WO2018128505A1 - 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018128505A1
WO2018128505A1 PCT/KR2018/000368 KR2018000368W WO2018128505A1 WO 2018128505 A1 WO2018128505 A1 WO 2018128505A1 KR 2018000368 W KR2018000368 W KR 2018000368W WO 2018128505 A1 WO2018128505 A1 WO 2018128505A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
message
remote
data
network
Prior art date
Application number
PCT/KR2018/000368
Other languages
English (en)
French (fr)
Inventor
김태훈
김래영
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US16/473,204 priority Critical patent/US10924912B2/en
Publication of WO2018128505A1 publication Critical patent/WO2018128505A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting and receiving data with a network through a relay user equipment and a device supporting the same by a remote user equipment.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • the present invention proposes a method in which a Remote UE transmits and receives small data transmitted intermittently or once with a network through a Relay UE.
  • the present invention proposes a method for transmitting and receiving small data to / from a plurality of connected Remote UEs between a Relay UE and a network.
  • An aspect of the present invention provides a method of transmitting and receiving data to and from a network through a relay UE by a remote user equipment (Remote UE) in a wireless communication system, the small data to be transmitted to the network (small data) Recognizing that the CSI has occurred, performing a discovery procedure through the relay UE and a PC5 interface, and when the discovery procedure confirms that the relay UE has the ability to transmit the small data to the network, the relay UE And transmitting a PC5 message including the small data to the relay UE, and if the relay UE supports the small data transmission procedure by a PC5 discovery message received from the relay UE within the discovery procedure, the relay UE. Determines that has the ability to send the small data to the network Can.
  • Remote UE remote user equipment
  • the PC5 discovery message is a PC5 discovery message for a UE-to-Network Relay Discovery Announcement or a UE-to-Network Relay discovery response for a UE-to-Network Relay Discovery Announcement. It may be a PC5 discovery message for.
  • an indication that small data transmission is required together with small data is provided from an upper layer of the remote UE, it may be recognized that small data to be transmitted to the network has been generated.
  • information indicating whether user plane setup is required from an upper layer of the Remote UE may be provided.
  • the method further comprises the step of receiving a PC5 response message in response to the PC5 message, the information indicating whether the transmission of the small data success or failure, one of the unique sequence number for the small data transmission, security parameters It may contain the above.
  • sending a resume request message requesting the resumption of the reserved direct link, and receiving a resume message indicating the success or failure of resuming the reserved direct link in response to the resume request message. can do.
  • the resume request message may include a resume identifier included in the suspend accept message.
  • a remote UE which is a low power, low rate, and low complexity / low cost device, may effectively transmit small data.
  • FIG. 1 is a view briefly illustrating an EPS (Evolved Packet System) to which the present invention can be applied.
  • EPS Evolved Packet System
  • E-UTRAN evolved universal terrestrial radio access network
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 7 illustrates a direct link setup procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 8 is a diagram illustrating a direct link keepalive procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 9 is a diagram illustrating a direct link release procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 10 illustrates a direct security mode control procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 11 is a diagram illustrating a ProSe UE and a UE-to-Network relay procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 14 illustrates a connection resume procedure initiated by a UE in a wireless communication system to which the present invention can be applied.
  • FIG. 16 illustrates a service request procedure triggered by an advanced remote UE (eRemote-UE) in a wireless communication system to which the present invention can be applied.
  • eRemote-UE advanced remote UE
  • FIG 17 illustrates a basic scenario according to one embodiment of the invention.
  • FIG. 18 is a diagram illustrating a small data transmission method through a relay UE of a remote UE according to an embodiment of the present invention.
  • FIG. 19 illustrates a sidelink reservation and resume procedure according to an embodiment of the present invention.
  • 20 is a diagram illustrating a data transmission method through a relay according to an embodiment of the present invention.
  • 21 is a diagram illustrating a data transmission method through a relay according to an embodiment of the present invention.
  • 22 is a diagram illustrating a data transmission method through a relay according to an embodiment of the present invention.
  • FIG. 23 is a diagram illustrating a data transmission method through a relay according to an embodiment of the present invention.
  • 24 is a block diagram of a communication device according to one embodiment of the present invention.
  • 25 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
  • a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
  • IMS IP Multimedia Subsystem
  • IMSI International Mobile Subscriber Identity
  • Machine Type Communication Communication performed by a machine without human intervention. It may also be referred to as M2M (Machine to Machine) communication.
  • MTC terminal MTC UE or MTC device or MTC device: a terminal (eg, vending machine, etc.) having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC UE or MTC device or MTC device a terminal having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC server A server on a network that manages an MTC terminal. It may exist inside or outside the mobile communication network. It may have an interface that an MTC user can access. In addition, the MTC server may provide MTC related services to other servers (Services Capability Server (SCS)), or the MTC server may be an MTC application server.
  • SCS Services Capability Server
  • MTC mobile broadband
  • services e.g., remote meter reading, volume movement tracking, weather sensors, etc.
  • (MTC) application server a server on a network where (MTC) applications run
  • MTC feature A function of a network to support an MTC application.
  • MTC monitoring is a feature for preparing for loss of equipment in an MTC application such as a remote meter reading
  • low mobility is a feature for an MTC application for an MTC terminal such as a vending machine.
  • MTC subscriber An entity having a connection relationship with a network operator and providing a service to one or more MTC terminals.
  • External Identifier An identifier used by an external entity (e.g., an SCS or application server) of a 3GPP network to point to (or identify) an MTC terminal (or a subscriber to which the MTC terminal belongs). Globally unique.
  • the external identifier is composed of a domain identifier and a local identifier as follows.
  • Local Identifier An identifier used to infer or obtain an International Mobile Subscriber Identity (IMSI). Local identifiers must be unique within the application domain and are managed by the mobile telecommunications network operator.
  • IMSI International Mobile Subscriber Identity
  • RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
  • RNC Radio Network Controller
  • RANAP RAN Application Part: between the RAN and the node in charge of controlling the core network (ie, Mobility Management Entity (MME) / Serving General Packet Radio Service (GPRS) Supporting Node) / MSC (Mobile Switching Center) Interface.
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • MSC Mobile Switching Center
  • PLMN Public Land Mobile Network
  • SEF Service Capability Exposure Function
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (SGW) (or S-GW), PDN GW (Packet Data Network Gateway) (or PGW or P-GW), A mobility management entity (MME), a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG) are shown.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • MME mobility management entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA Code Division Multiple Access
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an operator ie, an operator
  • 3GPP access based on 3GPP access as well as non-3GPP access.
  • IMS IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • various reference points may exist according to the network structure.
  • E-UTRAN evolved universal terrestrial radio access network
  • the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
  • Communication networks are widely deployed to provide various communication services, such as voice (eg, Voice over Internet Protocol (VoIP)) over IMS and packet data.
  • voice eg, Voice over Internet Protocol (VoIP)
  • VoIP Voice over Internet Protocol
  • an E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
  • the E-UTRAN consists of eNBs providing a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
  • X2 user plane interface (X2-U) is defined between eNBs.
  • the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
  • An X2 control plane interface (X2-CP) is defined between two neighboring eNBs.
  • X2-CP performs functions such as context transfer between eNBs, control of user plane tunnel between source eNB and target eNB, delivery of handover related messages, and uplink load management.
  • the S1 user plane interface (S1-U) is defined between the eNB and the serving gateway (S-GW).
  • the S1 control plane interface (S1-MME) is defined between the eNB and the mobility management entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • the S1 interface supports a many-to-many-relation between eNB and MME / S-GW.
  • MME provides NAS signaling security, access stratum (AS) security control, inter-CN inter-CN signaling to support mobility between 3GPP access networks, and performing and controlling paging retransmission.
  • EWS Earthquake and Tsunami Warning System
  • CMAS Commercial Mobile Alert System
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • an eNB may select a gateway (eg, MME), route to the gateway during radio resource control (RRC) activation, scheduling of a broadcast channel (BCH), and the like. Dynamic resource allocation to the UE in transmission, uplink and downlink, and may perform the function of mobility control connection in the LTE_ACTIVE state.
  • the gateway is responsible for paging initiation, LTE_IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and NAS signaling encryption. It can perform the functions of ciphering and integrity protection.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 4 (a) shows the radio protocol structure for the control plane and FIG. 4 (b) shows the radio protocol structure for the user plane.
  • the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
  • AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
  • the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
  • Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
  • IP Internet protocol
  • IPv4 Internet protocol version 4
  • IPv6 Internet protocol version 6
  • a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages with each other through the RRC layer.
  • the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
  • the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
  • Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH for transmitting a paging message
  • DL-SCH for transmitting user traffic or control messages.
  • Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
  • RACH random access channel
  • UL-SCH uplink shared
  • the logical channel is on top of the transport channel and is mapped to the transport channel.
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • the control channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a dedicated control channel (DCCH), multicast And a control channel (MCCH: multicast control channel).
  • Traffic channels include a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • PCCH is a downlink channel that carries paging information and is used when the network does not know the cell to which the UE belongs.
  • CCCH is used by a UE that does not have an RRC connection with the network.
  • One subframe having a length of 1.0 ms is composed of a plurality of symbols.
  • the specific symbol (s) of the subframe eg, the first symbol of the subframe
  • the PDCCH carries information about dynamically allocated resources (eg, a resource block, a modulation and coding scheme (MCS), etc.).
  • MCS modulation and coding scheme
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • the UE randomly selects one random access preamble (RACH preamble) from a set of random access preambles indicated through system information or a handover command, and A physical RACH (PRACH) resource capable of transmitting a random access preamble is selected and transmitted.
  • RACH preamble random access preamble
  • PRACH physical RACH
  • the base station receiving the random access preamble from the terminal decodes the preamble and obtains an RA-RNTI.
  • the RA-RNTI associated with the PRACH in which the random access preamble is transmitted is determined according to the time-frequency resource of the random access preamble transmitted by the corresponding UE.
  • the base station transmits a random access response addressed to the RA-RNTI obtained through the preamble on the first message to the terminal.
  • the random access response includes a random access preamble identifier (RA preamble index / identifier), an uplink grant (UL grant) indicating an uplink radio resource, a temporary cell identifier (TC-RNTI), and a time synchronization value ( TAC: time alignment commands) may be included.
  • the TAC is information indicating a time synchronization value that the base station sends to the terminal to maintain uplink time alignment.
  • the terminal updates the uplink transmission timing by using the time synchronization value. When the terminal updates the time synchronization, a time alignment timer is started or restarted.
  • the UL grant includes an uplink resource allocation and a transmit power command (TPC) used for transmission of a scheduling message (third message), which will be described later. TPC is used to determine the transmit power for the scheduled PUSCH.
  • TPC transmit power command
  • the base station After the UE transmits the random access preamble, the base station attempts to receive its random access response within the random access response window indicated by the system information or the handover command, and PRACH
  • the PDCCH masked by the RA-RNTI corresponding to the PDCCH is detected, and the PDSCH indicated by the detected PDCCH is received.
  • the random access response information may be transmitted in the form of a MAC packet data unit (MAC PDU), and the MAC PDU may be transmitted through a PDSCH.
  • MAC PDU MAC packet data unit
  • the monitoring stops the random access response.
  • the random access response message is not received until the random access response window ends, or if a valid random access response having the same random access preamble identifier as the random access preamble transmitted to the base station is not received, the random access response is received. Is considered to have failed, and then the UE may perform preamble retransmission.
  • the terminal When the terminal receives a valid random access response to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC, and stores the TC-RNTI. In addition, by using the UL grant, data stored in the buffer of the terminal or newly generated data is transmitted to the base station.
  • an RRC connection request generated in the RRC layer and delivered through the CCCH may be included in the third message and transmitted.
  • the RRC layer is generated in the RRC layer and CCCH.
  • the RRC connection reestablishment request delivered through the RRC connection reestablishment request may be included in the third message and transmitted. It may also include a NAS connection request message.
  • the third message should include the identifier of the terminal.
  • the first method if the UE has a valid cell identifier (C-RNTI) allocated in the corresponding cell before the random access procedure, the UE transmits its cell identifier through an uplink transmission signal corresponding to the UL grant. do.
  • the UE may include its own unique identifier (eg, SAE temporary mobile subscriber identity (S-TMSI) or random number). send.
  • S-TMSI temporary mobile subscriber identity
  • the unique identifier is longer than the C-RNTI.
  • the UE If the UE transmits data corresponding to the UL grant, it starts a timer for contention resolution (contention resolution timer).
  • the terminal After transmitting the data including its identifier through the UL grant included in the random access response, the terminal waits for an instruction of the base station to resolve the collision. That is, it attempts to receive a PDCCH to receive a specific message.
  • the third message transmitted in response to the UL grant is its C-RNTI
  • the identifier is a unique identifier (that is, In the case of S-TMSI or a random number, it attempts to receive the PDCCH using the TC-RNTI included in the random access response.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure is normally performed, and terminates the random access procedure.
  • the terminal acquires the C-RNTI through the fourth message, and then the terminal and the network transmit and receive a terminal-specific message using the C-RNTI.
  • the random access procedure is terminated by only transmitting the first message and transmitting the second message.
  • the terminal before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message, and sends a random access response from the base station.
  • the random access procedure is terminated by receiving.
  • Dedicated bearer An EPS bearer associated with uplink packet filter (s) in the UE and downlink packet filter (s) in the P-GW. Here filter (s) only matches a particular packet.
  • EMM-DEREGISTERED state In the EMM-DEREGISTERED state, no EMM context is established and the UE location is unknown to the MME. Thus, the UE is unreachable by the MME. In order to establish the EMM context, the UE must start an attach or combined attach procedure.
  • EMM-REGISTERED state In the EMM-REGISTERED state, an EMM context in the UE is established and a default EPS bearer context is activated. When the UE is in EMM-IDLE mode, the UE location is known to the MME with the accuracy of the list of TAs containing the specific number of the TA. The UE may initiate transmission and reception of user data and signaling information and may respond to paging. In addition, a TAU or combined TAU procedure is performed.
  • EMM-CONNECTED mode When a NAS signaling connection is established between the UE and the network, the UE is in EMM-CONNECTED mode.
  • EMM-CONNECTED may be referred to as the term of the ECM-CONNECTED state.
  • EMM-IDLE mode NAS signaling connection does not exist between the UE and the network (i.e. EMM-IDLE mode without reservation indication) or RRC connection suspend is indicated by the lower layer.
  • EMM-IDLE mode ie, EMM-IDLE mode with a reservation indication.
  • the term EMM-IDLE may also be referred to as the term of the ECM-IDLE state.
  • EMM context If the attach procedure is successfully completed, the EMM context is established in the UE and the MME.
  • Control plane CIoT EPS optimization Signaling optimization to enable efficient transport of user data (IP, non-IP or SMS) via the control plane via MME.
  • IP user data
  • non-IP or SMS control plane via MME.
  • header compression of IP data may be included.
  • User Plane CIoT EPS optimization Signaling optimization that enables efficient delivery of user data (IP or non-IP) through the user plane
  • EPS service (s) service (s) provided by the PS domain.
  • NAS signaling connection Peer-to-peer S1 mode connection between UE and MME.
  • the NAS signaling connection is composed of a concatenation of an RRC connection through the LTE-Uu interface and an S1AP connection through the S1 interface.
  • Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
  • AS Access Stratum
  • AS Access Stratum
  • an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer may be collectively referred to, or any one of these layers may be referred to as an AS layer.
  • the PDCP layer, the RLC layer, the MAC layer, and the PHY layer may be collectively referred to, or any one of these layers may be referred to as an AS layer.
  • S1 mode A mode applied to a system having a functional separation according to the use of the S1 interface between the radio access network and the core network.
  • S1 mode includes WB-S1 mode and NB-S1 mode.
  • NB-S1 mode A serving radio access network of a UE allows access to network services (via E-UTRA) by narrowband (NB) -Internet of Things (NB). When providing, the UE applies this mode.
  • WB-S1 mode If the system is operating in S1 mode but not in NB-S1 mode, this mode is applied.
  • SA1 is working on service requirements for non-Public Safety UEs to receive network connectivity services through relay UEs.
  • a wearable device As a UE that receives a network connection service through a relay UE, a wearable device is mentioned.
  • FS_REAR Student Item Description
  • SID Study Item Description
  • Relay Remote UE connection via Relay UE
  • F2D2D Improvement of LTE Device to Device, and Relay between UE and Network for Internet of Things (WoT) and Wearables
  • asymmetric uplink / downlink connection i.e., an advanced ProSe UE-to-Network Relay
  • Uu through PC5.
  • PC5 asymmetric uplink / downlink connection
  • a symmetric uplink / downlink means that a remote UE uses a direct link with a relay UE for both uplink transmission and downlink transmission.
  • the present invention proposes a small data transmission / reception method of a remote UE through a relay UE.
  • ProSe One-to-one proximity-based services
  • PC5 ie, air interface between UE
  • the UE must be authenticated for one-to-one ProSe direct communication and acquire ProSe direct communication policy parameters based on the service authentication procedure before initiating or participating in any PC5 signaling protocol procedure for one-to-one ProSe direct communication. shall.
  • the UE selects a radio resource for one-to-one ProSe direct communication.
  • the lower layer that the remote UE is not allowed to use radio resources for relay communication Upon receiving the (lower layer) indication, the remote UE stops the ongoing procedure (ie, PC5 signaling protocol procedure and data transmission / reception) in which the relay is involved. And, the remote UE starts a specific timer having a T value. While this timer is running, the remote UE does not initiate any procedure involving the relay.
  • the remote UE may stop a specific timer and resume the procedure in which the relay is involved. Otherwise, after a particular timer expires, the remote UE releases all direct links for communication with the relay (s) locally.
  • a remote UE sends a direct communication request (DIRECT_COMMUNICATION_REQUEST) message to a relay UE to set up a direct link.
  • the DIRECT_COMMUNICATION_REQUEST message contains the parameters required for direct link setup.
  • a direct security mode control procedure is performed to establish a security association with a remote UE. do.
  • the direct link setup procedure is used to establish a secure direct link between two ProSe-enabled UEs.
  • the UE sending the request message is referred to as an "initiating UE” and the other UE is referred to as a "target UE”.
  • FIG. 7 illustrates a direct link setup procedure in a wireless communication system to which the present invention can be applied.
  • the initiating UE must meet the following pre-conditions before initiating this procedure:
  • a request is received from an upper layer for establishing a direct link with a target UE, and there is no link between the initiating UE and the corresponding target UE;
  • a link layer identifier for the initiating UE ie Layer 2 identifier used for unicast communication
  • ie Layer 2 identifier used for unicast communication is available (e.g., preset or self-assigned) being);
  • a link layer identifier for the target UE ie, Layer 2 ID used for unicast communication
  • the initiating UE eg, preset or via ProSe direct discovery. Obtained
  • the initiating UE is authenticated for ProSe direct communication in the serving PLMN, or has a valid certificate for ProSe direct communication when it is not serviced by the E-UTRAN.
  • the initiating UE initiates a direct link setup procedure by generating a direct communication request (DIRECT_COMMUNICATION_REQUEST) message.
  • DIRECT_COMMUNICATION_REQUEST direct communication request
  • the DIRECT_COMMUNICATION_REQUEST message includes the following.
  • the target UE is a ProSe UE-to-network relay UE and the initiating UE has received a PRUK for this relay from the ProSe Key Management Function (PKMF) and a connection attempt to this relay has not been recognized a PRUK ID. If not rejected for this reason, a ProSe relay user key identifier received from the PKMF;
  • PKMF ProSe Key Management Function
  • IP Internet Protocol
  • IE IP Address Config Information Element
  • IPv6 address assignment mechanism If an IP version 6 (IPv6) address assignment mechanism is supported by the initiating UE, i.e. acts as an IPv6 router, then an "IPv6 Router";
  • DHCPv4 server and IPv6 router if both IPv4 and IPv6 address assignment mechanisms are supported by the initiating UE
  • IP Address Config IE If the IP Address Config IE is set to "address allocation not supported" and the link is set up for isolated one-to-one communication, then it must be based locally on the Internet Engineering Task Force (IETF) Request for Comments (RFC) 4862. locally formed Link Local IPv6 Address IE;
  • Nonce_1 IE set via the direct link to a 128 bit nonce value generated by the initiating UE for the purpose of establishing a session key
  • UE Security Capabilities IE set to indicate a list of algorithms that the initiating UE supports for establishing the security of this direct link
  • a K_D ID IE set to a known ID of a previously established K_D if the initiating UE had an existing K_D with the target UE.
  • the DIRECT_COMMUNICATION_REQUEST message also includes the following parameters:
  • Signature IE set with an Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption (ECCSI) signature calculated with User Info IE and Nonce_1 IE.
  • ECCSI Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption
  • the DIRECT_COMMUNICATION_REQUEST message contains a Relay Service Code IE set to the relay service code of the target relay. do.
  • the initiating UE After the DIRECT_COMMUNICATION_REQUEST message is generated, the initiating UE sends this message to the layer 2 identifier (Layer 2 ID) of the initiating UE (for unicast communication) and the layer 2 identifier (Layer 2 ID) of the target UE (unicast communication) for transmission. To the lower layer and start the T4100 timer. The UE does not send a new DIRECT_COMMUNICATION_REQUEST message to the same target UE while the T4100 timer is running.
  • the target UE upon receiving a DIRECT_COMMUNICATION_REQUEST message, selects a pair of Layer 2 IDs (for unicast communication) used in the transport of this message provided by the lower layer. Store and associate a pair of Layer 2 IDs directly with the link context.
  • the target UE checks the User Info IE included in the DIRECT_COMMUNICATION_REQUEST message and determines whether this request can be accepted. In order to confirm whether at least one common IP address configuration option is supported by both the initiating UE and the target UE, the target UE checks the IP Address Config IE. If all of the above checks are successful, in order to establish a security association between the target UE and the initiating UE, the target UE invokes a direct security mode control procedure. After completion of the link authentication procedure and successful establishment of the security association, the target UE sends a direct communication accept (DIRECT_COMMUNICATION_ACCEPT) message to the initiating UE.
  • DIRECT_COMMUNICATION_ACCEPT direct communication accept
  • the target UE includes an IP Address Config IE set to one of the following values:
  • IPv4 address assignment mechanism is supported by the target UE, and the target UE can act as a DHCP server, then " DHCPv4 Server ";
  • IPv6 Router If the IPv6 address assignment mechanism is supported by the target UE and the target UE can operate as an IPv6 router, then " IPv6 Router ";
  • DHCPv4 server and IPv6 router if both IPv4 and IPv6 address assignment mechanisms are supported by the target UE
  • the target UE includes a Link Local IPv6 Address IE set to a locally formed link local IPv6 address.
  • ProSe UE-to-network relay UE supports at least one IP address allocation mechanism.
  • the target UE acts as a ProSe UE-to-network relay UE, and the PDN connection for the relay associated with the ProSe relay UE ID has not yet been established or the ProSe UE-to-network relay UE sends a DIRECT_COMMUNICATION_ACCEPT message to the remote UE.
  • the ProSe UE-to-network relay UE is requested by the UE by sending a PDN CONNECTIVITY REQUEST message including an APN associated with the ProSe Relay UE ID. Initiate a UE requested PDN connectivity procedure.
  • the target UE If the target UE is a ProSe-UE-to-network relay UE, the target UE generates the inactivity timer T4108 with the value provided by the Maximum Inactivity Period IE contained in the DIRECT_COMMUNICATION_REQUEST message, and no more messages are to be sent over the link to be established.
  • T4108 timer starts. If the T4108 timer is started, if any communication activity occurs before the T4108 timer expires, the UE terminates the T4108 timer and resets to the initial value, otherwise, a new in Maximum Inactivity Period IE in a direct communication keepalive (DIRECT_COMMUNICATION_KEEPALIVE) message. The value is provided.
  • DIRECT_COMMUNICATION_KEEPALIVE direct communication keepalive
  • the target UE is a ProSe-UE-to-network relay UE, and the International Mobile Station Equipment Identity (IMEI) or IMEISV of the remote UE (s) that the target UE is serviced by the relay based on a service authorization procedure.
  • IMEI International Mobile Station Equipment Identity
  • the remote UE information request procedure is requested to request the IMEI or IMEISV of the remote UE when a direct link is successfully established. It starts.
  • the initiating UE Upon receiving DIRECT_COMMUNICATION_ACCEPT, the initiating UE stops the T4100 timer. From this point on, the initiating UE uses the established link for all one-to-one communication (including additional PC5 signaling messages) to the target UE.
  • # 1 direct communication to target UE not allowed
  • the target UE may set the PC5 signaling protocol cause value # 1 "Direct communication to target UE not allowed”. Send the containing DIRECT_COMMUNICATION_REJECT message.
  • the target UE sends a DIRECT_COMMUNICATION_REJECT message containing the PC5 signaling protocol cause value # 2 "Authentication failure".
  • the target UE sends a DIRECT_COMMUNICATION_REJECT message containing the PC5 signaling protocol cause value # 2 "Authentication failure".
  • the target UE In the Layer 2 ID of the received DIRECT_COMMUNICATION_REQUEST message, if the target UE already has an established existing link to the UE that knows to use the Layer 2 ID, or the target UE is currently processing the DIRECT_COMMUNICATION_REQUEST message from the same Layer 2 ID, but is newly If the User Info has a different User Info than the User Info IE included in the received message, the target UE transmits a DIRECT_COMMUNICATION_REJECT message including the PC5 signaling protocol cause value # 3 "Conflict of Layer 2 ID for unicast communication is detected".
  • the target UE sends a DIRECT_COMMUNICATION_REJECT message containing the PC5 signaling protocol cause value # 4 "Lack of resources for proposed link".
  • ProSe UE-to-network relay UE the remote UE wants to use ProSe UE-to-network relay UE for mission critical communication (e.g., Mission Critical Push To Talk (MCPTT)). If the network relay UE does not support IPv6 address assignment as a router, the target UE (ie, ProSe UE-to-network relay UE) requests with a DIRECT_COMMUNICATION_REJECT message containing the PC5 signaling protocol cause value # 5 "IP version mismatch". Refuse.
  • MCPTT Mission Critical Push To Talk
  • the target UE sends a DIRECT_COMMUNICATION_REJECT message containing the PC5 signaling protocol cause value # 6 "Link setup failure due to other errors".
  • the initiating UE Upon receiving the DIRECT_COMMUNICATION_REJECT message, the initiating UE stops the T4100 timer and terminates the direct link setup procedure. If the cause value in the DIRECT_COMMUNICATION_REJECT message is # 1 "Direct communication to target UE not allowed" or # 4 "Lack of resources for proposed link", then the UE attempts to set up a direct link with the same target UE for at least period T. I never do that. And, if the initiating UE is a remote UE requesting link setup to a ProSe UE-to-network relay UE, the initiating UE initiates a relay reselection procedure.
  • the initiating UE terminates the procedure.
  • the target UE In the Layer 2 ID of the received DIRECT_COMMUNICATION_REQUEST message, if the target UE already has an established existing link to the UE that knows to use the Layer 2 ID and the new request contains the same User Info as the known user, the UE Proceed with the request. However, the target UE deletes the existing link context after the new link setup procedure succeeds or after the link keep-alive procedure fails.
  • the target UE When the inactivity timer T4108 expires, and if the target UE is a ProSe UE-to-network relay UE, the target UE is released with cause # 3 "Direct connection is not available any more.” Initiate a direct unlink procedure. Otherwise, the target UE can operate as follows:
  • This message is sent by the UE to another peer UE to establish a direct link.
  • Table 2 illustrates the DIRECT_COMMUNICATION_REQUEST message.
  • information elements indicate names of information elements.
  • 'M' in the presence field indicates IE which is always included in the message as mandatory IE, and 'O' indicates IE which is optional and may or may not be included in the message.
  • 'C' indicates a IE included in the message only when a specific condition is satisfied as a conditional IE.
  • This message is sent by the UE to another peer UE to indicate that the direct link setup request has been accepted.
  • Table 3 illustrates the DIRECT_COMMUNICATION_ACCEPT message.
  • the UE when the IP Address Config IE is set to "address allocation not supported UE", the UE includes a Link Local IPv6 Address IE.
  • the direct link keepalive procedure is used to maintain a direct link between two ProSe-enabled UEs (ie, check that the link between two UEs is still maintainable). This procedure may be initiated by either UE or both UEs in the established direct link. If the direct link is used for one-to-one communication between the remote UE and the ProSe UE-to-network relay UE, only the remote UE initiates the link keepalive procedure.
  • a UE sending a direct communication DIRECT_COMMUNICATION_KEEPALIVE message is referred to as a "requesting UE” and the other UE is referred to as a "peer UE”.
  • FIG. 8 is a diagram illustrating a direct link keepalive procedure in a wireless communication system to which the present invention can be applied.
  • the requesting UE manages a keepalive timer T4102 and a keepalive counter for this procedure.
  • keepalive timer T4102 is used to trigger the periodic initiation of the procedure. This timer is started or restarted whenever the UE receives a PC5 signaling message or PC5 user plane data from the peer UE over this link.
  • the keepalive counter is set to an initial value of zero after link establishment.
  • the requesting UE stops the timer T4102 if it is running and generates the procedure by generating a direct communication DIRECT_COMMUNICATION_KEEPALIVE message with a Keepalive Counter IE containing the value of the keepalive counter for this link. It starts.
  • the initiating UE may include a Maximum Inactivity Period IE to indicate the maximum inactivity period of the requesting UE over this direct link. This IE is included when the remote UE sends a DIRECT_COMMUNICATION_KEEPALIVE message to the ProSe UE-to-network relay UE.
  • the requesting UE forwards this message along with the Layer 2 ID of the requesting UE (for unicast communication) and the peer UE's Layer 2 ID (for unicast communication) to the lower layer for transmission.
  • the peer UE Upon receiving the DIRECT_COMMUNICATION_KEEPALIVE message, the peer UE responds with a DIRECT_COMMUNICATION_KEEPALIVE_ACK message with a Keepalive Counter IE set to the same value received in the DIRECT_COMMUNICATION_KEEPALIVE message.
  • the requesting UE Upon receiving the DIRECT_COMMUNICATION_KEEPALIVE_ACK message, the requesting UE stops retransmission timer T4101, starts keepalive timer T4102, and increments the keepalive counter for this link.
  • the requesting UE resends the DIRECT_COMMUNICATION_KEEPALIVE message to the last used keepalive counter value and restarts the timer T4101. If no response is received from the peer UE until the maximum number of allowed retransmissions is reached, the requesting UE terminates the link keepalive procedure and instead initiates the direct link release procedure. If the requesting UE is a remote UE, the relay reselection procedure is initiated.
  • the requesting UE terminates this procedure and instead starts the direct link release procedure.
  • the peer UE When the inactivity timer T4108 expires, if the peer UE is a ProSe UE-to-network relay UE, the peer UE will directly release to cause # 3 "Direct connection is not available any more.” Initiate a link release procedure. Otherwise, the peer UE can operate as follows:
  • the direct link release procedure is used to secure a secure direct link between two ProSe-enabled UEs. This link may be released from either UE.
  • the UE sending the DIRECT_COMMUNICATION_RELEASE message is referred to as a "releasing UE” and the other UE is referred to as a "peer UE”.
  • the ProSe-UE-to-network relay UE When the direct link between the remote UE and the ProSe UE-to-network relay UE is released, the ProSe-UE-to-network relay UE performs a Remote UE report procedure.
  • FIG. 9 is a diagram illustrating a direct link release procedure in a wireless communication system to which the present invention can be applied.
  • the releasing UE initiates the procedure if:
  • the peer UE is non-responsive (eg, unable to complete the direct link keepalive procedure).
  • the releasing UE initiates the direct link release procedure by generating an IRECT_COMMUNICATION_RELEASE message accompanied by a Release Reason IE indicating one of the following cause values:
  • the releasing UE After the DIRECT_COMMUNICATION_RELEA message is generated, the releasing UE forwards this message along with the Layer 2 ID (for unicast communication) of the releasing UE and the Layer 2 ID (for unicast communication) of the peer UE to the lower layer for transmission. . If the cause of release is # 3 "Direct connection is not available any more", the releasing UE releases the direct link locally. Otherwise, the releasing UE starts timer T4103.
  • the peer UE Upon receiving the DIRECT_COMMUNICATION_RELEASE message, the peer UE stops timer T4101, timer T4102 or timer T4103 for this link (if any timer is running). The peer UE then terminates any ongoing PC5 signaling protocol procedure on this link. The peer UE responds with a direct communication release accept (DIRECT_COMMUNICATION_RELEASE_ACCEPT) message. After this message is sent, the peer UE removes the context of this direct link and no longer sends or receives any messages over this link.
  • DIRECT_COMMUNICATION_RELEASE_ACCEPT direct communication release accept
  • the UE does not attempt to establish a direct link with the releasing UE for at least a period of time T. If the initiating UE is a remote UE requesting a link setup to the ProSe UE-to-network relay UE, the relay reselection procedure is initiated.
  • the releasing UE Upon receiving the DIRECT_COMMUNICATION_RELEASE_ACCEPT message, the releasing UE stops timer T4103. From then on, the releasing UE no longer transmits or receives any messages over this link.
  • Security association for a direct link between two ProSe-Enabled UEs is established by exchanging message content related to establishing a direct security mode during a direct link setup procedure or a direct link rekeying procedure.
  • the selected security algorithm and key are used to integrity protect and encrypt all PC5 signaling messages exchanged between the UEs. It is also used to encrypt all data plane traffic exchanged between UEs.
  • a UE sending a direct security mode command (DIRECT_SECURITY_MODE_COMMAND) message is referred to as a "commanding UE” and the other UE is referred to as a “peer UE”.
  • command UE direct security mode command
  • peer UE peer UE
  • FIG. 10 illustrates a direct security mode control procedure in a wireless communication system to which the present invention can be applied.
  • the commanding UE may initiate a direct security mode control procedure in response to receiving a direct communication request (DIRECT_COMMUNICATION_REQUEST) message or a direct key exchange request (DIRECT_REKEYING_REQUEST) message.
  • a direct communication request DIRECT_COMMUNICATION_REQUEST
  • DIRECT_REKEYING_REQUEST direct key exchange request
  • an existing K_D is identified based on the K_D ID included in the DIRECT_COMMUNICATION_REQUEST message or the DIRECT_REKEYING_REQUEST message, or a new K_D is derived or a new K_D is derived if the known K_D is not shared with the peer UE.
  • the commanding UE generates the Most Significant Bit (MSB) of the K_D ID to ensure that the resulting K_D ID is unique within the commanding UE.
  • MSB Most Significant Bit
  • the commanding UE determines the lowest bit of the K_D-sess ID (received in DIRECT_COMMUNICATION_REQUEST or DIRECT_REKEYING_REQUEST that triggers a direct security mode procedure) so that the K_D-sess ID formed by the defect with the MSB of the K_D-sess ID is unique within the commanding UE.
  • LSB Generate Least Significant Bit.
  • the commanding UE then generates a 128 bit Nonce_2 value. Using Nonce_1 received in the K_D, Nonce_2 and DIRECT_COMMUNICATION_REQUEST or DIRECT_REKEYING_REQUEST messages, the commanding UE derives K_D-sess.
  • the UE constructs a direct security mode command (DIRECT_SECURITY_MODE_COMMAND) message with:
  • the least significant bit of the K_D-sess ID IE set to indicate the least significant 8 bits of the K_D-sess ID
  • UE Security Capabilities IE set to UE security capabilities received in a DIRECT_COMMUNICATION_REQUEST message or a DIRECT_REKEYING_REQUEST message;
  • Chosen Algorithms IE set as the algorithm to be used for encryption and integrity protection.
  • a DIRECT_SECURITY_MODE_COMMAND message is used between the remote UE and the ProSe UE-to-network relay UE, and the ProSe UE-to-network relay UE receives the K_D refreshness parameter from the PKMF, the ProSe UE-to-network relay UE will receive the Saronnu K_D. Include the following additional parameter in the DIRECT_SECURITY_MODE_COMMAND message to generate the following:
  • a GPI IE comprising a GPI Push-Info payload, if received from a PKMF;
  • K_D Freshness IE set to the K_D freshness parameter received from PKMF
  • the commanding UE includes the following additional parameters in the DIRECT_SECURITY_MODE_COMMAND message to generate a new K_D:
  • SAKKE Sakai-Kasahara Key Encryption
  • the commanding UE selects the integrity protection and encryption algorithm to be used and optionally includes it in the Chosen algorithms IE in the DIRECT SECURITY MODE COMMAND message.
  • DIRECT SECURITY MODE Includes received UE security capabilities that existed in the DIRECT_COMMUNICATION_REQUEST or DIRECT_REKEYING_REQUEST message that trigger a COMMAND message.
  • the commanding UE sends an unencrypted DIRECT SECURITY MODE COMMAND message, but protects it with a new security context. After sending the DIRECT_SECURITY_MODE_COMMAND message, the commanding UE starts timer T4111.
  • the peer UE upon receiving the DIRECT_SECURITY_MODE_COMMAND message, the peer UE checks whether the security mode command can be accepted. This is done by checking the integrity of the message and checking that the received UE security capability has not been replaced in comparison to the last value sent by the peer UE to the commanding UE in the DIRECT_COMMUNICATION_REQUEST or DIRECT_REKEYING_REQUEST message.
  • the peer UE In order to check the integrity, the peer UE needs to create a security context. If the MSB of K_D ID is included in the DIRECT_SECURITY_MODE_COMMAND message, the peer UE performs one of two actions:
  • the peer UE If performing an isolated one-to-one ProSe direct communication, the peer UE first checks the signature contained in the SIGN IE of the DIRECT SECURITY MODE COMMAND and obtains a new K_D from the Encrypted Payload IE; or
  • the peer UE is a remote UE that has received DIRECT_SECURITY_MODE_COMMAND from the ProSe UE-to-network relay UE, if the GPI IE is included in DIRECT_SECURITY_MODE_COMMAND, the peer UE replaces its PRUK ID and PRUK. Eventually, the UE derives a new K_D.
  • the peer UE uses the existing K_D indicated by the K_D ID included in the DIRECT_COMMUNICATION_REQUEST message or the currently used K_D.
  • the peer UE sends a Direct Secure Mode Complete (DIRECT_SECURITY_MODE_COMPLETE) message encrypted and integrity protected with a new security context.
  • the DIRECT_SECURITY_MODE_COMPLETE message contains the least significant 16 bits of the K_D ID if the initiating UE included the MSB of the K_D ID in the DIRECT_SECURITY_MODE_COMMAND message.
  • the peer UE protects all signaling messages and user data with a new security context.
  • the commanding UE Upon receiving the DIRECT_SECURITY_MODE_COMPLETE message, the commanding UE stops timer T4111. If the LSB of the K_D ID IE is included in this message, the commanding UE uses the MSB of the previously transmitted K_D ID to form a K_D ID of this and a new K_D. From this point on, the commanding UE protects all signaling messages and user data with a new security context.
  • the peer UE sends a direct security mode rejection (DIRECT_SECURITY_MODE_REJECT) message.
  • the DIRECT_SECURITY_MODE_REJECT message contains a PC5 Signaling Protocol Cause Value IE that indicates one of the following cause values:
  • DIRECT_SECURITY_MODE_COMMAND When processing an authentication vector included in a GPI payload sent by a ProSe UE-to-network relay UE to a remote UE, if the DIRECT_SECURITY_MODE_COMMAND cannot be accepted due to a synchronization error, the peer UE will receive a RAND (Random Challenge) and AUTS ( Authentication Token) parameter is included in the DIRECT_SECURITY_MODE_REJECT message.
  • RAND Random Challenge
  • AUTS Authentication Token
  • the commanding UE Upon receiving the DIRECT_SECURITY_MODE_REJECT message, the commanding UE stops timer T4111. If the PC5 Signaling Protocol Cause Value IE indicates a synchronization error and the message contains RAND and AUTS, the ProSe UE-to-network relay sends a key request message containing RAND and AUTS to refresh the PKMF. ) K_D can be obtained. Otherwise, the UE terminates the ongoing procedure in which the initiation of the direct security mode control procedure was triggered.
  • the commanding UE discards any derived keys with Nonce_1 and PC5 Signaling Protocol Cause Value IE set to # 10 "non-responsive peer during the direct security mode procedure".
  • This message is sent by the commanding UE to the peer UE to establish the security of the direct link.
  • Table 5 illustrates the DIRECT_SECURITY_MODE_COMMAND message.
  • Table 6 illustrates the DIRECT_SECURITY_MODE_COMPLETE message.
  • Table 7 illustrates the DIRECT_SECURITY_MODE_REJECT message.
  • the Discovery Model is divided into Model A and Model B.
  • Model A in the UE-to-Network Relay, when the relay UE becomes an announce UE, the remote UE corresponds to a monitoring UE.
  • the Remote UE in the case of Model B, the Remote UE becomes a Discovery UE (Discoverer UE), and the Relay UE corresponds to a Discovery UE (Discoveree UE).
  • This model defines two roles for ProSe-enabled UE (s) participating in ProSe Direct Discovery.
  • Announcing UE The UE announces specific information that can be used by the neighboring UE that is allowed to discover.
  • Monitoring UE Monitors specific information of a nearby announcing UE of interest.
  • the UE may operate as an "announcing UE" only within the carrier frequency signaled by the serving PLMN, but may operate as a "monitoring UE” within the resources of the serving PLMN and the local PLMN. If inter-PLMN discovery transmission is supported, the carrier frequency may be operated by a PLMN other than the serving PLMN.
  • Discoverer UE The UE sends a request containing specific information about the UE to be discovered.
  • Discoveree UE Upon receiving the request message, the UE may respond with information related to the request of the discoverer.
  • the discoverer UE and the discoveree UE can broadcast within the carrier frequency signaled by the serving PLMN. If inter-PLMN discovery transmission is supported, the carrier frequency may be operated by a PLMN other than the serving PLMN. The discoverer UE and the discoveree UE are allowed to monitor or broadcast within the serving PLMN and authorized local PLMNs.
  • Public safety discovery is considered limited. monitoring UE / discoverer The UE needs to be authorized (via pre-provisioned parameters) to perform discovery of the appropriate service.
  • the PC5_DISCOVERY message for UE-to-Network Relay Discovery Announcement which will be described later, is used in Model A.
  • the PC5_DISCOVERY message for UE-to-Network Relay discovery solicitation and the PC5_DISCOVERY message for UE-to-Network Relay discovery response are used in Model B.
  • a Status Indicator IE is included.
  • the Status Indicator IE includes a Resource Status Indicator (RSI) parameter.
  • the RSI parameter indicates whether the relay UE can support additional remote UEs.
  • Table 8 illustrates a PC5_DISCOVERY message for UE-to-Network Relay Discovery Announcement.
  • Table 9 illustrates a PC5_DISCOVERY message for UE-to-Network Relay Discovery Solicitation.
  • Table 10 illustrates a PC5_DISCOVERY message for UE-to-Network Relay Discovery Response.
  • Status indicator parameter is used to indicate the status of ProSe UE-to-network relay. This parameter is coded as shown in Table 11 below.
  • the RSI is used to indicate whether the UE has resources available to provide connection service for an additional ProSe-enabled public safety UE.
  • ProSe UE-to-Network Relay enabled UEs can attach to the network (if not already connected), connect PDN connections to enable the necessary relay traffic, or connect the Remote UE (s). It may be necessary to connect additional PDN connection (s) to provide relay traffic towards.
  • PDN connection (s) supporting UE-to-Network Relay is used only for Remote ProSe UE (s) relay traffic.
  • FIG. 11 is a diagram illustrating a ProSe UE and a UE-to-Network relay procedure in a wireless communication system to which the present invention can be applied.
  • the ProSe UE-to-Network Relay performs an initial E-UTRAN Attach (if not already attached) and / or establishes a PDN connection for the relay (if there is no suitable PDN connection for this relay).
  • the ProSe UE-to-Network Relay obtains an IPv6 prefix from the network via a prefix delegation function.
  • the Remote UE performs discovery of ProSe UE-to-Network Relay using Model A or Model B discovery.
  • the Remote UE selects ProSe UE-to-Network Relay and establishes a connection for one-to-one Prose direct communication. If there is no PDN connection associated with the ProSe Relay UE Identifier (ID) or if an additional PDN connection is needed for the relay, the ProSe UE-to-Network Relay initiates a new PDN connection establishment procedure.
  • ID ProSe Relay UE Identifier
  • the ProSe UE-to-Network Relay initiates a new PDN connection establishment procedure.
  • IPv6 prefix or IPv4 address is assigned for the remote UE. From this time, uplink and downlink relay can be started.
  • the ProSe UE-to-Network Relay transmits a Remote UE Report (including a Remote User ID and IP Info) message to the MME for a PDN connection associated with the relay.
  • the Remote User ID is an identifier (provided through User Info) of a Remote UE user that has been successfully connected in step 3.
  • the MME stores the Remote User ID (s) and associated IP info in the EPS bearer context of the ProSe UE-to-Network Relay for the PDN connection associated with the relay.
  • the MME forwards the Remote UE Report message to the S-GW, and the S-GW forwards this message to the P-GW of the UE-to-Network Relay UE.
  • the MME may report multiple Remote UEs in one Remote UE Report message.
  • IP info The following principles may apply for IP info:
  • the UE-to-network Relay reports the Transmission Control Protocol (TCP) / user datagram protocol (UDP) port range assigned to the individual Remote UE (s) (with Remote User ID);
  • TCP Transmission Control Protocol
  • UDP user datagram protocol
  • the UE-to-network Relay reports the IPv6 prefix (s) assigned to the individual Remote UE (s) (along with the Remote User ID).
  • a Remote UE Report message is sent to the MME, S-GW and P-GW to inform that the Remote UE (s) have left (e.g., an explicit layer- 2 when the link is released or there is no keep alive message via PC5).
  • the Remote UE After being connected to the ProSe UE-to-Network Relay, the Remote UE continues to measure the signal strength of the discovery messages sent by the ProSe UE-to-Network Relay for relay selection (i.e., UE-to in Model A). -Network Relay Discovery Announcement message or UE-to-Network Relay Discovery Response in Model B.
  • the Remote UE In the case of Model B, to measure PC5 link quality, the Remote UE periodically transmits a UE-to-Network Relay Discovery Solicitation message. This message contains the ProSe Relay UE ID of the serving ProSe UE-to-Network Relay. If a ProSe Relay UE ID is included in this message, only the ProSe UE-to-Network Relay with this ProSe Relay UE ID responds to the UE-to-Network Relay Discovery Solicitation message.
  • UE and MME use Control Plane CIoT EPS Optimization, they can transmit data within NAS PDU (s) that contains EPS Bearer Identity (EBI) of PDN connection with no S1-U bearer established. (When the S1-U bearer is established, the UE uses S1-U for data PDU (s) transmission.). Both IP and Non-IP data types are supported.
  • EPC-MO-LR EPC Mobile Originated Location Request
  • EPC-MT-LR EPC Mobile Terminated
  • the UE and the MME may perform header compression based on the Robust Header Compression (ROHC) framework IETF RFC 5795.
  • ROHC Robust Header Compression
  • the UE implements a ROHC compressor
  • the MME implements a decompressor
  • the MME implements a ROHC compressor
  • the UE implements a decompressor.
  • the uplink and downlink ROHC channels must be bound to the UE and the MME to support feedback. Settings for header compression are established during the PDN connection establishment procedure.
  • the MME informs the UE before entering the ECM-CONNECTED state to the HSS, MSC or S-GW and before initiating the downlink delivery of the NAS data PDUs.
  • Complete the security associated with the procedure e.g., authentication, security mode command, reassignment of Globally Unique Temporary Identifier (GUTI)).
  • GUI Globally Unique Temporary Identifier
  • FIG. 12 is a diagram illustrating CP CIoT EPS optimization and UP CIoT EPS optimization for mobile originated data in a wireless communication system to which the present invention can be applied.
  • the UE is EPS Connection Management (ECM) -IDLE.
  • ECM EPS Connection Management
  • the UE establishes an RRC connection and sends an integrity protected NAS PDU to the eNB as part of the establishment of the RRC connection.
  • the NAS PDU carries an EPS bearer ID and encrypted uplink data.
  • the UE applies header compression before encapsulating data in a NAS message.
  • the UE determines whether additional uplink or downlink data transmission is expected, or whether only a single downlink data transmission (eg, acknowledgment or response to uplink data) is expected following this uplink data transmission. Is indicated in the Release Assistance Information in the NAS PDU.
  • the eNB obtains an EPS negotiated QoS profile from the MME based on the configuration, if not previously obtained.
  • the MME code in the S-TMSI in the RRCConnectionRequest message is used to identify the MME.
  • the eN may apply priorities between requests from different UEs over the RRC connection before triggering phase two.
  • the NAS PDU transmitted in step 1 above is relayed by the eNB to the MME using the S1-AP Initial UE message, and the Initial UE message is confirmed by the eNB for the downlink NAS data PDU. It is accompanied by an indication that it supports acknowledgment.
  • the eNB instructs the MME of a coverage level of the UE.
  • the MME checks the integrity of the received NAS PDU and decrypts the data contained in the NAS PDU. If ROHC is enabled, the MME decompresses the IP header if header compression has been applied to the PDN connection.
  • the MME performs any EPS Mobility Management (EMM) or EPS Session Management (ESM) procedures (eg, security related procedures) if necessary (and the UE responds to it). Steps 4 through 9 continue in parallel with this, but steps 10 and 11 wait until all EMM or ESM procedures are completed.
  • EMM EPS Mobility Management
  • ESM EPS Session Management
  • the MME transmits a bearer modification request message to the S-GW for each PDN connection.
  • Modify Bearer Request messages include MME address, MME Tunnel Endpoint Identifier (TEID) DL, Downlink Packet Notification Request (RAD), RAT Type, and Mobile Originated (MO) exclusion data counter. ).
  • the S-GW may now send downlink data towards the UE.
  • the MME indicates S11-U turning of NAS user data and transmits its S11-U IP address and MME DL TEID for downlink data carried by the S-GW.
  • S11-U is already established:
  • the MME sends a Modify Bearer Request message and includes the UE Time Zone IE in this message.
  • the MME includes only the MO Exception Data Counter.
  • the S-GW instructs the use of this RRC establishment cause with an associated counter on the Charging Data Record (CDR).
  • CDR Charging Data Record
  • the MME If the S11-U connection is established and the UE is connecting via the NB-IoT RAT with the RRC establishment cause set to "MO exception data", the MME notifies the S-GW. The MME can immediately send the MO Exception Data Counter to the S-GW.
  • S- The GW sends a Modify Bearer Request message to the P-GW.
  • the Modify Bearer Request message includes a RAT type and a MO exception data counter.
  • User Location Information IE and / or User CSG Information IE and / or Serving Network IE and / or UE Time Zone are included when present in step 4 above.
  • the S-GW informs the P-GW that this RRC establishment cause is used by the instruction of the MO Exception Data Counter.
  • the S-GW directs the use of this RRC establishment cause with its associated counter.
  • the P-GW sends a Bearer Modify Response (Modify Bearer Response) message to the S-GW.
  • Bearer Modify Response Modify Bearer Response
  • the P-GW instructs the use of the RRC establishment cause " MO Exception Data " as an associated counter.
  • the S-GW sends a Modify Bearer Response message to the MME as a response to the Modify Bearer Request message.
  • the Modify Bearer Response message includes the S-GW address and TEID for UL traffic.
  • the MME transmits uplink data to the P-GW via the S-GW.
  • step 14 If downlink data is not expected based on Release Assistance Information from the UE in step 1, this means that all application layer data exchanges are completed by uplink data transmission. Thus, unless the MME is aware of pending MT (Mobile Terminated) traffic and if the S1-U bearer is not established, the MME immediately disconnects and step 14 is performed.
  • MT Mobile Terminated
  • downlink data may arrive at the P-GW.
  • the P-GW transmits downlink data to the MME through the S-GW. If data is not received, steps 10 to 12 are omitted, and the eNB may trigger step 14 after not detecting any activity in step 13. While the RRC connection is active, the UE may still transmit uplink data and receive downlink data in the NAS PDU (s) carried in the S1AP uplink or downlink message. When the UE no longer establishes a user plane bearer, the UE may provide Release Assistance Information with uplink data. In this case, in order to assist the location service, the eNB may indicate the coverage level of the UE to the MME.
  • step 10 the downlink data is encrypted in the NAS PDU and transmitted to the eNB in the S1-AP downlink message. If the eNB supports acknowledgment of the downlink NAS data PDU, and if acknowledgment of the downlink NAS data PDU is also possible in the subscription information of the UE, the MME requests acknowledgment to the eNB in the downlink S1-AP message. Instruct them to For IP PDN type PDN connections configured to support header compression, the MME applies header compression before encapsulating the data in the NAS message. If the above step 10 is not performed, the MME may transmit a Connection Establishment Indication message to the eNB. UE Radio Capability may be provided from the MME to the eNB in a Connection Establishment Indication message. The eNB stores the received UE Radio Capability information.
  • the eNB transmits an RRC downlink data message including encapsulated downlink data in the NAS PDU. If the S1 UE Context Release Command is followed by the S1-AP message accompanying the NAS DATA PDU in step 11, step 15 is completed immediately after the downlink data transmission of the NAS PDU to the UE, and the acknowledgment to the MME is received in step 13 by the eNB. Is completed, step 14 does not need to be performed for the eNB. If header compression has been applied to the PDN, the UE performs header decompression to rebuild the IP header.
  • the eNB sends a NAS Delivery indication to the MME. If the eNB reports an unsuccessful delivery with an S1-AP NAS Non Delivery Indication, the MME will schedule until the UE potentially changes the cell to have a re-established connection to the MME. Wait for time. With the re-established connection, the MME must retransmit downlink S1-AP message to the eNB. Otherwise, the MME reports an unsuccessful delivery to the SCEF. If the eNB reports successful delivery with S1-AP NAS Delivery Indication, and if downlink data was received via the T6a interface, the MME should respond to the SCEF. If the eNB does not support the S1-AP NAS delivery indication, the MME indicates to the SCEF a reason code 'Success Unacknowledged Delivery' so that the SCEF knows whether or not reliable delivery is possible.
  • the eNB If there is no NAS PDU activity, the eNB starts S1 release in step 15.
  • S1 release procedure is triggered by eNB or MME.
  • the MME transmits the UE Context Release Command in step 11, it starts from step 5 of the S1 release procedure or connection suspend procedure.
  • the UE and MME store the context for ROHC configuration and uplink / downlink data transmission the next time they enter the ECM-CONNECTED state.
  • the eNB initiates a connection reservation procedure to the MME.
  • the eNB instructs the MME that the RRC connection of the UE will be reserved when the MME enters ECM-IDLE.
  • the secondary RAT utilization data is included.
  • step 1 If the eNB provided the secondary RAT utilization data in step 1, the MME initiates a secondary RAT utilization data reporting procedure.
  • the MME sends a Release Access Bearers Request message to the S-GW to request release of all S1-U (S1 user plane) bearers for the UE.
  • the S-GW releases eNB related information (ie, eNB address and downlink tunnel endpoint identifier (TEID) (s) for all UEs).
  • eNB related information ie, eNB address and downlink tunnel endpoint identifier (TEID) (s) for all UEs).
  • TEID downlink tunnel endpoint identifier
  • the MME sends an S1-AP UE Context Suspend Response message to the eNB to successfully terminate the connection reservation procedure initiated by the eNB.
  • the eNB sends an RRC message to the UE to reserve the RRC connection towards the UE.
  • the UE NAS When the UE NAS suspends in the EMM-IDLE state (ie, when the UE is in EMM-IDLE mode with a reservation indication), the UE must start a resume procedure to transmit uplink signaling or data.
  • FIG. 14 illustrates a connection resume procedure initiated by a UE in a wireless communication system to which the present invention can be applied.
  • this procedure is used to resume ECM-connection. Otherwise, a service request procedure (see TS 23.401) is used.
  • the UE triggers a random access procedure (see FIG. 6) to the eNB.
  • the UE triggers an RRC connection resumption procedure that includes the information needed by the eNB to access the stored AS context of the UE.
  • E-UTRAN performs a security check.
  • EPS bearer state synchronization is performed between the UE and the network.
  • the UE does not have a radio bearer set up and also locally deletes the EPS bearer that is not the CP CIoT EPS bearer. If no radio bearer is established for the default EPS bearer, the UE locally deactivates all EPS bearers associated with the default EPS bearer.
  • the eNB informs the MME that the RRC connection of the UE has been resumed in the S1-AP UE Context Resume Request message including the cause of the RRC resumption. If the eNB is unable to admit all reserved bearers, the eNB indicates this in the list of rejected EPS bearers.
  • the MME enters the ECM-CONNECTED state. The MME identifies whether the UE returned to the eNB for the MME that stored the bearer context including data related to the S1AP association, UE context and DL TEID required to resume the connection.
  • the default EPS bearer is not accepted by the eNB, all EPS bearers associated with the default bearer are treated as non-accepted bearers.
  • the MME releases non-accepted bearers and non-established bearers by triggering a bearer release procedure (see TS 24.301).
  • the eNB instructs the MME the coverage level of the UE.
  • the MME informs the S-GW of the use of this establishment cause by the MO Exception Data Counter. Inform. MME maintains MO Exception Data Counter and sends it to S-GW.
  • the S-GW should inform the P-GW.
  • the S-GW dictates the use of the RRC establishment cause by the associated counter.
  • the P-GW instructs the use of the RRC establishment cause " MO Exception Data " by the associated counter.
  • the MME acknowledges the connection resumption in the S1-AP UE Context Resume Response message. If the MME is unable to admit all reserved E-RABs, the MME indicates this in an E-RABs Failed To Resume List (IE) Information Element (IE).
  • IE Failed To Resume List
  • the eNB reconfigures the radio bearer.
  • Uplink data from the UE can now be delivered to the S-GW by the eNB.
  • the eNB transmits uplink data to the S-GW using the S-GW address and TEID stored during the connection reservation procedure.
  • the S-GW delivers uplink data to the P-GW.
  • the MME sends a Bearer Modify Request (Modify Bearer Request) message to the S-GW for each PDN connection.
  • the bearer modification request message may include an eNB address, an S1 TEID for the accepted EPS bearer, a delayed downlink packet notification request, and a RAT type.
  • the MME may send a Modify Access Bearers Request to the S-GW per UE to optimize the signaling.
  • the Modify Access Bearers Request may include the eNB address (s) and TEID (s), Delay Downlink Packet Notification Request for the downlink user plane for the accepted EPS bearer.
  • the S-GW may now send downlink data to the UE.
  • the MME and S-GW are responsible for downlink data in their UE context. Clear the DL Data Buffer Expiration Time (if set).
  • the S-GW returns a Modify Bearer Response message to the MME or a Modify Access Bearers Request message in response to the Modify Bearer Request message.
  • a Modify Access Bearers Response message may be returned to the MME.
  • the bearer modification response (Modify Bearer Response) message and the modification access bearer response (Modify Access Bearers Response) message may include a TEID for the S-GW address and uplink traffic.
  • the S-GW If the S-GW cannot service the MME request in the Modify Access Bearers Request message without S5 / S8 signaling other than unpause charging in the P-GW, or without corresponding Gxc signaling when PMIP other than S5 / S8 is used, The S-GW responds to the MME with an indication that the modification is not limited to the S1-U bearer.
  • the MME repeats the request using a Modify Bearer Request message for each PDN connection.
  • the LGW core of the cell connected by the UE If the Network (CN: Core Network) address is different from the LGW CN address of the cell of the SIPTO initiated by the UE by the UE on the local network PDN connection, then the MME attempts to determine the "reactivation requested" cause value in the local network PDN connection Request disconnection of SIPTO.
  • SIPTO Selected IP Traffic Offload
  • LGW Local Gateway
  • the NAS layer of the UE is an EMM-IDLE mode with suspend indication.
  • a service request or tracking area update (TAU) or attach or detach procedure is triggered.
  • the NAS layer of the UE generates an initial NAS message and the initial NAS message is pending.
  • the NAS layer of the UE transmits the RRC establishment cause and call type to the AS layer of the UE without a NAS message.
  • the AS layer of the UE When the AS layer of the UE receives an RRC Connection Setup message with Resume Accept from the eNB, it instructs the NAS layer of the UE that the resumption is successful.
  • the NAS layer of the UE enters the EMM-CONNECTED mode and discards the SERVICE REQUEST message.
  • the AS layer of the UE sends an RRC Connection Resume Complete message without an NAS message to the eNB.
  • the AS layer of the UE When the AS layer of the UE receives an RRC Connection Setup message with Resume Accept from the eNB, it instructs the NAS layer of the UE that the resumption is successful.
  • the NAS layer of the UE enters the EMM-CONNECTED mode and delivers a pending NAS message to the AS layer of the UE.
  • the AS layer of the UE sends an RRC Connection Resume Complete message including a NAS message to the eNB.
  • a prior association is used only for a private relay network (ie a network consisting only of devices having a specific trusted relationship with each other).
  • All solutions differ only in that relay functions are used for signaling and user data transfer between the eRemote-UE and the network and are based on legacy service request procedures.
  • This solution proposes a method of optimizing the connection setup between eRemote-UE and the network to achieve a fast connection setup.
  • UE-1 sends a direct communication request message to UE-2.
  • This message triggers phase 2, which is mutual authentication and security association between UE-1 and UE-2.
  • the solution for Layer-2 relay takes advantage of the fact that, for traffic using indirect 3GPP communication between eRemote-UE and eNB, the traffic can be secured by legacy AS security procedures. This protection can be used to provide a secure PC5 link.
  • the proposed optimization for setting up one-to-one communication between eRemote-UE and eRelay-UE omits step 2 from the procedure defined in 3GPP TS 23.303 5.4.5 because PC5 is protected by AS security between eRemote and eNB.
  • This solution is based on the legacy service request procedure specified in section 5.3.4 of TS 23.401, except that the L2 layer-relay function is used to carry signaling and user data between the eRemote-UE and the network.
  • FIG. 16 illustrates a service request procedure triggered by an advanced remote UE (eRemote-UE) in a wireless communication system to which the present invention can be applied.
  • eRemote-UE advanced remote UE
  • eRemote-UE initiates one-to-one communication with eRelay-UE by sending an INDIRECT_COMMUNICATION_REQUEST message triggered by a higher layer to the eRelay-UE.
  • the eRelay-UE transmits a Service Request message (including an identifier of the eRelay-UE, for example, GUTI and S-TMSI) triggered by a request received from the eRemote-UE to the MME of the eRelay-UE. do. This step is performed according to TS 23.401 5.3.4.
  • eRelay-UE sends an Indirect Communication Response (INDIRECT_COMMUNICATION_RESPONSE) message to eRemote-UE.
  • INDIRECT_COMMUNICATION_RESPONSE Indirect Communication Response
  • the eRemote-UE sends a Service Request (including identifiers of the eRemote-UE, eg, GUTI, S-TMSI) to the MME of the eRemote-UE.
  • the Service Request message is encapsulated in the RRC message and sent to the eNB.
  • the eRelay-UE delivers this message to the eNB using the RAN specific L2 relay method.
  • the eNB derives the MME identifier of the eRemote-UE using the identifier of the eRemote-UE, and delivers a NAS message in the S1-MME control message. This step is performed according to TS 23.401 5.3.4.
  • TS 23.401 The NAS authentication / security procedures defined in section 5.3.10 may be performed.
  • the MME sends an S1-AP Initial Context Setup Request message to the eNB.
  • the eNB performs a radio bearer establishment procedure according to TS 23.401 5.3.4.
  • eRelay-UE delivers all messages between eRemote-UE and eNB using RAN specific L2 relay method.
  • the eNB sends an S1-AP Initial Context Setup Complete message to the MME. This step is described in detail in TS 36.300.
  • the Remote UE performs a direct link keepalive procedure, and in order to release the direct link, the direct link release procedure is performed. Should be done.
  • a direct link release procedure should be performed to release the direct link.
  • the direct link keepalive procedure should be performed.
  • the relay UE When the relay UE relays small data of a plurality of remote UEs, the relay UE attempts to transmit the corresponding small data through the Uu interface (that is, a radio interface between the UE and the RAN) at each small UE transmission time point. This reduces power and channel efficiency. Assuming that the data transmission period of the remote UE is long and the transmission time of each remote UE is asynchronous, this efficiency may be lower. As a result, the relay UE increases power consumption by repeating the following operations and increases signaling overhead.
  • the Uu interface that is, a radio interface between the UE and the RAN
  • DVI data volume indicator
  • BSR buffer state report
  • the above-described problem may occur more frequently with a higher probability.
  • a remote UE proposes a method of transmitting small data while minimizing power consumption.
  • Application of the present invention may be more effective when the Remote UE is a low power, low rate and low complexity / low cost device.
  • small data may mean signaling (message) as well as data (user data).
  • the signaling may mean NAS signaling or RRC signaling.
  • uplink or downlink transmission of a remote UE means uplink or downlink transmission through sidelink with a relay UE.
  • FIG 17 illustrates a basic scenario according to one embodiment of the invention.
  • the remote UE may be located in-coverage of the cell and may be located out-of-coverage.
  • the remote UE considers a situation in which it wants to transmit data to the network through the relay UE.
  • FIG. 18 is a diagram illustrating a small data transmission method through a relay UE of a remote UE according to an embodiment of the present invention.
  • Relay UE performs an initial attach procedure to E-UTRAN (1-A).
  • the remote UE performs an initial attach procedure to the E-UTRAN (1-B).
  • the remote UE triggers small data transmission (SDT)
  • the remote UE performs a discovery procedure with the relay UE for the SDT.
  • the Remote UE sends a PC5 message for SDT to the Relay UE.
  • the small data transmitted from the remote UE may be data transmitted to a user plane (UP) or data transmitted to a control plane (CP).
  • UP user plane
  • CP control plane
  • a user bearer i.e., a Data Radio Bearer (DRB) and an S1-U bearer
  • DRB Data Radio Bearer
  • S1-U bearer small data is composed of NAS PDU (s) to be included in the NAS message and transmitted to the control plane.
  • the Remote UE receives a PC5 message for Response / Ack (Acknowledge) from the Relay UE.
  • the relay UE transmits the small data of the remote UE to the network.
  • the relay UE may transmit the small data of the remote UE by using the data transmission method in CP CIoT EPS optimization according to FIG. 11.
  • CP control plane
  • the Remote UE and the Relay UE perform procedures / operations for the PC5 link.
  • Each UE's ability to transmit small data is provisioned. For example, it may be preset in the Universal Subscriber Identity Module (USIM) or Mobile Equipment (ME) or set up from an operator (eg, an Open Mobile Alliance (OMA)).
  • USIM Universal Subscriber Identity Module
  • ME Mobile Equipment
  • OMA Open Mobile Alliance
  • the remote UE can check whether the relay UE has the capability of small data transmission by the following method.
  • PC5_DISCOVERY PC5 discovery
  • the PC5_DISCOVERY message may be the following message according to the discovery model.
  • Model A PC5_DISCOVERY message for UE-to-Network Relay Discovery Announcement
  • Model B PC5_DISCOVERY message for UE-to-Network Relay Discovery Response
  • Status indicator parameter is used to indicate the status of ProSe UE-to-network relay. This parameter may be coded as shown in Table 12 below.
  • the RSI is used to indicate whether the UE has resources available to provide connection service for an additional ProSe-enabled public safety UE.
  • the small data transmission indicator (SDTI) is used to indicate whether the UE supports the small data transmission procedure.
  • Table 12 illustrates a Status Indicator parameter (or IE).
  • a new IE may be added to the PC5_Discovery message, and a new parameter may be included for the capability of supporting small data transmission in the newly added IE 'capability'.
  • the above capability refers to an ability to support small data transmission.
  • the method of notifying this capability can be indicated by the support of small data transmission.
  • step 2 Recognition method of small data transmission-corresponds to step 2 (in particular, SDT is triggered) in FIG.
  • the lower layer When small data occurs inside the Remote UE, notify the lower layer (for example, AS layer or RRC layer) that small data has occurred in the upper layer (for example, application layer (or V2X layer or ProSe layer) or NAS layer). By doing this, the lower layer can recognize this.
  • the lower layer For example, AS layer or RRC layer
  • the upper layer for example, application layer (or V2X layer or ProSe layer) or NAS layer.
  • the Remote UE may recognize the occurrence of the small data in the following method / order.
  • the application layer (or the V2X layer or ProSe layer) has data to be transmitted through PC5, but it is recognized that the data is small data.
  • small data means data (or signaling) that can be transmitted in a small number of times (for example, once or twice) or for a small time by the transmission method described in [3]. do.
  • the application layer of the remote UE delivers to the lower layer (for example, AS layer or RRC layer) including the following.
  • an indication that small data transmission is needed eg, a small data transmission indication
  • the small data information may include one of the following IEs.
  • III it may be expressed as 'expected additional uplink or downlink data transmission following uplink data transmission'. Or III) may be interpreted as 'expected further uplink or downlink data transmission following uplink data transmission.
  • the lower layer (for example, the AS layer or the RRC layer) receiving the packet recognizes the need for small data transmission and decides to use the transmission method described in [3] below.
  • the Remote UE may recognize the occurrence of small data in the following method / order.
  • the NAS layer of the remote UE When NAS signaling occurs in the NAS layer of the remote UE, the corresponding NAS signaling message is transmitted to a lower layer (eg, an AS layer or an RRC layer).
  • the NAS layer of the remote UE may be transmitted to the lower layer (for example, AS layer or RRC layer) together with the NAS signaling message.
  • an indication that small data transmission is needed eg, a small data transmission indication
  • the small data information may include any one of the following information.
  • the following additional information may be transmitted to a lower layer (eg, an AS layer or an RRC layer) together with a NAS signaling message in a NAS layer of a remote UE.
  • a lower layer eg, an AS layer or an RRC layer
  • the lower layer (for example, the AS layer or the RRC layer) that receives this recognizes the need for small data transmission and decides to use the transmission method described in [3] below.
  • the PC5 message used by the remote UE for small data transmission may be a conventionally defined PC5 signaling message or a newly defined PC5 message.
  • it may include 'Signalling', 'Data' when only data is included, and 'CP_data' when NAS signaling includes a data PDU.
  • Small data information IE One of the following information may be included.
  • III it may be expressed as 'expected additional uplink or downlink data transmission following uplink data transmission'. Or III) may be interpreted as 'expected further uplink or downlink data transmission following uplink data transmission.
  • This IE indicates the time that the Remote UE wishes to maintain transmission over the PC5 interface with the Relay UE (ie, time to maintain a direct link through PC5).
  • the remote UE may be set equal to or larger than the time required for small data transmission.
  • the security parameter is provisioned. That is, it may be pre-configured in the USIM or the ME, or may be configured from the network (for example, OMA).
  • the Remote UE and the Relay UE may store and maintain security parameters used when establishing a secured connection previously. At this time, the Remote UE may reuse the previously used security parameter value.
  • the specific method of reuse may also be made in a manner previously agreed between the two UEs. For example, the Remote UE may generate a security key value according to a previously used / maintained security parameter and a promised reuse method, and use it as a security parameter value.
  • the relay UE may check whether the corresponding remote UE and the remote UE are secure according to the promised reuse method and the verification method. In verification, an identifier, bearer ID, and security key value of the UE may be used.
  • the number 5 when the number 5 is included in the PC5 message, there is no need to perform a direct security mode control procedure performed to establish a security association as in the prior art. In addition, when the remote UE has already established a security association with the relay UE, the number 5 is not included in the PC5 message.
  • the relay UE recognizes that the transmission is 'small data transmission', and if it is determined through verification that the PC5 message transmitted by the remote UE and the remote UE is secure, The direct link setup procedure for establishing a link and the direct security mode control procedure performed to establish a security association may not be performed.
  • PDU type is Data
  • data ie, PDU
  • signaling or CP_data data (ie, PDU) can be transmitted through the control plane.
  • the relay UE Upon receiving the IE, the relay UE successfully releases the received small data to the LTE-Uu, and locally releases a direct link with the corresponding remote UE. Accordingly, transmission and reception with the Remote UE is stopped.
  • the relay UE receiving the IE successfully transmits small data to the LTE-Uu and waits for receiving downlink data for the remote UE.
  • Successfully delivering the downlink data for the remote UE locally releases the direct link with the corresponding remote UE.
  • the relay UE may operate as follows.
  • the remote UE may be informed that downlink data has not been received for a predetermined time.
  • the Remote UE When the Remote UE receives this, it can perform retransmission.
  • the relay UE may use a timer.
  • the relay UE may set and start a timer from a time point of successfully transmitting the small data received from the remote UE to the network through the LTE-Uu interface.
  • the downlink of the Remote UE is not received until the timer expires, it may operate as one of A and B.
  • This timer may be provisioned or delivered in a PC5 message from the Remote UE. At this time, the value of the timer may be set equal to or greater than the round trip time of the family.
  • the Remote UE monitors the reception of downlink data when the PC5 message including the IE is transmitted. At this time, if downlink data is not received for a predetermined time, the same PC5 message may be retransmitted again.
  • the Remote UE may use a timer for this operation.
  • the Remote UE may start and set a timer to a predetermined value from the time of successfully transmitting the small data to the Relay UE. And, if the downlink of the Remote UE is not received until the timer expires, it can operate as described above.
  • the relay UE receiving the IE can successfully transmit small data to the LTE-Uu and maintain a transmission / reception state for a predetermined time.
  • a predetermined time expires, the direct link with the corresponding Remote UE may be locally released.
  • the relay UE may use an inactivity timer.
  • the inactivity timer starts from a time when there is no data or signaling with the remote UE, and may stop when data or signaling with the remote UE occurs.
  • the relay UE may locally release the direct link with the remote UE.
  • the interface section of the data or signaling with the Remote UE may include both the PC5 interface section and the LTE-Uu interface section.
  • the occurrence of data or signaling with the Remote UE may mean that the Relay UE receives data or signaling for the Remote UE.
  • the time value of the inactivity timer may be provided using a provisioned value or received from a remote UE.
  • the value of 'Active Transmission Time' received from the remote UE may be used.
  • a response is acknowledged. Can transmit to the Remote UE.
  • the PC5 message to send this response / Ack may contain one or more of the following IEs:
  • This IE indicates the success or failure of the transmission / reception of the small data.
  • the IE may further include a cause indicating a reason for the failure and a retry timer value. Receiving this, the Remote UE cannot attempt retransmission until the retry timer expires.
  • Sequence number Use the sequence number set in the Remote UE (that is, the sequence number received from the Remote UE) as it is.
  • R. I may be set to 'no longer uplink or downlink data transmission following uplink data transmission'.
  • the small data transmission method described above is also applicable to the case of establishing a direct link and transmitting data through a conventional direct link setup procedure.
  • the Remote UE may transmit using the small data transmission method described above.
  • a relay UE must be discovered through a discovery procedure.
  • the remote UE After that, the remote UE must perform a direct link setup procedure to establish a direct link. In the process, a layer 3 relay must be assigned an IP address. On the other hand, in the case of a layer 2 relay, a bearer should be set.
  • a separate security procedure eg, a direct security mode control procedure or a direct link rekeying procedure
  • Performing the processes of A to C may be a burden on the IoT device in terms of power consumption.
  • a keepalive procedure must be performed to maintain the direct link even after the above steps A to C. Accordingly, a problem arises in that a remote UE or a relay UE needs to consume power in order to receive signaling or data that may be transmitted when the direct link is maintained.
  • the Remote UE accepts losses incurred while maintaining a direct link during Advanced Idle-Mode Discontinuous Reception (eDRX) or Power Saving Mode (PSM), if applicable). Rather than breaking the direct link, it may be more beneficial to establish the direct link again in the event of an MO.
  • MICO Mobile Initiated Connection Only
  • PSM Power Saving Mode
  • the Remote UE may give a greater gain to the MICO mode UE in which downlink data is unlikely to occur or the UE in eDRX or PSM mode without long-term downlink data.
  • FIG. 19 illustrates a sidelink reservation and resume procedure according to an embodiment of the present invention.
  • a preset parameter when parameters e.g., signaling or communication channel bandwidth, security parameters (e.g., selected security algorithm and key) and IP address / bearer information) necessary for the procedures of A to C are preset
  • parameters e.g., signaling or communication channel bandwidth, security parameters (e.g., selected security algorithm and key) and IP address / bearer information
  • security parameters e.g., selected security algorithm and key
  • the Remote UE After the direct link between the Remote UE and the Relay UE is established, the Remote UE performs data transmission over the established direct link and finishes transmitting all data.
  • the remote UE wants to suspend the direct link to reuse the direct link with the relay UE for future data transmission, the remote UE sends the following indication to the relay UE. At this time, the (SL) Suspend Request message may be used.
  • An indication that all data transmissions have been completed (e.g., a transmission end indication) and / or
  • step 3 upon receiving an indication that all data transmissions of the Remote UE have ended and a reservation is required, the Relay UE stores information related to the context of the Remote UE and the direct link with the Remote UE and reserves the direct link.
  • the relay UE provides the remote UE with (SL) resume identifier (SL) resume ID (SL) along with information necessary for later communication (ie, signaling or communication channel bandwidth, communication period, etc.).
  • the information may be provided in a direct link release message, or provided as a separate direct message (for example, a (SL) Suspend Accept message). can do.
  • the relay UE After performing the direct link release procedure with or after the information transfer, or after the information transfer without the direct link release procedure, the relay UE locally releases the direct link with the corresponding remote UE.
  • the signaling or communication channel bandwidth and communication period information mean a bandwidth and a reception timing period for the relay UE to receive a request (ie, resumption request) of a direct link of the remote UE.
  • the Relay UE can save power to receive a request for a direct link (ie, a resume request) with a remote UE.
  • Two UEs may enter a sidelink eDRX state through signaling or communication channel bandwidth and communication period information.
  • the (sidelink) paging time window and / or the (sidelink) eDRX value (eDRX cycle length) may be provided instead of the communication period information.
  • the Remote UE receiving the information stores the received information and the SL resume ID, and releases the direct link.
  • the direct link may be released locally by the relay UE through the direct link release procedure or by receiving the information without performing the direct link release procedure of the relay UE.
  • the relay UE may perform the remote UE.
  • the relay UE may recognize that the LTE-Uu connection / RRC connection of the remote UE is released from the network.
  • the message transmitted by the relay UE to the remote UE in step 3 includes the following indicator included in the message transmitted by the remote UE in step 3 and the (SL) resume identifier included in the message transmitted by the relay UE in step 4 ((SL) resume ID (Identifier)), signaling or communication channel bandwidth, and communication period information are included.
  • the Remote UE may transmit a response message for receiving the message to the Relay UE.
  • step 2 of FIG. 18 when the small data transmission (SDT) is triggered, the remote UE performs a discovery procedure with the relay UE for the SDT.
  • SDT small data transmission
  • the Remote UE sends the SL resume ID to the Relay UE using the information received in step 5 above.
  • the remote UE performs a direct link setup procedure or a direct link resume procedure through signaling or communication channel bandwidth and communication period information already promised with the relay UE. At this time, the Remote UE transmits the SL resume ID to the relay UE.
  • the direct link resume procedure is a newly defined procedure for resuming a direct connection.
  • the sender includes the SL resume ID in the SL Resume Request message. 19 illustrates performing a direct link resume procedure.
  • the Relay UE which has received this, performs the resume of the direct link through the SL resume ID of the Remote UE, and then transmits the success / failure of resume to the Remote UE.
  • a SL Resume message may be used.
  • the Remote UE performs data transmission through a direct link (ie, sidelink).
  • a direct link ie, sidelink
  • the Remote UE may perform the above steps from the previous step.
  • the Remote UE when the Remote UE receives an indication that resume has failed from the Relay UE or does not receive a response from the relay UE for a predetermined time / number of times, the conventional procedure (eg, discovery procedure, direct link setup procedure, direct security mode) control procedure).
  • the conventional procedure eg, discovery procedure, direct link setup procedure, direct security mode
  • step 6 when the relay UE has data to be transmitted or delivered to the remote UE, a direct link setup procedure or a direct link resume procedure may be initiated through a previously promised signaling or communication channel bandwidth and a communication period. At this time, the Remote UE transmits to the relay UE including the resume ID.
  • the information received by the Remote UE from the Relay UE (e.g., signaling or communication channel bandwidth and communication period) and the SL resume ID indicate that communication between the Remote UE and the Relay UE is interrupted in the middle of the communication (e.g., sidelink radio link failure ( The same may be used when communication is started again after the RLF (Radio link failure).
  • Embodiment 1 and embodiment 1-2 described above may be combined and performed in one procedure.
  • 20 is a diagram illustrating a data transmission method through a relay according to an embodiment of the present invention.
  • Relay UE performs an initial attach procedure to E-UTRAN (1-A).
  • the remote UE performs an initial attach procedure to the E-UTRAN (1-B).
  • a preset parameter when parameters e.g., signaling or communication channel bandwidth, security parameters (e.g., selected security algorithm and key) and IP address / bearer information) necessary for the procedures of A to C are preset
  • parameters e.g., signaling or communication channel bandwidth, security parameters (e.g., selected security algorithm and key) and IP address / bearer information
  • security parameters e.g., selected security algorithm and key
  • the Remote UE After the direct link between the Remote UE and the Relay UE is established, the Remote UE performs data transmission over the established direct link and finishes transmitting all data.
  • the relay UE After performing the direct link release procedure with or after the information transfer, or after the information transfer without the direct link release procedure, the relay UE locally releases the direct link with the corresponding remote UE.
  • Two UEs may enter a sidelink eDRX state through signaling or communication channel bandwidth and communication period information.
  • the receiving Remote UE stores the received information and the (SL) resume ID and releases the direct link.
  • the relay UE may perform the remote UE.
  • the relay UE may recognize that the LTE-Uu connection / RRC connection of the remote UE is released from the network.
  • the message transmitted by the relay UE to the remote UE in step 4 includes the following indicator included in the message transmitted by the remote UE in step 4 and the (SL) resume identifier included in the message transmitted by the relay UE in step 5 ((SL) resume ID (Identifier)), signaling or communication channel bandwidth, and communication period information are included.
  • the Remote UE may transmit a response message for receiving the message to the Relay UE.
  • the remote UE performs a discovery procedure with the relay UE for the SDT.
  • the Remote UE sends the (SL) resume ID to the Relay UE using the information received in step 6 above.
  • the remote UE performs a direct link setup procedure or a direct link resume procedure through signaling or communication channel bandwidth and communication period information already promised with the relay UE. At this time, the Remote UE transmits to the relay UE including the (SL) resume ID.
  • the direct link resume procedure is a newly defined procedure for resuming a direct connection, in which the sender sends a (SL) resume request ((SL) Resume Request) message to request the resume of a reserved direct link. It can transmit with ID.
  • the PC5 message (see step 3 of FIG. 18) for the SDT illustrated in FIG. 18 may be interpreted as a (SL) resumption request message.
  • the (SL) resume request message may further include information included in the PC5 message for the SDT of FIG. 18 together with the (SL) resume ID.
  • the (SL) Resume Request message may be 'small data transmission' or 'CP_data' or 'signalling'.
  • a NAS message which is indicated by a message type or a PDU type and includes a NAS PDU composed of the small data, may be included.
  • data for example, the PC5 message for the SDT of FIG. 18 above
  • the SL Resume Request message may further include a PDU type IE.
  • the PDU type IE may include 'Data' or 'Signalling' or 'Control Plane (CP) data' (CP_data). 20 illustrates a case where the PDU type IE indicates CP_data.
  • the Relay UE which has received this, performs the resume of the direct link through the SL resume ID of the Remote UE, and then transmits the success / failure of resume of the reserved direct link to the Remote UE.
  • the (SL) Resume message may be used.
  • the relay UE transmits the small data of the remote UE to the network using the data transmission method in CP CIoT EPS optimization according to FIG. Can transmit For more specific procedures, TS 23.401 V14.2.0 may be incorporated into this document by reference.
  • the relay UE when the relay UE is in the IDLE mode (for example, the EMM-IDLE mode) with the network, without performing a service request procedure for switching to the EMM-CONNECTED mode to transmit the small data of the remote UE to the network, CP CIoT EPS optimization for transmitting small data of the Remote UE may be performed. Through this, it is possible to reduce the power consumption of the relay UE.
  • the Remote UE and the Relay UE perform procedures / operations for the PC5 link. For example, when a relay UE receives a downlink data or signaling message for a remote UE from a network, the relay UE delivers it to the remote UE. When the relay UE receives the release message for the remote UE from the network, the relay UE performs a direct link release procedure for delivering the release message to the remote UE or releasing the PC5 link.
  • the PSM and the eDRX are written based on the EPC system, but may also be applied to the 5G system.
  • the SL direct link reserved state does not perform an operation for receiving uplink / downlink / sidelink signaling or data through the corresponding direct link.
  • the UE in the eDRX mode performs an operation for receiving uplink / downlink / sidelink signaling or data only at a paging occasion due to a predetermined eDRX cycle in the SL direct link reservation state, and performs a reception operation in the remaining eDRX intervals. Do not perform. This can save power.
  • 21 is a diagram illustrating a data transmission method through a relay according to an embodiment of the present invention.
  • Steps 0-A to 2-C The Remote UE performs a request after receiving a request from the network to operate in a power saving mode (PSM) while establishing a direct link with the Relay UE.
  • PSM power saving mode
  • the Remote UE sends a SL message to the Relay UE including a TAU Request message (or Attach Request message) including a timer T3324 and a timer (extended) T3412 (step 0-A),
  • the relay UE sends an RRC message including a TAU Request message (or Attach Request message) including a timer T3324 and a timer (extended) T3412 to (e) NB (step 0-B), and (e) NB sends a timer T3324
  • the S1AP message including the TAU Request message (or Attach Request message) including the timer (extended) T3412 is transmitted to MME 2 (or SGSN 2) of the remote UE (step 0-C).
  • Step 2-A the MME 2 (or SGSN 2) of the Remote UE sends an S1AP message including a TAU Accept message (or Attach Accept message) including a timer T3324 and a timer (extended) T3412 (e) NB.
  • Step 2-A the eNB sends an RRC message including a TAU Accept message (or Attach Accept message) including a timer T3324 and a timer (extended) T3412 to the Relay UE (2-B);
  • Step 2) the relay UE transmits an SL message including a TAU Accept message (or Attach Accept message) including a timer T3324 and a timer (extended) T3412 to the Remote UE (step 2-C).
  • the remote UE performs UL / DL transmission.
  • the timer T3324 starts.
  • the Remote UE may indicate end of transmission and / or reservation via SL message (e.g., Sidelink Suspend Request message). Send the request indication to the relay UE.
  • SL message e.g., Sidelink Suspend Request message
  • the relay UE can reserve the UE context (including the session context and security context) of the Remote UE, accept the reservation in an SL message (eg, Sidelink Suspend (accept / response) message). Includes the SL Resume ID with the confirmation message and sends it to the Remote UE.
  • SL message eg, Sidelink Suspend (accept / response) message
  • the relay UE and the remote UE locally release the direct link.
  • the relay UE and the remote UE may perform a direct link release procedure to explicitly release the direct link.
  • the Remote UE and the Relay UE may store (store) the SL Resume ID and the corresponding direct link.
  • the direct link is stored (stored) by UE identifiers corresponding to the direct link (for example, source layer-2 ID and destination layer-2 ID). can do.
  • the link number for the direct link can be assigned and stored (stored). Then, it stores (stores) that the direct link is in a reserved state.
  • a relay UE when a relay UE cannot reserve a UE context (including a session context and a security context) of a remote UE, the relay UE may perform an SL message (eg, sidelink suspension rejection / response). (reject / response)) message) can be sent to the Remote UE by including a Suspend reject indication.
  • SL message eg, sidelink suspension rejection / response
  • reject / response (reject / response)) message
  • the remote UE can operate in one of two ways.
  • the conventional operation when the direct link is maintained, the conventional operation may be performed as follows.
  • the Remote UE may perform a direct link keepalive procedure for maintaining the direct link.
  • a direct link release procedure for releasing a direct link may be performed.
  • Step 6 If the direct link is successfully reserved in step 5 above, when the MO (SL or UL) signaling / data occurs, the remote UE performs a sidelink resume procedure for resuming the reserved direct link.
  • MO SL or UL
  • the Remote UE includes the SL Resume ID received and stored in step 5 prior to the SL message (for example, Sidelink Resume Request message), and the second layer of the relay UE corresponding to the direct link.
  • An identifier (Layer-2 ID) may be set as a destination Layer-2 ID and transmitted to a relay UE.
  • Step 7 If the relay UE receives the SL resume ID and can resume the SL UE context of the corresponding remote UE, the relay UE accepts the resumption of successful resumption in the SL message (for example, a sidelink resume message). Resume accept / confirm indication and SL Resume ID (old or new) are assigned and sent. Thereafter, the direct link between the relay UE and the remote UE is resumed.
  • the relay UE checks the SL resume ID and cannot resume the SL UE context of the corresponding Remote UE, the relay UE indicates that the resume has been refused in the SL message (e.g., Sidelink Resume Reject message). Transmit with Resume reject indication. Receiving this, the Remote UE may recognize that resumption has failed, and may perform a conventional operation including a direct link setup procedure for establishing a direct link.
  • Step 8 When the direct link is resumed or established, the Remote UE sends signaling or data to the Relay UE via the SL.
  • the UE may perform a process of receiving a request after accepting the network. That is, steps 0-A to 2-C may be performed.
  • the Remote UE may start T3324 and may repeat step 4 when T3324 expires.
  • the relay UE when the relay UE recognizes the transition from the EMM-CONNECTED mode of the remote UE to the EMM-IDLE mode and the expiration of the T3324, the relay UE performs step 4 toward the remote UE, and then the remote UE steps 5 May be performed toward the Relay UE (in this case, may be performed before T3324 expires). The process is then the same as the steps described above.
  • the Remote UE switches from EMM-CONNECTED mode to EMM-IDLE mode (when T3324 expires) without performing steps 4 and 5 separately, and the Relay UE and Remote UE connect to the other UE. You can also reserve the context and release the direct link locally.
  • MO SL or UL
  • 22 is a diagram illustrating a data transmission method through a relay according to an embodiment of the present invention.
  • Steps 0-A to 2-C The Remote UE performs a request after receiving a request from the network to operate as an eDRX while establishing a direct link with the Relay UE.
  • the Remote UE sends an SL message including a TAU Request message (or Attach Request message) including the eDRX parameter IE to the Relay UE (step 0-A), and the Relay UE sends the eDRX parameter.
  • a S1AP message including a request message) is transmitted to MME 2 (or SGSN 2) of the remote UE (step 0-C).
  • MME 2 (or SGSN 2) of the Remote UE sends an S1AP message to the (e) NB including a TAU Accept message (or Attach Accept message) containing the eDRX parameter IE (2) Step A), (e) The eNB sends an RRC message including a TAU Accept message (or Attach Accept message) including the eDRX parameter IE to the relay UE (step 2-B), and the relay UE sends an eDRX parameter IE.
  • the SL message including the TAU Accept message (or Attach Accept message) is transmitted to the Remote UE (step 2-C).
  • the Remote UE may transmit the eDRX parameter with the network to the Relay UE in order to apply the eDRX with the network to direct communication with the Relay UE.
  • This process may be performed immediately after step 2-C or in step 4 above.
  • the eDRX parameter may be passed as it is, the value received in step 2-C, or as an eDRX cycle and paging occasion value or a value that can be calculated.
  • the remote UE performs UL / DL transmission.
  • the Remote UE switches from the EMM-CONNECTED mode to the EMM-IDLE mode.
  • the Remote UE Prior to or immediately before switching to eDRX mode (for U connection), the Remote UE sends a transmission termination indication and / or a reservation request indication via a SL message (e.g., Sidelink Suspend Request message). Send to.
  • a SL message e.g., Sidelink Suspend Request message
  • the relay UE can reserve the UE context (including the session context and security context) of the Remote UE, accept the reservation in an SL message (eg, Sidelink Suspend (accept / response) message). Includes the SL Resume ID with the confirmation message and sends it to the Remote UE.
  • SL message eg, Sidelink Suspend (accept / response) message
  • the relay UE and the remote UE locally release the direct link.
  • the relay UE and the remote UE may perform a direct link release procedure to explicitly release the direct link.
  • the Remote UE and the Relay UE may store (store) the SL Resume ID and the corresponding direct link.
  • the direct link is stored (stored) by UE identifiers corresponding to the direct link (for example, source layer-2 ID and destination layer-2 ID). can do.
  • the link number for the direct link can be assigned and stored (stored). Then, it stores (stores) that the direct link is in a reserved state.
  • a relay UE when a relay UE cannot reserve a UE context (including a session context and a security context) of a remote UE, the relay UE may perform an SL message (eg, sidelink suspension rejection / response). (reject / response)) message) can be sent to the Remote UE by including a Suspend reject indication.
  • SL message eg, sidelink suspension rejection / response
  • reject / response (reject / response)) message
  • the remote UE can operate in one of two ways.
  • the conventional operation when the direct link is maintained, the conventional operation may be performed as follows.
  • the Remote UE may perform a direct link keepalive procedure for maintaining the direct link.
  • a direct link release procedure for releasing a direct link may be performed.
  • Step 6 If the direct link is successfully reserved in step 5 above, when the MO (SL or UL) signaling / data occurs, the remote UE performs a sidelink resume procedure for resuming the reserved direct link.
  • MO SL or UL
  • the Remote UE includes the SL Resume ID received and stored in step 5 prior to the SL message (for example, Sidelink Resume Request message), and the second layer identifier of the relay UE corresponding to the direct link.
  • Layer-2 ID may be set as a destination Layer-2 ID and transmitted to a relay UE.
  • Step 7 If the relay UE receives the SL resume ID and can resume the SL UE context of the corresponding remote UE, the relay UE accepts the resumption of successful resumption in the SL message (for example, a sidelink resume message). Resume accept / confirm indication and SL Resume ID (old or new) are assigned and sent. Thereafter, the direct link between the relay UE and the remote UE is resumed.
  • the relay UE checks the SL resume ID and cannot resume the SL UE context of the corresponding Remote UE, the relay UE indicates that the resume has been refused in the SL message (e.g., Sidelink Resume Reject message). Transmit with Resume reject indication. Receiving this, the Remote UE may recognize that resumption has failed, and may perform a conventional operation including a direct link setup procedure for establishing a direct link.
  • Step 8 When the direct link is resumed or established, the Remote UE sends signaling or data to the Relay UE via the SL.
  • a procedure for transmitting the corresponding UL signaling / data may be performed while establishing a direct link with the Relay UE.
  • the relay UE includes the SL Resume ID received and stored in step 5 prior to the SL message (eg, Sidelink Resume Request message), and the second layer of the Remote UE corresponding to the direct link.
  • the identifier (Layer-2 ID) is set as the destination Layer-2 ID and transmitted to the remote UE.
  • Step 7 Upon receiving this, the remote UE can check the SL resume ID and resume the SL UE context of the corresponding relay UE, accepting the resume of successful suspend in the SL message (e.g., Sidelink Resume message). Resume accept / confirm indication and SL Resume ID (old or new) are assigned and sent. Thereafter, the direct link between the relay UE and the remote UE is resumed.
  • the SL message e.g., Sidelink Resume message.
  • Step 9 You can then operate with one of the following options:
  • step 4 can be performed again.
  • the Remote UE switches from EMM-CONNECTED mode to EMM-IDLE mode, and the Relay UE and Remote UE retain the other UE context and directly link You can also turn off locally.
  • MO SL or UL
  • MT SL or DL
  • Steps 0-A to 2-C The Remote UE performs a request after receiving a request from the network to operate in MICO mode while establishing a direct link with the Relay UE.
  • the remote UE sends an SL message including a registration request message including a MICO indication to the relay UE (step 0-A), and the relay UE sends an RRC message including a registration request message including a MICO indication.
  • TS 23.502 V15.0.0 may be incorporated into this document by reference.
  • AMF 2 of the Remote UE sends an N2 message to the gNB including a Registration Accept message containing a MICO indication (step 2-A), and the gNB sends an RRC message containing a Registration Accept message containing a MICO indication.
  • the Relay UE transmits an SL message including a Registration Accept message including a MICO indication to the Remote UE (step 2-C).
  • the remote UE performs UL / DL transmission.
  • the Remote UE switches to 5GMM-IDLE (or CM-IDLE) mode from 5GMM-CONNECTED (or CM (Connection Management) -CONNECTED) mode and operates in MICO mode.
  • 5GMM-IDLE or CM-IDLE
  • 5GMM-CONNECTED or CM (Connection Management) -CONNECTED
  • the Remote UE Prior to or immediately before switching to MICO mode (for Uu connection), the Remote UE sends a transmission termination indication and / or a reservation request indication via a SL message (e.g., Sidelink Suspend Request message). Send to.
  • a SL message e.g., Sidelink Suspend Request message
  • the relay UE can reserve the UE context (including the session context and security context) of the Remote UE, accept the reservation in an SL message (eg, Sidelink Suspend (accept / response) message). Includes the SL Resume ID with the confirmation message and sends it to the Remote UE.
  • SL message eg, Sidelink Suspend (accept / response) message
  • the relay UE and the remote UE locally release the direct link.
  • the relay UE and the remote UE may perform a direct link release procedure to explicitly release the direct link.
  • the Remote UE and the Relay UE may store (store) the SL Resume ID and the corresponding direct link.
  • the direct link is stored (stored) by UE identifiers corresponding to the direct link (for example, source layer-2 ID and destination layer-2 ID). can do.
  • the link number for the direct link can be assigned and stored (stored). Then, it stores (stores) that the direct link is in a reserved state.
  • a relay UE when a relay UE cannot reserve a UE context (including a session context and a security context) of a remote UE, the relay UE may perform an SL message (eg, sidelink suspension rejection / response). (reject / response)) message) can be sent to the Remote UE by including a Suspend reject indication.
  • SL message eg, sidelink suspension rejection / response
  • reject / response (reject / response)) message
  • the remote UE can operate in one of two ways.
  • the conventional operation when the direct link is maintained, the conventional operation may be performed as follows.
  • the Remote UE may perform a direct link keepalive procedure for maintaining the direct link.
  • a direct link release procedure for releasing a direct link may be performed.
  • Step 6 If the direct link is successfully reserved in step 5 above, when the MO (SL or UL) signaling / data occurs, the remote UE performs a sidelink resume procedure for resuming the reserved direct link.
  • MO SL or UL
  • Step 7 If the relay UE receives the SL resume ID and can resume the SL UE context of the corresponding remote UE, the relay UE accepts the resumption of successful resumption in the SL message (for example, a sidelink resume message). Resume accept / confirm indication and SL Resume ID (old or new) are assigned and sent. Thereafter, the direct link between the relay UE and the remote UE is resumed.
  • the relay UE checks the SL resume ID and cannot resume the SL UE context of the corresponding Remote UE, the relay UE indicates that the resume has been refused in the SL message (e.g., Sidelink Resume Reject message). Transmit with Resume reject indication. Receiving this, the Remote UE may recognize that resumption has failed, and may perform a conventional operation including a direct link setup procedure for establishing a direct link.
  • Step 8 When the direct link is resumed or established, the Remote UE sends signaling or data to the Relay UE via the SL.
  • a procedure for transmitting the corresponding UL signaling / data may be performed while establishing a direct link with the Relay UE.
  • Step 9 You can then operate with one of the following options:
  • step 4 may be performed again.
  • the Relay UE When the Relay UE recognizes the transition from the 5GMM-CONNECTED mode to the 5GMM-IDLE mode of the Remote UE, the Relay UE performs the above 4 steps toward the Remote UE, and then the Remote UE performs the above 5 steps toward the Relay UE. can do. The process is then the same as the steps described above.
  • the Remote UE switches from 5GMM-CONNECTED mode to 5GMM-IDLE mode, and the Relay UE and Remote UE retain the other UE context and directly link You can also turn off locally.
  • MO SL or UL
  • the SL message may be a PC5 signaling protocol message.
  • the message may be implemented as a PC5 signaling protocol message (eg, a direct communication release (DIRECT_COMMUNICATION_RELEASE) message and a direct communication release accept (DIRECT_COMMUNICATION_RELEASE ACCEPT) message), or may be implemented as a newly defined message.
  • the present embodiment proposes a method for a relay UE to efficiently transmit / receive small data received from a plurality of remote UEs to / from a network.
  • Each remote UE transmits its small data through sidelink (ie, direct link) as follows.
  • Each remote UE transmits the corresponding small data through a PC5 message, and includes a life time that the small data should be delivered to a destination (for example, an application server) as a separate IE in the PC5 message. .
  • the relay UE receiving this checks the life time of the corresponding small data, sets the timer value for the life time to the received life time, and starts the timer.
  • the relay UE attempts to transmit small data through the Uu interface before the timer expires.
  • the relay UE checks the timer having the smallest remaining time among the timers related to the life time of small data of the received remote UEs. If the timer value is equal to or smaller than a predetermined value (hereinafter, referred to as alpha), the relay UE starts transmitting small data through the Uu interface.
  • alpha a predetermined value
  • the alpha value may be set equal to or greater than a time required for the relay UE to transmit UL data to a destination (for example, an application server).
  • the relay UE may transmit all small data currently received and buffered while transmitting the small data, regardless of the life time of the corresponding small data.
  • DL data may be collected and transmitted at once, as in UL processing. At this time, the following options exist according to the entity that performs the operation.
  • the destination e.g., application server
  • a remote UE or relay UE or 3GPP network can inform the destination (e.g., an application server) of the following:
  • An identifier of the corresponding relay UE eg, an application identifier (ID) or an external identifier
  • Last delivery time information of the Remote UE (a method of calculating the DL last delivery time will be described later).
  • the destination (for example, the application server) identifies the relay UEs to which each remote UE is linked based on the information received in step 1 (using the above-described relay UE identity).
  • the destination (for example, the application server) checks the last delivery time of the corresponding small data of the remote UEs connected to the same relay UE, sets the timer value for the last delivery time to the last delivery time, and sets the timer. To start.
  • the destination eg, an application server
  • the destination (for example, the application server) identifies a value having the smallest remaining time among timer values for last delivery time of remote UEs connected to the same relay UE.
  • the smallest value is set as the group last delivery time.
  • the group last delivery time value may be updated to a corresponding value when a new last delivery time occurs.
  • the destination e.g., an application server
  • the destination may use small data for relay UEs and remote UEs belonging to the group. Start the transfer.
  • the alpha value may be set equal to or greater than a time required for transmitting DL data from a destination (for example, an application server) to a remote UE.
  • the remote UE transmits UL small data to a destination (for example, an application server), the time until the remote UE becomes a non-reachable time (ie, after small data transmission).
  • the UL small data may be delivered to a destination (eg, an application server) without additional signaling (eg, a service request procedure) until a time interval that maintains a reachable state.
  • This information can be delivered to a destination (eg, an application server) from a remote UE, a relay UE, or a 3GPP network.
  • the time interval for maintaining a reachable state after the small data transmission of the remote UE may be determined in consideration of the time interval for maintaining the reachable state after the small data transmission of the relay UE. That is, it may be determined by the smaller value of the corresponding time interval of the remote UE and the corresponding time interval of the relay UE. The determined value is set to a time until the remote UE becomes a non-reachable time (that is, a time interval that remains reachable after small data transmission) and thus the destination (for example, an application). Server).
  • a life time of the small data is also transmitted.
  • an identifier of the relay UE for example, an application identifier (ID: Identifier) or an external identifier
  • the P-GW receiving the P-GW transmits the S-GW to the S-GW through GTP (GPRS Tunnelling Protocol) including life time in a separate IE together with the corresponding small data.
  • GTP GPRS Tunnelling Protocol
  • An indication indicating that the information is about DL small data or IE may be further included.
  • the identifier of the relay UE received in step 1 is converted into a 3GPP identifier (eg, IMSI) of the relay UE and included in the GTP signaling.
  • the identifier (eg, IMSI) of the Remote UE is included in the GTP signaling.
  • the S-GW which receives it, operates as follows when the remote UE is an EMM-IDLE.
  • the received life time and the identifier of the relay UE are included in a downlink data notification (DDN) message and transmitted to the MME.
  • This DDN message may include an indication or IE indicating that it is for DL small data.
  • MME receiving DDN message confirms the following information through DDN message.
  • the identifier for the relay UE may identify the relay UE linked (linked or associated) with the corresponding remote UE.
  • the MME may have information of a relay UE to which the corresponding remote UE is linked (linked or associated) or may confirm through the DDN message. Based on this, the identifier of the relay UE (eg, IMSI or GUTI) is identified. .
  • the identifier of the relay UE eg, IMSI or GUTI
  • the MME performs the following operation based on the last delivery time of the remote UE.
  • the MME responds to the S-GW with a DDN failure indication in response to the DDN message.
  • the cause may be a previously defined cause (for example, 'Unable to page UE') or a newly defined cause (for example, 'Unable to page UE for life time ( Unable to page UE during life time) ') is transmitted.
  • the S-GW recognizes that data cannot be delivered to the UE for life time and discards the data.
  • the S-GW buffers data until the life time expires, in case the UE may be reachable during the life time, and the UE is reachable until the life time expires. If you don't, you can discard the data.
  • the MME may request buffering (extended) during the life time of the UE, responding with the S-GW. At this time, the MME may inform the S-GW of the expected reachable time of the UE. The S-GW may buffer data until the life time expires and discard the data if the UE is not reachable until the life time expires.
  • the MME responds with an S-GW and requests (extended) buffering for the last delivery time of the UE.
  • an identifier eg, IMSI
  • the S-GW Upon receiving this, the S-GW buffers both the small data and subsequent small data of the corresponding remote UE during the last delivery time.
  • the S-GW may recognize the same as the same group.
  • the S-GW may set the shortest last delivery time of the last delivery time of the group as the group last delivery time.
  • the S-GW is a group (both relay and remote UEs). Buffered DL small data can be transmitted.
  • the procedure for calculating the last delivery time is as follows.
  • the latest reachable time of the relay UE is derived as the last delivery time.
  • the last delivery time may not exist during the time interval in which the life time is valid. This is because the remote UE or the relay UE is not reachable during the time period in which the life time is valid.
  • the value of the last delivery time may be set to null or '0'.
  • the remote UE performs sidelink eDRX every 20 minutes, and the relay UE performs eDRX every 10 minutes.
  • the remote UE wakes up the sidelink eDRX in the pattern 1:20, 1:40, 2:20, 2:20, ...
  • the relay UE wakes up from eDRX in the pattern 1:15, 1:25, 1:35, 1:45, 1:55, 2:20, 2:15, ...
  • the received life time of the small data is 5:25.
  • step 2 If you perform step 2 above, 5:15 of the last reachable time of the relay UE at the latest reachable time of the Remote UE.
  • the case where the UE is not always reachable may mean that the UE uses eDRX or PSM. That is, the Remote UE may use eDRX or PSM and may use sidelink eDRX.
  • both the remote UE and the relay UE use eDRX.
  • a remote UE or a relay UE uses a general operation without using eDRX or PSM, it is always reachable in the network, and thus it can be applied without any limitation on the reachable time of the UE. .
  • a life time or reachable time is given as a duration, which may be given as an actual time (for example, 15:35:30). If a life time or reachable time is given as a duration, it is desirable to update to take into account the time it takes to transmit to the object (ie, it is desirable to subtract the time taken to transfer from life time). box).
  • 24 is a block diagram of a communication device according to one embodiment of the present invention.
  • the network node 2410 includes a processor 2411, a memory 2412, and a communication module 2413.
  • the processor 2411 implements the functions, processes, and / or methods proposed in FIGS. 1 to 23. Layers of the wired / wireless interface protocol may be implemented by the processor 2411.
  • the memory 2412 is connected to the processor 2411 and stores various information for driving the processor 2411.
  • the communication module 2413 is connected to the processor 2411 to transmit and / or receive wired / wireless signals.
  • a base station an MME, an HSS, an SGW, a PGW, an SCEF, or an SCS / AS may correspond thereto.
  • the communication module 2413 may include a radio frequency unit (RF) unit for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 2420 includes a processor 2421, a memory 2422, and a communication module (or RF unit) 2423.
  • the processor 2421 implements the functions, processes, and / or methods proposed in FIGS. 1 to 23. Layers of the air interface protocol may be implemented by the processor 2421. In particular, the processor may include a NAS layer and an AS layer.
  • the memory 2422 is connected to the processor 2421 and stores various information for driving the processor 2421.
  • the communication module 2423 is connected to the processor 2421 and transmits and / or receives a radio signal.
  • the memories 2412 and 2422 may be inside or outside the processors 2411 and 2421, and may be connected to the processors 2411 and 2421 by various well-known means.
  • the network node 2410 (when the base station) and / or the terminal 2420 may have a single antenna or multiple antennas.
  • 25 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 25 is a diagram illustrating the terminal of FIG. 23 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 2510, an RF module (or an RF unit) 2535, and a power management module 2505).
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 2510 implements the functions, processes, and / or methods proposed in FIGS. 1 to 23.
  • the layer of the air interface protocol may be implemented by the processor 2510.
  • the memory 2530 is connected to the processor 2510 and stores information related to the operation of the processor 2510.
  • the memory 2530 may be inside or outside the processor 2510 and may be connected to the processor 2510 by various well-known means.
  • the RF module 2535 is connected to the processor 2510 and transmits and / or receives an RF signal.
  • the processor 2510 transmits command information to the RF module 2535 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module 2535 is composed of a receiver and a transmitter for receiving and transmitting a radio signal.
  • Antenna 2540 functions to transmit and receive wireless signals. Upon receiving the wireless signal, the RF module 2535 may forward the signal and convert the signal to baseband for processing by the processor 2510. The processed signal may be converted into audible or readable information output through the speaker 2545.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 원격 사용자 장치(Remote UE: Remote User Equipment)가 릴레이 UE(Relay UE)를 통해 네트워크와 데이터를 송수신하는 방법에 있어서, 네트워크로 전송할 스몰 데이터(small data)가 발생하였음을 인지하는 단계, 상기 Relay UE와 PC5 인터페이스를 통해 디스커버리 절차를 수행하는 단계 및 상기 디스커버리 절차에서 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌음을 확인하면, 상기 Relay UE에게 상기 스몰 데이터를 포함하는 PC5 메시지를 전송하는 단계를 포함하고, 상기 디스커버리 절차 내에서 상기 Relay UE로부터 수신한 PC5 디스커버리 메시지에 의해 상기 Relay UE가 스몰 데이터 전송 절차를 지원한다고 지시되면, 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌다고 판단될 수 있다.

Description

무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 원격 사용자 장치(Remote User Equipment)가 릴레이 사용자 장치(Relay User Equipment)를 통해 네트워크와 데이터를 송수신하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은, Remote UE가 PC5(즉, UE 간 무선 인터페이스/참조 포인트)를 통해 연결된 Relay UE를 경유하여 네트워크와 데이터를 송수신하는 방법을 제안한다.
또한, 본 발명에서는 Remote UE가 간헐적으로 또는 일회적으로 전송되는 스몰 데이터(small data)를 Relay UE를 통해 네트워크와 송수신하는 방법을 제안한다.
또한, 본 발명에서는 다수의 연결된 Remote UE에게/로부터 스몰 데이터(small data)를 Relay UE와 네트워크 간에 송수신하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 원격 사용자 장치(Remote UE: Remote User Equipment)가 릴레이 UE(Relay UE)를 통해 네트워크와 데이터를 송수신하는 방법에 있어서, 네트워크로 전송할 스몰 데이터(small data)가 발생하였음을 인지하는 단계, 상기 Relay UE와 PC5 인터페이스를 통해 디스커버리 절차를 수행하는 단계 및 상기 디스커버리 절차에서 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌음을 확인하면, 상기 Relay UE에게 상기 스몰 데이터를 포함하는 PC5 메시지를 전송하는 단계를 포함하고, 상기 디스커버리 절차 내에서 상기 Relay UE로부터 수신한 PC5 디스커버리 메시지에 의해 상기 Relay UE가 스몰 데이터 전송 절차를 지원한다고 지시되면, 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌다고 판단될 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 릴레이 UE(Relay UE)를 통해 네트워크와 데이터를 송수신하기 위한 원격 사용자 장치(Remote UE: Remote User Equipment)에 있어서, 유/무선 신호를 송수신하기 위한 통신 모듈(communication module) 및 상기 통신 모듈을 제어하는 프로세서를 포함하고, 상기 프로세서는 네트워크로 전송할 스몰 데이터(small data)가 발생하였음을 인지하고, 상기 Relay UE와 PC5 인터페이스를 통해 디스커버리 절차를 수행하고, 상기 디스커버리 절차에서 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌음을 확인하면, 상기 Relay UE에게 상기 스몰 데이터를 포함하는 PC5 메시지를 전송하도록 구성되고, 상기 디스커버리 절차 내에서 상기 Relay UE로부터 수신한 PC5 디스커버리 메시지에 의해 상기 Relay UE가 스몰 데이터 전송 절차를 지원한다고 지시되면, 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌다고 판단될 수 있다.
바람직하게, 상기 PC5 디스커버리 메시지는 UE와 네트워크 간 릴레이 디스커버리 방송(UE-to-Network Relay Discovery Announcement)을 위한 PC5 디스커버리 메시지 또는 UE와 네트워크 간 릴레이(UE-to-Network Relay) 디스커버리 응답(Discovery Response)을 위한 PC5 디스커버리 메시지일 수 있다.
바람직하게, 상기 PC5 디스커버리 메시지는 UE와 네트워크 간 릴레이(UE-to-Network Relay)의 상태를 지시하기 위한 상태 지시자(Status Indicator) 정보 요소(IE: Information Element) 내 상기 Relay UE가 스몰 데이터 전송 절차를 지원 여부를 지시하는 스몰 데이터 전송 지시자(SDTI: Small Data Transmission Indicator)가 포함될 수 있다.
바람직하게, 상기 Remote UE의 상위 계층로부터 스몰 데이터와 함께 스몰 데이터 전송이 필요하다는 지시가 제공되면, 상기 네트워크로 전송할 스몰 데이터(small data)가 발생하였다고 인지될 수 있다.
바람직하게, 상기 Remote UE의 상위 계층로부터 사용자 평면(user plane) 셋업이 필요한지 여부를 지시하는 정보가 제공될 수 있다.
바람직하게, 상기 PC5 메시지는 스몰 데이터 전송인지 또는 일반 데이터 전송인지 나타내는 메시지 타입 정보, 상기 PC5 메시지에 포함된 프로토콜 데이터 유닛(PDU: Protocol Data Unit)이 시그널링인지 또는 데이터인지 지시하는 PDU 타입 정보, 스몰 데이터의 전송에 이어서 상향링크 및/또는 하향링크 전송이 예상되는지 여부를 지시하는 스몰 데이터 정보, Relay UE와 PC5 인터페이스를 통한 전송을 유지하기 위한 시간을 지시하는 활성 전송 시간 정보, 보안 파라미터, 스몰 데이터 전송에 대한 고유 시퀀스 번호 중 하나 이상을 더 포함할 수 있다.
바람직하게, 상기 PC5 메시지에 대한 응답으로 PC5 응답 메시지를 수신하는 단계를 더 포함하고, 상기 스몰 데이터의 전송의 성공인지 또는 실패인지 지시하는 정보, 스몰 데이터 전송에 대한 고유 시퀀스 번호, 보안 파라미터 중 하나 이상을 포함할 수 있다.
바람직하게, 상기 스몰 데이터의 타입이 제어 평면(Control Plane) 데이터인 경우, 상기 Relay UE가 IDLE 모드일 때, 상기 Relay UE가 CONNECTED 모드로의 전환하기 위한 절차 수행 없이, NAS(Non-Access Stratum) 메시지에 포함된 상기 Remote UE의 상기 스몰 데이터가 제어 평면으로 상기 네트워크에게 전송될 수 있다.
바람직하게, 상기 Relay UE와 확립된 직접 링크를 통해 데이터 전송이 완료된 후, 상기 확립된 직접 링크의 유보(suspend)를 요청하기 위한 유보 요청(suspend request) 메시지를 전송하거나 수신하고, 상기 확립된 직접 링크에 대한 유보가 수락되었음을 지시하기 위한 유보 수락(suspend accept) 메시지를 수신하거나 전송할 수 있다.
바람직하게, 상기 유보 요청(suspend request) 메시지는 모든 데이터 전송이 완료되었다는 지시, 유보 요청 지시, 재개 식별자(resume Identifier), 시그널링 또는 통신 대역폭, 그리고 통신 주기 정보 중 하나 이상을 포함할 수 있다.
바람직하게, 상기 유보 수락(suspend accept) 메시지는 재개 식별자(resume Identifier), 시그널링 또는 통신 대역폭, 통신 주기 정보 중 하나 이상을 포함할 수 있다.
바람직하게, 상기 유보된 직접 링크의 재개를 요청하는 재개 요청(Resume Request) 메시지를 전송하고, 상기 재개 요청 메시지에 대한 응답으로 상기 유보된 직접 링크의 재개의 성공 또는 실패를 지시하는 재개 메시지를 수신할 수 있다.
바람직하게, 상기 재개 요청 메시지는 상기 유보 수락(suspend accept) 메시지에 포함된 재개 식별자(resume Identifier)를 포함할 수 있다.
바람직하게, 상기 재개 요청(Resume Request) 메시지는 상기 스몰 데이터를 포함하는 PC5 메시지로서 이용될 수 있다.
본 발명의 실시예에 따르면, 낮은 파워(low power), 낮은 전송율(low rate) 및 낮은 복잡도(low complexity)/저비용(low cost) 장치인 Remote UE가 스몰 데이터(small data)를 효과적으로 전송할 수 있다.
또한, 본 발명의 실시예에 따르면, Remote UE 및/또는 Relay UE의 파워 소모를 최소화할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 EPS(Evolved Packet System)을 간략히 예시하는 도면이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 직접 링크 셋업 절차를 예시한다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 직접 링크 킵얼라이브 절차를 예시하는 도면이다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 직접 링크 해제 절차를 예시하는 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 직접 보안 모드 제어 절차를 예시한다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 ProSe UE와 네트워크 간(UE-to-Network) 릴레이 절차를 예시하는 도면이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 기지국에 의해 개시된 연결 유보(connection suspend) 절차를 예시한다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 UE에 의해 개시된 연결 재개(connection resume) 절차를 예시한다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 재개 절차를 보다 상세하게 예시한다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 진보된 원격 UE(eRemote-UE)에 의해 트리거된 서비스 요청 절차를 예시한다.
도 17은 본 발명의 일 실시예에 따른 기본적인 시나리오를 예시한다.
도 18은 본 발명의 일 실시예에 따른 Remote UE의 Relay UE를 통한 스몰 데이터 전송 방법을 예시하는 도면이다.
도 19는 본 발명의 일 실시예에 따른 사이드링크 유보 및 재개 절차를 예시한다.
도 20은 본 발명의 일 실시예에 따른 릴레이를 통한 데이터 전송 방법을 예시하는 도면이다.
도 21은 본 발명의 일 실시예에 따른 릴레이를 통한 데이터 전송 방법을 예시하는 도면이다.
도 22는 본 발명의 일 실시예에 따른 릴레이를 통한 데이터 전송 방법을 예시하는 도면이다.
도 23은 본 발명의 일 실시예에 따른 릴레이를 통한 데이터 전송 방법을 예시하는 도면이다.
도 24는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 25는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신(예를 들어, PLMN을 통해 MTC 서버와 통신) 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버. 이동 통신 네트워크의 내부 또는 외부에 존재할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한, MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고(SCS(Services Capability Server) 형태), 자신이 MTC 어플리케이션 서버일 수도 있다.
- (MTC) 어플리케이션(application): (MTC가 적용되는) 서비스(예를 들어, 원격 검침, 물량 이동 추적, 기상 관측 센서 등)
- (MTC) 어플리케이션 서버: (MTC) 어플리케이션이 실행되는 네트워크 상의 서버
- MTC 특징(MTC feature): MTC 어플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 어플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 단말에 대한 MTC 어플리케이션을 위한 특징이다.
- MTC 사용자(MTC User): MTC 사용자는 MTC 서버에 의해 제공되는 서비스를 사용한다.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 가지고 있으며, 하나 이상의 MTC 단말에게 서비스를 제공하는 엔티티(entity)이다.
- MTC 그룹(MTC group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
- 서비스 역량 서버(SCS: Services Capability Server): HPLMN(Home PLMN) 상의 MTC-IWF(MTC InterWorking Function) 및 MTC 단말과 통신하기 위한 엔티티로서, 3GPP 네트워크와 접속되어 있다. SCS는 하나 이상의 MTC 어플리케이션에 의한 사용을 위한 능력(capability)를 제공한다.
- 외부 식별자(External Identifier): 3GPP 네트워크의 외부 엔티티(예를 들어, SCS 또는 어플리케이션 서버)가 MTC 단말(또는 MTC 단말이 속한 가입자)을 가리키기(또는 식별하기) 위해 사용하는 식별자(identifier)로서 전세계적으로 고유(globally unique)하다. 외부 식별자는 다음과 같이 도메인 식별자(Domain Identifier)와 로컬 식별자(Local Identifier)로 구성된다.
- 도메인 식별자(Domain Identifier): 이동 통신 네트워크 사업자의 제어 항에 있는 도메인을 식별하기 위한 식별자. 하나의 사업자는 서로 다른 서비스로의 접속을 제공하기 위해 서비스 별로 도메인 식별자를 사용할 수 있다.
- 로컬 식별자(Local Identifier): IMSI(International Mobile Subscriber Identity)를 유추하거나 획득하는데 사용되는 식별자. 로컬 식별자는 어플리케이션 도메인 내에서는 고유(unique)해야 하며, 이동 통신 네트워크 사업자에 의해 관리된다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RANAP(RAN Application Part): RAN과 코어 네트워크의 제어를 담당하는 노드(즉, MME(Mobility Management Entity)/SGSN(Serving GPRS(General Packet Radio Service) Supporting Node)/MSC(Mobile Switching Center)) 사이의 인터페이스.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- SCEF(Service Capability Exposure Function): 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력(capability)을 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍쳐 내 엔티티.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway)(또는 S-GW), PDN GW(Packet Data Network Gateway)(또는 PGW 또는 P-GW), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
Figure PCTKR2018000368-appb-T000001
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다.
도 2를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 SGW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 3을 참조하면, eNB는 게이트웨이(예를 들어, MME)의 선택, 무선 자원 제어(RRC: radio resource control) 활성(activation) 동안 게이트웨이로의 라우팅, 방송 채널(BCH: broadcast channel)의 스케줄링 및 전송, 상향링크 및 하향링크에서 UE로 동적 자원 할당, 그리고 LTE_ACTIVE 상태에서 이동성 제어 연결의 기능을 수행할 수 있다. 상술한 바와 같이, EPC 내에서 게이트웨이는 페이징 개시(orgination), LTE_IDLE 상태 관리, 사용자 평면(user plane)의 암호화(ciphering), 시스템 구조 진화(SAE: System Architecture Evolution) 베어러 제어, 그리고 NAS 시그널링의 암호화(ciphering) 및 무결성(intergrity) 보호의 기능을 수행할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 4(a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 4(b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 4를 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PCFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 제어 채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel) 등이 있다. 트래픽 채널로는 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다. PCCH는 페이징 정보를 전달하는 하향링크 채널이고, 네트워크가 UE가 속한 셀을 모를 때 사용된다. CCCH는 네트워크와의 RRC 연결을 가지지 않는 UE에 의해 사용된다. MCCH 네트워크로부터 UE로의 MBMS(Multimedia Broadcast and Multicast Service) 제어 정보를 전달하기 위하여 사용되는 점-대-다점(point-to-multipoint) 하향링크 채널이다. DCCH는 UE와 네트워크 간에 전용 제어 정보를 전달하는 RRC 연결을 가지는 단말에 의해 사용되는 일-대-일(point-to-point) 양방향(bi-directional) 채널이다. DTCH는 상향링크 및 하향링크에서 존재할 수 있는 사용자 정보를 전달하기 위하여 하나의 단말에 전용되는 일-대-일(point-to-point) 채널이다. MTCH는 네트워크로부터 UE로의 트래픽 데이터를 전달하기 위하여 일-대-다(point-to-multipoint) 하향링크 채널이다.
논리 채널(logical channel)과 전송 채널(transport channel) 간 상향링크 연결의 경우, DCCH는 UL-SCH과 매핑될 수 있고, DTCH는 UL-SCH와 매핑될 수 있으며, CCCH는 UL-SCH와 매핑될 수 있다. 논리 채널(logical channel)과 전송 채널(transport channel) 간 하향링크 연결의 경우, BCCH는 BCH 또는 DL-SCH와 매핑될 수 있고, PCCH는 PCH와 매핑될 수 있으며, DCCH는 DL-SCH와 매핑될 수 있으며, DTCH는 DL-SCH와 매핑될 수 있으며, MCCH는 MCH와 매핑될 수 있으며, MTCH는 MCH와 매핑될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 5를 참조하면, 물리 채널은 주파수 영역(frequency domain)에서 하나 이상의 서브캐리어와 시간 영역(time domain)에서 하나 이상의 심볼로 구성되는 무선 자원을 통해 시그널링 및 데이터를 전달한다.
1.0ms 길이를 가지는 하나의 서브프레임은 복수의 심볼로 구성된다. 서브프레임의 특정 심볼(들)(예를 들어, 서브프레임의 첫번째 심볼)은 PDCCH를 위해 사용될 수 있다. PDCCH는 동적으로 할당되는 자원에 대한 정보(예를 들어, 자원 블록(Resource Block), 변조 및 코딩 방식(MCS: Modulation and Coding Scheme) 등)를 나른다.
랜덤 액세스 절차(Random Access Procedure)
이하에서는 LTE/LTE-A 시스템에서 제공하는 랜덤 액세스 절차(random access procedure)에 대해 살펴본다.
랜덤 액세스 절차는 단말이 기지국과의 RRC 연결(RRC Connection)이 없어, RRC 아이들 상태에서 초기 접속 (initial access)을 수행하는 경우, RRC 연결 재-확립 절차(RRC connection re-establishment procedure)를 수행하는 경우 등에 수행된다.
LTE/LTE-A 시스템에서는 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하는 과정에서, 특정한 집합 안에서 단말이 임의로 하나의 프리앰블을 선택하여 사용하는 경쟁 기반 랜덤 액세스 절차(contention based random access procedure)과 기지국이 특정 단말에게만 할당해준 랜덤 액세스 프리앰블을 사용하는 비 경쟁 기반 랜덤 액세스 절차(non-contention based random access procedure)을 모두 제공한다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
(1) 제1 메시지(Msg 1, message 1)
먼저, 단말은 시스템 정보(system information) 또는 핸드오버 명령(handover command)을 통해 지시된 랜덤 액세스 프리앰블의 집합에서 임의로(randomly) 하나의 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하고, 상기 랜덤 액세스 프리앰블을 전송할 수 있는 PRACH(physical RACH) 자원을 선택하여 전송한다.
단말로부터 랜덤 액세스 프리앰블을 수신한 기지국은 프리앰블을 디코딩하고, RA-RNTI를 획득한다. 랜덤 액세스 프리앰블이 전송된 PRACH와 관련된 RA-RNTI는 해당 단말이 전송한 랜덤 액세스 프리앰블의 시간-주파수 자원에 따라 결정된다.
(2) 제2 메시지(Msg 2, message 2)
기지국은 제1 메시지 상의 프리앰블을 통해서 획득한 RA-RNTI로 지시(address)되는 랜덤 액세스 응답(random access response)을 단말로 전송한다. 랜덤 액세스 응답에는 랜덤 액세스 프리앰블 구분자/식별자(RA preamble index/identifier), 상향링크 무선자원을 알려주는 상향링크 승인(UL grant), 임시 셀 식별자(TC-RNTI: Temporary Cell RNTI) 그리고 시간 동기 값(TAC: time alignment command)들이 포함될 수 있다. TAC는 기지국이 단말에게 상향링크 시간 정렬(time alignment)을 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, 상향링크 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(time alignment timer)를 개시 또는 재시작한다. UL grant는 후술하는 스케줄링 메시지(제3 메시지)의 전송에 사용되는 상향링크 자원 할당 및 TPC(transmit power command)를 포함한다. TPC는 스케줄링된 PUSCH를 위한 전송 파워의 결정에 사용된다.
단말은 랜덤 액세스 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 랜덤 액세스 응답 윈도우(random access response window) 내에서 자신의 랜덤 액세스 응답(random access response)의 수신을 시도하며, PRACH에 대응되는 RA-RNTI로 마스킹된 PDCCH를 검출하고, 검출된 PDCCH에 의해 지시되는 PDSCH를 수신하게 된다. 랜덤 액세스 응답 정보는 MAC PDU(MAC packet data unit)의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH을 통해 전달될 수 있다.
단말은 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자/식별자를 가지는 랜덤 액세스 응답을 성공적으로 수신하면, 랜덤 액세스 응답의 모니터링을 중지한다. 반면, 랜덤 액세스 응답 윈도우가 종료될 때까지 랜덤 액세스 응답 메시지를 수신하지 못하거나, 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자를 가지는 유효한 랜덤 액세스 응답을 수신하지 못한 경우 랜덤 액세스 응답의 수신은 실패하였다고 간주되고, 이후 단말은 프리앰블 재전송을 수행할 수 있다.
(3) 제3 메시지(Msg 3, message 3)
단말이 자신에게 유효한 랜덤 액세스 응답을 수신한 경우에는, 상기 랜덤 액세스 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, TC-RNTI를 저장한다. 또한, UL grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다.
단말의 최초 접속의 경우, RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 요청(RRC Connection Request)이 제3 메시지에 포함되어 전송될 수 있으며, RRC 연결 재확립 절차의 경우 RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 재확립 요청(RRC Connection Re-establishment Request)이 제3 메시지에 포함되어 전송될 수 있다. 또한, NAS 접속 요청 메시지를 포함할 수도 있다.
제3 메시지는 단말의 식별자가 포함되어야 한다. 단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 존재한다. 첫 번째 방법은 단말이 상기 랜덤 액세스 절차 이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자(C-RNTI)를 가지고 있었다면, 단말은 상기 UL grant에 대응하는 상향링크 전송 신호를 통해 자신의 셀 식별자를 전송한다. 반면에, 만약 랜덤 액세스 절차 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자(예를 들면, S-TMSI(SAE temporary mobile subscriber identity) 또는 임의 값(random number))를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 C-RNTI보다 길다.
단말은 상기 UL grant에 대응하는 데이터를 전송하였다면, 충돌 해결을 위한 타이머(contention resolution timer)를 개시한다.
(4) 제4 메시지(Msg 4, message 4)
기지국은 단말로부터 제3 메시지를 통해 해당 단말의 C-RNTI를 수신한 경우 수신한 C-RNTI를 이용하여 단말에게 제4 메시지를 전송한다. 반면, 단말로부터 제3 메시지를 통해 상기 고유 식별자(즉, S-TMSI 또는 임의 값(random number))를 수신한 경우, 랜덤 액세스 응답에서 해당 단말에게 할당한 TC-RNTI를 이용하여 제4 메시지를 단말에게 전송한다. 일례로, 제4 메시지는 RRC 연결 설정 메시지(RRC Connection Setup)가 포함할 수 있다.
단말은 랜덤 액세스 응답에 포함된 UL grant를 통해 자신의 식별자를 포함한 데이터를 전송한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 존재한다. 앞에서 언급한 바와 같이 상기 UL grant에 대응하여 전송된 제3 메시지가 자신의 식별자가 C-RNTI인 경우, 자신의 C-RNTI를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자(즉, S-TMSI 또는 임의 값(random number))인 경우에는, 랜덤 액세스 응답에 포함된 TC-RNTI를 이용하여 PDCCH의 수신을 시도한다. 그 후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 C-RNTI를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 TC-RNTI를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 제4 메시지를 통해 단말은 C-RNTI를 획득하고, 이후 단말과 네트워크는 C-RNTI를 이용하여 단말 특정 메시지(dedicated message)를 송수신하게 된다.
한편, 비경쟁 기반 임의접속 과정에서의 동작은 도 6에 도시된 경쟁 기반 임의접속 과정과 달리 제1 메시지 전송 및 제2 메시지 전송만으로 임의접속 절차가 종료되게 된다. 다만, 제1 메시지로서 단말이 기지국에 임의접속 프리앰블을 전송하기 전에 단말은 기지국으로부터 임의접속 프리앰블을 할당받게 되며, 이 할당받은 임의접속 프리앰블을 기지국에 제1 메시지로서 전송하고, 기지국으로부터 임의접속 응답을 수신함으로써 임의접속 절차가 종료되게 된다.
이하, 본 명세서에서 사용되는 용어에 대한 설명은 다음과 같다.
- 전용 베어러(Dedicated bearer): UE 내 상향링크 패킷 필터(들)과 P-GW 내 하향링크 패킷 필터(들)과 연관된 EPS 베어러이다. 여기서 필터(들)은 특정 패킷만이 매칭된다.
- 기본 베어러(Default bearer): 매 새로운 PDN 연결로 확립되는 EPS 베어러이다. Default bearer의 컨텍스트는 PDN 연결의 수명시간(lifetime) 동안에 유지된다.
- EMM(EPS Mobility Management)-널(EMM-NULL) 상태: UE 내 EPS 서비스가 비활성된다. 어떠한 EPS 이동성 관리 기능도 수행되지 않는다.
- EMM-비등록(EMM-DEREGISTERED) 상태: EMM-DEREGISTERED 상태에서, EMM 컨텍스트가 확립되지 않고, UE 위치는 MME에게 알려지지 않는다. 따라서, MME에 의해 UE가 접근 가능하지 않다(unreachable). EMM 컨텍스트를 확립하기 위해, UE는 어태치(Attach) 또는 결합된 어태치(combined Attach) 절차를 시작하여야 한다.
- EMM-등록(EMM-REGISTERED) 상태: EMM-REGISTERED 상태에서, UE 내 EMM 컨텍스트가 확립되어 있고, 기본(default) EPS 베어러 컨텍스트가 활성화되어 있다. UE가 EMM-IDLE 모드에 있을 때, UE 위치는 TA의 특정 번호를 포함하는 TA들의 리스트의 정확도로 MME에게 알려진다. UE는 사용자 데이터 및 시그널링 정보의 송수신을 개시할 수 있고, 페이징에 응답할 수 있다. 또한, TAU 또는 결합된 TAU(combined TAU) 절차가 수행된다.
- EMM-연결(EMM-CONNECTED) 모드: UE와 네트워크 간에 NAS 시그널링 연결이 확립될 때, UE는 EMM-CONNECTED 모드이다. EMM-CONNECTED의 용어는 ECM-CONNECTED 상태의 용어로 지칭될 수도 있다.
- EMM-아이들(EMM-IDLE) 모드: UE와 네트워크 간에 NAS 시그널링 연결이 존재하지 않거나(즉, 유보 지시가 없는 EMM-IDLE 모드) 또는 RRC 연결 유보(RRC connection suspend)가 하위 계층에 의해 지시되었을 때(즉, 유보 지시를 수반한 EMM-IDLE 모드), UE는 EMM-IDLE 모드이다. EMM-IDLE의 용어는 ECM-IDLE 상태의 용어로 지칭될 수도 있다.
- EMM 컨텍스트(EMM context): 어태치(Attach) 절차가 성공적으로 완료되면, EMM 컨텍스트는 UE 및 MME 내 확립된다.
- 제어 평면(Control plane) CIoT EPS optimization: MME를 경유하여 제어 평면을 통한 사용자 데이터(IP, non-IP 또는 SMS)의 효율적인 전달(transport)을 가능하게 하는 시그널링 최적화. 선택적으로 IP 데이터의 헤더 압축(header compression)을 포함할 수 있다.
- 사용자 평면(User Plane) CIoT EPS optimization: 사용자 평면을 통한 사용자 데이터(IP 또는 non-IP)의 효율적인 전달을 가능하게 하는 시그널링 최적화
- EPS 서비스(들): PS 도메인에 의해 제공되는 서비스(들).
- NAS 시그널링 연결: UE와 MME 간의 피어-대-피어(peer-to-peer) S1 모드 연결. NAS 시그널링 연결은 LTE-Uu 인터페이스를 경유하는 RRC 연결과 S1 인터페이스를 경유하는 S1AP 연결의 연접(concatenation)으로 구성된다.
- control plane CIoT EPS optimization를 수반하는 EPS 서비스(EPS services with control plane CIoT EPS optimization)를 사용하는 UE: 네트워크에 의해 승락된 control plane CIOT EPS optimization을 수반하는 EPS 서비스를 위해 어태치(attach)된 UE
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- AS(Access Stratum): E-UTRAN(eNB)과 UE 간 또는 E-UTRAN(eNB)와 MME 간 인터페이스 프로토콜(interface protocol) 상에서 NAS 계층 아래의 프로토콜 계층을 의미한다. 예를 들어, 제어평면 프로토콜 스택에서, RRC 계층, PDCP 계층, RLC 계층, MAC 계층, PHY 계층을 통칭하거나 이중 어느 하나의 계층을 AS 계층으로 지칭할 수 있다. 또는, 사용자 평면 프로토콜 스택에서, PDCP 계층, RLC 계층, MAC 계층, PHY 계층을 통칭하거나 이중 어느 하나의 계층을 AS 계층으로 지칭할 수 있다.
- S1 모드 (S1 mode): 무선 액세스 네트워크와 코어 네트워크 간의 S1 인터페이스의 사용에 따른 기능적인 분리를 가지는 시스템에 적용되는 모드를 의미한다. S1 모드는 WB-S1 모드와 NB-S1 모드를 포함한다.
- NB-S1 모드 (NB-S1 mode): UE의 서빙 무선 액세스 네트워크가 협대역(NB: Narrow Band)-IoT(Internet of Things)에 의한 (E-UTRA를 경유한) 네트워크 서비스로의 액세스를 제공할 때, UE는 이 모드가 적용된다.
- WB-S1 모드 (WB-S1 mode): 시스템이 S1 모드로 동작하지만 NB-S1 모드가 아니면, 이 모드가 적용된다.
3GPP Release 14에서는 비-공공 안전(non-Public Safety) UE에 대해서도 릴레이 UE(relay UE)를 통해 네트워크 연결 서비스를 받도록 하고자 SA1에서 서비스 요구 사항을 작업 중에 있다. 이와 같이 relay UE를 통해 네트워크 연결 서비스를 받는 UE로는 대표적으로 웨어러블(wearable) 기기가 거론되고 있다.
SA2와 RAN WG에서도 릴리즈(Rel: Release)-13 릴레이(Relay)를 향상시키기 위한 스터디 아이템 설명(SID: Study Item Description)인 FS_REAR(릴레이 UE(Relay UE)를 통한 원격 UE(Remote UE) 접속)와 F2D2D(LTE 장치 간 통신(Device to Device)의 향상, 및 사물 인터넷(IoT: Internet of Things)과 웨어러블 장치(Wearables)를 위한 UE와네트워크 간의 릴레이)을 각각 승인하고 이와 관련하여 스터디를 진행하고 있다.
특징적으로, F2D2D 스터디 아이템에서는 낮은 파워(low power), 낮은 전송율(low rate) 및 낮은 복잡도/저비용 장치를 타겟으로하는 논의가 진행되고 있다.
그리고, FS_REAR 스터디 아이템에서는 특징적으로, 비대칭적인(asymmetric) 상향링크/하향링크 연결(즉, 진보된 ProSe UE와 네트워크 간 릴레이(ProSe UE-to-Network Relay)로 PC5를 통해 상향링크 전송 및 Uu를 통한 직접적인 하향링크 전송) 및 대칭적인(symmetric) 상향링크/하향링크 연결을 위한 공통된 솔루션이 가능한지 논의되고 있다.
상술한 바와 같이, 2 가지의 케이스인 비대칭적인(asymmetric) 상향링크/하향링크, 대칭적인(symmetric) 상향링크/하향링크를 고려하고 있다.
여기서, '비대칭적인(asymmetric) 상향링크/하향링크'는 원격 UE(remote UE)가 상향링크 전송을 위해 릴레이 UE(relay UE)와의 직접 링크를 이용하고, 하향링크 전송을 위해 기지국으로부터 Uu 인터페이스를 이용하는 것을 의미한다.
'대칭적인(symmetric) 상향링크/하향링크'는 remote UE가 상향링크 전송과 하향링크 전송 모두 relay UE와의 직접 링크를 이용하는 것을 의미한다.
이하, 본 발명에서는 relay UE를 통한 remote UE의 스몰 데이터(small data) 송수신 방법을 제안한다.
일대일(one-to-one) 근접성 기반 서비스(ProSe: Proximity-based services) 직접 통신 및 PC5 시그널링 절차/메시지
이하, 일대일(one-to-one) ProSe 직접 통신(direct communication)을 위한 2개의 ProSe 가능한(ProSe-enabled) UE 간의 PC5(즉, UE 간의 무선 인터페이스) 시그널링 프로토콜 절차를 살펴본다.
다음과 같은 PC5 시그널링 프로토콜 절차가 정의된다:
- 직접 링크 셋업(direct link setup);
- 직접 링크 킵얼라이브(direct link keepalive);
- 직접 링크 해제(direct link release); 및
- 직접 링크 인증(direct link authentication).
UE는 one-to-one ProSe direct communication을 위해 인증 받아야 하며, one-to-one ProSe direct communication을 위한 어떠한 PC5 시그널링 프로토콜 절차를 개시 또는 참여하기 전에 서비스 인증 절차에 기반하여 ProSe direct communication 정책 파라미터를 획득하여야 한다.
UE는 one-to-one ProSe direct communication을 위한 무선 자원을 선택한다.
원격(remote) UE와 ProSe UE-네트워크 간(UE-to-network) 릴레이(relay) UE 간의 one-to-one communication을 위해, 원격 UE가 릴레이 통신을 위한 무선 자원의 사용이 허용되지 않는다는 하위 계층(lower layer) 지시를 수신하면, remote UE는 relay가 관여된 진행 중인 절차(즉, PC5 시그널링 프로토콜 절차 및 데이터 전송/수신)를 중단한다. 그리고, remote UE는 T 값을 가지는 특정 타이머를 시작한다. 이 타이머가 구동 중인 동안에, remote UE는 relay가 관여하는 어떠한 절차를 개시하지 않는다. remote UE는 릴레이 통신을 위한 무선 자원의 사용이 허용된다는 하위 계층 지시를 수신하면, remote UE는 특정 타이머를 중단하고, 릴레이가 관여된 절차를 재개(resume)할 수 있다. 그렇지 않으면, 특정 타이머가 만료된 후, remote UE는 지역적으로(locally) relay(들)과의 통신을 위한 모든 직접 링크를 해제한다.
1. 직접 링크 셋업 절차(Direct link setup procedure)
이하, 직접 링크를 셋업하기 위한 직접 링크 셋업 절차를 살펴본다. 후술하는 내용에 의하면, 원격 UE(Remote UE)는 직접 링크를 셋업하기 위해 직접 통신 요청(DIRECT_COMMUNICATION_REQUEST) 메시지를 릴레이 UE(Relay UE)에게 전송한다. DIRECT_COMMUNICATION_REQUEST 메시지는 직접 링크 셋업에 필요한 파라미터들을 포함한다.
- IP 주소 설정(IP Address Config) IE나 링크 로컬 IPv6 주소(Link Local IPv6 Address) IE는 Remote UE의 IP 주소 할당을 위해서 필요한 파라미터이다.
- 다음은 직접 링크의 보안된 연결을 확립하고, 인증을 위한 보안 관련 파라미터이다.
Nonce_1 IE, UE 보안 능력(UE Security Capabilities), KD-sess ID의 최상위 비트(MSB: Most Significant Bit), KD ID, 시그니처(Signature)
후술하는 내용에 의하면, DIRECT_COMMUNICATION_REQUEST 메시지를 수신한 Relay UE가 사용자 정보(User Info)와 IP 설정(IP configuration)에 대한 확인이 성공적으로 마치면, Remote UE와의 보안 연계를 맺기 위하여 직접 보안 모드 제어 절차를 수행한다.
1) 일반
직접 링크 셋업 절차는 2개의 ProSe 가능한(ProSe-enabled) UE 간의 안전한 직접 링크를 확립하기 위해 사용된다. 요청 메시지를 전송하는 UE는 "개시 UE(initiating UE)"라고 지칭되고, 다른 UE는 "타겟 UE(target UE)"라고 지칭된다.
직접 링크 셋업이 단독의(isolated) 일대일 ProSe 직접 통신을 위한 것이면(즉, 2개의 UE 모두 ProSe UE-to-network relay가 아닌 경우), UE 모두는 키 관리 서버(KMS: Key Management Server)의 공공 키와 UE의 식별자와 연관된 자격의 세트를 미리 획득할 것이 요구된다.
2) 개시 UE(initiating UE)에 의한 직접 링크 셋업 절차 개시
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 직접 링크 셋업 절차를 예시한다.
개시 UE(initiating UE)는 이 절차를 개시하기 전에 다음과 같은 전제-조건(pre-condition)을 만족시켜야 한다:
- 타겟 UE(target UE)와의 직접 링크를 확립하기 위한 상위 계층(upper layer)로부터 요청이 수신되고, initiating UE와 해당 target UE 간의 링크가 존재하지 않는다;
- initiating UE를 위한 링크 계층 식별자(즉, 유니캐스트(unicast) 통신을 위해 사용되는 2 계층 식별자(Layer 2 ID))가 이용 가능하다(예를 들어, 미리 설정되거나 또는 자동 할당(self-assigned)됨);
- target UE를 위한 링크 계층 식별자(즉, 유니캐스트(unicast) 통신을 위해 사용되는 Layer 2 ID)가 initiating UE에게 이용 가능하다(예를 들어, 미리 설정되거나 또는 ProSe 직접 디스커버리(direct discovery)를 통해 획득됨); 그리고
- initiating UE는 서빙 PLMN 내에서 ProSe direct communication를 위해 인증되거나, 또는 E-UTRAN에 의해 서비스되지 않을 때 ProSe direct communication를 위한 유효한 인증을 가진다.
initiating UE는 직접 통신 요청(DIRECT_COMMUNICATION_REQUEST) 메시지를 생성함으로써 직접 링크 셋업 절차를 개시한다.
이때, DIRECT_COMMUNICATION_REQUEST 메시지는 다음을 포함한다.
i) 다음과 같이 셋팅되는 사용자 정보(User Info):
- target UE가 ProSe UE-to-network relay UE가 아니면, 상위 계층으로부터 수신된 initiating UE의 User Info;
- target UE가 ProSe UE-to-network relay UE이고 initiating UE가 ProSe 키 관리 기능(PKMF: ProSe Key Management Function)로부터 이 relay를 위해 PRUK를 수신하였으며 이 relay로의 연결 시도가 PRUK ID가 인식되지 않았음을 이유로 거절되지 않았으면, PKMF로부터 수신된 ProSe 릴레이 사용자 키 식별자(Relay User Key ID);
- target UE가 ProSe UE-to-network relay UE이고 initiating UE가 이 relay를 위해 PKMF로부터 PRUK를 수신하지 않았으면, initiating UE의 IMSI; 또는
- target UE가 ProSe UE-to-network relay UE이고 initiating UE가 이 relay를 위해 PKMF로부터 PRUK를 수신하였지만 이 relay로의 연결 시도가 PRUK ID가 인식되지 않았음을 이유로 거절되었다면, initiating UE의 IMSI;
ii) 다음 중 하나의 값으로 셋팅되는 인터넷 프로토콜(IP: Internet Protocol) 주소 설정(IP Address Config) 정보 요소(IE: Information Element):
- IP 버전 4(IPv4: IP version 4) 주소 할당 메커니즘이 initiating UE에 의해 지원되면, 즉 DHCPv4(Dynamic Host Configuration Protocol version 4) 서버로서 동작하면, "DHCPv4 서버(DHCPv4 Server)";
- IP 버전 6(IPv6: IP version 6) 주소 할당 메커니즘이 initiating UE에 의해 지원되면, 즉 IPv6 라우터로서 동작하면, "IPv6 라우터(IPv6 Router)";
- IPv4 및 IPv6 주소 할당 메커니즘 모두가 initiating UE에 의해 지원되면, "DHCPv4 서버 및 IPv6 라우터"; 또는
- IPv4 및 IPv6 주소 할당 메커니즘 모두 initiating UE에 의해 지원되지 않으면, "주소 할당 지원되지 않음(address allocation not supported);
iii) IP Address Config IE가 "address allocation not supported"로 셋팅되고 링크가 단독의(isolated) 일대일 통신을 위해 셋업되면, IETF(Internet Engineering Task Force) RFC(Request for Comments) 4862에 기반하여 지역적으로(locally) 형성된 링크 지역 IPv6 주소 IE(Link Local IPv6 Address);
iv) 이 직접 링크를 통해 요청 UE(requesting UE)의 최대 비활동 구간(period)를 지시하는 최대 비활동 구간(Maximum Inactivity Period) IE;
v) 이 직접 링크를 통해 세션 키 확립의 목적으로 initiating UE에 의해 생성되는 128 비트 임시값(nonce value)으로 셋팅되는 Nonce_1 IE;
vi) initiating UE가 이 직접 링크의 보안 확립을 위해 지원하는 알고리즘의 리스트를 지시하도록 셋팅된 UE 보안 능력(UE Security Capabilities) IE;
vii) K_D-sess 식별자(ID: Identifier)의 최상위 8 비트로 셋팅되는 K_D-sess ID의 최상위 비트(MSB of K_D-sess ID) IE; 및
viii) 선택적으로, initiating UE가 target UE와 기존의 K_D를 가졌으면, 이전에 확립되었던 K_D의 알려진 ID로 셋팅된 K_D ID IE.
직접 링크 셋업은 단독의(isolated) 일대일 ProSe 직접 통신을 위한 것이면, DIRECT_COMMUNICATION_REQUEST 메시지는 또한 다음의 파라미터를 포함한다:
- User Info IE 및 Nonce_1 IE로 계산된 ECCSI(Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption) 시그니처로 셋팅된 시그니처(Signature) IE.
그렇지 않고, 링크 셋업이 원격(remote) UE가 ProSe UE-to-network relay로의 ProSe direct communication을 위한 것이면, DIRECT_COMMUNICATION_REQUEST 메시지는 target relay의 릴레이 서비스 코드로 셋팅된 릴레이 서비스 코드(Relay Service Code) IE를 포함한다.
DIRECT_COMMUNICATION_REQUEST 메시지가 생성된 후, initiating UE는 이 메시지를 전송을 위해 initiating UE의 2 계층 식별자(Layer 2 ID)(유니캐스트 통신을 위한) 및 target UE의 2 계층 식별자(Layer 2 ID)(유니캐스트 통신을 위한)와 함께 하위 계층으로 전달하고, T4100 타이머를 시작한다. UE는 T4100 타이머가 구동 중인 동안 동일한 target UE에게 새로운 DIRECT_COMMUNICATION_REQUEST 메시지를 전송하지 않는다.
3) 타겟 UE(target UE)에 의해 수락된 직접 링크 셋업 절차
도 7(a)를 참조하면, DIRECT_COMMUNICATION_REQUEST 메시지를 수신하면, target UE는 하위 계층에 의해 제공된 이 메시지의 전달(transport) 내에서 사용된 Layer 2 ID의 쌍(pair)(유니캐스트 통신을 위한)을 저장하고, Layer 2 ID의 쌍(pair)을 직접 링크 컨텍스트에 연관시킨다.
target UE는 DIRECT_COMMUNICATION_REQUEST 메시지 내 포함된 User Info IE를 체크하고, 이 요청이 수락될 수 있는지 여부를 결정한다. 그리고, 적어도 하나의 공통된 IP 주소 설정 옵션이 initiating UE와 target UE 모두에 의해 지원되는지 여부를 확인하기 위하여, target UE는 IP Address Config IE를 검사한다. 상술한 체크가 모두 성공되면, target UE와 initiating UE 간의 보안 연계를 확립하기 위하여, target UE는 직접 보안 모드 제어 절차(direct security mode control procedure)를 호출한다. 링크 인증 절차의 완료 및 보안 연계의 성공적인 확립 후에, target UE는 직접 통신 수락(DIRECT_COMMUNICATION_ACCEPT) 메시지를 initiating UE에게 전송한다.
target UE는 다음과 같은 값 중 하나로 셋팅된 IP Address Config IE를 포함시킨다:
- IPv4 주소 할당 메커니즘이 target UE에 의해 지원되고, target UE가 DHCP 서버로서 동작할 수 있으면, "DHCPv4 서버(DHCPv4 Server)";
- IPv6 주소 할당 메커니즘이 target UE에 의해 지원되고, target UE가 IPv6 라우터로서 동작할 수 있으면, "IPv6 라우터(IPv6 Router)";
- IPv4 및 IPv6 주소 할당 메커니즘 모두가 target UE에 의해 지원되면, "DHCPv4 서버 및 IPv6 라우터"; 또는
- IPv4 및 IPv6 주소 할당 메커니즘 모두 target UE에 의해 지원되지 않으면, "주소 할당 지원되지 않음(address allocation not supported).
IP Address Config IE가 "address allocation not supported"로 셋팅되고 수신된 DIRECT_COMMUNICATION_REQUEST 메시지가 Link Local IPv6 Address IE를 포함하면, target UE는 지역적으로 형성된 링크 지역 IPv6 주소로 셋팅된 Link Local IPv6 Address IE를 포함시킨다.
ProSe UE-to-network relay UE는 적어도 하나의 IP 주소 할당 메커니즘을 지원한다.
target UE가 ProSe UE-to-network relay UE로서 동작하면, 그리고 ProSe relay UE ID와 연계된 relay를 위한 PDN 연결이 아직 확립되지 않았거나 ProSe UE-to-network relay UE가 DIRECT_COMMUNICATION_ACCEPT 메시지를 remote UE에게 전송할 때, 릴레이를 위해 사용되는 추가적인 PDN 연결이 필요하면, ProSe UE-to-network relay UE는 ProSe Relay UE ID와 연계된 APN을 포함하는 PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지를 전송함으로써 UE에 의해 요청된 PDN 연결 절차(UE requested PDN connectivity procedure)를 개시한다.
target UE가 ProSe-UE-to-network relay UE이면, target UE가 DIRECT_COMMUNICATION_REQUEST 메시지 내 포함된 Maximum Inactivity Period IE에 의해 제공된 값으로 비활동성 타이머 T4108을 생성하고, 확립될 링크를 통해 더 이상 전송할 메시지가 없을 때 T4108 타이머를 시작한다. T4108 타이머가 시작된 경우, T4108 타이머가 만료되기 전에 어떠한 통신 활동이 발생되면, UE는 T4108 타이머를 종료하고 초기 값으로 리셋하고, 그렇지 않으면, 직접 통신 킵얼라이브(DIRECT_COMMUNICATION_KEEPALIVE) 메시지 내 Maximum Inactivity Period IE에서 새로운 값이 제공된다.
target UE가 ProSe-UE-to-network relay UE이면, 그리고 target UE가 서비스 인증 절차(service authorisation procedure)에 기반하여 relay에 의해 서비스 받는 remote UE(들)의 IMEI(International Mobile station Equipment Identity) 또는 IMEISV를 보고하도록 서빙 PLMN에 의해 설정되었으면, ProSe UE-to-network relay UE는 성공적으로 직접 링크가 확립될 때 remote UE의 IMEI 또는 IMEISV를 요청하기 위해 원격 UE 정보 요청 절차(remote UE information request procedure)를 개시한다.
4) initiating UE에 의한 직접 링크 셋업 절차 완료
DIRECT_COMMUNICATION_ACCEPT를 수신하면, initiating UE는 T4100 타이머를 중단한다. 이 때부터, initiating UE는 target UE로의 모든 일대일 통신(추가적인 PC5 시그널링 메시지를 포함하여)을 위해 확립된 링크를 사용한다.
5) target UE에 의해 수락되지 않은 직접 링크 셋업 절차
도 7(b)를 참조하면, 직접 링크 셋업 요청이 수락될 수 없으면, target UE는 직접 통신 거절(DIRECT_COMMUNICATION_REJECT) 메시지를 전송한다. DIRECT_COMMUNICATION_REJECT 메시지는 다음과 같은 원인 값 중 하나로 셋팅되는 PC5 시그널링 프로토콜 원인 값을 포함한다:
#1 target UE로의 직접 통신이 허용되지 않음(Direct communication to target UE not allowed);
#2 인증 실패(Authentication failure);
#3 유니캐스트 통신을 위한 Layer 2 ID의 충돌이 감지됨(Conflict of Layer 2 ID for unicast communication is detected);
#4 제안된 링크를 위한 자원의 부족(Lack of resources for proposed link);
#5 IP 버전 비-매칭(IP version mismatch); 또는
#6 다른 이유로 인한 링크 셋업 실패(Link setup failure due to other errors).
target UE가 이 요청을 수락하도록 허용되지 않으면(예를 들어, 운영자 정책 또는 서비스 허가 프로비저닝(provisioning)에 기반하여), target UE는 PC5 시그널링 프로토콜 원인 값 #1 "Direct communication to target UE not allowed"을 포함하는 DIRECT_COMMUNICATION_REJECT 메시지를 전송한다.
DIRECT_COMMUNICATION_REQUEST 내 포함된 시그니처 파라미터의 검증이 target UE에서 실패하면, target UE는 PC5 시그널링 프로토콜 원인 값 #2 "Authentication failure"을 포함하는 DIRECT_COMMUNICATION_REJECT 메시지를 전송한다.
직접 링크 허가 절차 내 문제로 인하여 직접 링크 셋업이 실패하면, target UE는 PC5 시그널링 프로토콜 원인 값 #2 "Authentication failure"을 포함하는 DIRECT_COMMUNICATION_REJECT 메시지를 전송한다.
수신한 DIRECT_COMMUNICATION_REQUEST 메시지의 Layer 2 ID에 있어서, target UE가 이미 Layer 2 ID를 사용하는 것을 알고 있는 UE로의 확립된 기존의 링크를 가지면 또는 target UE가 동일한 Layer 2 ID로부터 DIRECT_COMMUNICATION_REQUEST 메시지를 현재 처리하는 중이지만 새롭게 수신 메시지 내 포함된 User Info IE와 상이한 User Info를 가지면, target UE는 PC5 시그널링 프로토콜 원인 값 #3 "Conflict of Layer 2 ID for unicast communication is detected"을 포함하는 DIRECT_COMMUNICATION_REJECT 메시지를 전송한다.
혼잡 문제 또는 자원 제한을 야기하는 다른 일시적인 하위 계층 문제로 인하여 직접 링크 셋업이 실패되면, target UE는 PC5 시그널링 프로토콜 원인 값 #4 "Lack of resources for proposed link"을 포함하는 DIRECT_COMMUNICATION_REJECT 메시지를 전송한다.
ProSe UE-to-network relay UE의 경우, remote UE가 미션 크리티컬 통신(예를 들어, MCPTT(Mission Critical Push To Talk))에 대하여 ProSe UE-to-network relay UE를 이용하길 원하지만 ProSe UE-to-network relay UE가 IPv6 주소 할당 방식을 라우터로서 지원하지 않으면, target UE(즉, ProSe UE-to-network relay UE)는 PC5 시그널링 프로토콜 원인 값 #5 "IP version mismatch"를 포함하는 DIRECT_COMMUNICATION_REJECT 메시지로 요청을 거절한다.
링크 확립의 실패를 야기하는 다른 이유의 경우, target UE는 PC5 시그널링 프로토콜 원인 값 #6 "Link setup failure due to other errors"를 포함하는 DIRECT_COMMUNICATION_REJECT 메시지를 전송한다.
DIRECT_COMMUNICATION_REJECT 메시지를 수신하면, initiating UE는 T4100 타이머를 중단하고, 직접 링크 셋업 절차를 종료한다. DIRECT_COMMUNICATION_REJECT 메시지 내 원인 값이 #1 "Direct communication to target UE not allowed" 또는 #4 "Lack of resources for proposed link"이면, UE는 적어도 시간 구간(period) T 동안은 동일한 target UE와의 직접 링크 셋업을 시도하지 않는다. 그리고, initiating UE가 ProSe UE-to-network relay UE로의 링크 셋업을 요청하는 remote UE이면, initiating UE는 릴레이 재선택 절차(relay reselection procedure)를 개시한다.
이 절차가 완료되기 전에 더 이상 링크를 확립할 필요가 없어지면, initiating UE는 절차를 종료한다.
수신한 DIRECT_COMMUNICATION_REQUEST 메시지의 Layer 2 ID에 있어서, target UE가 이미 Layer 2 ID를 사용하는 것을 알고 있는 UE로의 확립된 기존의 링크를 가지고 새로운 요청이 알고 있는 사용자와 동일한 User Info를 포함하면, UE는 새로운 요청을 진행한다. 그러나, target UE는 새로운 링크 셋업 절차가 성공한 후 또는 링크 킵-얼라이브 절차가 실패한 이후에 기존의 링크 컨텍스트를 삭제한다.
6) 비정상적인 케이스
비활동성 타이머 T4108이 만료하면, 그리고 target UE가 ProSe UE-to-network relay UE이면, target UE는 해제 원인 #3 "직접 연결이 더 이상 이용 가능하지 않음(Direct connection is not available any more)"으로 직접 링크 해제 절차를 개시한다. 그렇지 않으면, target UE는 다음과 같이 동작할 수 있다:
A) 링크를 체크하기 위해 keepalive 절차를 개시한다; 또는
B) 해제 원인 #3 "Direct connection is not available any more"으로 직접 링크 해제 절차를 개시한다.
7) 직접 링크 셋업 절차 관련 PC5_시그널링 메시지
i) DIRECT_COMMUNICATION_REQUEST
이 메시지는 직접 링크를 확립하기 위하여 UE에 의해 또 다른 peer UE에게 전송된다.
표 2는 DIRECT_COMMUNICATION_REQUEST 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000002
표 2에서 정보 요소는 정보 요소의 명칭을 나타낸다. 존재(Presence) 필드의 'M'은 필수적(mandatory)인 IE로서 항상 메시지에 포함되는 IE를 나타내고, 'O'는 선택적(optional)인 IE로서 메시지에 포함되거나 포함되지 않을 수 있는 IE를 나타내며, 'C'는 조건적인(conditional) IE로서 특정 조건이 만족될 때만 메시지에 포함되는 IE를 나타낸다.
ii) DIRECT_COMMUNICATION_ACCEPT
이 메시지는 해당 직접 링크 셋업 요청이 수락되었음을 지시하기 위하여 UE에 의해 또 다른 peer UE에게 전송된다.
표 3은 DIRECT_COMMUNICATION_ACCEPT 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000003
표 3에서, IP Address Config IE가 "address allocation not supported UE"로 셋팅될 때, UE는 Link Local IPv6 Address IE를 포함시킨다.
iii) DIRECT_COMMUNICATION_REJECT
이 메시지는 해당 직접 링크 셋업 요청이 거절되었음을 지시하기 위하여 UE에 의해 또 다른 peer UE에게 전송된다.
표 4는 DIRECT_COMMUNICATION_REJECT 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000004
2. 직접 링크 킵얼라이브 절차(Direct link keepalive procedure)
1) 일반
직접 링크 keepalive 절차는 2개의 ProSe 가능한(ProSe-enabled) UE 간의 직접 링크를 유지하기 위해 사용된다(즉, 2개의 UE 간의 링크가 여전히 유지 가능한지 체크). 이 절차는 확립된 직접 링크 내의 어느 하나의 UE 또는 둘 모두의 UE에 의해 개시될 수 있다. 직접 링크가 remote UE와 ProSe UE-to-network relay UE 간의 일대일 통신을 위해 사용되면, remote UE만이 링크 keepalive 절차를 개시한다.
이 절차 내에서, 직접 통신 킵얼라이브(DIRECT_COMMUNICATION_KEEPALIVE) 메시지를 전송하는 UE는 "요청 UE(requesting UE)"라고 지칭되고, 다른 UE는 "피어 UE(peer UE)"라고 지칭된다.
2) requesting UE에 의한 직접 링크 keepalive 절차 개시
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 직접 링크 킵얼라이브 절차를 예시하는 도면이다.
requesting UE는 이 절차를 위해 keepalive 타이머 T4102 및 keepalive 카운터를 관리한다. keepalive 타이머 T4102는 절차의 주기적인 개시를 트리거하기 위해 사용된다. 이 타이머는 UE가 PC5 시그널링 메시지 또는 PC5 사용자 평면 데이터를 peer UE로부터 이 링크를 통해 수신할 때마다 시작 또는 재시작된다. keepalive 카운터는 링크 확립 후 0의 초기 값으로 셋팅된다.
requesting UE는 다음과 같은 경우 이 절차를 개시할 수 있다:
- 직접 링크의 유지 가능성을 체크하도록 상위 계층으로부터 요청을 수신하는 경우; 또는
- 이 링크를 위한 keepalive 타이머 T4102가 만료되는 경우.
requesting UE는 타이머 T4102가 구동 중이라면 타이머 T4102를 중단하고, 이 링크를 위한 keepalive 카운터의 값을 포함하는 킵얼라이브 카운터(Keepalive Counter) IE를 수반한 직접 통신 킵얼라이브(DIRECT_COMMUNICATION_KEEPALIVE) 메시지를 생성함으로써 절차를 개시한다. 선택적으로, initiating UE는 이 직접 링크를 통한 requesting UE의 최대 비활동성 구간을 지시하기 위하여 최대 비활동성 구간(Maximum Inactivity Period) IE를 포함시킬 수 있다. remote UE가 ProSe UE-to-network relay UE에게 DIRECT_COMMUNICATION_KEEPALIVE 메시지를 전송할 때, 이 IE는 포함된다.
DIRECT_COMMUNICATION_KEEPALIVE 메시지가 생성된 후, requesting UE는 전송을 위해 requesting UE의 Layer 2 ID(유니캐스트 통신을 위한) 및 peer UE의 Layer 2 ID(유니캐스트 통신을 위한)와 함께 이 메시지를 하위 계층에게 전달하고, 재전송 타이머 T4101을 시작한다.
3) peer UE에 의해 수락된 직접 링크 keepalive 절차
DIRECT_COMMUNICATION_KEEPALIVE 메시지를 수신하면, peer UE는 DIRECT_COMMUNICATION_KEEPALIVE 메시지 내에서 수신된 값과 동일한 값으로 셋팅된 킵얼라이브 카운터(Keepalive Counter) IE를 포함하는 직접 통신 킵얼라이브 확인응답(DIRECT_COMMUNICATION_KEEPALIVE_ACK) 메시지로 응답한다.
최대 비활동성 구간(Maximum Inactivity Period) IE가 DIRECT_COMMUNICATION_KEEPALIVE 메시지 내 포함되면, peer UE는 비활동성 타이머 T4108을 중단하고(구동 중인 경우), 제공된 값으로 타이머 T4108을 재시작한다. 그리고, 타이머 T4108이 만료되기 전에 이 직접 링크 내에서 어떠한 통신 활동이 발생되면, UE는 타이머 T4108을 중단하고, 초기 값으로 리셋한다.
4) requesting UE에 의한 직접 링크 keepalive 절차 완료
DIRECT_COMMUNICATION_KEEPALIVE_ACK 메시지를 수신하면, requesting UE는 재전송 타이머 T4101을 중단하고, 킵얼라이브 타이머 T4102를 시작하고, 이 링크에 대한 킵얼라이브 카운터를 증가시킨다.
5) 비정상적인 케이스
재전송 타이머 T4101이 만료되면, requesting UE는 마지막으로 사용된 keepalive 카운터 값으로 DIRECT_COMMUNICATION_KEEPALIVE 메시지를 다시 전송하고, 타이머 T4101을 재시작한다. 허용된 재전송의 최대 횟수에 도달할 때까지 peer UE로부터 응답이 수신되지 않으면, requesting UE는 링크 킵얼라이브 절차를 종료하고, 대신에 직접 링크 해제 절차를 개시한다. 만약, requesting UE가 remote UE이면, 릴레이 재선택 절차를 개시한다.
직접 링크 킵얼라이브 절차가 완료되기 전에 이 직접 링크를 사용할 필요가 더 이상 없다면, requesting UE는 이 절차를 종료하고, 대신에 직접 링크 해제 절차를 시작한다.
비활동성 타이머 T4108이 만료되면, peer UE가 ProSe UE-to-network relay UE이면, peer UE는 해제 원인 #3 "직접 연결이 더 이상 이용 가능하지 않음(Direct connection is not available any more)"으로 직접 링크 해제 절차를 개시한다. 그렇지 않으면, peer UE는 다음과 같이 동작할 수 있다:
A) 링크를 체크하기 위해 킵얼라이브 절차를 개시한다; 또는
B) 해제 원인 #3 "Direct connection is not available any more"으로 직접 링크 해제 절차를 개시한다.
3. 직접 링크 해제 절차(Direct link release procedure)
1) 일반
직접 링크 해제 절차는 2개의 ProSe-enabled UE 간의 안전한 직접 링크를 해제하기 위하여 사용된다. 이 링크는 둘 중의 어느 하나의 UE로부터 해제될 수 있다. 직접 통신 해제(DIRECT_COMMUNICATION_RELEASE) 메시지를 전송하는 UE는 "해제 UE(releasing UE)"라고 지칭되고, 다른 UE는 "피어 UE(peer UE)"라고 지칭된다.
remote UE와 ProSe UE-to-network relay UE 간의 직접 링크가 해제될 때, ProSe-UE-to-network relay UE는 Remote UE 보고 절차(Remote UE report procedure)를 수행한다.
2) releasing UE에 의한 직접 링크 해제 절차 개시
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 직접 링크 해제 절차를 예시하는 도면이다.
releasing UE는 다음과 같은 경우에 절차를 개시한다:
- 알려진 Layer 2 ID(유니캐스트 통신을 위한)를 사용하는 peer UE와의 직접 링크를 해제하도록 상위 계층으로부터 요청을 수신하고, 해당 둘 UE 간의 링크가 존재하는 경우; 또는
- peer UE가 응답이 없는 경우(non-responsive)(예를 들어, 직접 링크 keepalive 절차를 완료할 수 없는 경우).
releasing UE는 다음과 같은 원인 값 중 하나를 지시하는 해제 원인(Release Reason) IE를 수반하는 IRECT_COMMUNICATION_RELEASE 메시지를 생성함으로써 직접 링크 해제 절차를 개시한다:
#1 peer UE로의 직접 통신이 더 이상 필요 없음(Direct Communication to peer UE no longer needed);
#2 peer UE와의 직접 통신이 더 이상 허용되지 않음(Direct communication with the peer UE is no longer allowed); 또는
#3 직접 연결이 더 이상 이용 가능하지 않음(Direct connection is not available any more).
DIRECT_COMMUNICATION_RELEA 메시지가 생성된 후, releasing UE는 전송을 위해 이 메시지를 releasing UE의 Layer 2 ID(유니캐스트 통신을 위한) 및 peer UE의 Layer 2 ID(유니캐스트 통신을 위한)와 함께 하위 계층으로 전달한다. 만약 해제 원인이 #3 "Direct connection is not available any more"라면, releasing UE는 직접 링크를 지역적으로(locally) 해제한다. 그렇지 않으면, releasing UE는 타이머 T4103을 시작한다.
3) peer UE에 의해 수락된 직접 링크 해제 절차
DIRECT_COMMUNICATION_RELEASE 메시지를 수신하면, peer UE는 이 링크를 위한 타이머 T4101, 타이머 T4102 또는 타이머 T4103를 중단한다(어떠한 타이머가 구동 중인 경우). 그리고, peer UE는 이 링크 상에서 어떠한 진행 중인 PC5 시그널링 프로토콜 절차를 종료한다. peer UE는 직접 통신 해제 수락(DIRECT_COMMUNICATION_RELEASE_ACCEPT) 메시지로 응답한다. 이 메시지가 전송된 후, peer UE는 이 직접 링크의 컨텍스트를 제거하고, 더 이상 이 링크를 통해 어떠한 메시지도 송신하거나 수신하지 않는다.
DIRECT_COMMUNICATION_RELEASE 메시지 내 원인 값이 "Direct communication with the peer UE is no longer allowed"이면, UE는 적어도 시간 구간(period) T 동안 releasing UE와 직접 링크 셋업을 시도하지 않는다. 그리고 initiating UE가 ProSe UE-to-network relay UE로의 링크 셋업을 요청하는 remote UE라면, 릴레이 재선택 절차를 개시한다.
4) releasing UE에 의한 직접 링크 해제 절차 완료
DIRECT_COMMUNICATION_RELEASE_ACCEPT 메시지를 수신하면, releasing UE는 타이머 T4103을 중단한다. 이 때부터, releasing UE는 더 이상 이 링크를 통해 어떠한 메시지도 송신하거나 수신하지 않는다.
5) 비정상적인 케이스
재전송 타이머 T4103이 만료되면, releasing UE는 DIRECT_COMMUNICATION_RELEASE 메시지를 다시 전송하고, T4103 타이머를 재시작한다. 허용된 재전송의 최대 횟수에 도달할 때까지 peer UE로부터 응답이 수신되지 않으면, releasing UE는 지역적으로(locally) 직접 링크를 해제한다. 이 때부터 releasing UE는 더 이상 이 링크를 통해 어떠한 메시지도 송신하거나 수신하지 않는다.
4. 직접 보안 모드 제어 절차(Direct security mode control procedure)
1) 일반
2개의 ProSe-Enabled UE 간의 직접 링크를 위한 보안 연계는 직접 링크 셋업 절차 또는 직접 링크 키 교체 절차(direct link rekeying procedure) 동안에 직접 보안 모드 확립과 관련된 메시지 콘텐츠를 교환하여 확립된다. 직접 보안 모드 제어 절차가 성공적으로 완료된 후, 선택된 보안 알고리즘 및 키는 UE 간 교환되는 모든 PC5 시그널링 메시지를 무결성 보호 및 암호화하는데 사용된다. 그리도 또한 UE 간에 교환되는 모든 데이터 평면 트래픽을 암호화하는 데 사용된다.
직접 보안 모드 명령(DIRECT_SECURITY_MODE_COMMAND) 메시지를 전송하는 UE는 "명령 UE(commanding UE)"으로 지칭되고, 다른 UE는 "peer UE"로 지칭된다.
2) commanding UE에 의한 직접 보안 모드 제어 절차 개시
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 직접 보안 모드 제어 절차를 예시한다.
commanding UE는 직접 통신 요청(DIRECT_COMMUNICATION_REQUEST) 메시지 또는 직접 키 교환 요청(DIRECT_REKEYING_REQUEST) 메시지의 수신에 응답하여 직접 보안 모드 제어 절차를 개시할 수 있다.
절차가 remote UE와 ProSe UE-to-network relay UE 간에 이뤄지고, 절차가 K_D가 아닌 K_D-sess의 복원(refresh)를 위해 DIRECT_REKEYING_REQUEST 메시지에 의해 트리거되면, ProSe UE-to-network relay UE 또는 remote UE는 commanding UE로서 동작할 수 있다. 그렇지 않고 K_D 및 K_D-sess 모두가 복원(refresh)되면, ProSe UE-to-network relay UE가 commanding UE로서 동작한다.
이 절차를 개시하기 위해, DIRECT_COMMUNICATION_REQUEST 메시지 또는 DIRECT_REKEYING_REQUEST 메시지 내 포함된 K_D ID에 기반하여 기존의 K_D를 식별하거나 또는 peer UE와 알려진 K_D를 공유하지 않으면 새로운 K_D를 도출하거나 또는 새로운 K_D의 도출을 원한다. 후자의 경우, commanding UE는 결과로 생성된 K_D ID가 commanding UE 내에서 고유하다는 것을 보장하기 위하여 K_D ID의 최상위 비트(MSB: Most Significant Bit)를 생성한다. 그리고, commanding UE는 K_D-sess ID의 MSB와 결함함으로써 형성된 K_D-sess ID가 commanding UE 내에서 고유하도록 K_D-sess ID(직접 보안 모드 절차를 트리거하는 DIRECT_COMMUNICATION_REQUEST 또는 DIRECT_REKEYING_REQUEST 내에서 수신된)의 최하위 비트(LSB: Least Significant Bit)를 생성한다.
이어, commanding UE는 128 비트 Nonce_2 값을 생성한다. K_D, Nonce_2 및 DIRECT_COMMUNICATION_REQUEST 또는 DIRECT_REKEYING_REQUEST 메시지 내에서 수신된 Nonce_1를 이용하여, commanding UE는 K_D-sess를 도출한다.
그리고, UE는 다음을 가지고 직접 보안 모드 명령(DIRECT_SECURITY_MODE_COMMAND) 메시지를 구성한다:
- Nonce_2로 셋팅된 Nonce_2 IE;
- K_D-sess ID의 최하위 8 비트를 지시하도록 셋팅된 K_D-sess ID IE의 최하위 비트;
- DIRECT_COMMUNICATION_REQUEST 메시지 또는 DIRECT_REKEYING_REQUEST 메시지 내 수신된 UE 보안 능력으로 셋팅된 UE Security Capabilities IE; 및
- 암호화 및 무결성 보호를 위해 사용될 알고리즘으로 셋팅된 선택된 알고리즘(Chosen Algorithms) IE.
DIRECT_SECURITY_MODE_COMMAND 메시지가 remote UE와 ProSe UE-to-network relay UE 간에 사용되고, ProSe UE-to-network relay UE가 PKMF로부터 K_D 복원(freshness) 파라미터를 수신하였으면, ProSe UE-to-network relay UE는 새롱누 K_D를 생성하기 위하여 DIRECT_SECURITY_MODE_COMMAND 메시지 내 다음과 같은 추가적인 파라미터를 포함시킨다:
- PKMF로부터 수신되었으면, GPI(GBA Push-Info) 페이로드를 포함하는 GPI IE;
- PKMF로부터 수신된 K_D 복원(freshness) 파라미터로 셋팅된 K_D Freshness IE; 및
- 새로운 K_D의 K_D ID의 최상위 비트로 셋팅된 K_D ID의 최상위 비트(MSB of KD ID) IE.
DIRECT_SECURITY_MODE_COMMAND 메시지가 단독의(isolated) 일대일 ProSe 직접 통신을 위해 사용되면, commanding UE는 새로운 K_D를 생성하기 위하여 다음과 같은 추가적인 파라미터를 DIRECT_SECURITY_MODE_COMMAND 메시지 내 포함시킨다:
- 상위 계층으로부터 수신된 User Info로 셋팅된 User Info IE;
- 새로운 K_D의 K_D ID의 MSB로 셋팅된 MSB of KD ID IE; and
- User Info IE, Nonce_1 IE 및 SAKKE(Sakai-Kasahara Key Encryption) 페이로드로 셋팅된 암호화된 페이로드(Encrypted Payload) IE로 계산되는 ECCSI 시그니처로 셋팅된 Signature IE.
commanding UE는 사용될 무결성 보호 및 암호화 알고리즘을 선택하고, DIRECT SECURITY MODE COMMAND 메시지 내 Chosen algorithms IE 내에서 선택으로 포함시킨다. DIRECT SECURITY MODE COMMAND 메시지를 트리거하는 DIRECT_COMMUNICATION_REQUEST 또는 DIRECT_REKEYING_REQUEST 메시지 내 존재하였던 수신된 UE 보안 능력을 포함시킨다.
commanding UE는 암호화되지 않은 DIRECT SECURITY MODE COMMAND 메시지를 전송하지만, 새로운 보안 컨텍스트로 해당 메시지를 무결성 보호한다. DIRECT_SECURITY_MODE_COMMAND 메시지를 전송한 후, commanding UE는 타이머 T4111을 시작한다.
3) peer UE에 의해 수락된 직접 보안 모드 제어 절차
도 10(a)를 참조하면, DIRECT_SECURITY_MODE_COMMAND 메시지를 수신하면, peer UE는 보안 모드 명령이 수락될 수 있는지 여부를 체크한다. 이는 메시지의 무결성 체크와 수신된 UE 보안 능력이 DIRECT_COMMUNICATION_REQUEST 또는 DIRECT_REKEYING_REQUEST 메시지 내에서 peer UE가 commanding UE에게 전송하였던 마지막 값과 비교하여 대체되지 않았음을 체크함으로써 수행된다.
무결성 체크를 위하여, peer UE는 보안 컨텍스트를 생성할 필요가 있다. K_D ID의 MSB가 DIRECT_SECURITY_MODE_COMMAND 메시지 내 포함되었으면, peer UE는 다음과 같은 2가지의 동작 중 하나를 수행한다:
- 단독의(isolated) 일대일 ProSe 직접 통신을 수행한다면, peer UE는 먼저 DIRECT SECURITY MODE COMMAND의 SIGN IE 내 포함된 시그니처를 체크하고, Encrypted Payload IE로부터 새로운 K_D를 획득한다; 또는
- peer UE가 ProSe UE-to-network relay UE로부터 DIRECT_SECURITY_MODE_COMMAND를 수신하였던 remote UE이면, GPI IE가 DIRECT_SECURITY_MODE_COMMAND 내 포함되었다면 peer UE는 자신의 PRUK ID 및 PRUK를 대체한다. 결국, UE는 새로운 K_D를 도출한다.
K_D ID의 MSB가 DIRECT_SECURITY_MODE_COMMAND 메시지 내 포함되지 않았으면, peer UE는 DIRECT_COMMUNICATION_REQUEST 메시지 내에 포함된 K_D ID에 의해 지시된 기존의 K_D 또는 현재 사용되는 K_D를 사용한다.
peer UE는 commanding UE와 동일한 방식으로 K_D-sess ID에 기반하여 K_D-sess를 도출한다. 결과적으로, peer UE는 Chosen Algorithms IE 내에서 지시된 알고리즘을 사용한다.
DIRECT_SECURITY_MODE_COMMAND 메시지가 수락될 수 있으면, peer UE는 새로운 보안 컨텍스트로 암호화되고 무결성 보호된 직접 보안 모드 완료(DIRECT_SECURITY_MODE_COMPLETE) 메시지를 전송한다. DIRECT_SECURITY_MODE_COMPLETE 메시지는 initiating UE가 DIRECT_SECURITY_MODE_COMMAND 메시지 내 K_D ID의 MSB을 포함하였다면, K_D ID의 최하위 16 비트를 포함한다.
이 때부터, peer UE는 새로운 보안 컨텍스트로 모든 시그널링 메시지 및 사용자 데이터를 보호한다.
4) commanding UE에 의한 직접 보안 모드 제어 절차 완료
DIRECT_SECURITY_MODE_COMPLETE 메시지를 수신하면, commanding UE는 타이머 T4111을 중단한다. K_D ID IE의 LSB가 이 메시지에 포함되었으면, commanding UE는 이 것과 새로운 K_D의 K_D ID를 형성하기 위해 이전에 전송되었던 K_D ID의 MSB를 사용한다. 이 때부터, commanding UE는 새로운 보안 컨텍스트로 모든 시그널링 메시지 및 사용자 데이터를 보호한다.
5) peer UE에 의해 수락되지 않은 직접 보안 모드 제어 절차
DIRECT_SECURITY_MODE_COMMAND 메시지가 수락될 수 없으면, peer UE는 직접 보안 모드 거절(DIRECT_SECURITY_MODE_REJECT) 메시지를 전송한다. DIRECT_SECURITY_MODE_REJECT 메시지는 다음 중 하나의 원인 값을 지시하는 PC5 시그널링 프로토콜 원인 값(PC5 Signaling Protocol Cause Value) IE를 포함한다:
#7: UE 보안 능력 비매칭(UE security capabilities mismatch);
#8: 특정되지 않은 에러(Unspecified error); 또는
#9: 인증 동기화 에러(Authentication synchronisation error).
ProSe UE-to-network relay UE 에 의해 remote UE로 전송되었던 GPI 페이로드 내 포함된 인증 벡터를 처리할 때, 동기화 에러로 인하여 DIRECT_SECURITY_MODE_COMMAND가 수락될 수 없으면, peer UE는 RAND(random challenge) 및 AUTS(Authentication Token) 파라미터를 DIRECT_SECURITY_MODE_REJECT 메시지 내 포함시킨다.
DIRECT_SECURITY_MODE_REJECT 메시지를 수신하면, commanding UE는 타이머 T4111을 중단한다. PC5 Signaling Protocol Cause Value IE가 동기화 에러를 지시하고 메시지가 RAND 및 AUTS를 포함하였으면, ProSe UE-to-network relay는 RAND 및 AUTS를 포함하는 키 요청(Key Request) 메시지를 전송함으로써 PKMF로부터 새로운(fresh) K_D를 획득할 수 있다. 그렇지 않으면, UE는 직접 보안 모드 제어 절차의 개시가 트리거된 진행 중인 절차를 종료한다.
6) 비정상적인 케이스
타이머 T4111가 만료되면, 그리고
- 직접 보안 모드 제어 절차가 DIRECT_COMMUNICATION_REQUEST 메시지에 의해 트리거되면, commanding UE는 Nonce_1 로 어떠한 도출된 키를 폐기하고, #10 "non-responsive peer during the direct security mode procedure"로 셋팅된 PC5 Signaling Protocol Cause Value IE를 수반하는 DIRECT_COMMUNICATION_REJECT 메시지를 전송한다; 또는
- 직접 보안 모드 제어 절차가 DIRECT_REKEYING_REQUEST 메시지에 의해 트리거되면, commanding UE는 해당 키가 더 이상 유효하지 않을 때까지 이전 키를 계속하여 사용한다.
DIRECT_SECURITY_MODE_COMMAND 메시지가 손상되면(malformed), peer UE는 이 메시지를 폐기한다.
7) 직접 보안 모드 제어 절차 관련 PC5_시그널링 메시지
i) DIRECT_SECURITY_MODE_COMMAND
이 메시지는 직접 링크의 보안을 확립하기 위하여 commanding UE에 의해 peer UE에게 전송된다.
표 5는 DIRECT_SECURITY_MODE_COMMAND 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000005
ii) DIRECT_SECURITY_MODE_COMPLETE
이 메시지는 보안 확립을 확인(confirm)하기 위하여 peer UE에 의해 commanding UE에게 전송된다.
표 6은 DIRECT_SECURITY_MODE_COMPLETE 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000006
iii) DIRECT_SECURITY_MODE_REJECT
이 메시지는 보안 확립이 실패하였음을 지시하기 위하여 peer UE에 의해 commanding UE에게 전송된다.
표 7은 DIRECT_SECURITY_MODE_REJECT 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000007
디스커버리 모델(Discovery Models)
이하, D2D(또는 ProSe)에서 정의되어 있는 Discovery Model을 살펴본다. Discovery Model은 Model A와 Model B로 구분된다. UE-to-Network Relay에서는 Model A의 경우, Relay UE가 알림 UE(announcing UE)가 되면, Remote UE가 모니터링 UE(monitoring UE)에 해당한다. UE-to-Network Relay에서는 Model B의 경우, Remote UE가 디스커버리하는 UE(Discoverer UE)가 되고, Relay UE가 디스커버리되는 UE(Discoveree UE)에 해당한다.
1) Model A ("I am here")
이 모델은 ProSe 직접 디스커버리에 참여 중인 ProSe-enabled UE(들)을 위한 2 가지의 역할을 정의한다.
- Announcing UE: UE는 디스커버리가 허용된 근접한 UE에 의해 사용될 수 있는 특정 정보를 알린다.
- Monitoring UE: 관심있는 근접한 announcing UE의 특정 정보를 모니터한다.
이 모델에서, announcing UE는 미리 정의된 디스커버리 간격(interval)에서 디스커버리(discovery) 메시지를 방송하고, 이들 메시지에 관심이 있는 monitoring UE는 해당 메시지를 읽고 처리한다.
Model A 모드에서, UE는 서빙 PLMN에 의해 시그널링된 캐리어 주파수 내에서만 "announcing UE"로서 동작할 수 있으나, 서빙 PLMN 및 로컬(local) PLMN의 자원 내에서 "monitoring UE"로서 동작할 수 있다. PLMN 간(inter-PLMN) 디스커버리 전송이 지원되면, 캐리어 주파수는 서빙 PLMN 이외의 PLMN에 의해 운영될 수 있다.
개방된(open) 그리고 제한된(restricted) 디스커버리 타입이 Model A에 의해 지원된다.
2) Model B ("who is there?" / "are you there?")
제안된 디스커버리 타입이 사용될 때, 이 모델은 ProSe Direct Discovery에 참여 중인 ProSe-enabled UE(들)을 위한 2가지의 역할을 정의한다.
- Discoverer UE: UE는 디스커버리하고자 하는 UE에 대한 특정 정보를 포함하는 요청을 전송한다.
- Discoveree UE: 요청 메시지를 수신한 UE는 discoverer의 요청과 관련된 정보로 응답할 수 있다.
discoverer UE는 응답을 수신하길 원하는 다른 UE에 대한 정보를 전송하기 때문에(예를 들어, 그룹에 해당하는 ProSe 어플리케이션 식별자에 대한 정보일 수 있으며, 그룹의 멤버는 응답할 수 있다.), "who is there/are you there"는 동등하다.
Model B 디스커버리를 사용할 때, discoverer UE 및 discoveree UE는 서빙 PLMN에 의해 시그널링된 캐리어 주파수 내에서 방송할 수 있다. PLMN 간(inter-PLMN) 디스커버리 전송이 지원되면, 캐리어 주파수는 서빙 PLMN 이외의 다른 PLMN에 의해 운영될 수 있다. discoverer UE 및 discoveree UE는 서빙 PLMN 및 허가된 로컬 PLMN 내에서 모니터하거나 방송하도록 허용된다.
제한된 디스커버리 타입만이 Model B에 의해 지원된다.
공공 안전 디스커버리는 제한된다고 간주된다. monitoring UE/discoverer UE는 적절한 서비스의 디스커버리를 수행하기 위해 허가 받을 필요가 있다(미리 프로비저닝된 파라미터를 통해).
UE-to-network relay를 위한 PC5_Discovery 메시지
이하, D2D(또는 ProSe)에서 UE-to-Network relay의 디스커버리를 위해 정의되어 있는 PC5_Discovery 메시지를 살펴본다.
후술하는 UE-to-Network Relay 디스커버리 방송(Discovery Announcement)을 위한 PC5_DISCOVERY 메시지의 경우, Model A에서 사용된다. UE-to-Network Relay 디스커버리 유도(Discovery Solicitation)를 위한 PC5_DISCOVERY 메시지와 UE-to-Network Relay 디스커버리 응답(Discovery Response)을 위한 PC5_DISCOVERY 메시지의 경우, Model B에서 사용된다.
Relay UE가 전송하는 UE-to-Network Relay Discovery Announcement를 위한 PC5_DISCOVERY 메시지와 UE-to-Network Relay Discovery Response을 위한 PC5_DISCOVERY 메시지의 경우, 상태 지시(Status Indicator) IE가 포함된다. Status Indicator IE에는 자원 상태 지시(RSI: Resource Status Indicator) 파라미터가 포함된다. RSI 파라미터는 Relay UE가 추가적인 Remote UE를 지원할 수 있는지 여부를 나타낸다.
표 8은 UE-to-Network Relay Discovery Announcement를 위한 PC5_DISCOVERY 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000008
표 9는 UE-to-Network Relay Discovery Solicitation을 위한 PC5_DISCOVERY 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000009
표 10은 UE-to-Network Relay Discovery Response를 위한 PC5_DISCOVERY 메시지를 예시한다.
Figure PCTKR2018000368-appb-T000010
상태 지시자(Status Indicator) 파라미터는 ProSe UE-to-network relay의 상태를 지시하기 위해 사용된다. 이 파라미터는 아래 표 11과 같이 코딩된다.
RSI는 UE가 추가적인 ProSe-enabled 공공 안전 UE를 위한 연결 서비스를 제공하기 위해 이용 가능한 자원을 가지는지 여부를 지시하기 위해 사용된다.
표 11은 Status Indicator 파라미터를 예시한다.
Figure PCTKR2018000368-appb-T000011
ProSe UE-to-Network Relay를 경유한 직접 통신
이하, ProSe에서 ProSe UE-to-Network Relay를 경유한 직접 통신 관련 동작(3 계층 릴레이)을 살펴본다.
ProSe UE-to-Network Relay가 가능한 UE는 네트워크에 어태치(attach)할 수 있으며(이미 연결되지 않았으면), 필요한 릴레이 트래픽을 가능하게 하는 PDN 연결을 연결할 수 있으며, 또는 Remote UE(들)을 향하여 릴레이 트래픽을 제공하기 위하여 추가적인 PDN 연결(들)을 연결할 필요가 있을 수 있다. UE-to-Network Relay를 지원하는 PDN 연결(들)은 Remote ProSe UE(들) 릴레이 트래픽을 위해서만 사용된다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 ProSe UE와 네트워크 간(UE-to-Network) 릴레이 절차를 예시하는 도면이다.
1. ProSe UE-to-Network Relay는 초기 E-UTRAN Attach를 수행하고(이미 어태치되지 않았으면) 그리고/또는 릴레이를 위해 PDN 연결을 확립한다(이 릴레이를 위한 적절한 PDN 연결이 없으면). IPv6의 경우, ProSe UE-to-Network Relay는 프리픽스 위임 기능(prefix delegation function)을 경유하여 네트워크로부터 IPv6 프리픽스(prefix)를 획득한다.
2. Remote UE는 모델 A 또는 모델 B 디스커버리를 이용하여 ProSe UE-to-Network Relay의 디스커버리를 수행한다.
3. Remote UE는 ProSe UE-to-Network Relay를 선택하고, 일대일 Prose 직접 통신을 위한 연결을 확립한다. ProSe Relay UE 식별자(ID: Identifier)와 연관된 PDN 연결이 없거나 또는 릴레이를 위한 추가적인 PDN 연결이 필요하면, ProSe UE-to-Network Relay는 새로운 PDN 연결 확립 절차를 개시한다.
4. IPv6 prefix 또는 IPv4 주소가 remote UE를 위해 할당된다. 이 때부터, 상향링크 및 하향링크 릴레이가 시작될 수 있다.
5. ProSe UE-to-Network Relay는 relay와 연관된 PDN 연결을 위해 Remote UE 보고(Remote UE Report)(Remote 사용자 식별자(remote User ID), IP 정보(IP info) 포함) 메시지를 MME에게 전송한다. Remote User ID는 3 단계에서 성공적으로 연결되었던 Remote UE 사용자의 식별자(사용자 정보(User Info)를 통해 제공된)이다. MME는 relay와 연관된 PDN 연결을 위해 Remote User ID(들)과 ProSe UE-to-Network Relay의 EPS 베어러 컨텍스트 내 관련된 IP info를 저장한다.
6. MME는 Remote UE Report 메시지를 S-GW에게 전달하고, S-GW는 이 메시지를 UE-to-Network Relay UE의 P-GW에게 전달한다. MME는 하나의 Remote UE Report 메시지 내 다중 Remote UE을 보고할 수 있다.
IP info를 위해 다음과 같은 원칙이 적용될 수 있다:
- IPv4의 경우, UE-to-network Relay는 개별적인 Remote UE(들)에게 할당된 TCP(Transmission Control Protocol)/UDP(user datagram protocol) 포트 범위를 보고한다(Remote User ID와 함께);
- IPv6의 경우, UE-to-network Relay는 개별적인 Remote UE(들)에게 할당된 IPv6 프리픽스(들)을 보고한다(Remote User ID와 함께).
Remote UE가 ProSe UE-to-Network Relay로부터 단절될 때 MME와 S-GW와 P-GW에게 Remote UE(들)이 이탈했다고 알리기 위하여 Remote UE Report 메시지가 전송된다(예를 들어, 명시적인 layer-2 링크가 해제될 때 또는 PC5를 통한 keep alive 메시지가 존해하지 않을 때).
MME 변경을 포함하는 TAU의 경우, Remote User ID와 연결된 Remote UE(들)에 상응하는 관련 IP info가 ProSe UE-to-Network Relay를 위한 EPS 베어러 컨텍스트 전달의 일부로서 새로운 MME에게 전송된다.
ProSe UE-to-Network Relay에 연결된 후, Remote UE는 릴레이 선택을 위해 ProSe UE-to-Network Relay에 의해 전송된 디스커버리 메시지의 신호 세기의 측정을 계속하여 수행한다(즉, Model A에서 UE-to-Network Relay 디스커버리 알림(UE-to-Network Relay Discovery Announcement) 메시지 또는 Model B에서 UE-to-Network Relay 디스커버리 응답(UE-to-Network Relay Discovery Response) 메시지). Model B의 경우, PC5 링크 품질을 측정하기 위해, Remote UE는 UE-to-Network Relay 디스커버리 유도(UE-to-Network Relay Discovery Solicitation) 메시지를 주기적으로 전송한다. 이 메시지는 서빙 ProSe UE-to-Network Relay의 ProSe Relay UE ID를 포함한다. ProSe Relay UE ID가 이 메시지에 포함되면, 이 ProSe Relay UE ID를 가지는 ProSe UE-to-Network Relay만이 UE-to-Network Relay Discovery Solicitation 메시지에 응답한다.
CP CIoT EPS 최적화
UE와 MME가 Control Plane CIoT EPS Optimisation을 사용하면, 이들은 S1-U 베어러가 확립되지 않은 PDN 연결의 EPS 베어러 식별자(EBI: EPS Bearer Identity)를 포함하는 NAS PDU(들) 내에서 데이터를 전송할 수 있다(S1-U 베어러가 확립될 때, UE는 데이터 PDU(들) 전송을 위해 S1-U를 사용한다.). IP 및 Non-IP 데이터 타입 모두 지원된다. UE와 MME가 Control Plane CIoT EPS Optimisation을 지원하면, SMS 전달 및 EPC 모바일 발생 위치 요청(EPC-MO-LR: EPC Mobile Originated Location Request) 또는 EPS 모바일 종단 위치 요청(EPC-MT-LR: EPC Mobile Terminated Location Request)을 위해, 서비스 요청 절차가 사용되지 않는다. 대신에, UE와 MME는 Control Plane CIoT EPS Optimisation을 데이터 전달에 이용한다.
이는 RRC 및 S1-AP 프로토콜의 NAS 전달 능력, MME와 S-GW 간 그리고 S-GW와 P-GW 간의 GTP-u 터널의 데이터 전달을 이용함으로써 달성된다.
IP 데이터의 경우, UE와 MME는 ROHC(Robust Header Compression) 프레임워크 IETF RFC 5795에 기반하여 헤더 압축을 수행할 수 있다. 상향링크 IP 데이터의 경우, UE는 ROHC 컴프레서(compressor)를 구현하고, MME는 디컴프레서(decompressor)를 구현한다. 하향링크 IP 데이터의 경우, MME는 ROHC 컴프레서(compressor)를 구현하고, UE는 디컴프레서(decompressor)를 구현한다. 상향링크 및 하향링크 ROHC 채널은 피드백을 지원하기 위해 UE 및 MME에 속해야 한다(bound). 헤더 압축을 위한 설정은 PDN 연결 확립 절차 동안에 확립된다.
NAS 시그널링 PDU와 NAS 데이터 PDU 간의 잠재적인 충돌을 최소화하기 위하여, MME는 UE가 ECM-CONNECTED 상태로의 진입을 HSS, MSC 또는 S-GW에게 알리기 전에 그리고 NAS 데이터 PDU의 하향링크 전달을 시작하기 전에 절차와 관련된 보안(예를 들어, 인증, 보안 모드 명령, GUTI(Globally Unique Temporary Identifier) 재할당)을 완료하여야 한다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 발신(Mobile Originated) 데이터를 위한 CP CIoT EPS optimization 및 UP CIoT EPS optimization를 예시하는 도면이다.
0. UE는 ECM(EPS Connection Management)-IDLE이다.
1. UE는 RRC 연결을 확립하고, RRC 연결의 확립의 일부로서 무결성 보호된 NAS PDU를 eNB에게 전송한다. NAS PDU는 EPS 베어러 식별자(EPS Bearer ID)와 암호화된(encrypted) 상향링크 데이터를 나른다. 헤더 압축을 지원하도록 설정된 IP PDN 타입의 PDN 연결의 경우, UE는 데이터를 NAS 메시지에 인캡슐레이션(encapsulating)하기 전에 헤더 압축을 적용한다. UE는 추가의 상향링크 또는 하향링크 데이터 전송이 예상되는지, 또는 이 상향링크 데이터 전송에 이어서 단일의 하향링크 데이터 전송(예를 들어, 확인응답(Acknowledgement) 또는 상향링크 데이터에 대한 응답)만이 예상되는지를 NAS PDU 내 해제 보조 정보(Release Assistance Information) 내에서 지시한다.
1b. 협대역-IoT(NB-IoT: Narrow Band-Internet of Things)의 경우, eNB는, 이전에 획득되지 않았다면, 설정에 기반하여 MME로부터 EPS 협상 QoS 프로파일(EPS negotiated QoS profile)을 획득한다. MME를 식별하기 위해 RRC 연결 요청(RRCConnectionRequest) 메시지 내 S-TMSI 내 MME 코드(MME Code)가 사용된다. eN는 2 단계를 트리거하기 전에 서로 다른 UE로부터의 요청 간의 우선순위를 RRC 연결에 걸쳐 적용할 수 있다.
2. 앞서 1 단계에서 전송된 NAS PDU는 eNB에 의해 S1-AP 초기 UE 메시지(Initial UE message)를 이용하여 MME에게 릴레이(relay)되고, Initial UE message는 eNB가 하향링크 NAS 데이터 PDU를 위한 확인응답(acknowledgment)를 지원한다는 지시를 수반한다.
위치 서비스(Location Services)를 보조하기 위하여, eNB는 UE의 커버리지 레벨(Coverage Level)을 MME에게 지시한다.
3. MME는 수신된 NAS PDU의 무결성을 체크하고, NAS PDU에 포함된 데이터를 해독(decrypt)한다. ROHC가 사용되도록 설정되면, 헤더 압축이 PDN 연결에 적용되었으면, MME는 IP 헤더의 압축을 푼다(decompress).
MME는 필요하다면 어떠한 EMM(EPS Mobility Management) 또는 ESM(EPS Session Management) 절차(예를 들어, 보안 관련 절차)를 수행한다(그리고 UE는 이에 응답한다). 4 단계 내지 9 단계는 이와 병행하여 계속되지만, 10 단계 및 11 단계는 모든 EMM 또는 ESM 절차가 완료될 때까지 대기한다.
4a. S11-U 연결이 확립되지 않았으면, MME는 각 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 S-GW에게 전송한다.
Modify Bearer Request 메시지는 MME 주소, MME 터널 종단 식별자(TEID: Tunnel Endpoint Identifier) DL, 지연 하향링크 패킷 통지 요청(Downlink Packet Notification Request), RAT 타입, MO(Mobile Originated) 제외 데이터 카운터(MO Exception data counter)를 포함한다.
S-GW는 이제 하향링크 데이터를 UE를 향해 전송할 수 있다. MME는 NAS 사용자 데이터의 S11-U 터너링을 지시하고, S-GW에 의해 전달되는 하향링크 데이터를 위한 자신의 S11-U IP 주소 및 MME DL TEID를 전송한다. 또한, S11-U가 이미 확립되었는지 여부와 무관하게:
- P-GW에 의해 UE의 위치 및/또는 사용자 폐쇄 가입자 그룹(CSG: Closed Subscriber Group) 정보가 요청되었고 UE의 위치 및/또는 사용자 CSG 정보가 변경되었으면, MME는 Modify Bearer Request 메시지를 전송하고, 또한 이 메시지에 사용자 위치 정보(User Location Information) IE 및/또는 사용자 CSG 정보(User CSG Information) IE를 포함시킨다.
- 마지막으로 보고된 서빙 네트워크(Serving Network) IE와 비교하여 Serving Network IE가 변경되었으면, MME는 Modify Bearer Request 메시지를 전송하며, 이 메시지 내 Serving Network IE를 포함시킨다.
- 마지막으로 보고된 UE Time Zone과 비교하여 UE 시간 존이 변경되었으면, MME는 Modify Bearer Request 메시지를 전송하며, 이 메시지 내 UE Time Zone IE를 포함시킨다.
RRC 확립 원인(RRC establishment cause)이 "MO 예외 데이터(MO exception data)"이고 UE가 NB-IoT RAT을 통해 접속하고 있으면, MME는 MO 예외 데이터 카운터(MO Exception Data Counter)만을 포함시킨다. S-GW는 과금 데이터 레코드(CDR: Charging Data Record) 상에 관련된 카운터로 이 RRC establishment cause의 사용을 지시한다. MME는 S-GW에게 즉시 MO Exception Data Counter를 전송할 수 있다.
4b. S11-U 연결이 확립되고 UE가 "MO exception data"로 셋팅된 RRC establishment cause으로 NB-IoT RAT를 통해 접속 중이면, MME는 S-GW에게 통지한다. MME는 즉시 MO Exception Data Counter를 S-GW에게 전송할 수 있다.
5. 마지막으로 보고된 RAT 타입과 비교하여 RAT 타입이 변경되었으면, 또는 UE의 위치 및/또는 정보 IE 및/또는 UE 시간 존(Time Zone) 및 서빙 네트워크 ID가 앞서 4 단계에 존재하였으면, S-GW는 베어러 수정 요청(Modify Bearer Request) 메시지를 P-GW에게 전송한다.
Modify Bearer Request 메시지는 RAT 타입(RAT Type), MO 제외 데이터 카운터(MO Exception data counter)를 포함한다. User Location Information IE 및/또는 User CSG Information IE 및/또는 Serving Network IE 및/또는 UE Time Zone은 앞서 4 단계에서 존재할 때 포함된다.
Modify Bearer Request 메시지가 앞서 설명한 이유로 인하여 전송되지 않고 P-GW 과금이 일시정지(pause)되면, S-GW는 P-GW에게 과금이 더 이상 일시정지(pause)되지 않는다는 PDN 과금 일시정지 중단 지시(PDN Charging Pause Stop Indication)를 수반한 Modify Bearer Request 메시지를 P-GW에게 전송한다. 다른 IE는 이 메시지에 포함되지 않는다.
Modify Bearer Request가 상술한 이유로 전송되지 않았지만 MME가 MO Exception data counter를 지시하였으면, S-GW는 P-GW에게 이 RRC establishment cause이 MO Exception Data Counter의 지시에 의해 사용된다고 알린다. S-GW는 관련된 카운터로 이 RRC establishment cause의 사용을 지시한다
6. P-GW는 베어러 수정 응답(Modify Bearer Response) 메시지를 S-GW에게 전송한다.
P-GW는 관련된 카운터로 RRC establishment cause "MO Exception Data"의 사용을 지시한다.
7. Modify Bearer Request 메시지가 4 단계에서 전송되었으면, S-GW는 Modify Bearer Request 메시지에 대한 응답으로서 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
Modify Bearer Response 메시지는 UL 트래픽을 위한 S-GW 주소 및 TEID를 포함한다.
S11-U 사용자 평면을 위한 S-GW 주소 및 S-GW TEID는 MME에 의해 S-GW에게 상향링크 데이터를 전달하기 위하여 사용된다.
8. MME는 S-GW를 경유하여 P-GW에게 상향링크 데이터를 전송한다.
9. 앞서 1 단계에서 UE로부터 Release Assistance Information에 기반하여 하향링크 데이터가 예상되지 않으면, 이는 모든 어플리케이션 계층 데이터 교환이 상향링크 데이터 전송으로 완료되었음을 의미한다. 따라서, MME가 대기 중인 MT(Mobile Terminated) 트래픽을 알고 있지 않는 한 그리고 S1-U 베어러가 확립되지 않으면, MME는 즉시 연결을 해제하고, 14 단계가 수행된다.
그렇지 않으면, 하향링크 데이터가 P-GW에 도착할 수 있다. 그리고, P-GW는 하향링크 데이터를 S-GW를 통해 MME에게 전송한다. 데이터가 수신되지 않으면, 10 단계 내지 12 단계는 생략되고, eNB는 13 단계에서 어떠한 활동(activity)를 감지하지 못한 후, 14 단계를 트리거할 수 있다. RRC 연결이 활성화된 동안, UE는 여전히 S1AP 상향링크 또는 하향링크 메시지 내에서 전달되는 NAS PDU(들) 내에서 상향링크 데이터를 전송하고 하향링크 데이터를 수신할 수 있다. UE가 더 이상 사용자 평면 베어러가 확립되지 않을 때, UE는 상향링크 데어터와 함께 Release Assistance Information를 제공할 수 있다. 이 경우, 위치 서비스를 보조하기 위하여, eNB는 UE의 Coverage Level을 MME에게 지시할 수 있다.
10. 하향링크 데이터가 9 단계에서 수신되었으면, MME는 하향링크 데이터를 암호화하고 무결성 보호한다.
11. 10 단계가 수행되면, 하향링크 데이터는 NAS PDU 내에서 암호화되고 S1-AP 하향링크 메시지 내에서 eNB에게 전송된다. eNB가 하향링크 NAS 데이터 PDU의 확인응답(acknowledgement)을 지원하면, 또한 하향링크 NAS 데이터 PDU의 acknowledgement가 UE의 가입 정보 내에서 가능하면, MME는 하향링크 S1-AP 메시지 내에서 acknowledgment이 eNB에게 요청된다고 지시한다. 헤더 압축을 지원하도록 설정된 IP PDN 타입 PDN 연결의 경우, MME는 NAS 메시지 내 데이터를 인캡슐레이션(encapsulating)하기 전에 헤더 압축을 적용한다. 앞서 10 단계가 수행되지 않으면, MME는 연결 확립 지시(Connection Establishment Indication) 메시지를 eNB에게 전송할 수 있다. UE 무선 능력(UE Radio Capability)은 연결 확립 지시(Connection Establishment Indication) 메시지 내에서 MME로부터 eNB에게 제공될 수 있다. 그리고 eNB는 수신한 UE Radio Capability 정보를 저장한다.
상향링크 데이터와 함께 Release Assistance Information가 수신되었으면, 그리고 Release Assistance Information이 하향링크 데이터가 예상된다고 지시하면, 이는 Release Assistance Information의 전송에 이어지는 다음의 하향링크 패킷이 어플리케이션 계층 데이터 교환의 마지막 패킷이라는 것을 의미한다. 이 경우, MME가 추가적인 대기 중인(pending) MT 트래픽을 알지 않는다면, 그리고 S1-U 베어가 확립되지 않았다면, MME는 NAS PDU 내 인캡슐레이션된 하향링크 데이터를 포함하는 S1-AP 메시지 이후에 eNB가 UE에게 데이터가 성공적으로 전송된 후 RRC 연결을 해제한다는 지시로서 S1 UE 컨텍스트 해제 명령(S1 UE Context Release Command)을 즉시 전송한다.
UE가 NB-IoT 셀을 통해 접속 중이면, 또는 WB(Wide Band)-E-UTRAN 셀을 통해 접속 중이고 CE(Coverage Enhancement) 모드 B가 가능하면, NAS PDU 재전송 방식을 결정하기 위하여, MME는 NAS PDU의 전송 지연과 CE 모드를 고려한다(즉, 최악의 전송 지연에 따라 NAS 타이머를 충분히 길게 셋팅).
12. eNB는 NAS PDU 내 인캡슐레이션된 하향링크 데이터를 포함하는 RRC 하향링크 데이터(RRC Downlink data) 메시지를 전송한다. 11 단계에서 NAS DATA PDU를 수반하는 S1-AP 메시지에 이어 S1 UE Context Release Command가 이어졌으면, UE에게 NAS PDU의 하향링크 데이터 전송 후에 즉시 15 단계는 완료되고, 13 단계에서 MME로의 acknowledgement이 eNB에서 완료되며, eNB에게 14 단계는 수행될 필요가 없다. 헤더 압축이 PDN에 적용되었으면, UE는 IP 헤더를 재구성(rebuild)하기 위해 헤더 디컴프레션(header decompression)을 수행한다.
13. eNB는 NAS 전달 지시(NAS Delivery indication)를 MME에게 전송한다. eNB가 S1-AP NAS 비-전달 지시(S1-AP NAS Non Delivery Indication)로 성공적이지 않은 전달을 보고하면, MME는 UE가 잠재적으로 셀이 변경되어 MME에게 재-확립된 연결을 가질 때까지 일정 시간 기다린다. 재-확립된 연결을 가지면, MME가 하향링크 S1-AP 메시지를 eNB에게 재전송하여야 한다. 그렇지 않으면, MME는 SCEF에게 성공적이지 않은 전달을 보고한다. eNB가 S1-AP NAS Delivery Indication로 성공적인 전달을 보고하면, 그리고 하향링크 데이터가 T6a 인터페이스를 통해 수신되었으면, MME는 SCEF에게 응답하여야 한다. eNB가 S1-AP NAS delivery indication를 지원하지 않으면, SCEF가 신뢰되는 전달이 가능한지 여부를 알 수 있도록 MME는 원인 코드 '성공적인 비확인 전달(Success Unacknowledged Delivery)'를 SCEF에게 지시한다.
14. NAS PDU 활동이 존재하지 않으면, eNB는 15 단계에서 S1 해제를 시작한다.
15. S1 해제 절차가 eNB 또는 MME에 의해 트리거된다. 또한, 11 단계에서 MME가 UE Context Release Command를 전송하였으면, S1 release 절차 또는 연결 유보 절차(Connection Suspend Procedure) 의 5 단계부터 시작한다. UE와 MME는 다음에 ECM-CONNECTED 상태에 진입할 때 ROHC 설정 및 상향링크/하향링크 데이터 전송을 위한 컨텍스트를 저장한다.
UP CIoT EPS 최적화
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 기지국에 의해 개시된 연결 유보(connection suspend) 절차를 예시한다.
UE와 네트워크가 UP CIoT EPS 최적화를 지원하는 경우, 이 절차는 네트워크에 의해 연결을 유보하기 위하여 이용된다.
1. eNB는 MME에게 연결 유보 절차를 개시한다. eNB는 MME에게 MME가 ECM-IDLE로 진입할 때 UE의 RRC 연결이 유보될 것임을 지시한다.
연결을 재개하기 위하여 필요한 S1AP 연계(association)과 관련된 데이터, UE 컨텍스트 및 베어러 컨텍스트가 eNB, UE 및 MME에게 유지된다.
eNB는 페이징을 위해 추천되는 셀 및 eNB 정보(Information On Recommended Cells And eNBs For Paging)를 S1 UE 컨텍스트 유보 요청(S1 UE Context Suspend Request) 메시지에 포함시킬 수 있다. 이용 가능한 경우, MME는 UE를 페이징할 때 이용하기 위하여 이 정보를 저장할 수 있다.
이용 가능한 경우, eNB는 진보된 커버리지를 위한 정보(Information for Enhanced Coverage)를 S1 UE 컨텍스트 유보 요청(S1 UE Context Suspend Request) 메시지에 포함시킬 수 있다.
PLMN이 2차적인 RAT(secondary RAT) 보고를 설정하였으며 eNB가 보고할 Secondary RAT 활용 데이터를 가지면, Secondary RAT 활용 데이터가 포함된다.
1a-d. eNB가 Secondary RAT 활용 데이터를 1 단계에서 제공하였으면, MME는 Secondary RAT 활용 데이터 보고 절차를 개시한다.
2. MME는 UE를 위한 모든 S1-U(S1 사용자 평면) 베어러의 해제를 요청하기 위하여 액세스 베어러 해제 요청(Release Access Bearers Request) 메시지를 S-GW에게 전송한다.
3. S-GW는 모든 UE를 위한 eNB 관련 정보(즉, eNB 주소 및 하향링크 터널 종단 식별자(TEID: Tunnel endpoint identifier)(들))를 해제한다. 그리고, S-GW는 MME에게 액세스 베어러 해제 응답(Release Access Bearers Response) 메시지를 응답한다.
UE의 S-GW 컨텍스트의 다른 요소들은 영향을 받지 않는다. UE를 위한 하향링크 패킷이 도착하면, S-GW는 UE를 위해 수신한 하향링크 패킷을 버퍼링하고, 네트워크에 의해 트리거된 서비스 요청(Network Triggered Service Request) 절차(3GPP TS 23.401 참조)를 개시한다.
S-GW는 액세스 베어러 해제 응답(Release Access Bearers Response) 메시지 내에서 MME에게 S1-U 베어러의 해제에 대하여 알린다.
4. MME는 eNB에 의해 개시된 연결 유보 절차를 성공적으로 종료하기 위하여 S1-AP UE 컨텍스트 유보 응답(UE Context Suspend Response) 메시지를 eNB에게 전송한다.
5. eNB는 UE를 향한 RRC 연결을 유보하기 위하여 RRC 메시지를 UE에게 전송한다.
UE NAS가 EMM-IDLE 상태에서 suspend가 된 경우(즉, UE가 유보 지시를 수반한 EMM-IDLE 모드인 경우), UE가 상향링크 시그널링이나 데이터를 전송하기 위해서 재개 절차를 시작해야 한다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 UE에 의해 개시된 연결 재개(connection resume) 절차를 예시한다.
UE와 네트워크가 UP CIoT EPS 최적화를 지원하고, UE가 연결 재개 절차를 수행하기 위하여 필요한 정보를 저장하고 있는 경우, 이 절차는 ECM 연결(ECM-connection) 재개하기 위하여 사용된다. 그렇지 않으면, 서비스 요청(Service Request) 절차(TS 23.401 참조)가 이용된다.
1. UE는 랜덤 액세스 절차(도 6 참조)를 eNB에게 트리거한다.
2. UE는 UE의 저장된 AS 컨텍스트에 액세스하기 위하여 eNB에 의해 필요한 정보를 포함하는 RRC 연결 재개 절차를 트리거한다.
E-UTRAN은 보안 체크를 수행한다.
UE와 네트워크 간 EPS 베어러 상태 동기화가 수행된다. 즉, UE는 무선 베어러가 셋업되지 않으며 또한 CP CIoT EPS 베어러가 아닌 EPS 베어러를 지역적으로 삭제한다. 기본(default) EPS 베어러를 위한 무선 베어러가 확립되지 않으면, UE는 default EPS 베어러와 연관된 모든 EPS 베어러를 지역적으로 비활성화한다.
3. eNB는 RRC 재개 원인을 포함하는 S1-AP UE 컨텍스트 재개 요청(UE Context Resume Request) 메시지 내에서 UE의 RRC 연결이 재개되었음을 MME에게 알린다. eNB가 모든 유보된 베어러를 허용(admit)할 수 없으면, eNB는 거절된 EPS 베어러의 리스트 내에서 이를 지시한다. MME는 ECM-CONNECTED 상태로 진입한다. MME는 연결을 재개하기 위하여 필요한 S1AP 연계(association)와 관련된 데이터, UE 컨텍스트 및 DL TEID를 포함하는 베어러 컨텍스트를 저장하였던 MME에 대한 eNB에 UE가 복귀(return)하였는지 식별한다.
default EPS 베어러가 eNB에 의해 수락되지 않으면, default 베어러와 연관된 모든 EPS 베어러는 수락되지 않은(non-accepted) 베어러로서 취급된다. MME는 베어러 해제 절차(bearer release procedure)(TS 24.301 참조)를 트리거링함으로써 non-accepted 베어러 및 확립되지 않은(non-established) 베어러를 해제한다.
위치 서비스를 보조하기 위하여, eNB는 UE의 커버리지 레벨(Coverage Level)을 MME에게 지시한다.
S1-U 연결이 재개되고, UE가 "MO exception data"로 셋팅된 RRC 재개 원인으로 NB-IoT RAT을 통해 접속 중이면, MME는 MO Exception Data Counter에 의해 이 확립 원인의 사용을 S-GW에게 알린다. MME는 MO Exception Data Counter를 유지하고 S-GW에게 전송한다.
3b. RRC 확립 원인 "MO Exception Data"이 MO Exception Data Counter에 의해 사용되면, S-GW는 P-GW에게 알려야 한다. S-GW는 관련된 카운터에 의해 RRC 확립 원인의 사용을 지시한다.
3c. P-GW는 관련된 카운터에 의해 RRC 확립 원인 "MO Exception Data"의 사용을 지시한다.
4. MME는 S1-AP UE 컨텍스트 재개 응답(UE Context Resume Response) 메시지 내에서 연결 재개를 확인응답(acknowledge)한다. MME가 모든 유보된 E-RAB를 허용(admit)할 수 없으면, MME는 재개 실패 E-RAB 리스트(E-RABs Failed To Resume List) 정보 요소(IE: Information Element) 내에서 이를 지시한다.
5. 앞서 4 단계에서 MME가 재개 실패 E-RAB 리스트(E-RABs Failed To Resume List)를 포함하였다면, eNB는 무선 베어러를 재구성(reconfigure)한다.
6. 이제 UE로부터 상향링크 데이터가 eNB에 의해 S-GW에게 전달될 수 있다. eNB는 연결 유보 절차 동안에 저장된 S-GW 주소 및 TEID를 이용하여 상향링크 데이터를 S-GW에게 전송한다. S-GW는 상향링크 데이터를 P-GW에게 전달한다.
7. MME는 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 S-GW에게 전송한다. 베어러 수정 요청(Modify Bearer Request) 메시지는 eNB 주소, 수락된 EPS 베어러에 대한 S1 TEID, 지연된 하향링크 패킷 통지 요청(Delay Downlink Packet Notification Request), RAT 타입을 포함할 수 있다.
S-GW가 Modify Access Bearers Request 절차를 지원하면, 그리고 S-GW가 P-GW에게 시그널링을 전송할 필요가 없으면, 시그널링을 최적화하기 위해 MME는 UE 별로 Modify Access Bearers Request를 S-GW에게 전송할 수 있다. Modify Access Bearers Request는 수락된 EPS 베어러에 대한 하향링크 사용자 평면을 위한 eNB 주소(들) 및 TEID(들), Delay Downlink Packet Notification Request를 포함할 수 있다.
S-GW는 이제 하향링크 데이터를 UE에게 전송할 수 있다.
파워 세이빙 기능을 사용하는 UE를 위하여 버퍼링된 어떠한 하향링크 데이터가 전달되었는지 기억하기 위하여 또한 이후의 TAU와 함께 불필요한 사용자 평면 셋업을 방지하기 위하여, MME와 S-GW는 자신의 UE 컨텍스트 내 하향링크 데이터 버퍼 만료 시간(DL Data Buffer Expiration Time)을 삭제(clear)한다(셋팅되어 있는 경우).
8. S-GW는 베어러 수정 요청(Modify Bearer Request) 메시지에 대한 응답으로 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 반환(return)하거나 또는 수정 액세스 베어러 요청(Modify Access Bearers Request) 메시지에 대한 응답으로 수정 액세스 베어러 응답(Modify Access Bearers Response) 메시지를 MME에게 반환(return)할 수 있다.
베어러 수정 응답(Modify Bearer Response) 메시지 및 수정 액세스 베어러 응답(Modify Access Bearers Response) 메시지는 S-GW 주소 및 상향링크 트래픽을 위한 TEID를 포함할 수 있다.
S-GW가 P-GW 내 일시정지되지 않은 과금(unpause charging) 이외 S5/S8 시그널링 없이 또는 S5/S8 이외 PMIP가 사용될 때 해당 Gxc 시그널링 없이, Modify Access Bearers Request 메시지 내 MME 요청을 서비스할 수 없으면, S-GW는 수정이 S1-U 베어러에 제한되지 않는다는 지시로 MME에게 응답한다. 그리고, MME는 PDN 연결 별로 Modify Bearer Request 메시지를 이용하여 요청을 반복한다.
지역 네트워크(Local Network)에서 SIPTO(Selected IP Traffic Offload)가 스탠드-얼론(stand-alone)을 게이트웨이 배치를 수반한 PDN 연결에 대해 활성화되면, 그리고 UE에 의해 접속된 스탠드-얼론(stand-alone)을 위한 로컬 홈 네트워크 식별자(Local Home Network ID)가 UE에 의해 개시된 SIPTO@LN PDN 연결의 Local Home Network ID와 상이하면, MME는 "재활성화 요청(reactivation requested)" 원인 값으로 로컬 네트워크 PDN 연결에서 SIPTO의 단절을 요청한다.
지역 네트워크(Local Network)에서 SIPTO(Selected IP Traffic Offload)가 동일한 위치의(collocated) 로컬 게이트웨이(LGW: Local Gateway) 배치를 수반한 PDN 연결에 대해 활성화되면, 그리고 UE에 의해 접속된 셀의 LGW 코어 네트워크(CN: Core Network) 주소가 UE가 로컬 네트워크 PDN 연결에서 UE에 의해 개시된 SIPTO의 셀의 LGW CN 주소와 상이하면, MME는 "재활성화 요청(reactivation requested)" 원인 값으로 로컬 네트워크 PDN 연결에서 SIPTO의 단절을 요청한다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 재개 절차를 보다 상세하게 예시한다.
도 15를 참조하면, UE의 NAS 계층은 유보 지시를 수반한 EMM-IDLE 모드(EMM-IDLE mode with suspend indication)이다. UE의 NAS 계층에서 서비스 요청(Service Request) 또는 트래킹 영역 업데이트(TAU: Tracking Area Update) 또는 어태치(Attach) 또는 디태치(Detach) 절차가 트리거된다. UE의 NAS 계층은 초기 NAS 메시지를 생성하고, 초기 NAS 메시지는 대기 중(pending)에 있다.
UE의 NAS 계층은 NAS 메시지 없이 RRC 확립 원인(RRC establishment cause) 및 호 타입(Call type)을 UE의 AS 계층에게 전송한다.
I-A) 재개가 성공되고, 서비스 요청(SERVICE REQUEST) 메시지
UE의 AS 계층이 eNB으로부터 재개 수락(Resume Accept)을 수반한 RRC 연결 셋업(RRC Connection Setup) 메시지를 수신하면, UE의 NAS 계층에게 재개가 성공하였다고 지시한다.
UE의 NAS 계층은 EMM-CONNECTED 모드로 진입하고, SERVICE REQUEST 메시지를 폐기한다.
UE의 AS 계층은 NAS 메시지 없는 RRC 연결 재개 완료(RRC Connection Resume Complete) 메시지를 eNB에게 전송한다.
I-B) 재개가 성공되고, 확장된 서비스 요청(EXTENDED SERVICE REQUEST) 또는 TAU 요청(TAU REQUEST) 메시지
UE의 AS 계층이 eNB으로부터 재개 수락(Resume Accept)을 수반한 RRC 연결 셋업(RRC Connection Setup) 메시지를 수신하면, UE의 NAS 계층에게 재개가 성공하였다고 지시한다.
UE의 NAS 계층은 EMM-CONNECTED 모드로 진입하고, 대기 중인(pending) NAS 메시지를 UE의 AS 계층으로 전달한다.
UE의 AS 계층은 NAS 메시지를 포함하는 RRC 연결 재개 완료(RRC Connection Resume Complete) 메시지를 eNB에게 전송한다.
진보된 원격 UE(eRemote-UE: enhanced Remote UE)와 진보된 릴레이 UE(eRelay-UE: enhanced Relay UE) 간의 연결 셋업의 향상
eRelay-UE와 eRemote-UE 간의 빠른 연결 셋업은 서비스 요구 사항의 일부이고, 페어링(pairing)이 빠른 연결 셋업을 달성하기 위한 수단으로 제안되었다. 빠른 연결 셋업을 위한 솔루션을 개발할 때 다음이 요구되어야 한다:
- 선행 연계(prior association)으로/없이 연결 셋업을 향상시키는지 여부 및 어떻게 향상시키는지.
- eRemote-UE와 eRelay-UE 간 연계가 EPC의 보조로 제공되는지 여부.
- 선행 연계(prior association)이 전용의(private) 릴레이 네트워크(즉, 상호 간에 특정 신뢰된 관계를 가지는 장치로만 구성된 네트워크)를 위해서만 사용되는지 여부.
이러한 주요 이슈에 대하여, 현재 3가지의 서로 다른 솔루션이 존재한다. 모든 솔루션은 릴레이 기능이 eRemote-UE와 네트워크 간에 시그널링 및 사용자 데이터 전달을 위해 사용되는 점만이 상이하며, 레가시 서비스 요청 절차에 기반한다.
그 중 하나의 솔루션으로서, PC5 통신을 셋업하기 위해, 일대일(one-to-one) 통신을 위한 레가시 ProSe 절차가 사용되나, eRelay-UE에게 일대일 통신이 간접 통신을 위해 사용된다고 지시하기 위하여 새로운 메시지 타입인 직(간)접 통신 요청/응답이 변경된다.
이 솔루션은 개방(open) 및 제한된(restricted) 디스커버리(discovery) 모두를 위해 레가시와 비교하여 최소한의 영향으로 동작할 수 있다.
이하, 이 솔루션에 대하여 보다 상세히 살펴본다.
이 솔루션은 빠른 연결 셋업을 달성하기 위하여, eRemote-UE와 네트워크 간의 연결 셋업을 최적화하는 방법을 제안한다.
이 절차는 2 개의 단계를 포함한다. 첫 번째로, UE-1은 직접 통신 요청(Direct Communication Request) 메시지를 UE-2에게 전송한다. 이 메시지는 UE-1과 UE-2 간의 상호 인증(mutual authentication) 및 보안 연계(security association)인 2 단계를 트리거한다.
2 계층 릴레이(Layer-2 relay)를 위한 솔루션은 eRemote-UE와 eNB 간의 간접적인 3GPP 통신을 이용한 트래픽에 대하여, 트래픽이 레가시 AS 보안 절차에 의해 안전하게 보호될 수 있다는 사실을 이용한다. 이 보호는 안전한 PC5 링크를 제공하기 위해 사용될 수 있다. eRemote-UE와 eRelay-UE 간의 일대일 통신을 셋업하기 위해 제안된 최적화는 eRemote와 eNB 간의 AS 보안에 의해 PC5가 보호되므로 3GPP TS 23.303 5.4.5 절에서 정의된 절차에서 2 단계를 생략한다.
이 솔루션은 TS 23.401 5.3.4 절에서 특정된 레가시 서비스 요청 절차에 기반하지만, eRemote-UE와 네트워크 간의 시그널링 및 사용자 데이터를 전달하기 위해 L2 계층-릴레이 기능이 사용되는 점이 상이하다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 진보된 원격 UE(eRemote-UE)에 의해 트리거된 서비스 요청 절차를 예시한다.
1. eRemote-UE와 eRelay-UE는 PC5 디스커버리(discovery) 절차를 수행한다.
2. eRemote-UE는 상위 계층에 의해 트리거된 간접 통신 요청(INDIRECT_COMMUNICATION_REQUEST) 메시지를 eRelay-UE에게 전송함으로써, eRelay-UE와의 일대일 통신을 개시한다.
3. eRelay-UE는 eRemote-UE로부터 수신된 요청에 의해 트리거된 서비스 요청(Service Request) 메시지(eRelay-UE의 식별자 예를 들어, GUTI, S-TMSI를 포함)를 eRelay-UE의 MME에게 전송한다. 이 단계는 TS 23.401 5.3.4 절에 따라 수행된다.
4. eRelay-UE는 간접 통신 응답(INDIRECT_COMMUNICATION_RESPONSE) 메시지를 eRemote-UE에게 전송한다.
5. INDIRECT_COMMUNICATION_REQUEST이 수락되면, eRemote-UE는 Service Request(eRemote-UE의 식별자 예를 들어, GUTI, S-TMSI 포함)을 eRemote-UE의 MME에게 전송한다. Service Request 메시지는 RRC 메시지 내 인캡슐레이션되어 eNB에게 전송된다. eRelay-UE는 RAN 특정 L2 릴레이 방법을 이용하여 이 메시지를 eNB에게 전달한다.
6. eNB는 eRemote-UE의 식별자를 이용하여 eRemote-UE의 MME 식별자를 도출하고, S1-MME 제어 메시지 내에서 NAS 메시지를 전달한다. 이 단계는 TS 23.401 5.3.4 절에 따라 수행된다.
7. TS 23.401 5.3.10 절에서 정의된 NAS 인증/보안 절차가 수행될 수 있다.
8. MME는 S1-AP 초기 컨텍스트 셋업 요청(S1-AP Initial Context Setup Request) 메시지를 eNB에게 전송한다.
9. eNB는 TS 23.401 5.3.4 절에 따라 무선 베어러 확립 절차를 수행한다. eRelay-UE는 RAN 특정 L2 릴레이 방법을 이용하여 eRemote-UE와 eNB 간의 모든 메시지를 전달한다.
10. 이제 eRemote-UE로부터의 상향링크 데이터가 eRelay-UE, eNB에 의해 S-GW로 전달될 수 있다. S-GW는 P-GW에게 상향링크 데이터를 전달한다.
11. eNB는 S1-AP 초기 컨텍스트 셋업 완료(S1-AP Initial Context Setup Complete) 메시지를 MME에게 전송한다. 이 단계는 TS 36.300 내에서 상세히 기술된다.
사이드링크(직접 링크) 스몰 데이터 송수신을 위한 방법
1. 문제점 1
종래 동작에 따르면, remote UE가 relay UE를 통해서 데이터를 전송하기 위해서는, relay UE와의 직접 링크(direct link)(즉, 사이드링크(sidelink))를 확립하고 데이터를 전송해야 한다.
remote UE가 relay UE와의 direct link를 확립하기 위해서는 직접 링크 셋업 절차(direct link setup procedure)를 수행해야 한다.
이때, direct link setup procedure 도중에 안전한 연결(secured connection)을 확립하기 위해서 remote UE는 직접 통신 요청(DIRECT COMMUNICATION REQEUST) 메시지를 relay UE에게 전송하고, 이를 수신한 Relay UE로부터 직접 통신 수락(DIRECT COMMUNICATION ACCEPT) message를 수신한 이후에, 전송하고자 하는 데이터를 direct link를 통해서 전송할 수 있다.
direct link가 확립되면, 해당 direct link를 유지하기 위해서, Remote UE는 직접 링크 킵얼라이브 절차(Direct link keepalive procedure)를 수행하고, 해당 direct link를 해제하기 위해서는 직접 링크 해제 절차(Direct link release procedure)를 수행해야 한다.
이때, 낮은 파워(low power), 낮은 전송율(low rate) 및 낮은 복잡성(low complexity)/저비용(low cost) 장치인 remote UE가 작은 데이터(small data)를 relay UE를 통해서 전송하는 경우에도 상술한 종래 동작을 수행하는 것은 오버헤드(overhead)로 발생할 수 있다. 구체적으로 살펴보면 다음과 같다.
Remote UE가 한 번(하나의 패킷/하나의 시간 슬롯)에 전송 가능한 small data만 direct link로 전송하고자 하는 경우, 하기의 절차를 수행해야 한다.
remote UE는 direct link를 확립하기 위한 Direct link setup procedure를 수행해야 한다. Direct link가 성공적으로 확립된 경우, 해당 small data를 확립된 direct link를 통해서 전송할 수 있다. Direct link setup procedure에서 DIRECT_COMMUNICATION_REQUEST message를 수신한 Relay UE가 사용자 정보(User Info)와 IP 설정(IP configuration)에 대한 확인이 성공적으로 마치면, Remote UE와의 보안 연계(security association)을 맺기 위해서 직접 보안 모드 제어 절차(direct security mode control procedure)를 수행한다.
remote UE가 해당 direct link를 통해서 더 이상 데이터를 전송하지 않는 경우, 해당 direct link를 해제하기 위해서 Direct link release procedure를 수행해야 한다.
이때, direct link를 해제하지 않는 경우, Direct link keepalive procedure를 수행해야 한다.
2. 문제점 2
Relay UE가 다수의 remote UE의 small data를 릴레이(relaying)하는 경우, Relay UE가 각 remote UE의 small data 전송 시점마다 해당 small data 전송을 Uu 인터페이스(즉, UE와 RAN 간의 무선 인터페이스)를 통해 시도하면 파워와 채널 효율성이 감소하게 된다. Remote UE의 데이터 전송 주기가 길다는 점과, 각 remote UE의 전송 시점이 비동기화(asynchronized)된 경우를 가정하면, 이러한 효율성은 더 낮을 수 있다. 결국, Relay UE는 아래와 같은 동작을 반복으로 인해 파워 소모가 증가되며, 시그널링 오버헤드가 증가하게 된다.
- EMM-IDLE 모드에서 EMM-CONNECTED 모드로 전환하기 위한 동작
- EMM-CONNECTED 모드에서 EMM-IDLE 모드로 전환하기 위한 동작
- 전송을 위한 자원을 요청하는 과정 (데이터 볼륨 지시자(DVI), 버퍼 상태 보고(BSR: Buffer State Report) 등)
특히, IoT 환경에서는 다수의 remote UE(예를 들어, 센서 장치)가 하나의 relay UE를 통해서 네트워크와 통신을 수행하는 것을 가정하면, 상술한 문제가 더 빈번하게 높은 확률로 발생할 수 있다.
본 발명에서는 remote UE가 파워 소모를 최소화하면서 small data를 전송하는 방법을 제안하고자 한다. Remote UE는 낮은 파워(low power), 낮은 전송율(low rate) 및 낮은 복잡성(low complexity)/저비용(low cost) 장치인 경우에 본 발명이 적용이 보다 효과적일 수 있다.
이하, 본 발명의 설명에 있어서, small data는 데이터(사용자 데이터)뿐만 아니라 시그널링(메시지)를 의미할 수 있다. 이때, 시그널링은 NAS 시그널링 또는 RRC 시그널링을 의미할 수 있다.
또한, remote UE의 상향링크나 하향링크전송은 Relay UE와의 sidelink를 통한 상향링크나 하향링크 전송을 의미한다.
도 17은 본 발명의 일 실시예에 따른 기본적인 시나리오를 예시한다.
Remote UE는 셀의 커버리지 내(in-coverage)에 위치할 수 있고 커버리지 밖(out-of-coverage)에 위치 할 수도 있다. Remote UE는 Relay UE를 통해서 네트워크에게 데이터를 전송하고자 하는 상황을 고려한다.
실시예 1
도 18은 본 발명의 일 실시예에 따른 Remote UE의 Relay UE를 통한 스몰 데이터 전송 방법을 예시하는 도면이다.
1. Relay UE는 E-UTRAN에 초기 어태치 절차를 수행한다(1-A). Remote UE는 E-UTRAN에 초기 어태치 절차를 수행한다(1-B).
2. Remote UE는 스몰 데이터 전송(SDT: Small Data Transmission)이 트리거되면, Remote UE는 SDT를 위해 Relay UE와 디스커버리 절차를 수행한다.
3. Remote UE는 Relay UE에게 SDT를 위한 PC5 메시지를 전송한다. Remote UE로부터 전송된 스몰 데이터는 사용자 평면(UP: User Plane)으로 전송되는 데이터거나 제어 평면(CP: Control Plane)으로 전송되는 데이터일 수 있다. 제어 평면으로 전송되는 경우, 사용자 베어러(즉, DRB(Data Radio Bearer)와 S1-U 베어러)가 확립되지 않고, 스몰 데이터가 NAS PDU(들)로 구성되어 NAS 메시지에 포함되어 제어 평면으로 전송된다.
4. Remote UE는 Relay UE로부터 응답/Ack(Acknowledge)을 위한 PC5 메시지를 수신한다.
5. Relay UE는 Remote UE의 스몰 데이터를 네트워크에게 전송한다.
이때, Remote UE로부터 전송된 스몰 데이터의 타입이 제어 평면(CP: Control Plane) 데이터인 경우, Relay UE는 앞서 도 11에 따른 CP CIoT EPS optimization에서의 데이터 전송 방법을 이용하여 Remote UE의 스몰 데이터를 네트워크에게 전송할 수 있다. 보다 구체적인 절차와 관련하여 TS 23.401 V14.2.0가 참조로서 본 문서에 병합될 수 있다.
6. Remote UE와 Relay UE는 PC5 링크를 위한 절차/동작을 수행한다.
이하, 도 18에 따른 절차에 대하여 보다 구체적으로 살펴본다.
[1] Relay UE의 small data 전송의 능력을 확인하는 방법 (discover 절차를 통해) - 앞서 도 18에서 2 단계에 해당
각 UE가 small data 전송의 능력은 프로비저닝(provision)되어 있다. 예를 들어, USIM(Universal Subscriber Identity Module)이나 ME(Mobile Equipment)에 미리 설정되거나 또는 운영자로부터 설정될 수 있다(예를 들어, OMA(Open Mobile Alliance)).
Remote UE는 Relay UE가 small data 전송의 능력을 가지는지 여부를 다음의 방법으로 확인할 수 있다.
Relay UE가 discovery 절차 동작할 때, PC5 디스커버리(PC5_DISCOVERY) 메시지에 자신의 능력을 알려줄 수 있다. 이는 다음의 방법으로 구현될 수 있다.
A. 상기에서 PC5_DISCOVERY 메시지는 디스커버리 모델에 따라 다음과 같은 메시지일 수 있다.
i. Model A: UE-to-Network Relay 디스커버리 알림(UE-to-Network Relay Discovery Announcement)을 위한 PC5_DISCOVERY 메시지
ii. Model B: UE-to-Network Relay 디스커버리 응답(UE-to-Network Relay Discovery Response)을 위한 PC5_DISCOVERY 메시지
앞서 설명한 i 및 ii 방법에서, PC5_Discovery 메시지의 상태 지시자(Status Indicator IE) 내 스몰 데이터 전송을 지원하는 능력에 대한 새로운 파라미터가 포함될 수 있다.
상태 지시자(Status Indicator) 파라미터는 ProSe UE-to-network relay의 상태를 지시하기 위해 사용된다. 이 파라미터는 아래 표 12와 같이 코딩될 수 있다.
RSI는 UE가 추가적인 ProSe-enabled 공공 안전 UE를 위한 연결 서비스를 제공하기 위해 이용 가능한 자원을 가지는지 여부를 지시하기 위해 사용된다.
스몰 데이터 전송 지시자(SDTI: Small Data Transmission Indicator)는 UE가 스몰 데이터 전송 절차를 지원하는지 여부를 지시하기 위해 사용된다.
표 12는 Status Indicator 파라미터(또는 IE)를 예시한다.
Figure PCTKR2018000368-appb-T000012
또는, 앞서 설명한 i 및 ii 방법에서, PC5_Discovery 메시지에 새로운 IE가 추가되고, 새롭게 추가된 IE '능력(capability)' 내 스몰 데이터 전송을 지원하는 능력에 대한 새로운 파라미터가 포함될 수도 있다.
B. 상술한 능력은 small data 전송을 지원하는 능력을 의미한다. 이러한 능력을 알려주는 방법은 small data 전송의 지원 여부로 알려줄 수 있다.
C. UE-to-Network Relay Discovery Response를 위한 PC5_DISCOVERY 메시지에서 능력을 알려주는 경우(즉, Model B로 동작하는 경우), 하기의 경우 모두 상기의 동작이 가능하다
i. Remote UE가 해당 능력에 대한 요청(inquiry)를 UE-to-Network Relay 디스커버리 유도(UE-to-Network Relay Discovery Solicitation)를 위한 PC5_DISCOVERY 메시지를 전송하고, Relay UE가 이를 수신하는 경우
ii. Remote UE의 요청(inquire)에 상관없이 Relay UE가 UE-to-Network Relay 디스커버리 유도(UE-to-Network Relay Discovery Solicitation)를 위한 PC5_DISCOVERY 메시지를 수신하는 경우
상술한 동작에 대한 보다 구현은 앞서 설명한 '디스커버리 모델', 'UE-to-network relay를 위한 PC5_Discovery 메시지'를 참조한다.
[2] small data 전송의 인지 방법 - 앞서 도 18에서 2 단계(특히, SDT가 트리거됨)에 해당
Remote UE 내부에서 small data 발생시, 상위 계층(예를 들어, 어플리케이션 계층(또는 V2X 계층 또는 ProSe 계층) 또는 NAS 계층)에서 small data가 발생했음을 하위 계층(예를 들어, AS 계층 또는 RRC 계층)에게 알림으로써, 하위 계층이 이를 인지할 수 있다.
1) Small data가 시그널링이 아닌 데이터(즉, 사용자 데이터)인 경우, Remote UE는 small data가 발생을 다음과 같은 방법/순서로 인지할 수 있다.
A. 어플리케이션 계층(또는 V2X 계층 또는 ProSe 계층)에서 PC5를 통해 전송하고자 하는 데이터가 발생했는데, 그 데이터가 small data임을 인지한다. 상기에서 small data라 함은 그 데이터의 양이 후술하는 [3]에서 기술되는 전송 방법으로 적은 횟수(예를 들어, 1회 또는 2회) 혹은 적은 시간으로 전송이 가능한 데이터(혹은 시그널링)를 의미한다. 이때, remote UE의 어플리케이션 계층은 다음을 포함하여 하위 계층(예를 들어, AS 계층 또는 RRC 계층)으로 전달한다.
i. small data; 및
ii. small data 전송이 필요하다는 지시(예를 들어, 스몰 데이터 전송 지시(small data transmission indication)); 및
iii. small data 정보를 전달한다. small data 정보는 다음과 같은 IE 중 어느 하나를 포함할 수 있다.
I. '상향링크 데이터 전송에 이어서 더 이상 상향링크 또는 하향링크 데이터 전송이 예상되지 않음'; 또는
II. '단일의 하향링크 데이터 전송 및 상향링크 데이터 전송에 이어서 더 이상 상향링크 데이터 전송이 예상되지 않음'; 또는
III. '이용 가능한 정보가 없음'
상기에서 III) 대신 '상향링크 데이터 전송에 이어서 추가의 상향링크 또는 하향링크 데이터 전송이 예상됨'으로 표현될 수 있다. 또는 III)이 '상향링크 데이터 전송에 이어서 추가의 상향링크 또는 하향링크 데이터 전송이 예상됨'으로 해석될 수도 있다.
B. 이를 수신한 하위 계층(예를 들어, AS 계층 또는 RRC 계층)은 small data 전송이 필요함을 인지하고 후술하는 [3]의 전송방법을 사용하는 것을 결정한다.
2) Small data가 NAS 시그널링이나 RRC 시그널링의 경우, Remote UE는 small data가 발생을 다음과 같은 방법/순서로 인지할 수 있다.
A. Remote UE의 NAS 계층에서 NAS 시그널링이 발생한 경우, 해당 NAS 시그널링 메시지를 하위 계층(예를 들어, AS 계층 또는 RRC 계층)으로 전달한다. 이때, Remote UE의 NAS 계층에서 NAS 시그널링 메시지와 함께 하위 계층(예를 들어, AS 계층 또는 RRC 계층)으로 다음을 포함하여 전달할 수 있다.
i. small data; 및
ii. small data 전송이 필요하다는 지시(예를 들어, 스몰 데이터 전송 지시(small data transmission indication)); 및
iii. small data 정보를 전달한다. small data 정보는 다음과 같은 정보 중 어느 하나를 포함할 수 있다.
I. '상향링크 데이터 전송에 이어서 더 이상 상향링크 또는 하향링크 데이터 전송이 예상되지 않음'; 또는
II. '단일의 하향링크 데이터 전송 및 상향링크 데이터 전송에 이어서 더 이상 상향링크 데이터 전송이 예상되지 않음'; 또는
III. '이용 가능한 정보가 없음'
상기에서 III) 대신 '상향링크 데이터 전송에 이어서 추가의 상향링크 또는 하향링크 데이터 전송이 예상됨'으로 표현될 수 있다. 또는 III)이 '상향링크 데이터 전송에 이어서 추가의 상향링크 또는 하향링크 데이터 전송이 예상됨'으로 해석될 수도 있다.
B. A)에서 Remote UE의 NAS 계층에서 NAS 시그널링 메시지와 함께 하위 계층(예를 들어, AS 계층 또는 RRC 계층)으로 다음과 같은 추가적인 정보를 전송할 수 있다.
- 사용자 평면(user plane) 셋업이 필요한지 여부. 이 정보는 활성 플래그(active flag)가 설정되었는지 여부로 나타낼 수 있다.
C. 이를 수신한 하위 계층(예를 들어, AS 계층 또는 RRC 계층)은 small data 전송이 필요함을 인지하고 후술하는 [3]의 전송방법을 사용하는 것을 결정한다.
- 상기 C)에서 하위 계층이 small data의 전송을 결정할 때, 사용자 평면으로 전송할 데이터 양을 고려하여 결정할 수 있다. 예를 들면, NAS 메시지를 수신하고 NAS 메시지 자체만으로는 small data 전송이 가능하지만 사용자 평면(user plane)의 데이터 양이 많은 경우, 하위 계층(예를 들어, AS 계층 또는 RRC 계층)은 small data 전송이 아닌 종래 동작에 의한 전송 방법을 선택할 수도 있다.
[3] small data transmission방법 - 앞서 도 18에서 3 단계 내지 6 단계에 해당
[3-1] Remote UE 동작
Remote UE가 small data 전송을 위해서 이용하는 PC5 메시지는 종래 정의된 PC5 시그널링 메시지 또는 새롭게 정의된 PC5 메시지일 수 있다.
해당 Remote UE가 small data 전송 시, PC5 메시지는 다음과 같은 IE 중 하나 이상을 포함할 수 있다.
1. 메시지 타입(Message type) IE: '스몰 데이터 전송(small data transmission)' 또는 '일반 전송(normal transmission)'
'small data transmission'은 small data 전송 용 PC5 메시지 임을 나타낸다. 'normal transmission'은 small data 전송이 아닌 종래 동작을 의미한다.
2. PDU 타입(PDU type) IE: '데이터(Data)' 또는 '시그널링(Signalling)' 또는 '제어 평면(CP: Control Plane) 데이터(CP_data)'
해당 PC5 메시지에 포함된 PDU가 시그널링인지 데이터인지 구분하는 지시. NAS 시그널링이나 RRC 시그널링인 경우, 'Signalling'으로, 데이터만 포함한 경우에는 'Data'로, NAS 시그널링이 데이터 PDU를 포함한 형태의 메시지가 PDU로 포함된 경우는 'CP_data'를 포함할 수 있다.
또한, 'CP_data'의 경우, 'CP_data'에 대한 지시가 별도로 정의되지 않을 수도 있다. 이 경우, NAS 시그널링이 데이터 PDU를 포함한 형태의 메시지가 PDU로 포함되면 'Signalling'으로 표현될 수 있다.
3. 스몰 데이터 정보(Small data information) IE: 다음과 같은 정보 중 어느 하나를 포함할 수 있다.
I. '상향링크 데이터 전송에 이어서 더 이상 상향링크 또는 하향링크 데이터 전송이 예상되지 않음'; 또는
II. '단일의 하향링크 데이터 전송 및 상향링크 데이터 전송에 이어서 더 이상 상향링크 데이터 전송이 예상되지 않음'; 또는
III. '이용 가능한 정보가 없음'
상기에서 III) 대신 '상향링크 데이터 전송에 이어서 추가의 상향링크 또는 하향링크 데이터 전송이 예상됨'으로 표현될 수 있다. 또는 III)이 '상향링크 데이터 전송에 이어서 추가의 상향링크 또는 하향링크 데이터 전송이 예상됨'으로 해석될 수도 있다.
4. 활성 전송 시간(Active Transmission Time) IE
이 IE는 Remote UE가 Relay UE와의 PC5 인터페이스를 통해서 전송을 유지하고자 하는 시간(즉, PC5를 통한 직접 링크를 유지하는 시간)을 나타낸다. Remote UE는 small data의 전송에 예상되는 소요시간보다 같거나 크게 설정할 수 있다.
5. 보안 파라미터(Security parameters) IE
여기서, 보안 파라미터는 프로비저닝(provision)되어 있다고 가정한다. 즉, USIM이나 ME에 미리 설정(pre-configured)되어 있거나, 네트워크로부터 설정될 수 있다(예를 들어, OMA). Remote UE와 Relay UE는 이전에 안전한 연결(secured connection)을 확립했을 때 사용한 보안 파라미터를 저장하고 이를 유지하고 있을 수 있다. 이 때, Remote UE는 이전에 사용한 보안 파라미터 값을 재사용할 수 있다. 그 재사용의 구체적인 방법도 이전에 두 UE간에 합의된 방식으로 이루어질 수 있다. 예를 들면, Remote UE는 이전에 사용/유지하는 보안 파라미터와 약속된 재사용 방법에 따라 보안 키(security key)값을 생성하여 보안 파라미터 값으로 사용할 수 있다. 이를 수신한 Relay UE는 약속된 재사용 방법과 검증 방법에 따라 해당 Remote UE와 그 Remote UE가 안전한지 확인할 수 있다. 검증 시, UE의 identifier, Bearer ID, 보안 키 값이 사용될 수 있다.
6. 시퀀스 번호(Sequence number) IE
해당 small data 전송에 대한 고유 시퀀스 번호를 포함한다.
상술한 1 번 및 2 번은 하나의 IE로 표현/구현될 수 있다. 예를 들면, 데이터를 위한 스몰 데이터 전송(small data transmission for Data), 시그널링을 위한 스몰 데이터 전송(small data transmission for Signalling), CP 데이터를 위한 스몰 데이터 전송(small data transmission for CP_data)으로 표현/구현될 수 있다.
또한, 상기 5 번이 PC5 메시지에 포함된 경우, 종래와 같이 보안 연계(security association)를 맺기 위해서 수행하던 직접 보안 모드 제어 절차(direct security mode control procedure)를 수행할 필요가 없다. 또한, Remote UE가 Relay UE와 이미 security association을 맺은 경우에는 상기 5 번은 PC5 메시지에 포함되지 않는다.
[3-2] Relay UE 동작
수신한 PC5 메시지에 각 IE의 포함여부에 따른 Relay UE의 동작은 다음과 같다.
1. Message type IE에 'small data transmission'이 포함되면, Relay UE는 해당 전송이 'small data transmission'임을 인지하고, Remote UE와 Remote UE가 전송한 PC5 메시지가 안전하다고 검증을 통해 판단한 경우, 직접 링크를 확립하기 위한 직접 링크 셋업 절차(Direct link setup procedure)와 security association를 맺기 위해서 수행하던 직접 보안 모드 제어 절차(direct security mode control procedure)를 수행하지 않을 수 있다.
2. PDU type이 Data인 경우, LTE-Uu 인터페이스에서 User plane으로 데이터(즉, PDU)를 전송하고, Signalling이나 CP_data인 경우 Control plane을 통해서 데이터(즉, PDU)를 전송할 수 있다.
3. Small data information은 지시된 값에 따라 다음과 같이 동작한다. 하기의 IE는 앞서 기술된 IE에 대한 기술을 참고한다. (즉, 앞서 [3-1]의 3) 참조)
I. '상향링크 데이터 전송에 이어서 더 이상 상향링크 또는 하향링크 데이터 전송이 예상되지 않음'
이 IE를 수신한 Relay UE는 수신한 small data를 LTE-Uu로 성공적으로 전송하면, 해당 Remote UE와의 직접 링크를 지역적으로(locally) 해제한다. 이에 따라, Remote UE와의 송수신이 중단된다.
II. '단일의 하향링크 데이터 전송 및 상향링크 데이터 전송에 이어서 더 이상 상향링크 데이터 전송이 예상되지 않음'
i. 이 IE를 수신한 Relay UE는 small data를 LTE-Uu로 성공적으로 전송하고, Remote UE에 대한 하향링크 데이터가 수신되기를 기다린다. 그리고, Remote UE에 대한 하향링크 데이터가 수신되면 이를 Remote UE에게 전달한다. Remote UE에 대한 하향링크 데이터를 성공적으로 전달하면 해당 Remote UE와의 직접 링크를 지역적으로(locally) 해제한다.
이때, 하향링크 데이터가 일정시간 동안 수신되지 않은 경우, Relay UE는 다음과 같이 동작할 수 있다.
A. Remote UE에게 하향링크 데이터가 일정시간 동안 수신되지 않았음을 알릴 수 있다.
Remote UE가 이를 수신하면 재전송을 수행할 수 있다.
B. 바로 Remote UE와의 직접 링크를 지역적으로 해제(locally release)할 수 있다.
상술한 동작을 위해서 Relay UE는 타이머를 이용할 수 있다. 이 경우, Relay UE는 Remote UE로부터 수신한 Small data를 LTE-Uu 인터페이스를 통해 네트워크에게 성공적으로 전송한 시점부터 타이머를 정해진 값으로 셋팅하고, 시작할 수 있다. 그리고, 타이머가 만료될 때까지 Remote UE의 하향링크가 수신되지 않은 경우, 앞서 A 와 B 중 하나로 동작할 수 있다. 이 타이머는 프로비저닝(provision)되거나 Remote UE로부터 PC5 메시지에 포함되어 전달될 수 있다. 이때, 해당 타이머의 값은 패밋의 왕복 시간(round trip time)보다 같거나 크게 설정될 수 있다.
ii. Remote UE는 이 IE를 포함하여 PC5 메시지를 전송한 경우, 하향링크 데이터의 수신을 모니터링한다. 이때, 일정 시간 하향링크 데이터가 수신되지 않으면, 다시 동일한 PC5 메시지를 재전송할 수 있다.
이 동작을 위해서 Remote UE는 타이머를 이용할 수 있다. 이 경우, Remote UE는 Small data를 Relay UE로 성공적으로 전송한 시점부터 타이머를 정해진 값으로 셋팅하고, 시작할 수 있다. 그리고, 타이머가 만료될 때까지 Remote UE의 하향링크가 수신되지 않은 경우, 앞서 ii와 같이 동작할 수 있다.
III. No information available
이 IE를 수신한 Relay UE는 small data를 LTE-Uu로 성공적으로 전송하고, 일정시간 동안 송수신 상태를 유지할 수 있다. 그리고, 일정 시간이 만료되면, 해당 Remote UE와의 직접 링크를 지역적으로(locally) 해제할 수 있다.
상술한 동작을 위해서 Relay UE는 비활동성 타이머(inactivity timer)를 이용할 수 있다. 해당 inactivity timer는 Remote UE와의 데이터나 시그널링이 없는 시점부터 시작하고, Remote UE와의 데이터나 시그널링이 발생하면 중단될 수 있다. inactivity timer가 만료되면, Relay UE는 Remote UE와의 직접 링크를 지역적으로(locally) 해제할 수 있다.
여기서, Remote UE와의 데이터나 시그널링의 인터페이스 구간은 PC5 인터페이스 구간(interval)과 LTE-Uu 인터페이스 구간을 모두 포함할 수 있다. 이때, LTE-Uu 구간의 경우, Remote UE와의 데이터나 시그널링이 발생한다는 것은 Relay UE가 Remote UE에 대한 데이터나 시그널링을 수신한다는 것을 의미할 수 있다.
또한, inactivity timer의 시간 값은 프로비저닝(provision)된 값을 사용하거나 Remote UE로부터 전달 받을 수 있다. Remote UE로부터 전달받은 경우에는 Remote UE로부터 받은 '활성 전송 시간(Active Transmission Time)의 값을 이용할 수 있다.
한편, Relay UE가 Remote UE로부터 받은 small data를 성공적으로 수신하거나 또는 Remote UE로부터 받은 small data를 LTE-Uu를 통해 성공적으로 전송한 경우, 이에 대한 응답(response)/확인응답(Ack: acknowledge)을 Remote UE에게 전송할 수 있다. 이 response/Ack을 보내기 위한 PC5 메시지는 다음과 같은 IE 중 하나 이상을 포함할 수 있다
1. 확인응답(Ack)/미확인응답(Nack: Non-Acknowledge) 지시(Ack/Nack indication) IE
이 IE는 해당 small data에 대한 전송/수신의 성공과 실패 여부를 나타낸다.
만약, Nack인 경우, 이 IE는 실패의 이유를 나타내는 원인(cause)과 재시도 타이머(값)을 더 포함할 수 있다. 이를 수신한 Remote UE는 재시도 타이머가 만료될 때까지 재전송을 시도할 수 없다.
2. 시퀀스 번호(Sequence number): Remote UE에 설정된 시퀀스 번호(즉, Remote UE로부터 수신한 시퀀스 번호)를 그대로 사용한다
3. 보안 파라미터(Security parameters)
security parameter는 프로비저닝(provision)되어 있을 수 있다. 즉, USIM이나 ME에 미리 설정(pre-configured)되어 있거나, 네트워크으로부터 설정될 수 있다(예를 들어, OMA). Remote UE와 Relay UE는 이전에 안전한 연결(secured connection)을 확립했을 때 사용한 보안 파라미터를 저장하고 이를 유지하고 있을 수 있다. 이 때, Relay UE는 이전에 사용한 보안 파라미터 값을 재사용할 수 있다. 그 재사용의 구체적인 방법도 이전에 두 UE 간에 합의된 방식으로 이루어 진다. 예를 들면, Relay UE는 이전에 사용/유지하는 보안 파라미터와 약속된 재사용 방법에 따라 보안 키(security key)값을 생성하여 보안 파라미터 값으로 사용할 수 있다. 이를 수신한 Remote UE는 약속된 재사용 방법과 검증 방법에 따라 해당 Relay UE와 그 Relay UE가 안전한지 확인할 수 있다. 검증 시, UE의 식별자(identifier), 베어러 식별자(Bearer ID), 보안 키 값이 사용될 수 있다.
만약, Remote UE가 '비대칭의 상향링크/하향링크(asymmetric UL/DL)'로 동작하는 경우, II.(즉, '단일의 하향링크 데이터 전송 및 상향링크 데이터 전송에 이어서 더 이상 상향링크 데이터 전송이 예상되지 않음')의 해당하는 상향링크가 발생하더라도, Remote UE는 II. 로 설정하지 않고, I. '상향링크 데이터 전송에 이어서 더 이상 상향링크 또는 하향링크 데이터 전송이 예상되지 않음'으로 설정할 수 있다.
한편, 앞서 설명한 small data 전송 방법은 종래 Direct link setup procedure를 통해 직접 링크를 설정하고 데이터를 전송하는 경우에도 적용 가능하다.
예를 들어, Remote UE는 확립된 직접 링크를 통해서 전송을 진행하다가 전송하고자 하는 데이터가 마지막 전송인 경우, 앞서 설명한 small data 전송 방법을 이용하여 전송할 수 있다.
실시예 1-2
본 실시예에서는 앞서 기술한 문제점 1을 해결하기 위한 방법을 제안한다.
Remote UE가 Relay UE에게 데이터를 전송하기 위해서는
A. Discovery procedure를 통해서 relay UE를 discovery해야 한다.
B. 그 후, remote UE는 직접 링크 확립하기 위해서 direct link setup procedure를 수행해야 한다. 이 과정에서 3 계층 릴레이(layer 3 relay)의 경우, IP 주소를 할당 받아야 한다. 반면, 2 계층 릴레이(layer 2 relay)의 경우, 베어러가 설정되어야 한다.
C. 그리고, 보안된 연결(secured connection)을 만들기 위해서 별도의 보안 절차(예를 들어, Direct security mode control procedure 또는 direct link rekeying procedure)를 수행해야 할 수 있다.
이러한 A 내지 C의 과정을 수행하는 것이, IoT 장치에게는 파워 소모 측면에서 부담이 될 수 있다. 즉, IoT 장치가 전송하는 데이터 크기 대비 많은 과정을 거쳐야 하는 오버헤드가 발생된다는 문제가 있다.
또한, 위의 A 내지 C의 과정을 수행한 후에도 직접 링크를 유지하기 위해서 킵얼라이브 절차(keepalive procedure)를 수행해야 한다. 따라서, Remote UE 또는 Relay UE는 직접 링크가 유지되는 한 언제 전송될 지 모르는 시그널링 혹은 데이터를 수신하기 위해서 파워를 소모해야 한다는 문제가 발생한다.
만약, Remote UE의 하향링크 데이터가 발생 가능성이 없거나(즉, Remote UE가 UE에 의해 개시된 연결만을 지원하는 MICO(Mobile Initiated Connection Only) 모드), 장기간 하향링크 데이터가 없는 경우(예를 들어, Remote UE가 진보된 아이들-모드 불연속 수신(eDRX: Extended idle-mode Discontinuous Reception) 또는 파워 세이빙 모드(PSM: Power Saving Mode)가 설정된 경우, 해당 시간 구간)에는 직접 링크를 유지하면서 발생하는 손실을 감수하기 보다는 직접 링크를 해제한 후, MO가 발생하는 경우에 다시 직접 링크를 확립하는 것이 보다 더 이득(benefit)이 클 수 있다.
본 실시예에서는 이와 같이 직접 링크를 확립하는 경우, 새로운 직접 링크를 확립하는 데 소비되는 오버헤드를 줄이는 방안을 제안하고자 한다.
이하, 본 실시예에서 Remote UE는 하향링크 데이터가 발생 가능성이 없는 MICO mode UE이거나 또는 장기간 하향링크 데이터가 없는 eDRX 또는 PSM 모드의 UE에 더 큰 이득을 줄 수 있다.
이를 해결하기 위해서 하기의 발명(sidelink suspend and resume procedure)을 제안하고자 한다.
도 19는 본 발명의 일 실시예에 따른 사이드링크 유보 및 재개 절차를 예시한다.
1. Remote UE가 처음 Relay UE와 직접 링크(즉, 사이드링크(SL: Sidelink))를 확립할 때, 앞서 설명한 A 내지 C의 절차를 모두 수행할 수 있다.
또는 A 내지 C의 절차에 필요한 파라미터(예를 들어, 시그널링 또는 통신 채널 대역폭, 보안 파라미터(예를 들어, 선택된 보안 알고리즘 및 키) 및 IP 주소/베어러 정보)가 미리 설정되어 있는 경우, 미리 설정된 파라미터와 관련된 시그널링 동작은 생략될 수도 있다.
2. Remote UE와 Relay UE 간 직접 링크가 확립된 후, Remote UE는 확립된 직접 링크를 통해 데이터 전송을 수행하고, 모든 데이터의 전송을 마친다.
3. Remote UE는 Relay UE와의 직접 링크를 추후 데이터 전송에도 재사용하기 위해 해당 직접 링크를 유보(suspend)하길 원하는 경우, 다음과 같은 지시를 Relay UE에게 전송한다. 이때, (SL) 유보 요청((SL) Suspend Request) 메시지가 이용될 수 있다.
- 모든 데이터 전송을 마쳤다는 지시(예를 들어, 전송 종료 지시(transmission end indication)) 및/또는
- 유보 요청 지시(Suspend request indication)
4. 3 단계에서 Remote UE의 모든 데이터 전송이 종료되었고 유보가 필요하다는 지시를 수신하면, Relay UE는 Remote UE의 컨텍스트와 Remote UE와 맺었던 직접 링크와 관련된 정보를 저장하고 직접 링크를 유보한다. 그리고, Relay UE는 추후의 통신을 위해 필요한 정보 (즉, 시그널링 또는 통신 채널 대역폭, 통신 주기 등)와 함께 (SL) 재개 식별자((SL) resume ID(Identifier))를 Remote UE에게 제공한다.
이때, 상기 정보를 직접 링크 해제(direct link release) 메시지 내에서 제공할 수도 있으며, 별도의 직접 메시지(direct message)(예를 들어, (SL) 유보 수락((SL) Suspend Accept) 메시지)로 제공할 수 있다.
상기 정보 전달과 함께 혹은 후에 직접 링크 해제 절차를 수행하거나, 또는 직접 링크 해제 절차 없이 상기 정보 전달 후에 relay UE는 해당 remote UE와의 직접 링크를 지역적으로(locally) 해제한다.
여기서, 시그널링 또는 통신 채널 대역폭, 통신 주기 정보는 Relay UE가 remote UE의 직접 링크의 요청(즉, 재개 요청)을 수신하기 위한 대역폭과 수신 타이밍 주기를 의미한다. 이러한 정보를 제공함으로써 Relay UE는 remote UE와의 직접 링크의 요청(즉, 재개 요청)을 수신하기 위한 파워를 절감할 수 있다.
시그널링 또는 통신 채널 대역폭, 통신 주기 정보를 통해 두 UE(즉, Relay UE와 Remote UE)는 sidelink eDRX 상태로 진입할 수 있다.
또한, 이때, 통신 주기 정보 대신에 (사이드링크) 페이징 시간 윈도우(Paging Time Window) 및/또는 (사이드링크) eDRX 값(eDRX 사이클 길이)가 제공될 수도 있다.
5. 이를 수신한 Remote UE는 수신한 정보와 SL resume ID를 저장하고, 직접 링크를 해제한다.
직접 링크의 해제는 relay UE가 직접 링크 해제 절차를 통해 수행되거나 또는 relay UE의 direct link release procedure 수행 없이 상기 정보를 수신한 것으로 지역적으로(locally) 해제될 수 있다.
한편, 상기 3 단계는 Relay UE가 Remote UE를 상대로 수행할 수 있다. Relay UE가 네트워크로부터 Remote UE의 LTE-Uu 연결/RRC 연결이 해제됨을 인지한 경우가 그 예가 될 수 있다. 이 경우, 3 단계에 Relay UE가 Remote UE에게 전송하는 메시지에는 상기 3단계에 Remote UE가 전송하는 메시지에 포함되었던 하기 지시자와 상기 단계 4에서 Relay UE가 전송하는 메시지에 포함되는 (SL) 재개 식별자((SL) resume ID(Identifier)), 시그널링 또는 통신 채널 대역폭, 통신 주기 정보가 포함된다. 단계 4에는 Remote UE가 Relay UE에게 메시지 수신에 대한 응답 메시지를 전송할 수 있다.
이후, 도 18의 2 단계와 같이 Remote UE는 스몰 데이터 전송(SDT: Small Data Transmission)이 트리거되면, Remote UE는 SDT를 위해 Relay UE와 디스커버리 절차를 수행한다.
6. Remote UE는 앞서 5 단계에서 수신한 정보를 활용하여 SL resume ID를 Relay UE에게 전송한다.
Remote UE는 Relay UE와 이미 약속한 시그널링 또는 통신 채널 대역폭, 통신 주기 정보를 통해서 직접 링크 셋업 절차 또는 직접 링크 재개 절차를 수행한다. 이때 Remote UE는 SL resume ID를 포함하여 relay UE에게 전송한다.
직접 링크 재개 절차는 직접 연결을 재개하기 위한 새롭게 정의된 절차로서, 전송자가 SL 재개 요청(SL Resume Request) 메시지에 SL resume ID를 포함하여 전송한다. 도 19에서는 직접 링크 재개 절차를 수행하는 것을 예시한다.
7. 이를 수신한 Relay UE는 Remote UE의 SL resume ID를 통해 직접 링크의 재개(resume)을 수행한 후, resume의 성공/실패를 Remote UE에게 전송한다. 이때, SL 재개(SL Resume) 메시지가 이용될 수 있다.
8. Remote UE는 Relay UE로부터 resume이 성공했다는 지시를 수신한 경우, 직접 링크(즉, 사이드링크)를 통해 데이터 전송을 수행한다.
만약, 데이터 전송을 완료한 후, Relay UE와의 직접 링크를 추후 데이터 전송을 위해 재사용할 수 있도록 해당 직접 링크를 유보(suspend)하길 원하는 경우, Remote UE는 앞서 3 단계부터 다시 수행할 수 있다.
반면, Remote UE가 Relay UE로부터 resume이 실패했다는 지시를 수신하거나 또는 일정 시간/횟수 동안 relay UE로부터 응답을 수신하지 못한 경우, 종래 절차(예를 들어, discovery procedure, direct link setup procedure, direct security mode control procedure)를 수행할 수 있다.
한편, 앞서 6 단계에서, relay UE가 remote UE에게 전송 혹은 전달할 데이터가 발생한 경우, 이미 약속한 시그널링 또는 통신 채널 대역폭과 통신 주기를 통해 direct link setup procedure 혹은 direct link resume procedure를 개시할 수 있다. 이때, Remote UE는 resume ID를 포함하여 relay UE에게 전송한다
Remote UE가 Relay UE로부터 수신한 정보(예를 들어, 시그널링 또는 통신 채널 대역폭과, 통신 주기)와 SL resume ID는 Remote UE와 Relay UE 간의 통신이 도중에 중단(예를 들어, 사이드링크 무선 링크 실패(RLF: Radio link failure) 등으로 인하여)된 이후에 다시 통신을 시작하는 경우에도 동일하게 사용될 수 있다.
앞서 설명한 절차를 통해, 직접 링크를 계속 유지하기 위해 필요한 시그널링(예를 들어, direct link keepalive procedure 내 시그널링)를 감소시킬 뿐만 아니라, Relay UE가 직접 링크를 계속 유지할 때 Remote UE로부터 시그널링 또는 데이터를 수신하기 위한 파워 소모를 감소시킬 수 있다.
앞서 설명한 실시예 1과 실시예 1-2는 하나의 절차로 결합되어 수행될 수 있다.
도 20은 본 발명의 일 실시예에 따른 릴레이를 통한 데이터 전송 방법을 예시하는 도면이다.
1. Relay UE는 E-UTRAN에 초기 어태치 절차를 수행한다(1-A). Remote UE는 E-UTRAN에 초기 어태치 절차를 수행한다(1-B).
2. Remote UE가 처음 Relay UE와 직접 링크(즉, 사이드링크(SL: Sidelink))를 확립할 때, 앞서 설명한 A 내지 C의 절차를 모두 수행할 수 있다.
또는 A 내지 C의 절차에 필요한 파라미터(예를 들어, 시그널링 또는 통신 채널 대역폭, 보안 파라미터(예를 들어, 선택된 보안 알고리즘 및 키) 및 IP 주소/베어러 정보)가 미리 설정되어 있는 경우, 미리 설정된 파라미터와 관련된 시그널링 동작은 생략될 수도 있다.
3. Remote UE와 Relay UE 간 직접 링크가 확립된 후, Remote UE는 확립된 직접 링크를 통해 데이터 전송을 수행하고, 모든 데이터의 전송을 마친다.
4. Remote UE는 Relay UE와의 직접 링크를 추후 데이터 전송에도 재사용하기 위해 해당 직접 링크를 유보(suspend)하길 원하는 경우, 다음과 같은 지시를 Relay UE에게 전송한다. 이때, 확립된 직접 링크의 유보(suspend)를 요청하기 위한 (SL) 유보 요청((SL) Suspend Request) 메시지가 이용될 수 있다.
- 모든 데이터 전송을 마쳤다는 지시(예를 들어, 전송 종료 지시(transmission end indication)) 및/또는
- 유보 요청 지시(Suspend request indication)
5. 3 단계에서 Remote UE의 모든 데이터 전송이 종료되었고 유보가 필요하다는 지시를 수신하면, Relay UE는 Remote UE의 컨텍스트와 Remote UE와 맺었던 직접 링크와 관련된 정보를 저장하고 직접 링크를 유보한다. 그리고, Relay UE는 추후의 통신을 위해 필요한 정보 (즉, 시그널링 또는 통신 채널 대역폭, 통신 주기 등)와 함께 (SL) 재개 식별자((SL) resume ID(Identifier))를 Remote UE에게 제공한다.
상기 정보 전달과 함께 혹은 후에 직접 링크 해제 절차를 수행하거나, 또는 직접 링크 해제 절차 없이 상기 정보 전달 후에 relay UE는 해당 remote UE와의 직접 링크를 지역적으로(locally) 해제한다.
시그널링 또는 통신 채널 대역폭, 통신 주기 정보를 통해 두 UE(즉, Relay UE와 Remote UE)는 sidelink eDRX 상태로 진입할 수 있다.
6. 이를 수신한 Remote UE는 수신한 정보와 (SL) resume ID를 저장하고, 직접 링크를 해제한다.
직접 링크의 해제는 relay UE가 직접 링크 해제 절차를 통해 수행되거나 또는 relay UE의 direct link release procedure 수행 없이 상기 정보를 수신한 것으로 지역적으로(locally) 해제될 수 있다.
한편, 상기 4 단계는 Relay UE가 Remote UE를 상대로 수행할 수 있다. Relay UE가 네트워크로부터 Remote UE의 LTE-Uu 연결/RRC 연결이 해제됨을 인지한 경우가 그 예가 될 수 있다. 이 경우, 4 단계에 Relay UE가 Remote UE에게 전송하는 메시지에는 상기 4단계에 Remote UE가 전송하는 메시지에 포함되었던 하기 지시자와 상기 단계 5에서 Relay UE가 전송하는 메시지에 포함되는 (SL) 재개 식별자((SL) resume ID(Identifier)), 시그널링 또는 통신 채널 대역폭, 통신 주기 정보가 포함된다. 단계 5에는 Remote UE가 Relay UE에게 메시지 수신에 대한 응답 메시지를 전송할 수 있다. 이후, 도 18의 2 단계와 같이 Remote UE는 스몰 데이터 전송(SDT: Small Data Transmission)이 트리거되면, Remote UE는 SDT를 위해 Relay UE와 디스커버리 절차를 수행한다.
7. Remote UE는 앞서 6 단계에서 수신한 정보를 활용하여 (SL) resume ID를 Relay UE에게 전송한다.
Remote UE는 Relay UE와 이미 약속한 시그널링 또는 통신 채널 대역폭, 통신 주기 정보를 통해서 직접 링크 셋업 절차 또는 직접 링크 재개 절차를 수행한다. 이때 Remote UE는 (SL) resume ID를 포함하여 relay UE에게 전송한다.
직접 링크 재개 절차는 직접 연결을 재개하기 위한 새롭게 정의된 절차로서, 전송자가 유보된 직접 링크의 재개(resume)를 요청하기 위한 (SL) 재개 요청((SL) Resume Request) 메시지에 (SL) resume ID를 포함하여 전송할 수 있다. 이 때, 앞서 도 18에서 예시한 SDT를 위한 PC5 메시지(도 18의 3 단계 참조)는 (SL) 재개 요청 메시지로 해석될 수 있다. 이 경우, (SL) 재개 요청 메시지는 (SL) resume ID와 함께 앞서 도 18의 SDT를 위한 PC5 메시지에 포함된 정보가 더 포함될 수 있다. 예를 들어, Remote UE가 전송하고자 하는 스몰 데이터가 제어 평면으로 전송되는 데이터일 경우, (SL) 재개 요청((SL) Resume Request) 메시지는 'small data transmission'나 'CP_data' 혹은 'signalling'이 메시지 타입이나 PDU 타입으로 표시되고, 그 스몰 데이터로 구성된 NAS PDU를 포함하는 NAS 메시지가 포함될 수 있다. 다른 방법으로는 단계 8에서 직접 링크 재개 절차가 완료된 이후에 (SL) 재개 요청((SL) Resume Request) 메시지와 별도로 데이터(예를 들어, 앞서 도 18의 SDT를 위한 PC5 메시지)가 전송될 수도 있다.
도 20에서는 직접 링크 재개 절차를 수행하는 것을 예시한다.
이때, 상술한 바와 같이, SL Resume Request 메시지는 PDU 타입(PDU type) IE를 더 포함할 수 있다. 상술한 바와 같이, PDU 타입(PDU type) IE는 '데이터(Data)' 또는 '시그널링(Signalling)' 또는 '제어 평면(CP: Control Plane) 데이터(CP_data)'를 포함할 수 있다. 도 20에서는 PDU type IE가 CP_data를 지시하는 경우를 예시한다.
8. 이를 수신한 Relay UE는 Remote UE의 SL resume ID를 통해 직접 링크의 재개(resume)을 수행한 후, 유보된 직접 링크의 resume의 성공/실패를 Remote UE에게 전송한다. 이때, (SL) 재개((SL) Resume) 메시지가 이용될 수 있다.
9. Relay UE는 Remote UE의 스몰 데이터를 네트워크에게 전송한다.
이때, Remote UE로부터 전송된 스몰 데이터의 타입이 제어 평면(CP: Control Plane) 데이터인 경우(즉, 사용자 베어러(즉, DRB(Data Radio Bearer)와 S1-U 베어러)가 확립되지 않고, 스몰 데이터가 NAS PDU(들)로 구성되어 NAS 메시지에 포함되어 제어 평면으로 전송되는 경우), Relay UE는 앞서 도 11에 따른 CP CIoT EPS optimization에서의 데이터 전송 방법을 이용하여 Remote UE의 스몰 데이터를 네트워크에게 전송할 수 있다. 보다 구체적인 절차와 관련하여 TS 23.401 V14.2.0가 참조로서 본 문서에 병합될 수 있다. 이 때, Relay UE가 네트워크와의 IDLE 모드(예를 들어, EMM-IDLE 모드)인 경우, Remote UE의 스몰 데이터를 네트워크로 전송하기 위하여 EMM-CONNECTED 모드로 전환하기 위한 Service Request 절차 수행 없이, 상기 Remote UE의 스몰 데이터를 전송하기 위한 CP CIoT EPS optimization을 수행할 수 있다. 이를 통해, Relay UE의 전력 소모를 줄이는 효과를 얻을 수 있다.
10. Remote UE와 Relay UE는 PC5 링크를 위한 절차/동작을 수행한다. 예를 들면, Relay UE가 네트워크로부터 Remote UE에 대한 하향링크 데이터 혹은 시그널링 메시지를 수신한 경우, 이를 Remote UE에게 전달한다. Relay UE가 네트워크로부터 Remote UE에 대한 해제 메시지를 수신한 경우, 해당 Relay UE가 해당 해제 메시지를 Remote UE에게 전달하거나 PC5 링크를 해제하기 위한 direct link release procedure를 수행한다.
이하, 본 실시예 1-2에 대한 과정을 보다 구체적으로 살펴본다.
후술하는 예시에서 PSM과 eDRX가 EPC 시스템을 기준으로 작성되었지만, 5G 시스템에도 적용될 수 있다.
후술하는 예시에서, PSM 모드 또는 MICO 모드인 UE의 경우, SL 직접 링크 유보 상태에서는 해당 직접 링크를 통한 상향링크/하향링크/사이드링크 시그널링 혹은 데이터를 수신하기 위한 동작을 수행하지 않는다.
eDRX 모드의 UE는 SL 직접 링크 유보 상태에서는 정해진 eDRX 사이클에 의한 페이징 시점(paging occasion)에서만 상향링크/하향링크/사이드링크 시그널링 혹은 데이터를 수신하기 위한 동작을 수행하고, 나머지 eDRX 구간에서는 수신 동작을 수행하지 않는다. 이로 인한 파워 절감 효과를 얻을 수 있다.
먼저, UE가 PSM 모드인 경우에 대하여 살펴본다.
도 21은 본 발명의 일 실시예에 따른 릴레이를 통한 데이터 전송 방법을 예시하는 도면이다.
0-A 단계 내지 2-C 단계. Remote UE는 Relay UE와 직접 링크를 확립한 상태에서, PSM(power saving mode)로 동작하기 위해서 네트워크에게 요청 후 수락을 받는 과정을 수행한다.
Remote UE는 타이머 T3324, 타이머 (확장) T3412를 포함하는 TAU 요청(TAU Request) 메시지(또는 어태치 요청(Attach Request) 메시지)를 포함하는 SL 메시지를 Relay UE에게 전송하고(0-A 단계), Relay UE는 타이머 T3324, 타이머 (확장) T3412를 포함하는 TAU Request 메시지(또는 Attach Request 메시지)를 포함하는 RRC 메시지를 (e)NB에게 전송하며(0-B 단계), (e)NB는 타이머 T3324, 타이머 (확장) T3412를 포함하는 TAU Request 메시지(또는 Attach Request 메시지)를 포함하는 S1AP 메시지를 Remote UE의 MME 2(또는 SGSN 2)에게 전송한다(0-C 단계).
이후, 어태치/TAU 절차의 남은 단계들이 수행될 수 있다. 보다 구체적인 절차와 관련하여 TS 23.401 V14.2.0가 참조로서 본 문서에 병합될 수 있다.
Remote UE의 MME 2(또는 SGSN 2)는 타이머 T3324, 타이머 (확장) T3412를 포함하는 TAU 수락(TAU Accept) 메시지(또는 어태치 수락(Attach Accept) 메시지)를 포함하는 S1AP 메시지를 (e)NB에게 전송하고(2-A 단계), (e)NB는 타이머 T3324, 타이머 (확장) T3412를 포함하는 TAU Accept 메시지(또는 Attach Accept 메시지)를 포함하는 RRC 메시지를 Relay UE에게 전송하며(2-B 단계), Relay UE는 타이머 T3324, 타이머 (확장) T3412를 포함하는 TAU Accept 메시지(또는 Attach Accept 메시지)를 포함하는 SL 메시지를 Remote UE에게 전송한다(2-C 단계).
3 단계. Remote UE는 UL/DL 전송을 수행한다.
이후 Remote UE가 EMM-CONNECTED 모드에서 EMM-IDLE 모드로 전환하면, 타이머 T3324를 시작한다.
4 단계. 타이머 T3324가 만료되면, (Uu 연결에 대한) PSM으로 전환하면서 혹은 직전에, Remote UE는 SL 메시지(예를 들어, 사이드링크 유보 요청(Sidelink Suspend Request) 메시지)를 통해 전송 종료 지시 및/또는 유보 요청 지시를 Relay UE에게 전송한다.
5 단계. Relay UE는 Remote UE의 UE 컨텍스트(세션 컨텍스트, 보안 컨텍스트 포함)를 유보할 수 있는 경우, SL 메시지(예를 들어, 사이드링크 유보 수락/응답(Sidelink Suspend (accept/response)) 메시지)에 유보 수락/확인 지시와 함께 SL Resume ID를 포함하여 Remote UE에게 전송한다.
이때, Relay UE와 Remote UE는 직접 링크를 지역적으로(locally) 해제한다.
또는, Relay UE와 Remote UE는 직접 링크를 명시적으로 해제하기 위하여 직접 링크 해제 절차를 수행할 수도 있다.
직접 링크가 성공적으로 유보된 경우, Remote UE와 Relay UE는 SL Resume ID와 해당 직접 링크가 유보되었음을 기억(저장)할 수 있다. 이를 위해, 해당 직접 링크에 해당하는 UE 식별자들(예를 들면, 소스 2 계층 식별자(source layer-2 ID)와 목적지 2 계층 식별자(destination layer-2 ID))로 해당 직접 링크를 기억(저장)할 수 있다. 또는, 해당 직접 링크에 대한 링크 번호를 할당하여 기억(저장)할 수 있다. 그리고, 해당 직접 링크가 유보된 상태임을 기억(저장)한다.
반면, 도 21과 상이하게, Relay UE가 Remote UE의 UE 컨텍스트(세션 컨텍스트, 보안 컨텍스트 포함)를 유보할 수 없는 경우, Relay UE는 SL 메시지(예를 들어, 사이드링크 유보 거절/응답(Sidelink Suspend (reject/response)) 메시지)에 유보 거절 지시(Suspend reject indication)을 포함하여 Remote UE에 전송할 수 있다. Remote UE는 Suspend가 거절된 경우, 다음의 두 가지 중 하나로 동작할 수 있다.
A 경우) 이후, 직접 링크가 유지 되는 경우, 다음과 같이 종래 동작이 수행될 수 있다.
- Remote UE가 직접 링크를 유지하고 싶은 경우, 직접 링크를 유지하기 위한 직접 링크 킵얼라이브 절차(direct link keepalive procedure)를 수행할 수 있다.
- Remote UE가 직접 링크를 유지하고 싶지 않은 경우, 직접 링크를 해제하기 위한 직접 링크 해제 절차(direct link release procedure)를 수행할 수 있다.
B 경우) 이후, 직접 링크가 해제되는 되는 경우, Remote UE가 MO(SL 또는 UL) 시그널링/데이터가 발생한 경우, 직접 링크를 확립하기 위한 직접 링크 셋업 절차(direct link setup procedure)를 포함한 종래 동작을 수행할 수 있다.
6 단계. 앞서 5 단계에서 직접 링크가 성공적으로 유보된 경우, Remote UE가 MO(SL 또는 UL) 시그널링/데이터가 발생한 경우, 유보된 직접 링크를 재개하기 위한 사이드링크 재개 절차(Sidelink resume procedure)를 수행한다.
즉, Remote UE는 SL 메시지(예를 들어, 사이드링크 재개 요청(Sidelink Resume Request) 메시지)에 앞서 5 단계에서 수신하여 저장한 SL Resume ID를 포함시키고, 그 직접 링크에 해당하는 Relay UE의 2 계층 식별자(Layer-2 ID)를 destination Layer-2 ID로 설정하여 Relay UE에게 전송할 수 있다.
7 단계. 이를 수신한 Relay UE는 SL resume ID를 확인하고 해당 Remote UE의 SL UE 컨텍스트를 재개할 수 있는 경우, SL 메시지(예를 들어, 사이드링크 재개(Sidelink Resume) 메시지)에 재개가 성공했다는 재개 수락/확인 지시(Resume accept/confirm indication)과 (기존 또는 새로운) SL Resume ID를 할당하여 전송한다. 이후, Relay UE와 Remote UE의 직접 링크가 재개된다.
Relay UE는 SL resume ID를 확인하고 해당 Remote UE의 SL UE 컨텍스트를 재개할 수 없는 경우, SL 메시지(예를 들어, 사이드링크 재개 거절(Sidelink Resume Reject) 메시지)에 재개가 거절되었다는 재개 거절 지시(Resume reject indication)를 포함하여 전송한다. 이를 수신한 Remote UE는 재개가 실패했음을 인지하고, 직접 링크를 확립하기 위한 direct link setup procedure를 포함한 종래 동작을 수행할 수 있다.
8 단계. 직접 링크가 재개되거나 확립된 경우, Remote UE가 SL을 통해 Relay UE에게 시그널링 또는 데이터를 전송한다.
Remote UE가 전송할 UL 시그널링/데이터가 있는 경우, Relay UE와 직접 링크를 확립한 상태에서, PSM(power saving mode)로 동작하기 위해서 network에 요청 후 수락을 받는 과정을 수행할 수 있다. 즉, 앞서 0-A 단계 내지 2-C 단계가 수행될 수 있다.
9) Remote UE가 전송할 UL 시그널링/데이터가 있는 경우, UL 전송을 수행한다. 또한 이 과정에서 DL 전송도 수행될 수 있다. 이후 다음과 같은 옵션 중 하나로 동작할 수 있다.
옵션 1) Remote UE는 EMM-CONNECTED 모드에서 EMM-IDLE 모드로 전환한 경우, T3324를 시작하고 T3324가 만료되면 앞서 4 단계를 다시 수행할 수 있다.
또한, Remote UE의 EMM-CONNECTED 모드에서 EMM-IDLE 모드로의 전환과 T3324의 만료를 Relay UE가 인지한 경우, Relay UE는 앞서 4 단계를 Remote UE를 향하여 수행하고, 이어서 Remote UE가 앞서 5 단계를 Relay UE를 향해서 수행할 수 있다(이때, T3324 만료 이전에 수행할 수도 있다). 이후, 과정은 앞서 설명한 단계들과 동일하다.
옵션 2) 다른 방법으로는 별도의 4 단계 및 5 단계의 수행 없이, Remote UE는 EMM-CONNECTED 모드에서 EMM-IDLE 모드로 전환하고 (T3324가 만료된 경우), Relay UE와 Remote UE는 상대의 UE 컨텍스트를 유보하고, 직접 링크를 지역적으로(locally) 해제할 수도 있다.
이후, MO (SL 또는 UL) 시그널링/데이터가 발생한 경우, 앞서 6 단계부터 다시 수행될 수 있다.
다음으로, UE가 eDRX인 경우에 대하여 살펴본다.
도 22는 본 발명의 일 실시예에 따른 릴레이를 통한 데이터 전송 방법을 예시하는 도면이다.
0-A 단계 내지 2-C 단계. Remote UE는 Relay UE와 직접 링크를 확립한 상태에서, eDRX로 동작하기 위해서 네트워크에게 요청 후 수락을 받는 과정을 수행한다.
Remote UE는 eDRX 파라미터 IE를 포함하는 TAU 요청(TAU Request) 메시지(또는 어태치 요청(Attach Request) 메시지)를 포함하는 SL 메시지를 Relay UE에게 전송하고(0-A 단계), Relay UE는 eDRX 파라미터 IE를 포함하는 TAU Request 메시지(또는 Attach Request 메시지)를 포함하는 RRC 메시지를 (e)NB에게 전송하며(0-B 단계), (e)NB는 eDRX 파라미터 IE를 포함하는 TAU Request 메시지(또는 Attach Request 메시지)를 포함하는 S1AP 메시지를 Remote UE의 MME 2(또는 SGSN 2)에게 전송한다(0-C 단계).
이후, 어태치/TAU 절차의 남은 단계들이 수행될 수 있다. 보다 구체적인 절차와 관련하여 TS 23.401 V14.2.0가 참조로서 본 문서에 병합될 수 있다.
Remote UE의 MME 2(또는 SGSN 2)는 eDRX 파라미터 IE를 포함하는 TAU 수락(TAU Accept) 메시지(또는 어태치 수락(Attach Accept) 메시지)를 포함하는 S1AP 메시지를 (e)NB에게 전송하고(2-A 단계), (e)NB는 eDRX 파라미터 IE를 포함하는 TAU Accept 메시지(또는 Attach Accept 메시지)를 포함하는 RRC 메시지를 Relay UE에게 전송하며(2-B 단계), Relay UE는 eDRX 파라미터 IE를 포함하는 TAU Accept 메시지(또는 Attach Accept 메시지)를 포함하는 SL 메시지를 Remote UE에게 전송한다(2-C 단계).
이후, Remote UE는 네트워크와의 eDRX를 Relay UE와의 직접 통신에도 적용하기 위해서 네트워크와의 eDRX 파라미터를 Relay UE에게 전달할 수 있다. 이 과정은 앞서 2-C 단계 직후에 수행되거나 또는 4 단계에서 수행될 수 있다. 또한, eDRX 파라미터는 2-C 단계에서 수신한 값이 그대로 전달될 수도 있으며, 또는 eDRX 사이클 및 페이징 시점(paging occasion) 값이나 이것을 계산할 수 있는 값으로 전달될 수 있다.
3 단계. Remote UE는 UL/DL 전송을 수행한다.
이후 Remote UE가 EMM-CONNECTED 모드에서 EMM-IDLE 모드로 전환한다.
4 단계. (Uu 연결에 대한) eDRX 모드로 전환하면서 혹은 직전에, Remote UE는 SL 메시지(예를 들어, 사이드링크 유보 요청(Sidelink Suspend Request) 메시지)를 통해 전송 종료 지시 및/또는 유보 요청 지시를 Relay UE에게 전송한다.
5 단계. Relay UE는 Remote UE의 UE 컨텍스트(세션 컨텍스트, 보안 컨텍스트 포함)를 유보할 수 있는 경우, SL 메시지(예를 들어, 사이드링크 유보 수락/응답(Sidelink Suspend (accept/response)) 메시지)에 유보 수락/확인 지시와 함께 SL Resume ID를 포함하여 Remote UE에게 전송한다.
이때, Relay UE와 Remote UE는 직접 링크를 지역적으로(locally) 해제한다.
또는, Relay UE와 Remote UE는 직접 링크를 명시적으로 해제하기 위하여 직접 링크 해제 절차를 수행할 수도 있다.
직접 링크가 성공적으로 유보된 경우, Remote UE와 Relay UE는 SL Resume ID와 해당 직접 링크가 유보되었음을 기억(저장)할 수 있다. 이를 위해, 해당 직접 링크에 해당하는 UE 식별자들(예를 들면, 소스 2 계층 식별자(source layer-2 ID)와 목적지 2 계층 식별자(destination layer-2 ID))로 해당 직접 링크를 기억(저장)할 수 있다. 또는, 해당 직접 링크에 대한 링크 번호를 할당하여 기억(저장)할 수 있다. 그리고, 해당 직접 링크가 유보된 상태임을 기억(저장)한다.
반면, 도 22와 상이하게, Relay UE가 Remote UE의 UE 컨텍스트(세션 컨텍스트, 보안 컨텍스트 포함)를 유보할 수 없는 경우, Relay UE는 SL 메시지(예를 들어, 사이드링크 유보 거절/응답(Sidelink Suspend (reject/response)) 메시지)에 유보 거절 지시(Suspend reject indication)을 포함하여 Remote UE에 전송할 수 있다. Remote UE는 Suspend가 거절된 경우, 다음의 두 가지 중 하나로 동작할 수 있다.
A 경우) 이후, 직접 링크가 유지 되는 경우, 다음과 같이 종래 동작이 수행될 수 있다.
- Remote UE가 직접 링크를 유지하고 싶은 경우, 직접 링크를 유지하기 위한 직접 링크 킵얼라이브 절차(direct link keepalive procedure)를 수행할 수 있다.
- Remote UE가 직접 링크를 유지하고 싶지 않은 경우, 직접 링크를 해제하기 위한 직접 링크 해제 절차(direct link release procedure)를 수행할 수 있다.
B 경우) 이후, 직접 링크가 해제되는 되는 경우, Remote UE가 MO(SL 또는 UL) 시그널링/데이터가 발생한 경우, 직접 링크를 확립하기 위한 직접 링크 셋업 절차(direct link setup procedure)를 포함한 종래 동작을 수행할 수 있다.
MO 경우) Remote UE가 UL 시그널링/데이터가 있는 경우
6 단계. 앞서 5 단계에서 직접 링크가 성공적으로 유보된 경우, Remote UE가 MO(SL 또는 UL) 시그널링/데이터가 발생한 경우, 유보된 직접 링크를 재개하기 위한 사이드링크 재개 절차(Sidelink resume procedure)를 수행한다.
즉, Remote UE는 SL 메시지(예를 들어, 사이드링크 재개 요청(Sidelink Resume Request) 메시지)에 앞서 5 단계에서 수신하여 저장한 SL Resume ID를 포함시키고, 직접 링크에 해당하는 Relay UE의 2 계층 식별자(Layer-2 ID)를 destination Layer-2 ID로 설정하여 Relay UE에게 전송할 수 있다.
7 단계. 이를 수신한 Relay UE는 SL resume ID를 확인하고 해당 Remote UE의 SL UE 컨텍스트를 재개할 수 있는 경우, SL 메시지(예를 들어, 사이드링크 재개(Sidelink Resume) 메시지)에 재개가 성공했다는 재개 수락/확인 지시(Resume accept/confirm indication)과 (기존 또는 새로운) SL Resume ID를 할당하여 전송한다. 이후, Relay UE와 Remote UE의 직접 링크가 재개된다.
Relay UE는 SL resume ID를 확인하고 해당 Remote UE의 SL UE 컨텍스트를 재개할 수 없는 경우, SL 메시지(예를 들어, 사이드링크 재개 거절(Sidelink Resume Reject) 메시지)에 재개가 거절되었다는 재개 거절 지시(Resume reject indication)를 포함하여 전송한다. 이를 수신한 Remote UE는 재개가 실패했음을 인지하고, 직접 링크를 확립하기 위한 direct link setup procedure를 포함한 종래 동작을 수행할 수 있다.
8 단계. 직접 링크가 재개되거나 확립된 경우, Remote UE가 SL을 통해 Relay UE에게 시그널링 또는 데이터를 전송한다.
Remote UE가 전송할 UL 시그널링/데이터가 있는 경우, Relay UE와 직접 링크를 확립한 상태에서, 해당 UL 시그널링/데이터를 전송하기 위한 절차를 수행할 수 있다.
MT 경우) Remote UE를 위한 DL 데이터/시그널링(또는 SL 데이터/시그널링)이 발생하는 경우
6 단계. 앞서 5 단계에서 직접 링크가 성공적으로 유보된 경우, Relay UE가 DL 데이터/시그널링(또는 SL 데이터/시그널링)이 발생한 경우나 발생을 인지한 경우(예를 들어, Remote UE를 위한 페이징을 수신한 경우), 유보된 직접 링크를 재개하기 위한 사이드링크 재개 절차(Sidelink resume procedure)를 수행한다.
즉, Relay UE는 SL 메시지(예를 들어, 사이드링크 재개 요청(Sidelink Resume Request) 메시지)에 앞서 5 단계에서 수신하여 저장한 SL Resume ID를 포함시키고, 그 직접 링크에 해당하는 Remote UE의 2 계층 식별자(Layer-2 ID)를 destination Layer-2 ID로 설정하여 Remote UE에게 전송한다.
7 단계. 이를 수신한 Remote UE는 SL resume ID를 확인하고 해당 Relay UE의 SL UE 컨텍스트를 재개할 수 있는 경우, SL 메시지(예를 들어, 사이드링크 재개(Sidelink Resume) 메시지)에 재개가 성공했다는 재개 수락/확인 지시(Resume accept/confirm indication)과 (기존 또는 새로운) SL Resume ID를 할당하여 전송한다. 이후, Relay UE와 Remote UE의 직접 링크가 재개된다.
Remote UE는 SL resume ID를 확인하고 해당 Relay UE의 SL UE 컨텍스트를 재개할 수 없는 경우, SL 메시지(예를 들어, 사이드링크 재개 거절(Sidelink Resume Reject) 메시지)에 재개가 거절되었다는 재개 거절 지시(Resume reject indication)를 포함하여 전송한다. 이를 수신한 Relay UE는 재개가 실패했음을 인지하고, 직접 링크를 확립하기 위한 direct link setup procedure를 포함한 종래 동작을 수행할 수 있다.
8 단계. 직접 링크가 재개되거나 확립된 경우, Relay UE가 SL을 통해 Remote UE에게 시그널링 또는 데이터를 전송한다.
Relay UE가 DL 시그널링/데이터가 있는 경우, Remote UE와 직접 링크를 확립한 상태에서, 그 DL 시그널링/데이터를 전송하기 위한 절차를 수행한다.
9 단계. 이후 다음과 같은 옵션 중 하나로 동작할 수 있다.
옵션 1) Remote UE는 EMM-CONNECTED 모드에서 EMM-IDLE 모드로 전환한 경우, 앞서 4 단계를 다시 수행할 수 있다.
Remote UE의 EMM-CONNECTED 모드에서 EMM-IDLE 모드로의 전환을 Relay UE가 인지한 경우, Relay UE는 앞서 4 단계를 Remote UE를 향하여 수행하고, 이어서 Remote UE가 앞서 5 단계를 Relay UE를 향해서 수행할 수 있다. 이후, 과정은 앞서 설명한 단계들과 동일하다.
옵션 2) 다른 방법으로는 별도의 4 단계 및 5 단계의 수행 없이, Remote UE는 EMM-CONNECTED 모드에서 EMM-IDLE 모드로 전환하고, Relay UE와 Remote UE는 상대의 UE 컨텍스트를 유보하고, 직접 링크를 지역적으로(locally) 해제할 수도 있다.
이후, MO (SL 또는 UL) 또는 MT(SL 또는 DL) 시그널링/데이터가 발생한 경우, 앞서 6 단계부터 다시 수행될 수 있다.
이하, 5G 시스템에서 UE가 MICO 모드인 경우에 대하여 살펴본다.
도 23은 본 발명의 일 실시예에 따른 릴레이를 통한 데이터 전송 방법을 예시하는 도면이다.
0-A 단계 내지 2-C 단계. Remote UE는 Relay UE와 직접 링크를 확립한 상태에서, MICO 모드로 동작하기 위해서 네트워크에게 요청 후 수락을 받는 과정을 수행한다.
Remote UE는 MICO 지시를 포함하는 등록 요청(Registration Request) 메시지를 포함하는 SL 메시지를 Relay UE에게 전송하고(0-A 단계), Relay UE는 MICO 지시를 포함하는 Registration Request 메시지를 포함하는 RRC 메시지를 gNB에게 전송하며(0-B 단계), gNB는 MICO 지시를 포함하는 Registration Request 메시지를 포함하는 N2 메시지를 Remote UE의 AMF 2에게 전송한다(0-C 단계).
이후, 등록 절차의 남은 단계들이 수행될 수 있다. 보다 구체적인 절차와 관련하여 TS 23.502 V15.0.0가 참조로서 본 문서에 병합될 수 있다.
Remote UE의 AMF 2는 MICO 지시를 포함하는 등록 수락(Registraion Accept) 메시지를 포함하는 N2 메시지를 gNB에게 전송하고(2-A 단계), gNB는 MICO 지시를 포함하는 Registration Accept 메시지를 포함하는 RRC 메시지를 Relay UE에게 전송하며(2-B 단계), Relay UE는 MICO 지시를 포함하는 Registration Accept 메시지를 포함하는 SL 메시지를 Remote UE에게 전송한다(2-C 단계).
3 단계. Remote UE는 UL/DL 전송을 수행한다.
이후 Remote UE가 5GMM-CONNECTED (또는 CM(Connection Management)-CONNECTED) 모드에서 5GMM-IDLE (또는 CM-IDLE) 모드로 전환하고, MICO 모드로 동작한다.
4 단계. (Uu 연결에 대한) MICO 모드로 전환하면서 혹은 직전에, Remote UE는 SL 메시지(예를 들어, 사이드링크 유보 요청(Sidelink Suspend Request) 메시지)를 통해 전송 종료 지시 및/또는 유보 요청 지시를 Relay UE에게 전송한다.
5 단계. Relay UE는 Remote UE의 UE 컨텍스트(세션 컨텍스트, 보안 컨텍스트 포함)를 유보할 수 있는 경우, SL 메시지(예를 들어, 사이드링크 유보 수락/응답(Sidelink Suspend (accept/response)) 메시지)에 유보 수락/확인 지시와 함께 SL Resume ID를 포함하여 Remote UE에게 전송한다.
이때, Relay UE와 Remote UE는 직접 링크를 지역적으로(locally) 해제한다.
또는, Relay UE와 Remote UE는 직접 링크를 명시적으로 해제하기 위하여 직접 링크 해제 절차를 수행할 수도 있다.
직접 링크가 성공적으로 유보된 경우, Remote UE와 Relay UE는 SL Resume ID와 해당 직접 링크가 유보되었음을 기억(저장)할 수 있다. 이를 위해, 해당 직접 링크에 해당하는 UE 식별자들(예를 들면, 소스 2 계층 식별자(source layer-2 ID)와 목적지 2 계층 식별자(destination layer-2 ID))로 해당 직접 링크를 기억(저장)할 수 있다. 또는, 해당 직접 링크에 대한 링크 번호를 할당하여 기억(저장)할 수 있다. 그리고, 해당 직접 링크가 유보된 상태임을 기억(저장)한다.
반면, 도 23과 상이하게, Relay UE가 Remote UE의 UE 컨텍스트(세션 컨텍스트, 보안 컨텍스트 포함)를 유보할 수 없는 경우, Relay UE는 SL 메시지(예를 들어, 사이드링크 유보 거절/응답(Sidelink Suspend (reject/response)) 메시지)에 유보 거절 지시(Suspend reject indication)을 포함하여 Remote UE에 전송할 수 있다. Remote UE는 Suspend가 거절된 경우, 다음의 두 가지 중 하나로 동작할 수 있다.
A 경우) 이후, 직접 링크가 유지 되는 경우, 다음과 같이 종래 동작이 수행될 수 있다.
- Remote UE가 직접 링크를 유지하고 싶은 경우, 직접 링크를 유지하기 위한 직접 링크 킵얼라이브 절차(direct link keepalive procedure)를 수행할 수 있다.
- Remote UE가 직접 링크를 유지하고 싶지 않은 경우, 직접 링크를 해제하기 위한 직접 링크 해제 절차(direct link release procedure)를 수행할 수 있다.
B 경우) 이후, 직접 링크가 해제되는 되는 경우, Remote UE가 MO(SL 또는 UL) 시그널링/데이터가 발생한 경우, 직접 링크를 확립하기 위한 직접 링크 셋업 절차(direct link setup procedure)를 포함한 종래 동작을 수행할 수 있다.
6 단계. 앞서 5 단계에서 직접 링크가 성공적으로 유보된 경우, Remote UE가 MO(SL 또는 UL) 시그널링/데이터가 발생한 경우, 유보된 직접 링크를 재개하기 위한 사이드링크 재개 절차(Sidelink resume procedure)를 수행한다.
즉, Remote UE는 SL 메시지(예를 들어, 사이드링크 재개 요청(Sidelink Resume Request) 메시지)에 앞서 5 단계에서 수신하여 저장한 SL Resume ID를 포함시키고, 직접 링크에 해당하는 Relay UE의 2 계층 식별자(Layer-2 ID)를 destination Layer-2 ID로 설정하여 Relay UE에게 전송할 수 있다.
7 단계. 이를 수신한 Relay UE는 SL resume ID를 확인하고 해당 Remote UE의 SL UE 컨텍스트를 재개할 수 있는 경우, SL 메시지(예를 들어, 사이드링크 재개(Sidelink Resume) 메시지)에 재개가 성공했다는 재개 수락/확인 지시(Resume accept/confirm indication)과 (기존 또는 새로운) SL Resume ID를 할당하여 전송한다. 이후, Relay UE와 Remote UE의 직접 링크가 재개된다.
Relay UE는 SL resume ID를 확인하고 해당 Remote UE의 SL UE 컨텍스트를 재개할 수 없는 경우, SL 메시지(예를 들어, 사이드링크 재개 거절(Sidelink Resume Reject) 메시지)에 재개가 거절되었다는 재개 거절 지시(Resume reject indication)를 포함하여 전송한다. 이를 수신한 Remote UE는 재개가 실패했음을 인지하고, 직접 링크를 확립하기 위한 direct link setup procedure를 포함한 종래 동작을 수행할 수 있다.
8 단계. 직접 링크가 재개되거나 확립된 경우, Remote UE가 SL을 통해 Relay UE에게 시그널링 또는 데이터를 전송한다.
Remote UE가 전송할 UL 시그널링/데이터가 있는 경우, Relay UE와 직접 링크를 확립한 상태에서, 해당 UL 시그널링/데이터를 전송하기 위한 절차를 수행할 수 있다.
9 단계. 이후 다음과 같은 옵션 중 하나로 동작할 수 있다.
옵션 1) Remote UE는 5GMM-CONNECTED 모드에서 5GMM-IDLE 모드로 전환한 경우, 앞서 4 단계를 다시 수행할 수 있다.
Remote UE의 5GMM-CONNECTED 모드에서 5GMM-IDLE 모드로의 전환을 Relay UE가 인지한 경우, Relay UE는 앞서 4 단계를 Remote UE를 향하여 수행하고, 이어서 Remote UE가 앞서 5 단계를 Relay UE를 향해서 수행할 수 있다. 이후, 과정은 앞서 설명한 단계들과 동일하다.
옵션 2) 다른 방법으로는 별도의 4 단계 및 5 단계의 수행 없이, Remote UE는 5GMM-CONNECTED 모드에서 5GMM-IDLE 모드로 전환하고, Relay UE와 Remote UE는 상대의 UE 컨텍스트를 유보하고, 직접 링크를 지역적으로(locally) 해제할 수도 있다.
이후, MO (SL 또는 UL) 시그널링/데이터가 발생한 경우, 앞서 6 단계부터 다시 수행될 수 있다.
앞서 도 21 내지 도 23에서 설명한 경우(PSM, eDRX, MICO 모드)에서 SL 메시지는 PC5 시그널링 프로토콜 메시지일 수 있다. 이때, PC5 시그널링 프로토콜 메시지(예를 들어, 직접 통신 해제(DIRECT_COMMUNICATION_RELEASE) 메시지 및 직접 통신 해제 수락(DIRECT_COMMUNICATION_RELEASE ACCEPT) 메시지)로 구현될 수도 있으며, 새롭게 정의된 메시지로 구현될 수도 있다.
실시예 2
본 실시예에서는 다수의 remote UE로부터 받은 small data를 relay UE가 효율적으로 네트워크에게/로부터 전송/수신하는 방법을 제안한다.
본 실시예에서는 small data가 지연에 민감하지 않고 목적지(예를 들어, 어플리케이션 서버)에 전달되어야 하는 시간의 여유가 있는 경우를 가정한다.
먼저, UL 데이터 전송 처리 방법을 살펴본다.
1. 각 remote UE는 자신의 small data를 사이드링크(sidelink)(즉, 직접 링크)를 통해서 전송하고자 하는 경우, 다음과 같이 전송한다.
각 remote UE는 PC5 메시지를 통해서 해당 small data를 전송하면서, 해당 small data가 목적지(예를 들어, 어플리케이션 서버)에 전달되어야 하는 수명 시간(life time)을 PC5 메시지 내 별도의 IE로서 포함시켜 전송한다.
2. 이를 수신한 Relay UE는 해당 small data의 life time을 확인하고, life time에 대한 타이머의 값을 수신한 life time으로 설정하고, 타이머를 시작한다.
Relay UE는 해당 타이머가 만료되기 전에, Uu 인터페이스를 통해 small data 전송을 시도한다.
구체적으로 살펴보면, Relay UE는 수신한 remote UE들의 small data의 life time 관련된 타이머 중에서 잔여 시간이 가장 작은 타이머를 확인한다. 그리고, 그 타이머 값이 미리 정해진 값(이하, 알파(alpha)로 지칭)보다 같거나 작은 경우, Relay UE는 Uu 인터페이스를 통해서 small data 전송을 시작한다.
이때, alpha 값은 Relay UE가 목적지(예를 들어, 어플리케이션 서버)에 UL data가 전달되는 데 소요되는 시간보다 같거나 크게 설정될 수 있다.
이때, Relay UE는 그 small data를 전송하면서 현재 수신하고 버퍼링(buffering)하고 있는 모든 small data를 해당 small data들의 life time에 상관없이 함께 전송할 수 있다.
다음으로, DL 데이터 전송 처리 방법을 살펴본다.
DL 데이터 전송의 경우, UL 처리와 같이 최대한 DL data를 모아서 한번에 전송하는 방법으로 수행될 수 있다. 이때, 해당 동작을 수행하는 주체가 되는 개체에 따라 다음과 같은 옵션이 존재한다.
옵션 I) 목적지(예를 들어, 어플리케이션 서버)가 DL data의 처리를 하는 주체에 해당하는 경우
1. 목적지(예를 들어, 어플리케이션 서버)는 remote UE가 relay UE를 통해서 네트워크로 data를 전송/수신하는 것을 인지한다. 이 동작을 위해서 remote UE 혹은 relay UE 혹은 3GPP 네트워크가 목적지(예를 들어, 어플리케이션 서버)에게 하기 내용을 알려줄 수 있다.
- remote UE가 relay UE를 통해서 네트워크에게 data를 전송/수신한다는 지시
- 해당 relay UE의 식별자(예를 들어, 어플리케이션 식별자(ID: Identifier) 또는 외부 식별자(External identifier))
- Remote UE의 마지막 전달 시간(last delivery time) 정보 (DL 마지막 전달 시간을 산출하는 방법에 대해서는 후술함)
2. 목적지(예를 들어, 어플리케이션 서버)는 앞서 1 단계에서 수신한 정보를 바탕으로 각 remote UE가 연결된(linked) relay UE를 확인한다(상술한 Relay UE의 identity를 이용하여). 동일한 relay UE에 연결된 remote UE의 집합을 확인하고, 해당 remote UE들을 그룹으로 설정한다. 그리고, 해당 그룹에 속한 각 remote UE에게 전달되어야 하는 small data를 확인한다. 또한, 해당 small data가 각 remote UE에게 전달되어야 하는 마지막 전달 시간(last delivery time)들을 확인한다.
3. 목적지(예를 들어, 어플리케이션 서버)는 동일한 relay UE에 연결된 remote UE들의 해당 small data의 last delivery time을 확인하고, last delivery time에 대한 타이머의 값을 last delivery time으로 설정하고, 해당 타이머를 시작한다.
목적지(예를 들어, 어플리케이션 서버)는 해당 타이머가 만료되기 전에, DL small data전송을 시도한다.
구체적으로 살펴보면, 목적지(예를 들어, 어플리케이션 서버)는 동일한 relay UE에 연결된 remote UE들의 last delivery time에 대한 타이머 값 중 잔여 시간이 가장 작은 값을 확인한다. 가장 작은 값을 그룹 마지막 전달 시간(Group last delivery time)으로 설정한다. Group last delivery time 값은 새로운 last delivery time이 발생할 경우, 해당 값으로 갱신(update)될 수 있다.
Group last delivery time의 값이 미리 정해진 값(이하, 알파(alpha)로 지칭)보다 같거나 작은 경우, 목적지(예를 들어, 어플리케이션 서버)는 해당 그룹에 속하는 relay UE와 remote UE들에 대한 small data 전송을 시작한다.
이때, alpha 값은 목적지(예를 들어, 어플리케이션 서버)에서 remote UE까지 DL data가 전달되는 데 소요되는 시간보다 같거나 크게 설정될 수 있다.
4. 만약, remote UE가 UL small data를 목적지(예를 들어, 어플리케이션 서버)에게 전송하는 경우, remote UE가 접근 가능하지 않은 시간(non-reachable time)이 되기까지 시간(즉, small data 전송 후 접근 가능한(reachable) 상태를 유지하는 시간 구간)동안 까지는 별도의 시그널링(예를 들어, Service request 절차)없이 UL 스몰 데이터를 목적지(예를 들어, 어플리케이션 서버)에게 전달될 수 있다. 이 정보는 remote UE나 relay UE나 3GPP 네트워크로부터 목적지(예를 들어, 어플리케이션 서버)에게 전달될 수 있다.
이를 수신한 목적지(예를 들어, 어플리케이션 서버)가 remote UE의 접근 가능한(reachable) 상태를 유지하는 시간 구간 동안 DL small data를 전송 가능하다고 판단한 경우, 목적지(예를 들어, 어플리케이션 서버)는 상기 DL small data의 전송 방식인 1 단계 내지 3 단계와 상관없이 해당 remote UE에 대한 DL small data를 전송할 수도 있다.
이때, 동일한 relay UE에게 연결되어 있는 remote UE들의 버퍼링(buffering)하고 있는 small data를 함께 전송할 수 있다.
상술한 remote UE의 small data 전송 후 접근 가능한(reachable) 상태를 유지하는 시간 구간은 relay UE의 small data 전송 후 접근 가능한(reachable) 상태를 유지하는 시간 구간을 고려하여 결정될 수 있다. 즉, Remote UE의 해당 시간 구간과 relay UE의 해당 시간 구간 중 더 작은 값으로 결정될 수 있다. 결정된 값은 remote UE가 접근 가능하지 않은 시간(non-reachable time)이 되기까지 시간(즉, small data 전송 후 접근 가능한(reachable) 상태를 유지하는 시간 구간)으로 설정하여 목적지(예를 들어, 어플리케이션 서버)에게 전달될 수 있다.
옵션 II) 3GPP 네트워크가 DL data의 처리를 하는 주체에 해당하는 경우
1. 목적지(예를 들어, 어플리케이션 서버)에서 small data를 전송하는 경우, 해당 small data에 대한 수명 시간(life time)을 함께 전송한다. 이 때, relay UE의 식별자(예를 들어, 어플리케이션 식별자(ID: Identifier) 또는 외부 식별자(External identifier))를 함께 전달한다.
2. 이를 수신한 P-GW는 해당 small data와 함께 life time을 별도의 IE에 포함하여 GTP(GPRS Tunnelling Protocol) 시그널링을 통해 S-GW에 전송한다. DL small data에 대한 것임을 나타내는 지시 또는 IE가 더 포함될 수도 있다. 단계 1에서 수신한 relay UE의 식별자는 relay UE의 3GPP 식별자(예를 들면, IMSI)로 변환하여 이를 추가적으로 GTP 시그널링에 포함한다. 종래 동작대로 Remote UE의 식별자(예를 들면, IMSI)는 GTP 시그널링에 포함된다.
3. 이를 수신한 S-GW는 remote UE가 EMM-IDLE인 경우, 다음과 같이 동작한다.
A. 수신한 life time과 relay UE의 식별자(예를 들어, IMSI)를 DDN(Downlink Data Notification) 메시지에 포함시켜 MME에게 전송한다. 이 DDN 메시지는 DL small data에 대한 것임을 나타내는 지시 또는 IE를 포함할 수 있다.
B. DDN 메시지를 수신한 MME는 DDN 메시지를 통해서 아래 정보를 확인한다.
- DDN 메시지에 포함된 식별자를 통해 remote UE를 확인하고 life time도 확인한다. Relay UE에 대한 식별자를 통해서 해당 remote UE와 연결되어 있는(linked 또는 associated) Relay UE를 확인할 수 있다.
- MME는 해당 remote UE가 연결된(linked 또는 associated) relay UE의 정보를 가지고 있거나 상기 DDN 메시지를 통해 확인할 수 있다.. 이를 바탕으로 그 relay UE의 식별자(예를 들어, IMSI 또는 GUTI)를 확인한다.
- 해당 remote UE의 마지막 전달 시간(Last delivery time)를 계산한다. (DL 마지막 전달 시간을 산출하는 방법에 대해서는 후술함).
C. MME는 그 remote UE의 last delivery time을 바탕으로 다음 동작을 수행한다.
i. 만약, 해당 remote UE의 Last delivery time가 존재하지 않는 경우(즉, life time 동안 remote UE에게 해당 small data의 전달이 불가능한 경우) 다음 중 하나로 동작한다.
- MME는 해당 DDN 메시지에 대한 응답으로 DDN 실패 지시(DDN failure indication)로 S-GW에게 응답한다. 이때, 원인으로 기존에 정의된 원인(예를 들어, 'UE를 페이징 할 수 없음(Unable to page UE)') 또는 새롭게 정의된 원인(예를 들어, '수명 시간 동안 UE를 페이징할 수 없음(Unable to page UE during life time)')이 전송된다. 이를 수신한 S-GW는 data를 UE에게 life time동안 전달하지 못한다고 인지하고 data를 폐기한다.
이때, S-GW는 life time 동안 UE가 접근 가능(reachable)할 수 있는 경우에 대비하여, life time이 expired될 때까지 data를 버퍼링하고, life time이 만료될 때까지 UE가 접근 가능(reachable)하지 않으면 data를 폐기할 수 있다
- 또는, MME는 S-GW로 응답하면서 UE의 life time동안 (확장된) 버퍼링을 요청할 수 있다. 이때, MME는 S-GW에게 UE의 예상된 접근 가능한 시간(expected reachable time)을 알려줄 수 있다. S-GW는 life time이 expired될 때까지 data를 버퍼링하고, life time이 만료될 때까지 UE가 접근 가능(reachable)하지 않으면 data를 폐기할 수 있다
ii. 반면, 해당 remote UE의 Last delivery time가 존재하는 경우(즉, life time 동안 remote UE에게 그 small data의 전달이 가능한 경우) 다음과 같은 동작을 수행 한다
MME는 S-GW로 응답하면서 UE의 Last delivery time 동안 (확장된) 버퍼링을 요청한다. 이 때, 연결된 relay UE의 식별자(예를 들어, IMSI)를 알려줄 수 있다.
이를 수신한 S-GW는 last delivery time 동안 해당 remote UE의 그 small data와 후속 small data를 모두 버퍼링한다.
이때, S-GW는 해당 remote UE가 다른 remote UE와 동일한 relay UE와 연결되어 있는 것을 확인한 경우, 이를 같은 그룹으로 인지할 수 있다. 그리고, S-GW는 해당 그룹의 last delivery time 중 가장 짧은 Last delivery time를 그룹 마지막 전달 시간(Group Last delivery time)으로 설정할 수 있다.
Group Last delivery time이 만료되기 전에 같은 그룹에 속한 remote UE나 relay UE 중 하나라도 EMM-CONNECTED가 되는 경우, 또는 Group Last delivery time이 만료되는 경우, S-GW는 그룹(relay UE와 remote UE 모두)에 대한 버퍼링된 DL small data를 전송할 수 있다.
- DL 마지막 전달 시간(DL last delivery time)을 산출하는 방법
Last delivery time을 계산하는 절차는 다음과 같다.
1. Small data의 Life time이 유효한 시간 구간 내에서 remote UE의 가장 늦은 접근 가능한 시간(reachable time)을 도출한다.
2. 앞서 1 단계에서 도출된 Remote UE의 가장 늦은 접근 가능한 시간(reachable time)에서 relay UE의 가장 늦은 접근 가능한 시간(reachable time)을 도출한다.
3. 해당 relay UE의 가장 늦은 접근 가능한 시간(reachable time)을 last delivery time으로 도출한다.
여기서, life time가 유효한 시간 구간 동안에 last delivery time이 존재하지 않을 수도 있다. 그 이유는 life time가 유효한 시간 구간 동안에 remote UE나 relay UE가 접근 가능(reachable)하지 않기 때문이다. 이때, last delivery time의 값은 널(null) 또는 '영(0)'으로 설정될 수 있다.
Last delivery time을 계산하는 구체적인 예시는 다음과 같다.
먼저, remote UE는 20분 주기로 sidelink eDRX를 수행하고, relay UE는 10분 주기로 eDRX를 수행한다고 가정한다. 즉, remote UE는 1시 20분, 1시 40분, 2시, 2시 20분, ... 의 패턴으로 sidelink eDRX에 깨어난다. relay UE는 1시 15분, 1시 25분, 1시 35분, 1시 45분, 1시 55분, 2시, 2시 15분,... 의 패턴으로 eDRX에서 깨어난다. 그리고, small data의 수신한 life time은 5시 25분이라고 가정한다.
앞서 1 단계를 수행하는 경우, Life time의 유효한 시간 내에서 remote UE의 가장 늦은 접근 가능한 시간(reachable time)은 5시 20분
앞서 2 단계를 수행하는 경우, Remote UE의 가장 늦은 접근 가능한 시간(reachable time)에서 relay UE의 가장 늦은 접근 가능한 시간(reachable time) 5시 15분
앞서 3 단계를 수행하는 경우, last delivery time은 5시 15분
UE가 항상 접근 가능(reachable)하지 않는 경우의 의미는 UE가 eDRX나 PSM을 사용하는 경우를 의미할 수 있다. 즉, Remote UE는 eDRX나 PSM을 이용할 수도 있으며, sidelink eDRX를 사용할 수도 있다.
앞선 예시에서는 remote UE와 relay UE가 모두 eDRX를 사용하는 것을 가정하였다. 하지만 remote UE나 relay UE가 eDRX나 PSM을 사용하지 않는 일반 동작을 사용하는 경우에는 네트워크에서 항상 접근 가능(reachable)하기 때문에, UE의 접근 가능 시간(reachable time)에 대한 제한이 없이 적용이 가능하다.
즉, 상기 예시에서 remote UE가 일반 동작을 하는 경우를 가정하면, 1 단계에서 Life time의 유효한 시간 내에서 remote UE의 가장 늦은 접근 가능한 시간(reachable time)은 5시간 25분이 된다. 그리고, relay UE가 일반 동작을 하는 경우를 가정하면 2 단계에서 relay UE의 가장 늦은 접근 가능한 시간(reachable time)은 5시간 25분이 된다. remote UE와 relay UE가 일반 동작을 하는 경우를 가정하면 last delivery time은 5시간 25분이 된다. 앞선 예시에서는 life time이나 접근 가능한 시간(reachable time)이 구간(duration)으로 주어졌는데, 실제 시간(예를 들어, 15시 35분 30초)으로 주어질 수 있다. life time이나 접근 가능한 시간(reachable time)이 구간(duration)으로 주어진 경우, 해당 개체까지 전송하는 데 걸리는 시간을 감안하여 업데이트하는 것이 바람직하다(즉, 전송하는데 걸리는 시간을 life time에서 차감하는 것이 바람직함).
본 발명이 적용될 수 있는 장치 일반
도 24는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 24를 참조하면, 무선 통신 시스템은 네트워크 노드(2410)와 다수의 단말(UE)(2420)을 포함한다.
네트워크 노드(2410)는 프로세서(processor, 2411), 메모리(memory, 2412) 및 통신 모듈(communication module, 2413)을 포함한다. 프로세서(2411)는 앞서 도 1 내지 도 23에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(2411)에 의해 구현될 수 있다.
메모리(2412)는 프로세서(2411)와 연결되어, 프로세서(2411)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2413)은 프로세서(2411)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(2410)의 일례로, 기지국, MME, HSS, SGW, PGW, SCEF, SCS/AS 등이 이에 해당될 수 있다. 특히, 네트워크 노드(2410)가 기지국인 경우, 통신 모듈(2413)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(2420)은 프로세서(2421), 메모리(2422) 및 통신 모듈(또는 RF부)(2423)을 포함한다. 프로세서(2421)는 앞서 도 1 내지 도 23에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2421)에 의해 구현될 수 있다. 특히, 프로세서는 NAS 계층 및 AS 계층을 포함할 수 있다. 메모리(2422)는 프로세서(2421)와 연결되어, 프로세서(2421)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2423)는 프로세서(2421)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2412, 2422)는 프로세서(2411, 2421) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2411, 2421)와 연결될 수 있다. 또한, 네트워크 노드(2410)(기지국인 경우) 및/또는 단말(2420)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 25는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 25에서는 앞서 도 23의 단말을 보다 상세히 예시하는 도면이다.
도 25를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(2510), RF 모듈(RF module)(또는 RF 유닛)(2535), 파워 관리 모듈(power management module)(2505), 안테나(antenna)(2540), 배터리(battery)(2555), 디스플레이(display)(2515), 키패드(keypad)(2520), 메모리(memory)(2530), 심카드(SIM(Subscriber Identification Module) card)(2525)(이 구성은 선택적임), 스피커(speaker)(2545) 및 마이크로폰(microphone)(2550)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(2510)는 앞서 도 1 내지 도 23에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(2510)에 의해 구현될 수 있다.
메모리(2530)는 프로세서(2510)와 연결되고, 프로세서(2510)의 동작과 관련된 정보를 저장한다. 메모리(2530)는 프로세서(2510) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2510)와 연결될 수 있다.
사용자는 예를 들어, 키패드(2520)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(2550)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(2510)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(2525) 또는 메모리(2530)로부터 추출할 수 있다. 또한, 프로세서(2510)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(2515) 상에 디스플레이할 수 있다.
RF 모듈(2535)는 프로세서(2510)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(2510)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(2535)에 전달한다. RF 모듈(2535)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(2540)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(2535)은 프로세서(2510)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(2545)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템, 특히 5G(5 generation) 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서 원격 사용자 장치(Remote UE: Remote User Equipment)가 릴레이 UE(Relay UE)를 통해 네트워크와 데이터를 송수신하는 방법에 있어서,
    네트워크로 전송할 스몰 데이터(small data)가 발생하였음을 인지하는 단계;
    상기 Relay UE와 PC5 인터페이스를 통해 디스커버리 절차를 수행하는 단계; 및
    상기 디스커버리 절차에서 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌음을 확인하면, 상기 Relay UE에게 상기 스몰 데이터를 포함하는 PC5 메시지를 전송하는 단계를 포함하고,
    상기 디스커버리 절차 내에서 상기 Relay UE로부터 수신한 PC5 디스커버리 메시지에 의해 상기 Relay UE가 스몰 데이터 전송 절차를 지원한다고 지시되면, 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌다고 판단되는 릴레이를 통한 데이터 송수신 방법.
  2. 제1항에 있어서,
    상기 PC5 디스커버리 메시지는 UE와 네트워크 간 릴레이 디스커버리 방송(UE-to-Network Relay Discovery Announcement)을 위한 PC5 디스커버리 메시지 또는 UE와 네트워크 간 릴레이(UE-to-Network Relay) 디스커버리 응답(Discovery Response)을 위한 PC5 디스커버리 메시지인 릴레이를 통한 데이터 송수신 방법.
  3. 제1항에 있어서,
    상기 PC5 디스커버리 메시지는 UE와 네트워크 간 릴레이(UE-to-Network Relay)의 상태를 지시하기 위한 상태 지시자(Status Indicator) 정보 요소(IE: Information Element) 내 상기 Relay UE가 스몰 데이터 전송 절차를 지원 여부를 지시하는 스몰 데이터 전송 지시자(SDTI: Small Data Transmission Indicator)가 포함되는 릴레이를 통한 데이터 송수신 방법.
  4. 제1항에 있어서,
    상기 Remote UE의 상위 계층로부터 스몰 데이터와 함께 스몰 데이터 전송이 필요하다는 지시가 제공되면, 상기 네트워크로 전송할 스몰 데이터(small data)가 발생하였다고 인지되는 릴레이를 통한 데이터 송수신 방법.
  5. 제4항에 있어서,
    상기 Remote UE의 상위 계층로부터 사용자 평면(user plane) 셋업이 필요한지 여부를 지시하는 정보가 제공되는 릴레이를 통한 데이터 송수신 방법.
  6. 제1항에 있어서,
    상기 PC5 메시지는 스몰 데이터 전송인지 또는 일반 데이터 전송인지 나타내는 메시지 타입 정보, 상기 PC5 메시지에 포함된 프로토콜 데이터 유닛(PDU: Protocol Data Unit)이 시그널링인지 또는 데이터인지 지시하는 PDU 타입 정보, 스몰 데이터의 전송에 이어서 상향링크 및/또는 하향링크 전송이 예상되는지 여부를 지시하는 스몰 데이터 정보, Relay UE와 PC5 인터페이스를 통한 전송을 유지하기 위한 시간을 지시하는 활성 전송 시간 정보, 보안 파라미터, 스몰 데이터 전송에 대한 고유 시퀀스 번호 중 하나 이상을 더 포함하는 릴레이를 통한 데이터 송수신 방법.
  7. 제6항에 있어서,
    상기 PC5 메시지에 대한 응답으로 PC5 응답 메시지를 수신하는 단계를 더 포함하고,
    상기 스몰 데이터의 전송의 성공인지 또는 실패인지 지시하는 정보, 스몰 데이터 전송에 대한 고유 시퀀스 번호, 보안 파라미터 중 하나 이상을 포함하는 릴레이를 통한 데이터 송수신 방법.
  8. 제1항에 있어서,
    상기 스몰 데이터의 타입이 제어 평면(Control Plane) 데이터인 경우,
    상기 Relay UE가 IDLE 모드일 때, 상기 Relay UE가 CONNECTED 모드로의 전환하기 위한 절차 수행 없이, NAS(Non-Access Stratum) 메시지에 포함된 상기 Remote UE의 상기 스몰 데이터가 제어 평면으로 상기 네트워크에게 전송되는 릴레이를 통한 데이터 송수신 방법.
  9. 제1항에 있어서,
    상기 Relay UE와 확립된 직접 링크를 통해 데이터 전송이 완료된 후, 상기 확립된 직접 링크의 유보(suspend)를 요청하기 위한 유보 요청(suspend request) 메시지를 전송하거나 또는 수신하는 단계; 및
    상기 확립된 직접 링크에 대한 유보가 수락되었음을 지시하기 위한 유보 수락(suspend accept) 메시지를 수신하거나 또는 전송하는 단계를 더 포함하는 릴레이를 통한 데이터 송수신 방법.
  10. 제9항에 있어서,
    상기 유보 요청(suspend request) 메시지는 모든 데이터 전송이 완료되었다는 지시, 유보 요청 지시, 재개 식별자(resume Identifier), 시그널링 또는 통신 대역폭, 그리고 통신 주기 정보 중 하나 이상을 포함하는 릴레이를 통한 데이터 송수신 방법.
  11. 제9항에 있어서,
    상기 유보 수락(suspend accept) 메시지는 재개 식별자(resume Identifier), 시그널링 또는 통신 대역폭, 통신 주기 정보 중 하나 이상을 포함하는 릴레이를 통한 데이터 송수신 방법.
  12. 제9항에 있어서,
    상기 유보된 직접 링크의 재개를 요청하는 재개 요청(Resume Request) 메시지를 전송하는 단계; 및
    상기 재개 요청 메시지에 대한 응답으로 상기 유보된 직접 링크의 재개의 성공 또는 실패를 지시하는 재개 메시지를 수신하는 단계를 더 포함하는 릴레이를 통한 데이터 송수신 방법.
  13. 제12항에 있어서,
    상기 재개 요청(Resume Request) 메시지는 상기 유보 수락(suspend accept) 메시지에 포함된 재개 식별자(resume Identifier)를 포함하는 릴레이를 통한 데이터 송수신 방법.
  14. 제12항에 있어서,
    상기 재개 요청(Resume Request) 메시지는 상기 스몰 데이터를 포함하는 PC5 메시지로서 이용되는 릴레이를 통한 데이터 송수신 방법.
  15. 무선 통신 시스템에서 릴레이 UE(Relay UE)를 통해 네트워크와 데이터를 송수신하기 위한 원격 사용자 장치(Remote UE: Remote User Equipment)에 있어서,
    유/무선 신호를 송수신하기 위한 통신 모듈(communication module); 및
    상기 통신 모듈을 제어하는 프로세서를 포함하고,
    상기 프로세서는 네트워크로 전송할 스몰 데이터(small data)가 발생하였음을 인지하고,
    상기 Relay UE와 PC5 인터페이스를 통해 디스커버리 절차를 수행하고,
    상기 디스커버리 절차에서 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌음을 확인하면, 상기 Relay UE에게 상기 스몰 데이터를 포함하는 PC5 메시지를 전송하도록 구성되고,
    상기 디스커버리 절차 내에서 상기 Relay UE로부터 수신한 PC5 디스커버리 메시지에 의해 상기 Relay UE가 스몰 데이터 전송 절차를 지원한다고 지시되면, 상기 Relay UE가 상기 스몰 데이터를 네트워크로 전송할 수 있는 능력을 가졌다고 판단되는 사용자 장치.
PCT/KR2018/000368 2017-01-06 2018-01-08 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치 WO2018128505A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/473,204 US10924912B2 (en) 2017-01-06 2018-01-08 Method for transmitting and receiving data through relay in wireless communication system and apparatus therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762442998P 2017-01-06 2017-01-06
US62/442,998 2017-01-06
US201762476731P 2017-03-25 2017-03-25
US62/476,731 2017-03-25
US201762584606P 2017-11-10 2017-11-10
US62/584,606 2017-11-10

Publications (1)

Publication Number Publication Date
WO2018128505A1 true WO2018128505A1 (ko) 2018-07-12

Family

ID=62791273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000368 WO2018128505A1 (ko) 2017-01-06 2018-01-08 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10924912B2 (ko)
WO (1) WO2018128505A1 (ko)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091641A1 (en) * 2018-11-01 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for controlling a mode of operation of a wireless device
EP3678450A1 (en) * 2019-01-04 2020-07-08 ASUSTek Computer Inc. Method and apparatus for supporting vehicle-to-everything (v2x) services on single one-to-one sidelink communication link in a wireless communication system
WO2020150706A1 (en) * 2019-01-18 2020-07-23 Idac Holdings, Inc. Procedures enabling v2x unicast communication over pc5 interface
WO2020166956A1 (en) * 2019-02-14 2020-08-20 Lg Electronics Inc. Handling minimum required communication range in sidelink communication
WO2020166994A1 (en) * 2019-02-14 2020-08-20 Lg Electronics Inc. Multiple carrier transmissions for recovery of sidelink connection
WO2021092492A1 (en) * 2019-11-07 2021-05-14 Idac Holdings, Inc. 5g prose service based discovery
WO2021121705A1 (en) * 2019-12-20 2021-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Keep-alive procedure for sidelink
WO2021133047A1 (ko) * 2019-12-27 2021-07-01 엘지전자 주식회사 릴레이 통신 ue가 설정 업데이트 시에 원격 ue를 효율적으로 지원하는 방법
CN113395219A (zh) * 2021-05-18 2021-09-14 深圳微品致远信息科技有限公司 一种数据通信保障方法
WO2021235878A1 (en) * 2020-05-22 2021-11-25 Samsung Electronics Co., Ltd. Method and apparatus for improving cellular internet of things (ciot) optimizations in a telecommunication network
EP3911100A4 (en) * 2019-01-10 2022-01-19 Sony Group Corporation COMMUNICATION DEVICE, COMMUNICATION METHOD AND COMMUNICATION PROGRAM
CN115486108A (zh) * 2020-02-17 2022-12-16 三星电子株式会社 用于在v2x通信系统中处理安全性策略的方法和装置
US11638132B2 (en) 2018-06-22 2023-04-25 Interdigital Patent Holdings, Inc. Procedures enabling privacy for WTRUs using PC5 communication
US20230262442A1 (en) * 2022-02-17 2023-08-17 Nokia Technologies Oy New radio sidelink relay of small data transmissions
WO2023211090A1 (ko) * 2022-04-24 2023-11-02 엘지전자 주식회사 무선통신시스템에서 rrc reject을 수신한 릴레이 ue의 동작 방법

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108617032B (zh) * 2017-01-09 2019-12-27 电信科学技术研究院 一种ue空闲态处理方法、mm功能实体及sm功能实体
US10999330B2 (en) * 2017-02-10 2021-05-04 Apple Inc. Management of voice services for user equipments in coverage enhancement (CE) mode B
US20190357101A1 (en) * 2017-03-10 2019-11-21 Intel IP Corporation Evolved node-b (enb), user equipment (ue) and methods of switching between direct and indirect communication for a relay arrangement
EP3593563B1 (en) * 2017-03-10 2023-09-20 Sony Group Corporation Connection establishment of a terminal over a relay node in a wireless communication system
WO2018176416A1 (zh) 2017-03-31 2018-10-04 华为技术有限公司 中继通信方法、装置和系统
US10375642B2 (en) 2017-04-06 2019-08-06 Itron, Inc. Device and battery management in a cellular network
CN107257553B (zh) * 2017-05-04 2020-10-09 上海华为技术有限公司 用户面链路建立方法、基站及移动性管理设备
US10855420B2 (en) 2017-06-16 2020-12-01 Ofinno, Llc Distributed unit configuration update
WO2019064260A1 (en) * 2017-09-29 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) SYSTEMS AND METHODS PROVIDING A SLEEP-BASED EARLY DATA TRANSMISSION SOLUTION FOR ENERGY SAVING MODE
US10999893B2 (en) * 2018-02-13 2021-05-04 Intel Corporation Management of enhanced coverage (EC) in fifth generation (5G) systems
KR102419048B1 (ko) * 2018-03-28 2022-07-07 지티이 코포레이션 임시 식별자를 송신하는 방법 및 시스템
JP2021530150A (ja) * 2018-06-28 2021-11-04 コンヴィーダ ワイヤレス, エルエルシー 新無線車両サイドリンク共有チャネルデータ送信のためのサイドリンクバッファステータスレポートおよびスケジューリング要求
WO2020026027A1 (en) * 2018-08-03 2020-02-06 Lenovo (Singapore) Pte. Ltd. Indicating radio capability changes in an inactive state
EP4236603A3 (en) * 2018-08-03 2023-09-13 Telefonaktiebolaget LM Ericsson (publ) User plane optimizations for 5g cellular internet of things
CA3113920C (en) * 2018-09-25 2022-10-25 Hughes Network Systems, Llc Efficient transport of internet of things (iot) traffic in terrestrial wireless and satellite networks
US10728847B2 (en) 2018-10-05 2020-07-28 Itron, Inc. Cellular modem for low power applications
US10945204B2 (en) * 2018-10-05 2021-03-09 Itron, Inc. Battery power management for a cellular device
CN111328097B (zh) * 2018-12-14 2022-04-22 华为技术有限公司 一种故障确定方法及装置
EP3675533B1 (en) * 2018-12-24 2021-03-31 ASUSTek Computer Inc. Method and apparatus for supporting one-to-one sidelink communication in a wireless communication system via pc5
WO2020145676A1 (ko) * 2019-01-10 2020-07-16 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치
KR20200089090A (ko) * 2019-01-16 2020-07-24 삼성전자주식회사 차세대 이동 통신 시스템에서 차량 통신을 지원하기 위한 라디오 링크 모니터링 수행 방법 및 장치
US11283566B2 (en) * 2019-01-18 2022-03-22 Huawei Technologies Co., Ltd. Systems and methods for user equipment cooperation
US11252777B2 (en) * 2019-01-27 2022-02-15 Qualcomm Incorporated Coordinating radio resource control signaling with upper layer direct link establishment procedures
US10945120B2 (en) 2019-02-27 2021-03-09 Oracle International Corporation Methods, systems, and computer readable media for dynamically provisioning and using public land mobile network (PLMN) location mappings in service capability exposure function (SCEF) or network exposure function (NEF)
EP3709759A1 (en) * 2019-03-13 2020-09-16 Volkswagen Aktiengesellschaft Coordination of radio resources for inter-operator direct communication links
US10972368B2 (en) * 2019-05-17 2021-04-06 Oracle International Corporation Methods, systems, and computer readable media for providing reduced signaling internet of things (IoT) device monitoring
EP3751908B1 (en) 2019-06-14 2022-02-16 Ofinno, LLC Non-access stratum connection handling in ntn
US11533613B2 (en) * 2019-08-16 2022-12-20 Qualcomm Incorporated Providing secure communications between computing devices
CN112423319B (zh) * 2019-08-23 2024-05-14 华硕电脑股份有限公司 用于侧链路无线电承载的标头压缩配置的方法和设备
US11564280B2 (en) * 2020-01-03 2023-01-24 Qualcomm Incorporated User equipment to network relay
WO2021196051A1 (zh) * 2020-03-31 2021-10-07 华为技术有限公司 一种通信方法、装置及系统
EP4111720A1 (en) * 2020-04-01 2023-01-04 Apple Inc. Vehicle-to-everything (v2x) security policy negotiation between peer user equipments (ues)
US11683793B2 (en) * 2020-06-11 2023-06-20 Qualcomm Incorporated Sidelink power control using shared resources
WO2022005349A1 (en) * 2020-07-01 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Using subscriber event data to control release operations related to communication session in communications network
KR20230038657A (ko) * 2020-07-14 2023-03-21 삼성전자주식회사 스몰 데이터 송신을 위한 응답 타이머 및 셀 재선택 처리 방법 및 장치
US11381955B2 (en) 2020-07-17 2022-07-05 Oracle International Corporation Methods, systems, and computer readable media for monitoring machine type communications (MTC) device related information
CN115669211A (zh) * 2020-08-12 2023-01-31 Oppo广东移动通信有限公司 中继方法和终端
KR102518336B1 (ko) * 2020-09-21 2023-04-05 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 ue 대 네트워크 릴레이 통신을 지원하기 위한 방법 및 장치
KR20220043715A (ko) * 2020-09-29 2022-04-05 삼성전자주식회사 무선 통신 시스템에서 사이드링크 릴레이 탐색을 지원하기 위한 방법 및 장치
CN116326008A (zh) * 2020-09-30 2023-06-23 联想(北京)有限公司 用于用户装备(ue)发现的方法及设备
US20220109970A1 (en) * 2020-10-02 2022-04-07 Samsung Electronics Co., Ltd. Method and apparatus for sl relay discovery in wireless communication system
EP4226663A1 (en) * 2020-10-12 2023-08-16 Telefonaktiebolaget LM Ericsson (publ) Relay ue and remote ue authorization
TWI749859B (zh) * 2020-11-10 2021-12-11 緯創資通股份有限公司 網路實體通訊方法及其相關無線通訊系統
AU2021417416A1 (en) * 2021-01-08 2023-07-13 Nokia Technologies Oy A method, apparatus and computer program product for authentication procedure between devices
BR112023013309A2 (pt) * 2021-01-13 2023-10-31 Qualcomm Inc Configuração de adaptação de retransmissão para interface de sidelink
CN116783986A (zh) * 2021-01-14 2023-09-19 联想(北京)有限公司 用于数据发射处理的方法及设备
EP4271127A4 (en) * 2021-02-25 2024-01-24 Honda Motor Co., Ltd. COMMUNICATION DEVICE, COMMUNICATION METHOD AND PROGRAM
US20220322063A1 (en) * 2021-03-25 2022-10-06 Samsung Electronics Co., Ltd. Method and apparatus for supporting allocation of transmission resource for sidelink relay discovery message in wireless communication system
WO2022217613A1 (zh) * 2021-04-16 2022-10-20 Oppo广东移动通信有限公司 数据传输方法、设备及存储介质
CN115250141B (zh) * 2021-04-28 2024-05-28 维沃移动通信有限公司 智能信号放大器的工作模式配置方法、装置及设备
US12004174B2 (en) * 2021-05-28 2024-06-04 Qualcomm Incorporated Support for an increased quantity of sidelink configured grants
US11895080B2 (en) 2021-06-23 2024-02-06 Oracle International Corporation Methods, systems, and computer readable media for resolution of inter-network domain names
US11877354B2 (en) * 2021-07-08 2024-01-16 Qualcomm Incorporated Assistance information for full-duplex relay user equipment selection
CN115835199A (zh) * 2021-09-16 2023-03-21 华为技术有限公司 确定密钥获取方式的方法、通信方法及通信装置
WO2023059882A1 (en) * 2021-10-08 2023-04-13 Interdigital Patent Holdings, Inc. Method of power saving for wtru to network relay
KR20230093842A (ko) * 2021-12-20 2023-06-27 삼성전자주식회사 무선 통신 시스템에서 사이드링크 탐색 메시지를 위한 자원 풀 할당을 지원하는 방법 및 장치
WO2023138869A1 (en) * 2022-01-20 2023-07-27 Sony Group Corporation Methods and devices for data transmission from user equipment
WO2023153806A1 (en) * 2022-02-08 2023-08-17 Samsung Electronics Co., Ltd. Method and apparatus for determining relay ue for constrained ue
WO2023204747A1 (en) * 2022-04-19 2023-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node and methods performed thereby for handling transmission of data
KR20240040373A (ko) * 2022-09-21 2024-03-28 삼성전자주식회사 무선 통신 시스템에서 확장된 액세스 포인트를 지원하기 위한 방법 및 장치
WO2024063355A1 (ko) * 2022-09-21 2024-03-28 삼성전자 주식회사 통신 네트워크에서 네트워크 엔터티를 제어하는 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160044613A1 (en) * 2014-08-07 2016-02-11 Alcatel-Lucent Usa Inc. Notification of relay capabilities for ue-to-network relay functions
KR20160064172A (ko) * 2013-09-27 2016-06-07 텔레폰악티에볼라겟엘엠에릭슨(펍) 디바이스 투 디바이스(d2d) 콘트롤 정보 릴레이
WO2016164493A1 (en) * 2015-04-06 2016-10-13 Interdigital Patent Holdings, Inc. METHODS, APPARATUSES AND SYSTEMS DIRECTED TO PROXIMITY SERVICES (ProSe) DIRECT DISCOVERY
US20160309377A1 (en) * 2013-10-03 2016-10-20 Lg Electronics Inc. Method and apparatus for handling radio resources for device-to-device operation in wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8787988B2 (en) * 2003-01-29 2014-07-22 Intellectual Ventures I Llc Power management for wireless direct link
EP2930992B1 (en) * 2012-12-07 2022-08-10 LG Electronics Inc. Method and device for transmitting and receiving control signal
EP3332577B1 (en) * 2015-08-07 2020-04-29 Samsung Electronics Co., Ltd. Terminal and communication method of the same
US10924975B2 (en) * 2015-09-24 2021-02-16 Samsung Electronics Co., Ltd Method for supporting lawful interception of remote prose UE in network
EP3255950A1 (en) * 2016-06-06 2017-12-13 ASUSTek Computer Inc. Method and apparatus for resource allocation on d2d relay channel in a wireless communication system
US10440742B2 (en) * 2016-09-23 2019-10-08 Qualcomm Incorporated Dynamic grant-free and grant-based uplink transmissions
US11297660B2 (en) * 2016-10-06 2022-04-05 Convida Wireless, Llc Session management with relaying and charging for indirect connection for internet of things applications in 3GPP network
RU2021123910A (ru) * 2016-11-03 2021-09-27 АйПиКОМ ГМБХ УНД КО.КГ Способ связи устройства мобильной связи с носимым устройством
EP3536027B1 (en) * 2016-11-07 2021-04-21 Koninklijke KPN N.V. Handover of a device which uses another device as relay

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064172A (ko) * 2013-09-27 2016-06-07 텔레폰악티에볼라겟엘엠에릭슨(펍) 디바이스 투 디바이스(d2d) 콘트롤 정보 릴레이
US20160309377A1 (en) * 2013-10-03 2016-10-20 Lg Electronics Inc. Method and apparatus for handling radio resources for device-to-device operation in wireless communication system
US20160044613A1 (en) * 2014-08-07 2016-02-11 Alcatel-Lucent Usa Inc. Notification of relay capabilities for ue-to-network relay functions
WO2016164493A1 (en) * 2015-04-06 2016-10-13 Interdigital Patent Holdings, Inc. METHODS, APPARATUSES AND SYSTEMS DIRECTED TO PROXIMITY SERVICES (ProSe) DIRECT DISCOVERY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Relay Discovery and Connection Setup Procedures on LTE Sidelink", 3GPP TSG RAN WG2 MEETING #96 R2-167694, 4 November 2016 (2016-11-04), Reno, USA, XP051192242, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_96/Docs/> *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11930433B2 (en) 2018-06-22 2024-03-12 InterDigial Patent Holdings, Inc. Procedures enabling privacy for WTRUs using PC5 communication
US11638132B2 (en) 2018-06-22 2023-04-25 Interdigital Patent Holdings, Inc. Procedures enabling privacy for WTRUs using PC5 communication
AU2019373002B2 (en) * 2018-11-01 2023-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for controlling a mode of operation of a wireless device
CN112970302A (zh) * 2018-11-01 2021-06-15 瑞典爱立信有限公司 用于控制无线设备的操作模式的方法和装置
WO2020091641A1 (en) * 2018-11-01 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for controlling a mode of operation of a wireless device
KR102303882B1 (ko) 2019-01-04 2021-09-23 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에 있어서 일대일 사이드링크 통신 링크에서 v2x 서비스를 지원하는 방법 및 장치
CN111417092B (zh) * 2019-01-04 2023-03-24 华硕电脑股份有限公司 支持单个一对一侧链路通信链路车联网服务的方法和设备
KR20200085651A (ko) * 2019-01-04 2020-07-15 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에 있어서 일대일 사이드링크 통신 링크에서 v2x 서비스를 지원하는 방법 및 장치
CN111417092A (zh) * 2019-01-04 2020-07-14 华硕电脑股份有限公司 支持单个一对一侧链路通信链路车联网服务的方法和设备
US11457355B2 (en) 2019-01-04 2022-09-27 Asustek Computer Inc. Method and apparatus for supporting vehicle-to-everything (V2X) services on single one-to-one sidelink communication link in a wireless communication system
EP3678450A1 (en) * 2019-01-04 2020-07-08 ASUSTek Computer Inc. Method and apparatus for supporting vehicle-to-everything (v2x) services on single one-to-one sidelink communication link in a wireless communication system
US11979922B2 (en) 2019-01-10 2024-05-07 Sony Group Corporation Communication device, communication method, and communication program
EP3911100A4 (en) * 2019-01-10 2022-01-19 Sony Group Corporation COMMUNICATION DEVICE, COMMUNICATION METHOD AND COMMUNICATION PROGRAM
TWI811508B (zh) * 2019-01-10 2023-08-11 日商索尼股份有限公司 通訊裝置、通訊方法、及通訊程式
WO2020150706A1 (en) * 2019-01-18 2020-07-23 Idac Holdings, Inc. Procedures enabling v2x unicast communication over pc5 interface
JP7503557B2 (ja) 2019-01-18 2024-06-20 インターデイジタル パテント ホールディングス インコーポレイテッド Pc5インターフェース上においてv2xユニキャスト通信を可能にする手順
CN113597780A (zh) * 2019-01-18 2021-11-02 Idac控股公司 通过PC5接口实现V2x单播通信的过程
JP2022524704A (ja) * 2019-01-18 2022-05-10 アイディーエーシー ホールディングス インコーポレイテッド Pc5インターフェース上においてv2xユニキャスト通信を可能にする手順
WO2020166956A1 (en) * 2019-02-14 2020-08-20 Lg Electronics Inc. Handling minimum required communication range in sidelink communication
US11985717B2 (en) 2019-02-14 2024-05-14 Lg Electronics Inc. Handling minimum required communication range in sidelink communication
WO2020166994A1 (en) * 2019-02-14 2020-08-20 Lg Electronics Inc. Multiple carrier transmissions for recovery of sidelink connection
WO2021092492A1 (en) * 2019-11-07 2021-05-14 Idac Holdings, Inc. 5g prose service based discovery
WO2021121705A1 (en) * 2019-12-20 2021-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Keep-alive procedure for sidelink
WO2021133047A1 (ko) * 2019-12-27 2021-07-01 엘지전자 주식회사 릴레이 통신 ue가 설정 업데이트 시에 원격 ue를 효율적으로 지원하는 방법
CN115486108A (zh) * 2020-02-17 2022-12-16 三星电子株式会社 用于在v2x通信系统中处理安全性策略的方法和装置
US11902787B2 (en) 2020-02-17 2024-02-13 Samsung Electronics Co., Ltd. Method and apparatus for handling security policies in V2X communication system
WO2021235878A1 (en) * 2020-05-22 2021-11-25 Samsung Electronics Co., Ltd. Method and apparatus for improving cellular internet of things (ciot) optimizations in a telecommunication network
CN113395219B (zh) * 2021-05-18 2022-04-12 深圳微品致远信息科技有限公司 一种数据通信保障方法
CN113395219A (zh) * 2021-05-18 2021-09-14 深圳微品致远信息科技有限公司 一种数据通信保障方法
US20230262442A1 (en) * 2022-02-17 2023-08-17 Nokia Technologies Oy New radio sidelink relay of small data transmissions
WO2023211090A1 (ko) * 2022-04-24 2023-11-02 엘지전자 주식회사 무선통신시스템에서 rrc reject을 수신한 릴레이 ue의 동작 방법

Also Published As

Publication number Publication date
US20200100088A1 (en) 2020-03-26
US10924912B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
WO2018128505A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018155908A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018044144A1 (ko) 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치
WO2018164552A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2017164679A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
WO2017200269A1 (ko) 무선 통신 시스템에서 착신 데이터 제어 방법 및 이를 위한 장치
WO2018174525A1 (ko) 무선 통신 시스템에서 계층간 상호작용 방법 및 이를 위한 장치
WO2018169244A1 (ko) 무선 통신 시스템에서 이동성 이벤트 통지 방법 및 이를 위한 장치
WO2018131984A1 (ko) 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치
WO2018117774A1 (ko) 무선 통신 시스템에서 v2x 통신을 수행하기 방법 및 이를 위한 장치
WO2018147698A1 (ko) 무선 통신 시스템에서 nas 메시지 송수신 방법 및 이를 위한 장치
WO2018231029A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2017188758A1 (ko) 무선 통신 시스템에서 nas 시그널링 유보/재개를 수행하기 위한 방법 및 이를 위한 장치
WO2018070689A1 (ko) 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치
WO2018128528A1 (ko) 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치
WO2018080230A1 (ko) 무선 통신 시스템에서 emm 모드를 결정하는 방법 및 이를 위한 장치
WO2018079947A1 (ko) 무선 통신 시스템에서 ue 이동성을 지원하기 위한 방법 및 이를 위한 장치
WO2018097599A1 (ko) 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치
WO2017078485A1 (ko) 무선 통신 시스템에서 서빙 노드 이전 방법 및 이를 위한 장치
WO2016190641A1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
WO2018128529A1 (ko) 무선 통신 시스템에서 네트워크간 상호연동 방법 및 이를 위한 장치
WO2017119802A1 (ko) 무선 통신 시스템에서 nidd(non-ip data delivery) 구성 설정 방법 및 이를 위한 장치
WO2016153316A1 (ko) 무선 통신 시스템에서 단말 접근성 모니터링 방법 및 이를 위한 장치
WO2016111591A1 (ko) 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치
WO2016208997A1 (ko) 무선 통신 시스템에서 단말의 영역 관리 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18736379

Country of ref document: EP

Kind code of ref document: A1