WO2017175341A1 - 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体 - Google Patents

計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2017175341A1
WO2017175341A1 PCT/JP2016/061324 JP2016061324W WO2017175341A1 WO 2017175341 A1 WO2017175341 A1 WO 2017175341A1 JP 2016061324 W JP2016061324 W JP 2016061324W WO 2017175341 A1 WO2017175341 A1 WO 2017175341A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
image
lattice
pixels
pixel
Prior art date
Application number
PCT/JP2016/061324
Other languages
English (en)
French (fr)
Inventor
吉春 森本
芳之 楠
将貴 植木
明大 柾谷
哲史 高木
Original Assignee
4Dセンサー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 4Dセンサー株式会社 filed Critical 4Dセンサー株式会社
Priority to EP16723924.3A priority Critical patent/EP3441715A4/en
Priority to JP2016535079A priority patent/JPWO2017175341A1/ja
Priority to CN201680000448.0A priority patent/CN107466356A/zh
Priority to US15/100,460 priority patent/US10551177B2/en
Priority to PCT/JP2016/061324 priority patent/WO2017175341A1/ja
Publication of WO2017175341A1 publication Critical patent/WO2017175341A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2536Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the present invention is a non-contact, high-speed, high-speed measurement of the three-dimensional shape of the surface of a measurement object having a three-dimensional surface shape, such as a large structure, an industrial product, a sheet-like structure, a human body, animals and plants, or a natural shaped object.
  • the present invention relates to a three-dimensional shape measuring apparatus that can be performed with high accuracy. It can also be used for non-contact vibration surface position measurement and displacement distribution measurement.
  • a grid projection method for measuring a three-dimensional shape by projecting a grid pattern onto a measurement object and obtaining a phase for each pixel of a grid pattern image obtained by imaging the grid pattern projected onto the measurement object is known. is there.
  • Fig. 1 shows an example of an optical system of a shape measuring apparatus using a one-dimensional grid projection method.
  • the center of the camera lens and the height of the light source of the projector are the same as the reference plane, and the camera imaging plane and the grating plane are moiré topography optical systems parallel to the reference plane.
  • one pitch of the projected grating matches the pixel pitch imaged on the reference plane, and a white line at the position W in FIG. Can capture black lines as contour lines. Even if the pixel pitch of the camera becomes fine, the number of pixels per pitch of the projected grid image is constant at any height.
  • the lattice projection method can analyze the deformation with high accuracy by analyzing the phase of the lattice, and can measure out-of-plane deformation and three-dimensional shape with high accuracy.
  • a phase analysis method a phase shift method or a Fourier transform method is used.
  • Non-Patent Document 1 the deformation of the object can be analyzed with high accuracy by analyzing the phase of the lattice, and in-plane deformation and high-precision measurement of a three-dimensional shape are possible (Non-Patent Document 1). , 2).
  • a phase analysis method a phase shift method or a Fourier transform method is used.
  • the sampling moire method Non-Patent Document 3
  • the Fourier transform method Non-Patent Documents 4 and 5 are useful for analyzing moving objects and the like because the phase can be analyzed with one image.
  • the sampling moire method uses two periods of data to calculate the phase
  • the Fourier transform method uses all pixel data to analyze the phase, and it can measure moving images with a small amount of image data. I could not.
  • the applicant has applied for a new grating projection method for analyzing the phase of image data for one period of the grating by Fourier transformation or the like (hereinafter referred to as “premise technique”).
  • the phase distribution can be analyzed from one image at a high speed, and a moving image can also be analyzed.
  • the characteristics of this prerequisite technology are shown below. (1) Since the measurement is based on phase analysis, the accuracy is good. (2) Since phase analysis can be performed with a single image, the shape of a moving object can be measured. (3) Since only frequency 1 is extracted by Fourier transform, it is not necessary to project a grid having an accurate cosine wave luminance distribution. (4) Since only frequency 1 is extracted by Fourier transform, noise that appears in the high-frequency portion is automatically deleted, so that it is resistant to noise. (5) Processing is simple and processing can be performed at high speed. (6) The gauge length is N pixels, which is shorter than the sampling moire method. Generally, the gauge length is shorter than the digital image correlation method. (7) In the sampling moire method, moire fringes are generated by linear interpolation. However, since the present invention correlates with a cosine wave, the accuracy is higher.
  • the base technology needs to perform phase analysis using horizontally long image data of M pixels (M is an integer of 2 or more) in the x direction and 1 pixel in the y direction. For this reason, the spatial resolution in the x direction is not sufficient, and the error is large over a wide range where the phase change is large, such as a portion having a step in the x direction.
  • an object of the present invention is to obtain data of a two-dimensional region of Mx pixels in the x direction and Ny pixels in the y direction (Mx and Ny are integers of 2 or more) even if the same number of pixels as the above-mentioned prerequisite technology is used for the phase analysis.
  • Mx and Ny are integers of 2 or more
  • Mx, Ny is 2 or more
  • An image is input, and a rectangular area (Mx, Ny is an integer equal to or greater than 2) of the grid image or the grid image is extracted from the captured image. This is a measurement method for obtaining the phase based on the luminance of the pixel.
  • the present invention also includes a step of capturing a lattice image projected onto a reference plane, and a rectangle (Mx, Mx, Mx pixels) in an x-direction Mx pixel and an y-direction Ny pixel of the image captured from the lattice image projected onto the reference plane.
  • Mx ⁇ Ny a lattice image formed on the placed object
  • Mx ⁇ Ny pixels composed of x-direction Mx and y-direction Ny pixels of the image obtained by capturing the lattice image formed on the object
  • It is a measuring method including a step of obtaining a luminance value obtained by equally dividing 2m ⁇ into Mx ⁇ Ny and a step of obtaining a phase using the luminance value.
  • Mx ⁇ Ny pixels composed of x-direction Mx and y-direction Ny pixels of an image obtained by imaging the deformed pattern of the lattice and an image obtained by capturing the deformed pattern of the lattice drawn on the object.
  • the phase may be obtained by shifting the rectangular area for each pixel of an image obtained by capturing a lattice image projected on the object.
  • the phase may be obtained by shifting the rectangular area for each pixel of an image obtained by imaging a lattice drawn on the object.
  • the position of the object plane may be obtained based on the phase using a total space table formation method.
  • the present invention uses a grating having a pitch larger than one pixel having a different pitch in the x direction or the y direction, and obtains a phase value based on a grating having a pitch larger than one pixel having a different pitch;
  • the measurement method may further include a step of performing phase connection based on phases obtained based on different gratings.
  • the present invention may be a measuring device that obtains a phase based on the luminance value.
  • the present invention may be a measurement program for executing the measurement method.
  • the present invention may be a computer-readable recording medium that stores the measurement program.
  • the spatial resolution in the x and y directions can be obtained by using the data of Mx pixels in the x direction and Ny pixels in the y direction (Mx and Ny are integers).
  • Mx and Ny are integers.
  • the phase analysis method of the present invention can be applied to a one-dimensional displacement (and strain) analysis method of in-plane deformation.
  • in-plane displacement the phase difference before and after deformation corresponds to the displacement.
  • the conventional sampling moire method and the base technology have poor spatial resolution in the x direction, but in the present invention, the spatial resolution in the x direction and the y direction can be reduced to the same extent.
  • the present invention can overcome the problems to be solved by the invention and provide a high-speed and highly accurate method.
  • the present invention is a method of photographing, analyzing and measuring a lattice on an object plane with a camera.
  • the present invention relates to a phase analysis method capable of obtaining a phase value with high accuracy based on luminance data of a lattice image projected onto an object or an image obtained by imaging a lattice drawn on an object.
  • the object plane is captured by photographing the lattice pattern provided on the object plane with a camera. Displacement in the in-plane direction can also be measured.
  • the present invention uses the fact that a one-dimensional lattice is projected by the lattice projection method, and one pitch of the lattice image is always a constant M pixel, and the phase is analyzed from the luminance data of the M pixel, and the phase is increased from the phase.
  • This is a method for obtaining information such as the size.
  • ⁇ Optical system and coordinates> 2 3A, and 3B are schematic diagrams for explaining the lattice projection mechanism and the measurement object of the shape measuring apparatus.
  • L represents the position of the light source
  • V represents the center of the camera lens.
  • the grating is at a distance of d from the position L of the light source, and the width of one period is p.
  • the center V of the camera lens and the height of the light source L of the projector are the same with respect to the reference plane, and the camera imaging plane and the lattice plane are parallel to the reference plane.
  • the object plane is located at a distance z1 away from the light source L
  • the reference plane is located at a distance z2 away
  • the lattice plane is located at a position d away from the light source L.
  • the lattice plane is parallel to the reference plane, and equally spaced one-dimensional lattice lines having a period p are drawn.
  • a point light source is used as the light source, but a one-line light source parallel to the grid lines may be used.
  • a surface including the light source L and parallel to the reference surface is called a light source surface.
  • x, y, z coordinates are taken with the light source as the origin, and the direction perpendicular to the reference plane is taken as the z direction.
  • the lower side is positive in the z direction.
  • the direction perpendicular to the grid lines drawn on the plane of the grid is the x direction
  • the direction parallel to the grid lines is the y direction.
  • the center of the camera lens is in the light source plane and is separated from the light source L by a distance v in the x direction.
  • the camera imaging plane is parallel to the reference plane and the lattice plane, and the i direction and j direction of the pixel coordinates (i, j) of the camera imaging plane coincide with the x direction and the y direction, respectively.
  • the image of one period of the grating on the camera imaging surface has the same width regardless of the height of the object plane or the reference plane. Therefore, if it is set so that one period of the grating is reflected in N pixels on the imaging surface of the digital camera, an image of one period of the grating is reflected in N pixels regardless of the height of the object plane or the reference plane. This will be described with reference to FIG.
  • the projected shadow of one period of the grating is x1 on the object plane and x2 on the reference plane.
  • the distance from the light source plane is z1 on the object plane, z2 on the reference plane, z3 on the camera imaging plane, and d on the lattice plane.
  • the shadow of one period p of the grating is x1 obtained by multiplying p by z1 / d on the object plane, and x2 obtained by multiplying p by z2 / d on the reference plane.
  • the size x4 on the camera imaging surface is x1 multiplied by z3 / z1
  • x5 is the size obtained by multiplying x2 by z3 / z2
  • x4 and x5 are both z3 / d times p. That is, the size of one period of the grating reflected on the camera imaging surface is determined by the ratio of the distance from the light source surface to the grating and the distance from the center of the camera lens to the camera imaging surface. Not affected.
  • the number of sensor pixels of the camera that captures an image of one period of the grating is constant regardless of the height of the measurement target object from the reference plane. That is, if one period of the grating is set to be reflected in N pixels, one period of the grating is always reflected in consecutive N pixels.
  • the position at which the grating is reflected on the camera imaging surface changes when the distance to the object plane or the reference plane changes.
  • the phase of the grating reflected on the pixels on the camera imaging surface changes depending on the height from the reference plane to the object plane.
  • the height can be obtained by phase analysis. That is, if the N pixel is subjected to Fourier transform, the frequency 1 having the maximum power spectrum is extracted, and the phase of the frequency 1 is obtained, the height of the object surface or the like can be measured. In actual measurement, the height of the object surface or the like can be measured by setting the frequency in advance according to the optical system and obtaining the phase of the preset frequency.
  • FIG. 3A is an enlarged view of the upper part of FIG. 3B.
  • the center V of the camera lens is placed at the position of coordinates (v, 0, 0) on the x axis. That is, the center V of the camera lens is separated from the light source L by a distance v.
  • the point S on the object plane is reflected.
  • FIG. 3B a line passing through the pixel, the point S, and the point R is shown as a camera line of sight.
  • a point obtained by projecting the point S on the object plane perpendicular to the z-axis is designated as point B
  • a point obtained by projecting the point R on the reference plane perpendicular to the z-axis is designated as point I.
  • a point where light from the light source position L to the point R passes through the lattice plane is defined as a point Q, and a light line from the light source position L to the point R projected from the point S on the object plane perpendicular to the z-axis is a line.
  • a point where the light crosses is defined as a point P.
  • a point where light from the position L of the light source to the point S passes through the lattice plane is defined as a point G.
  • Point E is the origin of the grid, and the distance between point C and point E is e.
  • the distance between the points I and B, that is, the height from the reference plane to the object plane is set as h.
  • a g amplitude, [Phi lattice phase, b g is the background.
  • the light source illuminates the grid, and the shadow of the grid is projected onto the reference plane or the object plane.
  • the luminance distribution when the shadow of the grid is reflected on the camera imaging surface is expressed by the following expression with respect to continuous N pixels corresponding to one period of the grid at the height z of the reference plane and the object plane.
  • n 0, 1,... N.
  • Equation 2 When re-arranged, Equation 2 can be expressed by Equation 6.
  • the discrete Fourier transform is performed on the N pieces of data, the frequency 1 is extracted, and the phase is obtained therefrom, the phase ⁇ of the smooth cosine wave can be obtained. Good phase analysis can be performed.
  • phase ⁇ ( ⁇ ⁇ ⁇ ⁇ ) can be calculated using the following formula.
  • phase ⁇ of the grating can be obtained.
  • phase ⁇ R of the shadow of the grid projected on the point R on the reference plane is
  • phase ⁇ S of the shadow of the lattice projected onto the point S on the object is as follows.
  • the phase ⁇ M of the moire fringe is obtained as in the following equation.
  • the height h from the reference plane to the object plane is obtained by measuring the phase of the moire fringes as the phase difference between the reference plane grating and the object plane grating.
  • Fig. 4 shows the overall configuration of the measuring device.
  • 1 is a lamp such as an LED, which corresponds to a light source.
  • 2 is a grid
  • 3 is an object to be measured
  • 4 is a mounting table
  • 5 is a digital camera
  • 6 is an image sensor
  • 7 is a lens
  • 8 is a computer
  • 9 is an output device. If only the measurement result is obtained, the result may be stored in the computer 8 or the like, so that the output device 9 is not necessary.
  • a projector such as a commercially available liquid crystal projector may be used as the lamp 1 and the grid 2 .
  • the lattice 2 is formed by displaying the lattice with a liquid crystal display element or the like. When a projector is used, the width and direction of the lattice can be freely changed.
  • the object 3 When the object 3 is irradiated with the lamp 1, the shadow of the lattice 2 is projected on the object surface, and a shadow image is reflected on the image sensor 6 of the digital camera 5 through the lens 7.
  • the reflected image is sent from the digital camera 5 to the computer 8.
  • the image In the computer 8, the image is analyzed by a stored program for realizing the method of the present invention, and a measured value is obtained.
  • the obtained measurement values are stored in the computer 8 and, if necessary, processed into an output image or the like, sent to the output device 9 and output.
  • the output device is a display device or a printing device.
  • the computer 8 can also store a data table 8a for executing an all-space table forming method, which will be described later, in a memory.
  • the program according to the present invention can be executed by the computer 8.
  • the measuring method according to the present invention can be executed by mounting the recording medium 8b in which the program according to the present invention is recorded on the computer 8.
  • the reference surface may be the surface of the mounting table 4, and an object having the reference surface may be mounted on the mounting table 4. Since measurement is possible if there is a reference plane and an object plane, an object having an object plane may be placed instead of the reference plane. It is also possible to measure the object surface shape in the horizontal direction with the lamp 1, the grid 2, the object 3, the mounting table 4, and the digital camera 5 in the horizontal state, and to measure in the oblique direction. Is also possible.
  • FIG. 5 is an enlarged explanatory view of a part of the image photographed in this way.
  • the hatched portion indicates a portion where the luminance of the lattice is low, and the other portion indicates a portion where the luminance of the lattice is high.
  • the direction perpendicular to the grid line is defined as the x direction, and the direction perpendicular thereto is defined as the y direction.
  • the coordinates of the pixel on the camera imaging surface be (i, j). Then, the i direction and the j direction are photographed in accordance with the x direction and the y direction, respectively.
  • This image is processed as follows.
  • One-dimensional Fourier transform is performed on image data (FIG. 6A) of consecutive N pixels.
  • a frequency spectrum (FIG. 6B) of ⁇ N / 2 to N / 2 is obtained.
  • a component of frequency 1 or frequency ⁇ 1 having a maximum power spectrum and having N pixels as one cycle is extracted.
  • the phase can be obtained by calculating the phase of the extracted frequency. And it memorize
  • Fig. 5C (4)
  • the phase calculation and storage in (1) to (3) are repeated by shifting the grid combination of N pixels by one pixel in the x direction.
  • the scans (1) to (4) are performed in all the y directions.
  • phase connection can be easily made by increasing or decreasing 2 ⁇ every time a phase jump occurs.
  • the moiré fringe phase ⁇ M which is the phase difference between the phase of the object and the phase of the reference plane grating, is obtained for each pixel. From this, the height h can be obtained using Equation 17.
  • the phase of frequency 1 or the like is obtained after Fourier transform, it is possible to perform measurement resistant to noise without projecting a grating having an accurate luminance distribution of cosine waves.
  • the above-mentioned base technology used a phase analysis using horizontally long image data of N pixels in the x direction and 1 pixel in the y direction. For this reason, the spatial resolution in the x direction is poor, and the error increases over a wide range where the phase change is large, such as in a portion having a step in the x direction.
  • the present invention uses two-dimensional region data of Mx pixels in the x direction and Ny pixels in the y direction (Mx and Ny are integers of 2 or more).
  • Mx and Ny are integers of 2 or more.
  • the spatial resolution in the direction and the y direction can be reduced to approximately the same level, and the width of the portion where the error is increased can be reduced even in the stepped portion.
  • the optical system is adjusted so that the phase is divided into 2 ⁇ equal to Mx ⁇ Ny.
  • a luminance value corresponding to a phase obtained by equally dividing 2 ⁇ into Mx ⁇ Ny is obtained in a rectangular region of Mx ⁇ Ny pixels made up of x-direction Mx and y-direction Ny pixels.
  • the phase at each pixel can be determined.
  • the light emitted from the light source L passes through the grating and projects the shadow of the grating onto the object.
  • the camera shoots the shadow of the lattice distorted according to the shape of the object.
  • the one-dimensional lattice line projected on the reference plane is installed so as to be perpendicular to the x-axis as shown in FIGS. 1 and 7, and is photographed by the camera as shown in FIG.
  • FIG. 7 shows a grid image used in the sampling moire method and the premise technique which are conventional techniques.
  • the phase analysis is performed using 9 pixels in the area indicated by reference numeral 90.
  • the grid line 100 is a phase 0 line of the projected grating
  • the grid line 101 is a line of the projected grating phase ⁇ / 2 (90 degrees)
  • the grid line 102 is the phase of the projected grating ⁇ (180 (Degree) lines and grid lines represent lines of phase 3 ⁇ / 2 (270 degrees) of the projected grating.
  • the number written in each pixel in FIG. 7 indicates the phase number of the projected grating, where 0 is the phase 0 (0 degree) and the phase increases by 2 ⁇ / (Mx ⁇ Ny) as the number increases. Increase. In the case of this figure, it increases by 2 ⁇ / 9 (40 °).
  • FIG. 8 is a diagram showing an image of Example 1 of the lattice image used in the present invention.
  • the grids are projected obliquely at equal intervals.
  • M ⁇ 1 pixel denoted by reference numeral 91
  • one pitch in the x direction is M pixels.
  • the direction of the grid to be projected is adjusted so that one pitch in the y direction becomes Ny pixels. That is, when the pitch and direction of the grid lines are adjusted well, there are positions where the phase change of each pixel in the Mx ⁇ Ny rectangular region can be obtained at equal intervals.
  • the grid line 110 is a phase 0 line of the projected grating
  • the grid line 111 is a phase ⁇ / 2 (90 degrees) line of the projected grating
  • the grid line 112 is a phase ⁇ (180 of the projected grating).
  • the grid line 113 represents a line of phase 3 ⁇ / 2 (270 degrees) of the projected grid.
  • the numbers written on each pixel indicate the phase order of the projected grating.
  • the number written in each pixel in this figure indicates the phase number.
  • 0 is the phase 0 (0 degree), and the phase increases by 2 ⁇ / (Mx ⁇ Ny) as the number increases.
  • nine pixels in the x direction and one pixel in the y direction form one cycle, and phase analysis can be performed from these nine pixels (region indicated by reference numeral 91).
  • looking at a total of 9 pixels (region indicated by reference numeral 92) of 3 pixels in the x direction and 3 pixels in the y direction data of the same phase obtained by dividing one period into 9 is obtained.
  • the spatial resolution is 3 pixels in both the x and y directions, and the same isotropic and accurate phase analysis is possible in both the x and y directions.
  • the length of the region indicated by reference numeral 92 in the x direction is shorter than the length of the region indicated by reference numeral 91 in the x direction, and the region is close to a square. However, the range of influence is small.
  • luminance data of M ( 9) pixels in the x direction, which is the region 91, and one pixel in the y direction
  • the analysis can be performed in the same manner.
  • the luminance data of the region 92 closer to the square than the luminance data of the elongated region 91 has a spatial resolution. (Because the region 91 uses 9 pixel data in the x direction to obtain the phase, but the region 92 uses only 3 pixel data in the x direction, and the spatial resolution in the x direction is low.) Get better.).
  • M Mx ⁇ Ny pieces of luminance data are extracted from the area of the captured grid image in the x-direction Mx pixel and the y-direction Nx pixel, and the (initial) phase ⁇ is analyzed from the luminance data using equation (18). I do.
  • a phase analysis process is performed for each pixel of the obtained image.
  • An Mx ⁇ Ny pixel region is taken around the pixel to be processed, and the luminance data of each pixel in that region is arranged in the order of the phase of each pixel (in the case of FIG. 8, in the order of the numbers written in each pixel), and the luminance
  • the phase ⁇ is obtained by Equation (18).
  • the relationship between the phase difference ⁇ and the height h is given by Equation 19 from FIG.
  • the height h from the reference plane to the object plane was calculated using Equation 17 based on a plurality of pixels arranged in one dimension. However, from the reference plane to the object plane based on pixels arranged in two dimensions. The height h can also be obtained from Equation 19 as in Equation 17.
  • FIG. 9 is a diagram showing an image of Example 2 of the lattice image used in the present invention.
  • FIG. 10 is a diagram showing an image of Example 3 of the lattice image used in the present invention.
  • FIG. 11 is a diagram showing an image of Example 4 of the lattice image used in the present invention.
  • luminance data can be obtained in the same way, and the phase can be obtained by analyzing this.
  • FIG. 12 is a diagram showing an image of Example 5 of the lattice image used in the present invention.
  • FIG. 13 is a diagram showing an image of Example 6 of the lattice image used in the present invention.
  • the second embodiment relates to a shape measurement method using an all space error table.
  • the relationship between the phase and the height is obtained by calculation.
  • the phase of each pixel can be obtained by using the total space table formation method.
  • the all-space table forming method is a known technique as described in Japanese Patent Application Laid-Open No. 2011-2378 (Wakayama University).
  • the all-space table-forming method obtains the relationship between the phase and height (and x, y, z coordinates) for each pixel in advance and uses it as a table. Information was obtained. For this reason, calculation by triangulation is not required and high-speed measurement is performed, and errors of the optical system are canceled by referring to the table, and the accuracy is increased.
  • phase analysis is performed using image data of a rectangular region (including a square, specifically, 3 ⁇ 3 pixels).
  • a phase analysis method having a wide dynamic range can be realized by using two types of gratings having different pitches in the x direction in the same region, analyzing the respective phases, and connecting the phases based on the results.
  • Two or more kinds of waves having different frequencies in the x direction are put in pixels in a rectangular (including square) region, and each wave is separated and extracted from the luminance data of the image in the region using Fourier transform, etc.
  • the phase of the wave is obtained (actually, it is sufficient to substitute in Equation 7 for obtaining the phase corresponding to frequency 1 for directly obtaining the phase without performing Fourier transform, or an equivalent equation corresponding to a higher frequency).
  • Embodiments 1 and 2 of the present invention since only one type of lattice having a lattice pitch in the x direction is projected, the dynamic range is narrow.
  • the method of the present invention provides a method of expanding the dynamic range by projecting two types of gratings at once. The technical contents are shown below.
  • FIG. 14 is a schematic diagram showing an image of a lattice reflected on each pixel of the camera, with the smallest square representing the size of one pixel and the diagonal line representing the phase of the lattice.
  • the reference numeral 130 indicates a phase 0 line
  • the reference numeral 131 indicates a phase ⁇ / 2 line
  • the reference numeral 132 indicates a phase ⁇ line
  • the reference numeral 133 indicates a phase 3 ⁇ / 2 line. Represents a line. Looking at the data of 9 pixels in one horizontal line shown in the region of reference numeral 120, the phase increases each time the pixel moves to the next, and the phase changes for two cycles with 9 pixels.
  • the first row is the first three pixels of the 9 ⁇ 1 pixel area indicated by the reference numeral 120
  • the second row is the next three pixels
  • the same data as the phase of the next three pixels is arranged, and the phase can be obtained in the same manner whether the region of the symbol 120 is analyzed or the region of the symbol 121 is analyzed.
  • the cycle changes three times in the region of the reference numeral 122.
  • the first row is the first three pixels of the region of reference 122
  • the second row is the next three pixels
  • the third row is the phase of the next three pixels.
  • the same data is arranged, and the same phase can be obtained by analyzing the region of the sign 122 or analyzing the blue region.
  • phase analysis method can be applied to strain analysis of an object.
  • in-plane one-dimensional micro deformation in a plane Since there is no out-of-plane deformation and micro deformation, it can be considered that in this case as well, only the phase changes regardless of the pitch of the grating.
  • the pitch in the x direction is px
  • the phase change amount is ⁇
  • the displacement u in the x direction is given by equation (20).
  • the amount of change in the above phase is obtained as follows. Draw a grid on the object whose deformation is to be measured. Then, the drawn grid is imaged. As the imaging means, the device as described above can be used.
  • the phase of the drawn grid is 2m ⁇ (m is an integer) within a rectangle (Mx, Ny is an integer greater than or equal to 2) in the x-direction Mx pixel and y-direction Ny pixel of the image obtained by imaging the grid drawn on the object Is obtained by equally dividing Mx ⁇ Ny. Then, using the obtained luminance value, the phase in the rectangle is calculated by Equation 18. The rectangular area is shifted for each pixel of an image obtained by imaging the lattice drawn on the object, and the phase is obtained for each pixel.
  • the pattern after the change of the lattice drawn on the object is imaged.
  • a luminance value obtained by equally dividing 2m ⁇ into Mx ⁇ Ny is obtained in a rectangular region of Mx ⁇ Ny pixels including x-direction Mx and y-direction Ny pixels of an image obtained by capturing a deformed pattern of a lattice drawn on the object.
  • the phase in the rectangle after the deformation is calculated by Equation 18. The rectangular area is shifted for each pixel of an image obtained by imaging the lattice pattern after deformation of the object, and the phase is obtained for each pixel.
  • the displacement of the object plane can be calculated based on Equation 20 based on the phase difference in each pixel before and after the deformation of the object.
  • the surface of the object on which the grid is drawn is not limited to a plane. Since the displacement in the plane of the object surface is measured, the surface of the object may be a curved surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 基準面に投影された格子を撮像し、前記基準面に投影された格子を撮像した画像のx方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、投影されている格子の位相が2mπ(mは整数)をMx×Ny(=M)等分されているように光学系を調節し、前記基準面に載置された物体に投影された格子模様を撮像し、前記物体に投影された格子模様を撮像した画像の、x方向Mx、y方向Ny画素からなるMx×Ny画素の長方形領域において、2mπをMx×Ny等分した輝度値を求め、前記輝度値を用いて位相を求め、前記基準面に載置された物体に投影された格子模様を撮像し、前記物体に投影された格子模様を撮像した画像の画素毎にずらして前記位相を求め、該位相に基づいて物体面の位置を求める、計測方法。

Description

計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
 本発明は、大型構造物や工業製品、シート状構造物、人体や動植物、自然の造形物等の三次元の表面形状を有する測定対象物の表面の三次元形状計測を非接触かつ高速・高精度で行うことが可能な三次元形状計測装置に関する。また、非接触の振動面位置計測や変位分布計測に用いることもできる。
 計測対象物に格子パターンを投影し、計測対象物に投影された格子パターンを撮像して得られた格子パターン像の画素毎の位相を求めることにより三次元形状計測を行う格子投影法が公知である。
 図1に一次元格子投影法による形状計測装置の光学系の例を示す。
 基準面に対して、カメラレンズの中心とプロジェクタの光源の高さが同じであり、カメラ撮像面および格子の面は基準面に平行であるモアレトポグラフィの光学系である。この図の場合、基準面の位置において、投影された格子の1ピッチと基準面上で撮像される画素ピッチが一致しており、図1のWの位置には白い線が、Bの位置には黒い線が等高線として撮影できる。カメラの画素ピッチが細かくなっても投影された格子の画像の1ピッチの画素数はどの高さでも一定である。
 格子投影法では格子の位相を解析することにより高精度でその変形を解析でき、面外変形や三次元形状を高精度に計測することができる。従来の位相解析法としては、位相シフト法やフーリエ変換法が用いられている。
新井泰彦,倉田忠雄,縞走査干渉計の手法による高速かつ高精度なモアレトポグラフィ法,光学,Vol.15,No.5,402-406 (1986). 森本吉春,藤垣元治,米山聡: モアレ法・格子法による形状・変形計測の最近の研究,非破壊検査,52-3(2003),116-121. 李志遠,森本吉春,藤垣元治,サンプリングモアレ法による構造物の非接触変位分布計測、日本工業出版 検査技術,14(5),(2009),1-6 Takeda, M. and Mutoh, K., Fourier transform profilometry for the automatic measurement of 3-D object shapes, Applied Optics, 22-24, 3977-3982(1983). Morimoto, Y., Seguchi, Y. and Higashi, T., Two-dimensional Moire Method and Grid Method Using Fourier Transform, Experimental Mechanics,  Vol. 29, No. 4, 399-404(1989). 藤垣元治,森本吉春,全空間テーブル化手法による格子投影三次元形状計測,実験力学,8-4, 92-98(2008).
 格子投影法やモアレ法では、格子の位相を解析することによって高精度で対象の変形を解析することができ、面内変形や三次元形状の高精度の計測が可能である(非特許文献1,2)。従来の位相解析法としては、位相シフト法やフーリエ変換法が用いられている。これらの中で、サンプリングモアレ法(非特許文献3)やフーリエ変換法(非特許文献4,5)は1枚の画像で位相を解析できるため、運動物体などの解析に有用である。
 運動物体をリアルタイムに計測するには計算を高速に行う必要があり、できるだけ少ない画像データで位相計算をするほうが良い。しかしながら、サンプリングモアレ法は2周期のデータを用いて位相計算を行ない、またフーリエ変換法は全画素のデータを用いて位相の解析を行っており、少ない画像データにより動画像での計測をすることができなかった。
 一方、本出願人は、格子1周期分の画像データをフーリエ変換などにより位相を解析する新しい格子投影法を出願している(以下、「前提技術」という)。これにより1枚の画像から位相分布を高速に解析することができ、動画像の解析も可能となる。
 この前提技術の特徴を以下に示す。
(1)位相解析による計測であるため精度が良い。
(2)1枚の画像で位相解析できるので、運動する物体の形状計測が可能である。
(3)フーリエ変換により周波数1のみを抽出しているので、正確な余弦波の輝度分布をもつ格子を投影しなくても良い。
(4)また、フーリエ変換により周波数1のみを抽出しているので、高周波部分に現れるノイズは自動的に削除されるためノイズに強い。
(5)処理が簡単で、高速に処理ができる。
(6)ゲージ長がN画素となり、サンプリングモアレ法よりも短い。一般的に、デジタル画像相関法よりもゲージ長が短い。
(7)サンプリングモアレ法では直線補間によりモアレ縞を生成しているが、本発明は余弦波と相関をとっていることになるため、精度がより高い。
 しかしながら、前提技術はx方向にM画素(Mは2以上の整数)、y方向に1画素の横長の画像データを用いて位相解析を行う必要がある。そのため、x方向の空間分解能が十分ではなく、x方向に段差のある部分など位相変化の大きいところでは広い範囲にわたって誤差が大きくなっていた。
 そこで、本発明の目的は、位相解析に上記前提技術と同じ画素数を使っても、x方向にMx画素、y方向にNy画素(Mx、Nyは2以上の整数)の2次元領域のデータを使うことにより、x方向とy方向の空間分解能をほぼ同じ程度に小さくでき、段差のある部分でも、誤差の大きくなる部分の幅を狭くできる位相解析方法、および、前記位相解析方法を利用した装置、を提供することである。
 本発明は、物体面に投影された格子像または前記物体面に描画された格子を撮影した撮影像から選択した、x方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、前記投影されている格子像の格子または描画された格子の位相が2mπ(mは整数)をMx×Ny等分されているように、光学系を調節された状態で、撮影像を入力し、前記撮影像から、前記格子像または前記格子の画像のx方向Mx画素、y方向Ny画素からなる長方形領域(Mx、Nyは2以上の整数)を抽出し、前記長方形領域の画素の輝度を元に位相を求める計測方法である。
 また、本発明は、基準面に投影された格子像を撮像するステップと、前記基準面に投影された格子像を撮像した画像のx方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、投影された格子像の位相が2mπ(mは整数)をMx×Ny(=M)等分されているように光学系を調節するステップと、前記基準面に載置された物体に形成された格子像を撮像するステップと、前記物体に形成された格子像を撮像した画像の、x方向Mx、y方向Ny画素からなるMx×Ny画素の長方形領域において、2mπをMx×Ny等分した輝度値を得るステップと、前記輝度値を用いて位相を求めるステップと、を含む計測方法である。
 また、本発明は、変形前の物体に描画された格子を撮像するステップと、前記物体に描画された格子を撮像した画像のx方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、描画された格子の位相が2mπ(mは整数)をほぼMx×Ny(=M)等分されているように光学系を調節するステップと、前記物体に描画された格子の変形後の模様を撮像するステップと、前記物体に描画された格子の変形後の模様を撮像した画像の、x方向Mx、y方向Ny画素からなるMx×Ny画素の長方形領域において、2mπをほぼMx×Ny等分した輝度値を得るステップと、前記物体の変形前の前記輝度値を用いて前記長方形領域の変形前の位相を求めるステップと、該物体の変形前後の位相差に基づいて物体面の変位を求めるステップと、を含む計測方法である。
 前記輝度値を得るステップは、前記物体に投影された格子像を撮像した画像の画素毎に前記長方形領域をずらして前記位相を求めてもよい。
 前記輝度値を得るステップは、前記物体に描画された格子を撮像した画像の画素毎に前記長方形領域をずらして前記位相を求めてもよい。
 本発明は、全空間テーブル化手法を用いて、前記位相に基づいて物体面の位置を求めてもよい。
 本発明は、前記x方向または前記y方向にピッチの異なる1画素より大きいピッチ以上の格子を用い、前記ピッチの異なる1画素より大きいピッチの格子に基づいて位相値を求めるステップと、前記ピッチの異なる格子に基づいて求めた位相より位相接続を行うステップと、を更に含む、計測方法としてもよい。
 本発明は、上記輝度値に基づいて位相を求める計測装置としてもよい。
 本発明は、上記計測方法を実行する計測プログラムとしてもよい。
 本発明は、前記計測プログラムを記憶するコンピュータ読み取り可能な記録媒体としてもよい。
 本発明により、位相解析に同じ画素数を使っても、x方向にMx画素、y方向にNy画素(Mx、Nyは整数)の領域のデータを使うことにより、x方向とy方向の空間分解能をほぼ同じ程度に小さくでき、段差のある部分でも、誤差の大きくなる部分の幅を狭くできる位相解析方法を提供できる。
 本発明の位相解析方法を、面内変形の1次元変位(およびひずみ)解析方法に適用可能である。面内変位の場合は、変形前と変形後の位相の差は変位に対応する。従来のサンプリングモアレ法や前提技術はx方向に空間分解能が悪かったが、本発明ではx方向とy方向の空間分解能を同じ程度に小さくできる。
格子投影法の光学系(モアレトポグラフィ)である。 モアレトポグラフィの光学系の説明図である。 カメラ撮像面の1画素が見る物体の位相と基準面の位相の関係の説明図である。 カメラ撮像面の1画素が見る物体の位相と基準面の位相の関係の説明図である。 参考例の装置全体の構成である。 カメラ撮像面に映る格子の影像である。 格子の処理手順である。 格子の処理手順である。 格子の処理手順である。 従来技術であるサンプリングモアレ法や前提技術で用いられている格子画像である。 本発明で用いられる格子画像の例1の画像を示す図である。 本発明で用いられる格子画像の例2の画像を示す図である。 本発明で用いられる格子画像の例3の画像を示す図である。 本発明で用いられる格子画像の例4の画像を示す図である。 本発明で用いられる格子画像の例5の画像を示す図である。 本発明で用いられる格子画像の例6の画像を示す図である。 投影された周波数2の格子を説明する図である。 投影された周波数-3の格子を説明する図である。 図14と図15を足し合わせることにより得られた周波数2と周波数-3の格子を合成した格子
 本発明は、発明が解決しようとする課題を克服し、高速、高精度な方法を提供可能である。本発明は物体面の格子をカメラにより撮影して解析し、計測する方法である。本発明は、物体に投影された格子像あるいは、物体に描画された格子を撮像した画像の輝度データをもとに、高精度に位相値を求めることが可能となる位相解析方法に関する。そして、高精度に求めた位相をもとに、物体面の高さを計測して物体面形状を計測するだけでなく、物体面に設けた格子模様をカメラによって撮影することにより、物体面の面内方向への変位を計測することもできる。
 以下、本発明の実施形態を説明する。
<実施形態1>
 まず、本発明の測定原理を説明する。
 本発明は、格子投影法で一次元格子を投影し、その格子画像の1ピッチが常に一定のM画素となることを利用して、そのM画素の輝度データより位相を解析し、位相から高さなどの情報を得る方法である。
<光学系と座標>
 図2,図3A,図3Bに形状計測装置の格子投影機構と計測対象物の説明用概略図を示す。
 まず、図2でモアレトポグラフィの光学系についてさらに説明する。
 Lは光源の位置、Vはカメラレンズの中心を表す。格子は光源の位置Lからdの距離にあり、1周期の幅はpである。
 この光学系では、基準面に対して、カメラレンズの中心Vとプロジェクタの光源Lの高さが同じであり、カメラ撮像面および格子面は基準面に平行である。
 光源Lから距離z1離れた位置に物体面が、距離z2離れた位置に基準面があり、光源Lからd離れた位置には格子面がある。格子面は基準面に平行であり、周期がpである等間隔の一次元格子線が描かれている。光源には点光源を用いるが、格子線に平行な1ライン線光源を用いてもよい。
 光源Lを含み基準面に平行な面を光源面と呼ぶ。説明のために光源を原点としてx,y,z座標をとり、基準面に垂直な方向をz方向とする。図2では下方がz方向の正になっている。
 格子の面に描いた格子線に垂直な方向がx方向、格子線に平行な方向がy方向である。カメラレンズの中心は光源面内にあり、x方向に距離vだけ光源Lから離れている。カメラ撮像面は基準面と格子面に平行であり、カメラ撮像面の画素座標(i,j)のi方向,j方向は各々x方向とy方向と一致している。
 この光学系では、物体面や基準面がどの高さにあってもカメラ撮像面での格子1周期の像は同じ幅になる。したがって、デジタルカメラ撮像面のN画素に格子の1周期が映るように設定すると、物体面や基準面がどの高さでも格子の1周期の像がN画素に映ることになる。このことを図2で説明すると以下の通りになる。
 投影された格子1周期の影は、物体面ではx1に、基準面ではx2になる。光源面からの距離は、物体面ではz1、基準面ではz2、カメラ撮像面ではz3、格子面ではdである。 
 格子の1周期pの影は、物体面ではpをz1/d倍したx1となり、基準面ではpをz2/d倍したx2となる。カメラ撮像面での大きさx4はx1をz3/z1倍したものであり、x5はx2をz3/z2倍した大きさであるから、x4とx5はともにpのz3/d倍になる。すなわち、カメラ撮像面に映る格子の1周期の大きさは光源面から格子までの距離と、カメラレンズの中心からカメラ撮像面までの距離の比によって定まり、物体面や基準面までの距離には影響されない。
 このことから、格子1周期の像を捉えるカメラのセンサー画素数は基準面からの計測対象物体の高さによらず一定となる。すなわち、格子1周期をN画素に映るように設定すると、連続するN画素には常に格子1周期分が映っていることになる。
 一方で、図1においてx4とx5の位置がずれていることから判るように、物体面や基準面までの距離が変化すると格子がカメラ撮像面に映る位置は変化する。換言すると、基準面から物体面までの高さにより、カメラ撮像面の画素に映る格子の位相が変わることになる。
 以上のことから、位相解析を行えばその高さを求めることができる。すなわち、N画素をフーリエ変換し、最大のパワースペクトルをもつ周波数1を抽出し、その周波数1の位相を求めれば、物体面等の高さを計測できることになる。また、実際の測定に際しては、光学系に応じて、前記周波数を予め設定しておき、その予め設定した周波数の位相を求めることにより、物体面等の高さを計測することもできる。
 なお、上記したように、基準面に投影された格子の1周期がデジタルカメラのN画素となるようにレンズの拡大率を調整しておくことが好ましい。
 次に、図3を用いて基準面から物体面までの高さを求める方法を説明する。
 図3Aは図3Bの上部を拡大したものである。
 まず、カメラレンズの中心Vをx軸上の座標(v,0,0)の位置に置く。すなわちカメラレンズの中心Vは距離vだけ光源Lから離れている。基準面の点Rが映るカメラ撮像面の画素には、物体を置いた際に物体面の点Sが映る。図3Bでは、この画素および点S、点Rを通る線を、カメラ視線として示す。物体面における点Sをz軸に垂直に投影した点を点B、基準面における点Rをz軸に垂直に投影した点を点Iとする。また、光源の位置Lから点Rへの光が格子面を通過する点を点Qとし、光源の位置Lから点Rへの光が物体面の点Sからz軸に垂直に投影した線をその光が横切る点を点Pとする。さらに、光源の位置Lから点Sへの光が格子面を通過する点を点Gとする。z軸と格子面の交点を点Cとする。点Eは格子の原点であり、点Cと点Eの距離をeとする。そして、点Iと点Bの距離、すなわち基準面から物体面までの高さをhとする。
<投影格子の位相>
 いま、z=dにある格子の透過率分布Iは余弦波状になっており、次の式で示される。
Figure JPOXMLDOC01-appb-M000001
 ここで、aは振幅、Φは格子の位相、bは背景である。光源が格子を照射して、格子の影が基準面または物体面に投影される。その格子の影がカメラ撮像面に映る際の輝度分布は、格子1周期に相当する連続したN画素に対して、基準面や物体面等の高さzにおいて、次の式で表される。
Figure JPOXMLDOC01-appb-M000002
ここで n=0,1,・・・N である。
 数式2において、
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
と、置き直すと、数2式は数6式で表すことができる。 
Figure JPOXMLDOC01-appb-M000006
となる。
 物体面の場所S(x,y,z)からx方向の格子の影の1周期は、カメラ撮像面の連続するN画素に映るように、カメラレンズにより調整されている。
 そこで、このN個のデータに対して離散的フーリエ変換を行ない、その周波数1を抽出し、それより位相を求めると、滑らかな余弦波状の波の位相θを得ることができ、非常に精度の良い位相解析を行うことができる。
 この位相θ(-π<θ≦π)は、次の式を用いて計算できる。
Figure JPOXMLDOC01-appb-M000007
 x方向の全画素について上記の位相θを求めてx方向に位相接続すると、格子の位相Θを得ることができる。
 <等高線を表すモアレ縞の位相>
 モアレトポグラフィにおいては、等高線を表すモアレ縞の位相Θは、基準面に投影された格子の位相Θと物体の上に投影された格子の位相Θの差Θ=Θ-Θとして求められる。これよりzが求められ、あるいは基準面からの高さh=zR-zが求められる。
 この計算式は次のように求められる。
 基準面上の点Rに投影された格子の影の位相Θ
Figure JPOXMLDOC01-appb-M000008
となる。
 ここで、△LIRと△LCQとの相似より
Figure JPOXMLDOC01-appb-M000009
となり、数式9を数式8に代入すると
Figure JPOXMLDOC01-appb-M000010
となる。
 同様に△LBSと△LCGとの相似を用いると、物体上の点Sに投影された格子の影の位相Θは以下のようになる。
Figure JPOXMLDOC01-appb-M000011
 数式10の点Rの位相と数式11の点Sの位相の差として、次の式のようにモアレ縞の位相Θが得られる。 
Figure JPOXMLDOC01-appb-M000012
 一方、二つの三角形△LPSおよび△LQGの相似より
Figure JPOXMLDOC01-appb-M000013
 また、△RLVおよび△RPSの相似より
Figure JPOXMLDOC01-appb-M000014
 これらから、
Figure JPOXMLDOC01-appb-M000015
 これより
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 このように、基準面の格子と物体面の格子の位相差としてモアレ縞の位相を計測することにより、基準面から物体面までの高さhが求められる。
 ここで、物体面の高さを求めることにより物体面形状を計測する方法を説明する。
 図4に計測装置全体の構成を示す。
 1はLED等のランプであり、光源に相当する。2は格子、3は計測対象の物体、4は載置台、5はデジタルカメラ、6は撮像素子、7はレンズ、8はコンピュータ、9は出力装置である。計測結果を得るだけであればコンピュータ8などに結果を記憶すればよいので、出力装置9はなくてもよい。また、ランプ1と格子2としては、市販の液晶プロジェクタなどのプロジェクタを用いてもよい。この場合、液晶表示素子等で格子を表示して格子2を形成する。プロジェクタを用いると、格子の幅や方向を自在に変更することができる。
 物体3をランプ1で照射すると、物体面に格子2の影が投影され、レンズ7を介してデジタルカメラ5の撮像素子6に影の像が映る。映った像はデジタルカメラ5からコンピュータ8に送られる。そして、コンピュータ8では、記憶されている本発明の方法を実現するプログラムにより前記像が解析されて計測値が得られる。得られた計測値はコンピュータ8に記憶されるとともに、必要であれば出力画像などに加工され、出力装置9に送られて出力される。出力装置は具体的には表示装置や印刷装置などである。
 コンピュータ8には、後述する全空間テーブル化法を実行するためのデータテーブル8aをメモリに記憶することも可能である。また、本発明に係るプログラムをコンピュータ8で実行することができる。また、本発明に係るプログラムを記録した記録媒体8bをコンピュータ8に装着することで、本発明に係る計測方法を実行することができる。
 基準面を載置台4の表面としても良く、載置台4の上に基準面を有する物体を載置しても良い。基準面と物体面があれば計測できるので、基準面の代わりに物体面を有した物体を置いても良い。また、ランプ1、格子2、物体3、載置台4、デジタルカメラ5を含んだ全体を横にした状態とし、横方向で物体面形状を計測することも可能であり、斜め方向で計測することも可能である。
 <位相解析手順>
 基準面に一次元格子を投影する。これをデジタルカメラで撮影する。図5はこのようにして撮影した画像の一部の拡大説明図である。この例の場合、格子の1周期をカメラ撮像面のN画素(ここではN=8)となるように倍率を調節している。カメラ撮像面の画素が黒い長方形で表現されている。この図の斜線で示される部分は格子の輝度の低い部分を示し、その他の部分は格子の輝度の高い部分を示している。格子線に直角な方向をx方向、それに垂直な方向をy方向とする。カメラ撮像面における画素の座標を(i,j)とする。そして、i方向、j方向をそれぞれx方向およびy方向に合わせて撮影する。
 この画像を次のように処理する。
(1)連続するN画素の画像データ(図6A)を一次元フーリエ変換する。
(2)これにより-N/2~N/2の周波数スペクトル(図6B)が得られる。この中で最大のパワースペクトルをもつ、N画素を一周期とする周波数1または周波数-1の成分を抽出する。図5Bでは、周波数1だけを取り出している。
(3)その抽出した周波数の位相計算を行えば位相が得られる。そして、そのN画素の格子の先頭の画素に対応して記憶する。(図5C)
(4)次に、N画素の格子の組み合わせをx方向に1画素だけずらして(1)~(3)の位相計算と記憶を繰り返す。
(5)x方向の移動がすべて終わったら(1)~(4)の走査をすべてのy方向について行う。
 なお、数式7を用いて位相を直接求める場合は(1)~(3)の手順をまとめて行っていることになる。このようにして得られたほぼ1画面分の位相がこの格子の基準面の位相分布となる。
 物体の格子の位相を解析する場合は、カメラはそのままにして、基準面の代わりに物体を置くなどして同様に(1)~(5)の計算を繰り返す。このようにして得られた位相分布が物体面の位相分布となる。
 次に、得られた物体面の位相および基準面の位相をそれぞれ位相接続する。格子投影法の場合、格子の位相は基本的に単調関数となる。そのため、位相のジャンプが起こる毎に2πを増加あるいは減少させることにより容易に位相接続ができる。
 位相接続の後に、各画素に物体の位相と基準面の格子の位相との位相差であるモアレ縞の位相Θを求める。これより数式17を用いて高さhを求めることができる。ここでは、フーリエ変換してから周波数1等の位相を得ているため、正確な余弦波の輝度分布をもつ格子を投影することなく、ノイズに強い計測を行うことができる。
 前記の前提技術はx方向にN画素、y方向に1画素の横長の画像データを用いて位相解析をしていた。そのため、x方向の空間分解能が悪く、x方向に段差のある部分など位相変化の大きいところでは広い範囲にわたって誤差が大きくなる。
 そこで、本発明は、位相解析に同じ画素数を使っても、x方向にMx画素、y方向にNy画素(Mx,Nyは2以上の整数)の2次元領域のデータを使うことにより、x方向とy方向の空間分解能をほぼ同じ程度に小さくでき、段差のある部分でも、誤差の大きくなる部分の幅を狭くできる。
 そこで、モアレトポグラフィの光学系においてz=0の基準面に格子を投影し、基準面上のx方向Mx画素、y方向Ny画素からなる長方形(正方形を含む)内において、投影されている格子の位相が2πをMx×Ny等分されるように光学系を調節する。そうすると、すべての画素の位置において、x方向Mx、y方向Ny画素からなるMx×Ny画素の長方形領域において、2πをMx×Ny等分した位相に対応する輝度値が得られ、この輝度データより各画素における位相を求めることができる。
 図1に示すモアレトポグラフィの光学系において、光源Lから出た光は、格子を通って格子の影を対象物の上に投影する。対象物の形状に応じて歪んだ格子の影をカメラが撮影する。
 前提技術の光学系では、基準面に投影した1次元の格子線が図1および図7に示すように、x軸に垂直となるように設置し、図7に示すようにカメラで撮影された格子の1ピッチがx方向にM画素(図7の場合M=9)となるように光学系を配置しておく。図7は従来技術であるサンプリングモアレ法や前提技術で用いられている格子画像である。格子は、x方向に垂直な格子線からなり、x方向M画素(この図ではM=9)で1ピッチとなるように光学系を調整している。x方向のM画素(この図では、M=9)のデータを用いて位相解析を行う。符号90で示される領域の9画素を用いて位相解析を行う。
 一方、本発明の光学系では、基準面に投影した格子が図8に示すようにx軸に垂直とはならず斜めとなっている。それでも格子の1ピッチがx方向にM画素で1ピッチとなるように調整している。ただし、y方向に格子の1ピッチがNy画素(図8の場合、Mx=3、Ny=3)となるように調整している。
 結果的に、x方向にMx画素、y方向にNy画素、Mx×Ny=M(M,Mx,Nyは2以上の整数)となるように光学系を配置しておくと、1周期の位相をN等分した位相の輝度データがMx×Nyの領域の輝度データとして得られる。
 格子線100は投影されている格子の位相0の線、格子線101は投影されている格子の位相π/2(90度)の線、格子線102は投影されている格子の位相π(180度)の線、格子線は投影されている格子の位相3π/2(270度)の線を表す。
 図7の各画素に書いてある数字は、投影されている格子の位相の番号を示しており、0は位相0(0度)、数字が増えるごとに位相が2π/(Mx×Ny)ずつ増える。この図の場合、2π/9(40°)ずつ増える。
 図8は本発明で用いられる格子画像の例1の画像を示す図である。格子は、斜めに等間隔に投影されている。符号91のM×1画素の領域を見ると、x方向の1ピッチはM画素である。y方向の1ピッチはN画素となるように投影する格子の向きを調整している。すなわち、格子線のピッチや方向をうまく調整すると、Mx×Nyの長方形領域の各画素の位相の変化が等間隔で得られる位置がある。図8では、Mx×Ny=M画素のデータが2πをM分割した位相変化となっており、これを用いて位相解析を行うことが可能である。
 格子線110は投影されている格子の位相0の線、格子線111は投影されている格子の位相π/2(90度)の線、格子線112は投影されている格子の位相π(180度)の線、格子線113は投影されている格子の位相3π/2(270度)の線を表す。
 図8において各画素に書いてある数字は投影されている格子の位相の順番を示す。この図の各画素に書いてある数字は、位相の番号を示しており、0は位相0(0度)、数字が増えるごとに位相が2π/(Mx×Ny)ずつ増える。具体的には、x方向に9画素とy方向に1画素で1周期となり、この9画素(符号91で示される領域)から位相解析が可能である。一方、x方向に3画素、y方向に3画素の計9画素(符号92で示される領域)をみると、どちらも1周期を9分割した同じ位相のデータが得られている。x方向もy方向も3画素の空間分解能となり、x方向も、y方向も、同じ等方性の精度の良い位相解析が可能である。
 図8の場合も、符号91で示される領域のM画素を解析しても位相が求められるが、符号92で示される領域のMx×Ny(=M)画素を解析しても同じように画素データが得られており、こちらを解析しても位相が得られる。この符号92で示される領域のx方向の領域の長さが、符号91で示される領域のx方向の長さよりも短く領域が正方形に近いため、空間分解能の方向性が少なく急な段差があってもその影響の及ぶ範囲が小さくてすむ。
 具体的には図8に示すように、Mx=3,Ny=3,M=9に選ぶと、領域91であるx方向にM(=9)画素、y方向に1画素の輝度データと、x方向にMx(=3)画素、y方向にNy(=3)画素の輝度データとが同じ位相配置となる。領域91の輝度データを使う代わりに領域92の輝度データを使えば、同じように解析できることになり、細長い領域91の輝度データよりも正方形に近い領域92の輝度データを使う方が、空間分解能が良くなるといえる(なぜなら、領域91ではx方向に9画素のデータを使って位相を求めているが、領域92ではx方向に3画素のデータを使っているだけであり、x方向の空間分解能が良くなる。)。
 つぎに、撮影した格子画像のx方向Mx画素、y方向Nx画素となる領域のM=Mx×Ny個の輝度データを取り出し、その輝度データより数18式を用いて(初期)位相θの解析を行う。
Figure JPOXMLDOC01-appb-M000018
 得られた画像の各画素ごとに位相解析の処理を行う。処理する画素の周辺にMx×Ny画素領域をとり、その領域の各画素の輝度データを各画素の位相の順(図8の場合、各画素に書いてある番号の順)に並べ、その輝度データを用いて数18式により位相θを求める。その位相θと基準面の位相θRの差Θ(Θ=θ-θR)に対応する高さ情報を計算により求める。あるいは全空間テーブル化手法により予め求めておいたテーブルより求める。
位相差Θと高さhの関係は図3より数19式で与えられる。
Figure JPOXMLDOC01-appb-M000019
 この作業を1画素ずつずらしながら行う。すべての画素において、高さが求められれば形状が計測されたことになる。
 なお、1次元に複数に並んだ画素を基に、基準面から物体面までの高さhを数17式で求めたが、2次元に並んだ画素を基に、基準面から物体面までの高さhも数17式と同じように、数19式によって求めることができる。
 図9は本発明で用いられる格子画像の例2の画像を示す図である。図8と格子の向きが異なっているが、図8と同様に符号91で示される領域のM(=9)画素を解析しても位相が求められる。符号92で示される領域(Mx=3,Ny=3の場合)の9画素を解析しても同じように輝度データが得られており、こちらを解析しても位相が得られる。
 図10は本発明で用いられる格子画像の例3の画像を示す図である。図8と格子の向きが異なっているが、図8と同様に符号91で示される領域のN(=9)画素を解析しても位相が求められる。符号92で示される領域(Mx=3,Ny=3)の9画素を解析しても同じように輝度データが得られており、こちらを解析しても位相が得られる。
 図11は本発明で用いられる格子画像の例4の画像を示す図である。図8と同様に符号93で示される領域のM(=25)画素を解析しても位相が求められるが、符号94で示される領域(Mx=5、Ny=5)の25画素を解析しても同じように輝度データが得られ、こちらを解析しても位相が得られる。
 図12は本発明で用いられる格子画像の例5の画像を示す図である。図8と同様に符号95で示される領域のM(=15)画素を解析しても位相が求められる。符号96で示される領域領域(Mx=3、Ny=5)の15画素を解析しても同じように輝度データが得られ、こちらを解析しても位相が得られる。図12に示されるように、長方形の領域でも位相を求めることができる。
 図13は本発明で用いられる格子画像の例6の画像を示す図である。図8と同様に符号97で示される領域のM(=20)画素を解析しても位相が求められる。符号98で示される領域の(Mx=4、Ny=5)の20画素を解析しても同じように輝度データが得られ、こちらを解析しても位相が得られる。
<実施形態2>
 実施形態2は、全空間誤差テーブルを用いた形状計測法に関する。実施形態1では位相と高さの関係を計算により求めているが、全空間テーブル化手法を用いて各画素の位相を求めることが可能である。なお、全空間テーブル化法は、特開2011-2378号公報(和歌山大学)に記載されているように公知の技術である。
 全空間テーブル化手法は、各画素に対して位相と高さ(さらにはx,y,z座標)との関係を予め求めてテーブルとし、位相が求められれば、そのテーブルを見るだけで、高さ情報が得られた。このため三角測量による計算が不要となり高速計測となり、光学系のもつ誤差もテーブルを参照することによりキャンセルされ高精度となった。
 本発明では、モアレトポグラフィに適用するので、位相と高さの関係は理論式で得られ、すべての画素で同じ式となる。しかし、光学系などの誤差により、理論と合わず、画素毎に誤差が出てくる。
 そこで、全空間テーブルの代わりに、実際の計測高さと理論高さの比Qあるいは実際の計測高さと理論高さの差Sをテーブル化した全空間誤差テーブルを作成し、位相より得られた理論高さにこのテーブル値Qを掛け算することにより、あるいは理論高さにSを加えることにより、高さを求める方法とする。この全空間誤差テーブルは、画素毎の誤差分布を表しており、この表のデータを可視化し、誤差が小さくなるように光学系を調節することにより、光学系の調整などがし易くなる。
<実施形態3>
 上述したように本発明では、長方形領域(正方形を含む、具体的には3×3画素)の領域の画像データを使って位相解析を行っている。本発明の実施形態3では、同じ領域にx方向ピッチの異なる2種類の格子を用い、それぞれの位相を解析し、その結果より位相接続を行い、ダイナミックレンジの広い位相解析方法を実現できる。
 長方形(正方形を含む)領域の画素においてx方向に周波数の異なる2種類以上の波を入れ、その領域の画像の輝度データより、それぞれの波を、フーリエ変換などを用いて分離抽出し、それらの波の位相を求める(実際にはフーリエ変換をしなくても直接位相を求める周波数1に対応した位相を求める数7式やより高い周波数に対応した同等の式に代入すれば良い)。
 求めた2つ以上の波の位相より位相接続を行い、ダイナミックレンジの広い形状計測法とすることができる。本発明の実施形態1、2では、x方向の格子ピッチが1種類の格子だけを投影したため、ダイナミックレンジが狭い。本発明の方法は、2種類の格子を一度に投影することにより、ダイナミックレンジを広げる方法を提供する。その技術内容を以下に示す。
 図14はカメラの各画素に映った格子の画像を示す模式図であり、一番小さな正方形が1画素の大きさ、斜めの線が格子の位相を表している。符号130の格子の線が位相0の線、符号131の格子の線が位相π/2の線、符号132の格子の線が位相πの線、符号133の格子の線が位相3π/2の線を表している。符号120の領域に示す横1ライン9画素のデータを見ると、画素が隣へ移動するたびに位相が増えていき、9画素で2周期分の位相変化となっている。
 この場合、符号121で示される3×3画素の領域を見ると、1行目は符合120の領域で示される9×1画素の領域の最初の3画素、2行目は次の3画素、3行目はその次の3画素の位相と同じデータが並んでおり、符合120の領域を解析しても、符合121の領域を解析しても同じように位相が得られることになる。
 図15の場合は、符合122の領域で周期が3回変化している。符号123で示される3×3画素の領域を見ると、1行目は符合122の領域の最初の3画素、2行目は次の3画素、3行目はその次の3画素の位相と同じデータが並んでおり、符合122の領域を解析しても、青い領域を解析しても同じ位相が得られることになる。
 図14の9個のデータを用いてフーリエ変換を行うと、周波数2あるいは-2のみが存在することになる。図15の9個のデータを用いてフーリエ変換を行うと、周波数3あるいは-3のみが存在することになる。
 図14の格子と図15の格子を重ねて(輝度を足しあわせて)、図16のように投影すると、符合124の領域のデータには、周波数2の格子と周波数3の格子が重なりあっており、この画像データをフーリエ変換すると周波数2と3の成分が出てくる。
 この周波数の位相を解析すると、それぞれの波の位相を得ることができる。周波数の異なる波2つの位相から、位相接続することができ、2つの位相の差が2πになるまでの範囲を広げて解析できる。
<実施形態4>
 本発明による位相解析方法は、物体のひずみ解析に適用できる。例として、平面内での面内1次元微小変形を考える。面外変形がなく、微小変形であるので、この場合も、格子のピッチはかわらず位相のみが変化すると考えることができる。x方向のピッチをpxとすると、位相の変化量がΔΘのとき、x方向の変位uは、数20式で与えられる。
Figure JPOXMLDOC01-appb-M000020
 上記の位相の変化量は、次のようにして求める。変形を測定する物体に格子を描画する。そして、描画された格子を撮像する。撮像手段は先述のとおりの装置を用いることができる。
 前記物体に描画された格子を撮像した画像のx方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、描画されている格子の位相が2mπ(mは整数)をMx×Ny(=M)等分されているように光学系を調節する。
 物体に描画された格子を撮像した画像のx方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、描画されている格子の位相が2mπ(mは整数)をMx×Ny等分した輝度値を得る。そして、得られた輝度値を用いて、前記長方形内における位相を数18式により算出する。前記物体に描画された格子を撮像した画像の画素ごとに前記長方形の領域をずらして画素ごとに位相を求める。
 次に、物体の変形後に、物体に描画された格子の変更後の模様を撮像する。前記物体に描画された格子の変形後の模様を撮像した画像の、x方向Mx、y方向Ny画素からなるMx×Ny画素の長方形領域において、2mπをMx×Ny等分した輝度値を得る。そして、得られた輝度値を用いて、変形後の前記長方形内における位相を数18式により算出する。物体の変形後の格子模様を撮像した画像の画素ごとに前記長方形の領域をずらして画素ごとに位相を求める。
 そして、前記物体の変形前後の各画素における位相差に基づいて物体面の変位を数20式に基づいて算出することができる。
 格子を描画する物体の面は平面に限らない。物体表面の面内での変位を測定するので、物体の表面が曲面であってもよい。
 1 光源
 2 格子
 3 物体
 4 載置台
 5 デジタルカメラ
 6 撮像素子
 7 レンズ
 8 コンピュータ
 8a データテーブル
 8b 記録媒体
 9 出力装置
 L 光源の位置
 V カメラレンズの中心
 R 基準面の点
 S 物体面の点
 C z軸と格子面の交点
 E 格子の原点
 Q 光源から点Rへの光が格子面を通過する点
 G 光源から点Sへの光が格子面を通過する点
 B 物体面における点Sをz軸に垂直に投影した点
 P 光源から点Rへの光が、物体面の点Sからz軸に垂直に投影した線を横切る点
 I 基準面における点Rをz軸に垂直に投影した点

Claims (10)

  1.  物体面に投影された格子像または前記物体面に描画された格子を撮影した撮影像から選択した、x方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、前記投影されている格子像の格子または描画された格子の位相が2mπ(mは整数)をMx×Ny等分されているように、光学系を調節された状態で、撮影像を入力し、
    前記撮影像から、前記格子像または前記格子の画像のx方向Mx画素、y方向Ny画素からなる長方形領域(Mx、Nyは2以上の整数)を抽出し、前記長方形領域の画素の輝度を元に位相を求める計測方法。
  2.  基準面に投影された格子像を撮像するステップと、
    前記基準面に投影された格子像を撮像した画像のx方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、投影された格子像の位相が2mπ(mは整数)をMx×Ny等分されているように光学系を調節するステップと、
    前記基準面に載置された物体に形成された格子像を撮像するステップと、
    前記物体に形成された格子像を撮像した画像の、x方向Mx、y方向Ny画素からなるMx×Ny画素の長方形領域において、2mπをMx×Ny等分した輝度値を得るステップと、
    前記輝度値を用いて位相を求めるステップと、
    を含む計測方法。
  3.  変形前の物体に描画された格子を撮像するステップと、
    前記物体に描画された格子を撮像した画像のx方向Mx画素、y方向Ny画素からなる長方形内(Mx、Nyは2以上の整数)において、描画された格子の位相が2mπ(mは整数)をほぼMx×Ny等分されているように光学系を調節するステップと、
    前記物体に描画された格子の変形後の模様を撮像するステップと、
    前記物体に描画された格子の変形後の模様を撮像した画像の、x方向Mx、y方向Ny画素からなるMx×Ny画素の長方形領域において、2mπをほぼMx×Ny等分した輝度値を得るステップと、
    前記物体の変形前の前記輝度値を用いて前記長方形領域の変形前の位相を求めるステップと、該物体の変形前後の位相差に基づいて物体面の変位を求めるステップと、
    を含む計測方法。
  4.  請求項2において、
     前記輝度値を得るステップは、前記物体に投影された格子像を撮像した画像の画素毎に前記長方形領域をずらして前記位相を求める計測方法。
  5.  請求項3において、
     前記輝度値を得るステップは、前記物体に描画された格子を撮像した画像の画素毎に前記長方形領域をずらして前記位相を求める計測方法。
  6.  請求項2または4において、全空間テーブル化手法を用いて、前記位相に基づいて物体面の位置を求める計測方法。
  7.  前記請求項2または4において、
     前記x方向または前記y方向にピッチの異なる1以上の格子を用い、前記ピッチの異なる1以上の格子に基づいて位相値を求めるステップと、
    前記ピッチの異なる格子に基づいて求めた位相より位相接続を行うステップと、を更に含む、計測方法。
  8.  前記請求項1乃至7のいずれか一つの計測方法を行う計測装置。
  9.  請求項1乃至7のいずれか一つの計測方法を実行する計測プログラム。
  10.  請求項9に記載の計測プログラムを記憶した、コンピュータ読み取り可能な記録媒体。
PCT/JP2016/061324 2016-04-06 2016-04-06 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体 WO2017175341A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16723924.3A EP3441715A4 (en) 2016-04-06 2016-04-06 MEASURING METHOD, MEASURING DEVICE, MEASURING PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM HAVING THE MEASUREMENT PROGRAM RECORDED THEREON
JP2016535079A JPWO2017175341A1 (ja) 2016-04-06 2016-04-06 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
CN201680000448.0A CN107466356A (zh) 2016-04-06 2016-04-06 测量方法、测量装置、测量程序以及记录了测量程序的计算机可读取记录介质
US15/100,460 US10551177B2 (en) 2016-04-06 2016-04-06 Apparatus and method for measuring 3D form or deformation of an object surface using a grid pattern and reference plane
PCT/JP2016/061324 WO2017175341A1 (ja) 2016-04-06 2016-04-06 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061324 WO2017175341A1 (ja) 2016-04-06 2016-04-06 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体

Publications (1)

Publication Number Publication Date
WO2017175341A1 true WO2017175341A1 (ja) 2017-10-12

Family

ID=60000975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061324 WO2017175341A1 (ja) 2016-04-06 2016-04-06 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体

Country Status (5)

Country Link
US (1) US10551177B2 (ja)
EP (1) EP3441715A4 (ja)
JP (1) JPWO2017175341A1 (ja)
CN (1) CN107466356A (ja)
WO (1) WO2017175341A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115127A (ja) * 2018-12-31 2020-07-30 株式会社ミツトヨ マシンビジョン検査システムを用いてワークピース表面のz高さ値を測定するための方法
JP7509897B2 (ja) 2020-07-28 2024-07-02 テンセント・テクノロジー・(シェンジェン)・カンパニー・リミテッド 深度画像生成方法及び装置、基準画像生成方法及び装置、電子機器、ならびにコンピュータプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306230B1 (ja) * 2017-02-09 2018-04-04 Ckd株式会社 半田印刷検査装置、半田印刷検査方法、及び、基板の製造方法
CN112334732B (zh) * 2018-10-12 2023-06-09 松下知识产权经营株式会社 预测装置及预测方法
FR3087794B1 (fr) * 2018-10-26 2020-10-30 Safran Aircraft Engines Procede chimique de matification
EP3770799A1 (en) * 2019-07-24 2021-01-27 Ordnance Survey Limited A method of identifying topographic features
EP4104968B1 (en) * 2020-02-14 2023-10-25 Yamazaki Mazak Corporation Workpiece mounting method for machining apparatus, workpiece mounting support system, and workpiece mounting support program
CN113048913B (zh) * 2021-03-12 2024-02-02 中国人民解放军火箭军工程大学 一种数字投影系统间光轴平行度调整方法
CN113310722A (zh) * 2021-05-26 2021-08-27 中南大学 一种对粉料进行网格分区自动随机取样的设备和方法
CN113959347A (zh) * 2021-08-10 2022-01-21 南京中车浦镇城轨车辆有限责任公司 一种适用于地铁车辆的地板橡胶垫厚度分析方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260451A (ja) * 1994-03-18 1995-10-13 Shiseido Co Ltd 3次元形状測定システム
US6078396A (en) * 1997-06-10 2000-06-20 British Aerospace Public Limited Company Non-contact deformation measurement
US20090190139A1 (en) * 2008-01-25 2009-07-30 Fisher Lance K Multi-source sensor for three-dimensional imaging using phased structured light
JP2011002378A (ja) 2009-06-19 2011-01-06 Wakayama Univ 全空間テーブル化手法を適用した計測装置用のメモリボード、計測装置用の撮影装置、計測装置、及び微少変位計測装置
WO2016001985A1 (ja) * 2014-06-30 2016-01-07 4Dセンサー株式会社 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
WO2016001986A1 (ja) * 2014-06-30 2016-01-07 4Dセンサー株式会社 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014019A1 (de) * 1990-05-02 1991-11-07 Zeiss Carl Fa Verfahren zur messung eines phasenmodulierten signals
US5668631A (en) * 1993-12-20 1997-09-16 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
EP1215465A1 (de) * 2000-11-29 2002-06-19 Steinbichler Optotechnik Gmbh Verfahren und Vorrichtung zur Erfassung der Verformung von Objekten
US6940608B2 (en) * 2001-03-08 2005-09-06 Ricoh Company, Ltd. Method and apparatus for surface configuration measurement
JP3519698B2 (ja) 2001-04-20 2004-04-19 照明 與語 3次元形状測定方法
US7286246B2 (en) * 2003-03-31 2007-10-23 Mitutoyo Corporation Method and apparatus for non-contact three-dimensional surface measurement
JP4480488B2 (ja) * 2003-08-28 2010-06-16 富士通株式会社 計測装置、コンピュータ数値制御装置及びプログラム
JP3921547B2 (ja) 2004-08-27 2007-05-30 国立大学法人 和歌山大学 ラインセンサ及びライン状プロジェクタによる形状計測方法と装置
JP4775540B2 (ja) 2005-05-23 2011-09-21 日立造船株式会社 撮影画像における歪曲収差補正方法
JP2008046037A (ja) 2006-08-18 2008-02-28 Osaka Prefecture 光学的角度・変位測定方法及び測定装置
WO2008033329A2 (en) * 2006-09-15 2008-03-20 Sciammarella Cesar A System and method for analyzing displacements and contouring of surfaces
JP4873485B2 (ja) 2007-05-11 2012-02-08 国立大学法人 和歌山大学 多数の基準面を用いた形状計測方法および形状計測装置
JP4831703B2 (ja) 2008-04-23 2011-12-07 国立大学法人 和歌山大学 物体の変位測定方法
CN101422787B (zh) * 2008-12-10 2011-04-20 北京科技大学 基于单步相移法的带钢平坦度测量方法
DE102010029319B4 (de) * 2009-05-27 2015-07-02 Koh Young Technology Inc. Vorrichtung zur Messung einer dreidimensionalen Form und Verfahren dazu
GB0915904D0 (en) * 2009-09-11 2009-10-14 Renishaw Plc Non-contact object inspection
JP5610514B2 (ja) 2010-02-25 2014-10-22 国立大学法人 和歌山大学 変位計測装置、方法およびプログラム
CN102261896A (zh) * 2011-04-19 2011-11-30 长春东瑞科技发展有限公司 一种基于相位测量的物体三维形貌测量方法及系统
US9389068B2 (en) 2012-03-14 2016-07-12 National Institute Of Advanced Industrial Science And Technology Method and device for analysing phase distribution of fringe image using high-dimensional intensity information, and program for the same
US10126252B2 (en) * 2013-04-29 2018-11-13 Cyberoptics Corporation Enhanced illumination control for three-dimensional imaging
JP6120459B2 (ja) 2013-07-18 2017-04-26 国立研究開発法人産業技術総合研究所 規則性模様による変位分布のための測定方法、装置およびそのプログラム
WO2015175702A1 (en) * 2014-05-14 2015-11-19 Kla-Tencor Corporation Image acquisition system, image acquisition method, and inspection system
JP5957575B1 (ja) * 2015-06-12 2016-07-27 Ckd株式会社 三次元計測装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260451A (ja) * 1994-03-18 1995-10-13 Shiseido Co Ltd 3次元形状測定システム
US6078396A (en) * 1997-06-10 2000-06-20 British Aerospace Public Limited Company Non-contact deformation measurement
US20090190139A1 (en) * 2008-01-25 2009-07-30 Fisher Lance K Multi-source sensor for three-dimensional imaging using phased structured light
JP2011002378A (ja) 2009-06-19 2011-01-06 Wakayama Univ 全空間テーブル化手法を適用した計測装置用のメモリボード、計測装置用の撮影装置、計測装置、及び微少変位計測装置
WO2016001985A1 (ja) * 2014-06-30 2016-01-07 4Dセンサー株式会社 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
WO2016001986A1 (ja) * 2014-06-30 2016-01-07 4Dセンサー株式会社 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ARAI, Y; KURATA, T.: "High-Speed Moire Topography with High Precision Using a Technique with a Fringe Scanning Interferometer", OPTICS, vol. 15, no. 5, 1986, pages 402 - 406
FUJIGAKI, M.; MORIMOTO, Y.: "Grid Projection Three-Dimensional Form Measurement in Accordance with a Technique for Converting the Entire Space to a Table", EXPERIMENTAL MECHANICS, vol. 8, no. 4, 2008, pages 92 - 98
GU, RUOWEI ET AL.: "Talbot projected 3-D profilometry by means of one step phase-shift algorithms", PROCEEDINGS OF SPIE, vol. 1720, 20 October 1992 (1992-10-20), pages 470 - 477, XP055336548 *
MORIMOTO, Y.; FUJIGAKI, M; YONEYAMA, S.: "Recent Research on Form/Deformation Measurement in Accordance with Moire Method/Grid Method", NON-DESTRUCTIVE INSPECTION, vol. 52-3, 2003, pages 116 - 121
MORIMOTO, Y.; SEGUCHI, Y; HIGASHI, T.: "Two-Dimensional Moire Method and Grid Method Using Fourier Transform", EXPERIMENTAL MECHANICS, vol. 29, no. 4, 1989, pages 399 - 404
RI, S.; MORIMOTO, Y.; FUJIGAKI, M.: "Inspection Technology", vol. 14, 2009, JAPAN INDUSTRIAL PUBLISHING CO., LTD., article "Non-Contact Measurement of the Displacement Distribution of a Structure in Accordance with a Sampling Moire Method", pages: 1 - 6
See also references of EP3441715A4
TAKEDA, M; MUTOH, K.: "Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shapes", APPLIED OPTICS, vol. 22-24, 1983, pages 3977 - 3982, XP002453661, DOI: doi:10.1364/AO.22.003977
YOSHIHARU MORIMOTO ET AL.: "Sampling Moire-ho (OPPA-ho) ni yoru Shindo Mode Keisoku", THE JAPAN SOCIETY FOR PRECISION ENGINEERING 2015 NENDO KANSAI CHIHO TEIKI GAKUJUTSU KOENKAI RONBUNSHU, 23 June 2015 (2015-06-23), pages 86 - 87, XP009504775 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115127A (ja) * 2018-12-31 2020-07-30 株式会社ミツトヨ マシンビジョン検査システムを用いてワークピース表面のz高さ値を測定するための方法
JP7319913B2 (ja) 2018-12-31 2023-08-02 株式会社ミツトヨ マシンビジョン検査システムを用いてワークピース表面のz高さ値を測定するための方法
JP7509897B2 (ja) 2020-07-28 2024-07-02 テンセント・テクノロジー・(シェンジェン)・カンパニー・リミテッド 深度画像生成方法及び装置、基準画像生成方法及び装置、電子機器、ならびにコンピュータプログラム

Also Published As

Publication number Publication date
CN107466356A (zh) 2017-12-12
EP3441715A4 (en) 2019-11-13
JPWO2017175341A1 (ja) 2019-02-14
US10551177B2 (en) 2020-02-04
US20180094918A1 (en) 2018-04-05
EP3441715A1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2017175341A1 (ja) 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
JP6590339B2 (ja) 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
JP5818218B2 (ja) 高次元輝度情報を用いた縞画像の位相分布解析方法、装置およびそのプログラム
JP4873485B2 (ja) 多数の基準面を用いた形状計測方法および形状計測装置
JP5818341B2 (ja) 形状計測装置および形状計測方法
US9441959B2 (en) Calibration method and shape measuring apparatus
CN101105393A (zh) 投射多频光栅的物体表面三维轮廓的视觉测量方法
KR101627950B1 (ko) 화상 처리 장치, 왜곡 보정 맵 작성 장치, 및 반도체 계측 장치
JP3870275B2 (ja) エイリアシングを利用した投影格子の位相解析方法
JP2019139030A (ja) 3次元計測対象物体の表面に計測結果関連情報を投影する方法および装置
JP3629532B2 (ja) 連続移動物体のリアルタイム形状計測方法及びシステム
JP6035031B2 (ja) 複数の格子を用いた三次元形状計測装置
JP5956296B2 (ja) 形状計測装置及び形状計測方法
JP6533914B2 (ja) 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
Shimo et al. Development of dynamic shape and strain measurement system by sampling moire method
JP6923915B2 (ja) カラー物体の3次元形状とカラー情報とを同時に取得可能な計測方法、計測装置、計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
JP6884393B2 (ja) 射影変換を用いて変形格子を長方形格子や正方形格子に変換して位相解析を行なう方法および装置
Jo et al. Moiré vision: A signal processing technology beyond pixels using the moiré coordinate
JP3870269B2 (ja) エイリアシングを利用した干渉縞の位相解析方法
JP6482119B2 (ja) 三次元計測法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016535079

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016723924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016723924

Country of ref document: EP

Ref document number: 15100460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16723924

Country of ref document: EP

Kind code of ref document: A1