE and the network (eg, P-GW / S-GW) using the DRB ⁇ -> S1-U ⁇ -> SGi path Uplink / downlink data transmission and reception may be performed.
  • the SRB ⁇ -> S1-MME ⁇ -> S11-U path is used instead of the DRB ⁇ -> S1-U path using the existing AS security.
  • Uplink / downlink data transmission and reception may be performed between networks (eg, P-GW / S-GW).
  • networks eg, P-GW / S-GW.
  • up / downlink data transmission and reception may be performed with an application server (AS) via the SCEF.
  • AS application server
  • the MME performs an initial context setup to activate the user plane. do.
  • the terminal uses only the control plane CIoT EPS Optimization, even if the terminal wants to transmit the uplink data to the control plane, if the active flag in the TRACKING AREA UPDATE REQUEST message is set, the radio bearer (that is, DRB unnecessary) ) And the S1 bearer is re-established, there is a problem that the waste of resources is generated, and also the power of the terminal is consumed as unnecessary signaling with the terminal occurs.
  • the terminal uses both Control Plane CIoT EPS Optimization and User Plane CIoT EPS Optimization, even if the terminal wants to transmit the uplink data to the control plane, if the active flag in the TRACKING AREA UPDATE REQUEST message is set, it is unnecessary as above. As a result, the radio bearer (ie, DRB) and the S1 bearer are re-established, resulting in resource waste, and unnecessary signaling with the terminal causes power consumption of the terminal. In addition, since the RAI cannot be applied when the DRB is established, there is a problem that it is delayed with the S1 release. In addition, when the non-NB-IoT terminal (that is, non-NB-IoT terminal), as the DRB is established, the base station may trigger the measurement report to the terminal, there is a problem that the power of the terminal is consumed.
  • the non-NB-IoT terminal that is, non-NB-IoT terminal
  • the base station may trigger the measurement report to the terminal, there is a problem that the power
  • step 21 of the procedure causes the MME to perform the S1 release procedure (see FIG. 18 above).
  • step 21 of FIG. 14 step 10 of FIG. 15, and step 21 of FIG. 16 as follows.
  • the MME releases the signaling connection with the UE according to the S1 release procedure (see FIG. 18 above).
  • the signaling connection is released without the UE can afford to transmit the MO data through the SRB.
  • the terminal has to incur the hassle and inefficiency of establishing the RRC connection again.
  • the UE While the UE is using the Control Plane CIoT EPS Optimization, it fails to perform TAU successfully and is in the EMM-REGISTERED.ATTEMPTING-TO-UPDATE state and receives MT paging while the MM backoff timer T3346 is running.
  • the UE wants to receive the MT data through the SRB or the MT data can be received only through the SRB, the UE has no choice but to transmit a TRACKING AREA UPDATE REQUEST message to the MME by setting the active flag.
  • the UE uses the Control Plane CIoT EPS Optimization, the user plane activation / setup (ie DRB and S1 bearer setup) is not required during the TAU procedure, but data to be transmitted via the control plane is pending. ), We propose a method in which the UE can transmit MO data without causing S1 release immediately after completion of the TAU procedure.
  • Dedicated bearer An EPS bearer associated with uplink packet filter (s) in the UE and downlink packet filter (s) in the P-GW. Here filter (s) only matches a particular packet.
  • Default bearer EPS bearer established with every new PDN connection. The context of the default bearer is maintained for the lifetime of the PDN connection.
  • EMM-NULL EPS Mobility Management
  • EMM-DEREGISTERED state In the EMM-DEREGISTERED state, no EMM context is established and the UE location is unknown to the MME. Thus, the UE is unreachable by the MME. In order to establish the EMM context, the UE must start an attach or combined attach procedure.
  • EMM-REGISTERED state In the EMM-REGISTERED state, an EMM context in the UE is established and a default EPS bearer context is activated. When the UE is in EMM-IDLE mode, the UE location is known to the MME with the accuracy of the list of TAs containing the specific number of the TA. The UE may initiate transmission and reception of user data and signaling information and may respond to paging. In addition, a TAU or combined TAU procedure is performed.
  • EMM-CONNECTED mode When a NAS signaling connection is established between the UE and the network, the UE is in EMM-CONNECTED mode.
  • EMM-CONNECTED may be referred to as the term of the ECM-CONNECTED state.
  • EMM-IDLE mode The UE is in EMM-IDLE mode when there is no NAS signaling connection between the UE and the network or an RRC connection suspend is indicated by the lower layer.
  • EMM-IDLE may also be referred to as the term of the ECM-IDLE state.
  • EMM context If the attach procedure is successfully completed, the EMM context is established in the UE and the MME.
  • Control plane CIoT EPS optimization Signaling optimization to enable efficient transport of user data (IP, non-IP or SMS) via the control plane via MME.
  • IP user data
  • non-IP or SMS control plane via MME.
  • header compression of IP data may be included.
  • User Plane CIoT EPS optimization Signaling optimization that enables efficient delivery of user data (IP or non-IP) through the user plane
  • EPS service (s) service (s) provided by the PS domain.
  • NAS signaling connection Peer-to-peer S1 mode connection between UE and MME.
  • the NAS signaling connection is composed of a concatenation of an RRC connection through the LTE-Uu interface and an S1AP connection through the S1 interface.
  • UEs using EPS services with control plane CIoT EPS optimization UEs attached for EPS services with control plane CIOT EPS optimization accepted by the network
  • Embodiment 1 when the UE performs the MO data to be sent through the SRB (that is, the control plane) when performing the TAU procedure, the following two options depending on whether the active flag is set with the TRACKING AREA UPDATE REQUEST message (Option) is possible.
  • Option 1 According to Option 1, it is proposed to define an additional indication flag.
  • a flag (eg, a new flag) may be further defined to distinguish it from an existing active flag.
  • the meaning that the active flag and / or the new flag are included in the TRACKING AREA UPDATE REQUEST message may be interpreted to mean the same as the setting of the active flag and / or the new flag.
  • the setting of the active flag and / or the new flag may mean that the values of the active flag and / or the new flag are set to '1' unless otherwise noted.
  • not setting the active flag and / or the new flag may mean that the values of the active flag and / or the new flag are set to '0'.
  • a new flag newly defined according to the present invention may be referred to as an additional indication flag, a control plane (CP) active flag, a signaling active flag, a first active flag, or the like.
  • the previously defined active flag ie, a flag set when there is pending user data to be transmitted via the user plane at the start of the TAU
  • an active flag or a second active flag may be referred to as an active flag or a second active flag. have.
  • the UE performs the corresponding operation in addition to the active flag.
  • a TAU request message can be sent with the request (ie new flag).
  • the delay of the S1 release means that the start of the S1 release procedure (FIG. 18) is delayed, and since the RRC connection and the S1AP connection are released according to the S1 release procedure, eventually, the delay of the S1 release may be due to the release of the NAS signaling connection. It may mean a delay.
  • the new flag may indicate a request to maintain the NAS signaling connection after completion of the TAU procedure.
  • the terminal uses Control Plane CIoT EPS optimization (ie, signaling optimization that enables delivery of user data through the control plane via the MME), and the terminal is pending to be transmitted via the user plane. If there is no user data but there is pending user data to be transmitted via the control plane via the MME, a new flag in the TRACKING AREA UPDATE REQUEST message may be set.
  • Control Plane CIoT EPS optimization ie, signaling optimization that enables delivery of user data through the control plane via the MME
  • the MME does not perform the S1 release procedure even after sending a TRACKING AREA UPDATE ACCEPT message to the terminal, and the NAS of the terminal for a predetermined time.
  • the signaling connection ie, RRC connection and S1AP connection
  • the MME when the MME receives an indication that the active flag is not set in the received TRACKING AREA UPDATE REQUEST message and transmission of MO data without AS security setup (ie, user plane setup) is required (ie, a new flag), The MME may delay S1 release, or the MME may not perform S1 release.
  • the MME delays the release of the NAS signaling connection (ie, RRC connection and S1AP connection) after the TAU procedure is completed, or the NAS signaling. You may not release the connection immediately.
  • the eNB may trigger the S1 release procedure by inactivity of the UE.
  • a flag / instruction previously used for another purpose may be included in the TRACKING AREA UPDATE REQUEST message.
  • CIoT EPS Optimization For example, Release Assistant Indication (RIA) introduced in CIoT EPS Optimization may be used.
  • RAI includes fast disconnect information on data transmitted by NAS, but RAI is included in TRACKING AREA UPDATE REQUEST message, implicitly implying that the user is not a user plane path after TAU procedure is completed.
  • Control Plane CIoT EPS optimization ie, Data over NAS
  • the MME may recognize that there is pending data using data over NAS for the corresponding terminal.
  • the MME may not perform S1 release even after the TAU procedure is successfully performed.
  • the UE may set the RAI value to 00 (no information available).
  • the MME may consider that data over the NAS is pending. .
  • the MME may then determine whether to release S1 after receiving the data through the uplink NAS, based on the RAI value included in the terminal to transmit data through the NAS.
  • Option 2 The additionally defined new flag proposed in Option 1 may also be defined for the purpose that the flag means Control Plane CIoT EPS Optimization.
  • the MME is set to initial context setup even if the active flag is set. Instead of performing a context setup), instead of delaying S1 release or MME may not initiate S1 release.
  • the MME performs DRB by performing initial context setup. Can be established (ie, user plane activated).
  • the MME determines the amount of data buffered in the S-GW, even if the received active flag and the new flag / instruction combination do not require performing an initial context setup that includes MO data but requires DRB setup. If a DRB setup is required by the MT direction policy, initial context setup may be performed.
  • FIG. 20 illustrates a tracking area update procedure according to an embodiment of the present invention.
  • steps 4 to 20 and 21 of the tracking area update procedure in FIG. 20 illustrate the steps in FIG. 14, the present invention also applies to the tracking area update procedure according to FIG. 15 and the tracking area update procedure according to FIG. 16. The same may apply.
  • steps 4 to 20 of the tracking area update procedure in FIG. 20 may be replaced with steps 4 to 10 (TAU Accept) of FIG. 15.
  • Step 21 of the tracking area update procedure in FIG. 20 may be replaced with step 10 of FIG. 15 (TAU Complete).
  • steps 4 to 20 of the tracking area update procedure in FIG. 20 may be replaced with steps 4 to 20 of FIG. 15, and tracking in FIG. 20.
  • Step 21 of the region update procedure may be replaced with step 21 of FIG. 16.
  • Step 1 When the TAU procedure is triggered, the UE determines whether it has MO data that is buffered (or pending). In this case, the terminal may determine whether the MO data to be transmitted via the user plane is pending and / or the MO data to be transmitted via the control plane is pending.
  • DRB setup that is, the user A TRACKING AREA UPDATE REQUEST message is sent to the MME with the new flag set, indicating that no plane setup is required.
  • the new flag may be set by the two options described above.
  • Step 2 The terminal transmits a TRACKING AREA UPDATE REQUEST message including a new flag to the MME.
  • Steps 4 to 20 Perform the existing tracking area procedure. As described above, steps 4-20 of FIG. 14, steps 4-10 of FIG. 15 (TAU Accept), or steps 4-20 of FIG. 14 of FIG. 16 may be performed. Detailed description thereof will be omitted.
  • the MME sends a TRACKING AREA to the UE. Send an UPDATE ACCPPT message.
  • Step 21 The MME determines whether to perform initial context setup (ie, user plane setup) and S1 release (ie, NAS signaling connection release) by combining a new flag and an active flag.
  • initial context setup ie, user plane setup
  • S1 release ie, NAS signaling connection release
  • the MME will send the radio bearer (s) and S1 bearer (s) for all active EPS bearer contexts. Can be reestablished.
  • the MME is responsible for all active connections associated with the established PDN connection without an indication of the control plane only (ie, a CP only indication).
  • the radio bearer (s) and S1 bearer (s) for the EPS bearer context may be reestablished.
  • the MME may not release the NAS signaling connection immediately after completion of the TAU procedure.
  • the UE may acknowledge the received message by sending a TRACKING AREA UPDATE COMPLETE message to the MME.
  • the MME performs the signaling connection of the UE according to the procedure of FIG. 18 above. You can turn it off.
  • the MME may not immediately release the NAS signaling connection to the UE after the TAU procedure is completed.
  • the UE may acknowledge the received message by sending a TRACKING AREA UPDATE COMPLETE message to the MME.
  • the MME performs the signaling connection of the UE according to the procedure of FIG. 18 above. You can turn it off.
  • the MME will release the NAS signaling connection to the UE (immediately) after the TAU procedure is complete. Can be.
  • FIG. 21 illustrates a tracking area update procedure according to an embodiment of the present invention.
  • the UE transmits a TRACKING AREA UPDATE REQUEST message to the MME (S2101).
  • the UE initiates the TAU procedure by sending a TRACKING AREA UPDATE REQUEST message to the MME.
  • the first active flag ie, in the TRACKING AREA UPDATE REQUEST message
  • new flag ie, in the TRACKING AREA UPDATE REQUEST message
  • CP active flag ie, in the TRACKING AREA UPDATE REQUEST message
  • the UE uses Control Plane CIoT EPS optimization (ie, signaling optimization that enables the delivery of user data through the control plane via MME), and the UE is pending to be transmitted via the user plane. ) If there is no user data but there is pending user data to be transmitted via the control plane via the MME, the first active flag in the TRACKING AREA UPDATE REQUEST message (ie new flag, CP active flag, signaling active flag) may be set.
  • Control Plane CIoT EPS optimization ie, signaling optimization that enables the delivery of user data through the control plane via MME
  • the UE is pending to be transmitted via the user plane.
  • the first active flag in the TRACKING AREA UPDATE REQUEST message ie new flag, CP active flag, signaling active flag
  • the UE uses Control Plane CIoT EPS optimization (ie, signaling optimization that enables delivery of user data through the control plane via MME), and the UE uses uplink signaling (e.g., PDN Connectivity Request to request additional PDN connection including default bearer assignment after TAU procedure, or request modification of bearer resource for single traffic flow merged into specific QoS request by UE after TAU procedure
  • PDN Connectivity Request to request additional PDN connection including default bearer assignment after TAU procedure, or request modification of bearer resource for single traffic flow merged into specific QoS request by UE after TAU procedure
  • the first active flag ie, new flag, CP active flag, signaling active flag
  • TRACKING AREA UPDATE REQUEST message may be set. have.
  • the first active flag may indicate a request for maintaining the NAS signaling connection between the UE and the MME after completion of the TAU procedure.
  • the first active flag is a Control Plane CIoT in order to deliver data pending or UE signaling to the UE using data transport in Control Plane CIoT EPS Optimization. This is a request to maintain the NAS signaling connection after the TAU procedure by the UE using EPS Optimization is completed.
  • the MME transmits a TRACKING AREA UPDATE ACCEPT message to the UE (S2102).
  • TRACKING AREA UPDATE REQUEST is accepted by the network
  • the MME sends a TRACKING AREA UPDATE ACCEPT message to the UE.
  • an MME operation (for example, an operation after transmitting a TRACKING AREA UPDATE ACCEPT message) after completion of the TAU procedure of the MME may be determined according to whether a first active flag is set in the TRACKING AREA UPDATE REQUEST.
  • the MME may not release the NAS signaling connection immediately after completion of the TAU procedure.
  • the MME will not release the NAS signaling connection after the TAU procedure is completed (immediately). Can be.
  • the MME may not release the NAS signaling connection immediately after completion of the TAU procedure. have.
  • the MME may release the NAS signaling connection of the UE according to the procedure of FIG. 18.
  • the UE determines whether to drive a predetermined timer (eg, a T3440 timer) according to whether the TRACKING AREA UPDATE REQUEST message has been set.
  • a predetermined timer eg, a T3440 timer
  • the UE if the UE has not set a first active flag in the TRACKING AREA UPDATE REQUEST message, the UE starts a predefined timer (eg, a T3440 timer).
  • a predefined timer eg, a T3440 timer
  • the UE releases the locally established NAS signaling connection.
  • the MME uses a combination of a first active flag (ie, new flag, CP active flag, signaling active flag) and a second active flag (ie, previously defined active flag) to set up a user plane setup (ie, , Radio bearer and S1 bearer setup) and / or NAS signaling connection release.
  • a first active flag ie, new flag, CP active flag, signaling active flag
  • a second active flag ie, previously defined active flag
  • the UE transmits a TRACKING AREA UPDATE REQUEST message to the MME (S2101).
  • the UE initiates the TAU procedure by sending a TRACKING AREA UPDATE REQUEST message to the MME.
  • the active flag in the TRACKING AREA UPDATE REQUEST message is set according to whether the UE uses the Control Plane CIoT EPS optimization and whether the UE has user data to be transmitted via which of the user planes / control planes. It may be determined whether a first active flag (ie, new flag, CP active flag, signaling active flag) is set.
  • a first active flag ie, new flag, CP active flag, signaling active flag
  • the UE may set a second active flag (that is, an previously defined active flag) in a TRACKING AREA UPDATE REQUEST message.
  • This second active flag (ie, the previously defined active flag) may instruct the network to request the establishment of the user plane and to maintain NAS signaling after completion of the TAU procedure.
  • the UE uses Control Plane CIoT EPS optimization, and the UE has no pending user data to be transmitted via the user plane, but has pending user data to be transmitted via the control plane via the MME. Or uplink signaling not related to the TAU procedure, the first active flag in the TRACKING AREA UPDATE REQUEST message may be set.
  • the first active flag may indicate a request for maintaining the NAS signaling connection after completion of the TAU procedure.
  • the first active flag uses Control Plane CIoT EPS Optimization to deliver data that is pending by the UE using data transport in Control Plane CIoT EPS Optimization or to deliver NAS signaling.
  • a request for maintaining a NAS signaling connection after a TAU procedure by a UE is completed.
  • the MME transmits a TRACKING AREA UPDATE ACCEPT message to the UE (S2102).
  • TRACKING AREA UPDATE REQUEST is accepted by the network
  • the MME sends a TRACKING AREA UPDATE ACCEPT message to the UE.
  • the MME operation (for example, the operation after transmitting the TRACKING AREA UPDATE ACCEPT message) after completion of the TAU procedure of the MME is determined according to whether the second active flag is set or the first active flag is set in the TRACKING AREA UPDATE REQUEST. Can be.
  • the MME is responsible for radio bearer (s) and S1 bearer (s) for all active EPS bearer contexts. ) Can be reestablished.
  • the MME is associated with all PDN connections associated with the established PDN connection without an indication of the control plane only (ie, a CP only indication).
  • the radio bearer (s) and S1 bearer (s) for the active EPS bearer context may be reestablished.
  • the MME may not release the NAS signaling connection immediately after completion of the TAU procedure.
  • the MME may not release the NAS signaling connection after the TAU procedure is completed (immediately).
  • the MME may not release the NAS signaling connection immediately after completion of the TAU procedure.
  • the MME may proceed to the procedure of FIG. 18 above. Accordingly, the signaling connection of the UE may be released.
  • the UE when the UE receives the TRACKING AREA UPDATE ACCEPT message, it determines whether to run a predetermined timer (for example, the T3440 timer) according to whether the TRACKING AREA UPDATE REQUEST message has set the second active flag and / or the first active flag. do.
  • a predetermined timer for example, the T3440 timer
  • the UE starts a predefined timer (eg, a T3440 timer). Also, if the UE has not set the first active flag in the TRACKING AREA UPDATE REQUEST message, the UE starts a predefined timer (eg, a T3440 timer).
  • a predefined timer eg, a T3440 timer
  • the UE releases the locally established NAS signaling connection.
  • Embodiment 2 MME operation when transmitting a TAU request message without setting an active flag
  • the MME initiates signaling connection with the UE according to the S1 release procedure (see FIG. 18 above). Release it.
  • the active flag in the TRACKING AREA UPDATE REQUEST message may not be set. have.
  • the terminal may operate as follows.
  • the terminal When the UE performs the TAU procedure, if the MO data to be transmitted through the SRB (that is, the control plane) is pending, the terminal transmits only the TRACKING AREA UPDATE REQUEST message to the MME without setting an active flag.
  • the UE When the UE performs the TAU procedure, if the MO data to be transmitted through the DRB (that is, through the user plane) is pending, it sets an active flag along with a TRACKING AREA UPDATE REQUEST message and transmits it to the MME.
  • the MME even if the MME receives only a TRACKING AREA UPDATE REQUEST message from the terminal without setting the active flag, it recognizes that the terminal uses Control Plane CIoT EPS Optimization (that is, the connection uses only Control Plane CIoT EPS Optimization). Or, if both Control Plane CIoT EPS Optimization and User Plane CIoT EPS Optimization are available, or if the connection is for SMS transmission, the MME delays the S1 release procedure (see FIG. 18 above), or The MME may not initiate the S1 release procedure (see FIG. 18 above).
  • the MME can give a time margin for a predetermined time so that the terminal can transmit the uplink data to the network via the control plane.
  • the MME When the UE applies User Plane CIoT EPS optimization, the MME has previously performed the ECM-IDLE mode switching in the UE's ECM-CONNECTED by the RRC suspend procedure (that is, the UE's state is suspended).
  • the MME requests the S1-AP UE context resume from the eNB ( In case of receiving the S1-AP UE context resume request (see 3GPP TS 23.401 5.3.5A), even if the UE does not include the active flag in the ATTACH REQUEST / TRACKING AREA UPDATE REQUEST message, the operation of step 21 of the TAU procedure ( 14 (step 10 in FIG. 15 and step 21 in FIG. 16) may not be performed.
  • a connection suspend procedure may be started by an inactivity timer at the eNB.
  • connection is suspended (i.e., when the UE has an AS context because the ECM-IDLE mode switch is made to the connection suspend procedure in the previous ECM-CONNECTED) and the UE transmits when the TAU is performed. If there is MO data and determines that DRB setup is necessary, the terminal still includes (sets) an active flag in the TRACKING AREA UPDATE REQUEST message.
  • the MME may not perform additional user plane setup (ie, an initial context setup procedure) if the resume procedure is successfully performed. have.
  • the MME determines that the resume procedure has not been performed successfully, and when the active flag in the TRACKING AREA UPDATE REQUEST message of the UE is set, the MME sets up a user plane so that update data can be transmitted. , An initial context setup procedure may be performed.
  • the terminal may correspond to the following conditions.
  • the UE fails to successfully perform the TAU procedure and is in the EMM-REGISTERED.ATTEMPTING-TO-UPDATE state.
  • the terminal may respond to paging by initiating a TAU procedure.
  • the UE may transmit a TRACKING AREA UPDATE REQUEST message to the MME by setting a new flag defined in Embodiment 1) instead of the conventional active flag.
  • the network may operate as follows according to the flag setting.
  • the network may not immediately release the NAS signaling connection (ie, perform the S1 release procedure) even after the TAU is terminated, or maintain the NAS signaling connection.
  • the network should transmit MT data to the SRB. Otherwise, the network may determine whether to transmit the MT data to the DRB or SRB in consideration of the operator's policy, current resource conditions, and characteristics of the MT data.
  • the operation when data is transmitted to the DRB is the same as the operation when the active flag in the conventional TRACKING AREA UPDATE REQUEST message is set.
  • the operation of transmitting data to the SRB may follow the operation when receiving the DSR for MT paging (piggyback the user data in the ESM data transport message).
  • the TAU procedure triggering condition and operation may be defined as follows.
  • the UE in the EMM-REGISTERED state initiates the TAU procedure by sending a TRACKING AREA UPDATE REQUEST message to the MME.
  • timer T3346 When timer T3346 is running and the terminal receives the EMM-REGISTERED.ATTEMPTING-TO-UPDATE state, when receiving a paging instruction using S-TMSI.
  • the UE in the EMM-REGISTERED state may initiate the TAU procedure by transmitting a TRACKING AREA UPDATE REQUEST message to the MME.
  • EPS update type IE EPS update type IE
  • active flag can be set to one. If the terminal uses only the Control Plane CIoT EPS optimization or if the terminal has only a PDN connection established with the "Control Plane only” indication, the "Control Plane (CP)" in the additional update type IE (IE). active "flag can be set to 1.
  • the TAU procedure triggering condition and operation may be defined as follows.
  • the UE in the EMM-REGISTERED state initiates the TAU procedure by sending a TRACKING AREA UPDATE REQUEST message to the MME.
  • timer T3346 When timer T3346 is running and the terminal receives the EMM-REGISTERED.ATTEMPTING-TO-UPDATE state, when receiving a paging instruction using S-TMSI.
  • the UE in the EMM-REGISTERED state may initiate the TAU procedure by transmitting a TRACKING AREA UPDATE REQUEST message to the MME.
  • the active flag in the EPS update type IE (EPS update type IE) is set to 1. If the terminal is using the EPS service (s) using the Control Plane CIoT EPS optimization, the "CP active" flag in the additional update type IE (IE) may be set to 1.
  • the first active flag ie, new flag, CP active flag, signaling active flag
  • the first active flag may indicate whether maintenance of NAS signaling connection is required after completion of the TAU procedure.
  • the UE may set the first active flag to '1' in step S2101.
  • the UE may set the first active flag to '0' in step S2101.
  • Additional Update Type IE is to provide additional information about the type of request for a combined attach or TAU procedure.
  • the Additional Update Type IE is coded as shown in FIG. 22 and Table 4 below.
  • EPS update type IE is a type 1 IE.
  • 22 is a diagram illustrating an additional update type information element according to an embodiment of the present invention.
  • the Additional Update Type IE has a length of one octet, and is 4 bits (ie, bits 5-8) from the most significant bit (MSB) (or left-most bit).
  • MSB most significant bit
  • IEI additional Update Type Information Element Identifier
  • the next two bits ie bits 4 and 3
  • PNB-CIoT Preferred CIoT network behavior
  • One bit (ie, bit 2) of the indicates a NEW Flag (ie, the first active flag), and the next one bit (ie, bit 1) indicates an additional update type value (AUTV).
  • AUTV additional update type value
  • the purpose of the EPS update type IE is to specify the area to which the update procedure relates.
  • EPS update type IE is coded as shown in FIG. 23 and Table 5 below.
  • EPS update type IE is a type 1 IE.
  • FIG. 23 is a diagram illustrating an EPS update type information element according to an embodiment of the present invention.
  • the EPS update type IE has a length of one octet, and is 4 bits (ie, bits 5-8) from the most significant bit (MSB) (or left-most bit). Indicates an EPS Update Type Information Element Identifier (IEI), the next 1 bit (ie bit 4) indicates an "Active” flag, and the next 1 bit (ie bit 3) indicates a NEW Flag. The next two bits, i.e., bits 2 and 1, indicate the EPS update type value.
  • MSB most significant bit
  • the tracking area update request transmission to the network by the UE is shown in Table 6 below.
  • Table 6 illustrates the content of the TRACKING AREA UPDATE REQUEST message.
  • New Indication for Connection release IE is coded as shown in FIG. 24 and Table 7 below.
  • 24 is a diagram illustrating a new indication information element for disconnection according to an embodiment of the present invention.
  • the new indication IE for disconnection has a length of one octet, and is 4 bits (ie, 5-bit) from the most significant bit (MSB) (or left-most bit).
  • Bit 8) indicates an additional Update Type Information Element Identifier (IEI), and the next 3 bits (i.e., bits 4, 3, and 2) are spare bits, respectively, and the next 1 bit ( That is, bit 1) indicates NEW Flag.
  • IEI Update Type Information Element Identifier
  • Table 7 illustrates a New Indication for Connection release IE.
  • 25 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a wireless communication system includes a network node 2510 and a plurality of terminals (UEs) 2520.
  • UEs terminals
  • the network node 2510 includes a processor 2511, a memory 2512, and a communication module 2513.
  • the processor 2511 implements the functions, processes, and / or methods proposed in FIGS. 1 to 24. Layers of the wired / wireless interface protocol may be implemented by the processor 2511.
  • the memory 2512 is connected to the processor 2511 and stores various information for driving the processor 2511.
  • the communication module 2513 is connected to the processor 2511 to transmit and / or receive wired / wireless signals.
  • a base station, an MME, an HSS, an SGW, a PGW, an SCEF, an SCS / AS, or the like may correspond thereto.
  • the communication module 2513 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 2520 includes a processor 2521, a memory 2522, and a communication module (or RF unit) 2523.
  • the processor 2521 implements the functions, processes, and / or methods proposed in FIGS. 1 to 24. Layers of the air interface protocol may be implemented by the processor 2521.
  • the memory 2522 is connected to the processor 2521 and stores various information for driving the processor 2521.
  • the communication module 2523 is connected to the processor 2521 and transmits and / or receives a radio signal.
  • the memories 2512 and 2522 may be inside or outside the processors 2511 and 2521, and may be connected to the processors 2511 and 2521 by various well-known means.
  • the network node 2510 in the case of a base station
  • the terminal 2520 may have a single antenna or multiple antennas.
  • Figure 26 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 26 is a diagram illustrating the terminal of FIG. 25 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 2610, an RF module (or an RF unit) 2635, and a power management module 2605). ), Antenna 2640, battery 2655, display 2615, keypad 2620, memory 2630, SIM card Subscriber Identification Module card) 2625 (this configuration is optional), a speaker 2645 and a microphone 2650.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 2610 implements the functions, processes, and / or methods proposed in FIGS. 1 to 24.
  • the layer of the air interface protocol may be implemented by the processor 2610.
  • the memory 2630 is connected to the processor 2610 and stores information related to the operation of the processor 2610.
  • the memory 2630 may be inside or outside the processor 2610 and may be connected to the processor 2610 by various well-known means.
  • the user enters command information, such as a telephone number, for example by pressing (or touching) a button on keypad 2620 or by voice activation using microphone 2650.
  • the processor 2610 receives such command information, processes the telephone number to perform an appropriate function, and the like. Operational data may be extracted from the SIM card 2625 or the memory 2630.
  • the processor 2610 may display command information or driving information on the display 2615 for the user's knowledge and convenience.
  • the RF module 2635 is coupled to the processor 2610 to transmit and / or receive RF signals.
  • the processor 2610 passes the command information to the RF module 2635 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module 2635 is comprised of a receiver and a transmitter for receiving and transmitting a radio signal.
  • Antenna 2640 functions to transmit and receive wireless signals. Upon receiving the wireless signal, the RF module 2635 may forward the signal and convert the signal to baseband for processing by the processor 2610. The processed signal may be converted into audible or readable information output through the speaker 2645.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 사용자 장치(UE: User Equipment)가 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차를 수행하기 위한 방법에 있어서, TAU 요청(TAU Request) 메시지를 이동성 관리 개체(MME: Mobility Management Entity)에게 전송하는 단계 및 상기 MME로부터 TAU 승인(TAU Accept) 메시지를 수신하는 단계를 포함하고, 상기 UE가 상기 MME를 경유하여 제어 평면을 통한 사용자 데이터의 전달을 가능하게 하는 시그널링 최적화를 이용하고, 상기 UE가 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터가 없으며 MME를 통해 제어 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지는 경우, 상기 TAU 요청 메시지 내 제1 액티브 플래그(active flag)가 셋팅될 수 있다.

Description

무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 트래킹 영역 업데이트 절차를 수행 또는 지원하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은, 단말이 트래킹 영역 업데이트 절차를 개시할 때, 단말이 전송할 사용자 데이터를 가지는 경우, 효율적인 데이터 전송을 위한 트래킹 영역 업데이트 방법을 제안한다.
본 발명은 단말의 이전 상태가 유보(suspension)인 경우에 트래킹 영역 업데이트 절차 이후에 단말과 MME 간의 시그널링 연결을 유지하기 위한 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 사용자 장치(UE: User Equipment)가 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차를 수행하기 위한 방법에 있어서, TAU 요청(TAU Request) 메시지를 이동성 관리 개체(MME: Mobility Management Entity)에게 전송하는 단계 및 상기 MME로부터 TAU 승인(TAU Accept) 메시지를 수신하는 단계를 포함하고, 상기 UE가 상기 MME를 경유하여 제어 평면을 통한 사용자 데이터의 전달을 가능하게 하는 시그널링 최적화를 이용하고, 상기 UE가 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터가 없으며 MME를 통해 제어 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지는 경우, 상기 TAU 요청 메시지 내 제1 액티브 플래그(active flag)가 셋팅될 수 있다.
바람직하게, 상기 제1 액티브 플래그는 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결을 유지하기 위한 요청을 지시할 수 있다.
바람직하게, 상기 제1 액티브 플래그는 상기 TAU 요청 메시지 내 상기 TAU 절차를 위한 요청의 타입에 대한 추가적인 정보를 제공하기 위한 추가적인 업데이트 타입 정보 요소(Additional Update Type Information Element) 내 포함될 수 있다.
바람직하게, 상기 제1 액티브 플래그의 값이 '0'이면, 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 유지되지 않을 수 있다.
바람직하게, 상기 제1 액티브 플래그의 값이 '1'이면, 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 유지될 수 있다.
바람직하게, 상기 TAU 승인(TAU Accept) 메시지를 수신하면, 상기 TAU 요청 메시지 내 상기 제1 액티브 플래그가 셋팅되었는지 여부에 따라 미리 정의된 타이머의 구동 여부를 결정하는 단계를 더 포함할 수 있다.
바람직하게, 상기 TAU 요청 메시지 내 상기 제1 액티브 플래그가 셋팅하지 않았다면, 상기 타이머가 시작되고, 상기 타이머가 만료되면 상기 UE에 의해 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 해제될 수 있다.
바람직하게, 상기 UE가 TAU 절차를 성공적으로 수행하지 못한 상태이고, 이동성 관리(MM: Mobility Management) 백오프(back-off) 타이머가 구동 중인 경우, 상기 UE가 페이징을 수신할 때, 상기 TAU 요청이 전송될 수 있다.
바람직하게, 상기 UE가 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지는 경우, 상기 TAU 요청 메시지 내 제2 액티브 플래그(active flag)가 셋팅될 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 이동성 관리 개체(MME: Mobility Management Entity)가 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차를 수행하기 위한 방법에 있어서, 사용자 장치(UE: User Equipment)로부터 TAU 요청(TAU Request) 메시지를 수신하는 단계 및 상기 UE에게 TAU 승인(TAU Accept) 메시지를 전송하는 단계를 포함하고, 상기 TAU 요청(TAU Request) 메시지 내 제1 액티브 플래그(active flag)가 셋팅되면 TAU 절차의 완료 후에 상기 UE와 상기 MME간의 NAS(Non-Access Stratum) 시그널링 연결이 해제되지 않으며, 상기 제1 액티브 플래그는 상기 TAU 절차의 완료 후에 상기 NAS(Non-Access Stratum) 시그널링 연결을 유지하기 위한 요청을 지시할 수 있다.
바람직하게, 상기 TAU 요청(TAU Request) 메시지 내 상기 제1 액티브 플래그가 셋팅되지 않으면, NAS(Non-Access Stratum) 시그널링 연결이 해제될 수 있다.
바람직하게, 상기 제1 액티브 플래그는 상기 TAU 요청 메시지 내 상기 TAU 절차를 위한 요청의 타입에 대한 추가적인 정보를 제공하기 위한 추가적인 업데이트 타입 정보 요소(Additional Update Type Information Element) 내 포함될 수 있다.
바람직하게, 상기 제1 액티브 플래그의 값이 '0'이면, 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 유지되지 않을 수 있다.
바람직하게, 상기 제1 액티브 플래그의 값이 '1'이면, 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 유지될 수 있다.
본 발명의 실시예에 따르면, 제어 평면 CIoT(Cellular Internet of Things) EPS(Evolved Packet System) 최적화를 사용하는 단말의 경우, 단말이 트래킹 영역 업데이트 절차가 완료된 후 제어 평면을 경유하여 사용자 데이터를 효율적으로 전송할 수 있다.
또한, 본 발명의 실시예에 따르면, 사용자 평면 CIoT EPS 최적화를 사용하는 단말의 경우, 단말이 트래킹 영역 업데이트 절차가 완료된 후 사용자 평면을 경유하여 사용자 데이터를 효율적으로 전송할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 EPS(Evolved Packet System)을 간략히 예시하는 도면이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MTC(Machine-Type Communication) 아키텍처(architecture)를 예시하는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 서비스 능력 노출(Service Capability Exposure)을 위한 아키텍쳐를 예시한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 레가시 RRC 연결 절차를 예시한다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단대단(End to End) 스몰 데이터 플로우를 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 발신(Mobile Originated) 데이터를 위한 CP CIoT EPS optimization 및 UP CIoT EPS optimization를 예시하는 도면이다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 착신(Mobile Terminated) 데이터를 위한 CP CIoT EPS optimization 및 UP CIoT EPS optimization를 예시하는 도면이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 해제 보조 지시/정보 정보 요소를 예시하는 도면이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 해제 절차를 예시하는 도면이다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 제어 평면 최적화 및 사용자 평면 최적화를 예시하는 도면이다.
도 20은 본 발명의 일 실시예에 따른 트래킹 영역 업데이트 절차를 예시한다.
도 21은 본 발명의 일 실시예에 따른 트래킹 영역 업데이트 절차를 예시한다.
도 22는 본 발명의 일 실시예에 따른 추가적인 업데이트 타입 정보 요소를 예시하는 도면이다.
도 23은 본 발명의 일 실시예에 따른 EPS 업데이트 타입 정보 요소를 예시하는 도면이다.
도 24는 본 발명의 일 실시예에 따른 연결 해제를 위한 새로운 지시 정보 요소를 예시하는 도면이다.
도 25는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신(예를 들어, PLMN을 통해 MTC 서버와 통신) 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버. 이동 통신 네트워크의 내부 또는 외부에 존재할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한, MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고(SCS(Services Capability Server) 형태), 자신이 MTC 어플리케이션 서버일 수도 있다.
- (MTC) 어플리케이션(application): (MTC가 적용되는) 서비스(예를 들어, 원격 검침, 물량 이동 추적, 기상 관측 센서 등)
- (MTC) 어플리케이션 서버: (MTC) 어플리케이션이 실행되는 네트워크 상의 서버
- MTC 특징(MTC feature): MTC 어플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 어플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 단말에 대한 MTC 어플리케이션을 위한 특징이다.
- MTC 사용자(MTC User): MTC 사용자는 MTC 서버에 의해 제공되는 서비스를 사용한다.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 가지고 있으며, 하나 이상의 MTC 단말에게 서비스를 제공하는 엔티티(entity)이다.
- MTC 그룹(MTC group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
- 서비스 역량 서버(SCS: Services Capability Server): HPLMN(Home PLMN) 상의 MTC-IWF(MTC InterWorking Function) 및 MTC 단말과 통신하기 위한 엔티티로서, 3GPP 네트워크와 접속되어 있다. SCS는 하나 이상의 MTC 어플리케이션에 의한 사용을 위한 능력(capability)를 제공한다.
- 외부 식별자(External Identifier): 3GPP 네트워크의 외부 엔티티(예를 들어, SCS 또는 어플리케이션 서버)가 MTC 단말(또는 MTC 단말이 속한 가입자)을 가리키기(또는 식별하기) 위해 사용하는 식별자(identifier)로서 전세계적으로 고유(globally unique)하다. 외부 식별자는 다음과 같이 도메인 식별자(Domain Identifier)와 로컬 식별자(Local Identifier)로 구성된다.
- 도메인 식별자(Domain Identifier): 이동 통신 네트워크 사업자의 제어 항에 있는 도메인을 식별하기 위한 식별자. 하나의 사업자는 서로 다른 서비스로의 접속을 제공하기 위해 서비스 별로 도메인 식별자를 사용할 수 있다.
- 로컬 식별자(Local Identifier): IMSI(International Mobile Subscriber Identity)를 유추하거나 획득하는데 사용되는 식별자. 로컬 식별자는 어플리케이션 도메인 내에서는 고유(unique)해야 하며, 이동 통신 네트워크 사업자에 의해 관리된다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RANAP(RAN Application Part): RAN과 코어 네트워크의 제어를 담당하는 노드(즉, MME(Mobility Management Entity)/SGSN(Serving GPRS(General Packet Radio Service) Supporting Node)/MSC(Mobile Switching Center)) 사이의 인터페이스.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- SCEF(Service Capability Exposure Function): 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력(capability)을 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍쳐 내 엔티티.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway)(또는 S-GW), PDN GW(Packet Data Network Gateway)(또는 PGW 또는 P-GW), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
Figure PCTKR2017003157-appb-T000001
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다.
도 2를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 SGW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 3을 참조하면, eNB는 게이트웨이(예를 들어, MME)의 선택, 무선 자원 제어(RRC: radio resource control) 활성(activation) 동안 게이트웨이로의 라우팅, 방송 채널(BCH: broadcast channel)의 스케줄링 및 전송, 상향링크 및 하향링크에서 UE로 동적 자원 할당, 그리고 LTE_ACTIVE 상태에서 이동성 제어 연결의 기능을 수행할 수 있다. 상술한 바와 같이, EPC 내에서 게이트웨이는 페이징 개시(orgination), LTE_IDLE 상태 관리, 사용자 평면(user plane)의 암호화(ciphering), 시스템 구조 진화(SAE: System Architecture Evolution) 베어러 제어, 그리고 NAS 시그널링의 암호화(ciphering) 및 무결성(intergrity) 보호의 기능을 수행할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 4(a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 4(b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 4를 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PCFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 제어 채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel) 등이 있다. 트래픽 채널로는 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다. PCCH는 페이징 정보를 전달하는 하향링크 채널이고, 네트워크가 UE가 속한 셀을 모를 때 사용된다. CCCH는 네트워크와의 RRC 연결을 가지지 않는 UE에 의해 사용된다. MCCH 네트워크로부터 UE로의 MBMS(Multimedia Broadcast and Multicast Service) 제어 정보를 전달하기 위하여 사용되는 점-대-다점(point-to-multipoint) 하향링크 채널이다. DCCH는 UE와 네트워크 간에 전용 제어 정보를 전달하는 RRC 연결을 가지는 단말에 의해 사용되는 일-대-일(point-to-point) 양방향(bi-directional) 채널이다. DTCH는 상향링크 및 하향링크에서 존재할 수 있는 사용자 정보를 전달하기 위하여 하나의 단말에 전용되는 일-대-일(point-to-point) 채널이다. MTCH는 네트워크로부터 UE로의 트래픽 데이터를 전달하기 위하여 일-대-다(point-to-multipoint) 하향링크 채널이다.
논리 채널(logical channel)과 전송 채널(transport channel) 간 상향링크 연결의 경우, DCCH는 UL-SCH과 매핑될 수 있고, DTCH는 UL-SCH와 매핑될 수 있으며, CCCH는 UL-SCH와 매핑될 수 있다. 논리 채널(logical channel)과 전송 채널(transport channel) 간 하향링크 연결의 경우, BCCH는 BCH 또는 DL-SCH와 매핑될 수 있고, PCCH는 PCH와 매핑될 수 있으며, DCCH는 DL-SCH와 매핑될 수 있으며, DTCH는 DL-SCH와 매핑될 수 있으며, MCCH는 MCH와 매핑될 수 있으며, MTCH는 MCH와 매핑될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 5를 참조하면, 물리 채널은 주파수 영역(frequency domain)에서 하나 이상의 서브캐리어와 시간 영역(time domain)에서 하나 이상의 심볼로 구성되는 무선 자원을 통해 시그널링 및 데이터를 전달한다.
1.0ms 길이를 가지는 하나의 서브프레임은 복수의 심볼로 구성된다. 서브프레임의 특정 심볼(들)(예를 들어, 서브프레임의 첫번째 심볼)은 PDCCH를 위해 사용될 수 있다. PDCCH는 동적으로 할당되는 자원에 대한 정보(예를 들어, 자원 블록(Resource Block), 변조 및 코딩 방식(MCS: Modulation and Coding Scheme) 등)를 나른다.
랜덤 액세스 절차(Random Access Procedure)
이하에서는 LTE/LTE-A 시스템에서 제공하는 랜덤 액세스 절차(random access procedure)에 대해 살펴본다.
랜덤 액세스 절차는 단말이 기지국과의 RRC 연결(RRC Connection)이 없어, RRC 아이들 상태에서 초기 접속 (initial access)을 수행하는 경우, RRC 연결 재-확립 절차(RRC connection re-establishment procedure)를 수행하는 경우 등에 수행된다.
LTE/LTE-A 시스템에서는 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하는 과정에서, 특정한 집합 안에서 단말이 임의로 하나의 프리앰블을 선택하여 사용하는 경쟁 기반 랜덤 액세스 절차(contention based random access procedure)과 기지국이 특정 단말에게만 할당해준 랜덤 액세스 프리앰블을 사용하는 비 경쟁 기반 랜덤 액세스 절차(non-contention based random access procedure)을 모두 제공한다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
(1) 제1 메시지(Msg 1, message 1)
먼저, 단말은 시스템 정보(system information) 또는 핸드오버 명령(handover command)을 통해 지시된 랜덤 액세스 프리앰블의 집합에서 임의로(randomly) 하나의 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하고, 상기 랜덤 액세스 프리앰블을 전송할 수 있는 PRACH(physical RACH) 자원을 선택하여 전송한다.
단말로부터 랜덤 액세스 프리앰블을 수신한 기지국은 프리앰블을 디코딩하고, RA-RNTI를 획득한다. 랜덤 액세스 프리앰블이 전송된 PRACH와 관련된 RA-RNTI는 해당 단말이 전송한 랜덤 액세스 프리앰블의 시간-주파수 자원에 따라 결정된다.
(2) 제2 메시지(Msg 2, message 2)
기지국은 제1 메시지 상의 프리앰블을 통해서 획득한 RA-RNTI로 지시(address)되는 랜덤 액세스 응답(random access response)을 단말로 전송한다. 랜덤 액세스 응답에는 랜덤 액세스 프리앰블 구분자/식별자(RA preamble index/identifier), 상향링크 무선자원을 알려주는 상향링크 승인(UL grant), 임시 셀 식별자(TC-RNTI: Temporary Cell RNTI) 그리고 시간 동기 값(TAC: time alignment command)들이 포함될 수 있다. TAC는 기지국이 단말에게 상향링크 시간 정렬(time alignment)을 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, 상향링크 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(time alignment timer)를 개시 또는 재시작한다. UL grant는 후술하는 스케줄링 메시지(제3 메시지)의 전송에 사용되는 상향링크 자원 할당 및 TPC(transmit power command)를 포함한다. TPC는 스케줄링된 PUSCH를 위한 전송 파워의 결정에 사용된다.
단말은 랜덤 액세스 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 랜덤 액세스 응답 윈도우(random access response window) 내에서 자신의 랜덤 액세스 응답(random access response)의 수신을 시도하며, PRACH에 대응되는 RA-RNTI로 마스킹된 PDCCH를 검출하고, 검출된 PDCCH에 의해 지시되는 PDSCH를 수신하게 된다. 랜덤 액세스 응답 정보는 MAC PDU(MAC packet data unit)의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH을 통해 전달될 수 있다.
단말은 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자/식별자를 가지는 랜덤 액세스 응답을 성공적으로 수신하면, 랜덤 액세스 응답의 모니터링을 중지한다. 반면, 랜덤 액세스 응답 윈도우가 종료될 때까지 랜덤 액세스 응답 메시지를 수신하지 못하거나, 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자를 가지는 유효한 랜덤 액세스 응답을 수신하지 못한 경우 랜덤 액세스 응답의 수신은 실패하였다고 간주되고, 이후 단말은 프리앰블 재전송을 수행할 수 있다.
(3) 제3 메시지(Msg 3, message 3)
단말이 자신에게 유효한 랜덤 액세스 응답을 수신한 경우에는, 상기 랜덤 액세스 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, TC-RNTI를 저장한다. 또한, UL grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다.
단말의 최초 접속의 경우, RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 요청(RRC Connection Request)이 제3 메시지에 포함되어 전송될 수 있으며, RRC 연결 재확립 절차의 경우 RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 재확립 요청(RRC Connection Re-establishment Request)이 제3 메시지에 포함되어 전송될 수 있다. 또한, NAS 접속 요청 메시지를 포함할 수도 있다.
제3 메시지는 단말의 식별자가 포함되어야 한다. 단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 존재한다. 첫 번째 방법은 단말이 상기 랜덤 액세스 절차 이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자(C-RNTI)를 가지고 있었다면, 단말은 상기 UL grant에 대응하는 상향링크 전송 신호를 통해 자신의 셀 식별자를 전송한다. 반면에, 만약 랜덤 액세스 절차 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자(예를 들면, S-TMSI(SAE temporary mobile subscriber identity) 또는 임의 값(random number))를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 C-RNTI보다 길다.
단말은 상기 UL grant에 대응하는 데이터를 전송하였다면, 충돌 해결을 위한 타이머(contention resolution timer)를 개시한다.
(4) 제4 메시지(Msg 4, message 4)
기지국은 단말로부터 제3 메시지를 통해 해당 단말의 C-RNTI를 수신한 경우 수신한 C-RNTI를 이용하여 단말에게 제4 메시지를 전송한다. 반면, 단말로부터 제3 메시지를 통해 상기 고유 식별자(즉, S-TMSI 또는 임의 값(random number))를 수신한 경우, 랜덤 액세스 응답에서 해당 단말에게 할당한 TC-RNTI를 이용하여 제4 메시지를 단말에게 전송한다. 일례로, 제4 메시지는 RRC 연결 설정 메시지(RRC Connection Setup)가 포함할 수 있다.
단말은 랜덤 액세스 응답에 포함된 UL grant를 통해 자신의 식별자를 포함한 데이터를 전송한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 존재한다. 앞에서 언급한 바와 같이 상기 UL grant에 대응하여 전송된 제3 메시지가 자신의 식별자가 C-RNTI인 경우, 자신의 C-RNTI를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자(즉, S-TMSI 또는 임의 값(random number))인 경우에는, 랜덤 액세스 응답에 포함된 TC-RNTI를 이용하여 PDCCH의 수신을 시도한다. 그 후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 C-RNTI를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 TC-RNTI를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 제4 메시지를 통해 단말은 C-RNTI를 획득하고, 이후 단말과 네트워크는 C-RNTI를 이용하여 단말 특정 메시지(dedicated message)를 송수신하게 된다.
한편, 비경쟁 기반 임의접속 과정에서의 동작은 도 6에 도시된 경쟁 기반 임의접속 과정과 달리 제1 메시지 전송 및 제2 메시지 전송만으로 임의접속 절차가 종료되게 된다. 다만, 제1 메시지로서 단말이 기지국에 임의접속 프리앰블을 전송하기 전에 단말은 기지국으로부터 임의접속 프리앰블을 할당받게 되며, 이 할당받은 임의접속 프리앰블을 기지국에 제1 메시지로서 전송하고, 기지국으로부터 임의접속 응답을 수신함으로써 임의접속 절차가 종료되게 된다.
MTC (Machine-Type Communication)
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MTC(Machine-Type Communication) 아키텍처(architecture)를 예시하는 도면이다.
MTC를 위해서 사용되는 단말(또는, MTC 단말)과 MTC 어플리케이션 간의 단-대-단(end-to-end) 어플리케이션은 3GPP 시스템에서 제공되는 서비스들과 MTC 서버에게 제공되는 선택적인 서비스들을 이용할 수 있다. 3GPP 시스템은 MTC를 용이하게 하는 다양한 최적화를 포함하는 수송 및 통신 서비스들(3GPP 베어러 서비스, IMS 및 SMS(Short Message Service) 포함)을 제공할 수 있다.
도 7에서는 MTC를 위해 사용되는 단말이 Um/Uu/LTE-Uu 인터페이스를 통하여 3GPP 네트워크(UTRAN, E-UTRAN, GERAN, I-WLAN 등)으로 연결되는 것을 도시한다. 도 7의 아키텍처는 다양한 MTC 모델(Direct 모델, Indirect 모델, Hybrid 모델)들을 포함한다.
먼저, 도 7에서 도시하는 개체(entity)들에 대하여 설명한다.
도 7에서 어플리케이션 서버는 MTC 어플리케이션이 실행되는 네트워크 상의 서버이다. MTC 어플리케이션 서버에 대해서는 전술한 다양한 MTC 어플리케이션의 구현을 위한 기술이 적용될 수 있으며, 이에 대한 구체적인 설명은 생략한다. 또한, 도 7에서 MTC 어플리케이션 서버는 레퍼런스 포인트 API를 통하여 MTC 서버에 액세스할 수 있으며, 이에 대한 구체적인 설명은 생략한다. 또는, MTC 어플리케이션 서버는 MTC 서버와 함께 위치될(collocated) 수도 있다.
MTC 서버(예를 들어, 도 7의 SCS 서버)는 MTC 단말을 관리하는 네트워크 상의 서버이며, 3GPP 네트워크에 연결되어 MTC를 위하여 사용되는 단말 및 PLMN 노드들과 통신할 수 있다.
MTC-IWF(MTC-InterWorking Function)는 MTC 서버와 오퍼레이터 코어 네트워크 간의 상호 동작(interworking)을 관장하고, MTC 동작의 프록시 역할을 할 수 있다. MTC 간접 또는 하이브리드 모델을 지원하기 위해서, MTC-IWF는 레퍼런스 포인트 Tsp 상의 시그널링 프로토콜을 중계하거나 해석하여 PLMN에 특정 기능을 작동시킬 수 있다. MTC-IWF는, MTC 서버가 3GPP 네트워크와의 통신을 수립하기 전에 MTC 서버를 인증(authenticate)하는 기능, MTC 서버로부터의 제어 플레인 요청을 인증하는 기능, 후술하는 트리거 지시와 관련된 다양한 기능 등을 수행할 수 있다.
SMS-SC(Short Message Service-Service Center)/IP-SM-GW(Internet Protocol Short Message GateWay)는 단문서비스(SMS)의 송수신을 관리할 수 있다. SMS-SC는 SME(Short Message Entity)(단문을 송신 또는 수신하는 개체)와 단말 간의 단문을 중계하고, 저장 및 전달하는 기능을 담당할 수 있다. IP-SM-GW는 IP 기반의 단말과 SMS-SC 간의 프로토콜 상호 동작을 담당할 수 있다.
CDF(Charging Data Function)/CGF(Charging Gateway Function)는 과금에 관련된 동작을 할 수 있다.
HLR/HSS는 가입자 정보(IMSI 등), 라우팅 정보, 설정 정보 등을 저장하고 MTC-IWF에게 제공하는 기능을 할 수 있다.
MSC/SGSN/MME는 단말의 네트워크 연결을 위한 이동성 관리, 인증, 자원 할당 등의 제어 기능을 수행할 수 있다. 후술하는 트리거링과 관련하여 MTC-IWF로부터 트리거 지시를 수신하여 MTC 단말에게 제공하는 메시지의 형태로 가공하는 기능을 수행할 수 있다.
GGSN(Gateway GPRS Support Node)/S-GW(Serving-Gateway)+P-GW(Packet Date Network-Gateway)는 코어 네트워크와 외부 네트워크의 연결을 담당하는 게이트웨이 기능을 할 수 있다.
표 2는 도 7에서의 주요 레퍼런스 포인트를 정리한 것이다.
Figure PCTKR2017003157-appb-T000002
표 2에서 T5a, T5b, T5c 중 하나 이상의 레퍼런스 포인트를 T5라고 지칭한다.
한편, 간접 및 하이브리드 모델의 경우에 MTC 서버와의 사용자 플레인 통신, 및 직접 및 하이브리드 모델의 경우에 MTC 어플리케이션 서버와의 통신은, 레퍼런스 포인트 Gi 및 SGi를 통해서 기존의 프로토콜을 사용하여 수행될 수 있다.
도 7에서 설명한 내용과 관련된 구체적인 사항은 3GPP TS 23.682 문서를 참조함으로써 본 문서에 병합될 수 있다(incorporated by reference).
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 서비스 능력 노출(Service Capability Exposure)을 위한 아키텍쳐를 예시한다.
도 8에서 예시하고 있는 서비스 능력 노출(Service Capability Exposure)을 위한 아키텍쳐는 3GPP 네트워크가 3GPP 네트워크 인터페이스에 의해 제공되는 자신의 서비스 및 능력을 외부의 서드 파티 서비스 제공자(3rd party Service Provider) 어플리케이션에게 안전하게 노출하는 것을 가능하게 한다.
서비스 능력 노출 기능(SCEF: Service Capability Exposure Function)는 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력을 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍쳐 내 핵심적인 엔티티(entity)이다. 다시 말해, SCEF는 이동통신 사업자가 운용하는 트러스트 도메인(Trust Domain)에 속하는 서비스 기능 제공을 위한 핵심 엔티티이다. SCEF는 서드 파티 서비스 제공자에게 API 인터페이스를 제공하고, 3GPP의 각종 엔티티와 연결을 통해 서드 파티 서비스 제공자에게 3GPP의 서비스 기능들을 제공한다. SCEF 기능은 SCS에 의해 제공될 수도 있다.
Tsp 기능이 어플리케이션 프로그램 인터페이스(API: application program interface)를 통해 노출될 수 있는 경우, MTC-IWF는 SCEF와 동일하게 위치(co-located)할 수 있다. 다중의 인자에 의존하여 새로운 3GPP 인터페이스를 특정하기 위한 프로토콜(예를 들어, DIAMETER, RESTful APIs, XML over HTTP, 등)이 선택되며, 여기서 다중의 인자는 요청된 정보의 노출의 용이함 또는 특정 인터페이스의 필요를 포함하나 이에 한정되는 것은 아니다.
SCEF는 트러스트 도메인(Trust Domain)에 속하는 엔티티로서, 셀룰러 운영자(Cellular operator)에 의해 운용될 수도 있고, 트러스트(trusted) 관계를 맺은 서드 파티(3rd party) 사업자에 의해 운용될 수 있다. 3GPP 릴리즈(Release) 13의 MONTE(Monitoring Enhancement), AESE(Architecture Enhancements for Service Capability Exposure) 등의 워크 아이템 아래 진행 된 서비스 아키텍쳐 노출(Service architecture exposing)을 위한 노드로서, 앞서 도 8과 같이 서비스를 제공할 3GPP 엔티티들과 연결되어 여러 모니터링 및 과금과 관련된 기능들을 외부 서드 파티에 제공하고, 서드 파티 사업자의 통신 패턴 등을 EPS 내부로 설정해 주는 등의 중간에서 관리하는 역할을 한다.
RRC 연결 셋업 절차(RRC connection setup procedure)
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 레가시 RRC 연결 절차를 예시한다.
도 9는 UE가 사용자 평면을 전송/수신할 수 있도록 연결을 확립 및 단절(tear down)하기 위해 요구되는 현재 S1/EPS 아키텍처 기반 절차(즉, UE 아이들/연결 상태의 천이 시 적용 가능한 절차)를 예시한다.
1. UE는 랜덤 액세스(RA: Random Access) 제1 메시지(Msg 1)(즉, 프리앰블)를 eNB에게 전송한다.
2. eNB는 RA 제2 메시지(Msg 2)(즉, 랜덤 액세스 응답)를 UE에게 전송한다.
3. UE는 RA 제3 메시지(Msg 3)를 eNB에게 전송한다.
이때, 단말의 최초 접속의 경우, RRC 연결을 요청하기 위한 RRC 연결 요청(RRC Connection Request)이 RA Msg 3에 포함되어 전송될 수 있다.
RRC Connection Request 메시지는 단말 식별자(UE Identity)(예를 들어, S-TMSI(SAE temporary mobile subscriber identity) 또는 랜덤 ID)와 확립 원인(establishment cause)를 포함한다.
RRC 확립 원인(establishment cause)은 NAS 절차(예를 들어, 접속(attach), 접속 해제(detach), 트래킹 영역 업데이트(tracking area update), 서비스 요청(service request), 확장 서비스 요청(extended service request))에 따라 결정된다.
4. eNB는 RA 제4 메시지(Msg 4)를 UE에게 전송한다.
이때, eNB는 RRC Connection Request 메시지에 대한 응답으로 RRC 연결 셋업(RRC Connection Setup) 메시지를 RA Msg 4에 포함시켜 UE에게 전송할 수 있다.
UE는 RRC Connection Setup 메시지 수신 후, RRC_CONNECTED 상태로 천이한다.
5. UE는 RRC 연결 확립의 성공적인 완료를 확인하기 위하여 RRC 연결 셋업 완료(RRC Connection Setup Complete) 메시지를 eNB에게 전송한다.
이때, UE는 RRC Connection Setup Complete 메시지에 NAS 메시지(예를 들어, 초기 어태치(Initial Attach) 메시지, 서비스 요청(Service Request) 메시지(도 9의 경우) 등)를 포함시켜 eNB로 전송할 수 있다.
6. eNB은 RRC Connection Setup Complete 메시지로부터 Service Request 메시지를 획득하고, 이를 S1AP 초기 단말 메시지(Initial UE Message)를 통해 MME에게 전달한다.
Initial UE Message는 NAS 메시지(예를 들어, Service Request 메시지), 서빙 셀의 트래킹 영역 식별자(TAI: Tracking Area Identity)+E-UTRAN 셀 전역 식별자(ECGI: E-UTRAN Cell Global Identifier), S-TMSI, 폐쇄 가입 그룹(CSG: Closed Subscriber Group) 식별자(ID: Identifier), CSG 액세스 모드(CSG access Mode), RRC establishment cause를 포함한다.
7. MME는 S1-AP 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 eNB에게 전송한다.
Initial Context Setup Request 메시지는 S-GW 주소(address), S1-터널 종단 식별자(들)(TEID: Tunnel endpoint identifier)(UL), EPS 베어러 QoS(들), 보안 컨텍스트(Security Context), MME 시그널링 연결 식별자(MME Signalling Connection Id), 핸드오버 제한 리스트(Handover Restriction List), CSG 멤버십 지시(CSG Membership Indication)을 포함한다.
8. eNB는 선택된 AS(Access Stratum) 알고리즘을 포함하는 RRC 보안 모드 명령(Security Mode Command) 메시지를 UE에게 전송한다.
RRC Security Mode Command 메시지는 현재 액세스 보안 관리 개체(Access Security Management Entity) 키(즉, K_ASME)에 기반한 RRC 무결성(integrity) 키로 무결성 보호된다.
9. UE는 eNB에게 RRC 보안 모드 명령 완료(security mode complete) 메시지를 전송한다.
RRC security mode complete 메시지는 RRC Security Mode Command 메시지 내에서 지시된 선택된 알고리즘과 K_ASME에 기반한 RRC 무결성 키로 무결성 보호된다.
10. eNB는 무선 베어러 확립을 위해 RRC 연결 재구성(RRC Connection Reconfiguration) 메시지를 UE에게 전송한다.
11. UE는 무선 베어러 확립의 성공적인 완료를 확인하기 위하여 RRC Connection Reconfiguration 메시지에 대한 응답으로 RRC 연결 재구성 완료(RRC Connection Reconfiguration Complete) 메시지를 eNB에게 전송한다.
이 단계 이후에, UE로부터 상향링크 데이터가 eNB에 의해 S-GW에게 전달될 수 있다. eNB는 앞서 7 단계에서 제공된 상향링크 데이터를 S-GW 주소와 TEID에게 상향링크 데이터를 전송할 수 있다.
12. eNB는 S1-AP 초기 컨텍스트 셋업 완료(Initial Context Setup Complete) 메시지를 MME에게 전송한다.
Initial Context Setup Complete 메시지는 eNB 주소(address), 수락된 EPS 베어러들의 리스트, 거절된 EPS 베어러들의 리스트, S1 TEID(들)(DL)를 포함한다.
13. MME는 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 S-GW에게 전송한다.
Modify Bearer Request 메시지는 eNB 주소, 수락된 EPS 베어러들에 대한 S1 TEID(들)(DL), 지연 하향링크 패킷 통지 요청(Delay Downlink Packet Notification Request), RAT 타입 등을 포함한다.
14. S-GW는 Modify Bearer Request에 대한 응답으로 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
Modify Bearer Response 메시지는 상향링크 트래픽을 위한 S-GW 주소 및 TEID를 포함한다.
이 단계 이후에, S-GW로부터 하향링크 데이터가 eNB에 의해 UE에게 전달될 수 있다.
한편, 예를 들어, 일정 시간이 흐른 뒤, 일정 시간이 만료될 때까지 사용자 비동작(User Inactivity)가 감지되면, S1 해제(Release) 절차가 수행될 수 있다.
15. 만약, eNB가 UE의 시그널링 연결과 UE에 대한 모든 무선 베어러가 해제될 필요가 있다고 감지하면, eNB는 S1-AP UE 컨텍스트 해제 요청(UE Context Release Request) 메시지를 MME에게 전송한다.
UE Context Release Request 메시지는 원인(Cause)를 포함하며, Cause는 해제 이유(예를 들어, user inactivity 등)을 지시한다.
16. MME는 UE에 대한 모든 S1-U 베어러의 해제를 요청하기 위하여 액세스 베어러 해제 요청(Release Access Bearers Request) 메시지를 S-GW에게 전송한다.
17. S-GW가 Release Access Bearers Request 메시지를 수신하면, 해당 UE에 대한 모든 eNB 관련 정보(즉, 주소 및 TEID(들))을 해제하고, 액세스 베어러 해제 응답(Release Access Bearers Response) 메시지를 MME에게 응답한다.
18. MME는 S1-AP UE 컨텍스트 해제 명령(UE Context Release Command) 메시지를 eNB에게 전송함으로써, S1을 해제한다.
19. eNB는 RRC 연결 해제(RRC Connection Release) 메시지를 UE에게 전송한다. 이 메시지가 UE에 의해 확인(acknowledge)되면, eNB는 UE의 컨텍스트를 삭제한다.
20. eNB는 S1-AP UE 컨텍스트 해제 완료(UE Context Release Complete) 메시지를 MME에 전송함으로써 S1 해제를 확인한다.
협대역 IOT(Internet of Things)를 위한 효율적인 스몰 데이터 전송
3GPP는 협대역 IoT(NB-IoT: Narrow Band Internet of Things) 지원을 위하여 효율적인 스몰 데이터(small data) 송신을 위한 새로운 코어 네트워크에 대한 아키텍쳐가 논의되고 있다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단대단(End to End) 스몰 데이터 플로우를 예시하는 도면이다.
도 10의 예시와 같이, AS와 C-SGN(CIoT Serving Gateway Node) 간에 점대점 터널(point-to-point tunnel) 방식으로 non-IP(non-Internet Protocol) 데이터의 송수신이 수행될 수 있다. C-SGN은 CIoT의 효율적인 지원을 위해 MME의 주요 기능과 S-GW의 주요 기능을 포함한 통합된 노드라고 할 수 있다.
또는, Non-IP 패킷의 송수신을 위해 SCEF 프레임워크를 사용할 수 있다. 다시 말해, AS/SCS와 C-SGN 간에 SCEF를 경유하여 Non-IP 데이터의 송수신이 수행될 수도 있다.
그리고, C-SGN과 UE 간에는 S1-MME 레퍼런스 포인트를 통해 Non-IP 데이터의 송수신이 수행될 수 있다. 즉, NAS 계층에서 암호화된 스몰 데이터(예를 들어, Non-IP 데이터)가 UE와 C-SGN 간에 송수신될 수 있다.
C-SGN는 새로운 논리적 엔티티이며, 다음과 같이 CIoT 활용 케이스를 위해 요구되는 필수적인 기능만을 지원하기 위해 구현될 수 있다.
- 이동성 관리(MM: Mobility Management) 절차 내 필요한 일부 절차;
- 효율적인 스몰 데이터 절차;
- 효율적인 스몰 데이터를 위해 요구되는 보안 절차;
- SMS(Short Message Service) 지원이 필요하면, 결합되지 않은(non-combined) GPRS 어태치 절차를 이용한 PS 도메인 상의 SMS;
- 커버리지 향상을 위한 페이징 최적화;
- 로밍되지 않은(non-roaming) 케이스를 위한 SGi 인터페이스의 종단(termination);
- 로밍 케이스를 위한 S8 인터페이스 지원;
- SMS 만을 위한 어태치(즉 IP(또는 non-IP) 데이터를 위한 PDN 연결 없이 SMS 송수신만을 위한 어태치) 절차 지원;
- non-IP 데이터를 위한 SGi 상에서 터널링(tunneling) 지원.
상술한 바와 같이 3GPP에서는 SCEF를 이용한 스몰 데이터 전송을 위한 솔루션이 논의되었으며, NB-IOT를 위해, 다음과 같은 결론에 이르렀다.
간헐적인(infrequent) 스몰 데이터 전송(IP 데이터, non-IP 데이터 및 SMS)을 위해, 앞서 도 10과 같은 아키텍처를 기반으로 단말과 네트워크 간에 시그널링 무선 베어러(SRB: Signaling Radio Bearer)를 통한 NAS PDU를 통해 데이터 송수신을 지원하는 솔루션이 의무적으로(mandatory) 적용된다.
데이터 무선 베어러(DRB: Data Radio Bearer)(S1-U)를 통해 데이터 송수신을 필요하나, 단말이 연결 상태에서 아이들 상태로 전환 시에도 eNB에서 AS 파라미터들을 캐싱(caching)하는 솔루션이 선택적(optional)으로 적용될 수 있다.
본 발명은 새로운 노드로 정의되는 C-SGN에도 적용될 수 있으며, 또한 기존 MME와 S-GW 조합에 CIoT 기능을 추가한 형태에서도 적용될 수 있다.
셀룰러-IoT(CIoT: Cellular Internet of Things) EPS 최적화(Optimization)은 NB-IoT 및 LTE MTC 등의 낮은 복잡도(low complexity) 단말을 효율적으로 서비스하기 위해서 정의되었다. 즉, CIoT EPS optimization은 스몰 데이터(small data) 전송에 대한 향상된 지원을 제공한다.
현재 SRB로 data를 전송할 수 있는 제어 평면(CP: Control Plane) CIoT EPS 최적화(CP CIoT EPS Optimization 또는 CIoT EPS CP Optimization)와 CIoT EPS 사용자 평면(UP: User Plane) 최적화(UP CIoT EPS Optimization 또는 CIoT EPS UP Optimization)가 정의되었으며, 두 가지의 다른 데이터 전송 모드를 동일한 단말이 모두 지원할 수도 있다.
CP CIoT EPS optimization는 데이터 무선 베어러 확립을 트리거링(triggering)하지 않고 MME를 경유하는 제어 평면을 통해 사용자 데이터(IP, non-IP 또는 SMS)의 효율적인 전달을 지원한다. 선택적으로 IP 데이터의 헤더 압축(header compression)이 헤더 압축(header compression)을 지원하도록 설정된 IP PDN 타입 PDN 연결에 적용될 수 있다.
UP CIoT EPS optimization은 서비스 요청(Service Request) 절차를 사용할 필요 없이 EMM-IDLE 모드로부터 EMM-CONNECTED 모드로의 변경을 지원한다.
단말의 어태치(Attach) 또는 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차 중에 MME와 CIoT EPS optimization에 대하여 능력(capability)(즉, 단말 및/또는 MME에 의해 지원되는 CIoT EPS optimization)을 협상(negotiation)할 수 있다. 다시 말해, CIoT EPS optimization을 지원하는 UE는 Attach 또는 TAU 절차 중에 UE가 지원할 수 있으며 사용을 선호하는 CIoT 네트워크 동작을 지시할 수 있다.
예를 들어, 단말이 두 가지 CIoT EPS optimization를 모두 지원하는 경우, MME 역시 두 가지 CIoT EPS optimization가 가능한 PDN 연결을 승인할 수 있다. 일례로, SCEF로 데이터 송수신이 필요한 PDN 연결의 경우, MME는 CP only(즉, CP CIoT EPS optimization만을 이용)로 통신하라는 지시를 단말에게 전송할 수 있다. 이 경우, 단말은 현재 발신(MO: Mobile Originated) 송신을 요구하는 어플리케이션 및 해당 APN(Access Point Name)의 정책 등에 의해 전송 형태를 선택할 수 있다.
아래와 같이 단말은 RRC 연결 전환을 위해 적절한 데이터 전송 형태(즉, CP CIoT EPS optimization 또는 UP CIoT EPS optimization)를 요청 할 수 있다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 발신(Mobile Originated) 데이터를 위한 CP CIoT EPS optimization 및 UP CIoT EPS optimization를 예시하는 도면이다.
0. UE는 ECM(EPS Connection Management)-IDLE이다.
먼저, CP CIoT EPS optimization가 이용되는 경우(A), 상향링크 데이터의 전송 절차에 대하여 살펴본다.
1. UE는 RRC 연결을 확립하고, RRC 연결의 확립의 일부로서 무결성 보호된 NAS PDU를 eNB에게 전송한다. NAS PDU는 EPS 베어러 식별자(EPS Bearer ID)와 암호화된(encrypted) 상향링크 데이터를 나른다.
2. 앞서 1 단계에서 전송된 NAS PDU는 eNB에 의해 S1-AP 초기 UE 메시지(Initial UE message)를 이용하여 MME에게 릴레이(relay)된다.
3. MME는 수신된 NAS PDU의 무결성을 체크하고, NAS PDU에 포함된 데이터를 해독(decrypt)한다.
4. S11-U 연결이 확립되지 않았으면, MME는 각 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 S-GW에게 전송한다.
Modify Bearer Request 메시지는 MME 주소, MME TEID DL, 지연 하향링크 패킷 통지 요청(Downlink Packet Notification Request), RAT 타입 등을 포함한다.
S-GW는 이제 하향링크 데이터를 UE를 향해 전송할 수 있다.
5-6. S-GW는 베어러 수정 요청(Modify Bearer Request) 메시지를 P-GW에게 전송하고, P-GW는 베어러 수정 응답(Modify Bearer Response) 메시지를 S-GW에게 전송한다.
7. Modify Bearer Request 메시지가 4 단계에서 전송되었으면, S-GW는 Modify Bearer Request 메시지에 대한 응답으로서 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
Modify Bearer Response 메시지는 UL 트래픽을 위한 S-GW 주소 및 TEID를 포함한다.
S11-U 사용자 평면을 위한 S-GW 주소 및 S-GW TEID는 MME에 의해 S-GW에게 상향링크 데이터를 전달하기 위하여 사용된다.
8. MME는 S-GW를 경유하여 P-GW에게 상향링크 데이터를 전송한다.
9. MME는 연결 확립 지시(Connection Establishment Indication) 메시지를 eNB에게 전송할 수 있다.
10. UE는 무결성 보호된 NAS PDU를 포함하는 상향링크 정보 전달(UL Info Transfer) 메시지에 eNB에게 전송할 수 있다.
11. 10 단계에서 전송된 NAS PDU는 eNB에 의해 S1-AP 상향링크 NAS 전달(UL NAS Transport) 메시지를 이용하여 MME에게 릴레이(relay)될 수 있다.
12. MME는 S-GW를 경유하여 P-GW에게 상향링크 데이터를 전송할 수 있다.
다음으로, UP CIoT EPS optimization가 이용되는 경우(B), 상향링크 데이터의 전송 절차에 대하여 살펴본다.
1. UE는 RRC 연결을 확립하고, RRC 연결의 확립의 일부로서 NAS 서비스 요청(Service Request) 메시지를 eNB에게 전송한다.
2. eNB은 RRC Connection Setup Complete 메시지로부터 NAS Service Request 메시지를 획득하고, 이를 S1AP 초기 단말 메시지(Initial UE Message)를 통해 MME에게 전달한다.
3. NAS 인증(authentication)/보안(security) 절차가 수행될 수 있다.
4. MME는 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 S-GW에게 전송한다.
Modify Bearer Request 메시지는 eNB 주소, 수락된 EPS 베어러들에 대한 S1 TEID(들)(DL), 지연 하향링크 패킷 통지 요청(Delay Downlink Packet Notification Request), RAT 타입 등을 포함한다.
5-6. S-GW는 베어러 수정 요청(Modify Bearer Request) 메시지를 P-GW에게 전송하고, P-GW는 베어러 수정 응답(Modify Bearer Response) 메시지를 S-GW에게 전송한다.
7. S-GW는 Modify Bearer Request에 대한 응답으로 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
Modify Bearer Response 메시지는 상향링크 트래픽을 위한 S-GW 주소 및 TEID를 포함한다.
8. MME는 S1-AP 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 eNB에게 전송한다.
9. UE와 eNB 간에 무선 베어러가 셋업된다.
10. UE로부터 상향링크 데이터가 eNB에 의해 S-GW에게 전달되고, S-GW를 경유하여 P-GW에게 전달된다.
또한, 아래와 같이 MME 역시 착신(MT: Mobile Terminated) 데이터에 대해서 적절한 CIoT EPS optimization 모드를 선택할 수 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 착신(Mobile Terminated) 데이터를 위한 CP CIoT EPS optimization 및 UP CIoT EPS optimization를 예시하는 도면이다.
0. UE는 EPS 어태치(attach)되어 있으며, ECM-Idle 모드이다.
1. S-GW가 UE에 대한 하향링크 데이터 패킷/제어 시그널링을 수신하면, S-GW는 하향링크 데이터 패킷을 버퍼링하고, 어느 MME가 해당 UE를 서빙(serving)하는지 식별한다.
2. S-GW가 1 단계에서 데이터를 버퍼링하고 있으면, S-GW는 하향링크 데이터 통지(Downlink Data Notification) 메시지를 해당 UE 에 대한 제어 평면 연결성을 가지는 MME에게 전송한다.
Downlink Data Notification 메시지는 할당/보유 우선순위(ARP: Allocation/Retention Priority), EPS 베어러 식별자(EPS Bearer ID)를 포함한다.
MME는 S-GW에게 하향링크 데이터 통지 확인(Downlink Data Notification Ack) 메시지로 응답한다.
3. UE가 MME에게 등록되어 있고, 접근 가능하다고(reachable) 판단되면, MME는 페이징(Paging) 메시지를 UE가 등록된 트래킹 영역(들)에 속한 각 eNB에게 전송한다.
페이징(Paging) 메시지는 페이징을 위한 NAS 식별자(ID), TAI(들), DRX(Discontinuous Reception) 인덱스 기반 UE 식별자(UE identity based DRX index), 페이징 DRX 길이(Paging DRX length), 페이징을 위한 CSG ID(들)의 리스트, 페이징 우선순위 지시(Paging Priority indication)를 포함한다.
4. eNB가 MME로부터 Paging 메시지를 수신하면, UE가 eNB에 의해 페이징된다.
5. UE가 ECM-IDLE 상태이므로, 페이징 지시를 수신할 때, UE는 NAS 제어 평면 서비스 요청(Control Plane Service Request) 메시지를 RRC 연결 요청(RRC Connection request) 및 S1-AP 초기 UE 메시지(S1-AP initial UE message)를 통해 전송한다.
6. eNB은 RRC Connection request 메시지로부터 Control Plane Service Request 메시지를 획득하고, 이를 S1-AP initial UE message를 통해 MME에게 전달한다.
먼저, CP CIoT EPS optimization가 이용되는 경우(A), 상향링크 데이터의 전송 절차에 대하여 살펴본다.
7. S11-U 연결이 확립되지 않았으면, MME는 각 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 S-GW에게 전송한다.
Modify Bearer Request 메시지는 MME 주소, MME TEID DL, 지연 하향링크 패킷 통지 요청(Downlink Packet Notification Request), RAT 타입 등을 포함한다.
S-GW는 이제 하향링크 데이터를 UE를 향해 전송할 수 있다.
8-9. S-GW는 베어러 수정 요청(Modify Bearer Request) 메시지를 P-GW에게 전송하고, P-GW는 베어러 수정 응답(Modify Bearer Response) 메시지를 S-GW에게 전송한다.
10. Modify Bearer Request 메시지가 7 단계에서 전송되었으면, S-GW는 Modify Bearer Request 메시지에 대한 응답으로서 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
Modify Bearer Response 메시지는 UL 트래픽을 위한 S-GW 주소 및 TEID를 포함한다.
S11-U 사용자 평면을 위한 S-GW 주소 및 S-GW TEID는 MME에 의해 S-GW에게 상향링크 데이터를 전달하기 위하여 사용된다.
11. 버퍼핑된 (S11-U가 확립되지 않았던 경우) 하향링크 데이터가 S-GW에 의해 MME에게 전송된다.
12-13. MME는 하향링크 데이터를 암호화(encrypt)하고, 무결성 보호한다. 그리고, MME는 하향링크 S1-AP 메시지에 의해 전달되는 NAS PDU를 이용하여 eNB에게 하향링크 데이터를 전송한다.
14. 데이터를 수반한 NAS PDU는 하향링크 RRC 메시지를 통해 UE에게 전달된다. 이는 UE에 의해 앞서 5 단계에서 전송된 Service Request 메시지의 암묵적인 확인(implicit acknowledgment)으로서 취급된다.
15. RRC 연결이 여전히 확립되어 있는 중에, 추가적인 상향링크 및 하향링크 데이터가 NAS PDU(들)을 이용하여 전달될 수 있다. 15 단계에서는, 데이터를 수반한 NAS PDU를 인캡슐레이션하는(encapsulate) 상향링크 RRC 메시지를 이용한 상향링크 데이터 전달을 예시한f다.
16. 데이터를 수반한 NAS PDU는 상향링크 S1-AP 메시지 내에서 MME에게 전송된다.
17. 데이터는 무결성이 체크되고, 해독(decrypt)된다.
18. MME는 상향링크 데이터는 S-GW를 경유하여 P-GW에게 전송한다.
19. eNB가 더 이상의 동작(activity)이 없다고 감지하면, 20 단계가 수행된다.
20. eNB는 eNB 개시 S1 해제 절차(eNodeB initiated S1 release procedure)를 시작한다.
다음으로, UP CIoT EPS optimization가 이용되는 경우(B), 상향링크 데이터의 전송 절차에 대하여 살펴본다.
7. NAS 인증(authentication)/보안(security) 절차가 수행될 수 있다.
8. MME는 S1-AP 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 eNB에게 전송한다.
9. UE와 eNB 간에 RRC 재구성(Reconfiguration) 절차가 수행된다.
10. UE로부터 상향링크 데이터가 eNB에 의해 S-GW에게 전달된다.
11. eNB는 S1-AP 초기 컨텍스트 셋업 완료(Initial Context Setup Complete) 메시지를 MME에게 전송한다.
Initial Context Setup Complete 메시지는 eNB 주소, 수락된 EPS 베어러들의 리스트, 거절된 ESP 베어러들의 리스트, S1 TEID(들)(DL)을 포함한다.
12. MME는 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 S-GW에게 전송한다.
Modify Bearer Request 메시지는 eNB 주소, 수락된 EPS 베어러들에 대한 S1 TEID(들)(DL), 지연 하향링크 패킷 통지 요청(Delay Downlink Packet Notification Request), RAT 타입 등을 포함한다.
13-14. S-GW는 베어러 수정 요청(Modify Bearer Request) 메시지를 P-GW에게 전송하고, P-GW는 베어러 수정 응답(Modify Bearer Response) 메시지를 S-GW에게 전송한다.
15. S-GW는 Modify Bearer Request에 대한 응답으로 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
Modify Bearer Response 메시지는 상향링크 트래픽을 위한 S-GW 주소 및 TEID를 포함한다.
16. eNB가 더 이상의 동작(activity)이 없다고 감지하면, 19 단계가 수행된다.
19. eNB는 eNB 개시 S1 해제 절차(eNodeB initiated S1 release procedure)를 시작한다.
해제 보조 지시/정보( RAI : Release Assistance Indication/Information)
RAI는 UE의 신속한 연결 해제를 위한 도움 정보를 의미한다. UE가 CP CIoT EPS optimization를 이용하여 데이터를 송신하는 경우, 추가적으로 RAI를 포함시켜 전송할 수 있다. 예를 들어, 앞서 도 11의 1 단계에서 UE는 NAS PDU 내 RAI를 포함시켜 전송할 수 있다.
RAI 정보 요소(IE: Information Element)는 상향링크 데이터 전송의 다음에 단일의 하향링크 데이터 전송(예를 들어, 확인응답(acknowledgement) 또는 상향링크 데이터에 대한 응답)만이 예상되는지, 또는 추가적인 상향링크 또는 하향링크 전송이 예상되는지 여부 네트워크에게 알려주기 위하여 이용된다.
RAI IE는 도 13 및 표 3의 예시와 같이 코딩될 수 있다.
RAI IE는 타입 1 IE이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 해제 보조 지시/정보 정보 요소를 예시하는 도면이다.
도 13을 참조하면, RAI IE는 1 옥텟(octet)의 길이를 가지며, 최상위 비트(MSB: Most Significant bit)(또는 최좌측 비트(left-most bit))부터 4 비트(즉, 5-8번 비트)는 정보 요소 식별자(IEI: Information Element Identifier)를 나타내고, 그 다음의 1 비트(즉, 4번 비트)는 예비의(spare) 비트이고, 그 다음의 1 비트(즉, 3번 비트)는 예비의(spare) 비트이고, 그 다음의 2 비트는 예상되는 하향링크 데이터(DDX: Downlink Data Expected)를 나타낸다.
표 3는 DDX의 값에 따른 설명(description)을 예시한다.
Figure PCTKR2017003157-appb-T000003
트래킹 영역 업데이트 (TAU: Tracking Area Update/Updating) 절차
TAU 절차는 MME에서 수행하는 이동성 관리 절차(mobility management procedure) 중 하나로 EPS에서 단말의 이동성(mobility)을 관리하는 중요한 기능 중 하나이다.
이동성 기반의(mobility based) TAU는 TAI(Tracking Area Identity)(들)의 리스트 내 존재하지 않는 새로운 트래킹 영역(TA: Tracking Area)에 진입한 것을 감지할 때(즉, 트래킹 영역(Tracking area)이 변경되는 경우) 수행될 수 있다.
또한, 단말이 아이들 모드(Idle mode)로 진입 후, 단말에 설정된 주기적 TAU(P-TAU: Periodic TAU) 타이머가 만료될 때, 주기적 TAU 절차가 수행될 수도 있다. 이 주기적 TAU는 네트워크에서 단말이 유효하게 자신의 네트워크에 존재하는 지를 확인하는 접근가능성(reachability) 체크를 위한 방법이라고 할 수 있다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 14에서는 S-GW의 변경을 수반하는 TAU 절차를 예시한다.
1. ECM(EPS Connection Management)-IDLE 상태인 단말(UE)의 TAU 타이머가 경과 하거나 단말이 다른 트래킹 영역으로 이동한 경우 등 TAU 절차의 시작을 위한 미리 정의된 트리거(trigger) 중에 하나가 발생된다.
2. UE는 선택된 네트워크(Selected Network) 및 이전(old) 전역 고유 MME 식별자(GUMMEI: Globally Unique MME Identifier)를 지시하는 RRC 파라미터와 함께 TAU 요청(TAU Request) 메시지를 eNB에게 전송함으로써 TAU 절차를 개시한다.
TAU 요청(TAU Request) 메시지는 UE 코어 네트워크 능력(UE Core Network Capability), 모바일 스테이션(MS: Mobile Station) 네트워크 능력(MS Network Capability), 선호되는 네트워크 동작(Preferred Network behavior), 이전(old) 전역 고유 임시 식별자(GUTI: Globally Unique Temporary Identity), 이전 GUTI 타입(Old GUTI type), 마지막 방문한 TAI(last visited TAI), 액티브 플래그(active flag), EPS 베어러 상태(EPS bearer status), 패킷 임시 모바일 가입 식별자(P-TMSI: Packet Temporary Mobile Subscriber Identity) 시그니처(Signature), 추가적인 GUTI(additional GUTI), E-UTRAN을 위한 키 세트 식별자(Key Set Identifier for E-UTRAN, eKSI), NAS 시퀀스 번호(NAS sequence number), NAS 메시지 인증 코드(NAS-MAC: Message Authentication Code), 키 세트 식별자(KSI: Key Set Identifier), 보이스 도메인 선호 및 UE의 용도 세팅(Voice domain preference and UE's usage setting)을 포함할 수 있다.
active flag는 UE가 ECM-IDLE 상태일 때, TAU 절차에 의해 모든 액티브(active) EPS 베어러(들)에 대한 무선 베어러 및 S1 베어러(들)을 활성화하기 위한 UE에 의한 요청이다. EPS 베어러 상태는 UE 내 액티브(active)된 각 베어러를 지시한다.
어떠한 활성화된 PDN 연결이 없는 CIoT EPS Optimization을 사용하는 UE의 경우, active flag 또는 EPS 베어러 상태는 TAU Request 메시지 내 포함되지 않는다.
3. eNB는 이전(old) GUMMEI, 지시된 Selected Network 및 RAT을 나르는 RRC 파라미터로부터 MME 주소를 도출한다. 또한, MME 주소는 RRC CIoT EPS Optimization 정보에 기반하여 도출될 수도 있다.
eNB는 CSG 액세스 모드(CSG access mode), CSG ID, TAI+ECGI, TAU Request 메시지가 수신된 셀의 RAT 타입(RAT type), Selected Network와 함께 TAU Request 메시지를 MME에게 전달한다.
4. 새로운(new) MME는 이전 노드(old node)(즉, MME 또는 SGSN)의 타입을 구분(differentiate)하고, old MME/S4 SGSN 주소를 도출하기 위하여 UE로부터 수신한 GUTI를 사용한다. 그리고, 새로운 MME는 사용자 정보를 획득하기 위하여 컨텍스트 요청(Context Request) 메시지를 old MME/old S4 SGSN에게 전송한다.
Context Request 메시지는 이전 GUTI(old GUTI), 완전한 TAU Request 메시지, P TMSI Signature, MME 주소(Address), UE 적합(UE validated), CIoT EPS optimization 지원 지시(CIoT EPS Optimisation support indication)를 포함할 수 있다.
new MME가 CIoT EPS Optimization을 지원하면, CIoT EPS Optimization 지원 지시가 다양한 CIoT EPS Optimization의 지원(예를 들어, CP optimization을 위한 헤더 압축(header compression)을 지원)을 지시하는 Context Request 메시지에 포함된다.
5. Context Request가 old MME에게 전송되면, old MME는 컨텍스트 응답(Context Response) 메시지로 응답한다.
Context Response 메시지는 IMSI, 모바일 장치(ME: Mobile Equipment) 식별자(ME Identity, IMEISV(International Mobile Station Equipment Identity and Software Version Number)), 이동성 관리(MM: Mobility Management) 컨텍스트(MM Context), EPS 베어러 컨텍스트(들)(EPS Bearer Context(s)), S-GW의 시그널링 주소 및 TEID(들), 아이들 모드 시그널링 감소(ISR: Idle mode Signalling Reduction) 지원(ISR Supported), MS 정보 변경 보고 동작(MS Info Change Reporting Action)(이용 가능한 경우), CSG 정보 보고 동작(CSG Information Reporting Action)(이용 가능한 경우), UE 시간 존(UE Time Zone), UE 코어 네트워크 능력(UE Core Network Capability), UE 특정 DRX 파라미터(들)(UE Specific DRX Parameters)을 포함할 수 있다.
new MME가 CIoT EPS Optimization을 지원하고, UE에 대한 강인한 헤더 압축(RoHC: Robust Header Compression) 컨텍스트가 존재하면, Context Response 메시지는 헤더 압축 설정(Header Compression Configuration)을 포함한다.
어떠한 활성화된 PDN 연결이 없는 CIoT EPS Optimization을 사용하는 UE의 경우, EPS 베어러 컨텍스트(들)은 Context Response 메시지에 포함되지 않는다.
CIoT EPS Optimisation support indication에 기반하여, old MME는 new MME가 지원하는 EPS 베어러 컨텍스트(들)만을 전달한다. new MME가 CIoT EPS Optimization을 지원하지 않으면, non-IP PDN 연결의 EPS 베어러 컨텍스트(들)은 new MME에게 전달되지 않는다. PDN 연결의 EPS 베어러 컨텍스트(들)이 전달되지 않으면, old MME는 해당 PDN 연결에 대한 모든 베어러가 실패라고 간주하고, MME 요청 PDN 단절 절차(MME requested PDN disconnection procedure)를 트리거링(triggering)함으로써 해당 PDN 연결을 해제한다. old MME 내 버퍼링된 데이터는 컨텍스트 확인(Context Acknowledge) 메시지 수신 후 폐기된다.
6. 앞서 2 단계에서 전송된 TAU Request 메시지의 무결성 체크가 실패하면, 인증은 의무적(mandatory)이다.
7. MME(즉, MME가 변경되어 새로운(new) MME인 경우)는 S-GW의 이전(relocate)를 결정한다. old S-GW가 UE를 계속하여 서비스(serve)할 수 없을 때, S-GW는 이전(relocate)된다. MME(즉, MME가 변경되어 new MME인 경우)는 또한 new S-GW가 UE를 더 오랜 시간 서비스(serve)할 것이 예상되거나 및/또는 P-GW 경로 측면에서 더욱 최적화되는 경우, 또는 new S-GW가 P-GW와 공동 배치(co-located)될 수 있는 경우에 S-GW의 이전(relocate)를 결정할 수 있다.
MME가 변경되었으면, new MME는 컨텍스트 확인(Context Acknowledge) 메시지를 old MME/old S4 SGSN에게 전송한다.
Context Acknowledge 메시지는 S-GW 변경 지시를 포함한다.
어떠한 활성화된 PDN 연결이 없는 CIoT EPS Optimization을 사용하는 UE의 경우, 8, 9, 10, 11, 18 및 19 단계를 스킵(skip)된다.
8. MME가 변경되었으면, new MME는 old MME/old S4 SGSN로부터 수신한 베어러 컨텍스트를 이용하여 UE로부터 수신한 EPS bearer status를 확인(verify)한다. MME가 변경되지 않았으면, MME는 MM context 내 이용 가능한 베어러 컨텍스트를 이용하여 UE로부터의 EPS bearer status를 확인(verify)한다.
MME는 UE 내 활성화되지 않은 EPS 베어러(들)과 관련된 어떠한 네트워크 자원을 해제한다. 베어러 컨텍스트가 전혀 존재하지 않으면, MME는 TAU Request를 거절한다.
MME가 new S-GW를 선택하였으면, MME는 PDN 연결 별로 세션 생성 요청(Create Session Request) 메시지를 선택된 new S-GW에게 전송한다.
Create Session Request 메시지는 IMSI, 베어러 컨텍스트(들), MME 주소(MME Address) 및 TEID, 타입(Type), S5/S8 상의 프로토콜 타입(Protocol Type over S5/S8), RAT type, 서빙 네트워크(Serving Network), UE Time Zone을 포함할 수 있다.
new MME는 SCEF를 수반한 EPS 베어러 컨텍스트를 수신하면, new MME는 SCEF를 업데이트한다.
9. S-GW는 PDN 연결 별로 P-GW(들)에게 베어러 수정 요청(Modify Bearer Request) 메시지를 전송한다.
Modify Bearer Request 메시지는 S-GW 주소 및 TEID, RAT type, Serving Network, PDN 과금 중단 지원 지시(PDN Charging Pause Support Indication)를 포함할 수 있다.
9a. 동적인 정책 및 과금 제어(PCC: Policy and Charging Control)가 배치(deploy)되고 RAT type 정보가 P-GW로부터 정책 및 과금 규칙 기능(PCRF: Policy and Charging Rules Function)에게 전달될 필요가 있으면, P-GW는 RAT type 정보를 IP CAN(IP connectivity access network) 세션 수정 절차(IP CAN Session Modification procedure)를 이용하여 PCRF에게 전송한다.
10. P-GW는 자신의 베어러 컨텍스트를 업데이트하고, 베어러 수정 응답(Modify Bearer Response) 메시지를 S-GW에게 송부한다.
Modify Bearer Response 메시지는 MSISDN, 과금 식별자(Charging Id), PDN 과금 중단 활성 지시(PDN Charging Pause Enabled Indication)(P-GW가 이 기능 활성을 선택한 경우)를 포함할 수 있다.
11. S-GW는 자신의 베어러 컨텍스트를 업데이트한다. 이를 통해, S-GW는 베어러 PDU(들)을 eNB로부터 수신할 때 이를 P-GW에게 라우트(route)할 수 있다.
S-GW는 세션 생성 응답(Create Session Response) 메시지를 MME에게 전송한다.
Create Session Response 메시지는 사용자 평면 및 제어 평면을 위한 S-GW 주소 및 TEID, 상향링크 트래픽 및 제어 평면을 위한 P-GW TEID(들)(GTP(GPRS Tunnelling Protocol)-기반 S5/S8의 경우) 또는 GRE 키(들)(PMIP(Proxy Mobile IP)-기반 S5/S8의 경우), MS 정보 변경 보고 동작(MS Info Change Reporting Action)을 포함할 수 있다.
12. new MME는 GUTI, 추가적인 GUTI 또는 old CN 노드로부터 컨텍스트 데이터와 함께 수신한 IMSI에 의해 식별된 UE에 대한 가입 데이터가 있는지(hold) 확인한다.
new MME 내 이 UE에 대한 가입 데이터가 없으면, new MME는 위치 업데이트 요청(Update Location Request) 메시지를 HSS에게 전송한다.
Update Location Request 메시지는 MME 식별자(MME Identity), IMSI, ULR-플래그(들)(Update Location Request Flags), MME 능력(MME Capabilities), 패킷 스위치(PS: Packet Switched) 세션 상에서 IMS 보이스의 동종의 지원(Homogeneous Support of IMS Voice over PS Sessions), UE SRVCC 능력(UE SRVCC(Single Radio Voice Call Continuity) capability), 동등한 PLMN 리스트(equivalent PLMN list), ME 식별자(ME Identity (IMEISV))를 포함할 수 있다.
13. HSS는 업데이트 절차로 셋팅된 취소 타입(Cancellation Type)을 수반하는 위치 취소(Cancel Location) 메시지를 old MME에게 전송한다.
Cancel Location 메시지는 IMSI, 취소 타입(Cancellation Type)을 포함할 수 있다.
14. 앞서 4 단계에서 시작된 타이머가 구동되고 있지 않으면, old MME는 MM 컨텍스트를 제거한다. 그렇지 않으면, 타이머가 만료될 때 컨텍스트가 제거된다.
old MME는 IMSI를 포함하는 위치 취소 확인(Cancel Location Ack) 메시지로 HSS에게 응답한다.
15. old S4 SGSN이 Context Acknowledge 메시지를 수신하고, UE가 Iu 연결 상태인 경우, old S4 SGSN는 앞서 4 단계에서 시작된 타이머가 만료된 후, Iu 해제 명령(Iu Release Command) 메시지를 RNC에게 전송한다.
16. RNC는 Iu 해제 완료(Iu Release Complete) 메시지로 응답한다.
17. HSS는 IMSI와 가입 데이터(Subscription Data)를 포함하는 위치 업데이트 확인(Update Location Ack) 메시지를 new MME에게 전송함으로써, 위치 업데이트 요청 메시지에 확인응답(acknowledge)한다.
18. MME가 변경되었으면, 앞서 4 단계에서 시작된 타이머가 만료될 때, old MME/old S4 SGSN는 지역적인(local) MME 또는 SGSN 베어러 자원을 해제한다. 추가적으로, 앞서 7 단계에서 Context Acknowledge 메시지 내 S-GW 변경 지시를 수신하였으면, old MME/old S4 SGSN는 원인(cause), 동작 지시(Operation Indication)를 포함하는 세션 삭제 요청(Delete Session Request) 메시지를 old S-GW에게 전송함으로써 EPS 베어러 자원을 삭제한다.
MME가 변경되지 않았으면, 11 단계는 old S-GW에서 EPS 베어러 자원의 해제를 트리거(trigger)한다.
19. S-GW는 원인(Cause)를 포함하는 세션 삭제 응답(Delete Session Response) 메시지로 확인응답(acknowledge)한다.
S-GW는 해당 UE에 대하여 버퍼링된 어떠한 패킷도 폐기(discard)한다.
20. MME는 TAU 승인(TAU Accept) 메시지를 UE에게 전송한다.
TAU Accept 메시지는 GUTI, TAI 리스트, EPS 베어러 상태(EPS bearer status), NAS 시퀀스 번호(NAS sequence number), NAS-MAC, PS 세션 상의 IMS 보이스 지원(IMS Voice over PS session supported), 긴급 서비스 지원 지시(Emergency Service Support indicator), 위치 서비스 지원 지시(LCS(Location Service) Support Indication), 지원되는 네트워크 동작(Supported Network Behaviour)를 포함할 수 있다.
active flag가 셋팅되면, MME는 eNB에게 핸드오버 제한 리스트(Handover Restriction List)를 제공할 수 있다. MME가 새로운 GUTI를 할당하면, GUTI가 TAU Accept 메시지에 포함된다. active flag가 TAU Request 메시지 내 셋팅되면, 사용자 평면 셋업 절차가 TAU Accept 메시지와 함께 활성화된다. MME 내 UE에 대한 하향링크 데이터 버퍼 만료 시간(DL Data Buffer Expiration Time)이 만료하면, MME가 TAU Request 메시지 내 active flag를 수신하지 않았더라도, 사용자 평면 셋업 절차가 활성화된다. UE가 여전히 연결되어 있는 중에 new MME가 하향링크 데이터 통지(Downlink Data Notification) 메시지를 수신하거나 또는 어떠한 하향링크 시그널링 메시지를 수신하면, new MME가 TAU Request 메시지 내 active flag를 수신하지 않았더라도, 사용자 평면 셋업 절차가 활성화된다.
어떠한 활성화된 PDN 연결이 없는 CIoT EPS Optimization을 사용하는 UE의 경우, TAU Accept 메시지 내 EPS 베어러 상태가 포함되지 않는다.
21. GUTI가 TAU Accept 내 포함되었으면, UE는 TAU 완료(TAU Complete) 메시지를 MME에게 전송함으로써 수신한 메시지를 확인응답(acknowledge)한다.
active flag가 TAU Request 메시지 내에서 셋팅되지 않고, TAU가 ECM-CONNECTED 상태에서 개시되지 않았을 때, new MME는 S1 해제 절차에 따라 UE와의 시그널링 연결을 해제한다.
new MME는 보안 기능을 수행한 후 또는 TAU 절차가 완료될 때까지 기다린 후 E-RAB(E-UTRAN Radio Access Bearer) 확립을 개시할 수 있다. UE에 있어서, E-RAB 확립은 TAU 요청이 전송된 후에 어느 때든 발생될 수 있다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 15에서는 S-GW 변경 및 데이터 전달을 수반하는 TAU 절차를 예시한다.
도 15에서 (A) 및 (B) 절차는 앞서 도 14에서 정의된다. 도 15에서 5 단계는 앞서 도 14와 비교하여 하나의 추가적인 파라미터만이 차이가 있으며 이에 대하여 이하 설명한다.
5. 하향링크 데이터가 old S-GW 내 버퍼링되고 있고, 하향링크 데이터 만료 시간(DL Data Expiration Time)이 만료되지 않았으므로, old MME/old S4-SGSN는 Context Response 메시지 내 버퍼링된 하향링크 데이터 대기(Buffered DL Data Waiting)를 지시한다. 이는 new MME가 사용자 평면을 셋업하고, 데이터 전달의 호출(invoke)하도록 트리거(trigger)한다.
CP CIoT EPS Optimization의 경우, 하향링크 데이터가 old S-GW 내 버퍼링되면, 그리고 Buffered DL Data Waiting가 지시될 때, new MME는 new S-GW와 S11 사용자 평면을 셋업하고, 데이터 전달을 호출(invoke)한다.
하향링크 데이터가 old MME 내 버퍼링되고, DL Data Expiration Time 가 만료되지 않으면, old MME는 버퍼링된 하향링크 데이터를 폐기한다.
11-12. 사용자 평면이 셋업된다.
CP CIoT EPS Optimization의 경우, 11 단계는 스킵(skip)된다. 12 단계에서, MME는 MME 주소 및 MME DL TEID를 Modify Bearer Request 메시지 내 포함시키고, S-GW는 S-GW 주소 및 S-GW 상향링크 TEID를 Modify Bearer Response 메시지 내 포함시킨다.
13. 5 단계 내에서 버퍼링된 하향링크 데이터가 대기 중임이 지시되었기 때문에, new MME는 간접 데이터 전달 터널 생성 요청(Create Indirect Data Forwarding Tunnel Request)를 S-GW에게 전송함으로써, 전달 파라미터(forwarding parameter)를 셋업한다.
이때, Create Indirect Data Forwarding Tunnel Request 메시지는 전달(forwarding)을 위한 타겟 eNB 주소(들) 및 TEID를 포함할 수 있다.
S-GW는 간접 데이터 전달 터널 생성 응답(Create Indirect Data Forwarding Tunnel Response) 메시지를 타겟 MME에게 전송한다.
이때, Create Indirect Data Forwarding Tunnel Response 메시지는 전달(forwarding)을 위한 타겟 S-GW 주소(들) 및 TEID(들)을 포함할 수 있다.
CP CIoT EPS Optimization의 경우, new MME는 Create Indirect Data Forwarding Tunnel Request 메시지를 S-GW에게 전송함으로써, 전달 파라미터(forwarding parameter)를 셋업한다.
이때, Create Indirect Data Forwarding Tunnel Request 메시지는 전달(forwarding)을 위한 타겟 MME 주소(들) 및 TEID를 포함할 수 있다.
14. 이 단계는 앞서 도 14의 7 단계에서 정의된다. 추가로, new MME는 Context Acknowledge 메시지 내 버퍼링된 하향링크 데이터가 전달되어야 하는 F-TEID 및 전달 지시(Forwarding indication)를 포함시킨다. F-TEID는 앞서 13 단계로부터 수신한 간접적인 전달을 위한 F-TEID일 수도 있으며, eNB의 F-TEID일 수도 있다(eNB가 전달(forwarding)을 지원할 때).
15. Modify Bearer Request(F-TEID 포함) 메시지는 old S-GW에게 전송된다. F-TEID는 버퍼링된 하향링크 데이터가 전달되어야 하는 전달 F-TEID(Forwarding F-TEID)이다.
16. old S-GW는 자신의 버퍼링된 데이터를 앞서 15단계에서 수신한 F-TEID를 향하여 전달한다. 버퍼링된 하향링크 데이터는 앞서 11 단계에서 확립된 무선 베어러를 통해 UE에게 전송된다. CP CIoT EPS Optimization의 경우, 버퍼링된 하향링크 데이터는 new S-GW로부터 new MME에게 전송되고, UE에게 전송된다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 16에서는 S-GW 변경이 없는 TAU 절차를 예시한다.
1. TAU 타이머가 경과 하거나 단말이 다른 트래킹 영역으로 이동한 경우 등 TAU 절차의 시작을 위한 미리 정의된 트리거(trigger) 중에 하나가 발생된다.
2. UE는 선택된 네트워크(Selected Network) 및 old GUMMEI를 지시하는 RRC 파라미터와 함께 TAU 요청(TAU Request) 메시지를 eNB에게 전송함으로써 TAU 절차를 개시한다.
TAU 요청(TAU Request) 메시지는 UE 코어 네트워크 능력(UE Core Network Capability), MS 네트워크 능력(MS Network Capability), 선호되는 네트워크 동작(Preferred Network behavior), 이전(old) GUTI, 이전 GUTI 타입(Old GUTI type), 마지막 방문한 TAI(last visited TAI), 액티브 플래그(active flag), EPS 베어러 상태(EPS bearer status), P-TMSI 시그니처(Signature), 추가적인 GUTI(additional GUTI), KSI_SGSN, KSI_ASME, NAS 시퀀스 번호(NAS sequence number), NAS 메시지 인증 코드(NAS-MAC: Message Authentication Code), 보이스 도메인 선호 및 UE의 용도 세팅(Voice domain preference and UE's usage setting)을 포함할 수 있다.
active flag는 TAU 절차에 의해 모든 액티브(active) EPS 베어러(들)에 대한 무선 베어러 및 S1 베어러(들)을 활성화하기 위한 UE에 의한 요청이다. EPS 베어러 상태는 UE 내 액티브(active)된 각 베어러를 지시한다.
어떠한 활성화된 PDN 연결이 없는 CIoT EPS Optimization을 사용하는 UE의 경우, active flag 또는 EPS 베어러 상태는 TAU Request 메시지 내 포함되지 않는다.
3. eNB는 old GUMMEI, 지시된 Selected Network 및 RAT을 나르는 RRC 파라미터로부터 MME 주소를 도출한다. 또한, MME 주소는 RRC CIoT EPS Optimization 정보에 기반하여 도출될 수도 있다.
eNB는 CSG 액세스 모드(CSG access mode), CSG ID, TAI+ECGI, TAU Request 메시지가 수신된 셀의 RAT 타입(RAT type), Selected Network와 함께 TAU Request 메시지를 MME에게 전달한다.
4. 새로운(new) MME는 이전 노드(old node)(즉, MME 또는 SGSN)의 타입을 구분(differentiate)하고, old MME/S4 SGSN 주소를 도출하기 위하여 UE로부터 수신한 GUTI를 사용한다. 그리고, 새로운 MME는 사용자 정보를 획득하기 위하여 컨텍스트 요청(Context Request) 메시지를 old MME/old S4 SGSN에게 전송한다.
Context Request 메시지는 old GUTI, 완전한 TAU Request 메시지, P TMSI Signature, MME 주소(Address), UE 적합(UE validated), CIoT EPS optimization 지원 지시(CIoT EPS Optimisation support indication)를 포함할 수 있다.
new MME가 CIoT EPS Optimization을 지원하면, CIoT EPS Optimization 지원 지시가 다양한 CIoT EPS Optimization의 지원(예를 들어, CP optimization을 위한 헤더 압축(header compression)을 지원)을 지시하는 Context Request 메시지에 포함된다.
5. Context Request가 old MME에게 전송되면, old MME는 컨텍스트 응답(Context Response) 메시지로 응답한다.
Context Response 메시지는 IMSI, ME 식별자(ME Identity, IMEISV), 사용되지 않는 EPS 인증 벡터(unused EPS Authentication Vectors), KSI_ASME, K_ASME, EPS 베어러 컨텍스트(들)(EPS Bearer Context(s)), S-GW의 시그널링 주소 및 TEID(들), MS 정보 변경 보고 동작(MS Info Change Reporting Action)(이용 가능한 경우), CSG 정보 보고 동작(CSG Information Reporting Action)(이용 가능한 경우), UE 시간 존(UE Time Zone), UE 코어 네트워크 능력(UE Core Network Capability), UE 특정 DRX 파라미터(들)(UE Specific DRX Parameters)을 포함할 수 있다.
new MME가 CIoT EPS Optimization을 지원하고, UE에 대한 강인한 헤더 압축(RoHC: Robust Header Compression) 컨텍스트가 존재하면, Context Response 메시지는 헤더 압축 설정(Header Compression Configuration)을 포함한다.
어떠한 활성화된 PDN 연결이 없는 CIoT EPS Optimization을 사용하는 UE의 경우, EPS 베어러 컨텍스트(들)은 Context Response 메시지에 포함되지 않는다.
CIoT EPS Optimisation support indication에 기반하여, old MME는 new MME가 지원하는 EPS 베어러 컨텍스트(들)만을 전달한다. new MME가 CIoT EPS Optimization을 지원하지 않으면, non-IP PDN 연결의 EPS 베어러 컨텍스트(들)은 new MME에게 전달되지 않는다. PDN 연결의 EPS 베어러 컨텍스트(들)이 전달되지 않으면, old MME는 해당 PDN 연결에 대한 모든 베어러가 실패라고 간주하고, MME 요청 PDN 단절 절차(MME requested PDN disconnection procedure)를 트리거링(triggering)함으로써 해당 PDN 연결을 해제한다. old MME 내 버퍼링된 데이터는 컨텍스트 확인(Context Acknowledge) 메시지 수신 후 폐기된다.
6. 앞서 2 단계에서 전송된 TAU Request 메시지의 무결성 체크가 실패하면, 인증은 의무적(mandatory)이다.
7. old node가 old MME이면, new MME는 Context Acknowledge 메시지를 old MME에게 전송한다.
old node가 old S4 SGSN이면, MME는 Context Acknowledge 메시지를 old SGSN에게 전송한다.
어떠한 활성화된 PDN 연결이 없는 CIoT EPS Optimization을 사용하는 UE의 경우, 9, 10, 11, 12 및 13 단계를 스킵(skip)된다.
9. MME가 변경되었으면, new MME는 new MME에 의해 유지될 UE의 EPS 베어러 컨텍스트로서 old MME/SGSN으로부터 수신한 베어러 컨텍스트를 채택(adopt)한다.
MME는 EPS 베어러 컨텍스트로 UE로부터 수신한 EPS 베어러 상태를 확인(verify)하고, UE 내 액티브(active)되지 않은 EPS 베어러와 관련된 어떠한 네트워크 자원을 해제한다. 베어러 컨텍스트가 전혀 존재하지 않으면, MME는 TAU Request를 거절한다.
MME가 변경되었으면, new MME는 PDN 연결 별로 Modify Bearer Request 메시지를 S-GW에게 전송한다.
Modify Bearer Request 메시지는 new MME 주소 및 TEID, ISR 활성화(ISR Activated), RAT 타입(RAT type)을 포함할 수 있다.
CP CIoT EPS Optimization의 경우, 하향링크 데이터가 S-GW에게 버퍼링되어 있고, 이 절차가 MME 변경 없는 TAU 절차이고 MME 내 UE에 대한 MM 컨텍스트 내 하향링크 데이터 버퍼 만료 시간(DL Data Buffer Expiration Time)이 만료되지 않거나, 또는 이 절차가 MME 변경을 수반한 TAU 절차이고 old MME/old S4-SGSN가 앞서 5 단계 내 Context Response 메시지 내에서 버퍼링된 하향링크 데이터 대기(Buffered DL Data Waiting)를 지시하였으면, MME는 MME 주소 및 MME 하향링크 TEID를 Modify Bearer Request에 포함시킨다.
10. S-GW는 PDN 연결 별로 P-GW(들)에게 베어러 수정 요청(Modify Bearer Request) 메시지(RAT 타입 포함)를 전송한다.
11. 동적인 PCC가 배치(deploy)되고 RAT type 정보 또는 UE 위치 정보가 P-GW로부터 PCRF에게 전달될 필요가 있으면, P-GW는 이 정보를 IP CAN 세션 수정 절차(IP CAN Session Modification procedure)를 이용하여 PCRF에게 전송한다.
12. P-GW는 하향링크 PDU가 정확한 S-GW에게 라우트(route)되도록 한자신의 컨텍스트 필드를 업데이트하고, Modify Bearer Response 메시지(MSISDN 포함)를 S-GW에게 송부한다.
13. S-GW는 자신의 베어러 컨텍스트를 업데이트한다.
S-GW는 Modify Bearer Request 메시지에 대한 응답으로서 Modify Bearer Response 메시지를 MME에게 전송한다.
Modify Bearer Response 메시지는 상향링크 트래픽을 위한 S-GW 주소 및 TEID, MS 정보 변경 보고 동작(MS Info Change Reporting Action)을 포함할 수 있다.
CP CIoT EPS Optimization의 경우, MME 주소 및 MME 하향링크 TEID가 앞서 9 단계에서 제공되면, S-GW는 S-GW 주소 및 S-GW 상향링크 TEID를 Modify Bearer Response 메시지 내 포함시킨다. 하향링크 데이터는 S-GW로부터 MME에게 전송된다.
14. new MME는 GUTI, 추가적인 GUTI 또는 old CN 노드로부터 컨텍스트 데이터와 함께 수신한 IMSI에 의해 식별된 UE에 대한 가입 데이터가 있는지(hold) 확인한다.
new MME 내 이 UE에 대한 가입 데이터가 없으면, new MME는 위치 업데이트 요청(Update Location Request) 메시지를 HSS에게 전송함으로써 MME의 변경을 HSS에게 알린다.
Update Location Request 메시지는 MME 식별자(MME Identity), IMSI, ULR-플래그(들)(Update Location Request Flags), MME 능력(MME Capabilities), PS 세션 상에서 IMS 보이스의 동종의 지원(Homogeneous Support of IMS Voice over PS Sessions), UE SRVCC 능력(UE SRVCC capability), 동등한 PLMN 리스트(equivalent PLMN list), ME 식별자(ME Identity (IMEISV))를 포함할 수 있다.
15. HSS는 업데이트 절차로 셋팅된 취소 타입(Cancellation Type)을 수반하는 위치 취소(Cancel Location) 메시지를 old MME에게 전송한다.
Cancel Location 메시지는 IMSI, 취소 타입(Cancellation Type)을 포함할 수 있다.
16. Cancel Location 메시지를 수신할 때, 앞서 4 단계에서 시작된 타이머가 구동되고 있지 않으면, old MME는 MM 및 베어러 컨텍스트를 제거한다. 그렇지 않으면, 타이머가 만료될 때 컨텍스트가 제거된다.
old MME는 IMSI를 포함하는 위치 취소 확인(Cancel Location Ack) 메시지로 HSS에게 응답한다.
17. old S4 SGSN이 Context Acknowledge 메시지를 수신하고, UE가 Iu 연결 상태인 경우, old S4 SGSN는 앞서 4 단계에서 시작된 타이머가 만료된 후, Iu 해제 명령(Iu Release Command) 메시지를 RNC에게 전송한다.
18. RNC는 Iu 해제 완료(Iu Release Complete) 메시지로 응답한다.
19. HSS는 IMSI와 가입 데이터(Subscription Data)를 포함하는 위치 업데이트 확인(Update Location Ack) 메시지를 new MME에게 전송함으로써, 위치 업데이트 요청 메시지에 확인응답(acknowledge)한다.
20. MME는 TAU 승인(TAU Accept) 메시지를 UE에게 전송한다.
TAU Accept 메시지는 GUTI, TAI 리스트, EPS 베어러 상태(EPS bearer status), NAS 시퀀스 번호(NAS sequence number), NAS-MAC, ISR 활성화(ISR Activated), PS 세션 상의 IMS 보이스 지원(IMS Voice over PS session supported), 긴급 서비스 지원 지시(Emergency Service Support indicator), 위치 서비스 지원 지시(LCS Support Indication), 지원되는 네트워크 동작(Supported Network Behaviour)를 포함할 수 있다.
active flag가 셋팅되면, MME는 eNB에게 핸드오버 제한 리스트(Handover Restriction List)를 제공할 수 있다. active flag가 TAU Request 메시지 내 셋팅되면, 사용자 평면 셋업 절차가 TAU Accept 메시지와 함께 활성화된다. 이 절차가 MME 변경 없는 TAU 절차이고 MME 내 UE에 대한 MM 컨텍스트 내 하향링크 데이터 버퍼 만료 시간(DL Data Buffer Expiration Time)가 만료되지 않으면, 또는 이 절차가 MME 변경을 수반한 TAU 절차이고 old MME/old S4-SGSN가 버퍼링된 하향링크 데이터 대기(Buffered DL Data Waiting)를 지시하였으면, MME가 TAU Request 메시지 내에서 active flag를 수신하지 못하였더라도 사용자 평면 셋업 절차가 활성화된다. new MME가 UE가 여전히 연결 상태 중에, 하향링크 데이터 통지(Downlink Data Notification) 메시지 또는 어떠한 하향링크 시그널링 메시지를 수신하면, new MME가 TAU Request 메시지 내에서 active flag를 수신하지 못하였더라도 사용자 평면 셋업 절차가 활성화될 수 있다.
어떠한 활성화된 PDN 연결이 없는 CIoT EPS Optimization을 사용하는 UE의 경우, TAU Accept 메시지 내 EPS 베어러 상태가 포함되지 않는다.
MME는 MME가 지원하고 선호하는 CIoT EPS Optimization을 지원 네트워크 동작 정보(Supported Network Behaviour information) 내 지시한다.
21. GUTI가 변경되었으면, UE는 TAU 완료(TAU Complete) 메시지를 MME에게 전송함으로써 수신한 메시지를 확인응답(acknowledge)한다.
active flag가 TAU Request 메시지 내에서 셋팅되지 않고, TAU가 ECM-CONNECTED 상태에서 개시되지 않았을 때, MME는 S1 해제 절차에 따라 UE와의 시그널링 연결을 해제한다.
new MME는 보안 기능을 수행한 후 또는 TAU 절차가 완료될 때까지 기다린 후 E-RAB(E-UTRAN Radio Access Bearer) 확립을 개시할 수 있다. UE에 있어서, E-RAB 확립은 TAU 요청이 전송된 후에 어느 때든 발생될 수 있다.
이하, TAU 절차 중에 UE와 MME에서의 동작에 대하여 보다 상세히 살펴본다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 17을 참조하면, EMM-REGISTERED 상태인 UE는 다음과 같은 경우 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지를 MME에게 전송함으로써, TAU 절차를 개시한다(S1701a, S1701b):
a) UE가 이전에 MME 내 등록하였던 TA들의 리스트 내 속하지 않은 TA에 진입함을 감지할 때(UE가 "AttachWithIMSI"로 설정되지 않거나, 또는 등록된 PLMN도 아니고 등가의(equivalent) PLMN 리스트 내 PLMN도 아닌 새로운 PLMN 내 TA에 진입하는 것이 아닌 경우);
b) 주기적인 트래킹 영역 업데이트 타이머(periodic tracking area updating timer) T3412가 만료될 때;
c) UE가 EMM-REGISTERED.NORMAL-SERVICE(UE가 EMM-REGISTERED 상태에 진입할 때 기본적인 서브상태(substate)로 UE에 의해 선택됨)에 진입하고, UE의 다음 업데이트에 이용되는 임시 식별자(TIN: Temporary Identity used in Next update)가 "P-TMSI"를 지시할 때;
d) UE가 S101 모드(즉, S101 참조 포인트 사용)로부터 S1 모드(즉, 액세스 네트워크와 코어 네트워크 간 S1 인터페이스의 사용)로의 시스템 간(inter-system) 변경을 수행하고, 사용자 데이터가 계류 중(pending)일 때;
e) UE가 RRC 연결이 "로드 밸런싱 TAU 요구됨(load balancing TAU required" 원인으로 해제되었다고 하위 계층으로부터 지시를 수신할 때;
f) UE가 EMM-REGISTERED.NO-CELL-AVAILABLE 상태(UE가 E-UTRAN 커버리지에서 벗어나거나 또는 UE 내 파워 세이빙 모드(PSM: Power Saving Mode)가 활성화된 경우)에 중에 로컬하게(locally) EPS 베어러 컨텍스트(들)을 비활성화하고, EMM-REGISTERED.NORMAL-SERVICE 상태로 복귀할 때;
g) UE 네트워크 능력 정보(UE network capability information) 또는 MS 네트워크 능력 정보(MS network capability information) 또는 둘 모두를 변경할 때;
h) UE가 UE 특정 DRX 파라미터(UE specific DRX parameter)를 변경할 때;
i) UE가 하위 계층으로부터 "RRC 연결 실패(RRC Connection failure)"의 지시를 수신하고, 계류 중인(pending) 시그널링 또는 사용자 데이터가 없을 때(즉, 하위 계층이 NAS 시그널링 연결 회복을 요청할 때);
j) UE가 1xCS(Circuit Switched) 폴백(fallback) 또는 1xSRVCC(Single Radio Voice Call Continuity) 이후에 S1 모드로 진입할 때;
k) 수동적인 CSG 선택으로 인하여 UE가 UE의 허용된 CSG 리스트(UE's Allowed CSG list) 또는 UE의 운영자 CSG 리스트(UE's Operator CSG list) 내 포함되지 않은 CSG 식별자(identity) 및 연관된 PLMN 식별자(identity)를 가지는 CSG 셀을 선택할 때;
l) UE가 GPRS READY 상태 또는 PMM-CONNECTED 모드에 있던 중에 E-UTRAN 셀을 재선택할 때;
m) UE가 SRVCC에서 GERAN 또는 UTRAN으로 지원하거나 또는 vSRVCC(Single Radio Video Call Continuity)에서 UTRAN으로 지원하고 모바일 스테이션 클레스마크(classmark) 2 또는 지원되는 코덱을 변경하거나, UE가 SRVCC에서 GERAN으로 지원하고 모바일 스테이션 클레스마크(classmark) 3을 변경할 때;
n) UE가 GERAN 또는 cdma2000 또는 둘 모두의 무선 능력을 변경할 때;
o) UE 내에서 UE의 활용 셋팅 또는 E-UTRAN을 위한 보이스 도메인 선호가 변경될 때;
p) UE가 IMS 보이스 종단(termination)을 위한 이동성 관리를 활성화하고, TIN이 "RAT 관련 TMSI(RAT-related TMSI)"을 지시할 때;
q) UE A/Gb 모드에서 S1 모드로 시스템 간(intersystem) 변경을 수행하고, TIN이 "RAT-related TMSI"를 지시하지만, UE가 IMS 보이스 종단(termination)을 위한 TAU의 수행이 요구될 때;
r) 타이머 T3346(이동성 관리 백오프(back-off) 타이머)이 구동 중이고, UE가 EMM-REGISTERED.ATTEMPTING-TO-UPDATE 상태(TAU 또는 결합된(combined) TAU 절차가 네트워크로부터 응답이 손실되는 등의 이유로 실패된 경우)이면, S-TMSI를 사용하는 페이징 지시를 수신할 때;
s) UE가 EPS 베어러 컨텍스트(들)의 지역적 비활성화(local de-activation)로 인하여 EPS 베어러 컨텍스트 상태를 사용하여 네트워크를 업데이트할 필요가 있을 때;
t) UE가 PSM의 사용을 요청할 필요가 있거나 PSM의 사용을 중단할 필요가 있을 때;
u) UE 확장된 DRX(eDRX: extended DRX)의 사용을 요청할 필요가 있거나 eDRX의 사용을 중단할 필요가 있을 때;
v) UE에서 eDRX 사용 조건이 변경되어 상이한 확장된 DRX 파라미터(extended DRX parameters)가 요구될 때;
w) UE에서 PSM 사용 조건이 변경되어 상이한 타이머 T3412(주기적 TAU 타이머) 값 또는 상이한 타이머 T3324(액티브(Active) 타이머) 값이 요구될 때;
x) UE가 CIoT EPS optimization를 요청할 필요가 있을 때;
앞서 b를 제외한 모든 경우에 있어서, UE는 TRACKING AREA UPDATE REQUEST 메시지 내 EPS 업데이트 타입 IE(EPS update type IE)를 "TA 업데이팅(TA updating)"으로 셋팅한다. b의 경우, UE는 EPS update type IE를 "주기적인 업데이팅(periodic updating)"으로 셋팅한다.
n의 경우, UE는 TRACKING AREA UPDATE REQUEST 메시지 내 UE 무선 능력 정보 업데이트 필요 IE(UE radio capability information update needed IE)를 포함시킨다.
l의 경우, TIN이 "RAT-related TMSI"를 지시하면, UE는 TAU 절차를 개시하기 전에 TIN을 "P-TMSI"로 셋팅한다.
r의 경우, EPS update type IE 내 "액티브(active)" 플래그는 1로 셋팅된다.
만약, UE가 어떠한 확립된 PDN 연결을 가지지 않는 경우, EPS update type IE 내 "active" 플래그는 0으로 셋팅된다.
즉, 단말이 TAU 등을 성공적으로 수행하지 못하여 EMM-REGISTERED.ATTEMPTING-TO-UPDATE 상태이고, 이동성 관리(MM) 백오프(Back-off) 타이머 T3346이 구동되는 도중에, 네트워크로부터 MT 페이징을 수신한 경우, 단말은 TAU를 통해 페이징에 응답할 수 있다. 이 경우, 단말은 반드시 "active" 플래그를 1로 셋팅하여 TAU request 메시지를 MME에게 전송한다.
UE가 TAU 절차를 개시할 때, UE가 확립된 PDN 연결(들) 및 계류 중인(pending) 상향링크 사용자 데이터를 가지거나, 또는 TAU 절차와 관련되지 않은 상향링크 시그널링을 가지면, UE는 네트워크에게 사용자 평면을 확립하기 위한 요청을 지시하기 위하여 그리고 TAU 절차의 완료 이후에 NAS 시그널링 연결을 유지하기 위하여 TRACKING AREA UPDATE REQUEST 내 "active" 플래그를 셋팅할 수 있다.
만약, TAU 요청이 네트워크에 의해 승인(accept)되면, MME는 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지를 UE에게 전송한다(S1702a).
MME는 TRACKING AREA UPDATE ACCEPT 내 UE를 위한 새로운 TAI 리스트를 포함시킬 수 있다.
또한, MME가 UE에게 새로운 GUTI를 할당(assign)하면, GUTI는 TRACKING AREA UPDATE ACCEPT 메시지 내 포함된다.
또한, "active" 플래그 없는 TAU 절차 동안에, MME가 어떠한 이유로든 지역적으로(locally) EPS 베어러 컨텍스트(들)을 비활성화(deactivated)하였다면, MME는 TRACKING AREA UPDATE ACCEPT 메시지 내 EPS 베어러 컨텍스트 상태 IE(EPS bearer context status IE)를 포함시킴으로써 비활성화(deactivated)된 EPS 베어러 컨텍스트(들)을 UE에게 알린다.
TRACKING AREA UPDATE REQUEST 메시지 내 "active" 플래그가 포함되면, MME는 모든 액티브(active) EPS 베어러 컨텍스트(들)에 대한 무선 베어러 및 S1 베어러를 재확립(re-establish)한다.
TRACKING AREA UPDATE REQUEST 메시지 내 "active" 플래그가 포함되지 않으면, MME는 하향링크 계류 중인(pending) 데이터 또는 하향링크 계류 중인(pending) 시그널링으로 인하여 모든 액티브(active) EPS 베어러 컨텍스트(들)에 대한 무선 베어러 및 S1 베어러를 재확립(re-establish)할 수도 있다.
TRACKING AREA UPDATE ACCEPT 메시지가 GUTI를 포함하였으면, UE는 수신한 GUTI를 확인응답(acknowledge)하기 위하여 트래킹 영역 업데이트 완료(TRACKING AREA UPDATE COMPLETE)를 MME에게 응답한다(S1703a).
만약, TAU가 네트워크에 의해 승인(accept)될 수 없다면, MME는 적절한 EMM 원인 값을 포함하는 트래킹 영역 업데이트 거절(TRACKING AREA UPDATE REJECT) 메시지를 UE에게 전송한다(S1702b).
S1 해제 절차(S1 release procedure)
S1 해제 절차는 UE에 대한 논리적인 S1-AP 시그널링 연결(S1-MME를 통한) 및 모든 S1 베어러(들)(S1-U 내)을 해제하기 위하여 사용된다. 이 절차는 S1-U 베어러 대신에 CP CIoT EPS Optimization 내 S11-U 베어러(MME 내 버퍼링의 경우 제외)를 해제한다. 이 절차는 UE 및 MME 내에서 모두 UE를 ECM-CONNNECTED로부터 ECM-IDLE으로 변경시키고, 모든 UE 관련 컨텍스트 정보는 eNB 내에서 삭제된다. S1-AP 시그널링 연결이 손실(lost)(예를 들어, 시그널링 전달의 손실 또는 eNB 또는 MME의 실패 등으로 인하여)될 때, S1 해제 절차가 eNB에 의해 및/또는 MME에 의해 수행된다. S1 해제 절차는 eNB에 의해 또는 MME에 의해 지역적으로(locally) 수행되고, 각 노드는 eNB와 MME 간의 직접적인 시그널링 없이 동작을 지역적으로(locally) 수행한다.
S1 해제 절차는 다음 중 하나로 개시된다:
- eNB에 의해 개시되는 원인: 예를 들어, 운영 및 관리(O&M: Operations and Maintenance) 조정, 명확하지 않은 실패(Unspecified Failure), 사용자 비활동(User Inactivity), 반복된 RRC 시그널링 무결성 체크 실패(Repeated RRC signalling Integrity Check Failure), UE에 의해 발생된 시그널링 연결 해제로 인한 해제(Release due to UE generated signalling connection release), CS 폴백 트리거(CS Fallback triggered), RAT 간 리다이렉션(Inter-RAT Redirection), 등; 또는
- MME에 의해 개시되는 원인: 인증 실패(authentication failure), 디태치(detach), 허용되지 않은 CSG 셀(not allowed CSG cell)(예를 들어, 현재 사용되는 CSG 셀의 CSG ID가 만료되거나 또는 CSG 가입 데이터에서 삭제), 등.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 해제 절차를 예시하는 도면이다.
1a. 특정한 경우, eNB는 MME에게 S1 컨텍스트 해제를 요청하기 전 또는 요청과 동시에 UE의 시그널링 연결을 해제할 수 있다. 예를 들어, eNB는 리다이렉션(redirection)에 의한 CS 폴백을 위한 RRC 연결 해제(RRC Connection Release)를 개시할 수 있다.
1b. eNB가 UE의 시그널링 연결 및 UE에 대한 모든 무선 베어러를 해제할 필요가 있다고 감지하면, eNB는 S1 UE 컨텍스트 해제 요청(S1 UE Context Release Request) 메시지(원인(cause) 포함)를 MME에게 전송한다. 원인(cause)은 해제의 이유를 지시한다(예를 들어, O&M intervention, unspecified failure, user inactivity, repeated integrity checking failure, 또는 release due to UE generated signalling connection release).
앞서 1 단계는 eNB에 의해 개시된 S1 해제 절차에서만 수행되고, MME에 의해 개시된 S1 해제 절차를 2 단계부터 수행된다.
MME 내 버퍼링 중에 데이터를 수반하는 CP EPS Optimization의 경우, 2 단게 및 3 단계는 스킵(skip)된다.
2. MME는 UE에 대한 모든 S1-U 베어러(들), 또는 S-GW 내 버퍼링 중이면 CP CIoT EPS Optimization 내 S11-U의 해제를 요청하기 위하여 S-GW에게 액세스 베어러 해제 요청(Release Access Bearers Request) 메시지(무선 링크의 비정상 해제 지시(Abnormal Release of Radio Link Indication))를 전송한다. 이 메시지는 eNB로부터 S1 Release Request 메시지에 의해, 또는 또 다른 MME 이벤트에 의해 트리거된다.
3. S-GW가 Release Access Bearers Request 메시지를 수신하면, S-GW는 UE에 대한 모든 eNB 관련 정보(주소 및 TEID(들)), 또는 CP CIoT EPS Optimization 내 MME TEID(들) 관련 정보를 해제하고, 액세스 베어러 해제 응답(Release Access Bearers Release) 메시지를 MME에에 응답한다. UE의 S-GW 컨텍스트의 다른 요소들은 영향을 받지 않는다. S-GW는 S-GW가 UE의 베어러(들)에 할당하였던 S1-U 설정을 유지한다.
4. MME는 S1 UE 컨텍스트 해제 명령(the S1 UE Context Release Command) 메시지(원인(Cause) 포함)을 eNB에게 전송함으로써 S1을 해제한다.
5. RRC 연결이 이미 해제되지 않았으면, 확인응답 모드(AM: Acknowledged Mode)로 eNB는 RRC 연결 해제(RRC Connection Release) 메시지를 UE에게 전송한다. 이 메시지가 UE에 의해 확인응답(acknowledge)되면, eNB는 UE의 컨텍스트를 삭제한다.
6. eNB는 S1 UE 컨텍스트 해제 완료(S1 UE Context Release Complete) 메시지(ECGI, TAI 포함)를 MME에게 전송함으로써 S1 해제를 확인(confirm)한다. 이와 함께, 해당 UE에 대한 MME와 eNB 간 시그널링 연결이 해제된다. 이 단계는 앞서 4단계 이후에 즉시 수행된다.
MME는 UE의 MME 컨텍스트로부터 어떠한 eNB 관련 정보(즉, S1-MME를 위해 사용되는 eNB 주소, MME UE S1 AP ID, eNB UE S1AP ID)를 삭제하지만, S-GW의 S1-U 설정 정보를 포함하는 UE의 MME 컨텍스트의 잔여 정보(주소 및 TEID(들))는 유지한다.
TAU 절차 중 발신(MO) 데이터 제어 방법
단말이 TAU 절차를 개시할 때, 네트워크로 전송할 상향링크 데이터가 계류 중(pending)인 경우, 단말은 TRACKING AREA UPDATE REQUEST 메시지 내 active flag를 셋팅할 수 있다.
이 경우, MME는 TAU 절차 완료 후(즉, 단말에게 TRACKING AREA UPDATE ACCEPT 메시지를 전송 후 사용자 평면 셋업 절차가 수행된다. 이는, TAU 절차의 수행 중에 단말의 상향링크 데이터 전송을 위한 경로(즉, 상향링크 데이터 전송을 위한 네트워크 내 개체들) 및 해당 개체 내 단말의 컨텍스트가 정해지기 때문에 단말은 TAU 절차 중에 네트워크에게 상향링크 데이터를 전송할 수 없으며, TAU 절차 완료 후 사용자 평면 셋업 절차가 수행된다.
이는 CIoT EPS Control Plane Optimization을 사용하는 단말의 경우에도 마찬가지이다.
현재, 단말이 TAU 절차를 개시할 때, 단말이 사용자 평면을 경유하여 전송될 계류 중(pending)인 상향링크 데이터를 가지는 경우, TRACKING AREA UPDATE REQUEST 메시지 내 active flag를 셋팅하는 동작만이 정의되어 있다. 따라서, CIoT EPS Control Plane Optimization을 사용하는 단말의 경우, 단말이 TAU 절차를 개시할 때, 단말이 제어 평면을 경유하여 전송될 계류 중(pending)인 상향링크 데이터를 가지는 경우, 단말과 네트워크(예를 들어, MME)의 동작이 정의될 필요가 있다.
1) 문제점 1 (active flag를 재사용하는 경우, 상향링크 관점)
앞서 살펴본 바와 같이, 현재 단말이 IDLE 모드에서 TAU 절차를 수행하는 경우, 단말의 NAS 계층은 TRACKING AREA UPDATE REQUEST 메시지를 전송하는 시점에 UE 내 버퍼링(즉, 계류 중(pending))되어 있는 데이터가 있는 경우, TRACKING AREA UPDATE REQUEST 메시지 내 active flag를 셋팅할 수 있다.
이에 MME는 TAU 절차 수행 후 active flag가 셋팅되어 있으면, 단말에 TRACKING AREA UPDATE ACCEPT 메시지를 송신한 후 S1 해제 절차를 수행하는 대신 초기 컨텍스트 셋업(Initial Context setup)을 수행하여 DRB를 셋업할 수 있다. 즉, active flag가 TAU Request 메시지 내 셋팅되어 있으면, 사용자 평면 셋업 절차가 TRACKING AREA UPDATE ACCEPT 메시지와 함께 활성화된다. 다시 말해, TRACKING AREA UPDATE REQUEST 메시지 내 active flag가 포함되면, MME는 모든 액티브(active) EPS 베어러 컨텍스트(들)에 대한 무선 베어러(즉, DRB) 및 S1 베어러를 재확립(re-establish)한다.
이처럼 DRB 및 S1 베어러가 확립됨으로 인하여 단말은 전송하길 원하는 상향링크 데이터를 네트워크에게 전송할 수 있다.
이때, 단말과의 데이터 송수신이 감지되지 않으면, eNB가 S1 해제를 MME에게 요청하여 해당 연결을 종료할 수 있다.
반면, 현재 단말이 CIoT EPS Control Plane Optimization을 사용하는 경우, 데이터 송수신을 DRB 베어러 및 S1 베어러를 이용하지 않을 수 있으며, 이에 대하여 아래 도면을 참조하여 설명한다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 제어 평면 최적화 및 사용자 평면 최적화를 예시하는 도면이다.
도 19를 참조하면, 현재 단말이 User Plane CIoT EPS Optimization을 사용하는 경우, DRB<->S1-U<->SGi 경로를 이용하여 단말과 네트워크(예를 들어, P-GW/S-GW) 간에 상향/하향링크 데이터 송수신이 수행될 수 있다.
반면, 현재 단말이 CIoT EPS Control Plane Optimization을 사용하는 경우, 기존 AS 보안을 사용하는 DRB<->S1-U 경로 대신에 SRB<->S1-MME<->S11-U 경로를 사용하여 단말과 네트워크(예를 들어, P-GW/S-GW) 간에 상향/하향링크 데이터 송수신이 수행될 수 있다. 또는, SCEF를 경유하여 어플리케이션 서버(AS: Application Server)와 상향/하향링크 데이터 송수신이 수행될 수도 있다.
상술한 바와 같이, 단말이 MO 데이터 송신을 결정하여 ATTCH REQUEST 메시지(또는 TRACKING AREA UPDATE REQUEST 메시지)에 active flag를 셋팅하면, MME는 사용자 평면을 활성화하기 위하여 초기 컨텍스트 셋업(Initial Context setup)을 수행하게 된다.
이때, 단말이 MO 데이터 전송을 위해 Control Plane CIoT EPS Optimization을 선택하는 경우에도 TRACKING AREA UPDATE REQUEST 메시지 내 active flag를 셋팅한다면, AS 보안이 셋업되는 등 불필요한 E-RAB 셋업 동작으로 인하여 자원 낭비 및 단말 단에서 불필요한 시그널링이 발생된다.
보다 구체적으로, 단말이 Control Plane CIoT EPS Optimization만을 사용하는 경우, 단말이 Control Plane으로 상향링크 데이터의 전송을 원하는 경우라도 TRACKING AREA UPDATE REQUEST 메시지 내 active flag를 셋팅한다면, 불필요하게 무선 베어러(즉, DRB) 및 S1 베어러가 재확립(re-establish)됨에 따라 자원 낭비가 발생되고, 또한 단말과의 불필요한 시그널링이 발생됨에 따라 단말의 파워가 소모된다는 문제점이 있다.
또한, 단말이 Control Plane CIoT EPS Optimization과 User Plane CIoT EPS Optimization을 모두 사용하는 경우, 단말이 Control Plane으로 상향링크 데이터의 전송을 원하는 경우라도 TRACKING AREA UPDATE REQUEST 메시지 내 active flag를 셋팅한다면, 위와 마찬가지로 불필요하게 무선 베어러(즉, DRB) 및 S1 베어러가 재확립(re-establish)됨에 따라 자원 낭비가 발생되고, 또한 단말과의 불필요한 시그널링이 발생됨에 따라 단말의 파워가 소모된다는 문제점이 있다. 또한, DRB가 확립될 때는 RAI가 적용될 수 없으므로, S1 release과 지연된다는 문제점이 있다. 또한, NB-IoT 단말이 아닌 경우(즉, non NB-IoT 단말), DRB가 확립됨에 따라 기지국은 측정 보고를 단말에게 트리거할 수 있으며, 이로 인하여 단말의 파워가 소모된다는 문제점이 있다.
반면, 만약 단말이 DRB 셋업이 필요 없다고 판단하여(즉, 단말이 Control Plane으로 상향링크 데이터의 전송을 원하는 경우), ATTCH REQUEST 메시지(또는 TRACKING AREA UPDATE REQUEST 메시지)에 active flag를 포함시키지 않는다면, TAU 절차의 21 단계의 동작(앞서 도 14 참조)(도 15에서 10 단계, 도 16에서 21 단계)에 의해 MME가 S1 release 절차(앞서 도 18 참조)를 수행하게 된다.
앞서 도 14의 21 단계, 도 15의 10 단계, 도 16의 21 단계에 대하여 다시 살펴보면 다음과 같다.
- active flag가 TRACKING AREA UPDATE REQUEST 메시지 내 셋팅되지 않고, TAU가 ECM-CONNECTED 상태에서 개시되지 않았을 때, MME는 S1 release 절차(앞서 도 18 참조)에 따라 UE와의 시그널링 연결을 해제한다.
이에 따라, 단말이 SRB를 통한 MO 데이터를 전송할 여유 없이 시그널링 연결이 해제된다. 이 경우, 단말은 다시 RRC 연결을 확립해야 하는 번거로움 및 비효율성이 발생한다.
2) 문제점 2(active flag를 재사용하는 경우, 하향링크 관점)
또한, 단말이 TAU 절차 수행 시, SRB를 통해(즉, 제어 평면을 경유하여) 전송할 MO 데이터(즉, 상향링크 데이터)가 계류 중(pending)인 경우, TRACKING AREA UPDATE REQUEST 메시지와 함께 active flag를 셋팅하여야 하는지 여부 등에 대한 동작이 현재 정의되어 있지 않다.
결국, 단말이 Control Plane CIoT EPS Optimization을 사용하고 있는 중에, TAU 등을 성공적으로 수행하지 못하여 EMM-REGISTERED.ATTEMPTING-TO-UPDATE 상태이고, MM 백오프 타이머 T3346이 구동되는 중에 MT 페이징을 페이징을 수신하였을 때, 단말은 SRB를 통해 MT 데이터를 수신하고 싶거나 혹은 SRB를 통해서만 MT 데이터를 수신할 수 있는 경우라도 active flag를 셋팅하여 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송할 수 밖에 없다.
이 경우, 불가능한 DRB 셋업을 요청하는 상황에 해당할 수 있으며, 혹은 불필요한 DRB 셋업을 요청하여 단말의 파워소모의 증가와 네트워크 자원의 낭비를 초래하게 되는 문제점이 있다.
이에 따라, 본 발명에서는 단말이 Control Plane CIoT EPS Optimization를 사용하는 중에, TAU 절차 시 사용자 평면 활성화/셋업(즉, DRB 및 S1 베어러 셋업)는 필요 없으나 제어 평면을 경유하여 전송할 데이터가 계류 중(pending)인 경우, TAU 절차 완료 후 바로 S1 release를 야기하지 않고 단말이 MO 데이터를 전송할 수 있는 방법을 제안한다.
본 발명의 설명에 앞서, 본 명세서에서 사용되는 용어에 대한 설명은 다음과 같다.
- 전용 베어러(Dedicated bearer): UE 내 상향링크 패킷 필터(들)과 P-GW 내 하향링크 패킷 필터(들)과 연관된 EPS 베어러이다. 여기서 필터(들)은 특정 패킷만이 매칭된다.
- 기본 베어러(Default bearer): 매 새로운 PDN 연결로 확립되는 EPS 베어러이다. Default bearer의 컨텍스트는 PDN 연결의 수명시간(lifetime) 동안에 유지된다.
- EMM(EPS Mobility Management)-널(EMM-NULL) 상태: UE 내 EPS 서비스가 비활성된다. 어떠한 EPS 이동성 관리 기능도 수행되지 않는다.
- EMM-비등록(EMM-DEREGISTERED) 상태: EMM-DEREGISTERED 상태에서, EMM 컨텍스트가 확립되지 않고, UE 위치는 MME에게 알려지지 않는다. 따라서, MME에 의해 UE가 접근 가능하지 않다(unreachable). EMM 컨텍스트를 확립하기 위해, UE는 어태치(Attach) 또는 결합된 어태치(combined Attach) 절차를 시작하여야 한다.
- EMM-등록(EMM-REGISTERED) 상태: EMM-REGISTERED 상태에서, UE 내 EMM 컨텍스트가 확립되어 있고, 기본(default) EPS 베어러 컨텍스트가 활성화되어 있다. UE가 EMM-IDLE 모드에 있을 때, UE 위치는 TA의 특정 번호를 포함하는 TA들의 리스트의 정확도로 MME에게 알려진다. UE는 사용자 데이터 및 시그널링 정보의 송수신을 개시할 수 있고, 페이징에 응답할 수 있다. 또한, TAU 또는 결합된 TAU(combined TAU) 절차가 수행된다.
- EMM-연결(EMM-CONNECTED) 모드: UE와 네트워크 간에 NAS 시그널링 연결이 확립될 때, UE는 EMM-CONNECTED 모드이다. EMM-CONNECTED의 용어는 ECM-CONNECTED 상태의 용어로 지칭될 수도 있다.
- EMM-아이들(EMM-IDLE) 모드: UE와 네트워크 간에 NAS 시그널링 연결이 존재하지 않거나 또는 RRC 연결 유보(RRC connection suspend)가 하위 계층에 의해 지시되었을 때, UE는 EMM-IDLE 모드이다. EMM-IDLE의 용어는 ECM-IDLE 상태의 용어로 지칭될 수도 있다.
- EMM 컨텍스트(EMM context): 어태치(Attach) 절차가 성공적으로 완료되면, EMM 컨텍스트는 UE 및 MME 내 확립된다.
- 제어 평면(Control plane) CIoT EPS optimization: MME를 경유하여 제어 평면을 통한 사용자 데이터(IP, non-IP 또는 SMS)의 효율적인 전달(transport)을 가능하게 하는 시그널링 최적화. 선택적으로 IP 데이터의 헤더 압축(header compression)을 포함할 수 있다.
- 사용자 평면(User Plane) CIoT EPS optimization: 사용자 평면을 통한 사용자 데이터(IP 또는 non-IP)의 효율적인 전달을 가능하게 하는 시그널링 최적화
- EPS 서비스(들): PS 도메인에 의해 제공되는 서비스(들).
- NAS 시그널링 연결: UE와 MME 간의 피어-대-피어(peer-to-peer) S1 모드 연결. NAS 시그널링 연결은 LTE-Uu 인터페이스를 경유하는 RRC 연결과 S1 인터페이스를 경유하는 S1AP 연결의 연접(concatenation)으로 구성된다.
- control plane CIoT EPS optimization를 수반하는 EPS 서비스(EPS services with control plane CIoT EPS optimization)를 사용하는 UE: 네트워크에 의해 승락된 control plane CIOT EPS optimization을 수반하는 EPS 서비스를 위해 어태치(attach)된 UE
1) 실시예 1: 추가적인 지시 셋팅(Additional indication setting)
본 발명에 따른 실시예 1에서는 단말이 TAU 절차 수행 시 SRB(즉, 제어 평면)를 통해 보낼 MO 데이터가 발생하는 경우, TRACKING AREA UPDATE REQUEST 메시지와 함께 active flag 셋팅 유무에 따라 다음과 같은 두 가지 옵션(Option)이 가능하다.
- 옵션(Option) 1: 옵션 1에 따르면, 추가 지시 플래그(additional indication flag)를 정의하는 것을 제안한다.
단말이 TAU를 수행하는 중, 버퍼링된 MO 데이터가 있음을 판단하는 경우, 그리고 해당 MO 데이터 전송이 AS 보안 셋업, 즉 사용자 평면 셋업(예를 들어, DRB 및 S1 베어러 셋업)을 요구하지 않는 경우, 이를 기존의 active flag와 구분하기 위한 플래그(예를 들어, 새로운 플래그(new flag))가 추가로 정의될 수 있다.
이하, 본 발명의 설명에 있어서, active flag 및/또는 new flag가 TRACKING AREA UPDATE REQUEST 메시지 내 포함된다는 의미는 active flag 및/또는 new flag가 셋팅된 것과 동일한 의미로 해석될 수도 있다.
이하 본 발명의 설명의 편의를 위해 active flag 및/또는 new flag가 셋팅된다는 것은 별도의 언급이 없는 한 active flag 및/또는 new flag의 값이 '1'로 셋팅된다는 것을 의미할 수 있다. 이 경우, active flag 및/또는 new flag가 셋팅되지 않는다는 것은 active flag 및/또는 new flag의 값이 '0'으로 셋팅된다는 것을 의미할 수 있다.
또한, 본 명세서에서, 본 발명에 따라 새롭게 정의되는 new flag는 추가 지시 플래그, CP(Control Plane) active flag, 시그널링(sinalling) active flag, 제1 active flag 등으로 지칭될 수 있다. 또한, 기존에 정의되었던 active flag(즉, TAU 개시할 때 사용자 평면을 경유하여 전송될 계류 중(pending)인 사용자 데이터가 있는 경우 셋팅되는 flag)는 active flag, 또는 제2 active flag로 지칭될 수 있다.
즉, 사용자 평면 셋업(즉, DRB 및 S1 베어러 셋업)은 필요 없지만 제어 평면을 경유하여(즉, SRB)로 MO 데이터 전송이 필요하여 S1 해제의 지연이 필요한 경우, 단말은 active flag 외에 해당 동작을 요구하는 지시(즉, new flag)를 포함하여 TAU request 메시지를 전송할 수 있다. 여기서, S1 해제의 지연은 S1 release 절차(도 18)의 개시가 지연된다는 것을 의미하며, S1 release 해제 절차에 따라 RRC 연결 및 S1AP 연결이 해제되므로, 결국 S1 해제의 지연은 NAS 시그널링 연결의 해제의 지연을 의미할 수 있다.
결국, new flag는 TAU 절차의 완료 후에 NAS 시그널링 연결을 유지하기 위한 요청을 지시할 수 있다.
다시 말해, 단말이 Control Plane CIoT EPS optimization(즉, MME를 경유하여 제어 평면을 통한 사용자 데이터의 전달을 가능하게 하는 시그널링 최적화)을 이용하고, 단말이 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터가 없지만 MME를 통해 제어 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지는 경우, TRACKING AREA UPDATE REQUEST 메시지 내 new flag가 셋팅될 수 있다.
TRACKING AREA UPDATE REQUEST 내 해당 지시(즉, new flag)가 셋팅되거나 또는 포함되는 경우, MME는 단말에게 TRACKING AREA UPDATE ACCEPT 메시지를 전송한 후에도, S1 해제 절차를 수행하지 않으며, 일정 시간 동안 해당 단말의 NAS 시그널링 연결(즉, RRC 연결 및 S1AP 연결)이 유지될 수 있도록 할 수 있다.
다시 말해, MME는 수신한 TRACKING AREA UPDATE REQUEST 메시지에 active flag가 셋팅되지 않고, AS 보안 셋업(즉, 사용자 평면 셋업)이 없는 MO 데이터의 전송이 필요하다는 지시(즉, new flag)를 수신하면, MME는 S1 해제를 지연해서 수행하거나, MME는 S1 해제를 수행하지 않을 수 있다.
즉, TRACKING AREA UPDATE REQUEST 내 해당 지시(즉, new flag)가 포함(셋팅)되면, MME는 TAU 절차가 완료된 후 NAS 시그널링 연결(즉, RRC 연결 및 S1AP 연결)의 해제를 지연하거나, 또는 NAS 시그널링 연결을 (즉시) 해제하지 않을 수 있다.
MME가 S1 release 절차를 수행하지 않은 경우, eNB에서 단말의 비활동(inactivity)에 의해 S1 release 절차를 트리거링(triggering)할 수 있다.
옵션 1의 다른 실시 예로서, new flag를 정의하는 대신에 기존에 다른 용도로 사용 되던 플래그/지시가 TRACKING AREA UPDATE REQUEST 메시지에 포함될 수도 있다.
예를 들어, CIoT EPS Optimization에서 도입된 RAI(Release Assistant Indication)가 이용될 수 있다. RAI는 단말이 송신하는 NAS를 통한 데이터(Data over NAS)에 대하여 신속한 연결 해제 정보를 포함하지만, TRACKING AREA UPDATE REQUEST 메시지에 RAI가 포함됨으로써, 암묵적으로(implicitly) TAU 절차 종료 후 사용자 평면 경로가 아닌 Control Plane CIoT EPS optimization (즉, NAS를 통한 데이터(Data over NAS))로 데이터 송신을 원하는 것을 네트워크에 알릴 수 있다. 이 경우, MME는 단말이 송신한 TRACKING AREA UPDATE REQUEST 메시지에 RAI가 포함 된 경우, 해당 단말에 대해 NAS를 통한 데이터(Data over NAS)를 이용하는 계류 중인(pending) 데이터가 있음을 인지할 수 있다. 그리고, MME는 이에 TAU 절차가 성공적으로 수행 된 이후에도 S1 해제를 수행하지 않을 수 있다.
또 다른 일례로, 단말은 RAI 값을 00 (가용한 정보 없음)로 셋팅할 수 있다.
또는, 앞서 표 3과 같이 RAI 값에 따른 정보와 무관하게, RAI가 TRACKING AREA UPDATE REQUEST 메시지에 포함되어 있으면, MME는 NAS를 통한 데이터(Data over NAS)가 계류 중(pending)이라고 간주할 수 있다.
MME는 이후 단말이 NAS를 통한 데이터(Data over NAS)를 송신하기 위하여 포함시킨 RAI 값을 기반으로, 상향링크 NAS를 통한 데이터(Data over NAS)를 수신한 후 S1 해제 여부를 판단할 수 있다.
- 옵션(Option) 2: 앞서 옵션 1에서 제안된 추가로 정의되는 new flag는 해당 flag가 Control Plane CIoT EPS Optimization을 의미하는 용도로도 정의될 수 있다.
즉, MME는 TRACKING AREA UPDATE REQUEST 내 active flag가 셋팅되어 있고, 추가적으로 Control Plane CIoT EPS Optimization을 사용하는 의미를 포함하는 new flag가 셋팅되어 있는 경우, active flag가 셋팅되어 있더라도 MME는 초기 컨텍스트 셋업(Initial context setup)을 수행하지 않고 대신 S1 해제를 지연하거나 또는 MME가 S1 해제를 개시하지 않을 수 있다.
다만, active flag가 셋팅되어 있지만 new flag가 셋팅되지 않은 경우, 또는 active flag가 셋팅되어 있지만 Control Plane CIoT EPS Optimization 사용을 의미하지 않는 경우라면, MME는 초기 컨텍스트 셋업(Initial context setup)을 수행함으로써 DRB가 확립(즉, 사용자 평면 활성화)되도록 할 수 있다.
또한, MME는 수신한 active flag 및 새로운 플래그/지시의 조합이 MO 데이터는 있지만 DRB 셋업을 요구하는 초기 컨텍스트 셋업(Initial context setup)의 수행을 요구하지 않더라도, S-GW에 버퍼링된 데이터의 양 및 MT 방향의 정책에 의하여 DRB 셋업이 요구되는 경우에는 초기 컨텍스트 셋업(Initial context setup)을 수행할 수 있다.
도 20은 본 발명의 일 실시예에 따른 트래킹 영역 업데이트 절차를 예시한다.
도 20에서 트래킹 영역 업데이트 절차의 4 단계 내지 20 단계 및 21 단계들은 앞서 도 14에서의 단계들을 예시하고 있으나, 앞서 도 15에 따른 트래킹 영역 업데이트 절차 및 도 16에 따른 트래킹 영역 업데이트 절차에서도 본 발명이 동일하게 적용될 수 있다.
즉, 도 15에 따른 트래킹 영역 업데이트 절차에 본 발명이 적용되는 경우, 도 20에서 트래킹 영역 업데이트 절차의 4 단계 내지 20 단계는 도 15의 4 단계 내지 10 단계(TAU Accept)로 대체될 수 있으며, 도 20에서 트래킹 영역 업데이트 절차의 21 단계는 도 15의 10 단계(TAU Complete)로 대체될 수 있다.
또한, 도 16에 따른 트래킹 영역 업데이트 절차에 본 발명이 적용되는 경우, 도 20에서 트래킹 영역 업데이트 절차의 4 단계 내지 20 단계는 도 15의 4 단계 내지 20 단계로 대체될 수 있으며, 도 20에서 트래킹 영역 업데이트 절차의 21 단계는 도 16의 21 단계로 대체될 수 있다.
1 단계: TAU 절차가 트리거되면, 단말은 버퍼링(또는 계류 중(pending))되어 있는 MO 데이터를 가지는지 여부를 판단한다. 이때, 단말은 사용자 평면을 경유하여 전송될 MO 데이터가 계류 중(pending)인지 및/또는 제어 평면을 경유하여 전송될 MO 데이터가 계류 중(pending)인지 판단할 수 있다.
이때, 해당 단말이 Control Plane CIoT EPS Optimization을 적용 가능한 경우(예를 들어, Control Plane CIoT EPS Optimization으로 고정되거나, 또는 User Plane/Control Plane CIoT EPS Optimization을 모두 적용 가능한 경우), DRB 셋업(즉, 사용자 평면 셋업)이 필요 없다는 new flag를 셋팅하여 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 송신한다.
여기서, new flag는 앞서 설명한 두 가지 옵션들에 의해 셋팅될 수 있다.
2 단계: 단말은 new flag를 포함하는 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송한다.
4 단계 내지 20 단계: 기존 트래킹 영역 절차를 수행한다. 상술한 바와 같이 도 14의 4 단계 내지 20 단계, 또는 도 15의 4 단계 내지 10 단계(TAU Accept), 또는 도 16의 도 14의 4 단계 내지 20 단계가 수행될 수 있다. 이에 대하여 구체적인 설명은 생략한다.
이때, 마지막 단계(즉, 도 14의 20 단계, 또는 도 15의 10 단계, 또는 도 16의 20 단계)에서 네트워크에 의해 단말로부터 전송된 TRACKING AREA UPDATE REQUEST 메시지가 승인되면, MME는 단말에게 TRACKING AREA UPDATE ACCPPT 메시지를 전송한다.
21 단계: MME는 new flag와 active flag의 조합에 의해, Initial context setup 수행 여부(즉, 사용자 평면 셋업 여부) 및 S1 release 수행 여부(즉, NAS 시그널링 연결 해제 여부)를 판단한다.
만약, active flag가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되고, control plane CIoT EPS optimization가 MME에 의해 사용되지 않으면, MME는 모든 액티브한 EPS 베어러 컨텍스에 대한 무선 베어러(들) 및 S1 베어러(들)을 재확립할 수 있다.
또는, active flag가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되고, control plane CIoT EPS optimization가 MME에 의해 사용되면, MME는 제어 평면만의 지시(즉, CP only 지시) 없이 확립된 PDN 연결과 연관된 모든 액티브한 EPS 베어러 컨텍스에 대한 무선 베어러(들) 및 S1 베어러(들)을 재확립할 수 있다.
만약 Initial context setup이 필요 없으나 단말의 CIoT EPS Control Plane Optimization에 의한 MO 송신이 (MME단 수신)이 요구된다고 판단하는 경우, S1 release를 지연하여 수행 하거나, MME단이 S1 release를 수행하지 않고 eNB단에서 수행하는 것을 기다릴 수 있다.
다시 말해, new flag가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되고, control plane CIoT EPS optimization가 MME에 의해 사용되면, MME는 TAU 절차의 완료 후에 NAS 시그널링 연결을 (즉시) 해제하지 않을 수 있다.
예를 들어, TRACKING AREA UPDATE ACCEPT 메시지 내 GUTI가 포함되었으면, UE는 TRACKING AREA UPDATE COMPLETE 메시지를 MME에게 전송함으로써 수신한 메시지를 확인응답(acknowledge)할 수 있다.
만약, active flag (또는 active flag 및 new flag 모두)가 TRACKING AREA UPDATE REQUEST 메시지 내 셋팅되지 않고, TAU 절차가 ECM-CONNECTED 상태에서 개시되지 않으면, MME는 앞서 도 18의 절차에 따라 UE의 시그널링 연결을 해제할 수 있다. Control Plane CIoT EPS optimization를 사용하는 UE의 경우, new flag(또는 CP active flag)가 셋팅되면, MME는 TAU 절차가 완료된 후 UE에 대한 NAS 시그널링 연결을 즉시 해제하지 않을 수 있다.
또 다른 일례로, TRACKING AREA UPDATE ACCEPT 메시지 내 GUTI가 포함되었으면, UE는 TRACKING AREA UPDATE COMPLETE 메시지를 MME에게 전송함으로써 수신한 메시지를 확인응답(acknowledge)할 수 있다.
만약, active flag (또는 active flag 및 new flag 모두)가 TRACKING AREA UPDATE REQUEST 메시지 내 셋팅되지 않고, TAU 절차가 ECM-CONNECTED 상태에서 개시되지 않으면, MME는 앞서 도 18의 절차에 따라 UE의 시그널링 연결을 해제할 수 있다. Control Plane CIoT EPS optimization를 사용하는 UE의 경우, new flag(또는 CP active flag)가 TRACKING AREA UPDATE REQUEST 메시지 내 셋팅되지 않으면, MME는 TAU 절차가 완료된 후 UE에 대한 NAS 시그널링 연결을 (즉시) 해제할 수 있다.
이하, 도면을 참조하여 트래킹 영역 업데이트 절차에서 UE 및 MME 동작에 대하여 보다 구체적으로 살펴본다.
도 21은 본 발명의 일 실시예에 따른 트래킹 영역 업데이트 절차를 예시한다.
도 21을 참조하면, UE는 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송한다(S2101).
즉, 앞서 설명한 TAU 절차의 트리거링 조건이 만족되면, UE는 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송함으로써, TAU 절차를 개시한다.
이때, UE가 Control Plane CIoT EPS optimization를 사용하는지 여부, 그리고 UE가 제어 평면을 경유하여 전송될 사용자 데이터를 가지는지 여부에 따라, TRACKING AREA UPDATE REQUEST 메시지 내 제1 액티브 플래그(active flag)(즉, new flag, CP active flag, signaling active flag)가 셋팅되는지 결정될 수 있다.
예를 들어, UE가 Control Plane CIoT EPS optimization(즉, MME를 경유하여 제어 평면을 통한 사용자 데이터의 전달을 가능하게 하는 시그널링 최적화)를 이용하고, UE가 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터가 없지만 MME를 통해 제어 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지는 경우, TRACKING AREA UPDATE REQUEST 메시지 내 제1 액티브 플래그(active flag)(즉, new flag, CP active flag, signaling active flag)가 셋팅될 수 있다.
또한, UE가 Control Plane CIoT EPS optimization(즉, MME를 경유하여 제어 평면을 통한 사용자 데이터의 전달을 가능하게 하는 시그널링 최적화)를 이용하고, UE가 TAU 절차와 관련 없는 상향링크 시그널링(예를 들어, UE가 TAU 절차 후에 디폴트 베어러 할당을 포함하는 추가적인 PDN 연결을 요청하기 위한 PDN 연결 요청(PDN Connectivity Request) 또는 UE가 TAU 절차 후에 특정 QoS 요구로 병합된 단일의 트래픽 플로우를 위한 베어러 자원의 수정을 요청하기 위한 베어러 자원 수정 요청(Request Bearer Resource Modification) 등)을 가지는 경우, TRACKING AREA UPDATE REQUEST 메시지 내 제1 액티브 플래그(active flag)(즉, new flag, CP active flag, signaling active flag)가 셋팅될 수 있다.
이때, 제1 액티브 플래그(active flag)는 TAU 절차의 완료 후에 UE와 MME 간 NAS 시그널링 연결을 유지하기 위한 요청을 지시할 수 있다. 다시 말해, 제1 액티브 플래그(active flag)는 UE가 Control Plane CIoT EPS Optimization 내 데이터 전달(data transport)을 사용하는 계류 중(pending)인 데이터를 전달하거나 또는 NAS 시그널링을 전달하기 위하여, Control Plane CIoT EPS Optimization를 사용하는 UE에 의한 TAU 절차가 완료된 후에 NAS 시그널링 연결을 유지하기 위한 요청이다.
MME는 TRACKING AREA UPDATE ACCEPT 메시지를 UE에게 전송한다(S2102).
즉, TRACKING AREA UPDATE REQUEST가 네트워크에 의해 승인(accept)되었으면, MME는 TRACKING AREA UPDATE ACCEPT 메시지를 UE에게 전송한다.
이때, TRACKING AREA UPDATE REQUEST에 제1 액티브 플래그(active flag)가 셋팅되었는지 여부에 따라 MME의 TAU 절차 완료 후의 MME 동작(예를 들어, TRACKING AREA UPDATE ACCEPT 메시지 전송 후의 동작)이 결정될 수 있다.
예를 들어, 제1 액티브 플래그(active flag)가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되면, MME는 TAU 절차의 완료 후에 NAS 시그널링 연결을 (즉시) 해제하지 않을 수 있다. 다시 말해, Control Plane CIoT EPS Optimization을 사용하는 UE의 경우, TRACKING AREA UPDATE REQUEST 메시지 내 제1 액티브 플래그(active flag)가 셋팅되면, MME는 TAU 절차가 완료된 후 (즉시) NAS 시그널링 연결을 해제하지 않을 수 있다.
또한, 제1 액티브 플래그(active flag)가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되고, MME에 의해 control plane CIoT EPS optimization가 사용되면, MME는 TAU 절차의 완료 후에 NAS 시그널링 연결을 (즉시) 해제하지 않을 수 있다.
또한, 제1 액티브 플래그(active flag)가 TRACKING AREA UPDATE REQUEST 메시지 내 포함(셋팅)되지 않았으면, MME는 앞서 도 18의 절차에 따라 UE의 NAS 시그널링 연결을 해제할 수 있다.
한편, UE는 TRACKING AREA UPDATE ACCEPT 메시지 수신하면, TRACKING AREA UPDATE REQUEST 메시지 제1 액티브 플래그(active flag)를 셋팅하였는지 여부에 따라 미리 정해진 타이머(예를 들어, T3440 타이머)의 구동 여부를 결정한다.
즉, UE가 TRACKING AREA UPDATE REQUEST 메시지 내 제1 액티브 플래그(active flag)를 셋팅하지 않았다면, UE는 미리 정의된 타이머(예를 들어, T3440 타이머)를 시작한다.
그리고, 해당 타이머(예를 들어, T3440 타이머)가 만료되면, UE는 지역적으로(locally) 확립된 NAS 시그널링 연결을 해제한다.
상술한 바와 같이, MME는 제1 active flag(즉, new flag, CP active flag, signaling active flag)와 제2 active flag(즉, 기존에 정의되었던 active flag)의 조합에 의해, 사용자 평면 셋업(즉, 무선 베어러 및 S1 베어러 셋업) 및/또는 NAS 시그널링 연결 해제의 여부를 판단할 수 있다.
다시 도 21을 참조하면, UE는 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송한다(S2101).
즉, 앞서 설명한 TAU 절차의 트리거링 조건이 만족되면, UE는 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송함으로써, TAU 절차를 개시한다.
이때, UE가 Control Plane CIoT EPS optimization를 사용하는지 여부, 그리고 UE가 사용자 평면/제어 평면 중 어떠한 평면을 경유하여 전송될 사용자 데이터를 가지는지 여부에 따라, TRACKING AREA UPDATE REQUEST 메시지 내 active flag가 셋팅되는지 제1 active flag(즉, new flag, CP active flag, signaling active flag)가 셋팅되는지 결정될 수 있다.
보다 구체적으로 살펴보면, UE가 TAU 절차를 개시할 때 UE가 (PDN 연결(들)을 확립하였고) 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지는 경우, 또는 UE가 control plane CIoT EPS optimization을 지원하지 않을 때 TAU 절차와 관련 없는 상향링크 시그널링을 가지는 경우, UE는 TRACKING AREA UPDATE REQUEST 메시지 내 제2 active flag(즉, 기존에 정의되었던 active flag)를 셋팅할 수 있다.
이 제2 active flag(즉, 기존에 정의되었던 active flag)는 네트워크에게 사용자 평면의 확립의 요청과 TAU 절차의 완료 후에 NAS 시그널링의 유지를 위한 요청을 지시할 수 있다.
반면, UE가 Control Plane CIoT EPS optimization를 이용하고, UE가 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터가 없지만 MME를 통해 제어 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지거나 또는 TAU 절차와 관련 없는 상향링크 시그널링을 가지는 경우, TRACKING AREA UPDATE REQUEST 메시지 내 제1 active flag가 셋팅될 수 있다.
제1 active flag(즉, new flag, CP active flag, signaling active flag)는 TAU 절차 완료 후에 NAS 시그널링 연결의 유지를 위한 요청을 지시할 수 있다. 다시 말해, 제1 active flag는 UE가 Control Plane CIoT EPS Optimization 내 데이터 전달(data transport)을 사용하는 계류 중(pending)인 데이터를 전달하거나 또는 NAS 시그널링을 전달하기 위하여, Control Plane CIoT EPS Optimization를 사용하는 UE에 의한 TAU 절차가 완료된 후에 NAS 시그널링 연결을 유지하기 위한 요청이다.
MME는 TRACKING AREA UPDATE ACCEPT 메시지를 UE에게 전송한다(S2102).
즉, TRACKING AREA UPDATE REQUEST가 네트워크에 의해 승인(accept)되었으면, MME는 TRACKING AREA UPDATE ACCEPT 메시지를 UE에게 전송한다.
이때, TRACKING AREA UPDATE REQUEST에 제2 active flag가 셋팅되었는지 여부 또는 제1 active flag가 셋팅되었는지 여부에 따라 MME의 TAU 절차 완료 후의 MME 동작(예를 들어, TRACKING AREA UPDATE ACCEPT 메시지 전송 후의 동작)이 결정될 수 있다.
만약, 제2 active flag가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되고, control plane CIoT EPS optimization가 MME에 의해 사용되지 않으면, MME는 모든 액티브한 EPS 베어러 컨텍스에 대한 무선 베어러(들) 및 S1 베어러(들)을 재확립할 수 있다.
또는, 제2 active flag가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되고, control plane CIoT EPS optimization가 MME에 의해 사용되면, MME는 제어 평면만의 지시(즉, CP only 지시) 없이 확립된 PDN 연결과 연관된 모든 액티브한 EPS 베어러 컨텍스에 대한 무선 베어러(들) 및 S1 베어러(들)을 재확립할 수 있다.
또는, 제1 active flag가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되면, MME는 TAU 절차의 완료 후에 NAS 시그널링 연결을 (즉시) 해제하지 않을 수 있다. 다시 말해, Control Plane CIoT EPS Optimization을 사용하는 UE의 경우, TRACKING AREA UPDATE REQUEST 메시지 내 제1 active flag가 셋팅되면, MME는 TAU 절차가 완료된 후 (즉시) NAS 시그널링 연결을 해제하지 않을 수 있다.
또한, 1 active flag가 TRACKING AREA UPDATE REQUEST 메시지 내 포함되고, control plane CIoT EPS optimization가 MME에 의해 사용되면, MME는 TAU 절차의 완료 후에 NAS 시그널링 연결을 (즉시) 해제하지 않을 수 있다.
또는, 제2 active flag (또는 제2 active flag 및 제1 active flag 모두)가 TRACKING AREA UPDATE REQUEST 메시지 내 셋팅되지 않고, TAU 절차가 ECM-CONNECTED 상태에서 개시되지 않으면, MME는 앞서 도 18의 절차에 따라 UE의 시그널링 연결을 해제할 수 있다.
한편, UE는 TRACKING AREA UPDATE ACCEPT 메시지 수신하면, TRACKING AREA UPDATE REQUEST 메시지 제2 active flag 및/또는 제1 active flag를 셋팅하였는지 여부에 따라 미리 정해진 타이머(예를 들어, T3440 타이머)의 구동 여부를 결정한다.
즉, UE는 TRACKING AREA UPDATE REQUEST 메시지 내 제2 active flag를 셋팅하지 않았다면, UE는 미리 정의된 타이머(예를 들어, T3440 타이머)를 시작한다. 또한, UE가 TRACKING AREA UPDATE REQUEST 메시지 내 제1 active flag를 셋팅하지 않았다면, UE는 미리 정의된 타이머(예를 들어, T3440 타이머)를 시작한다.
그리고, 해당 타이머(예를 들어, T3440 타이머)가 만료되면, UE는 지역적으로(locally) 확립된 NAS 시그널링 연결을 해제한다.
2) 실시예 2: active flag 셋팅 없이 TAU request 메시지 전송 시 MME 동작
상술한 바와 같이, 현재, active flag가 TRACKING AREA UPDATE REQUEST 메시지 내 셋팅되지 않고, TAU가 ECM-CONNECTED 상태에서 개시되지 않았을 때, MME는 S1 release 절차(앞서 도 18 참조)에 따라 UE와의 시그널링 연결을 해제한다.
반면, 본 실시예에 따르면, 단말이 TAU 절차를 개시할 때, 제어 평면을 경유하여 네트워크로 전송할 상향링크 데이터가 계류 중(pending)인 경우, TRACKING AREA UPDATE REQUEST 메시지 내 active flag를 셋팅하지 않을 수 있다.
즉, 본 실시예에 따르면, 단말은 다음과 같이 동작할 수 있다.
- 단말이 TAU 절차 수행 시, SRB를 통해(즉, 제어 평면을 통해) 전송할 MO 데이터가 계류 중(pending)인 경우, active flag를 셋팅하지 않고, TRACKING AREA UPDATE REQUEST 메시지만을 MME에게 전송한다.
- 단말이 TAU 절차 수행 시 DRB를 통해(즉, 사용자 평면을 통해) 전송할 MO 데이터가 계류 중(pending)인 경우, TRACKING AREA UPDATE REQUEST 메시지와 함께 active flag를 셋팅하여 MME에게 전송한다.
- 단말이 TAU 절차 수행 시 전송할 MO 데이터가 발생하지 않는 경우, active flag를 셋팅하지 않고, TRACKING AREA UPDATE REQUEST 메시지만을 MME에게 전송한다.
본 실시예에 따르면, MME가 active flag를 셋팅 없이 TRACKING AREA UPDATE REQUEST 메시지만을 단말로부터 수신하더라도, 해당 단말이 Control Plane CIoT EPS Optimization을 사용한다는 것을 인지(즉, 해당 연결이 Control Plane CIoT EPS Optimization만을 사용하거나, 또는 Control Plane CIoT EPS Optimization 및 User Plane CIoT EPS Optimization을 둘 다 사용할 수 있는 경우, 또는 SMS 전송을 위한 연결인 경우)한 경우, MME는 S1 release 절차(앞서 도 18 참조)를 지연하거나, 또는 MME는 S1 release 절차(앞서 도 18 참조)를 개시하지 않을 수 있다.
즉, MME는 단말이 제어 평면을 경유하여 네트워크로 상향링크 데이터를 전송할 수 있도록 일정 시간 동안 시간적 여유를 줄 수 있다.
본 실시예에 따르면, 새로운 플래그를 정의할 필요가 없다는 장점이 있다. 다만, 단말에 제어 평면을 경유하여 전송할 상향링크 데이터가 계류 중(pending)인지 여부와 무관하게 수행되므로, 결국 단말이 전송할 상향링크 데이터가 없더라도 시그널링 연결의 해제가 지연되는 단점이 있다. 또한, 단말 측면에서도 시그널링 연결이 일정 시간 유지되기 때문에 단말의 파워 소모가 증가되는 단점이 있다.
3) 실시예 3
단말이 User Plane CIoT EPS optimization을 적용하는 경우, MME는 이전에 단말의 ECM-CONNECTED에서 ECM-IDLE 모드 전환이 RRC 유보 절차(RRC suspend procedure)에 의해 진행되었으며(즉, 단말의 상태가 유보(suspend)인 것을 인지한 경우) TAU를 송신하기 위해 단말과 eNB단에서 재개 절차(resume procedure)가 성공적으로 수행되어 DRB가 셋업되었음을 인지한 경우(즉, MME가 eNB로부터 S1-AP UE 컨텍스트 재개 요청(S1-AP UE context resume request)를 수신 한 경우(3GPP TS 23.401 5.3.5A 절 참조)), 단말이 ATTACH REQUEST/TRACKING AREA UPDATE REQUEST 메시지 내 active flag를 포함하지 않더라도, TAU 절차의 21 단계의 동작(앞서 도 14 참조)(도 15에서 10 단계, 도 16에서 21 단계)이 수행되지 않을 수 있다. 그리고, eNB에서 비활동성 타이머(inactivity timer)에 의해 연결 유보 절차(Connection suspend procedure)가 시작될 수 있다.
연결이 유보(suspension)되어 있으며(즉, 이전 ECM-CONNECTED에서 ECM-IDLE 모드 전환이 연결 유보 절차(Connection suspend procedure)로 진행되어 단말이 AS 컨텍스트를 가지고 있는 경우), TAU 수행 시 단말이 송신할 MO 데이터가 있으며, DRB 셋업이 필요하다고 판단하는 경우, 여전히 단말은 active flag를 TRACKING AREA UPDATE REQUEST 메시지에 포함(셋팅)한다.
다만, MME는 active flag가 셋팅되어 있더라도, 재개 절차(resume procedure)가 성공적으로 수행되었다면 추가적인 사용자 평면 셋업(user plane setup)(즉, 초기 컨텍스트 셋업 절차(initial context setup procedure))를 수행하지 않을 수 있다.
이때, MME는 재개 절차(resume procedure)가 성공적으로 수행되지 않았다고 판단한 경우, 그리고 단말의 TRACKING AREA UPDATE REQUEST 메시지 내 active flag가 셋팅되어 있는 경우, MME는 업데이트 데이터가 전송될 수 있도록 사용자 평면 셋업(즉, 초기 컨텍스트 셋업 절차(initial context setup procedure))을 수행할 수 있다.
4) 실시예 4: MT 페이징 시 새로운 플래그(new flag)의 셋팅
앞서 설명한 문제점 2에 대하여, 단말은 다음과 같은 조건에 해당될 수 있다.
i) 단말이 TAU 절차 등을 성공적으로 수행하지 못하고 EMM-REGISTERED.ATTEMPTING-TO-UPDATE 상태이다.
ii) MM 백오프 타이머인 T3346이 돌아가고 있다.
iii) i) 및 ii)를 만족하는 상황에서 MT 페이징을 수신한다.
이 경우 단말은 TAU 절차를 개시함으로써 페이징에 응답할 수 있다.
이때, 만일 단말이 Control Plane CIoT EPS Optimization만을 사용하도록 설정된 경우('제어 평면만(Control Plane)' 지시), 혹은 단말이 SRB를 통해 데이터를 받을 수 있는 능력이 있고 SRB를 통해서 데이터를 수신하길 원하는 경우, 단말은 종래의 active flag 대신 앞서 실시예 1)에서 정의한 new flag를 세팅해서 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송할 수 있다.
네트워크는 앞서 페이징을 전송하였던 단말이 TRACKING AREA UPDATE REQUEST 메시지로 응답메시지로 응답한 경우, flag 셋팅에 따라 다음과 같이 동작할 수 있다.
만일 TRACKING AREA UPDATE REQUEST 메시지 내 new flag가 세팅되어 있을 경우, 네트워크는 TAU 종료 후에도 NAS 시그널링 연결을 바로 해제(즉, S1 release 절차 수행)하지 않거나, 혹은 NAS 시그널링 연결을 유지할 수 있다.
만약, 단말이 SRB로 데이터를 전송하는 능력만을 가지고 있거나 혹은 CP only로 설정되어 있다면 네트워크는 SRB로 MT 데이터를 전송하여야 한다. 그렇지 않을 경우, 네트워크는 사업자의 정책, 당시 자원 상황, MT 데이터의 특성 등의 사항들을 고려하여 DRB 혹은 SRB로 MT 데이터를 전송할지 판단할 수 있다.
DRB로 데이터를 전송할 경우의 동작은 종래 TRACKING AREA UPDATE REQUEST 메시지 내 active flag가 셋팅되었을 때의 동작과 같다.
반면, SRB로 데이터를 전송할 경우의 동작은 MT 페이징에 대하여 DSR을 수신하였을 때의 동작(ESM 데이터 전달(ESM data transport) 메시지에 사용자 데이터를 피기백(piggyback)하여 전송)을 따를 수 있다.
일례로, TAU 절차 트리거링 조건 및 동작은 다음과 같이 정의될 수 있다.
EMM-REGISTERED 상태인 단말은 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송함으로써 TAU 절차를 개시한다,
r) 타이머 T3346이 구동 중이고 단말이 EMM-REGISTERED.ATTEMPTING-TO-UPDATE 상태이면, S-TMSI를 사용하는 페이징 지시를 수신할 때
즉, r 조건이 만족되면, EMM-REGISTERED 상태인 단말은 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송함으로써 TAU 절차를 개시할 수 있다.
이때, r의 경우, 단말이 Control Plane CIoT EPS optimization만을 사용하거나 또는 단말이 "제어 평면만(Control Plane only)" 지시로 확립된 PDN 연결만을 가지지 않는다면, EPS 업데이트 타입 IE(EPS update type IE) 내 active flag가 1로 셋팅될 수 있다. 단말이 Control Plane CIoT EPS optimization만을 사용하거나 또는 단말이 "제어 평면만(Control Plane only)" 지시로 확립된 PDN 연결만을 가진다면, 추가적인 업데이트 타입 IE(additional update type IE) 내 "제어 평면(CP) active" flag가 1로 셋팅될 수 있다.
또는, 다음과 같이 TAU 절차 트리거링 조건 및 동작이 정의될 수도 있다.
EMM-REGISTERED 상태인 단말은 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송함으로써 TAU 절차를 개시한다,
r) 타이머 T3346이 구동 중이고 단말이 EMM-REGISTERED.ATTEMPTING-TO-UPDATE 상태이면, S-TMSI를 사용하는 페이징 지시를 수신할 때
즉, r 조건이 만족되면, EMM-REGISTERED 상태인 단말은 TRACKING AREA UPDATE REQUEST 메시지를 MME에게 전송함으로써 TAU 절차를 개시할 수 있다.
이때, r의 경우, 단말이 Control Plane CIoT EPS optimization를 사용하는 EPS 서비스(들)을 사용하는 중이 아니라면, EPS 업데이트 타입 IE(EPS update type IE) 내 active flag가 1로 셋팅된다. 단말이 Control Plane CIoT EPS optimization를 사용하는 EPS 서비스(들) 사용하는 중이라면, 추가적인 업데이트 타입 IE(additional update type IE) 내 "CP active" flag가 1로 셋팅될 수 있다.
한편, 앞서 설명한 본 발명의 실시예와 달리, 제1 active flag(즉, new flag, CP active flag, signaling active flag)는 TAU 절차의 완료 후에 NAS 시그널링 연결의 유지가 요구되는지 여부를 지시할 수도 있다.
예를 들어, 다시 도 21을 참조하면, TAU 절차의 완료 후에 UE와 MME 간 NAS 시그널링 연결의 유지가 요구되는 경우, UE는 S2101 단계에서 제1 active flag를 '1'로 셋팅할 수 있다.
반면, TAU 절차의 완료 후에 UE와 MME 간 NAS 시그널링 연결의 유지가 요구되지 않는 경우, UE는 S2101 단계에서 제1 active flag를 '0'으로 셋팅할 수 있다.
앞서 실시예 1 및 실시예 4에 따르면, 단말이 Control Plane CIoT EPS optimization를 사용하는 EPS 서비스(들)을 사용하는 중에 단말이 TAU 절차를 개시할 때 제어 평면을 통해 전송될 사용자 데이터가 계류 중(pending)인 경우, 추가적인 지시(즉, new flag 또는 CP flag 또는 signaling flag)의 셋팅이 TRACKING AREA UPDATE REQUEST 메시지 내 추가되어야 한다. 이는 다음과 같은 방법이 이용될 수 있다.
옵션 1) 추가적인 업데이트 타입 IE(Additional Update Type IE) 사용
Additional Update Type IE의 목적은 결합된 어태치(Attach) 또는 TAU 절차를 위한 요청의 타입에 대한 추가적인 정보를 제공하기 위함이다.
Additional Update Type IE는 도 22 및 아래 표 4와 같이 코딩된다.
EPS 업데이트 타입 IE는 타입 1 IE이다.
도 22는 본 발명의 일 실시예에 따른 추가적인 업데이트 타입 정보 요소를 예시하는 도면이다.
도 22를 참조하면, Additional Update Type IE는 1 옥텟(octet)의 길이를 가지며, 최상위 비트(MSB)(또는 최좌측 비트(left-most bit))부터 4 비트(즉, 5-8번 비트)은 추가적인 업데이트 타입 정보 요소 식별자(IEI)를 나타내고, 그 다음의 2 비트(즉, 4번, 3번 비트)는 선호되는 CIoT 네트워크 동작(PNB-CIoT: Preferred CIoT network behaviour)을 지시하고, 그 다음의 1 비트(즉, 2번 비트)는 NEW Flag(즉, 제1 active flag)를 나타내고, 그 다음의 1 비트(즉, 1번 비트)는 추가적인 업데이트 타입 값(AUTV: Additional update type value)을 나타낸다.
Figure PCTKR2017003157-appb-T000004
옵션 2) EPS 업데이트 타입 IE(EPS Update Type IE) 사용
EPS 업데이트 타입 IE의 목적은 업데이트 절차가 관련된 영역(area)를 특정하기 위함이다.
EPS 업데이트 타입 IE는 도 23 및 아래 표 5와 같이 코딩된다.
EPS 업데이트 타입 IE는 타입 1 IE이다.
도 23은 본 발명의 일 실시예에 따른 EPS 업데이트 타입 정보 요소를 예시하는 도면이다.
도 23을 참조하면, EPS 업데이트 타입 IE는 1 옥텟(octet)의 길이를 가지며, 최상위 비트(MSB)(또는 최좌측 비트(left-most bit))부터 4 비트(즉, 5-8번 비트)은 EPS 업데이트 타입 정보 요소 식별자(IEI)를 나타내고, 그 다음의 1 비트(즉, 4번 비트)는 "Active" flag를 나타내고, 그 다음의 1 비트(즉, 3번 비트)는 NEW Flag를 나타내고, 그 다음의 그 다음의 2 비트(즉, 2번 및 1번 비트)는 EPS 업데이트 타입 값을 나타낸다.
Figure PCTKR2017003157-appb-T000005
옵션 3) 새로운 IE 정의 및 사용
UE에 의한 네트워크로의 tracking area update request 전송은 아래 표 6과 같다.
표 6은 TRACKING AREA UPDATE REQUEST 메시지 컨텐츠(content)를 예시한다.
Figure PCTKR2017003157-appb-T000006
Figure PCTKR2017003157-appb-I000001
Figure PCTKR2017003157-appb-I000002
Figure PCTKR2017003157-appb-I000003
연결 해제를 위한 새로운 지시(New Indication for Connection release) IE는 도 24 및 아래 표 7과 같이 코딩된다.
도 24는 본 발명의 일 실시예에 따른 연결 해제를 위한 새로운 지시 정보 요소를 예시하는 도면이다.
도 24를 참조하면, 따른 연결 해제를 위한 새로운 지시 IE는 1 옥텟(octet)의 길이를 가지며, 최상위 비트(MSB)(또는 최좌측 비트(left-most bit))부터 4 비트(즉, 5-8번 비트)은 추가적인 업데이트 타입 정보 요소 식별자(IEI)를 나타내고, 그 다음의 3 비트(즉, 4번, 3번, 2번 비트)는 각각 예비(spare) 비트이고, 그 다음의 1 비트(즉, 1번 비트)는 NEW Flag를 나타낸다.
표 7은 연결 해제를 위한 새로운 지시(New Indication for Connection release) IE를 예시한다.
Figure PCTKR2017003157-appb-T000007
본 발명이 적용될 수 있는 장치 일반
도 25는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 25를 참조하면, 무선 통신 시스템은 네트워크 노드(2510)와 다수의 단말(UE)(2520)을 포함한다.
네트워크 노드(2510)는 프로세서(processor, 2511), 메모리(memory, 2512) 및 통신 모듈(communication module, 2513)을 포함한다. 프로세서(2511)는 앞서 도 1 내지 도 24에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(2511)에 의해 구현될 수 있다. 메모리(2512)는 프로세서(2511)와 연결되어, 프로세서(2511)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2513)은 프로세서(2511)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(2510)의 일례로, 기지국, MME, HSS, SGW, PGW, SCEF, SCS/AS 등이 이에 해당될 수 있다. 특히, 네트워크 노드(2510)가 기지국인 경우, 통신 모듈(2513)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(2520)은 프로세서(2521), 메모리(2522) 및 통신 모듈(또는 RF부)(2523)을 포함한다. 프로세서(2521)는 앞서 도 1 내지 도 24에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2521)에 의해 구현될 수 있다. 메모리(2522)는 프로세서(2521)와 연결되어, 프로세서(2521)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2523)는 프로세서(2521)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2512, 2522)는 프로세서(2511, 2521) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2511, 2521)와 연결될 수 있다. 또한, 네트워크 노드(2510)(기지국인 경우) 및/또는 단말(2520)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 26은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 26에서는 앞서 도 25의 단말을 보다 상세히 예시하는 도면이다.
도 26을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(2610), RF 모듈(RF module)(또는 RF 유닛)(2635), 파워 관리 모듈(power management module)(2605), 안테나(antenna)(2640), 배터리(battery)(2655), 디스플레이(display)(2615), 키패드(keypad)(2620), 메모리(memory)(2630), 심카드(SIM(Subscriber Identification Module) card)(2625)(이 구성은 선택적임), 스피커(speaker)(2645) 및 마이크로폰(microphone)(2650)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(2610)는 앞서 도 1 내지 도 24에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(2610)에 의해 구현될 수 있다.
메모리(2630)는 프로세서(2610)와 연결되고, 프로세서(2610)의 동작과 관련된 정보를 저장한다. 메모리(2630)는 프로세서(2610) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2610)와 연결될 수 있다.
사용자는 예를 들어, 키패드(2620)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(2650)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(2610)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(2625) 또는 메모리(2630)로부터 추출할 수 있다. 또한, 프로세서(2610)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(2615) 상에 디스플레이할 수 있다.
RF 모듈(2635)는 프로세서(2610)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(2610)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(2635)에 전달한다. RF 모듈(2635)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(2640)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(2635)은 프로세서(2610)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(2645)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서 사용자 장치(UE: User Equipment)가 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차를 수행하기 위한 방법에 있어서,
    TAU 요청(TAU Request) 메시지를 이동성 관리 개체(MME: Mobility Management Entity)에게 전송하는 단계; 및
    상기 MME로부터 TAU 승인(TAU Accept) 메시지를 수신하는 단계를 포함하고,
    상기 UE가 상기 MME를 경유하여 제어 평면을 통한 사용자 데이터의 전달을 가능하게 하는 시그널링 최적화를 이용하고, 상기 UE가 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터가 없으며 MME를 통해 제어 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지는 경우, 상기 TAU 요청 메시지 내 제1 액티브 플래그(active flag)가 셋팅되는 트래킹 영역 업데이트 절차 수행 방법.
  2. 제1항에 있어서,
    상기 제1 액티브 플래그는 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결을 유지하기 위한 요청을 지시하는 트래킹 영역 업데이트 절차 수행 방법.
  3. 제1항에 있어서,
    상기 제1 액티브 플래그는 상기 TAU 요청 메시지 내 상기 TAU 절차를 위한 요청의 타입에 대한 추가적인 정보를 제공하기 위한 추가적인 업데이트 타입 정보 요소(Additional Update Type Information Element) 내 포함되는 트래킹 영역 업데이트 절차 수행 방법.
  4. 제3항에 있어서,
    상기 제1 액티브 플래그의 값이 '0'이면, 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 유지되지 않는 트래킹 영역 업데이트 절차 수행 방법.
  5. 제3항에 있어서,
    상기 제1 액티브 플래그의 값이 '1'이면, 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 유지되는 트래킹 영역 업데이트 절차 수행 방법.
  6. 제1항에 있어서,
    상기 TAU 승인(TAU Accept) 메시지를 수신하면, 상기 TAU 요청 메시지 내 상기 제1 액티브 플래그가 셋팅되었는지 여부에 따라 미리 정의된 타이머의 구동 여부를 결정하는 단계를 더 포함하는 트래킹 영역 업데이트 절차 수행 방법.
  7. 제6항에 있어서,
    상기 TAU 요청 메시지 내 상기 제1 액티브 플래그가 셋팅하지 않았다면, 상기 타이머가 시작되고, 상기 타이머가 만료되면 상기 UE에 의해 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 해제되는 트래킹 영역 업데이트 절차 수행 방법.
  8. 제1항에 있어서,
    상기 UE가 TAU 절차를 성공적으로 수행하지 못한 상태이고, 이동성 관리(MM: Mobility Management) 백오프(back-off) 타이머가 구동 중인 경우, 상기 UE가 페이징을 수신할 때, 상기 TAU 요청이 전송되는 트래킹 영역 업데이트 절차 수행 방법.
  9. 제1항에 있어서,
    상기 UE가 사용자 평면을 경유하여 전송될 계류 중인(pending) 사용자 데이터를 가지는 경우, 상기 TAU 요청 메시지 내 제2 액티브 플래그(active flag)가 셋팅되는 트래킹 영역 업데이트 절차 수행 방법.
  10. 무선 통신 시스템에서 이동성 관리 개체(MME: Mobility Management Entity)가 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차를 수행하기 위한 방법에 있어서,
    사용자 장치(UE: User Equipment)로부터 TAU 요청(TAU Request) 메시지를 수신하는 단계; 및
    상기 UE에게 TAU 승인(TAU Accept) 메시지를 전송하는 단계를 포함하고,
    상기 TAU 요청(TAU Request) 메시지 내 제1 액티브 플래그(active flag)가 셋팅되면 TAU 절차의 완료 후에 상기 UE와 상기 MME간의 NAS(Non-Access Stratum) 시그널링 연결이 해제되지 않으며,
    상기 제1 액티브 플래그는 상기 TAU 절차의 완료 후에 상기 NAS(Non-Access Stratum) 시그널링 연결을 유지하기 위한 요청을 지시하는 트래킹 영역 업데이트 절차 수행 방법.
  11. 제10항에 있어서,
    상기 TAU 요청(TAU Request) 메시지 내 상기 제1 액티브 플래그가 셋팅되지 않으면, NAS(Non-Access Stratum) 시그널링 연결이 해제되는 트래킹 영역 업데이트 절차 수행 방법.
  12. 제10항에 있어서,
    상기 제1 액티브 플래그는 상기 TAU 요청 메시지 내 상기 TAU 절차를 위한 요청의 타입에 대한 추가적인 정보를 제공하기 위한 추가적인 업데이트 타입 정보 요소(Additional Update Type Information Element) 내 포함되는 트래킹 영역 업데이트 절차 수행 방법.
  13. 제12항에 있어서,
    상기 제1 액티브 플래그의 값이 '0'이면, 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 유지되지 않는 트래킹 영역 업데이트 절차 수행 방법.
  14. 제12항에 있어서,
    상기 제1 액티브 플래그의 값이 '1'이면, 상기 TAU 절차의 완료 후에 상기 UE와 상기 MME 간 NAS(Non-Access Stratum) 시그널링 연결이 유지되는 트래킹 영역 업데이트 절차 수행 방법.
PCT/KR2017/003157 2016-03-23 2017-03-23 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치 WO2017164679A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17770649.6A EP3435696B1 (en) 2016-03-23 2017-03-23 Method for tracking area update in wireless communication system and apparatus therefor
KR1020187030609A KR102168676B1 (ko) 2016-03-23 2017-03-23 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
US16/087,487 US10721612B2 (en) 2016-03-23 2017-03-23 Method for tracking area update in wireless communication system and apparatus therefor
CN201780025280.3A CN109076330B (zh) 2016-03-23 2017-03-23 无线通信系统中跟踪区域更新的方法及其装置
US16/904,232 US11496880B2 (en) 2016-03-23 2020-06-17 Method for tracking area update in wireless communication system and apparatus therefor

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201662311927P 2016-03-23 2016-03-23
US62/311,927 2016-03-23
US201662313109P 2016-03-24 2016-03-24
US62/313,109 2016-03-24
US201662320665P 2016-04-11 2016-04-11
US62/320,665 2016-04-11
US201662325985P 2016-04-21 2016-04-21
US62/325,985 2016-04-21
US201662331453P 2016-05-04 2016-05-04
US62/331,453 2016-05-04
US201662333820P 2016-05-09 2016-05-09
US62/333,820 2016-05-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/087,487 A-371-Of-International US10721612B2 (en) 2016-03-23 2017-03-23 Method for tracking area update in wireless communication system and apparatus therefor
US16/904,232 Continuation US11496880B2 (en) 2016-03-23 2020-06-17 Method for tracking area update in wireless communication system and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2017164679A1 true WO2017164679A1 (ko) 2017-09-28

Family

ID=59900548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003157 WO2017164679A1 (ko) 2016-03-23 2017-03-23 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (2) US10721612B2 (ko)
EP (1) EP3435696B1 (ko)
KR (1) KR102168676B1 (ko)
CN (1) CN109076330B (ko)
WO (1) WO2017164679A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451546A (zh) * 2018-12-12 2019-03-08 南京熊猫电子股份有限公司 一种基于s-tmsi寻呼的获取终端imsi的方法
WO2019093850A1 (en) * 2017-11-13 2019-05-16 Lg Electronics Inc. Method for managing ue context and device supporting the same
WO2019196775A1 (en) * 2018-04-09 2019-10-17 Mediatek Inc. Apparatuses, service networks, and methods for handling plmn-specific parameters for an inter-plmn handover
US11197191B2 (en) 2019-02-01 2021-12-07 Mediatek Inc. Method and apparatus for transmitting user data under congestion control in wireless communications
US11425772B2 (en) 2018-08-02 2022-08-23 Samsung Electronics Co., Ltd. Method and system for indication of a change in multi-radio access technology dual connectivity capability
US11653254B2 (en) 2018-05-21 2023-05-16 Samsung Electronics Co., Ltd. Method and apparatus for classifying and processing SDAP control PDU in next generation mobile communication system
US11985538B2 (en) 2018-05-21 2024-05-14 Samsung Electronics Co., Ltd. Method and apparatus for classifying and processing SDAP control PDU in next generation mobile communication system

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168676B1 (ko) 2016-03-23 2020-10-21 엘지전자 주식회사 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
EP3437361A1 (en) 2016-04-01 2019-02-06 Nec Corporation LOAD CONTROL FROM CONTROL PLANE CIoT EPS OPTIMISATION
WO2017189038A1 (en) * 2016-04-29 2017-11-02 Intel IP Corporation CELLULAR IoT CONTROL AND USER PLANE SWITCHING
WO2017195718A1 (ja) * 2016-05-13 2017-11-16 京セラ株式会社 無線端末
US10631266B2 (en) * 2016-05-16 2020-04-21 Lg Electronics Inc. Mobile-terminated data control method in wireless communication system and device therefor
WO2017200477A1 (en) 2016-05-18 2017-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods of resuming a radio bearer and related wireless terminals and network nodes
EP3735097B1 (en) * 2016-07-05 2021-09-29 Samsung Electronics Co., Ltd. A method for handling control plane data in a wireless network
CN109792709B (zh) * 2016-07-22 2022-05-10 瑞典爱立信有限公司 跟踪区域码分配
US11323979B2 (en) * 2016-08-09 2022-05-03 Nokia Technologies Oy Broadcasting or multicasting to user equipment that use extended idle mode discontinuous reception
EP3531782B1 (en) * 2016-11-02 2022-10-26 Huawei Technologies Co., Ltd. Information sending method, device and system
CN112888022B (zh) * 2016-11-16 2024-02-02 华为技术有限公司 数据迁移方法及装置
US11032695B2 (en) * 2017-03-20 2021-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for transferring management of wireless devices between core network nodes of a wireless communication network
KR102289879B1 (ko) * 2017-03-20 2021-08-13 삼성전자 주식회사 셀룰러망에서 세션의 다양한 ssc 모드 지원을 위한 upf 변경 방안
KR102333124B1 (ko) * 2017-04-25 2021-11-30 삼성전자주식회사 무선 통신 시스템에서 모드 변경을 위한 타이머 값을 결정하기 위한 장치 및 방법
US10314105B2 (en) * 2017-05-18 2019-06-04 At&T Intellectual Property I, L.P. Command for extended idle mode discontinuous reception
CN109246688B (zh) 2017-07-11 2021-02-23 华为技术有限公司 设备接入方法、设备及系统
EP3732842B1 (en) * 2017-12-29 2024-05-15 Telefonaktiebolaget LM Ericsson (publ) Compression context setup for data transmission for iot devices
CN111034347A (zh) * 2018-02-14 2020-04-17 Oppo广东移动通信有限公司 通信方法、网络设备和终端设备
FR3080730B1 (fr) * 2018-04-27 2020-10-09 Airbus Ds Slc Procede de configuration pour un acces a des services de repli de communication et systeme associe
US10506543B1 (en) * 2018-06-25 2019-12-10 Qualcomm Incorporated Low power periodic and triggered location of a mobile device using early data transmission
CN112335301A (zh) * 2018-06-25 2021-02-05 瑞典爱立信有限公司 用于寻呼策略区分的无线电网络节点、用户平面功能(upf)以及在其中执行的方法
US10952178B2 (en) * 2018-06-25 2021-03-16 Qualcomm Incorporated Low power periodic and triggered location of a mobile device using control plane optimization
US11323948B2 (en) * 2018-07-24 2022-05-03 T-Mobile Usa, Inc. Device management for NB-IoT devices
US11388657B2 (en) 2018-08-13 2022-07-12 Qualcomm Incorporated Methods and systems for supporting unified location of a mobile device in a 5G network
US10764938B2 (en) * 2018-08-22 2020-09-01 Verizon Patent And Licensing Inc. Systems and methods for managing small data over a non-access stratum
US11218933B2 (en) 2018-09-14 2022-01-04 Qualcomm Incorporated Systems and methods for deferred 5G location of a mobile device using a combined AMF and LMF based location solution
US11206710B2 (en) 2018-09-25 2021-12-21 Ofinno, Llc Network initiated release assistance indication
US10595191B1 (en) * 2018-12-06 2020-03-17 At&T Intellectual Property I, L.P. Mobility management enhancer
CN111436103B (zh) * 2019-02-02 2021-12-24 维沃移动通信有限公司 节能模式的切换方法、节能模式的配置方法及通信设备
CN110536348B (zh) * 2019-05-16 2021-05-11 Oppo广东移动通信有限公司 一种终端的功耗控制方法、装置及存储介质
CN112188445A (zh) * 2019-07-01 2021-01-05 联发科技(新加坡)私人有限公司 Lcs和lpp程序的nas信令减少的方法
CN112584483B (zh) * 2019-09-30 2022-01-14 华为技术有限公司 定时提前的指示方法、通信装置及存储介质
KR20210049585A (ko) * 2019-10-25 2021-05-06 삼성전자주식회사 통신 서비스를 제공하는 전자 장치 및 그의 동작 방법
KR102265514B1 (ko) * 2019-11-22 2021-06-15 주식회사 엘지유플러스 무선 통신 시스템의 데이터 송수신 방법 및 장치
CN111526321B (zh) * 2020-04-16 2021-04-23 Oppo广东移动通信有限公司 语音通话方法、语音通话装置、存储介质与电子设备
WO2022006592A1 (en) * 2020-07-03 2022-01-06 Qualcomm Incorporated Association of multiple subscriber identity modules
WO2022050969A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Enhanced power saving with service gap control on cellular internet of things (ciot) devices
CN112333816B (zh) * 2020-09-29 2022-07-19 武汉虹信科技发展有限责任公司 终端持续驻留基站的方法、装置、电子设备及存储介质
KR102416644B1 (ko) * 2020-10-26 2022-07-05 주식회사 케이티 음성 서비스를 제공하는 방법, 사용자 단말 및 컴퓨터 프로그램
KR20220149358A (ko) * 2021-04-30 2022-11-08 삼성전자주식회사 Ue 캐퍼빌리티를 송신하는 전자 장치 및 그 동작 방법
KR20240015618A (ko) * 2021-06-05 2024-02-05 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 단말 기기가 위치한 추적 영역을 지시하는 방법 및 네트워크 기기
US20230232358A1 (en) * 2022-01-06 2023-07-20 T-Mobile Innovations Llc Minimizing service interruptions during tracking area update procedures
CN115373721B (zh) * 2022-08-06 2023-03-14 佛山市银河兰晶科技股份有限公司 一种智能led的ota升级方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100165940A1 (en) * 2008-12-29 2010-07-01 Interdigital Patent Holdings, Inc. Method and apparatus for tracking area update procedure and eps bearer contexts representation
WO2013133663A1 (ko) * 2012-03-08 2013-09-12 삼성전자 주식회사 무선 통신 시스템에서 서비스를 제어하기 위한 방법
KR20140136463A (ko) * 2012-02-23 2014-11-28 삼성전자주식회사 트래킹 지역 갱신 승낙 후 계류 중인 상향링크 시그널링 및 데이터를 위해 존재하는 시그널링 연결을 이용하기 위한 방법
US20150140998A1 (en) * 2012-03-16 2015-05-21 Lg Electronics Inc. Method and apparatus for processing nas signaling request in wireless communication system
WO2016003199A1 (ko) * 2014-07-01 2016-01-07 엘지전자 주식회사 무선 통신 시스템에서 d2d 통신 수행 방법 및 이를 위한 장치
WO2016028314A1 (en) * 2014-08-22 2016-02-25 Nokia Solutions And Networks Oy Low latency service connection setup in new service area

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932026B (zh) * 2009-06-26 2012-06-06 华为终端有限公司 业务处理方法、通信设备及通信系统
WO2011052136A1 (en) * 2009-10-30 2011-05-05 Panasonic Corporation Communication system and apparatus for status dependent mobile services
US20110199969A1 (en) * 2010-02-18 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) GTPv2 NODE
KR20110128047A (ko) * 2010-05-20 2011-11-28 삼성전자주식회사 3차원 적층 구조를 갖는 반도체 장치 및 데이터 디스큐잉 방법
CN102348252B (zh) * 2010-08-04 2015-07-29 电信科学技术研究院 一种跟踪区列表更新方法及设备
EP2509345A1 (en) * 2011-04-05 2012-10-10 Panasonic Corporation Improved small data transmissions for machine-type-communication (MTC) devices
EP2696610A4 (en) * 2011-04-29 2014-04-30 Huawei Tech Co Ltd METHOD AND DEVICE FOR PROCESSING FAILURES OF A MOBILITY MANAGEMENT DEVICE IN A SCENE ACTIVATED IN REST MODE SIGNALING REDUCTION
KR101973462B1 (ko) * 2011-07-08 2019-08-26 엘지전자 주식회사 접속 해제를 수행하는 방법 및 그 단말
US8971268B2 (en) * 2011-08-24 2015-03-03 Lg Electronics Inc. Method and apparatus for transmitting uplink data associated with MTC device trigger function
WO2013048100A1 (en) * 2011-09-30 2013-04-04 Lg Electronics Inc. Method for processing data associated with location area update in a wireless communication system
CN103052045B (zh) * 2011-10-17 2019-03-12 中兴通讯股份有限公司 一种消息类型的指示方法、系统及装置
KR102003234B1 (ko) * 2011-12-07 2019-07-24 삼성전자 주식회사 무선통신 시스템에서 단문 메시지를 효율적으로 전달하는 방법 및 장치
EP3253083B1 (en) * 2012-01-18 2021-03-24 LG Electronics Inc. Control method and device based on multiple priorities in wireless communication system
CN103874170A (zh) * 2012-12-10 2014-06-18 中兴通讯股份有限公司 一种用户设备及利用扩展寻呼周期进行寻呼的方法和系统
US9591518B2 (en) * 2013-01-07 2017-03-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for non-access stratum signaling
JP5606603B1 (ja) * 2013-05-20 2014-10-15 日本電気通信システム株式会社 移動通信システム、sgw、端末、通信方法及び制御方法
EP2961212B1 (en) * 2014-06-23 2020-09-09 Samsung Electronics Co., Ltd Method and apparatus for providing a sponsored data service to a user
EP3162127B1 (en) * 2014-06-25 2018-02-28 Telefonaktiebolaget LM Ericsson (publ) Node and method for buffering downlink data
CN107637142B (zh) * 2015-04-03 2021-11-16 交互数字专利控股公司 用于使用扩展drx的系统增强
CN107667547B (zh) * 2015-05-13 2020-09-15 瑞典爱立信有限公司 无线通信设备、核心网节点及其中的方法
US10257239B2 (en) * 2015-07-24 2019-04-09 Apple Inc. Packet switched voice service registration techniques with reduced overhead
TWI738703B (zh) * 2016-01-05 2021-09-11 美商內數位專利控股公司 在傳訊平面上傳送小資料nas協定之增強
EP3378249B1 (en) * 2016-01-27 2021-08-04 Samsung Electronics Co., Ltd. Method and apparatus for reducing signaling overhead and reducing battery of terminal
KR102168676B1 (ko) 2016-03-23 2020-10-21 엘지전자 주식회사 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100165940A1 (en) * 2008-12-29 2010-07-01 Interdigital Patent Holdings, Inc. Method and apparatus for tracking area update procedure and eps bearer contexts representation
KR20140136463A (ko) * 2012-02-23 2014-11-28 삼성전자주식회사 트래킹 지역 갱신 승낙 후 계류 중인 상향링크 시그널링 및 데이터를 위해 존재하는 시그널링 연결을 이용하기 위한 방법
WO2013133663A1 (ko) * 2012-03-08 2013-09-12 삼성전자 주식회사 무선 통신 시스템에서 서비스를 제어하기 위한 방법
US20150140998A1 (en) * 2012-03-16 2015-05-21 Lg Electronics Inc. Method and apparatus for processing nas signaling request in wireless communication system
WO2016003199A1 (ko) * 2014-07-01 2016-01-07 엘지전자 주식회사 무선 통신 시스템에서 d2d 통신 수행 방법 및 이를 위한 장치
WO2016028314A1 (en) * 2014-08-22 2016-02-25 Nokia Solutions And Networks Oy Low latency service connection setup in new service area

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435696A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093850A1 (en) * 2017-11-13 2019-05-16 Lg Electronics Inc. Method for managing ue context and device supporting the same
US11432209B2 (en) 2017-11-13 2022-08-30 Lg Electronics Inc. Method for managing UE context and device supporting the same
WO2019196775A1 (en) * 2018-04-09 2019-10-17 Mediatek Inc. Apparatuses, service networks, and methods for handling plmn-specific parameters for an inter-plmn handover
TWI718509B (zh) * 2018-04-09 2021-02-11 聯發科技股份有限公司 處理公共陸地行動網路特定參數之使用者設備及方法
US11653254B2 (en) 2018-05-21 2023-05-16 Samsung Electronics Co., Ltd. Method and apparatus for classifying and processing SDAP control PDU in next generation mobile communication system
US11985538B2 (en) 2018-05-21 2024-05-14 Samsung Electronics Co., Ltd. Method and apparatus for classifying and processing SDAP control PDU in next generation mobile communication system
US11425772B2 (en) 2018-08-02 2022-08-23 Samsung Electronics Co., Ltd. Method and system for indication of a change in multi-radio access technology dual connectivity capability
CN109451546A (zh) * 2018-12-12 2019-03-08 南京熊猫电子股份有限公司 一种基于s-tmsi寻呼的获取终端imsi的方法
US11197191B2 (en) 2019-02-01 2021-12-07 Mediatek Inc. Method and apparatus for transmitting user data under congestion control in wireless communications
TWI753326B (zh) * 2019-02-01 2022-01-21 聯發科技股份有限公司 無線通訊中在擁塞控制下發送用戶資料的方法和裝置

Also Published As

Publication number Publication date
EP3435696A4 (en) 2019-11-20
CN109076330A (zh) 2018-12-21
US20200322777A1 (en) 2020-10-08
EP3435696A1 (en) 2019-01-30
US20190116483A1 (en) 2019-04-18
EP3435696B1 (en) 2021-06-23
KR102168676B1 (ko) 2020-10-21
US11496880B2 (en) 2022-11-08
US10721612B2 (en) 2020-07-21
CN109076330B (zh) 2021-08-13
KR20180123141A (ko) 2018-11-14

Similar Documents

Publication Publication Date Title
WO2017164679A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
WO2017200269A1 (ko) 무선 통신 시스템에서 착신 데이터 제어 방법 및 이를 위한 장치
WO2018131984A1 (ko) 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치
WO2017078485A1 (ko) 무선 통신 시스템에서 서빙 노드 이전 방법 및 이를 위한 장치
WO2018155908A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018174525A1 (ko) 무선 통신 시스템에서 계층간 상호작용 방법 및 이를 위한 장치
WO2017119802A1 (ko) 무선 통신 시스템에서 nidd(non-ip data delivery) 구성 설정 방법 및 이를 위한 장치
WO2018128505A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018169244A1 (ko) 무선 통신 시스템에서 이동성 이벤트 통지 방법 및 이를 위한 장치
WO2017126922A1 (ko) 무선 통신 시스템에서 연결 재개 방법 및 이를 위한 장치
WO2018128528A1 (ko) 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치
WO2018164552A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2017188758A1 (ko) 무선 통신 시스템에서 nas 시그널링 유보/재개를 수행하기 위한 방법 및 이를 위한 장치
WO2018231029A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2018070689A1 (ko) 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치
WO2018097601A1 (ko) 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치
WO2018008980A1 (ko) 무선 통신 시스템에서 사용자가 선호하는 자원 운용 선택 방법 및 이를 위한 장치
WO2018231028A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2016153316A1 (ko) 무선 통신 시스템에서 단말 접근성 모니터링 방법 및 이를 위한 장치
WO2018147698A1 (ko) 무선 통신 시스템에서 nas 메시지 송수신 방법 및 이를 위한 장치
WO2018110939A1 (ko) 무선 통신 시스템에서의 트래킹 영역 할당 방법 및 이를 위한 장치
WO2018128529A1 (ko) 무선 통신 시스템에서 네트워크간 상호연동 방법 및 이를 위한 장치
WO2018093168A1 (ko) 무선 통신 시스템에서의 네트워크 노드 선택 방법 및 이를 위한 장치
WO2017048042A1 (ko) 무선 통신 시스템에서의 페이징 절차를 수행하는 방법 및 이를 위한 장치
WO2017003235A1 (ko) 무선 통신 시스템에서 그룹 메시지를 전송하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030609

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017770649

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770649

Country of ref document: EP

Effective date: 20181023

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770649

Country of ref document: EP

Kind code of ref document: A1