WO2017175582A1 - ビスホスファイトおよびそれを用いた1,9-ノナンジアールの製造方法 - Google Patents

ビスホスファイトおよびそれを用いた1,9-ノナンジアールの製造方法 Download PDF

Info

Publication number
WO2017175582A1
WO2017175582A1 PCT/JP2017/011401 JP2017011401W WO2017175582A1 WO 2017175582 A1 WO2017175582 A1 WO 2017175582A1 JP 2017011401 W JP2017011401 W JP 2017011401W WO 2017175582 A1 WO2017175582 A1 WO 2017175582A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphosphite
reaction
group
range
production method
Prior art date
Application number
PCT/JP2017/011401
Other languages
English (en)
French (fr)
Inventor
脩 信田
達也 吉川
清水 隆
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2018510293A priority Critical patent/JP6830477B2/ja
Publication of WO2017175582A1 publication Critical patent/WO2017175582A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/12Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing more than one —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a bisphosphite useful as a catalyst ligand and a method for producing 1,9-nonanediol (NL) using the same. More specifically, bisphosphites useful in the preparation of NL and 2-methyl-1,8-octane dial (MOL) in a molar ratio of about 80:20 by hydroformylation of 7-octenal (OEL), The present invention also relates to a method for producing NL using the same.
  • hydroformylation reaction A method for producing an aldehyde by reacting an olefin compound with carbon monoxide and hydrogen in the presence of a Group 8-10 metal compound is called “hydroformylation reaction” or “oxo reaction”.
  • a rhodium compound is generally used industrially as a catalyst and, if necessary, a phosphorus compound as a catalyst ligand.
  • the hydroformylation reaction it is known that the catalytic activity, the selectivity of the product, the thermal stability of the catalyst ligand and the hydrolysis resistance vary greatly depending on the structure of the phosphorus compound. Phosphorus compounds have been developed.
  • Non-Patent Document 1 As such phosphorus compounds, phosphines described in Patent Document 1, monophosphites described in Non-Patent Documents 1 and 2, bisphosphites described in Patent Documents 2 to 5, and Non-Patent Documents 3 and 4 have been developed. It was.
  • NL and MOL When NL (and MOL) is produced by hydroformylation of OEL, the molar ratio of NL and MOL varies depending on the structure of the phosphorus compound used.
  • NL and MOL can be derived by reductive amination into 1,9-nonanediamine (linear diamine; NA) and 2-methyl-1,8-octanediamine (branched diamine; MOA). Become. Since the molar ratio of linear diamine to branched diamine affects various properties such as crystallinity, melting point, and processability of polyamide, it is necessary to select a phosphorus compound that can produce NL (and MOL) at a desired molar ratio. .
  • Patent Document 5 as a phosphorus compound that can obtain NL and MOL at a molar ratio of about 80:20 while suppressing the isomerization reaction of the carbon-carbon double bond at the molecular end to the inside of the molecule, it is represented by the following formula. Are disclosed.
  • JP-A-8-10624 JP-A-4-290551 JP 62-116535 A Japanese Patent Laid-Open No. 5-178777 JP 2008-31125 A
  • the object of the present invention is to obtain NL and MOL at a molar ratio of about 80:20 with high productivity when obtaining NL and MOL by hydroformylation of OEL in the presence of a Group 8-10 metal compound and bisphosphite.
  • Bisphosphite and a method for producing NL using the same are also useful.
  • the above object is achieved by providing the following [1] to [3].
  • Bisphosphite represented by the following general formula (I) (hereinafter referred to as “bisphosphite (I)”).
  • A represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.
  • NL and MOL at a molar ratio of about 80:20 with good productivity by hydroformylation of OEL.
  • “about 80:20” refers to a range of, for example, 79.0: 21.0 to 81.0: 19.0.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms represented by A in bisphosphite (I) include a methyl group, an ethyl group, an n-propyl group, a 2-propyl group, an n-butyl group, a sec-butyl group, and isobutyl.
  • Group tert-butyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group Group, alkyl group such as n-pentyl group and n-hexyl group; cycloalkyl group such as cyclopentyl group, cyclohexyl group and cycloheptyl group; aryl group such as phenyl group and naphthyl group; aralkyl group such as benzyl group and the like It is done.
  • These hydrocarbon groups may have a substituent.
  • substituents include a methyl group, an ethyl group, an n-propyl group, a 2-propyl group, an n-butyl group, a sec-butyl group, and an isobutyl group.
  • Group tert-butyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group Group, preferably an alkyl group having 1 to 5 carbon atoms such as n-pentyl group; preferably an alkoxy group having 1 to 4 carbon atoms such as methoxy group, ethoxy group, propoxy group, butoxy group; phenyl group, naphthyl group, etc. An aryl group etc. are mentioned.
  • A is preferably a hydrocarbon group having 1 to 6 carbon atoms, more preferably a hydrocarbon group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, and an n-propyl group, The group is particularly preferred.
  • bisphosphite (I) include, for example, those represented by the following formula.
  • phenol (i) 2,4-di-tert-butylphenol (hereinafter referred to as phenol (i)) represented by the following formula (i), copper (II) chloride anhydride and hydrogen peroxide are inerted with nitrogen or argon.
  • a solvent such as methanol
  • bisphenol (ii) bisphenol represented by the following formula (ii)
  • a phosphorous trihalide compound represented by bisphenol (ii) and a general formula PY 1 3 Y 1 represents a chlorine atom, a bromine atom or an iodine atom
  • a monophosphite represented by the following formula (iii) (hereinafter referred to as monophosphite (iii)) is produced (hereinafter referred to as this method). (Referred to as “monophosphite production method (a)”).
  • bisphosphite (I) is obtained by the bisphosphite production method (A) or (B) described later.
  • the amount of the general formula PY 1 3 phosphorus trihalide compound represented by is in the range of 0.1 to 1 mol relative to bisphenol (ii) 1 mole, in the range of 0.2-0.8 mol Preferably there is.
  • Examples of basic substances that can be used as necessary in the monophosphite production method (a) include trimethylamine, triethylamine, tri-n-butylamine, tri-n-octylamine, diethylisopropylamine, and N, N-dimethyl.
  • amines such as aniline; nitrogen-containing heterocyclic compounds such as pyridine, picoline, collidine, lutidine, and quinoline.
  • a basic substance may be used individually by 1 type, and may use 2 or more types together. When a basic substance is used, the amount of the basic substance used is preferably in the range of 0.3 to 3 mol with respect to 1 mol of bisphenol (ii).
  • Examples of the solvent used in the monophosphite production method (a) include saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; benzene, toluene, ethylbenzene, propylbenzene, xylene, and ethyltoluene.
  • aromatic hydrocarbons such as dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether, butyl methyl ether, t-butyl methyl ether, dibutyl ether, tetrahydrofuran, 1,4-dioxane and the like. Of these, it is preferable to use toluene or tetrahydrofuran.
  • a solvent may be used individually by 1 type and may use 2 or more types together. The amount of the solvent used is preferably in the range of 1 to 20 parts by mass with respect to 1 part by mass of bisphenol (ii).
  • reaction temperature is usually in the range of ⁇ 20 to 100 ° C., preferably in the range of 0 to 50 ° C.
  • reaction pressure is preferably in the range of 0.0 to 3 MPa (gauge pressure), and the reaction time is preferably in the range of 1 to 30 hours.
  • the method for carrying out the monophosphite production method (a) is not particularly limited.
  • the general formula may be used at atmospheric pressure in the presence of a solvent and, if necessary, a basic substance in an inert gas atmosphere such as nitrogen or argon.
  • the phosphorus trihalide compound represented by PY 1 3 was added dropwise over a period of 1 minute to 10 hours to bisphenol (ii) at a predetermined temperature, carried out by causing reaction for the predetermined time at a predetermined temperature.
  • by-product salts for example, triethylamine hydrochloride, pyridine hydrochloride, etc.
  • by-product salts for example, triethylamine hydrochloride, pyridine hydrochloride, etc.
  • filtration to contain crude monophosphite (iii).
  • the solvent is distilled off from the mixed solution, and the obtained residue is subjected to recrystallization or column chromatography to obtain monophosphite (iii) having high purity, and such monophosphite (iii) will be described later.
  • the bisphosphite production method (A) comprises monophosphite (iii) and a halogenated phosphite represented by the following general formula (iv) (hereinafter referred to as halogenated phosphite (iv)) such as nitrogen and argon.
  • halogenated phosphite (iv) such as nitrogen and argon.
  • the reaction is carried out in an inert gas atmosphere in the presence of a solvent and, if necessary, a basic substance.
  • A is as defined above, and Y 2 represents a chlorine atom, a bromine atom or an iodine atom.
  • the amount of the halogenated phosphite (iv) used in the bisphosphite production method (A) is preferably in the range of 0.8 to 3 moles relative to 1 mole of monophosphite (iii). More preferably, it is the range.
  • Examples of basic substances that can be used as needed in the bisphosphite production method (A) include the basic substances exemplified in the monophosphite production method (a), and metals such as sodium hydride and potassium hydride. Hydrides; alkyllithium such as methyllithium and butyllithium. Of these, triethylamine, pyridine, butyllithium or sodium hydride is preferably used.
  • a basic substance may be used individually by 1 type, and may use 2 or more types together. When a basic substance is used, the amount of the basic substance used is preferably in the range of 0.8 to 2 mol with respect to 1 mol of monophosphite (iii).
  • a solvent As a solvent, the thing similar to the solvent illustrated in the monophosphite manufacturing method (a) is mentioned. Of these, toluene and tetrahydrofuran are preferably used. One solvent may be used alone, or two or more solvents may be used in combination. The amount of the solvent used is preferably in the range of 1 to 100 parts by mass with respect to 1 part by mass of monophosphite (iii).
  • reaction temperature is usually in the range of ⁇ 100 to 100 ° C., preferably in the range of ⁇ 80 to 80 ° C.
  • reaction pressure is preferably in the range of 0.0 to 3 MPa (gauge pressure)
  • reaction time is preferably in the range of 0.5 to 30 hours.
  • the method for carrying out the bisphosphite production method (A) For example, halogenation is performed under an atmospheric pressure in the presence of a solvent and, if necessary, a basic substance in an inert gas atmosphere such as nitrogen or argon.
  • the phosphite (iv) is added dropwise to the monophosphite (iii) at a predetermined temperature for 1 minute to 10 hours and reacted at a predetermined temperature for a predetermined time.
  • the monophosphite (iii) is previously reacted with the metal hydride or alkyllithium, and then the halogenated phosphite (iv) is heated to a predetermined temperature. For 1 minute to 10 hours, and the reaction is carried out at a predetermined temperature for a predetermined time.
  • by-product salts for example, triethylamine hydrochloride and pyridine hydrochloride
  • solvent is removed from the reaction mixture.
  • the bisphosphite (I) with high purity can be obtained by distilling off and subjecting the obtained residue to recrystallization.
  • the halogenated phosphite (iv) used in the bisphosphite production method (A) includes, for example, a phosphorus trihalide compound such as phosphorus trichloride and a diol used in the bisphosphite production method (B) described later.
  • a phosphorus trihalide compound such as phosphorus trichloride
  • a diol used in the bisphosphite production method (B) described later.
  • the bisphosphite production method (B) comprises a monophosphite (iii) and a trihalogenated phosphorus compound represented by the general formula PY 3 3 (wherein Y 3 represents a chlorine atom, a bromine atom or an iodine atom),
  • the reaction is carried out in an inert gas atmosphere such as nitrogen or argon in the presence of a solvent and, if necessary, a basic substance, to give a halogenated phosphite represented by the following general formula (v) (hereinafter referred to as a halogenated phosphite (hereinafter referred to as “halogenated phosphite”)).
  • bisphosphite production method (B-first half) bisphosphite production method
  • diol (vi) diol represented by the following general formula (vi)
  • B-second half bisphosphite production method
  • Examples of the basic substance that can be used as necessary in the bisphosphite production method (B-first half) include the same basic substances used in the monophosphite production method (a). Among these, it is preferable to use triethylamine or pyridine.
  • a basic substance may be used individually by 1 type, and may use 2 or more types together. When a basic compound is used, the amount used is preferably in the range of 1 to 10 moles per mole of monophosphite (iii).
  • Examples of the solvent used in the bisphosphite production method (B-first half) include the same solvents as those used in the monophosphite production method (a). Of these, toluene and tetrahydrofuran are preferably used.
  • a solvent may be used individually by 1 type and may use 2 or more types together. The amount of the solvent used is preferably in the range of 1 to 100 parts by mass with respect to 1 part by mass of monophosphite (iii).
  • reaction temperature is usually in the range of 0 to 150 ° C, preferably in the range of 20 to 120 ° C.
  • the reaction pressure is preferably in the range of 0.05 to 3 MPa (gauge pressure).
  • the reaction time is preferably in the range of 0.5 to 30 hours.
  • the reaction mixture containing the halogenated phosphite (v) obtained by the above method is filtered, and the halogenated compound obtained by distilling off the phosphorus trihalide compound, solvent, basic substance and the like from the filtrate under reduced pressure.
  • the residue containing phosphite (v) may be used as it is in the later-described bisphosphite production method (B-second half), or halogenated by recrystallization using a solvent such as toluene or tetrahydrofuran.
  • the phosphite (v) may be isolated and used in the bisphosphite production method (B-second half).
  • the amount of diol (vi) used in the bisphosphite production method (B-second half) is usually in the range of 1 to 10 moles per 1 mole of halogenated phosphite (v), and 1 to 2 moles. A range is preferred.
  • Examples of the basic substance that can be used as necessary in the bisphosphite production method (B-second half) include the same basic substances as exemplified in the monophosphite production method (a). Of these, triethylamine and pyridine are preferably used.
  • a basic substance may be used individually by 1 type, and may use 2 or more types together. When a basic substance is used, the amount used is preferably in the range of 2 to 10 mol per 1 mol of the halogenated phosphite (v).
  • Examples of the solvent used in the bisphosphite production method (B-second half) include the same solvents as those exemplified in the monophosphite production method (a). Of these, toluene and tetrahydrofuran are preferably used. One solvent may be used alone, or two or more solvents may be used in combination. The amount of the solvent used is preferably in the range of 1 to 100 parts by mass with respect to 1 part by mass of the halogenated phosphite (v).
  • reaction temperature is usually in the range of ⁇ 20 to 100 ° C., preferably in the range of 0 to 50 ° C.
  • reaction pressure is preferably in the range of 0.0 to 3 MPa (gauge pressure)
  • reaction time is preferably in the range of 0.5 to 30 hours.
  • the method for carrying out the bisphosphite production method (B-second half) for example, in an inert gas atmosphere such as nitrogen or argon, and in the presence of a solvent and, if necessary, a basic substance, at atmospheric pressure.
  • the diol (vi) and, if necessary, a solvent are added dropwise to the halogenated phosphite (v) obtained by the bisphosphite production method (B-first half) at a predetermined temperature for 1 minute to 10 hours. It can be carried out by reacting for a predetermined time.
  • bisphosphite (I) In separation and purification of bisphosphite (I) from the reaction mixture obtained by the above method, after removing by-produced salts (for example, triethylamine hydrochloride, pyridine hydrochloride, etc.) by means of filtration, for example. By distilling off the solvent from the reaction mixture and subjecting the resulting crude product to recrystallization, bisphosphite (I) with high purity can be obtained.
  • the crude product is dissolved in a solvent such as hexane, toluene, diisopropyl ether, tetrahydrofuran, ethyl acetate, acetone, acetonitrile, etc. by heating in a range from 40 ° C. to the boiling point of the solvent. It can be carried out by cooling to 20 ° C. and leaving it to stand.
  • reaction 1 NL (and MOL) (hereinafter simply referred to as “aldehyde”) by reacting OEL with carbon monoxide and hydrogen (hydroformylation reaction) in the presence of bisphosphite (I) and a Group 8-10 metal compound.
  • reaction 1 The production method (hereinafter referred to as reaction 1) will be described in detail.
  • Group 8-10 metal compounds include rhodium compounds, cobalt compounds, ruthenium compounds, iron compounds and the like.
  • rhodium compounds include Rh (acac) (CO) 2 , Rh (acac) 3 , RhCl (CO) (PPh 3 ) 2 , RhCl (PPh 3 ) 3 , RhBr (CO) (PPh 3 ) 2 , Rh 4. (CO) 12 , Rh 6 (CO) 16 and the like.
  • the cobalt compound include HCo (CO) 3 , HCo (CO) 4 , Co 2 (CO) 8 , HCo 3 (CO) 9, and the like.
  • the ruthenium compound examples include Ru (CO) 3 (PPh 3 ) 2 , RuCl 2 (PPh 3 ) 3 , RuCl 3 (PPh 3 ) 3 , Ru 3 (CO) 12 and the like.
  • the iron compounds for example, Fe (CO) 5, Fe ( CO) 4 PPh 3, Fe (CO) 4 (PPh 3) 2 and the like.
  • the amount of the Group 8-10 metal compound used is preferably in the range of 0.0001 to 1000 mmol, more preferably in the range of 0.005 to 1 mmol, per liter of the reaction mixture. preferable. When the amount of the Group 8-10 metal compound used is less than 0.0001 mmol per liter of the reaction mixture, the reaction rate tends to be extremely slow. It only increases the cost of the catalyst.
  • bisphosphite (I) may be used alone or in combination of two or more.
  • the amount of the bisphosphite (I) used is preferably in the range of 2 to 1000 mol in terms of phosphorus atom, based on 1 mol of the metal atom in the Group 8 to 10 metal compound, and preferably 4 to 500 mol. The range is more preferable, and the range of 6 to 200 mol is more preferable from the viewpoint of the reaction rate. If the amount of bisphosphite (I) used is less than 2 moles per mole of metal atoms in the Group 8-10 metal compound, the thermal stability of the catalyst is impaired, and if it exceeds 1000 moles, the reaction rate Tends to be extremely small.
  • bisphosphite (I) has cis and trans isomers.
  • either the cis or trans isomer may be used alone, or both may be used in combination.
  • the cis / trans ratio is preferably 1/4 to 4/1 (molar ratio).
  • the cis / trans ratio can be appropriately adjusted by selecting production conditions, crystallization conditions, and the like.
  • Reaction 1 is performed in the presence or absence of a solvent.
  • solvents include saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, propylbenzene, xylene, and ethyltoluene; isopropyl alcohol, Alcohols such as isobutyl alcohol, isopentyl alcohol, neopentyl alcohol; dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether, butyl methyl ether, t-butyl methyl ether, dibutyl ether, ethyl phenyl ether, diphenyl ether, tetrahydrofuran, 1, Ethers such as 4-dioxane; ace
  • the reaction temperature in reaction 1 is preferably in the range of 40 to 150 ° C., and more preferably in the range of 50 to 130 ° C. from the viewpoint of suppressing catalyst deactivation.
  • the reaction pressure is preferably in the range of 0.01 to 15 MPa (gauge pressure), more preferably in the range of 0.5 to 10 MPa (gauge pressure).
  • the reaction time is usually in the range of 0.5 to 50 hours, preferably in the range of 5 to 30 hours.
  • Reaction 1 further includes triethylamine, tributylamine, tri-n-octylamine, N, N, N ′, N′— as necessary in order to prevent the aldehyde produced from becoming highly boiling due to side reactions.
  • Tetramethyl-1,2-diaminoethane, N, N, N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,4-diaminobutane The reaction may be carried out in the presence of additives such as N, N-diethylethanolamine, triethanolamine, N-methylpiperidine, N-methylpyrrolidine, N-methylmorpholine, pyridine, picoline, lutidine, collidine, quinoline.
  • the additive is used, the amount used is usually preferably in the range of 200 to 3000 moles and in the range of 400 to 2000 moles with respect to 1 mole of the metal atom of the Group 8
  • Reaction 1 can be performed by a continuous method or a batch method using a stirring type reaction vessel, a circulation type reaction vessel, a bubble column type reaction vessel or the like.
  • the method for separating and purifying aldehyde from the reaction mixture obtained by the above method can be carried out by a method used for separation and purification of ordinary organic compounds.
  • a solvent, a basic substance, etc. are distilled off from a reaction liquid mixture under reduced pressure, Then, a highly purified aldehyde can be acquired by distilling a residue under reduced pressure.
  • the bisphosphite (I) and the Group 8-10 metal compound may be separated by subjecting the residue to methods such as evaporation, extraction, and adsorption.
  • the separated bisphosphite (I) and the Group 8-10 metal compound can be used again for the hydroformylation reaction (Reaction 1).
  • Bisphenol (ii) 82.12 g (200 mmol) and toluene 500 mL were added to a 1 L three-necked flask equipped with a thermometer and a dropping funnel, and after adding 59.2 g (390 mmol) of triethylamine, the inside of the system was purged with nitrogen. Subsequently, 11.4 mL (130 mmol) of phosphorus trichloride was added dropwise over 30 minutes so that the internal temperature was maintained at 20 to 30 ° C., and the mixture was further stirred at room temperature for 12 hours.
  • Monophosphite (iii) 8.49 g (10 mmol) and toluene 50 mL were added to a 100 mL three-necked flask equipped with a thermometer and a dropping funnel, and 1.52 g (15 mmol) of triethylamine was added, and the system was purged with nitrogen. did. Subsequently, 2.6 mL (30 mmol) of phosphorus trichloride was added dropwise over 30 minutes so that the internal temperature was kept at 20 to 30 ° C. After completion of the addition, the temperature was raised to 70 ° C. and stirred for 12 hours.
  • NL and MOL were produced by the methods of Examples 2 and 3 and Comparative Example 1 below. Each reaction solution was analyzed using gas chromatography under the following conditions.
  • catalyst solution A (corresponding to 0.008 mmol of Rh (acac) (CO) 2 , bisphosphite 0 0.056 mmol, rhodium compound concentration in the reaction system of 0.0094 mmol / L) was added to the electromagnetic stirring autoclave, and then pressurized to 5 MPa (gauge pressure) with a mixed gas and reacted for 9 hours. During the reaction, a mixed gas was constantly supplied to keep the pressure in the reaction system constant. 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 7.0, 8.0, 9.0 hours after addition of catalyst solution A, the reaction solution was gassed Analyzed by chromatography.
  • the conversion rate of OEL after 9.0 hours was 98.0%, and the selectivity of aldehyde in which the carbon-carbon double bond at the molecular end was hydroformylated was 91.7% (of which NL accounted for 80.0%) ,
  • the proportion of MOL is 20.0%
  • the isomerization rate the rate at which an isomerization reaction occurs at a carbon-carbon double bond
  • the hydrogenation rate the rate at which a hydrogenation reaction occurs at a carbon-carbon double bond
  • the total was 8.3%.
  • k 1 was 0.44.
  • Example 3 The reaction was conducted in the same manner as in Example 2 except that the cis / trans ratio of bisphosphite (I-1) was 1 / 1.3 (molar ratio) and the reaction time was 8 hours.
  • the obtained reaction mixture was analyzed in the same manner as in Example 2.
  • the conversion rate of OEL was 96.9%, and the selectivity of aldehyde in which the carbon-carbon double bond at the molecular end was hydroformylated was 92.5%. (Of which NL accounted for 80.1% and MOL accounted for 19.9%), the isomerization rate and hydrogenation rate were 7.5% in total.
  • k 1 was 0.43.
  • the obtained reaction mixture was analyzed in the same manner as in Example 2.
  • the conversion rate of OEL was 96.5%
  • the selectivity of the aldehyde in which the carbon-carbon double bond at the molecular end was hydroformylated was 92.3%.
  • the isomerization rate and hydrogenation rate were 7.7% in total.
  • k 1 is 0.37, was reduced by 16% when compared with Example 2.
  • NL and MOL produced with good productivity by the bisphosphite of the present invention and a production method using the same are used as raw materials for NA and MOA, for example, and are useful for producing polyamide using NA and MOA in a molar ratio of about 80:20. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

下記一般式(I)で示されるビスホスファイト。(式中、Aは置換基を有していてもよい炭素数1~10の炭化水素基を表す。)

Description

ビスホスファイトおよびそれを用いた1,9-ノナンジアールの製造方法
 本発明は、触媒配位子として有用なビスホスファイトおよびそれを用いた1,9-ノナンジアール(NL)の製造方法に関する。より詳細には、7-オクテナール(OEL)のヒドロホルミル化によりNLおよび2-メチル-1,8-オクタンジアール(MOL)を約80:20のモル比で製造する際に有用なビスホスファイト、およびそれを用いたNLの製造方法に関する。
 第8~10族金属化合物の存在下、オレフィン化合物を一酸化炭素および水素と反応させてアルデヒドを製造する方法は「ヒドロホルミル化反応」または「オキソ反応」と称されており、アルデヒドの製造方法として工業的に極めて価値が高い。
 かかるヒドロホルミル化反応には、一般に、触媒としてロジウム化合物および必要に応じて触媒配位子としてリン化合物が工業的に使用されている。ヒドロホルミル化反応においては、リン化合物の構造により触媒活性、生成物の選択性ならびに触媒配位子の熱安定性および耐加水分解性などが大きく変化することが知られており、これまでに種々のリン化合物が開発されてきた。かかるリン化合物としては、特許文献1に記載のホスフィン、非特許文献1および2に記載のモノホスファイト、特許文献2~5ならびに非特許文献3および4に記載のビスホスファイトなどが開発されてきた。
 OELのヒドロホルミル化によりNL(およびMOL)を製造する際、用いるリン化合物の構造によりNLおよびMOLのモル比が変化する。NLおよびMOLは還元アミノ化により1,9-ノナンジアミン(直鎖ジアミン;NA)や2-メチル-1,8-オクタンジアミン(分岐ジアミン;MOA)に誘導でき、これらのジアミンはさらにポリアミドの原料となる。直鎖ジアミンと分岐ジアミンのモル比はポリアミドの結晶性、融点、加工性などの種々の特性に影響するため、所望のモル比でNL(およびMOL)を製造できるリン化合物を選定する必要がある。
 特許文献5には、分子末端の炭素-炭素二重結合の分子内部への異性化反応を抑制しつつNLおよびMOLを約80:20のモル比で得られるリン化合物として、下記式で表されるものが開示されている。
Figure JPOXMLDOC01-appb-C000002
 しかしながら、前記リン化合物を用いた場合のOELの反応速度は未だ十分でなく、OELのヒドロホルミル化の際に触媒配位子として用いた場合にNLおよびMOLを約80:20のモル比でさらに生産性よく得られるリン化合物が求められている。
特開平8-10624号公報 特開平4-290551号公報 特開昭62-116535号公報 特開平5-178779号公報 特開2008-31125号公報
ザ ジャーナル オブ オーガニック ケミストリー(The Journal of Organic Chemistry)、1969年、第34巻、第2号、p.327-330 ジャーナル オブ ザ ケミカル ソサエティー、ケミカル コミュニケーションズ(Journal of the Chemical Society,Chemical Communications)、1991年、p.1096-1097 オルガノメタリクス(Organometallics)、1996年、第15巻、p.835-847 ヘルベチカ キミカ アクタ(Helvetica Chimica Acta)、2001年、第84巻、p.3269-3280
 本発明の目的は、第8~10族金属化合物およびビスホスファイトの存在下においてOELのヒドロホルミル化によりNLおよびMOLを得る際に、NLおよびMOLを約80:20のモル比で生産性よく得られるビスホスファイト、およびそれを用いたNLの製造方法を提供することにある。
 本発明によれば、上記の目的は以下の[1]~[3]を提供することで達成される。
[1]下記一般式(I)で示されるビスホスファイト(以下、「ビスホスファイト(I)」と称する)。
Figure JPOXMLDOC01-appb-C000003
(式中、Aは置換基を有していてもよい炭素数1~10の炭化水素基を表す。)
[2]Aがメチル基である、[1]のビスホスファイト。
[3][1]または[2]のビスホスファイトおよび第8~10族金属化合物の存在下、OELを一酸化炭素および水素と反応させることを特徴とする、NLの製造方法。
 本発明によれば、OELのヒドロホルミル化によりNLおよびMOLを約80:20のモル比で生産性よく得ることが可能である。なお、本明細書において「約80:20」とは、例えば79.0:21.0~81.0:19.0の範囲を指す。
[ビスホスファイト(I)]
 ビスホスファイト(I)においてAが表す炭素数1~10の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、2-プロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、n-ペンチル基、n-ヘキシル基などのアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基などのシクロアルキル基;フェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基などが挙げられる。
 これらの炭化水素基は置換基を有していてもよく、かかる置換基としては、例えばメチル基、エチル基、n-プロピル基、2-プロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、n-ペンチル基などの好ましくは炭素数1~5のアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などの好ましくは炭素数1~4のアルコキシ基;フェニル基、ナフチル基などのアリール基などが挙げられる。
 中でも、Aは炭素数1~6の炭化水素基であることが好ましく、炭素数1~4の炭化水素基であることがより好ましく、メチル基、エチル基およびn-プロピル基がさらに好ましく、メチル基が特に好ましい。
 ビスホスファイト(I)の具体例としては、例えば下記式で示されるものなどが挙げられる。
Figure JPOXMLDOC01-appb-C000004
[ビスホスファイト(I)の製造方法]
 以下、本発明のビスホスファイト(I)の製造方法について説明する。
 ビスホスファイト(I)の製造方法に特に制限はないが、例えば以下の様にして製造できる。
 まず、下記式(i)で示される2,4-ジ-tert-ブチルフェノール(以下、フェノール(i)と称する)と塩化銅(II)無水物および過酸化水素を、窒素やアルゴンなどの不活性ガス雰囲気下でメタノール等の溶媒の存在下に反応させることにより、下記式(ii)で示されるビスフェノール(以下、ビスフェノール(ii)と称する)を製造する。
Figure JPOXMLDOC01-appb-C000005
 次に、ビスフェノール(ii)と一般式PY (Yは塩素原子、臭素原子またはヨウ素原子を表す)で示される三ハロゲン化リン化合物を、窒素、アルゴンなどの不活性ガス雰囲気下で、溶媒および必要に応じて塩基性物質の存在下に反応させることにより、下記式(iii)で示されるモノホスファイト(以下、モノホスファイト(iii)と称する)を製造する(以下、この方法を「モノホスファイト製造方法(a)」と称する)。
Figure JPOXMLDOC01-appb-C000006
 次いで、後述するビスホスファイト製造方法(A)または(B)によりビスホスファイト(I)を得る。
(モノホスファイト製造方法(a))
 まず、モノホスファイト製造方法(a)について詳細に説明する。
 一般式PY で示される三ハロゲン化リン化合物の使用量は、ビスフェノール(ii)1モルに対して通常0.1~1モルの範囲であり、0.2~0.8モルの範囲であるのが好ましい。
 モノホスファイト製造方法(a)で必要に応じて用いることができる塩基性物質としては、例えばトリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、トリ-n-オクチルアミン、ジエチルイソプロピルアミン、N,N-ジメチルアニリンなどのアミン;ピリジン、ピコリン、コリジン、ルチジン、キノリンなどの含窒素複素環式化合物などが挙げられる。これらの中でも、トリエチルアミン、ピリジンを使用するのが好ましい。塩基性物質は1種類を単独で使用してもよいし、2種類以上を併用してもよい。
 塩基性物質を使用する場合、かかる塩基性物質の使用量は、ビスフェノール(ii)1モルに対して、0.3~3モルの範囲であるのが好ましい。
 モノホスファイト製造方法(a)で使用する溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサンなどの飽和脂肪族炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、キシレン、エチルトルエンなどの芳香族炭化水素;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、t-ブチルメチルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテルなどが挙げられる。中でもトルエンまたはテトラヒドロフランを使用するのが好ましい。溶媒は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。
 かかる溶媒の使用量は、ビスフェノール(ii)1質量部に対して1~20質量部の範囲であるのが好ましい。
 モノホスファイト製造方法(a)における反応温度、反応圧力、反応時間などの条件に特に制限はない。しかしながら、反応温度は通常-20~100℃の範囲であり、0~50℃の範囲であるのが好ましい。また、反応圧力は0.0~3MPa(ゲージ圧)の範囲であるのが好ましく、反応時間は1~30時間の範囲であるのが好ましい。
 モノホスファイト製造方法(a)の実施方法に特に制限はなく、例えば窒素、アルゴンなどの不活性ガス雰囲気下で、溶媒および必要に応じて塩基性物質の存在下、大気圧下にて一般式PY で示される三ハロゲン化リン化合物を、所定温度でビスフェノール(ii)へ1分~10時間かけて滴下した後、所定温度で所定時間反応させることで行う。
 上記方法により得られた反応終了後の反応混合物から、例えばろ過などの手段により、副生した塩(例えばトリエチルアミン塩酸塩、ピリジン塩酸塩など)を除去して粗モノホスファイト(iii)を含有する混合液を得、かかる粗モノホスファイト(iii)をそのまま後述するビスホスファイト製造方法(A)または(B)に供してもよい。あるいは、該混合液から溶媒を留去し、得られた残留物を再結晶やカラムクロマトグラフィーに付すことにより純度の高いモノホスファイト(iii)を得、かかるモノホスファイト(iii)を後述するビスホスファイト製造方法(A)または(B)に供してもよい。
(ビスホスファイト製造方法(A))
 ビスホスファイト製造方法(A)は、モノホスファイト(iii)と下記一般式(iv)で示されるハロゲン化ホスファイト(以下、ハロゲン化ホスファイト(iv)と称する)を、窒素、アルゴンなどの不活性ガス雰囲気下で、溶媒および必要に応じて塩基性物質の存在下に反応させる方法である。
Figure JPOXMLDOC01-appb-C000007
(式中、Aは前記定義の通りであり、Yは塩素原子、臭素原子またはヨウ素原子を表す。)
 ビスホスファイト製造方法(A)におけるハロゲン化ホスファイト(iv)の使用量は、モノホスファイト(iii)1モルに対して0.8~3モルの範囲であるのが好ましく、1~2モルの範囲であるのがより好ましい。
 ビスホスファイト製造方法(A)において必要に応じて用いることができる塩基性物質としては、モノホスファイト製造方法(a)において例示した塩基性物質のほか、水素化ナトリウム、水素化カリウムなどの金属水素化物;メチルリチウム、ブチルリチウムなどのアルキルリチウムなどが挙げられる。中でもトリエチルアミン、ピリジン、ブチルリチウムまたは水素化ナトリウムを使用するのが好ましい。塩基性物質は1種類を単独で使用してもよいし、2種類以上を併用してもよい。塩基性物質を使用する場合、かかる塩基性物質の使用量は、モノホスファイト(iii)1モルに対して0.8~2モルの範囲であるのが好ましい。
 溶媒としては、モノホスファイト製造方法(a)において例示した溶媒と同様のものが挙げられる。中でも、トルエン、テトラヒドロフランを使用するのが好ましい。溶媒は、1つを単独で使用してもよいし、2つ以上を併用してもよい。
 かかる溶媒の使用量は、モノホスファイト(iii)1質量部に対して1~100質量部の範囲であるのが好ましい。
 ビスホスファイト製造方法(A)における反応温度、反応圧力、反応時間などの条件に特に制限はない。しかしながら、反応温度は通常-100~100℃の範囲であり、-80~80℃の範囲であるのが好ましい。反応圧力は0.0~3MPa(ゲージ圧)の範囲であるのが好ましく、反応時間は0.5~30時間の範囲であるのが好ましい。
 ビスホスファイト製造方法(A)の実施方法に特に制限はなく、例えば窒素、アルゴンなどの不活性ガス雰囲気下で、溶媒および必要に応じて塩基性物質の存在下、大気圧下にてハロゲン化ホスファイト(iv)をモノホスファイト(iii)に所定温度で1分~10時間かけて滴下し、所定温度で所定時間反応させることで行う。特に、塩基性物質として前記した金属水素化物またはアルキルリチウムを使用する場合、通常、予めモノホスファイト(iii)を金属水素化物またはアルキルリチウムと反応させ、次いでハロゲン化ホスファイト(iv)を所定温度で1分~10時間かけて滴下し、所定温度で所定時間反応させることにより実施できる。
 上記方法により得られた反応混合物から、例えば、反応終了後、反応混合液からろ過などの手段により副生した塩(例えばトリエチルアミン塩酸塩、ピリジン塩酸塩)を除去した後、反応混合液から溶媒を留去し、得られた残留物を再結晶に付すことにより、純度の高いビスホスファイト(I)を得ることができる。
 なお、ビスホスファイト製造方法(A)において使用するハロゲン化ホスファイト(iv)は、例えば、三塩化リンなどの三ハロゲン化リン化合物と後述するビスホスファイト製造方法(B)で使用するジオールを、窒素、アルゴンなどの不活性ガス雰囲気下で、必要に応じてトリエチルアミンなどの塩基性物質およびテトラヒドロフランやトルエンなどの溶媒の存在下で反応させることにより製造でき(例えば、ジャーナル オブ ケミカル ソサエティー(Journal of Chemical Society)、1953年、p.1920-1926参照)、さらに、適宜、蒸留や再結晶などの通常の有機化合物の分離・精製方法を適用して純度を高めることができる。
(ビスホスファイト製造方法(B))
 ビスホスファイト製造方法(B)は、モノホスファイト(iii)と一般式PY (式中、Yは塩素原子、臭素原子またはヨウ素原子を表す)で示される三ハロゲン化リン化合物を、窒素、アルゴンなどの不活性ガス雰囲気下で、溶媒および必要に応じて塩基性物質の存在下に反応させて、下記一般式(v)で示されるハロゲン化ホスファイト(以下、ハロゲン化ホスファイト(v)と称する)を得た後(以下、「ビスホスファイト製造方法(B-前半)」と称する)、下記一般式(vi)で示されるジオール(以下、「ジオール(vi)」と称する)を、窒素、アルゴンなどの不活性ガス雰囲気下で、溶媒および必要に応じて塩基性物質の存在下に反応させる(以下、「ビスホスファイト製造方法(B-後半)」と称する)方法である。
Figure JPOXMLDOC01-appb-C000008
(式中、YおよびAは前記定義の通りである。)
 まず、ビスホスファイト製造方法(B-前半)について説明する。
 一般式PY で示される三ハロゲン化リン化合物の使用量は、モノホスファイト(iii)1モルに対して、通常1~100モルの範囲であり、1~10モルの範囲であるのが好ましい。
 ビスホスファイト製造方法(B-前半)において必要に応じて用いることができる塩基性物質としては、モノホスファイト製造方法(a)において使用する塩基性物質と同様のものが挙げられる。中でも、トリエチルアミン、ピリジンを使用するのが好ましい。塩基性物質は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。
 塩基性化合物を使用する場合、その使用量は、モノホスファイト(iii)1モルに対して1~10モルの範囲であるのが好ましい。
 ビスホスファイト製造方法(B-前半)において使用する溶媒としては、モノホスファイト製造方法(a)において使用する溶媒と同様のものが挙げられる。中でも、トルエン、テトラヒドロフランを使用するのが好ましい。溶媒は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。
 かかる溶媒の使用量は、モノホスファイト(iii)1質量部に対して1~100質量部の範囲であるのが好ましい。
 ビスホスファイト製造方法(B-前半)における反応温度、反応圧力、反応時間などの反応条件に特に制限はない。しかしながら、反応温度は通常0~150℃の範囲であり、20~120℃の範囲であるのが好ましい。また、反応圧力は0.05~3MPa(ゲージ圧)の範囲であるのが好ましい。反応時間は0.5~30時間の範囲であるのが好ましい。
 ビスホスファイト製造方法(B-前半)の実施方法に特に制限はなく、例えば窒素、アルゴンなどの不活性ガス雰囲気下で、溶媒および必要に応じて塩基性物質の存在下、大気圧下にて一般式PY (式中、Yは前記定義の通りである。)で示される三ハロゲン化リン化合物をモノホスファイト(iii)に所定温度で1分~10時間かけて滴下した後、所定温度で所定時間反応させることにより実施できる。
 上記方法により得られたハロゲン化ホスファイト(v)を含有する反応混合物をろ過し、ろ液から前記三ハロゲン化リン化合物、溶媒、塩基性物質などを減圧下に留去して得られるハロゲン化ホスファイト(v)を含有する残留物は、そのまま後述するビスホスファイト製造方法(B-後半)に使用してもよいし、トルエン、テトラヒドロフランなどの溶媒を用いて再結晶することにより、ハロゲン化ホスファイト(v)を単離してからビスホスファイト製造方法(B-後半)に使用してもよい。
 次に、ビスホスファイト製造方法(B-後半)について詳細に説明する。
 ビスホスファイト製造方法(B-後半)において使用するジオール(vi)の使用量は、ハロゲン化ホスファイト(v)1モルに対して、通常1~10モルの範囲であり、1~2モルの範囲であるのが好ましい。
 ビスホスファイト製造方法(B-後半)において必要に応じて用いることができる塩基性物質としては、モノホスファイト製造方法(a)において例示した塩基性物質と同様のものが挙げられる。中でもトリエチルアミン、ピリジンを使用するのが好ましい。塩基性物質は1種類を単独で使用してもよいし、2種類以上を併用してもよい。
 塩基性物質を使用する場合、その使用量は、ハロゲン化ホスファイト(v)1モルに対して2~10モルの範囲であるのが好ましい。
 ビスホスファイト製造方法(B-後半)において使用する溶媒としては、モノホスファイト製造方法(a)において例示した溶媒と同様のものが挙げられる。中でも、トルエン、テトラヒドロフランを使用するのが好ましい。溶媒は1つを単独で使用してもよいし、2つ以上を併用してもよい。
 かかる溶媒の使用量は、ハロゲン化ホスファイト(v)1質量部に対して1~100質量部の範囲であるのが好ましい。
 ビスホスファイト製造方法(B-後半)における反応温度、反応圧力、反応時間などの反応条件に特に制限はない。しかしながら、反応温度は通常-20~100℃の範囲であり、0~50℃の範囲であるのが好ましい。また、反応圧力は0.0~3MPa(ゲージ圧)の範囲であるのが好ましく、反応時間は0.5~30時間の範囲であるのが好ましい。
 ビスホスファイト製造方法(B-後半)の実施方法に特に制限はなく、例えば窒素、アルゴンなどの不活性ガス雰囲気下で、溶媒および必要に応じて塩基性物質の存在下、大気圧下にてジオール(vi)および必要に応じて溶媒を、ビスホスファイト製造方法(B-前半)で得られたハロゲン化ホスファイト(v)に所定温度で1分~10時間かけて滴下し、所定温度で所定時間反応させることにより実施できる。
 上記方法により得られた反応混合液からのビスホスファイト(I)の分離・精製においては、例えばろ過などの手段により、副生した塩(例えばトリエチルアミン塩酸塩、ピリジン塩酸塩など)を除去した後、反応混合液から溶媒を留去し、得られる粗生成物を再結晶に付すことにより、純度の高いビスホスファイト(I)を得ることができる。なお、再結晶は、例えば該粗生成物をヘキサン、トルエン、ジイソプロピルエーテル、テトラヒドロフラン、酢酸エチル、アセトン、アセトニトリルなどの溶媒に40℃から溶媒の沸点までの範囲で加熱して溶解し、-20~20℃に冷却して放置することにより実施できる。
[NLの製造方法]
 次に、ビスホスファイト(I)および第8~10族金属化合物の存在下に、OELを一酸化炭素および水素と反応(ヒドロホルミル化反応)させることによるNL(およびMOL)(以下、単に「アルデヒド」と称することがある)の製造方法(以下、反応1と称する。)について詳細に説明する。
 第8~10族金属化合物としては、例えばロジウム化合物、コバルト化合物、ルテニウム化合物、鉄化合物などが挙げられる。ロジウム化合物としては、例えばRh(acac)(CO)、Rh(acac)、RhCl(CO)(PPh、RhCl(PPh、RhBr(CO)(PPh、Rh(CO)12、Rh(CO)16などが挙げられる。コバルト化合物としては、例えばHCo(CO)、HCo(CO)、Co(CO)、HCo(CO)などが挙げられる。ルテニウム化合物としては、例えばRu(CO)(PPh、RuCl(PPh、RuCl(PPh、Ru(CO)12などが挙げられる。また、鉄化合物としては、例えばFe(CO)、Fe(CO)PPh、Fe(CO)(PPhなどが挙げられる。これらの中でも、比較的温和な反応条件を選択し易いロジウム化合物を使用するのが好ましく、入手容易性の観点からRh(acac)(CO)、Rh(acac)を使用するのがより好ましい。
 第8~10族金属化合物の使用量は、反応混合液1リットルあたり、金属原子換算で0.0001~1000ミリモルの範囲であるのが好ましく、0.005~1ミリモルの範囲であるのがより好ましい。第8~10族金属化合物の使用量が反応混合液1リットルあたり0.0001ミリモル未満であると反応速度が極めて遅くなる傾向にあり、また1000ミリモルを超えてもそれに見合う効果が得られず、触媒コストが増大するのみである。
 反応1において、ビスホスファイト(I)は1種類を単独で使用してもよいし、2種類以上を併用してもよい。かかるビスホスファイト(I)の使用量は、第8~10族金属化合物中の金属原子1モルに対して、リン原子換算で2~1000モルの範囲であるのが好ましく、4~500モルの範囲であるのがより好ましく、反応速度の観点からは、6~200モルの範囲であるのがさらに好ましい。ビスホスファイト(I)の使用量が第8~10族金属化合物中の金属原子1モルに対して2モル未満の場合、触媒の熱安定性が損なわれ、また1000モルを超える場合、反応速度が極めて小さくなる傾向にある。
 なお下式のとおり、ビスホスファイト(I)にはシスおよびトランス異性体が存在する。
Figure JPOXMLDOC01-appb-C000009
 反応1においては、シスおよびトランス異性体のいずれかを単独で使用してもよいし、両者を併用してもよい。
 シスおよびトランス異性体を併用する場合のシス/トランス比率は、1/4~4/1(モル比)であることが好ましい。シス/トランス比率は、製造条件や晶析条件等の選択により適宜調節可能である。
 反応1は、溶媒の存在下または不存在下に行う。かかる溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサンなどの飽和脂肪族炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、キシレン、エチルトルエンなどの芳香族炭化水素;イソプロピルアルコール、イソブチルアルコール、イソペンチルアルコール、ネオペンチルアルコールなどのアルコール;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、t-ブチルメチルエーテル、ジブチルエーテル、エチルフェニルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル;アセトン、エチルメチルケトン、メチルプロピルケトン、ジエチルケトン、エチルプロピルケトン、ジプロピルケトンなどのケトンなどが挙げられる。これらの溶媒は1つを単独で使用してもよいし、2つ以上を併用してもよい。溶媒を使用する場合、溶媒の使用量に特に制限はないが、反応混合液全体に対して、通常0.1~90質量%の範囲であるのが好ましい。
 反応1における反応温度は40~150℃の範囲であるのが好ましく、触媒失活を抑制する観点からは、50~130℃の範囲であるのがより好ましい。また、反応圧力は0.01~15MPa(ゲージ圧)の範囲であるのが好ましく、0.5~10MPa(ゲージ圧)の範囲であるのがより好ましい。
 反応時間は通常0.5~50時間の範囲であり、5~30時間の範囲であるのが好ましい。
 反応1に使用する一酸化炭素および水素の混合ガスの使用割合は、一酸化炭素:水素=10:1~1:10(モル比)の範囲であるのが好ましく、2:1~1:2(モル比)の範囲であるのがより好ましい。
 反応1は、生成するアルデヒドが副反応によって高沸化するのを抑制するために、必要に応じて、さらにトリエチルアミン、トリブチルアミン、トリ-n-オクチルアミン、N,N,N’,N’-テトラメチル-1,2-ジアミノエタン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,4-ジアミノブタン、N,N-ジエチルエタノールアミン、トリエタノールアミン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリン、ピリジン、ピコリン、ルチジン、コリジン、キノリンなどの添加剤の存在下に実施してもよい。該添加剤を使用する場合、その使用量は、第8~10族金属化合物の金属原子1モルに対して、通常200~3000モルの範囲であるのが好ましく、400~2000モルの範囲であるのがより好ましい。
 反応1は、撹拌型反応槽、循環型反応槽、気泡塔型反応槽などを用いて、連続方式またはバッチ方式で行うことができる。
 反応1の実施方法に特に制限はなく、例えば、一酸化炭素:水素=1:1(モル比)の混合ガスの存在下、OELを仕込み、撹拌しながらビスホスファイト(I)、第8~10族金属化合物および溶媒の混合溶液並びに必要に応じて上記した添加剤を供給し、所定温度、所定圧力で所定時間反応させることにより実施できる。
 上記方法により得られた反応混合液からのアルデヒドの分離・精製方法に特に制限はなく、通常の有機化合物の分離・精製に用いられる方法で実施できる。例えば、反応混合液から溶媒や塩基性物質などを減圧下で留去した後、残留物を減圧下に蒸留することにより、高純度のアルデヒドを取得することができる。また、かかる蒸留に先立ち、残留物を蒸発、抽出、吸着などの方法に付すことによってビスホスファイト(I)および第8~10族金属化合物を分離してもよい。分離したビスホスファイト(I)および第8~10族金属化合物は、再度ヒドロホルミル化反応(反応1)に使用することができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はかかる実施例により何ら制限されない。
<実施例1>
[ビスホスファイト(I-1)の製造]
(ビスフェノール(ii)の製造)
Figure JPOXMLDOC01-appb-C000010
 温度計および滴下漏斗を備えた内容積300mLの三口フラスコに、フェノール(i)47.3g(229mmol)およびメタノール100mLを加え、55℃で10分撹拌して溶解した後、エチレンジアミン72.1g(1.2mmol)および塩化銅(II)無水物80.7mg(0.6mmol)を加え、続いて35重量%の過酸化水素水13.3g(137.4mmol)を内温が55~60℃になるように保ちながら3時間かけて滴下した。滴下終了後、55℃で1時間撹拌を続けた。その後、20℃以下まで冷却し、析出した固体を濾別してメタノールと水の混合液(容量比9/1)50mLで洗浄した。得られた粗ビスフェノール(ii)にメタノール40mLを加え、60℃にて20分撹拌した。その後、20℃まで冷却し、固体を濾別してメタノールと水の混合液(容量比9/1)20mLで洗浄した。同様の操作を計3回行った後、乾燥させて白色固体としてビスフェノール(ii)を37.6g(91.6mmol、収率80%)得た。
(モノホスファイト(iii)の製造)
Figure JPOXMLDOC01-appb-C000011
 温度計および滴下漏斗を備えた内容積1Lの三口フラスコに、ビスフェノール(ii)82.12g(200mmol)およびトルエン500mLを加え、トリエチルアミン59.2g(390mmol)を加えた後に系内を窒素置換した。次いで、三塩化リン11.4mL(130mmol)を、内温が20~30℃に保たれるように30分かけて滴下し、滴下終了後、室温でさらに12時間撹拌した。反応終了後、副生したトリエチルアミン塩酸塩をろ過により除去し、得られたろ液からトルエンおよびトリエチルアミンを減圧下に留去(50℃/0.01MPa)することにより、粗モノホスファイト(iii)95.0gを得た。これをアセトニトリル300mLとテトラヒドロフラン150mLの混合溶媒を用いて再結晶により精製し、モノホスファイト(iii)82.80g(三塩化リン基準の収率75%、純度99%)を得た。
(ビスホスファイト(I-1)の製造)
Figure JPOXMLDOC01-appb-C000012
 温度計および滴下漏斗を備えた内容積100mLの三口フラスコに、モノホスファイト(iii)8.49g(10mmol)およびトルエン50mLを加え、トリエチルアミン1.52g(15mmol)を加えた後に系内を窒素置換した。次いで、三塩化リン2.6mL(30mmol)を、内温が20~30℃に保たれるように30分かけて滴下し、滴下終了後、70℃に昇温してさらに12時間撹拌した。室温に戻した後、副生したトリエチルアミン塩酸塩をろ過により除去し、得られたろ液から三塩化リン、トルエンおよびトリエチルアミンを減圧下に留去(50℃/0.01MPa)することにより、粗ハロゲン化ホスファイト(v-1)10.5gを得た。
Figure JPOXMLDOC01-appb-C000013
 次いで、温度計および滴下漏斗を備えた内容積300mLの三口フラスコに、上記で得られた粗ハロゲン化ホスファイト(v-1)10.5g、トルエン100mLおよびトリエチルアミン3.03g(30mmol)を加え、系内を窒素置換した。次いで、2-メチル-1,3-プロパンジオール1.35g(15mmol)をテトラヒドロフラン10mLに溶解させた溶液を、内温が20~30℃に保たれるように30分かけて滴下した。滴下終了後、室温でさらに3時間撹拌した後、副生したトリエチルアミン塩酸塩をろ過により除去し、得られたろ液からトルエン、テトラヒドロフランおよびトリエチルアミンを減圧下に留去(50℃/0.01MPa)することにより、粗ビスホスファイト(I-1)10.9gを得た。これにアセトニトリル50mLを加えてから室温下に30分撹拌した後、ろ過することにより得られた固体に、ジイソプロピルエーテル80mLを添加して70℃に加熱した。固体が全て溶解したことを確認後、この溶液を1時間かけて5℃まで冷却し、析出した結晶をろ取した。これを減圧下、室温で乾燥させることにより、ビスホスファイト(I-1)のシス/トランス混合物5.80g(モノホスファイト(iii)基準の収率60%、純度95%)を得た。
31P-NMR(CDCl)δ:142、141、125、119
H-NMR(CDCl,TMS)δ:7-7.4、4.6、4.2、4.0、3.8、3.7、3.5、3.3、3.1、2.2、1.8、1.5、1.3、1.0、0.7
[NLおよびMOLの製造]
 以下の実施例2、3および比較例1の方法によりNLおよびMOLを製造した。なお、各反応液は以下の条件によりガスクロマトグラフィーを用いて分析した。
(測定条件)
分析機器:株式会社島津製作所製GC-2014
カラム:J&W Scientific社製DB-1(内径0.32mm、長さ30m、膜厚5μm)
キャリアガス:ヘリウム
注入口温度:250℃
検出器温度:250℃
検出器:FID
昇温条件:80℃→(10℃/分で昇温)→250℃(9分保持)
内部標準物質:ジエチレングリコールジメチルエーテル
(反応速度)
 一次反応速度定数(以下、kと称する。)は以下の方法により計算した。
×(サンプル取得時の反応時間)=-ln{(100-サンプル取得時の転化率)/100}
<実施例2>
 窒素ガス雰囲気下、Rh(acac)(CO)150.3mg(0.58mmol)をトルエン45mLに溶解させた溶液を調製し、かかる溶液の5.36gを、シス/トランス比率が1/2.42(モル比)であるビスホスファイト(I-1)539.2mg(0.56mmol)およびトルエン49.5mLの溶液に25℃で添加し、混合溶液[ロジウム原子:リン原子=1:14(モル比)](以下、「触媒液A」と称する)を得た。
 ガス導入口およびサンプリング口を備えた内容積3Lの電磁撹拌式オートクレーブに、窒素雰囲気下、OEL849mL(5.33mol)を加え、オートクレーブ内を一酸化炭素:水素=1:1(モル比)の混合ガス(以下、単に「混合ガス」と称する)で0.5MPa(ゲージ圧)とした後、脱圧する操作を5回繰返し、電磁撹拌式オートクレーブ内を混合ガスで置換させた。混合ガスで3MPa(ゲージ圧)とした後、撹拌しながらオートクレーブ内の温度を120℃に昇温させ、触媒液A5.74g(Rh(acac)(CO)0.008mmol相当、ビスホスファイト0.056mmol相当、反応系内のロジウム化合物濃度0.0094mmol/L)を電磁撹拌式オートクレーブに加えた後、混合ガスで5MPa(ゲージ圧)に加圧し9時間反応させた。なお、反応中は、混合ガスを常時供給し、反応系内の圧力を一定に保った。触媒液Aを添加してから0.25、0.5、1.0、2.0、4.0、6.0、7.0、8.0、9.0時間後に、反応液をガスクロマトグラフィーで分析した。9.0時間後のOELの転化率は98.0%、分子末端の炭素-炭素二重結合がヒドロホルミル化されたアルデヒドの選択率は91.7%(うちNLの占める割合は80.0%、MOLの占める割合は20.0%)、異性化率(炭素-炭素二重結合に異性化反応が起こる割合)および水素化率(炭素-炭素二重結合に水素化反応が起こる割合)は合計で8.3%であった。kは0.44であった。
<実施例3>
 ビスホスファイト(I-1)のシス/トランス比率を1/1.3(モル比)とし、反応時間を8時間とした以外は実施例2と同様に反応させた。得られた反応混合液を実施例2と同様に分析したところ、OELの転化率は96.9%、分子末端の炭素-炭素二重結合がヒドロホルミル化されたアルデヒドの選択率は92.5%(うちNLの占める割合は80.1%、MOLの占める割合は19.9%)、異性化率および水素化率は合計で7.5%であった。kは0.43であった。
<比較例1>
 ビスホスファイト(I-1)に代えて下記式(II)で示すビスホスファイト(以下、ビスホスファイト(II)と称する。)を用いた以外は実施例2と同様に9時間反応させた。
Figure JPOXMLDOC01-appb-C000014
 得られた反応混合液を実施例2と同様に分析したところ、OELの転化率は96.5%、分子末端の炭素-炭素二重結合がヒドロホルミル化されたアルデヒドの選択率は92.3%(うちNLの占める割合は79.1%、MOLの占める割合は20.9%)、異性化率および水素化率は合計で7.7%であった。kは0.37であり、実施例2と比較すると16%低下した。
 実施例2、3および比較例1の結果より、本発明で用いるビスホスファイトと構造が近く、NLおよびMOLを約80:20のモル比で得られることが知られているビスホスファイト(II)と比較して、本発明のビスホスファイト(I)を用いた場合、分子末端の炭素-炭素二重結合の分子内部への異性化反応を同程度に抑制しつつ、格段に高い反応速度を得られることがわかる。
 本発明のビスホスファイトおよびそれを用いた製造方法により生産性よく製造されたNLおよびMOLは例えばNAおよびMOAの原料となり、NAおよびMOAを約80:20のモル比で用いるポリアミドの製造に有用である。

Claims (3)

  1.  下記一般式(I)で示されるビスホスファイト。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは置換基を有していてもよい炭素数1~10の炭化水素基を表す。)
  2.  Aがメチル基である、請求項1に記載のビスホスファイト。
  3.  請求項1または2に記載のビスホスファイトおよび第8~10族金属化合物の存在下、7-オクテナールを一酸化炭素および水素と反応させることを特徴とする、1,9-ノナンジアールの製造方法。
PCT/JP2017/011401 2016-04-05 2017-03-22 ビスホスファイトおよびそれを用いた1,9-ノナンジアールの製造方法 WO2017175582A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018510293A JP6830477B2 (ja) 2016-04-05 2017-03-22 ビスホスファイトおよびそれを用いた1,9−ノナンジアールの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-075876 2016-04-05
JP2016075876 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017175582A1 true WO2017175582A1 (ja) 2017-10-12

Family

ID=60000421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011401 WO2017175582A1 (ja) 2016-04-05 2017-03-22 ビスホスファイトおよびそれを用いた1,9-ノナンジアールの製造方法

Country Status (3)

Country Link
JP (1) JP6830477B2 (ja)
TW (1) TW201806963A (ja)
WO (1) WO2017175582A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058935A1 (en) 2019-09-23 2021-04-01 Johnson Matthey Public Limited Company Tracers and method of marking liquids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290551A (ja) * 1990-08-21 1992-10-15 Basf Ag ロジウムヒドロホルミル化触媒
WO2007114445A1 (ja) * 2006-04-04 2007-10-11 Kuraray Co., Ltd. ビスホスファイトおよび第8~10族金属化合物を用いたアルデヒドの製造方法、並びに該ビスホスファイト
JP2008031125A (ja) * 2006-07-31 2008-02-14 Kuraray Co Ltd アルデヒドの製造方法
WO2014156776A1 (ja) * 2013-03-27 2014-10-02 株式会社クラレ ジアルデヒドの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290551A (ja) * 1990-08-21 1992-10-15 Basf Ag ロジウムヒドロホルミル化触媒
WO2007114445A1 (ja) * 2006-04-04 2007-10-11 Kuraray Co., Ltd. ビスホスファイトおよび第8~10族金属化合物を用いたアルデヒドの製造方法、並びに該ビスホスファイト
JP2008031125A (ja) * 2006-07-31 2008-02-14 Kuraray Co Ltd アルデヒドの製造方法
WO2014156776A1 (ja) * 2013-03-27 2014-10-02 株式会社クラレ ジアルデヒドの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058935A1 (en) 2019-09-23 2021-04-01 Johnson Matthey Public Limited Company Tracers and method of marking liquids

Also Published As

Publication number Publication date
JPWO2017175582A1 (ja) 2019-02-14
JP6830477B2 (ja) 2021-02-17
TW201806963A (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5180819B2 (ja) ビスホスファイトおよび第8〜10族金属化合物を用いたアルデヒドの製造方法、並びに該ビスホスファイト
JP5593482B2 (ja) 遷移金属で触媒されるヒドロホルミル化用のビスホスファイト配位子
JP5400760B2 (ja) ヒドロホルミル化方法用のカリックスアレーンビスホスファイト配位子
JP5797651B2 (ja) テトラフェノール(tp)置換構造を基礎とする有機燐化合物
JP2017537918A (ja) ヒドロホルミル化プロセス
JP5432895B2 (ja) アルミニウム錯体とその使用
US9308527B2 (en) Phosphorous compounds useful as ligands and compositions and methods regarding them
WO2019108502A1 (en) Highly isoselective catalyst for alkene hydroformylation
EP3717120A1 (en) Highly isoselective catalyst for alkene hydroformylation
JP2008031125A (ja) アルデヒドの製造方法
JP6830477B2 (ja) ビスホスファイトおよびそれを用いた1,9−ノナンジアールの製造方法
JP2011503028A (ja) ヒドロホルミル化の方法
JP4964760B2 (ja) ビスホスファイト、並びに該ビスホスファイトおよび第8〜10族金属化合物を用いたアルデヒド化合物の製造方法
JP6835403B2 (ja) ジアルデヒド化合物の製造方法
JP3812094B2 (ja) アルデヒド類の製造方法
JP2014189525A (ja) 直鎖状ジアルデヒドの製造方法
JP4994836B2 (ja) ビスホスファイトおよび該ビスホスファイトを用いたアルデヒド化合物の製造方法
JP2008231006A (ja) アルデヒドの製造方法
Ozolin et al. Asymmetric hydrogenation of diethyl 1-phenylvinylphosphonate by metal complexes in CH 2 Cl 2 and in supercritical carbon dioxide using phosphite-type ligands
US10093604B2 (en) Heterocyclic selenabisphosphites and process for preparation thereof
JP2023102593A (ja) 2-置換-1,3-プロパンジオールの製造方法
JP2008231001A (ja) アルデヒドの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018510293

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778961

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778961

Country of ref document: EP

Kind code of ref document: A1