WO2017175692A1 - 超音波検査システム、超音波検査方法及び航空機構造体 - Google Patents

超音波検査システム、超音波検査方法及び航空機構造体 Download PDF

Info

Publication number
WO2017175692A1
WO2017175692A1 PCT/JP2017/013866 JP2017013866W WO2017175692A1 WO 2017175692 A1 WO2017175692 A1 WO 2017175692A1 JP 2017013866 W JP2017013866 W JP 2017013866W WO 2017175692 A1 WO2017175692 A1 WO 2017175692A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
ultrasonic
detection signal
area
index value
Prior art date
Application number
PCT/JP2017/013866
Other languages
English (en)
French (fr)
Inventor
英樹 副島
Original Assignee
株式会社Subaru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Subaru filed Critical 株式会社Subaru
Priority to CN201780022228.2A priority Critical patent/CN108885194B/zh
Priority to EP17779070.6A priority patent/EP3441755A4/en
Priority to JP2017523544A priority patent/JP6506393B2/ja
Publication of WO2017175692A1 publication Critical patent/WO2017175692A1/ja
Priority to US16/149,281 priority patent/US11226311B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/449Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/105Number of transducers two or more emitters, two or more receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2694Wings or other aircraft parts

Definitions

  • Embodiments described herein relate generally to an ultrasonic inspection system, an ultrasonic inspection method, and an aircraft structure.
  • SHM structural health monitoring
  • the SHM technology detects changes in physical quantities such as strain, ultrasonic waves and acceleration in a structure with a sensor installed in the structure, and analyzes the detected changes in the physical quantity so that the position of occurrence of deterioration or damage of the structure or This is a technique for diagnosing the degree.
  • the physical quantity measured at the time of soundness without deterioration or damage is compared with the physical quantity measured at the subsequent periodic inspection, etc., and the occurrence position and degree of structural deterioration and damage are diagnosed from the difference. Is done. That is, the soundness of the structure in the flaw detection range of the sensor is diagnosed using information of a certain sensor.
  • SHM technology has been proposed in which a plurality of sensors are installed at a plurality of locations in a structure to diagnose the soundness of the structure (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • a technique has been proposed in which a plurality of sensors are arranged in the same inspection area and the detection signals of the induced waves obtained by the sensors are compared.
  • An object of the present invention is to make it possible to diagnose the soundness of a structure such as an aircraft structure with better accuracy.
  • Another object of the present invention is to make it possible to more efficiently perform soundness diagnosis of a structure.
  • the ultrasonic inspection system includes a first inspection unit, a second inspection unit, and a signal processing system.
  • the first inspection unit acquires a detection signal of the first ultrasonic wave in the first inspection area of the structure using the first ultrasonic transducer and the first ultrasonic sensor.
  • the second inspection unit obtains a detection signal of the second ultrasonic wave in the second inspection area of the structure using the second ultrasonic transducer and the second ultrasonic sensor.
  • the signal processing system is an index representing inspection information of at least one of the first inspection area and the second inspection area based on the detection signal of the first ultrasonic wave and the detection signal of the second ultrasonic wave. Find the value.
  • an aircraft structure includes the ultrasonic inspection system as a part.
  • the ultrasonic inspection method uses the first ultrasonic transducer and the first ultrasonic sensor to generate the first ultrasonic detection signal in the first inspection area of the structure.
  • FIG. 1 is a front view showing a configuration of an aircraft structure including an ultrasonic inspection system according to a first embodiment of the present invention.
  • the bottom view of the aircraft structure shown in FIG. The graph which shows an example of the waveform of the detection signal of the ultrasonic wave acquired in the inspection area with an aircraft structure shown in FIG.
  • FIG. 9 is a bottom view of the aircraft structure shown in FIG. 8.
  • FIG. 12 is a bottom view of the aircraft structure shown in FIG. 11.
  • FIG. 1 is a front view showing a configuration of an aircraft structure including an ultrasonic inspection system according to the first embodiment of the present invention
  • FIG. 2 is a bottom view of the aircraft structure shown in FIG.
  • the aircraft structure 1 has, for example, a structure in which a plurality of stringers (longitudinal members) 3 are attached to a panel (outer plate) 2. In the illustrated example, five stringers 3 are attached substantially parallel to the panel 2. For this reason, six spaces partitioned by the stringer 3 and the panel 2 are formed. Furthermore, the aircraft structure 1 is provided with an ultrasonic inspection system 4 as a part.
  • the ultrasonic inspection system 4 is a system for detecting an inspection area where a defect exists or an inspection area suspected of being defective from a plurality of inspection areas of the aircraft structure 1 using ultrasonic waves.
  • the ultrasonic inspection system 4 has a plurality of inspection units 5 and a signal processing system 6.
  • each of the six plate-like portions of the panel 2 partitioned by the five stringers 3 is an inspection area (Section).
  • the inspection unit 5 is arranged in each inspection area.
  • the first inspection area (Section 1) to the sixth inspection area (Section 6) are arranged in a line in this order, and the first inspection unit 5A to the sixth inspection unit 5F are the first, respectively.
  • the sixth inspection area (Section 6) can be inspected from the inspection area (Section 1).
  • Each inspection unit 5 includes an actuator 7 and an ultrasonic sensor 8, respectively.
  • the actuator 7 is an ultrasonic transducer for oscillating ultrasonic waves toward the examination area.
  • the ultrasonic sensor 8 is a sensor for detecting ultrasonic waves that pass through the examination area. Therefore, the ultrasonic sensor 8 is disposed at a position facing the actuator 7 across the inspection area.
  • an optical fiber sensor such as a fiber Bragg grating (FBG) sensor or a phase shift FBG (PS-FBG: Phase-shifted FBG) sensor is used in addition to the ultrasonic vibrator.
  • FBG fiber Bragg grating
  • PS-FBG Phase-shifted FBG
  • PS-FBG is an FBG in which a local phase shift is introduced into a periodic change in refractive index.
  • an ultrasonic sensor for detecting the reflected ultrasonic wave may be provided as a component of each inspection unit 5. In that case, an ultrasonic sensor for detecting an ultrasonic transmission wave at a position where the ultrasonic reflected wave reflected at the inspection area can be detected, for example, at a position adjacent to the actuator 7 toward the inspection area. Is placed.
  • each inspection unit 5 When each inspection unit 5 is arranged in each inspection area, an ultrasonic inspection can be performed for each inspection area using the actuator 7 and the ultrasonic sensor 8. That is, each inspection unit 5 can acquire an ultrasonic detection signal in the inspection area of the aircraft structure 1 using the actuator 7 and the ultrasonic sensor 8.
  • the first to sixth actuators 7A, 7B, 7C, 7D, 7E, 7F and the first to sixth ultrasonic sensors 8A, 8B, 8C, 8D, 8E, 8F the first inspection area (Section 1) to the sixth inspection area (Section 6) of the aircraft structure 1 are used.
  • the first to sixth ultrasonic detection signals can be acquired respectively.
  • the ultrasonic detection signal acquired by each ultrasonic sensor 8 is output to the signal processing system 6.
  • the signal processing system 6 oscillates an ultrasonic wave from each actuator 7 by outputting a control signal to each actuator 7, while acquiring a detection signal of the ultrasonic wave from each ultrasonic sensor 8 to obtain inspection information It is a system that executes processing.
  • the signal processing system 6 can be composed of circuits such as a D / A (digital-to-analog) converter, an amplifier (amplifier), an A / D (analog-to-digital) converter, and a computer.
  • the ultrasonic sensor 8 is an optical fiber sensor
  • laser light is emitted from a wavelength filter or a light source for performing signal processing on an ultrasonic detection signal output from the ultrasonic sensor 8 as an optical signal.
  • a photoelectric conversion device for converting the optical signal into an electric signal performs signal processing. It is provided as a component of the system 6.
  • the signal processing system 6 is configured by at least a circuit, and when the ultrasonic sensor 8 is an optical fiber sensor, a necessary optical element can be used as a component.
  • the signal processing system 6 is connected to an input device 9 for inputting necessary information and a display device 10 for displaying necessary information.
  • the signal processing system 6 includes at least two of the two examination areas based on two ultrasonic detection signals obtained in the at least two examination areas among the plurality of ultrasonic detection signals obtained in the plurality of examination areas. An index value representing one piece of inspection information is obtained.
  • FIG. 3 is a graph showing an example of a waveform of an ultrasonic detection signal acquired in an inspection area of the aircraft structure 1 shown in FIG. 1
  • FIG. 4 is another inspection of the aircraft structure 1 shown in FIG. It is a graph which shows an example of the waveform of the detection signal of the ultrasonic wave acquired in the area.
  • the horizontal axis represents time
  • the vertical axis represents the relative intensity of the ultrasonic detection signal.
  • each of the inspection units 5A, 5B, 5C, 5D, 5E, and 5F is disposed at the same interval, and the actuators 7A, 7B, 7C, 7D, 7E, 7F, and Using the ultrasonic sensors 8A, 8B, 8C, 8D, 8E, and 8F, each inspection area (Section 1, which is partitioned from other inspection areas by two wall surfaces formed by the stringers 3 provided at least at the same interval. If the detection signals in Section2, Section3, Section4, Section5, and Section6) are acquired, the structure of each inspection area (Section1, Section2, Section3, Section4, Section5, and Section6) can be regarded as the same structure.
  • the actuators are respectively connected to a plurality of areas on the panel 2 partitioned by the reinforcing material.
  • examples of the reinforcing material attached to the panel 2 include a stringer 3, a spar (girder), a rib (small bone), and a frame (auxiliary material). For this reason, not only the stringer 3, but a plurality of plate-like areas partitioned by these reinforcing materials can be used as inspection areas.
  • a Lamb wave is a wave that propagates through a thin plate that is half or less of the wavelength of the ultrasonic wave, and is an ultrasonic wave that is relatively difficult to attenuate. For this reason, the use of Lamb waves can improve the signal-to-noise ratio (SNR) and accuracy of the ultrasonic detection signal. Therefore, if Lamb waves are respectively transmitted to a plurality of inspection areas that can be regarded as the same structure and a detection signal of Lamb waves is obtained from each inspection area, as long as there is no defect in each inspection area, FIGS. A plurality of detection signals having substantially similar waveforms can be obtained as illustrated in FIG.
  • each inspection unit 5 uses the actuator 7 and the ultrasonic sensor 8 that are arranged at the same interval to acquire a detection signal based on Lamb waves from a plurality of plate-like inspection areas having the same Lamb wave propagation conditions. By doing so, it is possible to obtain a plurality of ultrasonic detection signals having the same waveform as long as there is no defect in each inspection area.
  • the soundness of each examination area can be evaluated using a plurality of ultrasonic detection signals having similar waveforms. That is, as described above, based on two ultrasonic detection signals acquired in at least two of the plurality of ultrasonic detection signals acquired in the plurality of inspection areas, An index value indicating at least one soundness can be obtained.
  • an index value representing inspection information in a certain inspection area at least two detection signals including a detection signal acquired from the inspection area and a detection signal acquired from one or more other inspection areas are included. It can be a scalar value calculated by an arbitrary calculation as input data. That is, not only the calculation using two detection signals acquired from two inspection areas as input data, but also the inspection information by calculation using three or more detection signals acquired from three or more inspection areas as input data. You may make it obtain
  • a case where one index value is obtained by a simple calculation using two detection signals as input data will be described as an example.
  • the index value include a representative value such as an average value, an intermediate value, a maximum value, or an integral value in the time direction of an addition signal, a subtraction signal, a multiplication signal, or a division signal of a plurality of time-series detection signals.
  • a correlation coefficient and a square error are mentioned. When the calculation is an operation having an exchange law, the index value becomes the same value if the combination of a plurality of detection signals for obtaining the index value is the same. If the cross-correlation coefficient or the square error is an index value, the two detection signals are input data for obtaining the index value.
  • the calculation for obtaining the index value is a calculation having an exchange law
  • a common index value representing the inspection information of both the first inspection area (Section 1) and the second inspection area (Section 2) is obtained.
  • the operation for obtaining the index value is an operation that does not have an exchange law, such as the operation for obtaining the subtraction value or the average value of the divided signals.
  • the calculation for obtaining the index value is an operation having an exchange law
  • the first ultrasonic detection signal and the second inspection area acquired from the first inspection area (Section 1).
  • the index value based on the detection signal of the second ultrasonic wave acquired from (2), the detection signal of the first ultrasonic wave and the detection signal of the third ultrasonic wave acquired from the third examination area (Section 3).
  • the index value based on the value and the detection signal of the second ultrasonic wave and the detection signal of the third ultrasonic wave is obtained in the signal processing system 6.
  • index values suitable for comparison include a cross-correlation coefficient, a square error, and a difference signal. And the representative value of the division signal. Therefore, in the signal processing system 6, it is effective to obtain the cross-correlation coefficient between the two detection signals, the square error, the representative value of the difference signal, or the representative value of the division signal as an index value representing the inspection information. Is.
  • the two ultrasonic detection signals output from the two ultrasonic sensors 8 are not targeted for directly obtaining the cross-correlation coefficient or the like, and the detection signals after performing the necessary signal processing are correlated. It is good also as calculation objects, such as a number.
  • two detection signals after various signal processing such as noise removal processing, averaging processing, and / or envelope detection processing may be used as targets for obtaining a cross-correlation coefficient or the like.
  • the cross-correlation coefficient between the detection signals acquired by the plurality of inspection units 5 or between the signals corresponding to the detection signals, the square error, the representative value of the difference signal, or the representative of the division signal The value can be determined.
  • a cross-correlation coefficient, a square error, and a difference signal are obtained by using the signal after various signal processing such as noise removal processing, averaging processing and / or envelope detection processing as an ultrasonic detection signal. Or a representative value of the division signal.
  • FIG. 5 is a diagram showing an example of inspection information acquired in the signal processing system 6 shown in FIG.
  • FIG. 5 shows ultrasonic detection signals A, B, C, D, E, and F obtained from six examination areas (Section 1, Section 2, Section 3, Section 4, Section 5, and Section 6) as shown in FIG. 2 shows a soundness evaluation table in which index values are obtained by calculation using the two detection signals as input data, and the obtained index values are displayed side by side.
  • the two-letter alphabet shown in FIG. 5 indicates an index value obtained by calculating two detection signals among the six detection signals A, B, C, D, E, and F in the displayed order. Therefore, if the operation has an exchange law, the index value is symmetric with respect to the diagonal line. For example, “AB” and “BA” have the same value.
  • the two detection signals used for calculating the representative value of the cross-correlation coefficient or the divided signal have similar waveforms as long as there is no defect in the inspection area.
  • Each index value is close to 1. If the index value is a square error or a representative value of a difference signal, each index value is close to 0 for the same reason as long as there is no defect in the inspection area. That is, if all of the six examination areas (Section 1, Section 2, Section 3, Section 4, Section 5, and Section 6) are healthy, the values of the index values displayed in the soundness evaluation table are uniform.
  • the index value using the ultrasonic detection signal acquired from the inspection area where the defect has occurred as input data also changes. For example, if the index value is a cross correlation coefficient or a representative value of a division signal, the amount of deviation from 1 is large. Further, if the index value is a square error or a representative value of the difference signal, the deviation amount from 0 becomes large.
  • the soundness evaluation table representing the distribution of index values as exemplified in FIG. 5 is displayed on the display device 10 as the inspection information, the user refers to each value of the index values displayed in the soundness evaluation table. By doing so, the soundness of each inspection area (Section 1, Section 2, Section 3, Section 4, Section 5, and Section 6) can be evaluated.
  • the index value calculated without using the detection signals acquired in other inspection areas is simply displayed.
  • the index value may not change significantly.
  • the index value does not change significantly even if the maximum value of the detection signal is displayed as the index value.
  • the peak time of the detection signal is displayed as an index value, the index value does not change significantly when the second and subsequent peak times change or when the maximum value changes.
  • the index value is obtained based on the two ultrasonic detection signals using the property that the waveforms of the two ultrasonic detection signals are correlated, either If the waveform of the ultrasonic detection signal changes due to a defect, the defect can be easily detected as a significant index value change.
  • the soundness can be evaluated by substantially comparing the waveforms of two ultrasonic detection signals. For this reason, it is not always necessary to obtain a reference signal in a healthy state in advance for each examination area. That is, the signal processing system 6 can obtain an index value representing the inspection information without referring to any of the detection signals of the ultrasonic waves at the time of sound in the two inspection areas.
  • the soundness evaluation of each inspection area can be performed without referring to past inspection data.
  • the signal processing system 6 can automatically detect an inspection area where a defect exists or an inspection area suspected of being defective from a plurality of inspection areas based on a change in index value with time.
  • FIG. 6 is a diagram showing an example of inspection information when an inspection area where a defect exists or an inspection area suspected of being defective is automatically detected in the signal processing system 6 shown in FIG.
  • the ultrasonic detection signal C acquired in the third inspection area (Section 3) is:
  • the waveform changes to a different detection signal C ′. Therefore, all index values AC ′, BC ′, DC ′, EC ′, FC ′, C′A, calculated using the ultrasonic detection signal C ′ acquired in the third examination area (Section 3),
  • the values of C′B, C′D, C′E, and C′F change.
  • the signal processing system 6 automatically detects the changed index values AC ′, BC ′, DC ′, EC ′, FC ′, C′A, C′B, C′D, C′E, and C′F.
  • the detected index values AC ′, BC ′, DC ′, EC ′, FC ′, C′A, C′B, C′D, C′E, and C′F can be identified and displayed on the display device 10. it can. Then, if a two-dimensional soundness evaluation table as illustrated in FIG. 6 is displayed on the display device 10, all index values AC ′ corresponding to the third inspection area (Section 3) where the defect has occurred are displayed. , BC ′, DC ′, EC ′, FC ′, C′A, C′B, C′D, C′E, and C′F are highlighted as singular lines that cross in a cross shape.
  • the user can easily grasp that there is a defect in the third inspection area (Section 3) or a defect in the third inspection area (Section 3) by referring to the soundness evaluation table. It becomes possible to do.
  • an inspection area where a defect exists or an inspection area suspected of being defective can be easily grasped from a plurality of inspection areas. A detailed inspection can be performed on the inspection area suspected of being defective.
  • an index value at a past healthy time as illustrated in FIG. 5 is stored, and a difference value between the past index value and the current index value is a threshold value. When the above or a threshold value is exceeded, it can be automatically determined that the index value has changed.
  • a change in index value can be automatically detected by detecting a singular value from a plurality of index values. For example, it is possible to automatically determine that the index value has changed when the difference value between the average value or the intermediate value of the plurality of index values is equal to or greater than the threshold value or exceeds the threshold value. Alternatively, it is also possible to set a threshold value for the index value itself, and automatically determine that the index value has changed when a certain index value exceeds or exceeds the threshold value. That is, since the index value itself represents the difference between the two ultrasonic detection signals, a threshold value can be set for the index value itself and threshold processing can be performed.
  • the threshold value processing of the difference value between the past index value and the current index value or the index value itself that is, when the index value is not compared between pairs in different examination areas
  • index values are not compared between pairs of different inspection areas, it is possible to inspect a plurality of inspection areas whose structures are not considered to be the same. That is, a plurality of non-uniform index values corresponding to three or more examination areas that are not necessarily considered to have the same structure are obtained, and a comparison between a past index value and a current index value or an index value itself An inspection area where a defect exists or an inspection area suspected of having a defect can be automatically detected by threshold processing. Further, one index value corresponding to two examination areas that cannot be regarded as having the same structure is acquired, and at least two examination areas are compared by comparing the past index value with the current index value or by thresholding the index value itself. It is possible to automatically detect that a defect exists on one side or that a defect is suspected.
  • the signal processing system 6 even when the structures of the plurality of inspection areas partitioned from the other inspection areas by the wall surface cannot be regarded as the same, detection of ultrasonic waves acquired in the plurality of inspection areas is possible. Based on the index value obtained using the signal, it is possible to automatically detect an inspection area where a defect exists or an inspection area suspected of being defective.
  • the threshold value for detecting the change in the index value can be determined empirically. For example, if the index value is a representative value of a cross-correlation coefficient or a division signal and the structures of a plurality of examination areas can be regarded as the same, the deviation amount allowed from 1 is a threshold for the index value itself. If the index value is a representative value of the square error or subtraction signal and the structures of the plurality of examination areas can be regarded as the same, the deviation amount allowed from 0 is a threshold for the index value itself.
  • the threshold value may be determined by a test using a typical model regardless of whether the structures of a plurality of inspection areas can be regarded as the same. For example, when an aircraft is mass-produced, an appropriate threshold value can be determined by a test for a typical aircraft structure 1 or an inspection area of a structure simulating the aircraft structure 1. As a result, it is possible to eliminate the need to acquire the waveform of the ultrasonic inspection signal at the time of soundness in a large number of inspection areas.
  • FIG. 7 is a flowchart showing an example of the flow of ultrasonic inspection of the aircraft structure 1 by the ultrasonic inspection system 4 shown in FIG.
  • step S1 inspection units 5 are respectively arranged in a plurality of inspection areas of the aircraft structure 1 as illustrated in FIGS. That is, the actuator 7 and the ultrasonic sensor 8 are installed at the same interval in each inspection area. Further, each actuator 7 and the ultrasonic sensor 8 are connected to the signal processing system 6. Thereby, it is possible to perform a soundness inspection using ultrasonic waves for a plurality of inspection areas of the aircraft structure 1.
  • ultrasonic detection signals are acquired from a plurality of inspection areas in step S2. That is, an ultrasonic detection signal in each inspection area of the aircraft structure 1 is acquired using the plurality of actuators 7 and the ultrasonic sensors 8. Specifically, ultrasonic waves, preferably Lamb waves, are transmitted from each actuator 7 under the control of the signal processing system 6. And the ultrasonic wave which permeate
  • ultrasonic waves preferably Lamb waves
  • step S3 after necessary signal processing such as averaging and envelope detection processing is performed in the signal processing system 6, the mutual phase relationship based on the ultrasonic detection signals acquired in the two examination areas.
  • An index value such as a number is obtained as a scalar quantity.
  • This index value is a quantified scalar amount that represents the amount of signal divergence obtained as a result of comparison of the ultrasonic detection signals acquired in the two examination areas.
  • the signal processing system 6 displays the obtained index value on the display device 10.
  • a map of index values as exemplified in FIG. 5 is displayed on the display device 10.
  • the user can refer to the index value map displayed on the display device 10 as examination information corresponding to a plurality of examination areas.
  • the waveform of the ultrasonic detection signal acquired from the corresponding inspection area changes. Therefore, the index value calculated using the ultrasonic detection signal acquired from the defect or the inspection area where the suspicion of the defect exists also changes. For this reason, the user can specify the inspection area where the defect or the suspicion of the defect exists by referring to the map of the index value.
  • threshold processing based on a threshold set for the index value itself, singular value detection processing between different pairs of examination areas, or detection processing for changes from past index values (singularity in the time direction)
  • the change of the index value can be automatically detected by the value detection process. Moreover, you may use these several processes together.
  • any change in index value is detected by the user or automatically detected by the signal processing system 6, it is possible to specify an inspection area where a defect or a suspicion of a defect exists. If an inspection area in which a defect or a suspected defect exists is not found or detected, it is determined in step S4 that a detailed inspection of the inspection area is not necessary. Then, the inspection can be started again in the next periodic inspection or the like.
  • step S4 When an inspection area where a defect or a suspected defect exists is found or detected, it is determined in step S4 that a detailed inspection of the inspection area where a defect or a suspected defect exists is necessary.
  • step S5 a detailed nondestructive inspection is performed on the inspection area where the defect or the suspected defect exists. For example, it is possible to perform an ultrasonic inspection by comparison with an ultrasonic detection signal in a healthy state. Alternatively, an inspection using another inspection system can be performed. Thereby, defects such as damage can be identified.
  • the aircraft structure 1, the ultrasonic inspection system 4, and the ultrasonic inspection method as described above are used between the ultrasonic detection signals acquired from the plurality of inspection areas when the structures of the plurality of inspection areas can be regarded as the same.
  • the soundness is evaluated using the similarity of waveforms.
  • an index value representing a relative difference between ultrasonic detection signals acquired from at least two examination areas having the same structure is presented as examination information for health diagnosis. It is.
  • the diagnostic accuracy of soundness can be improved as compared with the case where comparison of ultrasonic detection signals between inspection areas is not performed. it can. That is, it is possible to capture the change in the waveform of the ultrasonic detection signal more reliably by comparing the ultrasonic detection signals between the examination areas.
  • At least detailed inspection for each inspection area by comparing signal waveforms can be eliminated. That is, based on the index value, which is a scalar value that represents comparison information of ultrasonic detection signals between inspection areas, it is very easy to specify an inspection area that is defective or suspected of being defective, and is limited to the specified inspection area. A detailed inspection based on a comparison with the signal waveform at the time can be performed. Thereby, the time required for the inspection of the soundness of the aircraft structure 1 can be shortened. That is, the necessary reference signals can be reduced and the examination time can be shortened by screening the examination area based on the index value obtained using the ultrasonic detection signals acquired in the plurality of examination areas as parameters.
  • the index value which is a scalar value that represents comparison information of ultrasonic detection signals between inspection areas
  • FIG. 8 is a front view showing the structure of the aircraft structure according to the second embodiment of the present invention
  • FIG. 9 is a bottom view of the aircraft structure shown in FIG.
  • the structure of the aircraft structure 1A to be inspected by the ultrasonic inspection system 4 is different from that of the first embodiment. Since the other features in the second embodiment are the same as those in the first embodiment, only the structure of the aircraft structure 1A and the inspection unit 5 are shown, and the description of the same features is omitted.
  • the aircraft structure 1A in the second embodiment has a structure in which a plurality of stringers 3 and a plurality of frames 20 are attached to a curved panel 2.
  • the plurality of stringers 3 and the plurality of frames 20 are attached to the panel 2 so that the longitudinal directions thereof are generally orthogonal to each other. That is, the stringers 3 and the frames 20 are arranged so that the length directions thereof are substantially parallel to each other, but a plurality of stringers are arranged so that the length direction of the stringers 3 and the length direction of the frame 20 are substantially perpendicular to each other.
  • Three and a plurality of frames 20 are attached to the curved panel 2.
  • the aircraft structure 1A having such a structure is mainly employed as a structure that constitutes a part of the fuselage.
  • a plurality of areas surrounded by the stringer 3 and the frame 20 can be inspected by the ultrasonic inspection system 4.
  • a plurality of inspection areas are two-dimensionally arranged. For this reason, detection signals in a plurality of inspection areas arranged two-dimensionally by four or more inspection units 5 can be acquired.
  • index values corresponding to a plurality of inspection areas arranged two-dimensionally can be obtained in the same manner as when a plurality of inspection areas are arranged one-dimensionally.
  • an index value based on two detection signals acquired by two inspection units 5 out of four or more inspection units 5 is a combination of selecting two inspection units 5 from four or more inspection units 5.
  • an operation of selecting two detection signals from a plurality of detection signals acquired from four or more inspection areas arranged two-dimensionally to obtain an index value is performed by combining two selected detection signals.
  • a plurality of index values corresponding to a plurality of inspection areas arranged two-dimensionally can be obtained.
  • the arrangement of the inspection areas is arbitrary. Therefore, the same applies not only to a plurality of inspection areas having the same structure, which are divided by a common reinforcing material, but also to a plurality of inspection areas having the same structure, which are divided by different reinforcing materials. Soundness inspection based on the index value is possible.
  • FIG. 10 is a perspective view of an aircraft including an aircraft structure according to the third embodiment of the present invention.
  • the part of the aircraft 30 to be inspected by the ultrasonic inspection system 4 is different from that in the first embodiment. Since the other features in the third embodiment are the same as those in the first embodiment, only the mounting positions of the aircraft 30 and the inspection units 5A and 5B are shown, and the description of the same features is omitted.
  • the aircraft 30 is symmetric with respect to the traveling direction and the center of the aircraft.
  • the aircraft 30 is a fixed wing aircraft as shown in FIG. 10
  • the left and right main wings, the left and right horizontal tail wings, and the fuselage are symmetrical with respect to the aircraft center. This applies not only to fixed wing aircraft but also to rotary wing aircraft and rockets.
  • This inspection area also includes a portion that is symmetric with respect to the center of the aircraft. That is, a plurality of aircraft structures 1 ⁇ / b> B and 1 ⁇ / b> C that are symmetric with respect to the center of the aircraft can be targets for soundness inspection.
  • the structures of the plurality of inspection areas can be regarded as the same and can be inspected by the ultrasonic inspection system 4.
  • the first inspection unit 5A can be provided in the inspection area of the first aircraft structure 1B constituting the aircraft 30.
  • the second aircraft structure 1 ⁇ / b> C is arranged at a position symmetrical to the first aircraft structure 1 ⁇ / b> B with respect to the aircraft center of the aircraft 30 and has a symmetrical structure with respect to the aircraft aircraft 1 ⁇ / b> B and the aircraft center of the aircraft 30.
  • the second inspection unit 5B can be provided in the inspection area.
  • the first inspection unit 5A acquires the first ultrasonic detection signal in the inspection area of the first aircraft structure 1B, while the second inspection unit 5B acquires the second aircraft structure 1C.
  • a detection signal of the second ultrasonic wave in the examination area can be acquired.
  • the soundness evaluation for the plurality of aircraft structures 1B and 1C by the ultrasonic inspection system 4 can be effectively performed. That is, by substantially comparing the two ultrasonic detection signals acquired from the left and right symmetrical aircraft structures 1B and 1C, the soundness evaluation of each aircraft structure 1B and 1C can be effectively performed. .
  • FIG. 11 is a front view showing a configuration of an aircraft structure including an ultrasonic inspection system according to the fourth embodiment of the present invention
  • FIG. 12 is a bottom view of the aircraft structure shown in FIG.
  • the structure of the aircraft structure 1D to be inspected by the ultrasonic inspection system 4 is different from that in the first embodiment. Since the other features in the fourth embodiment are the same as those in the first embodiment, only the structure of the aircraft structure 1D and the inspection unit 5 are shown, and the description of the same features is omitted.
  • the aircraft structure 1D in the fourth embodiment has a structure in which a plurality of stringers 3A and 3B are attached to the panel 2.
  • the shape of the cross sections of the stringers 3A and 3B and the heights of the stringers 3A and 3B based on the panel 2 are different from each other.
  • the first stringer 3A has an I-shaped cross section.
  • the second stringer 3B has an inverted T-shaped cross section. Further, the height of the inverted T-shaped second stringer 3B is higher than the height of the I-shaped first stringer 3A.
  • the inspection object by the ultrasonic inspection system 4 is the flange of each stringer 3A, 3B joined to the panel 2.
  • the first inspection unit 5A is disposed on one flange on the lower side of the first stringer 3A.
  • the second inspection unit 5B is disposed on one flange on the lower side of the second stringer 3B.
  • inspection unit 5 on the other flange below the 1st stringer 3A and the 2nd stringer 3B, respectively.
  • Lamb waves When Lamb waves are used as ultrasonic waves, the same propagation is possible if the plate thickness, width, and material of the plate-like portion through which Lamb waves propagate and the distance between the actuator 7 and the ultrasonic sensor 8 are the same. It can be regarded as a condition. Therefore, if the plate thickness, width and material of the flanges of the stringers 3A and 3B are the same, the distance between the first and second actuators 7A and 7B and the first and second ultrasonic sensors 8A and 8B is set. By making them identical to each other, Lamb wave propagation conditions can be made the same regardless of the height of the stringers 3A and 3B and the shape of the cross section.
  • each inspection unit 5A, 5B uses actuators 7A, 7B and ultrasonic sensors 8A, 8B, which are arranged at the same interval, and two flanges that are plate-shaped inspection areas having the same Lamb wave propagation conditions. Therefore, the detection signal by Lamb wave is acquired. And the index value showing the soundness of a flange can be calculated
  • a Lamb wave is used as an ultrasonic wave, even if a part has a three-dimensionally different structure, an inspection area having the same structure can be used as long as the part has the same two-dimensional structure. It can be considered that a health check can be performed.
  • the inspection object by the ultrasonic inspection system 4 is the aircraft structure 1A, 1B, 1C, 1D has been described.
  • inspection by the ultrasonic inspection system 4 can be performed for arbitrary structures.
  • the structure of each floor can be regarded as the same.
  • the structure of the segments in the longitudinal direction can be regarded as the same.
  • blade can be regarded as the same.
  • inspection by the ultrasonic inspection system 4 can be performed for various structures, such as a building, a bridge, or a windmill.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Probability & Statistics with Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

実施形態に係る超音波検査システムは、第1の検査ユニット、第2の検査ユニット及び信号処理系を備える。第1の検査ユニットは、第1の超音波振動子及び第1の超音波センサを用いて構造体の第1の検査区域における第1の超音波の検出信号を取得する。第2の検査ユニットは、第2の超音波振動子及び第2の超音波センサを用いて構造体の第2の検査区域における第2の超音波の検出信号を取得する。信号処理系は、前記第1の超音波の検出信号及び前記第2の超音波の検出信号に基づいて、前記第1の検査区域及び前記第2の検査区域の少なくとも一方の検査情報を表す指標値を求める。

Description

超音波検査システム、超音波検査方法及び航空機構造体
 本発明の実施形態は、超音波検査システム、超音波検査方法及び航空機構造体に関する。
 従来、航空機部品、ビル、風車、橋梁、原子力施設、パイプライン等の大型構造物の劣化や損傷を簡便に検査する方法として構造健全性診断(SHM: Structural Health Monitoring)技術が知られている。SHM技術は、構造物におけるひずみ、超音波や加速度等の物理量の変化を構造物に設置したセンサで検出し、検出した物理量の変化を解析することにより、構造物の劣化や損傷の発生位置或いは度合いを診断する技術である。
 一般的なSHM技術では、劣化や損傷が無い健全時に計測した物理量と、その後の定期検査時等に計測した物理量とを比較し、その差異から構造物の劣化や損傷の発生位置や度合いが診断される。すなわち、ある1つのセンサの情報を用いて、そのセンサの探傷範囲における構造物の健全性が診断される。
 また、複数のセンサを構造物の複数の場所に設置して、構造体の健全性診断を行うSHM技術も提案されている(例えば特許文献1、特許文献2及び特許文献3参照)。例えば、同一の検査エリアに複数のセンサを配置し、各センサで得られた誘導波の検出信号を比較する技術などが提案されている。
特開2002-131265号公報 特開2006-058291号公報 特開2009-047639号公報
 本発明は、航空機構造体等の構造体の健全性をより良好な精度で診断できるようにすることを目的とする。
 また、本発明の他の目的は、構造体の健全性診断をより効率的に行うことができるようにすることである。
 本発明の実施形態に係る超音波検査システムは、第1の検査ユニット、第2の検査ユニット及び信号処理系を備える。第1の検査ユニットは、第1の超音波振動子及び第1の超音波センサを用いて構造体の第1の検査区域における第1の超音波の検出信号を取得する。第2の検査ユニットは、第2の超音波振動子及び第2の超音波センサを用いて構造体の第2の検査区域における第2の超音波の検出信号を取得する。信号処理系は、前記第1の超音波の検出信号及び前記第2の超音波の検出信号に基づいて、前記第1の検査区域及び前記第2の検査区域の少なくとも一方の検査情報を表す指標値を求める。
 また、本発明の実施形態に係る航空機構造体は、前記超音波検査システムを部品として含む。
 また、本発明の実施形態に係る超音波検査方法は、第1の超音波振動子及び第1の超音波センサを用いて構造体の第1の検査区域における第1の超音波の検出信号を取得するステップと、第2の超音波振動子及び第2の超音波センサを用いて構造体の第2の検査区域における第2の超音波の検出信号を取得するステップと、前記第1の超音波の検出信号及び前記第2の超音波の検出信号に基づいて、前記第1の検査区域及び前記第2の検査区域の少なくとも一方の検査情報を表す指標値を求めるステップとを有するものである。
本発明の第1の実施形態に係る超音波検査システムを含む航空機構造体の構成を示す正面図。 図1に示す航空機構造体の下面図。 図1に示す航空機構造体のある検査区域において取得された超音波の検出信号の波形の一例を示すグラフ。 図1に示す航空機構造体の別の検査区域において取得された超音波の検出信号の波形の一例を示すグラフ。 図1に示す信号処理系において取得される検査情報の一例を示す図。 図1に示す信号処理系において欠陥が存在する検査区域又は欠陥の疑いがある検査区域を自動検出した場合における検査情報の一例を示す図。 図1に示す超音波検査システムによる航空機構造体の超音波検査の流れの一例を示すフローチャート。 本発明の第2の実施形態に係る航空機構造体の構造を示す正面図。 図8に示す航空機構造体の下面図。 本発明の第3の実施形態に係る航空機構造体を含む航空機の斜視図。 本発明の第4の実施形態に係る超音波検査システムを含む航空機構造体の構成を示す正面図。 図11に示す航空機構造体の下面図。
実施形態
 本発明の実施形態に係る超音波検査システム、超音波検査方法及び航空機構造体について添付図面を参照して説明する。
(第1の実施形態)
(構成及び機能)
 図1は本発明の第1の実施形態に係る超音波検査システムを含む航空機構造体の構成を示す正面図であり、図2は図1に示す航空機構造体の下面図である。
 航空機構造体1は、例えば、パネル(外板)2に複数のストリンガ(縦通材)3を取付けた構造を有する。図示された例では、パネル2に略平行に5つのストリンガ3が取付けられている。このため、ストリンガ3とパネル2で仕切られた6つの空間が形成されている。更に、航空機構造体1には、超音波検査システム4が部品として備えられる。超音波検査システム4は、超音波を利用して航空機構造体1の複数の検査区域から欠陥が存在する検査区域又は欠陥の疑いがある検査区域を検出するためのシステムである。
 超音波検査システム4は、複数の検査ユニット5及び信号処理系6を有する。図示された例では、5つのストリンガ3によって仕切られたパネル2の6つの板状の部分がそれぞれ検査区域(Section)となっている。このため、各検査区域にそれぞれ検査ユニット5が配置されている。具体的には、第1の検査区域(Section1)から第6の検査区域(Section6)までがこの順番で一列に並んでおり、第1の検査ユニット5Aから第6の検査ユニット5Fがそれぞれ第1の検査区域(Section1)から第6の検査区域(Section6)を検査できるようになっている。
 各検査ユニット5は、それぞれアクチュエータ7及び超音波センサ8を用いて構成される。アクチュエータ7は、検査区域に向けて超音波を発振するための超音波振動子である。超音波センサ8は、検査区域を透過する超音波を検出するためのセンサである。従って、超音波センサ8は、検査区域を挟んでアクチュエータ7と対向する位置に配置される。
 超音波センサ8には、超音波振動子の他、ファイバ・ブラッグ・グレーティング(FBG: Fiber Bragg Grating)センサや位相シフトFBG(PS-FBG: Phase-shifted FBG)センサ等の光ファイバセンサを用いることができる。PS-FBGは、屈折率の周期的な変動に局所的な位相シフトを導入したFBGである。
 尚、検査区域で反射した超音波反射波を検出できるように、検査区域からの超音波透過波を検出するための超音波センサ8に加えて、或いは検査区域からの超音波透過波を検出するための超音波センサ8に代えて、超音波反射波を検出するための超音波センサを各検査ユニット5の構成要素として設けてもよい。その場合には、検査区域で反射した超音波反射波を検出することが可能な位置、例えば、検査区域に向かってアクチュエータ7と隣り合う位置に、超音波透過波を検出するための超音波センサが配置される。
 各検査ユニット5を、各検査区域に配置すると、アクチュエータ7及び超音波センサ8を用いて検査区域ごとに超音波検査を行うことができる。すなわち、各検査ユニット5では、アクチュエータ7及び超音波センサ8を用いて航空機構造体1の検査区域における超音波の検出信号を取得することができる。
 例えば、図示されるように、第1の検査区域(Section1)から第6の検査区域(Section6)を検査対象とする場合であれば、第1から第6のアクチュエータ7A、7B、7C、7D、7E、7F及び第1から第6の超音波センサ8A、8B、8C、8D、8E、8Fを用いて、航空機構造体1の第1の検査区域(Section1)から第6の検査区域(Section6)における第1から第6までの超音波の検出信号をそれぞれ取得することができる。
 各超音波センサ8で取得された超音波の検出信号は、信号処理系6に出力される。信号処理系6は、制御信号を各アクチュエータ7に出力することによって各アクチュエータ7から超音波を発振させる一方、各超音波センサ8から超音波の検出信号を取得して検査情報を得るための信号処理を実行するシステムである。
 信号処理系6は、D/A(digital-to-analog)変換器、増幅器(アンプ)、A/D(analog-to-digital)変換器及びコンピュータ等の回路で構成することができる。また、超音波センサ8が光ファイバセンサである場合には、光信号として超音波センサ8から出力される超音波の検出信号に対して信号処理を施すための波長フィルタや光源からレーザ光を光ファイバセンサに向けて伝播させるための光路から光信号の出力経路を分岐させるための光サーキュレータ等で構成される光学系に加えて、光信号を電気信号に変換するための光電変換装置が信号処理系6の構成要素として備えられる。すなわち、信号処理系6は、少なくとも回路で構成され、超音波センサ8が光ファイバセンサである場合には、必要な光学素子を構成要素として用いることができる。また、信号処理系6には、必要な情報を入力するための入力装置9及び必要な情報を表示させるための表示装置10が接続される。
 信号処理系6は、複数の検査区域において取得された複数の超音波の検出信号のうち、少なくとも2つの検査区域において取得された2つの超音波の検出信号に基づいて、2つの検査区域の少なくとも一方の検査情報を表す指標値を求めるように構成されている。
 図3は、図1に示す航空機構造体1のある検査区域において取得された超音波の検出信号の波形の一例を示すグラフであり、図4は図1に示す航空機構造体1の別の検査区域において取得された超音波の検出信号の波形の一例を示すグラフである。
 図3及び図4において横軸は時間を示し、縦軸は超音波検出信号の相対強度を示す。2つの超音波検出信号の取得対象となった2つの検査区域の構造が、互いに同一の構造とみなせる場合には、欠陥が無ければ図3及び図4に例示されるように互いに類似する2つの超音波検出信号が取得される。
 例えば、図1及び図2に例示されるように、各検査ユニット5A、5B、5C、5D、5E、5Fが、それぞれ同じ間隔で配置されるアクチュエータ7A、7B、7C、7D、7E、7F及び超音波センサ8A、8B、8C、8D、8E、8Fを用いて、少なくとも同じ間隔で設けられたストリンガ3によって形成される2枚の壁面によって他の検査区域から仕切られた各検査区域(Section1、Section2、Section3、Section4、Section5、Section6)における検出信号をそれぞれ取得する場合であれば、各検査区域(Section1、Section2、Section3、Section4、Section5、Section6)の構造は互いに同一の構造とみなすことができる。
 すなわち、アクチュエータ7A、7B、7C、7D、7E、7Fと超音波センサ8A、8B、8C、8D、8E、8Fとの間における距離、ストリンガ3によって仕切られたパネル2の幅、パネル2の板厚及びパネル2の材質がいずれも同一であるため、各検査区域(Section1、Section2、Section3、Section4、Section5、Section6)の構造を互いに同一の構造とみなすことができる。
 換言すれば、ストリンガ3等の複数の補強材を等間隔で板厚が一定のパネル2に平行に取付けた構造体であれば、補強材で仕切られたパネル2上の複数のエリアにそれぞれアクチュエータ7と超音波センサ8とを同じ距離だけ離して配置することによって、互いに同一の構造とみなせる複数の検査区域を作り出すことができる。
 尚、航空機用の構造体において、パネル2に取付けられる補強材としては、ストリンガ3の他、スパー(桁)、リブ(小骨)及びフレーム(助材)が挙げられる。このため、ストリンガ3に限らず、これらの補強材で区切られた板状の複数のエリアをそれぞれ検査区域とすることができる。
 特に、パネル2のように板状のエリアを検査区域とする場合には、超音波としてラム(Lamb)波を用いることが好適である。ラム波は、超音波の波長の半分以下の薄板を伝播する波であり、比較的減衰しにくい超音波である。そのため、ラム波を用いると、超音波の検出信号の信号対雑音比(SNR:signal-to-noise ratio)及び精度を向上させることができる。このため、同一の構造とみなせる複数の検査区域にラム波をそれぞれ送信し、各検査区域からラム波の検出信号を取得するようにすれば、各検査区域に欠陥が無い限り図3及び図4に例示されるように概ね同様な波形を有する複数の検出信号を得ることができる。
 つまり、各検査ユニット5が、それぞれ同じ間隔で配置されるアクチュエータ7及び超音波センサ8を用いて、ラム波の伝播条件が同じである複数の板状の検査区域からラム波による検出信号を取得するようにすれば、各検査区域に欠陥が無い限り同様の波形を有する複数の超音波の検出信号を取得することができる。
 このため、同様な波形を有する複数の超音波の検出信号を用いて各検査区域の健全性を評価することができる。すなわち、上述したように、複数の検査区域において取得された複数の超音波の検出信号のうち、少なくとも2つの検査区域において取得された2つの超音波の検出信号に基づいて、2つの検査区域の少なくとも一方の健全性を示す指標値を求めることができる。
 ある1つの検査区域における検査情報を表す指標値としては、当該検査区域から取得された検出信号と、他の1つ又は複数の検査区域から取得された検出信号とを含む少なくとも2つの検出信号を入力データとする任意の演算によって算出されるスカラ値とすることができる。すなわち、2つの検査区域から取得された2つの検出信号を入力データとする演算に限らず、3つ以上の検査区域から取得された3つ以上の検出信号を入力データとする演算によって検査情報を表す指標値を求めるようにしてもよい。以降では、2つの検出信号を入力データとする簡易な演算によって1つの指標値を求める場合を例に説明する。
 指標値の具体例としては、時系列の複数の検出信号の加算信号、減算信号、乗算信号又は除算信号の時間方向における平均値、中間値、最大値又は積分値等の代表値の他、相互相関係数や2乗誤差が挙げられる。演算が、交換法則を有する演算である場合には、指標値を求めるための複数の検出信号の組み合せが同じであれば、指標値は同じ値となる。また、相互相関係数や2乗誤差が指標値であれば、2つの検出信号が指標値を求めるための入力データとなる。
 例えば、検査区域の数が2つであれば、第1の検査区域(Section1)から取得された第1の超音波の検出信号及び第2の検査区域(Section2)から取得された第2の超音波の検出信号に基づいて、第1の検査区域(Section1)及び第2の検査区域(Section2)の少なくとも一方の検査情報を表す指標値が求められる。
 すなわち、指標値を求めるための演算が、交換法則を有する演算であれば、第1の検査区域(Section1)から取得された第1の超音波の検出信号及び第2の検査区域(Section2)から取得された第2の超音波の検出信号に基づいて、第1の検査区域(Section1)及び第2の検査区域(Section2)の双方の検査情報を表す共通の指標値が求められる。
 逆に、指標値を求めるための演算が、減算値や除算信号の平均値を求める演算のように、交換法則を有さない演算であれば、演算方向を変えた2回の演算によって、第1の検査区域(Section1)から取得された第1の超音波の検出信号及び第2の検査区域(Section2)から取得された第2の超音波の検出信号に基づいて、第1の検査区域(Section1)の検査情報を表す第1の指標値と、第2の検査区域(Section2)の検査情報を表す第2の指標値とが、別々に求められる。
 指標値を求めるための演算が交換法則を有する演算である場合において、複数の指標値を求めるためには、3つ以上の複数の検査区域から超音波の検出信号を取得することが必要となる。例えば、3つの複数の検査区域から超音波の検出信号を取得する場合であれば、第1の検査区域(Section1)から取得された第1の超音波の検出信号及び第2の検査区域(Section2)から取得された第2の超音波の検出信号に基づく指標値、第1の超音波の検出信号及び第3の検査区域(Section3)から取得された第3の超音波の検出信号に基づく指標値並びに第2の超音波の検出信号及び第3の超音波の検出信号に基づく指標値が信号処理系6において求められることになる。
 複数の指標値が求められる場合には、指標値同士を比較することが可能となる。このため、比較に適した指標値を用いると、健全性評価の容易性及び精度の向上に繋がる。特に、指標値を算出するための元データである2つの超音波の検出信号の波形が互いに同等である場合において、比較に適した指標値としては、相互相関係数、2乗誤差、差分信号の代表値及び除算信号の代表値が挙げられる。そこで、信号処理系6では、検査情報を表す指標値として、2つの検出信号間における相互相関係数、2乗誤差、差分信号の代表値又は除算信号の代表値を求めるようにすることが効果的である。
 尚、2つの超音波センサ8から出力される2つの超音波の検出信号を直接相互相関係数等を求めるための対象とせずに、必要な信号処理を施した後の検出信号を相互相関係数等の算出対象としてもよい。具体例として、ノイズ除去処理、アベレージング処理及び/又は包絡線検波処理等の様々な信号処理を施した後の2つの検出信号を、相互相関係数等を求めるための対象としてもよい。
 従って、信号処理系6では、複数の検査ユニット5で取得された各検出信号間又は各検出信号に対応する信号間における相互相関係数、2乗誤差、差分信号の代表値又は除算信号の代表値を求めるようにすることができる。換言すれば、ノイズ除去処理、アベレージング処理及び/又は包絡線検波処理等の様々な信号処理を施した後の信号を、超音波の検出信号として、相互相関係数、2乗誤差、差分信号の代表値又は除算信号の代表値を求めるようにすることができる。
 図5は、図1に示す信号処理系6において取得される検査情報の一例を示す図である。
 図5は、図1に示すような6つの検査区域(Section1、Section2、Section3、Section4、Section5、Section6)からそれぞれ取得された超音波の検出信号A、B、C、D、E、Fのうちの2つの検出信号を入力データとする演算によって指標値を求め、求められた各指標値を並べて表示させた健全性評価テーブルを示している。
 図5に示す2文字のアルファベットは、6つの検出信号A、B、C、D、E、Fのうちの2つの検出信号を、表示された順番で演算することによって得られる指標値を示す。従って、演算が交換法則を有する演算であれば、斜めの線に関して指標値は対称となる。例えば、「AB」と「BA」は同じ値となる。
 指標値が相互相関係数又は除算信号の代表値であれば、相互相関係数又は除算信号の代表値の算出に用いられる2つの検出信号は検査区域に欠陥が無い限り同様な波形を有するため、各指標値はいずれも1に近い値となる。また、指標値が2乗誤差又は差分信号の代表値であれば、検査区域に欠陥が無い限り同様な理由で各指標値はいずれも0に近い値となる。つまり、6つの検査区域(Section1、Section2、Section3、Section4、Section5、Section6)がいずれも健全であれば健全性評価テーブルに表示される各指標値の値は一様となる。
 これに対して、ある検査区域に欠陥が生じると、その検査区域において取得された超音波の検出信号の波形が変化する。従って、欠陥が生じた検査区域から取得された超音波の検出信号を入力データとする指標値も変化することになる。例えば、指標値が相互相関係数又は除算信号の代表値であれば、1からの乖離量が大きくなる。また、指標値が2乗誤差又は差分信号の代表値であれば、0からの乖離量が大きくなる。
 従って、図5に例示されるような指標値の分布を表す健全性評価テーブルを検査情報として表示装置10に表示させれば、ユーザは健全性評価テーブルに表示された指標値の各値を参照することによって各検査区域(Section1、Section2、Section3、Section4、Section5、Section6)の健全性を評価することができる。
 特に、各検査区域において取得された超音波の検出信号の最大値やピークに対応する時刻のように、他の検査区域において取得された検出信号を用いずに算出される指標値を単に表示させる場合には、欠陥によって検出信号の波形が変化したとしても指標値が顕著に変化しない可能性がある。例えば、検出信号の波形自体やピーク時刻のみが時間方向にシフトした場合には、検出信号の最大値を指標値として表示させても顕著に指標値が変化しないことになる。一方、検出信号のピーク時刻を指標値として表示させても、2番目以降のピーク時刻が変化した場合や最大値が変化した場合には、指標値が顕著に変化しないことになる。
 これに対して、上述したように、2つの超音波の検出信号の波形に相関があるという性質を利用して2つの超音波の検出信号に基づいて指標値を求めるようにすれば、いずれかの超音波の検出信号の波形が欠陥によって変化すれば、顕著な指標値の変化として容易に欠陥を検出することができる。
 しかも、実質的に2つの超音波の検出信号の波形を比較することによって健全性の評価を行うことができる。このため、必ずしも健全時における参照信号を検査区域ごとに事前に取得しておく必要がない。つまり、信号処理系6は、2つの検査区域における健全時の超音波の検出信号をいずれも参照せずに検査情報を表す指標値を求めることができる。
 従って、構造が同一とみなせる多数の検査区域が存在する航空機構造体1の初回の健全性検査において、事前に健全時における参照信号を取得することなく健全性の評価を行うことができる。また、2回目以降の健全性検査において、過去の検査データを参照せずに、各検査区域の健全性評価を行うこともできる。
 但し、健全時における過去の検査データを参照して新たな健全性検査を行うことも、もちろん可能である。すなわち、指標値の経時的な変化に基づいて検査区域における健全性検査を行うこともできる。その場合には、信号処理系6において、指標値の経時的な変化に基づいて複数の検査区域から欠陥が存在する検査区域又は欠陥の疑いがある検査区域を自動検出することが可能となる。
 図6は、図1に示す信号処理系6において欠陥が存在する検査区域又は欠陥の疑いがある検査区域を自動検出した場合における検査情報の一例を示す図である。
 例えば、図1に示す航空機構造体1の第3の検査区域(Section3)において劣化や損傷等の欠陥が生じると、第3の検査区域(Section3)において取得される超音波の検出信号Cは、波形が異なる検出信号C’に変化する。従って、第3の検査区域(Section3)において取得された超音波の検出信号C’を用いて算出された全ての指標値AC’、BC’、DC’、EC’、FC’、C’A、C’B、C’D、C’E、C’Fの値が変化する。
 そこで、信号処理系6において、変化した指標値AC’、BC’、DC’、EC’、FC’、C’A、C’B、C’D、C’E、C’Fを自動検出し、検出された指標値AC’、BC’、DC’、EC’、FC’、C’A、C’B、C’D、C’E、C’Fを表示装置10に識別表示させることができる。そうすると、図6に例示されるような2次元の健全性評価テーブルを表示装置10に表示させる場合であれば、欠陥が生じた第3の検査区域(Section3)に対応する全ての指標値AC’、BC’、DC’、EC’、FC’、C’A、C’B、C’D、C’E、C’Fが十字状にクロスする特異線として強調表示されることになる。
 このため、ユーザは、健全性評価テーブルを参照して第3の検査区域(Section3)に欠陥が存在すること或いは第3の検査区域(Section3)に欠陥が存在する疑いがあることを容易に把握することが可能となる。換言すれば、複数の検査区域の中から、欠陥が存在する検査区域又は欠陥の疑いがある検査区域を容易に把握することができる。そして、欠陥の疑いがある検査区域については、詳細な検査を行うことができる。
 欠陥によって変化した指標値を自動検出する方法としては、上述したような指標値の経時的な変化を検出する方法の他、過去の指標値を参照せずに、他の指標値との比較や指標値自体の値に基づいて指標値の変化を検出する方法が挙げられる。
 指標値の経時的な変化を検出する場合には、図5に例示されるような過去の健全時における指標値を保存しておき、過去の指標値と現在の指標値との差分値が閾値以上又は閾値を超えた場合に、指標値が変化したと自動判定することができる。
 一方、過去の指標値を参照せずに指標値の変化を検出する場合には、複数の指標値から特異値を検出することによって、指標値の変化を自動検出することができる。例えば、複数の指標値の平均値又は中間値との差分値が閾値以上又は閾値を超えた場合に、指標値が変化したと自動判定することができる。或いは、指標値の値自体に閾値を設定し、ある指標値が閾値以上又は閾値を超えた場合にその指標値が変化したと自動判定することもできる。つまり、指標値自体が、2つの超音波の検出信号の相違を表しているため、指標値自体に閾値を設定し、閾値処理を行うことができる。
 過去の指標値と現在の指標値との間における差分値又は指標値自体の閾値処理によって指標値の変化を自動検出する場合、つまり異なる検査区域のペア間における指標値の比較を行わない場合には、指標値の数が1つであっても指標値の変化を検出することができる。すなわち、検査区域が2つしか無い場合であっても、1つの指標値の変化を検出することによって、2つの検査区域の少なくとも一方に欠陥が存在すること或いは欠陥の疑いがあることを自動検出することができる。
 尚、異なる検査区域のペア間における指標値の比較を行わない場合には、構造が同一とみなせない複数の検査区域を対象とする検査も可能となる。すなわち、必ずしも構造が同一とはみなせない3つ以上の検査区域に対応する必ずしも一様とはならない複数の指標値を取得し、過去の指標値と現在の指標値との比較若しくは指標値自体の閾値処理によって欠陥が存在する検査区域又は欠陥が存在する疑いのある検査区域を自動検出することができる。また、構造が同一とはみなせない2つの検査区域に対応する1つの指標値を取得し、過去の指標値と現在の指標値との比較若しくは指標値自体の閾値処理によって2つの検査区域の少なくとも一方に欠陥が存在すること或いは欠陥の疑いがあることを自動検出することができる。
 このように、信号処理系6では、壁面によって他の検査区域から仕切られた複数の検査区域の構造が互いに同一とみなせない場合であっても、複数の検査区域において取得された超音波の検出信号を用いて求められる指標値に基づいて、欠陥が存在する検査区域又は欠陥の疑いがある検査区域を自動検出することが可能である。
 尚、指標値の変化を検出するための閾値は、経験的に決定することができる。例えば、指標値が相互相関係数又は除算信号の代表値であり、複数の検査区域の構造が同一とみなせる場合であれば、1から許容される乖離量が指標値自体に対する閾値となる。また、指標値が2乗誤差又は減算信号の代表値であり、複数の検査区域の構造が同一とみなせる場合であれば、0から許容される乖離量が指標値自体に対する閾値となる。
 複数の検査区域の構造が同一とみなせるか否かに関わらず、典型的なモデルを利用した試験によって閾値を決定するようにしてもよい。例えば、航空機が量産される場合であれば、代表的な1つの航空機構造体1又は航空機構造体1を模擬した構造体の検査区域を対象とする試験によって適切な閾値を決定することができる。これにより、多数の検査区域における健全時の超音波の検査信号の波形を、1機ごとに取得する必要を無くすことができる。
(動作及び作用)
 次に超音波検査システム4による航空機構造体1の超音波検査方法について説明する。
 図7は、図1に示す超音波検査システム4による航空機構造体1の超音波検査の流れの一例を示すフローチャートである。
 まず予めステップS1において、図1及び図2に例示されるような航空機構造体1の複数の検査区域にそれぞれ検査ユニット5が配置される。すなわち、各検査区域にアクチュエータ7及び超音波センサ8が同じ間隔で施工される。更に、各アクチュエータ7及び超音波センサ8が信号処理系6と接続される。これにより、航空機構造体1の複数の検査区域を対象として、超音波による健全性検査を行うことが可能となる。
 航空機構造体1の超音波検査を行う場合には、ステップS2において、複数の検査区域からそれぞれ超音波の検出信号が取得される。すなわち、複数のアクチュエータ7及び超音波センサ8を用いて航空機構造体1の各検査区域における超音波の検出信号が取得される。具体的には、信号処理系6による制御下において各アクチュエータ7から超音波、望ましくはラム波が発信される。そして、各検査区域を透過した超音波が超音波センサ8でそれぞれ検出される。各超音波センサ8において取得された各検査区域における超音波の検出信号は、信号処理系6に出力される。
 次に、ステップS3において、信号処理系6において、アベレージングや包絡線検波処理等の必要な信号処理が実行された後、2つの検査区域において取得された超音波の検出信号に基づく相互相関係数等の指標値がスカラ量として求められる。この指標値は、実質的に2つの検査区域において取得された超音波の検出信号の比較結果として得られる信号の乖離量を表す定量化されたスカラ量となる。
 図1及び図2に例示されるように3つ以上の複数の検査区域からそれぞれ超音波の検出信号が取得された場合には、複数の超音波の検出信号から選択される2つの検出信号を対象として、2つの検出信号の組み合せごとに指標値が求められる。このため、各検査区域の構造が互いに同一とみなせる場合には、欠陥が無い限り各検出信号の波形は同様な波形となり、各指標値も同様な値となる。
 続いて、信号処理系6は、求めた指標値を表示装置10に表示させる。その結果、図5に例示されるような指標値のマップが表示装置10に表示される。このため、ユーザは、表示装置10に表示された指標値のマップを複数の検査区域に対応する検査情報として参照することができる。
 仮に、複数の検査区域のいずれかに欠陥又は欠陥の疑いが存在する場合には、対応する検査区域から取得された超音波の検出信号の波形が変化する。従って、欠陥又は欠陥の疑いが存在する検査区域から取得された超音波の検出信号を用いて算出された指標値も変化することになる。このため、ユーザは、指標値のマップを参照して欠陥又は欠陥の疑いが存在する検査区域を特定することができる。
 或いは、信号処理系6において、指標値自体に対して設定された閾値による閾値処理、検査区域の異なるペア間における特異値検出処理或いは過去の指標値からの変化の検出処理(時間方向についての特異値検出処理)によって、指標値の変化を自動検出することができる。また、これらの複数の処理を併用してもよい。
 いずれかの指標値の変化がユーザにより発見されるか、信号処理系6において自動検出されると、欠陥又は欠陥の疑いが存在する検査区域を特定することができる。欠陥又は欠陥の疑いが存在する検査区域が発見又は検出されなかった場合には、ステップS4の判定において、検査区域の詳細な検査は必要ないと判定される。そして、次回の定期検査等において、再び検査を開始することができる。
 欠陥又は欠陥の疑いが存在する検査区域が発見又は検出された場合には、ステップS4の判定において、欠陥又は欠陥の疑いが存在する検査区域の詳細な検査が必要であると判定される。そして、ステップS5において、欠陥又は欠陥の疑いが存在する検査区域に対して詳細な非破壊検査が行われる。例えば、健全時における超音波の検出信号との比較による超音波検査を行うことができる。或いは、別の検査システムを用いた検査を行うこともできる。これにより、損傷等の欠陥を同定することができる。
 つまり以上のような航空機構造体1、超音波検査システム4及び超音波検査方法は、複数の検査区域の構造が同一とみなせる場合において、複数の検査区域から取得される超音波の検出信号間における波形の類似性を利用して、健全性の評価を行うようにしたものである。具体的には、同一の構造を有する少なくとも2つの検査区域から取得された超音波の検出信号間における相対的な相違を表す指標値を、健全性診断用の検査情報として提示するようにしたものである。
(効果)
 このため、航空機構造体1、超音波検査システム4及び超音波検査方法によれば、検査区域間における超音波検出信号の比較を行わない場合に比べて、健全性の診断精度を向上させることができる。すなわち、検査区域間における超音波検出信号の比較によって、超音波の検出信号の波形変化を、より確実に捉えることが可能となる。
 また、健全時における過去の超音波検出信号の波形を参照せずに、ある程度の健全性の評価を行うことが可能となる。このため、健全時における膨大な数の信号波形を検査記録として検査区域ごとに保存しなくても、健全性の評価が可能となる。
 また、少なくとも信号波形の比較による検査区域ごとの詳細な検査を不要にすることができる。すなわち、検査区域間における超音波検出信号の比較情報を表すスカラ値である指標値に基づいて欠陥又は欠陥の疑いがある検査区域を非常に簡易に特定し、特定した検査区域に限定して健全時における信号波形との比較に基づく詳細な検査を行うようにすることができる。これにより、航空機構造体1の健全性の検査に要する時間を短縮することができる。つまり、複数の検査区域において取得される超音波検出信号をパラメータとして求められる指標値に基づく検査区域のスクリーニングによって、必要な参照信号の削減及び検査時間の短縮化を図ることができる。
(第2の実施形態)
 図8は本発明の第2の実施形態に係る航空機構造体の構造を示す正面図であり、図9は図8に示す航空機構造体の下面図である。
 第2の実施形態では、超音波検査システム4による検査対象となる航空機構造体1Aの構造が第1の実施形態と異なる。第2の実施形態における他の特徴については、第1の実施形態と同様であるため、航空機構造体1Aの構造及び検査ユニット5のみ図示し、同様な特徴については説明を省略する。
 第2の実施形態における航空機構造体1Aは、湾曲したパネル2に複数のストリンガ3及び複数のフレーム20を取付けた構造を有する。複数のストリンガ3及び複数のフレーム20は、概ね長手方向が互いに直交する向きでパネル2に取付けられる。すなわち、ストリンガ3同士及びフレーム20同士は、概ね長さ方向が平行となるように配置されるが、ストリンガ3の長さ方向とフレーム20の長さ方向が概ね垂直となるように、複数のストリンガ3及び複数のフレーム20が湾曲したパネル2に取付けられる。
 その結果、パネル2上には、隣接する2つのストリンガ3と、隣接する2つのフレーム20によってそれぞれ囲まれた多数のエリアが生じる。ストリンガ3の間隔及びフレーム20の間隔がいずれも等間隔とみなせる場合には、これら多数のエリアの構造は、互いに同一の構造とみなすことができる。尚、このような構造を有する航空機構造体1Aは、主として胴体の一部を構成する構造体として採用される。
 そこで、ストリンガ3とフレーム20によって囲まれた複数のエリアを、超音波検査システム4による検査対象とすることができる。この場合、複数の検査区域が2次元的に配置された状態となる。このため、4つ以上の検査ユニット5で2次元的に配置された複数の検査区域における検出信号をそれぞれ取得することができる。
 一方、信号処理系では、複数の検査区域が1次元的に配置されている場合と同様な方法で、2次元的に配置された複数の検査区域に対応する指標値を求めることができる。具体的には、4つ以上の検査ユニット5のうちの2つの検査ユニット5によって取得される2つの検出信号に基づく指標値を、4つ以上の検査ユニット5から2つの検査ユニット5を選ぶ組み合せの数だけ少なくとも求めるようにすることができる。つまり、2次元的に配置された4つ以上の検査区域から取得される複数の検出信号から2つの検出信号を選択して指標値を求めるという演算を、選択される2つの検出信号の組み合せを変えながら繰返し実行することによって、2次元的に配置された複数の検査区域に対応する複数の指標値を求めることができる。
 このように、複数の検査区域の構造が同一とみなせる限り、各検査区域の配置は任意である。従って、共通の補強材で仕切られた、同一とみなせる構造を有する複数の検査区域に限らず、別々の補強材で仕切られた、同一とみなせる構造を有する複数の検査区域に対しても同様な指標値に基づく健全性検査が可能である。
(第3の実施形態)
 図10は本発明の第3の実施形態に係る航空機構造体を含む航空機の斜視図である。
 第3の実施形態では、超音波検査システム4による検査対象となる航空機30の部位が第1の実施形態と異なる。第3の実施形態における他の特徴については、第1の実施形態と同様であるため、航空機30及び検査ユニット5A、5Bの取付け位置のみ図示し、同様な特徴については説明を省略する。
 第2の実施形態において説明した通り、複数の検査区域の構造が同一とみなせる限り、超音波検査システム4による検査対象とすることができる。航空機30は、進行方向及び機体中心に対して対称である。例えば、航空機30が図10に示すような固定翼機であれば、左右の主翼、左右の水平尾翼及び胴体は、機体中心に対して対称である。これは、固定翼機に限らず、回転翼機やロケット等においても同様である。
 航空機30が図10に示すような固定翼機である場合には、例えば、一点鎖線で示す部分における健全性の評価が必要となる。この検査エリアには、機体中心に関して対称な部分も含まれる。すなわち、機体中心に関して対称な複数の航空機構造体1B、1Cが健全性検査の対象となり得る。
 そこで、複数の検査区域の構造が面対称である場合においても、複数の検査区域の構造を同一とみなして超音波検査システム4による検査対象とすることができる。具体的には、航空機30を構成する第1の航空機構造体1Bの検査区域に、第1の検査ユニット5Aを設けることができる。一方、航空機30の機体中心に関して第1の航空機構造体1Bと対称な位置に配置され、かつ第1の航空機構造体1Bと航空機30の機体中心に関して対称な構造を有する第2の航空機構造体1Cの検査区域に、第2の検査ユニット5Bを設けることができる。
 そして、第1の検査ユニット5Aにより、第1の航空機構造体1Bの検査区域における第1の超音波の検出信号を取得する一方、第2の検査ユニット5Bにより、第2の航空機構造体1Cの検査区域における第2の超音波の検出信号を取得することができる。これにより、信号処理系では、第1の実施形態と同様な方法で、第1の航空機構造体1Bの検査区域及び第2の航空機構造体1Cの検査区域における指標値を求めることができる。
 例えば、第1の航空機構造体1Bに複数の検査区域が存在し、かつ第2の航空機構造体1Cにも複数の検査区域が存在する場合であれば、対称な検査区域を含む全ての検査区域を対象として同種の指標値を求めることができる。このため、健全性検査の効率化が図れる。また、第1の航空機構造体1B及び第2の航空機構造体1Cにそれぞれ1つの検査区域しか存在しない場合であれば、相互相関係数等の指標値を求め、指標値が異常であるか否かに基づいて、過去の検査データを参照することなく第1の航空機構造体1B及び第2の航空機構造体1Cの健全性を評価することが可能となる。
 以上のように、航空機30の左右対称性を利用して、超音波検査システム4による複数の航空機構造体1B、1Cを対象とする健全性評価を効果的に行うことができる。すなわち、左右の対称な航空機構造体1B、1Cから取得した2つの超音波の検出信号を実質的に比較することによって、各航空機構造体1B、1Cの健全性評価を効果的に行うことができる。
(第4の実施形態)
 図11は本発明の第4の実施形態に係る超音波検査システムを含む航空機構造体の構成を示す正面図であり、図12は図11に示す航空機構造体の下面図である。
 第4の実施形態では、超音波検査システム4による検査対象となる航空機構造体1Dの構造が第1の実施形態と異なる。第4の実施形態における他の特徴については、第1の実施形態と同様であるため、航空機構造体1Dの構造及び検査ユニット5のみ図示し、同様な特徴については説明を省略する。
 第4の実施形態における航空機構造体1Dは、パネル2に複数のストリンガ3A、3Bを取付けた構造を有する。但し、ストリンガ3A、3Bの横断面の形状及びパネル2を基準とするストリンガ3A、3Bの高さは互いに異なる。図示された例では、第1のストリンガ3Aは、横断面がI字型となっている。一方、第2のストリンガ3Bは、横断面が逆T字型となっている。また、逆T字型の第2のストリンガ3Bの高さは、I字型の第1のストリンガ3Aの高さよりも高い。
 更に、超音波検査システム4による検査対象が、パネル2と接合される各ストリンガ3A、3Bのフランジとされる。このため、第1の検査ユニット5Aが、第1のストリンガ3Aの下方側の一方のフランジ上に配置される。また、第2の検査ユニット5Bが、第2のストリンガ3Bの下方側の一方のフランジ上に配置される。もちろん、別の検査ユニット5を、第1のストリンガ3A及び第2のストリンガ3Bの下方側の他方のフランジ上にそれぞれ配置してもよい。
 超音波としてラム波を用いる場合には、ラム波が伝播する板状の部分の板厚、幅及び材質と、アクチュエータ7と超音波センサ8との間における距離が同じであれば、同一の伝播条件とみなすことができる。従って、ストリンガ3A、3Bのフランジの板厚、幅及び材質が同じであれば、第1及び第2のアクチュエータ7A、7Bと第1及び第2の超音波センサ8A、8Bとの間における距離を互いに同一にすることによって、ストリンガ3A、3Bの高さや横断面の形状に関わらず、ラム波の伝播条件を同じにすることができる。このため、図11及び図12に例示されるように横断面の形状及び高さが異なる複数のストリンガ3A、3Bであっても、第1及び第2のアクチュエータ7A、7Bと第1及び第2の超音波センサ8A、8Bとの間における距離が同じであれば、検査区域となる複数のフランジの構造を、同一の構造とみなすことができる。これは、ストリンガ3A、3Bに限らず、ストリンガ、スパー、フレーム等の補強材についても同様である。
 この場合、各検査ユニット5A、5Bは、それぞれ同じ間隔で配置されるアクチュエータ7A、7B及び超音波センサ8A、8Bを用いて、ラム波の伝播条件が同じ板状の検査区域である2つのフランジからラム波による検出信号を取得することになる。そして、2つのフランジから取得されたラム波による超音波の検出信号に基づいてフランジの健全性を表す指標値を求めることができる。もちろん、3つ以上のフランジを対象として、ラム波を用いて同様に健全性を表す指標値を求めることもできる。
 また、フランジに限らず、同じ板厚、幅及び材質を有する複数のウェブを同一の構造を有する検査区域として、それぞれ同じ間隔でアクチュエータ7と超音波センサ8を配置することによって、ラム波を用いた同様な検査を行うことができる。
 以上のように、超音波としてラム波を用いれば、3次元的に異なる構造を有する部品であっても、2次元的に構造が同一となる部分であれば、同一の構造を有する検査区域とみなして健全性検査を行うことができる。
(他の実施形態)
 以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。
 例えば、上述した各実施形態では、超音波検査システム4による検査対象が航空機構造体1A、1B、1C、1Dである場合について説明したが、同一とみなすことができる複数の検査区域を有する構造体であれば、任意の構造体を対象として超音波検査システム4による健全性検査を行うことができる。例えば、ビルであれば、各階の構造を同一とみなすことができる。また、橋梁であれば、長手方向のセグメントの構造を同一とみなすことができる。或いは、風車であれば、ブレードの構造を同一とみなすことができる。このため、ビル、橋梁或いは風車等の様々な構造体を対象として、超音波検査システム4による健全性検査を行うことができる。
 

Claims (12)

  1.  第1の超音波振動子及び第1の超音波センサを用いて構造体の第1の検査区域における第1の超音波の検出信号を取得する第1の検査ユニットと、
     第2の超音波振動子及び第2の超音波センサを用いて構造体の第2の検査区域における第2の超音波の検出信号を取得する第2の検査ユニットと、
     前記第1の超音波の検出信号及び前記第2の超音波の検出信号に基づいて、前記第1の検査区域及び前記第2の検査区域の少なくとも一方の検査情報を表す指標値を求める信号処理系と、
    を備える超音波検査システム。
  2.  前記信号処理系は、前記第1の検査区域における過去の超音波の検出信号及び前記第2の検査区域における過去の超音波の検出信号をいずれも参照せずに前記検査情報を表す指標値を求めるように構成される請求項1記載の超音波検査システム。
  3.  第3の超音波振動子及び第3の超音波センサを用いて構造体の第3の検査区域における第3の超音波の検出信号を取得する第3の検査ユニットを更に備え、
     前記信号処理系は、前記第1の超音波の検出信号及び前記第2の超音波の検出信号に基づく指標値、前記第1の超音波の検出信号及び前記第3の超音波の検出信号に基づく指標値及び前記第2の超音波の検出信号及び前記第3の超音波の検出信号に基づく指標値を検査情報として求めるように構成される請求項1又は2記載の超音波検査システム。
  4.  前記各検査ユニットは、それぞれ超音波振動子及び超音波センサを用いて、壁面によって他の検査区域から仕切られた検査区域における検出信号を取得するように構成される請求項1乃至3のいずれか1項に記載の超音波検査システム。
  5.  前記各検査ユニットを含む4つ以上の検査ユニットであって2次元的に配置された複数の検査区域における検出信号をそれぞれ取得する前記4つ以上の検査ユニットを備え、
     前記信号処理系は、前記4つ以上の検査ユニットのうちの2つの検査ユニットによって取得される2つの検出信号に基づく指標値を、前記4つ以上の検査ユニットから2つの検査ユニットを選ぶ組み合せの数だけ少なくとも求めるように構成される請求項1乃至4のいずれか1項に記載の超音波検査システム。
  6.  前記第1の検査ユニットは、航空機を構成する第1の航空機構造体の検査区域における第1の超音波の検出信号を取得するように構成され、
     前記第2の検査ユニットは、前記航空機の機体中心に関して前記第1の航空機構造体と対称な位置に配置され、かつ前記第1の航空機構造体と前記航空機の機体中心に関して対称な構造を有する第2の航空機構造体の検査区域における第2の超音波の検出信号を取得するように構成される請求項1又は2記載の超音波検査システム。
  7.  前記各検査ユニットは、それぞれ同じ間隔で配置される超音波振動子及び超音波センサを用いて、ラム波の伝播条件が同じ板状の検査区域からラム波による検出信号を取得するように構成される請求項1乃至6のいずれか1項に記載の超音波検査システム。
  8.  前記信号処理系は、前記各検出信号間又は前記各検出信号に対応する信号間における相互相関係数、2乗誤差、差分信号の代表値又は除算信号の代表値を、前記検査情報を表す指標値として求めるように構成される請求項1乃至7のいずれか1項に記載の超音波検査システム。
  9.  前記信号処理系は、複数の前記指標値から特異値を検出することによって、欠陥が存在する検査区域又は欠陥の疑いがある検査区域を自動検出するように構成される請求項3又は5記載の超音波検査システム。
  10.  前記信号処理系は、前記指標値の経時的な変化に基づいて前記第1の検査区域及び前記第2の検査区域から欠陥が存在する検査区域又は欠陥の疑いがある検査区域を自動検出するように構成される請求項1記載の超音波検査システム。
  11.  請求項1乃至10のいずれか1項に記載の超音波検査システムを部品として含む航空機構造体。
  12.  第1の超音波振動子及び第1の超音波センサを用いて構造体の第1の検査区域における第1の超音波の検出信号を取得するステップと、
     第2の超音波振動子及び第2の超音波センサを用いて構造体の第2の検査区域における第2の超音波の検出信号を取得するステップと、
     前記第1の超音波の検出信号及び前記第2の超音波の検出信号に基づいて、前記第1の検査区域及び前記第2の検査区域の少なくとも一方の検査情報を表す指標値を求めるステップと、
    を有する超音波検査方法。
PCT/JP2017/013866 2016-04-06 2017-04-01 超音波検査システム、超音波検査方法及び航空機構造体 WO2017175692A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780022228.2A CN108885194B (zh) 2016-04-06 2017-04-01 超声波检查系统、超声波检查方法及航空器结构体
EP17779070.6A EP3441755A4 (en) 2016-04-06 2017-04-01 ULTRASONIC INSPECTION SYSTEM, ULTRASONIC INSPECTION PROCESS AND AIRCRAFT STRUCTURE
JP2017523544A JP6506393B2 (ja) 2016-04-06 2017-04-01 超音波検査システム、超音波検査方法及び航空機構造体
US16/149,281 US11226311B2 (en) 2016-04-06 2018-10-02 Ultrasonic inspection system, ultrasonic inspection method and aircraft structural object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-076918 2016-04-06
JP2016076918 2016-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/149,281 Continuation US11226311B2 (en) 2016-04-06 2018-10-02 Ultrasonic inspection system, ultrasonic inspection method and aircraft structural object

Publications (1)

Publication Number Publication Date
WO2017175692A1 true WO2017175692A1 (ja) 2017-10-12

Family

ID=60000485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013866 WO2017175692A1 (ja) 2016-04-06 2017-04-01 超音波検査システム、超音波検査方法及び航空機構造体

Country Status (5)

Country Link
US (1) US11226311B2 (ja)
EP (1) EP3441755A4 (ja)
JP (1) JP6506393B2 (ja)
CN (1) CN108885194B (ja)
WO (1) WO2017175692A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355061B1 (ja) * 2017-11-02 2018-07-11 株式会社システムアンドデータリサーチ 二点間の波動伝播時間の推定方法
JP6355095B1 (ja) * 2017-10-30 2018-07-11 株式会社システムアンドデータリサーチ 二点間の波動伝播時間の推定方法
EP3885732A1 (en) 2020-03-27 2021-09-29 Subaru Corporation Structural health monitoring system
US11226311B2 (en) 2016-04-06 2022-01-18 Subaru Corporation Ultrasonic inspection system, ultrasonic inspection method and aircraft structural object

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545338A (ja) * 1991-08-09 1993-02-23 Tokimec Inc 弾性波素子とそれを用いた溶液物性測定装置
JPH0980035A (ja) * 1995-09-13 1997-03-28 Fuji Kogyo Kk 溶液センサシステム
JPH09178714A (ja) * 1995-12-27 1997-07-11 Koji Toda 超音波においセンサ
JP2000046809A (ja) * 1998-07-31 2000-02-18 Kawasaki Steel Corp 探傷方法
US20060095223A1 (en) * 2004-10-29 2006-05-04 Gordon Grant A Method for verifying sensors installation and determining the location of the sensors after installation in a structural health management system
US20060106550A1 (en) * 2004-10-29 2006-05-18 Morin Brent A Structural health management system and method for enhancing availability and integrity in the structural health management system
US20080156100A1 (en) * 2006-06-26 2008-07-03 Hines Jacqueline H Acoustic wave array chemical and biological sensor
JP2009145154A (ja) * 2007-12-13 2009-07-02 Mitsubishi Heavy Ind Ltd 基板割れ検査装置及び基板割れ検査方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2917539C2 (de) * 1979-04-30 1982-11-18 Krautkrämer, GmbH, 5000 Köln Verfahren und Vorrichtung zur Ermittlung von Ungänzen
US4549437A (en) * 1983-09-27 1985-10-29 Weins Janine J Acoustic testing of complex multiple segment structures
JPS60203854A (ja) * 1984-03-28 1985-10-15 Sumitomo Metal Ind Ltd 材料の亀裂進展速度測定方法
US4746858A (en) * 1987-01-12 1988-05-24 Westinghouse Electric Corp. Non destructive testing for creep damage of a ferromagnetic workpiece
US6006163A (en) * 1997-09-15 1999-12-21 Mcdonnell Douglas Corporation Active damage interrogation method for structural health monitoring
JP4583576B2 (ja) 2000-10-19 2010-11-17 富士重工業株式会社 繊維強化樹脂複合材の損傷位置検出装置および損傷検出センサーの製造方法
US6665063B2 (en) * 2001-09-04 2003-12-16 Rosemount Aerospace Inc. Distributed laser obstacle awareness system
KR100784072B1 (ko) * 2003-09-22 2007-12-10 김형윤 구조물의 건전성 감시용 센서 및 시스템
DE10361688B4 (de) * 2003-12-30 2008-04-10 Airbus Deutschland Gmbh Vorrichtung zur Steuerung der Versorgungslufttemperatur eines Passagierflugzeugs
JP2006058291A (ja) 2004-07-23 2006-03-02 Tokyo Institute Of Technology 欠陥検査装置及び方法
US7337673B2 (en) * 2005-07-11 2008-03-04 The Boeing Company Ultrasonic array probe apparatus, system, and method for traveling over holes and off edges of a structure
US7333898B2 (en) * 2006-06-05 2008-02-19 The Boeing Company Passive structural assessment and monitoring system and associated method
JP5265152B2 (ja) 2007-08-22 2013-08-14 Jx日鉱日石エネルギー株式会社 Cfrp板貼付域の疲労き裂進展のモニタリング方法
JP4685129B2 (ja) * 2008-05-12 2011-05-18 Jfeシビル株式会社 非破壊探傷方法とその装置
US8412470B2 (en) * 2008-08-11 2013-04-02 The Boeing Company Change mapping for structural health monitoring
US8286492B2 (en) * 2009-12-09 2012-10-16 The Boeing Company Mode decomposition of sound waves using amplitude matching
JP5629481B2 (ja) * 2010-03-16 2014-11-19 富士重工業株式会社 損傷診断システム
CN101943683B (zh) * 2010-08-10 2013-03-27 昆山华得宝检测技术设备有限公司 一种差分输出超声波探头及由其组成的信号处理装置
US8707787B1 (en) * 2011-03-04 2014-04-29 The Boeing Company Time delay based health monitoring system using a sensor network
US8544328B2 (en) * 2011-04-11 2013-10-01 The Boeing Company Transducer based health monitoring system
JP5722129B2 (ja) * 2011-06-13 2015-05-20 日立Geニュークリア・エナジー株式会社 タンク健全性診断方法及びガイド波検査装置
US9448208B2 (en) * 2014-04-10 2016-09-20 Packaging Technologies & Inspection Llc System and apparatus for dual transducer ultrasonic testing of package seals
US10126273B2 (en) * 2016-02-29 2018-11-13 The Boeing Company Inspection of structures
JP6506393B2 (ja) 2016-04-06 2019-04-24 株式会社Subaru 超音波検査システム、超音波検査方法及び航空機構造体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545338A (ja) * 1991-08-09 1993-02-23 Tokimec Inc 弾性波素子とそれを用いた溶液物性測定装置
JPH0980035A (ja) * 1995-09-13 1997-03-28 Fuji Kogyo Kk 溶液センサシステム
JPH09178714A (ja) * 1995-12-27 1997-07-11 Koji Toda 超音波においセンサ
JP2000046809A (ja) * 1998-07-31 2000-02-18 Kawasaki Steel Corp 探傷方法
US20060095223A1 (en) * 2004-10-29 2006-05-04 Gordon Grant A Method for verifying sensors installation and determining the location of the sensors after installation in a structural health management system
US20060106550A1 (en) * 2004-10-29 2006-05-18 Morin Brent A Structural health management system and method for enhancing availability and integrity in the structural health management system
US20080156100A1 (en) * 2006-06-26 2008-07-03 Hines Jacqueline H Acoustic wave array chemical and biological sensor
JP2009145154A (ja) * 2007-12-13 2009-07-02 Mitsubishi Heavy Ind Ltd 基板割れ検査装置及び基板割れ検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3441755A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226311B2 (en) 2016-04-06 2022-01-18 Subaru Corporation Ultrasonic inspection system, ultrasonic inspection method and aircraft structural object
JP6355095B1 (ja) * 2017-10-30 2018-07-11 株式会社システムアンドデータリサーチ 二点間の波動伝播時間の推定方法
JP2019082353A (ja) * 2017-10-30 2019-05-30 株式会社システムアンドデータリサーチ 二点間の波動伝播時間の推定方法
JP6355061B1 (ja) * 2017-11-02 2018-07-11 株式会社システムアンドデータリサーチ 二点間の波動伝播時間の推定方法
JP2019086342A (ja) * 2017-11-02 2019-06-06 株式会社システムアンドデータリサーチ 二点間の波動伝播時間の推定方法
EP3885732A1 (en) 2020-03-27 2021-09-29 Subaru Corporation Structural health monitoring system
US11656201B2 (en) 2020-03-27 2023-05-23 Subaru Corporation Structural health monitoring system

Also Published As

Publication number Publication date
EP3441755A1 (en) 2019-02-13
US11226311B2 (en) 2022-01-18
JPWO2017175692A1 (ja) 2018-04-12
JP6506393B2 (ja) 2019-04-24
US20190033267A1 (en) 2019-01-31
EP3441755A4 (en) 2019-11-06
CN108885194B (zh) 2020-07-03
CN108885194A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6317708B2 (ja) 超音波探傷システム、超音波探傷方法及び航空機構造体
Memmolo et al. Guided wave propagation and scattering for structural health monitoring of stiffened composites
US11226311B2 (en) Ultrasonic inspection system, ultrasonic inspection method and aircraft structural object
Yu et al. Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods
Masserey et al. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures
Memmolo et al. Damage detection tomography based on guided waves in composite structures using a distributed sensor network
US10481131B2 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
Muller et al. Structural health monitoring using lamb wave reflections and total focusing method for image reconstruction
JP6869042B2 (ja) 構造物の検査
Memmolo et al. Structural health monitoring in composites based on probabilistic reconstruction techniques
Meo Acoustic emission sensors for assessing and monitoring civil infrastructures
JP2011516897A (ja) 後方散乱波を使用した異常の画像化
KR101830461B1 (ko) 기계 부품 내부에 존재하는 결함의 방향을 측정하기 위한 방법 및 그 장치
JP5804497B2 (ja) ラム波損傷画像化システム
KR102265061B1 (ko) 입사각을 이용하는 초음파 검사
KR101090587B1 (ko) 비파괴검사방법
KR101700531B1 (ko) 단채널 전도성 직물 테이프 압전 센서 네트워크 및 다중 소스 초음파 전파 영상화 기반 손상 진단 장치 및 방법
JP2014044123A (ja) 接触界面検出装置
Hasanian et al. Automatic segmentation of ultrasonic TFM phased array images: the use of neural networks for defect recognition
JP7387511B2 (ja) 構造健全性診断システム、構造健全性診断方法及び航空機構造体
Soejima et al. Investigation of the Probability of Detection of our SHM System
JP6426568B2 (ja) ひび割れ発生診断方法及びひび割れ発生診断プログラム
Muller et al. Lamb Waves Boundary Reflections in an Aluminium Plate for Defect Detection related to Structural Health Monitoring.
Ricci et al. Guided waves for detection of delamination and disbonding in stiffened composite panels
Mesnil et al. Guided waves for structural health monitoring

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017523544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017779070

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017779070

Country of ref document: EP

Effective date: 20181106

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779070

Country of ref document: EP

Kind code of ref document: A1