WO2017173684A1 - 一种散射层的制备方法、有机发光二极管 - Google Patents

一种散射层的制备方法、有机发光二极管 Download PDF

Info

Publication number
WO2017173684A1
WO2017173684A1 PCT/CN2016/080410 CN2016080410W WO2017173684A1 WO 2017173684 A1 WO2017173684 A1 WO 2017173684A1 CN 2016080410 W CN2016080410 W CN 2016080410W WO 2017173684 A1 WO2017173684 A1 WO 2017173684A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattering layer
refractive index
mask
index value
substrate
Prior art date
Application number
PCT/CN2016/080410
Other languages
English (en)
French (fr)
Inventor
武志勇
徐亮
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/128,119 priority Critical patent/US9985253B2/en
Publication of WO2017173684A1 publication Critical patent/WO2017173684A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/162Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using laser ablation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for preparing a scattering layer, and an organic light emitting diode using the scattering layer prepared by the method.
  • Organic Light Emitting Diode (English Name: Organic Light-Emitting Diode (abbreviation: OLED) is a display technology with self-luminous properties, which uses a very thin coating of organic materials and a glass substrate that emits light when current is passed through it. Due to its high contrast ratio, wide viewing angle, low power consumption, simple structure, light and thin flexibility, OLED is gradually replacing the thin film transistor liquid crystal display (TFT-LCD), which is one of the technologies that have received the most attention.
  • TFT-LCD thin film transistor liquid crystal display
  • one method is to use a photonic crystal to reduce the waveguide mode, that is, ion beam etching on the ITO surface to form an ordered structure, and form a two-dimensional structure with an adjacent organic material layer.
  • Photonic crystals but this method is complicated to manufacture and expensive, or a layer of photonic crystals is fabricated by nanoimprinting between ITO and glass substrates. Different scales of photonic crystals are required to produce different scales of pressure. The printing template makes the manufacturing cost greatly increased.
  • Another method is to add a scattering layer.
  • a scattering layer of a low refractive index SiO2 grid structure is formed by photolithography, and the scattering layer can be made to reduce the waveguide mode, but the process Complex, each organic layer is wavy stacked to make it difficult to control the respective process parameters; or a layer of low refractive index particles or bubbles doped with different mass fractions and sizes between the ITO and the glass substrate, due to the intergranular The difference is large, making the effect of scattering difficult to control.
  • Embodiments of the present invention provide a method for preparing a scattering layer, and an organic light emitting diode using the scattering layer prepared by the method; the method provided by the present invention solves the manufacturing process brought by the existing method for reducing waveguide mode generation Complexity, difficulty in controlling the scattering effect, and high production cost; at the same time, the organic light-emitting diode using the scattering layer prepared by the method can greatly reduce the generation of the waveguide mode and increase the light-emitting rate of the organic light-emitting diode.
  • Embodiments of the present invention provide a method for preparing a scattering layer, including:
  • the mask After depositing the material having the first refractive index value, the mask is washed away to form a plurality of protruding structures on the substrate;
  • a method of preparing a mask having a plurality of pore structures on a substrate comprises:
  • the aluminum film having grooves of a plurality of hexagonal close-packed structures is subjected to a second anodization until all of the aluminum under the grooves is oxidized to form a pore structure.
  • the thickness of the aluminum film ranges from 2 micrometers to 10 micrometers.
  • both the first anodization and the second anodization are carried out in an oxalic acid solution.
  • the method of washing away the alumina formed by oxidation comprises washing away the alumina with a sodium hydroxide solution.
  • the deposition method employed includes: vacuum evaporation, physical vapor deposition, chemical vapor phase Deposition or pulsed laser deposition.
  • the protrusion structure includes a hemispherical protrusion structure or a columnar protrusion structure.
  • the material having the first refractive index value includes one or more of a silicon-glass bonding structural material, silicon dioxide, and an aerogel.
  • the material having the second refractive index value includes one or more of silicon nitride, indium tin oxide, and zinc selenide.
  • the substrate comprises a glass substrate.
  • the embodiment of the invention further provides a method for preparing another scattering layer, which comprises:
  • the mask After depositing the material having the first refractive index value, the mask is washed away to form a plurality of protruding structures on the substrate;
  • the step of preparing a mask having a plurality of pore structures on the aluminum foil comprises:
  • the aluminum foil having a plurality of hexagonal close-packed structures is anodized a second time until the aluminum under the grooves is oxidized to form a regular channel structure;
  • the aluminum remaining in the aluminum foil having the cell structure and the alumina at the bottom of the cell structure are sequentially washed away, thereby forming a mask having a plurality of pore structures.
  • both the first anodization and the second anodization are carried out in an oxalic acid solution.
  • the method of washing away the alumina formed by oxidation comprises washing away the alumina with a sodium hydroxide solution.
  • the method of washing away the remaining aluminum in the aluminum foil having the cell structure includes washing away the remaining aluminum with a copper chloride solution.
  • the method of washing away the alumina at the bottom of the cell structure comprises washing the alumina at the bottom of the cell structure with a phosphoric acid solution.
  • the material having the first refractive index value includes one or more of a silicon-glass bonding structural material, silicon dioxide, and an aerogel.
  • the material having the second refractive index value includes one or more of silicon nitride, indium tin oxide, and zinc selenide.
  • the protrusion structure comprises: a hemispherical protrusion structure or a columnar protrusion structure.
  • the invention further provides an organic light emitting diode comprising a cathode, an organic material layer, an ITO anode and a substrate, the organic light emitting diode further comprising a scattering layer prepared by any one of the above methods, the scattering layer being disposed on the ITO anode and the substrate Between; or the scattering layer is placed on one side of the cathode.
  • a method for preparing a scattering layer of the present invention is prepared by directly preparing a mask having a plurality of pore structures on a substrate or preparing the mask on an aluminum foil, and then using the mask. Transferring to the substrate, and then depositing a material having a first refractive index value in the pore structure of the mask to form a plurality of protrusion structures, and then planarizing the protrusion structure with a material having a second refractive index value to form a flat layer. Thereby, a scattering layer composed of a plurality of protruding structures and a flat layer is prepared on the substrate.
  • the method for preparing the scattering layer is simple and low in cost, and the scattering layer can be realized by controlling the shape and quantity of the protruding structure and the like.
  • the precise control of the scattering effect at the same time, the method can be used to mass produce the scattering layer with the same internal structure, which solves the different scattering effects of each scattering layer prepared by the random structure of the scattering layer in the prior art.
  • the present invention provides an organic light emitting diode to which a scattering layer prepared by the method for preparing a scattering layer provided by the present invention is applied, by disposing the scattering layer between an ITO anode and a substrate, or on one side of the cathode
  • the waveguide mode generated when the light propagates in the organic light emitting diode can be greatly reduced, and the light originally in the waveguide mode is transmitted, thereby increasing the light extraction rate of the organic light emitting diode.
  • FIG. 1 is a flow chart of a first preferred embodiment of a method for preparing a scattering layer of the present invention
  • FIG. 2 is a flow chart showing a method of preparing a mask in a first preferred embodiment of the present invention
  • FIG. 3 is a schematic structural view of an open mask in a first preferred embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a sub-aluminum film having a plurality of hexagonal close-packed structures in a first preferred embodiment of the present invention
  • Figure 5a is a top plan view of a sub-mask in a first preferred embodiment of the present invention.
  • Figure 5b is a side elevational view showing the structure of the hole in the sub-mask in the first preferred embodiment of the present invention
  • FIG. 6 is a schematic view showing a plurality of protruding structures formed on a substrate corresponding to a sub-mask according to a first preferred embodiment of the present invention
  • Figure 7 is a schematic view showing the structure of a scattering layer prepared on a substrate in a first preferred embodiment of the present invention.
  • Figure 8 is a flow chart showing a second preferred embodiment of a method for preparing a scattering layer of the present invention.
  • Figure 9 is a flow chart showing a method of preparing a mask in a second preferred embodiment of the present invention.
  • Figure 10 is a schematic cross-sectional view showing a groove of a plurality of hexagonal close-packed structures formed on the surface of an aluminum foil in a second preferred embodiment of the present invention.
  • Figure 11 is a side elevational view showing the structure of a cell formed on an aluminum foil in a second preferred embodiment of the present invention.
  • FIG. 12 is a light path diagram of a waveguide mode generated in a conventional organic light emitting diode
  • Figure 13 is a light path diagram of a scattering layer in an organic light emitting diode of the present invention.
  • FIG. 1 is a flow chart of a first preferred embodiment of a method for fabricating a scattering layer according to the present invention.
  • the preparation method comprises:
  • Step S101 preparing a mask having a plurality of pore structures on the substrate
  • Step S102 depositing a material having a first refractive index value in a pore structure of the mask
  • Step S103 after depositing a material having a first refractive index value, washing away the mask plate, thereby forming a plurality of protrusion structures on the substrate;
  • Step S104 depositing a material having a second refractive index value between the plurality of protrusion structures to form a flat layer, the flat layer is used for planarizing a plurality of protrusion structures, thereby preparing a plurality of protrusion structures on the substrate and A scattering layer composed of a flat layer, wherein the second refractive index value is greater than the first refractive index value.
  • step S101 a mask having a plurality of pore structures is prepared on a substrate, and a method for preparing the mask is specifically shown in FIG. 2.
  • FIG. 2 is a method for preparing a mask in a first preferred embodiment of the present invention. Flow chart.
  • the method of preparing a mask includes:
  • Step S201 using an open mask on the substrate, preparing an aluminum film having the same pattern as the open mask by vacuum evaporation or physical vapor deposition;
  • Step S202 performing the first anodization on the prepared aluminum film, and washing away the alumina formed by the oxidation to form an aluminum film having a plurality of hexagonal close-packed structures;
  • Step S203 the aluminum film having a plurality of hexagonal close-packed structures is subjected to a second anodization until all of the aluminum under the grooves is oxidized to form a pore structure.
  • FIG. 3 is a schematic structural view of the open mask in the preferred embodiment.
  • the open mask 30 includes a shielding portion 31 and an opening portion. 32.
  • the open mask 30 is placed on the substrate, and the metal aluminum is deposited on the substrate through the opening 32 by vacuum evaporation or physical vapor deposition, and the substrate blocked by the shielding portion 31 will not have metal aluminum deposition.
  • an aluminum film having the same pattern as the open mask 30 is formed on the substrate, the aluminum film including a plurality of mutually independent sub-aluminum films, and in the preferred embodiment, the number of the sub-aluminum films and the opening 32 The number of openings is the same, that is, the number of sub-aluminum films is nine.
  • the thickness of the aluminum film can be controlled to be between 2 and 10 microns, and in other embodiments, the thickness of the aluminum film can be less than 2 microns or greater than 10 microns.
  • the structure of the open mask shown in FIG. 3 is merely exemplary and cannot be used to limit the present invention. In other embodiments, an open type with other patterns may also be used. The mask is not specifically limited herein.
  • the aluminum film may be annealed after step S201. Since the annealing process belongs to the prior art, those skilled in the art can complete the pair according to common knowledge. The aluminum film is annealed, and the annealing process is not specifically described here.
  • step S202 the aluminum film is first anodized by using an oxalic acid solution, and the surface of the metal aluminum is rapidly oxidized to form a layer of aluminum oxide.
  • the aluminum film is composed of an unoxidized metal aluminum layer and an oxide-generated aluminum oxide layer.
  • the oxidation rate of the oxalic acid solution is large, and the current in the protruding place is small, and the oxidation rate of the oxalic acid solution is small, so that the concave is formed.
  • the place will continue to expand laterally and longitudinally to form a groove, and the convex part will form the side wall of the groove.
  • an aluminum film having a groove By controlling the time of the first anodization, an aluminum film having a groove can be obtained, wherein The lower half of the groove extends into the unoxidized metal aluminum layer and presents a regular hexagonal close packed structure with the upper half of the groove in the newly formed aluminum oxide layer.
  • the above-mentioned lateral and longitudinal directions respectively mean a direction parallel to the surface of the aluminum film and perpendicular to the surface of the aluminum film.
  • FIG. 4 is formed in the preferred embodiment with a plurality of hexagonal
  • the number of grooves of the hexagonal close-packed structure formed on each sub-aluminum film is large, there may be thousands of grooves, and the grooves cannot be distinguished macroscopically, but at the microscopic level, these large numbers of grooves will A locally ordered arrangement is presented, such as in the range of 10 grooves, the grooves will appear in a regular arrangement.
  • step S203 the aluminum film having a plurality of hexagonal close-packed structures is subjected to a second anodization using an oxalic acid solution, and the metal aluminum under the groove is oxidized at a lower rate than other places due to the oxidation mechanism of the metal aluminum itself.
  • the aluminum is oxidized at a high rate, so the aluminum under the groove will be continuously oxidized to alumina, and the generated alumina will diffuse around the groove, thereby oxidizing all the aluminum under the groove to form a pore structure.
  • the process of preparing a mask having a plurality of pore structures on the substrate is completed, and the hole structure has a hexagonal close-packed structure.
  • the mask will include nine sub-masks, each of which corresponds to a sub-aluminum film.
  • FIG. 5a is a schematic top view of the sub-mask in the preferred embodiment
  • FIG. 5b is a side view of the hole structure in the sub-mask in the preferred embodiment.
  • a plurality of aperture structures 51 are present on the sub-mask, and the periphery of the aperture structure 51 is alumina 52.
  • the aluminum film is anodized twice to form a mask having a hole structure.
  • an anodization and a third anode may also be used. Oxidation or more anodization to form a mask having a pore structure is not specifically limited herein.
  • the substrate in the step S101 may be a glass substrate.
  • the substrate may be a substrate of other materials, which is not specifically limited herein.
  • a material having a first refractive index value is deposited in the pore structure of the mask by chemical vapor deposition.
  • the deposition method of depositing the material having the first refractive index value may also be other methods such as vacuum evaporation, physical vapor deposition, or pulsed laser deposition, and is not specifically limited herein.
  • the first refractive index value needs to be less than or equal to 1.5.
  • the material having the first refractive index value is silicon dioxide.
  • the material may also be silicon-glass bonding.
  • the structure or aerogel may also be several combinations of the above materials, and is not specifically limited herein.
  • step S103 after the silicon dioxide material is deposited, the mask is washed away with a sodium hydroxide solution, and after removing the mask, a plurality of silicon dioxide protrusion structures appear on the substrate 41, see FIG. FIG. 6 is a schematic view showing a plurality of protruding structures formed on a substrate corresponding to the sub-mask in the preferred embodiment.
  • the protrusion structure in the preferred embodiment assumes a columnar structure as shown by the silicon dioxide protrusion structure 61 in FIG.
  • a hemispherical protrusion structure may be formed on the substrate 41 by reducing the amount of deposited silicon dioxide.
  • a material having a second refractive index value is deposited between the plurality of silicon dioxide protrusion structures 61 by chemical vapor deposition to form a planar layer, wherein the second refractive index value is greater than the first refractive index value.
  • the second refractive index value is greater than or equal to 1.8, and the material having the second refractive index value may preferably be indium tin oxide.
  • a plurality of silicon oxide protrusion structures 61 are planarized by depositing a flat layer of indium tin oxide to form a scattering layer composed of a silicon dioxide protrusion structure and an indium tin oxide flat layer on the substrate.
  • FIG. 7 is a schematic structural view of a scattering layer prepared on a substrate in a preferred embodiment, wherein the scattering layer includes a silicon dioxide protrusion structure 61 and an indium tin oxide flat layer 71.
  • the scattering layer has both the function of scattering light and the electrode of the organic light emitting diode. Thereby reducing the cost of fabricating the organic light emitting diode.
  • the material of the flat layer 71 may be zinc selenide or silicon nitride, or a combination of the above materials, which is not specifically limited herein.
  • the preferred embodiment provides a method for preparing a scattering layer by directly preparing a mask having a plurality of pore structures on a substrate, and then depositing a material having a first refractive index value in the pore structure of the mask, and then having The material of the second refractive index value planarizes the protrusion structure to form a flat layer, thereby preparing a scattering layer composed of a plurality of protrusion structures and a flat layer on the substrate, and the method for preparing the scattering layer is simple, low in cost, and controlled by The controllable factors such as the shape and the number of the protrusion structure can realize the precise control of the scattering effect of the scattering layer.
  • the scattering layer with the same internal structure can be produced in batches by using the method, and the scattering in the prior art is solved.
  • the internal structure of the layer is random, which results in different scattering effects of each of the prepared scattering layers.
  • different ordered internal structures of the scattering layer can be fabricated according to the requirements of practical applications, thereby obtaining different scattering effects.
  • FIG. 8 is a flow chart of a second preferred embodiment of a method for fabricating a scattering layer according to the present invention.
  • the preparation method of the scattering layer of the preferred embodiment includes:
  • Step S801 preparing a mask having a plurality of pore structures on the aluminum foil, and transferring the mask to the substrate;
  • Step S802 depositing a material having a first refractive index value in a hole structure of the mask
  • Step S803 after depositing the material having the first refractive index value, washing away the mask plate, thereby forming a plurality of protrusion structures on the substrate;
  • Step S804 depositing a material having a second refractive index value between the plurality of protrusion structures to form a flat layer, the flat layer is used for planarizing a plurality of protrusion structures, thereby preparing a plurality of protrusion structures on the substrate and A scattering layer composed of a flat layer, wherein the second refractive index value is greater than the first refractive index value.
  • step S801 an aluminum foil having a thickness of 2 mm is used as a material for fabricating a mask having a plurality of pore structures.
  • a method for specifically fabricating a mask is shown in FIG. 9.
  • FIG. 9 is a flow chart of a method for preparing a mask in the preferred embodiment.
  • the specific preparation process of the mask includes:
  • Step S901 performing the first anodization on the aluminum foil until the aluminum in the aluminum foil is no longer oxidized, washing away the alumina formed by the oxidation, and forming a groove having a plurality of hexagonal close-packed structures on the aluminum foil;
  • Step S902 performing an anodization of the aluminum foil having a plurality of hexagonal close-packed structures, until the aluminum under the groove is oxidized to form a regular channel structure;
  • step S903 the aluminum remaining in the aluminum foil having the cell structure and the aluminum oxide in the bottom of the cell structure are sequentially washed away, thereby forming a mask having a plurality of pore structures.
  • step S901 during the first anodization of the aluminum foil by using the oxalic acid solution, the surface of the metal aluminum is rapidly oxidized to form a layer of aluminum oxide, and the aluminum film will be composed of an unoxidized metal aluminum layer and an oxide layer formed by oxidation.
  • the composition of the two parts because the surface of the alumina layer is uneven, the current in the recessed area is large, the oxidation rate of the oxalic acid solution is large, and the current in the protruding place is small, and the oxidation rate of the oxalic acid solution is small, so that the concave is formed.
  • the place will continue to expand laterally and longitudinally to form a groove, and the convex portion will form the side wall of the groove.
  • an aluminum film having a groove By controlling the time of the first anodization, an aluminum film having a groove can be obtained, wherein The lower half of the recess extends into the unoxidized metal aluminum layer and exhibits a regular hexagonal close packed structure with the upper half of the recess in the newly formed alumina layer.
  • the above-mentioned lateral and longitudinal directions respectively mean a direction parallel to the surface of the aluminum film and perpendicular to the surface of the aluminum film.
  • the resulting alumina will form a thicker protective film on the surface of the metal foil, thereby preventing the internal metal aluminum from being further oxidized by the oxalic acid solution, thus causing the metal aluminum to be oxidized to a certain extent. After that, oxidation will stop, and this process is a complete oxidation process of the metal aluminum foil.
  • FIG. 10 is a preferred embodiment.
  • a series of grooves 1002 are formed on the surface of the aluminum foil 1001, and the grooves 1002 have a hexagonal close-packed structure. The principle of forming a plurality of grooves of a hexagonal close-packed structure has been described in the foregoing section of the specification and will not be described herein.
  • step S902 the aluminum foil 1001 having a plurality of hexagonal close-packed structures is subjected to a second anodization using an oxalic acid solution, and the metal aluminum under the groove is oxidized at a lower rate than other places due to the oxidation mechanism of the metal aluminum itself.
  • the aluminum is oxidized so that the metal aluminum underneath the groove is continuously oxidized to alumina, and the resulting alumina will diffuse around the groove until the aluminum under the groove is oxidized to form a regular channel structure.
  • FIG. 11 is a schematic side view showing a structure of a hole formed on an aluminum foil in the preferred embodiment.
  • the aluminum foil includes three portions, a part of which is a remaining metal aluminum foil 1001, and a part of which is an oxide formed by alumina 1101. A further portion is the tunnel structure 1102. It will be understood that the bottom of the tunnel structure 1102 is alumina, wherein the bottom of the tunnel structure 1102 is where the tunnel structure 1102 is in contact with the metal aluminum foil 1001.
  • step S903 the remaining metal aluminum foil 1001 is washed away with a copper chloride solution, and the alumina at the bottom of the tunnel structure 1102 is washed away with a phosphoric acid solution, so that the pore structure 1102 becomes a transparent pore structure, that is, formed.
  • the aluminum foil in the process of preparing the mask, is anodized twice to form a mask having a pore structure.
  • one-time anodization and three-time anodization may also be used.
  • more anodization to form a mask having a pore structure which is not specifically limited herein.
  • the substrate may be a glass substrate or a cathode electrode material for fabricating an organic light emitting diode. If the substrate is a glass substrate, it may be in the preferred embodiment.
  • the scattering layer prepared by the method is used in a bottom emitting device of an organic light emitting diode; if the substrate is a cathode electrode material for fabricating an organic light emitting diode, such as a metal thin film, the scattering layer prepared by the method of the preferred embodiment can be used. In the top emitting device of the organic light emitting diode.
  • the substrate is not limited to the above two types, and the type of the substrate may be selected according to the actual application, and is not specifically limited herein.
  • a material having a first refractive index value is deposited in the pore structure of the mask by chemical vapor deposition.
  • the deposition method of depositing the material having the first refractive index value may also be other methods such as vacuum evaporation, physical vapor deposition, or pulsed laser deposition, and is not specifically limited herein.
  • the first refractive index value needs to be less than or equal to 1.5.
  • the material having the first refractive index value is silicon dioxide.
  • the material may also be silicon-glass bonding.
  • the structure or aerogel may also be several combinations of the above materials, and is not specifically limited herein.
  • step S803 after the silicon dioxide material is deposited, the mask plate is washed away with a sodium hydroxide solution, and after removing the mask plate, a plurality of silicon dioxide protrusion structures appear on the substrate, and the specific structure is shown in the figure.
  • the protruding structure in the preferred embodiment assumes a columnar structure.
  • the amount of deposited silicon dioxide can be reduced to form a hemispherical protrusion structure on the substrate.
  • a material having a second refractive index value is deposited between the plurality of silicon dioxide protrusion structures by chemical vapor deposition to form a planar layer, wherein the second refractive index value is greater than the first refractive index value.
  • the second refractive index value is greater than or equal to 1.8, and the material having the second refractive index value may preferably be indium tin oxide.
  • a plurality of silicon oxide protrusion structures are planarized by depositing an indium tin oxide planarization layer to form a scattering layer composed of a silicon dioxide protrusion structure and an indium tin oxide planar layer on the substrate.
  • the scattering layer has both the function of scattering light and the electrode of the organic light emitting diode. Reduce the cost of making organic light-emitting diodes.
  • the material of the flat layer may be zinc selenide or silicon nitride, or may be several combinations of the above materials, and is not specifically limited herein.
  • the method for preparing the scattering layer is prepared by first preparing a mask having a hole structure on an aluminum foil, transferring the mask to the substrate, and then depositing the first in the pore structure of the mask. a material having a refractive index value, and then planarizing the protrusion structure with a material having a second refractive index value to form a flat layer, thereby preparing a scattering layer composed of a plurality of protrusion structures and a flat layer on the substrate, the method of preparing a scattering layer
  • the process is simple and the cost is low.
  • the scattering effect of the scattering layer can be precisely controlled.
  • the scattering of different internal structures can be made according to the requirements of the actual application. Layers, thus obtaining different scattering effects.
  • the present invention also provides an organic light emitting diode.
  • the organic light emitting diode includes a cathode, an organic material layer, an ITO anode, a scattering layer and a substrate in order from top to bottom, and the top emission organic light emitting
  • the organic light emitting diode includes a scattering layer, a cathode, an organic material layer, an ITO anode, and a substrate in order from top to bottom, wherein the direction from top to bottom is only used to describe the lamination positional relationship between various components.
  • the bottom emission organic light emitting diode is explained in detail, wherein the scattering layer used in the organic light emitting diode is prepared by the method in the first preferred embodiment of the method for preparing the scattering layer of the present invention. from.
  • the scattering layer in the preferred embodiment includes an ordered protrusion structure having a first refractive index value and a flat layer having a second refractive index value, wherein the material of the protrusion structure of the first refractive index value is silicon dioxide, having The flat layer material of the second refractive index value is silver tin oxide.
  • the scattering layer in the preferred embodiment uses an electrode material of an organic light emitting diode, that is, an indium tin oxide material, so that the scattering layer is fused with the ITO anode electrode. In one way, this can reduce the cost of fabricating an organic light emitting diode, and at the same time reduce the number of layers of the organic light emitting diode, thereby reducing the thickness of the organic light emitting diode.
  • FIG. 12 is a light path diagram of a waveguide mode generated in a conventional organic light emitting diode.
  • the ITO anode 1201 is in direct contact with the glass substrate 1202.
  • the refractive index of the ITO anode 1201 is higher than that of the glass substrate 1202.
  • the refractive index value is large, so that a part of the light will be totally reflected at the interface between the ITO anode 1201 and the glass substrate 1202.
  • the optical path diagram of the B light in FIG. 12 the B light will be back and forth in the ITO anode 1201.
  • the total reflection process makes B light unable to exit from the ITO anode 1201.
  • B light we call it the waveguide mode, that is, the ITO anode 1201 is equivalent to a waveguide device for the B light, so that the B light is in the ITO.
  • the A ray since the incident angle of the A ray is smaller than the total reflection critical angle of the ITO anode 1201 and the glass substrate 1202, the A ray will be refracted from the ITO anode 1201 into the glass substrate 1202, thereby illuminating from the organic luminescence.
  • the glass substrate 1202 of the diode exits. In the existing organic light emitting diodes, part of the light is totally reflected and cannot be emitted, so that the light extraction rate is greatly reduced.
  • a scattering layer is disposed between the ITO anode and the glass substrate.
  • the ITO anode is integrated with the scattering layer, that is, an ITO material is used as the planar layer in the fabrication of the scattering layer.
  • FIG. 13 is a light path diagram of a scattering layer in the organic light emitting diode of the present invention.
  • the refractive index value of the silicon protrusion structure is smaller than that of indium tin oxide, and the incident angle of the B light incident on the silicon dioxide protrusion structure is smaller than the critical angle of the total reflection, so the B light will be refracted on the surface of the silicon dioxide protrusion structure, that is, The direction of propagation of the B light is changed, so that the B light can be emitted from the glass substrate 1302, thereby reducing the generation of the waveguide mode in the organic light emitting diode. Therefore, the light emission rate of the organic light emitting diode in the preferred embodiment is higher than that of the existing one.
  • Organic light-emitting diodes have a high light extraction rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种散射层的制备方法、有机发光二极管,制备方法包括在基底上制备的掩膜板的孔洞结构内沉积低折射率值的材料(S102);去掉掩膜板后,在基底上形成若干个突起结构(S103);在突起结构之间沉积高折射率值的材料,形成平坦层,从而在基底上制备出由突起结构和平坦层组成的散射层(S104)。该制备方法具有制备过程简单、成本低等优点。

Description

一种散射层的制备方法、有机发光二极管 技术领域
本发明涉及显示技术领域,特别是涉及一种散射层的制备方法,以及应用由该方法制备的散射层的有机发光二极管。
背景技术
有机发光二极管(英文全称:Organic Light-Emitting Diode,简称:OLED)是一种具有自发光特性的显示技术,其采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。由于OLED具有高对比度、广视角、低功耗、结构简单、轻薄柔性等特点,其正在逐步替代薄膜晶体管液晶显示器(TFT-LCD),是目前受到最多关注的技术之一。
但是,光在OLED器件中传播时,不可避免地会形成等离子模式、波导模式和衬底模式等多种模式。这些模式都会导致OLED器件发出的光不能高效率的耦合到空气中,即限制了OLED的出光效率。在上述这些模式中,波导模式是限制OLED的出光率的主要阻碍因素。
为了减少波导模式的产生,通常采用两种方法:一种方法是利用光子晶体来减少波导模式,即在ITO表面进行离子束刻蚀,形成有序结构,与相邻的有机材料层形成二维的光子晶体,但这种方法的制作过程复杂、造价昂贵,或者在ITO和玻璃基底之间,用纳米压印的办法制作一层光子晶体,,由于不同的光子晶体周期需要制作不同尺度的压印模板,使得其制造成本大大提高。另一种方法是增加散射层,在ITO和有机材料之间,利用光刻法制作一层低折射率的SiO2网格结构的散射层,其制作出的散射层虽然可以减少波导模式,但制程复杂、各有机层呈波浪式堆叠导致的难于控制各自的制程参数;或者在ITO和玻璃基底之间制作一层掺杂不同质量分数和大小的低折射率颗粒或气泡的散射层,由于颗粒间差异较大,使得散射的效果很难控制。
因此,有必要提供一种散射层的制备方法,以及应用由该方法制备的散射层的有机发光二极管,使得散射层的制备过程简单化、制作成本降低,同时可以批量生产具有散射效果高度可控的散射层;应用本方法制备的散射层的有机发光二极管中,因散射层的存在使得原本发生全反射的光出射,从而减少波导模式的出现,增加OLED的出光率。
技术问题
本发明实施例提供一种散射层的制备方法,以及应用由该方法制备的散射层的有机发光二极管;本发明提供的方法解决了现有的减少波导模式产生的方法中所带来的制作过程复杂、散射效果难以控制以及制作成本高昂等问题;同时,应用由该方法制备的散射层的有机发光二极管可以大大减少波导模式的产生,增加了有机发光二极管的出光率。
技术解决方案
本发明实施例提供一种散射层的制备方法,其包括:
在基底上制备具有若干个孔洞结构的掩膜板;
在掩膜板的孔洞结构内沉积具有第一折射率值的材料;
完成沉积具有第一折射率值的材料后,洗去掩膜板,从而在基底上形成若干个突起结构;
在若干个突起结构之间沉积具有第二折射率值的材料,形成平坦层,所述平坦层用于将若干个突起结构平坦化,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,其中第二折射率值大于第一折射率值。
在本发明所述的散射层的制备方法中,在基底上制备具有若干个孔洞结构的掩膜板的方法包括:
在基底上采用开放式掩膜板,通过真空蒸镀或者物理气相沉积法制备具有与开放式掩膜板的图案相同的铝膜;
对制备出的铝膜进行第一次阳极氧化,并洗去氧化生成的氧化铝,形成具有若干个六方密堆积结构的凹槽的铝膜;
将具有若干个六方密堆积结构的凹槽的铝膜进行第二次阳极氧化,直至将凹槽下方的铝全部氧化形成孔洞结构为止。
在本发明所述的散射层的制备方法中,所述铝膜的厚度范围为2微米至10微米。
在本发明所述的散射层的制备方法中,第一次阳极氧化和第二次阳极氧化过程均在草酸溶液中进行。
在本发明所述的散射层的制备方法中,洗去氧化生成的氧化铝的方法包括采用氢氧化钠溶液洗去氧化铝。
在本发明所述的散射层的制备方法中,在掩膜板的孔洞结构内沉积具有第一折射率值的材料的步骤中,采用的沉积方法包括:真空蒸镀、物理气相沉积、化学气相沉积或者脉冲激光沉积。
在本发明所述的散射层的制备方法中,所述的突起结构包括:半球型突起结构或者柱状突起结构。
在本发明所述的散射层的制备方法中,具有第一折射率值的材料包括:硅-玻璃键合结构材料、二氧化硅和气凝胶中的一种或者多种。
在本发明所述的散射层的制备方法中,具有第二折射率值的材料包括氮化硅、氧化铟锡和硒化锌中的一种或者多种。
在本发明所述的散射层的制备方法中,所述基底包括玻璃基底。
本发明实施例还提供另外一种散射层的制备方法,其包括:
在铝箔上制备具有若干个孔洞结构的掩膜板,并将掩膜板转移至基底上;
在掩膜板的孔洞结构内沉积具有第一折射率值的材料;
完成沉积具有第一折射率值的材料后,洗去掩膜板,从而在基底上形成若干个突起结构;
在若干个突起结构之间沉积具有第二折射率值的材料,形成平坦层,所述平坦层用于将若干个突起结构平坦化,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,其中第二折射率值大于第一折射率值。
在本发明所述的另外一种散射层的制备方法中,在铝箔上制备具有若干个孔洞结构的掩膜板的步骤包括:
对铝箔进行第一次阳极氧化,直至铝箔中的铝不再被氧化,洗去氧化生成的氧化铝,在铝箔上形成具有若干个六方密堆积结构的凹槽;
将具有若干个六方密堆积结构的凹槽的铝箔进行第二次阳极氧化,直至凹槽下方的铝氧化形成规则的孔道结构;
依次洗去具有孔道结构的铝箔中剩余的铝和孔道结构底部的氧化铝,从而形成具有若干个孔洞结构的掩膜板。
在本发明所述的另外一种散射层的制备方法中,第一次阳极氧化和第二次阳极氧化过程均在草酸溶液中进行。
在本发明所述的另外一种散射层的制备方法中,洗去氧化生成的氧化铝的方法包括采用氢氧化钠溶液洗去氧化铝。
在本发明所述的另外一种散射层的制备方法中,洗去具有孔道结构的铝箔中剩余的铝的方法包括采用氯化铜溶液洗去剩余的铝。
在本发明所述的另外一种散射层的制备方法中,洗去孔道结构底部的氧化铝的方法包括采用磷酸溶液洗去孔道结构底部的氧化铝。
在本发明所述的另外一种散射层的制备方法中,具有第一折射率值的材料包括:硅-玻璃键合结构材料、二氧化硅和气凝胶中的一种或多种。
在本发明所述的另外一种散射层的制备方法中,具有第二折射率值的材料包括氮化硅、氧化铟锡和硒化锌中的一种或多种。
在本发明所述的另外一种散射层的制备方法中,所述突起结构包括:半球型突起结构或者柱状突起结构。
本发明又提供一种有机发光二极管,其包括阴极、有机材料层、ITO阳极和基底,所述有机发光二极管还包括上述任意一种方法制备的散射层,所述散射层置于ITO阳极与基底之间;或者所述散射层置于所述阴极的一侧上。
有益效果
与现有技术相比,本发明的一种散射层的制备方法,通过在基底上直接制备具有若干个孔洞结构的掩膜板或者在铝箔上先制备该掩膜板,再将该掩膜板转移至基底上,然后在掩膜板的孔洞结构内沉积具有第一折射率值的材料,形成若干个突起结构,再用具有第二折射率值的材料将突起结构平坦化,形成平坦层,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,该方法制备散射层的过程简单,成本低,通过控制突起结构的形状、数量等可控因素,即可以实现对散射层的散射效果的精准控制,同时,采用该方法可以批量的生产具有相同内部结构的散射层,解决了现有技术中,因散射层内部结构随机而导致制备出的每个散射层的散射效果不同的问题;另外,也可以根据实际应用的需求来制作具有不同内部结构的散射层,从而获得不同散射效果。
同时,本发明提供的有机发光二极管,其应用了本发明提供的散射层制备方法制备出的散射层,通过将该散射层设置在ITO阳极与基底之间,或者置于所述阴极的一侧上,可以大大减少光在有机发光二极管中传播时产生的波导模式,将原本在波导模式中的光透射出去,从而增加了有机发光二极管的出光率。
附图说明
图1为本发明的一种散射层的制备方法的第一优选实施例的流程图;
图2为本发明的第一优选实施例中,掩膜板的制备方法的流程图;
图3为本发明的第一优选实施例中,开放式掩膜板的结构示意图;
图4为本发明的第一优选实施例中,具有若干个六方密堆积结构的凹槽的子铝膜的截面示意图;
图5a为本发明的第一优选实施例中,子掩膜板的俯视示意图;
图5b为本发明的第一优选实施例中,子掩膜板中孔洞结构的侧视示意图;
图6为本发明的第一优选实施例中,在子掩膜板对应的基底上形成若干个突起结构的示意图;
图7为本发明的第一优选实施例中,在基底上制备出的散射层的结构示意图;
图8为本发明的一种散射层的制备方法的第二优选实施例的流程图;
图9为本发明的第二优选实施例中,掩膜板的制备方法的流程图;
图10为本发明的第二优选实施例中,铝箔表面形成的若干个六方密堆积结构的凹槽的截面示意图;
图11为本发明的第二优选实施例中,在铝箔上形成的孔道结构的侧视示意图;
图12为现有的有机发光二极管中产生波导模式的光路图;
图13为本发明的有机发光二极管中散射层的光路图。
本发明的最佳实施方式
请参照图式,其中相同的组件符号代表相同的组件。以下的说明是基于所例示的本发明具体实施例,其不应被视为限制本发明未在此详述的其它具体实施例。
请参照图1,图1为本发明的一种散射层的制备方法的第一优选实施例的流程图。该制备方法包括:
步骤S101、在基底上制备具有若干个孔洞结构的掩膜板;
步骤S102、在掩膜板的孔洞结构内沉积具有第一折射率值的材料;
步骤S103、完成沉积具有第一折射率值的材料后,洗去掩膜板,从而在基底上形成若干个突起结构;
步骤S104、在若干个突起结构之间沉积具有第二折射率值的材料,形成平坦层,所述平坦层用于将若干个突起结构平坦化,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,其中第二折射率值大于第一折射率值。
下面详细说明本优选实施例中散射层的制备方法的各步骤的具体过程。
在步骤S101中,在基底上制备具有若干个孔洞结构的掩膜板,具体制备掩膜板的方法请参见图2,图2为本发明的第一优选实施例中,掩膜板的制备方法的流程图。
该制备掩膜板的方法包括:
步骤S201、在基底上采用开放式掩膜板,通过真空蒸镀或者物理气相沉积法制备具有与开放式掩膜板的图案相同的铝膜;
步骤S202、对制备出的铝膜进行第一次阳极氧化,并洗去氧化生成的氧化铝,形成具有若干个六方密堆积结构的凹槽的铝膜;
步骤S203、将具有若干个六方密堆积结构的凹槽的铝膜进行第二次阳极氧化,直至将凹槽下方的铝全部氧化形成孔洞结构为止。
在步骤S201中,采用的开放式掩膜板的结构如图3所示,图3为本优选实施例中开放式掩膜板的结构示意图,开放式掩膜板30包括遮挡部31和开口部32,将开放式掩膜板30放置在基底上,采用真空蒸镀或者物理气相沉积法将金属铝通过开口部32沉积在基底上,而遮挡部31遮挡的基底上将不会有金属铝沉积,从而在基底上形成与开放式掩膜板30具有相同图案的铝膜,该铝膜包括多个相互独立的子铝膜,在本优选实施例中,子铝膜的个数与开口部32的开口个数相同,即子铝膜的个数为9个。
在基底上沉积铝膜时,可以将铝膜的厚度控制在2至10微米之间,在其他的实施例中,铝膜的厚度可以小于2微米或者大于10微米。在本优选实施例中,图3所示的开放式掩膜板的结构仅仅起到示范说明的作用,不能用于限制本发明,在其他的实施例中,也可以采用具有其他图案的开放式掩膜板,在此不做具体的限定。
在大面积成膜时,为了消除相邻层间的应力差,可以在步骤S201之后对铝膜进行退火处理,由于退火过程属于现有技术,本领域的技术人员可以根据公知常识即可完成对铝膜进行退火处理,在此不对退火过程做具体详述。
在步骤S202中,采用草酸溶液对铝膜进行第一次阳极氧化,金属铝的表面被迅速氧化出一层氧化铝,此时铝膜将由未氧化的金属铝层和氧化生成的氧化铝层两部分构成,由于氧化铝层的表面凹凸不平,导致凹下去的地方电流大,草酸溶液对其氧化速度大,而凸出的地方电流小,草酸溶液对其氧化的速度小,从而出现凹下去的地方将不断的进行横向和纵向的扩张,从而形成凹槽,而凸出的地方将形成凹槽的侧壁,通过控制第一次阳极氧化的时间,可以得到具有凹槽的铝膜,其中,该凹槽的下半部分延伸至未氧化的金属铝层中,且呈现规则的六方密堆积结构,而凹槽的上半部分处于新生成的氧化铝层中。需要说明的是,上述的横向和纵向分别指平行于铝膜表面和垂直于铝膜表面的方向。
采用氢氧化钠溶液将生成的氧化铝洗去,从而形成具有若干个六方密堆积结构的凹槽的铝膜,如图4所示,图4为本优选实施例中,形成的具有若干个六方密堆积结构的凹槽的子铝膜的截面示意图,在基底41表面上的子铝膜42中,出现了若干个凹槽43,且凹槽43呈六方密堆积结构,可以理解的是,在整个基板41上,会有9个如图4所示的具有若干个六方密堆积结构的凹槽的子铝膜。
在每个子铝膜上形成的六方密堆积结构的凹槽的数量很多,可能会有成千上万个凹槽,在宏观上无法分辨出凹槽,但在微观上,这些大量的凹槽将呈现局部有序排列,比如在10个凹槽这样的范围内,凹槽将呈现规则排列。
在步骤S203中,采用草酸溶液对具有若干个六方密堆积结构的凹槽的铝膜进行第二次阳极氧化,由于金属铝本身的氧化机制,导致凹槽下方的金属铝的氧化速度比其他地方的铝氧化速度快,因此凹槽下方的铝将不断被氧化成氧化铝,并且生成的氧化铝将向凹槽的四周进行扩散,从而将凹槽下方的铝全部氧化后,形成一个孔洞结构,此时完成了在基底上制备具有若干个孔洞结构的掩膜板的过程,且该孔洞结构具有六方密堆积结构。根据前面的叙述,可以很容易理解的是,在本优选实施例中,掩膜板将包括9个子掩膜板,且每个子掩膜板都与一个子铝膜相对应。
请参见图5a和图5b,图5a为本优选实施例中,子掩膜板的俯视示意图,图5b为本优选实施例中,子掩膜板中孔洞结构的侧视示意图。从图5a中可以看出,子掩膜板上出现了若干个孔洞结构51,孔洞结构51的四周为氧化铝52。
对于本优选实施例,在制备掩膜板的过程中,对铝膜进行了两次阳极氧化来形成具有孔洞结构的掩膜板,在其他的实施例中,也可以采用一次阳极氧化、三次阳极氧化或者更多次阳极氧化来形成具有孔洞结构的掩膜板,在此不做具体的限定。
在本优选实施例中,步骤S101中的基底可以为玻璃基底,当然在其他的实施例中,也可以为其他材料的基底,在此不做具体限定。
在步骤S102中,采用化学气相沉积法在掩膜板的孔洞结构内沉积具有第一折射率值的材料。在其他的实施例中,沉积具有第一折射率值的材料的沉积方法还可以为真空蒸镀、物理气相沉积法或者脉冲激光沉积法等其他方法,在此不做具体的限定。
在本优选实施例中,第一折射率值需小于等于1.5,优选地,具有第一折射率值的材料为二氧化硅,在其他的实施例中,该材料也可以为硅-玻璃键合结构或者气凝胶,也可以为上述材料的几种组合,在此不做具体限制。
在步骤S103中,在沉积完二氧化硅材料后,采用氢氧化钠溶液洗去掩膜板,去掉掩膜板后,在基底41上就会出现若干个二氧化硅突起结构,请参见图6,图6为本优选实施例中,在子掩膜板对应的基底上形成若干个突起结构的示意图,在本实施例中,由于在步骤S102中设置沉积的二氧化硅的量较多,使得本优选实施例中的突起结构呈现为柱状结构,如图6中的二氧化硅突起结构61所示。在其他的实施例中,可以通过减少沉积的二氧化硅的量,从而在基底41上形成半球型突起结构,对于制备半球型突起结构的具体操作过程,本领域的技术人员根据本说明书的内容以及公知常识,可以很容易地制作出来,在此不做具体详述。
在步骤S104中,采用化学气相沉积法在若干个二氧化硅突起结构61之间沉积具有第二折射率值的材料,形成平坦层,其中,第二折射率值大于第一折射率值。在本实施例中,优选地,第二折射率值大于等于1.8,具有第二折射率值的材料可以优选为氧化铟锡。通过沉积氧化铟锡平坦层将若干个二氧化硅突起结构61平坦化,从而在基底上形成由二氧化硅突起结构和氧化铟锡平坦层组成的散射层。如图7所示,图7为本优选实施例中,在基底上制备出的散射层的结构示意图,其中,散射层包括二氧化硅突起结构61和氧化铟锡平坦层71。
在本优选实施例中,由于采用有机发光二极管的电极材料,即氧化铟锡作为平坦层71的材料,使得该散射层既具备了散射光线的作用,又可以用来充当有机发光二极管的电极,从而降低制作有机发光二极管的成本。当然,在其他的实施例中,平坦层71的材料也可以为硒化锌或者氮化硅,也可以为上述几种材料的组合,在此不做具体限定。
本优选实施例提供的散射层的制备方法,通过在基底上直接制备具有若干个孔洞结构的掩膜板,然后在掩膜板的孔洞结构内沉积具有第一折射率值的材料,再用具有第二折射率值的材料将突起结构平坦化,形成平坦层,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,该方法制备散射层的过程简单,成本低,通过控制突起结构的形状、数量等可控因素,即可以实现对散射层的散射效果的精准控制,同时,采用该方法可以批量的生产具有相同内部结构的散射层,解决了现有技术中,因散射层内部结构随机而导致制备出的每个散射层的散射效果不同的问题;另外,也可以根据实际应用的需求来制作不同有序的内部结构的散射层,从而获得不同的散射效果。
请参照图8,图8为本发明的一种散射层的制备方法的第二优选实施例的流程图。本优选实施例的散射层的制备方法包括:
步骤S801、在铝箔上制备具有若干个孔洞结构的掩膜板,并将掩膜板转移至基底上;
步骤S802、在掩膜板的孔洞结构内沉积具有第一折射率值的材料;
步骤S803、完成沉积具有第一折射率值的材料后,洗去掩膜板,从而在基底上形成若干个突起结构;
步骤S804、在若干个突起结构之间沉积具有第二折射率值的材料,形成平坦层,所述平坦层用于将若干个突起结构平坦化,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,其中第二折射率值大于第一折射率值。
下面将详细地描述本优选实施例中散射层的制备方法的具体过程。
在步骤S801中,采用厚度为2mm的铝箔作为制作具有若干个孔洞结构的掩膜板的材料。在本步骤中,具体制作掩摸板的方法如图9所示,图9为本优选实施例中,掩膜板的制备方法的流程图。
掩摸板的具体制备过程包括:
步骤S901、对铝箔进行第一次阳极氧化,直至铝箔中的铝不再被氧化,洗去氧化生成的氧化铝,在铝箔上形成具有若干个六方密堆积结构的凹槽;
步骤S902、将具有若干个六方密堆积结构的凹槽的铝箔进行第二次阳极氧化,直至凹槽下方的铝氧化形成规则的孔道结构;
步骤S903、依次洗去具有孔道结构的铝箔中剩余的铝和孔道结构底部的氧化铝,从而形成具有若干个孔洞结构的掩膜板。
在步骤S901中,采用草酸溶液对铝箔进行第一次阳极氧化过程中,金属铝的表面被迅速氧化出一层氧化铝,此时铝膜将由未氧化的金属铝层和氧化生成的氧化铝层两部分构成,由于氧化铝层的表面凹凸不平,导致凹下去的地方电流大,草酸溶液对其氧化速度大,而凸出的地方电流小,草酸溶液对其氧化的速度小,从而出现凹下去的地方将不断的进行横向和纵向的扩张,从而形成凹槽,而凸出的地方将形成凹槽的侧壁,通过控制第一次阳极氧化的时间,可以得到具有凹槽的铝膜,其中,该凹槽的下半部分延伸至未氧化的金属铝层中,且呈现规则的六方密堆积结构,而凹槽的上半部分处于新生成的氧化铝层中。需要说明的是,上述的横向和纵向分别指平行于铝膜表面和垂直于铝膜表面的方向。
随着金属铝逐渐被氧化成氧化铝,生成的氧化铝将在金属铝箔表面形成较厚的保护膜,从而阻止内部的金属铝进一步地被草酸溶液氧化,这样就使得金属铝被氧化到一定程度后,将停止氧化,此过程为金属铝箔的完全氧化过程。
完成金属铝箔的完全氧化过程后,采用氢氧化钠溶液将生成的氧化铝洗掉,从而形成具有若干个六方密堆积结构的凹槽的铝箔,如图10所示,图10为本优选实施例中,铝箔表面形成的若干个六方密堆积结构的凹槽的截面示意图,从图中可以看出,在铝箔1001表面形成了一系列的凹槽1002,且凹槽1002呈六方密堆积结构。形成若干个六方密堆积结构的凹槽的原理在本说明书前面部分已经介绍,在此不做赘述。
在步骤S902中,采用草酸溶液对具有若干个六方密堆积结构的凹槽的铝箔1001进行第二次阳极氧化,由于金属铝本身的氧化机制,导致凹槽下方的金属铝的氧化速度比其他地方的铝氧化速度快,因此凹槽下方的金属铝将不断被氧化成氧化铝,并且生成的氧化铝将向凹槽的四周进行扩散,直至将凹槽下方的铝氧化形成规则的孔道结构为止,如图11所示,图11为本优选实施例中,在铝箔上形成的孔道结构的侧视示意图,此时铝箔包括三部分,一部分是剩余的金属铝箔1001,一部分是氧化形成的氧化铝1101,还有一部分是孔道结构1102,可以理解的是,在孔道结构1102的底部为氧化铝,其中孔道结构1102的底部为孔道结构1102与金属铝箔1001相接触的地方。
在步骤S903中,采用氯化铜溶液将剩余的金属铝箔1001洗掉,再用磷酸溶液将孔道结构1102的底部的氧化铝洗去,从而使得孔道结构1102成为通透的孔洞结构,即形成了具有若干个孔洞结构的掩膜板。
对于本优选实施例,在制备掩膜板的过程中,对铝箔进行了两次阳极氧化来形成具有孔洞结构的掩膜板,在其他的实施例中,也可以采用一次阳极氧化、三次阳极氧化或者更多次阳极氧化来形成具有孔洞结构的掩膜板,在此不做具体的限定。
将制备好的掩膜板转移至基底上,在本优选实施例中,基底可以为玻璃基底,或者是制作有机发光二极管的阴极电极材料,若基底为玻璃基底,则可以将由本优选实施例中的方法制备的散射层用于有机发光二极管的底发射器件中;若基底为制作有机发光二极管的阴极电极材料时,例如金属薄膜上,则可以将由本优选实施例中的方法制备的散射层用于有机发光二极管的顶发射器件中。当然基底不限于上述两种,可以根据实际应用的情况来选择基底的种类,在此不做具体限定。
在步骤S802中,将掩膜板转移至基底上后,采用化学气相沉积法在掩膜板的孔洞结构内沉积具有第一折射率值的材料。在其他的实施例中,沉积具有第一折射率值的材料的沉积方法还可以为真空蒸镀、物理气相沉积法或者脉冲激光沉积法等其他方法,在此不做具体的限定。
在本优选实施例中,第一折射率值需小于等于1.5,优选地,具有第一折射率值的材料为二氧化硅,在其他的实施例中,该材料也可以为硅-玻璃键合结构或者气凝胶,也可以为上述材料的几种组合,在此不做具体限制。
在步骤S803中,在沉积完二氧化硅材料后,采用氢氧化钠溶液洗去掩膜板,去掉掩膜板后,在基底上就会出现若干个二氧化硅突起结构,具体结构请参见图6所示,由于在步骤S802中设置沉积的二氧化硅的量较多,使得本优选实施例中的突起结构呈现为柱状结构。在其他的实施例中,可以减少沉积的二氧化硅的量,从而在基底上形成半球型突起结构,对于制备半球型突起结构的具体操作过程,本领域的技术人员根据本说明书的内容以及公知常识,可以很容易地制作出来,在此不做具体详述。
在步骤S804中,采用化学气相沉积法在若干个二氧化硅突起结构之间沉积具有第二折射率值的材料,形成平坦层,其中,第二折射率值大于第一折射率值。在本实施例中,优选地,第二折射率值大于等于1.8,具有第二折射率值的材料可以优选为氧化铟锡。通过沉积氧化铟锡平坦层将若干个二氧化硅突起结构平坦化,从而在基底上形成由二氧化硅突起结构和氧化铟锡平坦层组成的散射层。
在本优选实施例中,由于采用有机发光二极管的电极材料,即氧化铟锡作为平坦层的材料,使得该散射层既具备了散射光线的作用,又可以用来充当有机发光二极管的电极,从而降低制作有机发光二极管的成本。当然,在其他的实施例中,平坦层的材料也可以为硒化锌或者氮化硅,也可以为上述材料的几种组合,在此不做具体限定。
本优选实施例提供的散射层的制备方法,通过在铝箔上先制备具有孔洞结构的掩膜板,再将该掩膜板转移至基底上,然后在掩膜板的孔洞结构内沉积具有第一折射率值的材料,再用具有第二折射率值的材料将突起结构平坦化,形成平坦层,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,该方法制备散射层的过程简单,成本低,同时,通过控制突起结构的形状、数量等可控因素即可以实现对散射层的散射效果的精准控制,另外,也可以根据实际应用的需求来制作不同内部结构的散射层,从而获得具有不同散射效果。
本发明还提供一种有机发光二极管,对于底发射的有机发光二极管而言,有机发光二极管从上至下依次包括阴极、有机材料层、ITO阳极、散射层和基底,而对于顶发射的有机发光二极管而言,有机发光二极管从上至下依次包括散射层、阴极、有机材料层、ITO阳极和基底,其中,从上至下的方向只是用来描述各种部件之间的层叠位置先后关系。
本优选实施例中,将针对底发射的有机发光二极管进行详细的解释说明,其中,有机发光二极管所采用的散射层是通过本发明的散射层的制备方法的第一优选实施例中的方法制备出来的。
有机发光二极管的发光原理以及发光的过程属于现有的技术,本领域的技术人员可以根据公知常识就可以了解到该项技术,为了说明书的简洁性,在此将不再对有机发光二极管的发光原理以及发光过程进行叙述。
下面将详细地说明,在有机发光二极管中的ITO阳极与基底之间设置散射层后,如何实现减少波导模式,进而提高有机发光二极管的出光率的。
本优选实施例中的散射层包括有序的具有第一折射率值的突起结构和具有第二折射率值的平坦层,其中第一折射率值的突起结构的材料为二氧化硅,具有第二折射率值的平坦层材料为氧化银锡,可以理解的是,在本优选实施例中的散射层采用了有机发光二极管的电极材料,即氧化铟锡材料,使得散射层与ITO阳极电极融合为一体,这样做可以降低制作有机发光二极管的成本,同时可以减少有机发光二极管的内部层数,从而降低有机发光二极管的厚度。
请参见图12,图12为现有的有机发光二极管中产生波导模式的光路图。对于现有的底发射的有机发光二极管而言,ITO阳极1201与玻璃基底1202直接接触,当来自有机材料层发出的光入射到ITO阳极1201后,由于ITO阳极1201的折射率要比玻璃基底1202的折射率值大,使得一部分光将在ITO阳极1201与玻璃基底1202的交界面处发生全反射现象,可以参照图12中的B光线的光路图,B光线将会在ITO阳极1201中进行来回的全反射过程,使得B光线无法从ITO阳极1201中出射,对于B光线的这种情况我们称之为波导模式,即ITO阳极1201对于B光线而言相当于一个波导器件,使得B光线在ITO阳极1201中来回的全反射传输。而对于A光线而言,由于A光线的入射角小于ITO阳极1201与玻璃基底1202的全反射临界角,所以A光线将发生折射现象,从ITO阳极1201折射到玻璃基底1202中,从而从有机发光二极管的玻璃基底1202中出射。现有的有机发光二极管中由于部分光线发生全反射而无法出射,使得其出光率大大降低。
而在本优选实施例中,将在ITO阳极与玻璃基底之间设置了散射层,优选地,将ITO阳极与散射层合为一体,即在制作散射层时采用ITO材料作为平坦层。请参见图13,图13为本发明的有机发光二极管中散射层的光路图。
当来自有机材料层发出的光入射到散射层1301后,由于散射层1301的折射率要比玻璃基底1302的折射率值大,使得一部分光将在散射层1301与玻璃基底1302的交界面处发生全反射现象,如图中的B光线所示,当B光线在散射层1301内发生两次全反射后,B光线将入射到散射层1301中的二氧化硅突起结构的侧面上,由于二氧化硅突起结构的折射率值小于氧化铟锡,且B光线入射到二氧化硅突起结构上的入射角小于全反射的临界角,因此B光线将在二氧化硅突起结构的表面发生折射现象,即改变了B光线的传播方向,进而使得B光线可以从玻璃基底1302中出射,从而减少了有机发光二极管中波导模式的产生,因此,本优选实施例中的有机发光二极管的出光率比现有的有机发光二极管的出光率要高。
对于顶发射的有机发光二极管中采用散射层实现减少波导模式的原理与底发射的情况相同,在本优选实施例中将不在赘述。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选的实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种散射层的制备方法,其包括:
    在基底上制备具有若干个孔洞结构的掩膜板;
    在掩膜板的孔洞结构内沉积具有第一折射率值的材料;
    完成沉积具有第一折射率值的材料后,洗去掩膜板,从而在基底上形成若干个突起结构;
    在若干个突起结构之间沉积具有第二折射率值的材料,形成平坦层,所述平坦层用于将若干个突起结构平坦化,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,其中第二折射率值大于第一折射率值。
  2. 根据权利要求1所述的散射层的制备方法,其中在基底上制备具有若干个孔洞结构的掩膜板的方法包括:
    在基底上采用开放式掩膜板,通过真空蒸镀或者物理气相沉积法制备具有与开放式掩膜板的图案相同的铝膜;
    对制备出的铝膜进行第一次阳极氧化,并洗去氧化生成的氧化铝,形成具有若干个六方密堆积结构的凹槽的铝膜;
    将具有若干个六方密堆积结构的凹槽的铝膜进行第二次阳极氧化,直至将凹槽下方的铝全部氧化形成孔洞结构为止。
  3. 根据权利要求2所述的散射层的制备方法,其中所述铝膜的厚度范围为2微米至10微米。
  4. 根据权利要求2所述的散射层的制备方法,其中第一次阳极氧化和第二次阳极氧化过程均在草酸溶液中进行。
  5. 根据权利要求2所述的散射层的制备方法,其中洗去氧化生成的氧化铝的方法包括采用氢氧化钠溶液洗去氧化铝。
  6. 根据权利要求1所述的散射层的制备方法,其中在掩膜板的孔洞结构内沉积具有第一折射率值的材料的步骤中,采用的沉积方法包括:真空蒸镀、物理气相沉积、化学气相沉积或者脉冲激光沉积。
  7. 根据权利要求1所述的散射层的制备方法,其中所述的突起结构包括:半球型突起结构或者柱状突起结构。
  8. 根据权利要求1所述的散射层的制备方法,其中具有第一折射率值的材料包括:硅-玻璃键合结构材料、二氧化硅和气凝胶中的一种或多种。
  9. 根据权利要求1所述的散射层的制备方法,其中具有第二折射率值的材料包括氮化硅、氧化铟锡和硒化锌中的一种或多种。
  10. 根据权利要求1所述的散射层的制备方法,其中所述基底包括玻璃基底。
  11. 一种散射层的制备方法,其中所述方法包括:
    在铝箔上制备具有若干个孔洞结构的掩膜板,并将掩膜板转移至基底上;
    在掩膜板的孔洞结构内沉积具有第一折射率值的材料;
    完成沉积具有第一折射率值的材料后,洗去掩膜板,从而在基底上形成若干个突起结构;
    在若干个突起结构之间沉积具有第二折射率值的材料,形成平坦层,所述平坦层用于将若干个突起结构平坦化,从而在基底上制备出由若干个突起结构和平坦层组成的散射层,其中第二折射率值大于第一折射率值。
  12. 根据权利要求11所述的散射层的制备方法,其中在铝箔上制备具有若干个孔洞结构的掩膜板的步骤包括:
    对铝箔进行第一次阳极氧化,直至铝箔中的铝不再被氧化,洗去氧化生成的氧化铝,在铝箔上形成具有若干个六方密堆积结构的凹槽;
    将具有若干个六方密堆积结构的凹槽的铝箔进行第二次阳极氧化,直至凹槽下方的铝氧化形成规则的孔道结构;
    依次洗去具有孔道结构的铝箔中剩余的铝和孔道结构底部的氧化铝,从而形成具有若干个孔洞结构的掩膜板。
  13. 根据权利要求12所述的散射层的制备方法,其中第一次阳极氧化和第二次阳极氧化过程均在草酸溶液中进行。
  14. 根据权利要求12所述的散射层的制备方法,其中洗去氧化生成的氧化铝的方法包括采用氢氧化钠溶液洗去氧化铝。
  15. 根据权利要求12所述的散射层的制备方法,其中洗去具有孔道结构的铝箔中剩余的铝的方法包括采用氯化铜溶液洗去剩余的铝。
  16. 根据权利要求11所述的散射层的制备方法,其中洗去孔道结构底部的氧化铝的方法包括采用磷酸溶液洗去孔道结构底部的氧化铝。
  17. 根据权利要求11所述的散射层的制备方法,其中具有第一折射率值的材料包括:硅-玻璃键合结构材料、二氧化硅和气凝胶中的一种或多种。
  18. 根据权利要求11所述的散射层的制备方法,其中具有第二折射率值的材料包括氮化硅、氧化铟锡和硒化锌中的一种或多种。
  19. 根据权利要求11所述的散射层的制备方法,其中所述突起结构包括:半球型突起结构或者柱状突起结构。
  20. 一种有机发光二极管,包括阴极、有机材料层、ITO阳极和基底,其中所述有机发光二极管还包括由权利要求1中的方法制备的散射层,所述散射层置于ITO阳极与基底之间;或者所述散射层置于所述阴极的一侧上。
PCT/CN2016/080410 2016-04-08 2016-04-27 一种散射层的制备方法、有机发光二极管 WO2017173684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/128,119 US9985253B2 (en) 2016-04-08 2016-04-27 Method of manufacturing light scattering layer and organic light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610216452.2A CN105870358B (zh) 2016-04-08 2016-04-08 一种散射层的制备方法、有机发光二极管
CN201610216452.2 2016-04-08

Publications (1)

Publication Number Publication Date
WO2017173684A1 true WO2017173684A1 (zh) 2017-10-12

Family

ID=56636368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080410 WO2017173684A1 (zh) 2016-04-08 2016-04-27 一种散射层的制备方法、有机发光二极管

Country Status (2)

Country Link
CN (1) CN105870358B (zh)
WO (1) WO2017173684A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469785B (zh) * 2016-09-30 2019-07-09 陕西科技大学 一种有机光电器件制备方法
CN106684217A (zh) * 2017-01-17 2017-05-17 Tcl集团股份有限公司 发光器件衬底及其制备方法、发光器件
CN107708364B (zh) * 2017-10-30 2020-01-14 Oppo广东移动通信有限公司 壳体制作方法、壳体及电子设备
CN108167683B (zh) 2017-12-26 2021-08-17 惠州市华星光电技术有限公司 复合扩散板及超薄直下式背光模组
KR102640404B1 (ko) * 2018-10-18 2024-02-26 삼성디스플레이 주식회사 표시장치 및 그 표시장치의 제조방법
CN111682051A (zh) * 2020-06-23 2020-09-18 昆明京东方显示技术有限公司 硅基有机电致发光显示基板及其制作方法、显示面板
CN114792713A (zh) * 2021-06-30 2022-07-26 武汉天马微电子有限公司 一种显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120305966A1 (en) * 2011-05-31 2012-12-06 Electronics And Telecommunications Research Institute Organic light emitting diode and method of fabricating the same
CN102832356A (zh) * 2012-08-30 2012-12-19 京东方科技集团股份有限公司 Oled封装结构及其制造方法、发光器件
CN102969453A (zh) * 2012-09-13 2013-03-13 昆山维信诺显示技术有限公司 图形化传输层、包含该图形化传输层的oled器件及制备方法
CN104218167A (zh) * 2013-05-30 2014-12-17 海洋王照明科技股份有限公司 一种有机发光面板及其制备方法
CN104770063A (zh) * 2012-10-11 2015-07-08 松下知识产权经营株式会社 有机电致发光元件以及照明装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169307B1 (ko) * 2004-08-31 2012-07-30 내셔널 유니버시티 오브 싱가포르 나노구조체 및 그의 제조 방법
CN102041539A (zh) * 2011-01-07 2011-05-04 北京大学 一种GaN基光子晶体模板及其制备方法
JP2012204103A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 有機電界発光素子、表示装置および照明装置
CN102903608A (zh) * 2011-07-29 2013-01-30 北京大学 一种纳米级图形化蓝宝石衬底的制备方法
KR20130084848A (ko) * 2012-01-18 2013-07-26 한국전자통신연구원 유기 발광 소자 및 유기 발광 소자 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120305966A1 (en) * 2011-05-31 2012-12-06 Electronics And Telecommunications Research Institute Organic light emitting diode and method of fabricating the same
CN102832356A (zh) * 2012-08-30 2012-12-19 京东方科技集团股份有限公司 Oled封装结构及其制造方法、发光器件
CN102969453A (zh) * 2012-09-13 2013-03-13 昆山维信诺显示技术有限公司 图形化传输层、包含该图形化传输层的oled器件及制备方法
CN104770063A (zh) * 2012-10-11 2015-07-08 松下知识产权经营株式会社 有机电致发光元件以及照明装置
CN104218167A (zh) * 2013-05-30 2014-12-17 海洋王照明科技股份有限公司 一种有机发光面板及其制备方法

Also Published As

Publication number Publication date
CN105870358B (zh) 2017-11-28
CN105870358A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017173684A1 (zh) 一种散射层的制备方法、有机发光二极管
CN105552249B (zh) Oled显示基板及其制作方法、显示装置
US8921841B2 (en) Porous glass substrate for displays and method of manufacturing the same
US10916600B2 (en) Flexible touch control display screen and method for manufacturing same
WO2014169621A1 (zh) 薄膜晶体管及其制作方法
CN109411613A (zh) 有机发光显示装置、包括其的头戴式显示器及其制造方法
CN107134543B (zh) 阵列基板及制造方法、显示装置
US11201301B2 (en) Base support plate and method of manufacturing the same, and method of manufacturing a flexible display panel
WO2016000342A1 (zh) 阵列基板及其制作方法、显示装置
WO2015096292A1 (zh) 阵列基板及其制造方法、显示装置
CN103489827A (zh) 一种薄膜晶体管驱动背板及其制作方法、显示面板
WO2013135075A1 (zh) 阵列基板的制作方法、阵列基板及显示装置
TW201105162A (en) Organic electroluminescent display device and method of fabricating the same
WO2016029612A1 (zh) 薄膜晶体管及其制备方法、显示基板及显示装置
WO2016141805A1 (zh) 薄膜层图案、薄膜晶体管及阵列基板的制备方法
CN104835829A (zh) 电子光学装置、电子光学装置的制造方法、电子设备
US20170186879A1 (en) Thin Film Transistor, Array Substrate and Manufacturing Processes of Them
WO2015169023A1 (zh) Oled发光器件及其制备方法、显示装置
WO2019184901A1 (zh) 显示面板及其制造方法、显示装置
WO2020224139A1 (zh) 显示面板及其制作方法
KR20100131074A (ko) 상부 발광방식 유기전계발광소자 및 이의 제조방법
CN110176462B (zh) 一种透明oled显示器制作方法及显示器
WO2018228107A1 (zh) 有机发光器件及其制作方法
KR101790062B1 (ko) 산화물 반도체층을 이용한 박막 트랜지스터 및 그의 제조방법
WO2014023039A1 (zh) 有机显示装置及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15128119

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897618

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897618

Country of ref document: EP

Kind code of ref document: A1