WO2017171433A1 - 이차전지의 제조방법 - Google Patents

이차전지의 제조방법 Download PDF

Info

Publication number
WO2017171433A1
WO2017171433A1 PCT/KR2017/003491 KR2017003491W WO2017171433A1 WO 2017171433 A1 WO2017171433 A1 WO 2017171433A1 KR 2017003491 W KR2017003491 W KR 2017003491W WO 2017171433 A1 WO2017171433 A1 WO 2017171433A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
secondary battery
film layer
carbonate
separator
Prior art date
Application number
PCT/KR2017/003491
Other languages
English (en)
French (fr)
Inventor
유성훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170039348A external-priority patent/KR20170113333A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17775857T priority Critical patent/PL3301749T3/pl
Priority to CN201780002436.6A priority patent/CN108780926B/zh
Priority to JP2018515064A priority patent/JP6600085B2/ja
Priority to EP17775857.0A priority patent/EP3301749B1/en
Priority to US15/740,920 priority patent/US11367905B2/en
Publication of WO2017171433A1 publication Critical patent/WO2017171433A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery manufacturing method, and more particularly to a secondary battery manufacturing method that can improve the impregnation of the electrolyte solution.
  • lithium secondary batteries of high energy density and high discharge voltage are commercialized and widely used.
  • a lithium secondary battery mainly uses a lithium-based metal oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively, and an electrode assembly in which a positive electrode plate and a negative electrode plate coated with the positive electrode active material and the negative electrode active material are disposed with a separator interposed therebetween, and the electrode An exterior material for sealingly containing the assembly together with the electrolyte solution is provided.
  • the electrolyte injected into the cell is permeated by capillary force between the positive electrode plate, the negative electrode plate, and the separator constituting the electrode assembly.
  • the electrode assembly interposed in the battery must be completely impregnated with the electrolyte so that lithium ion reaction between the electrodes can be actively performed.
  • impregnation of the electrolyte is not easy due to the characteristics of the porous electrode of the microstructure and the physical and chemical properties of the electrode and the elements constituting the battery.
  • the positive and negative electrode loads of secondary batteries gradually increase for high capacity, and as the large area electrodes of automobile batteries increase, the impregnation of electrolytes becomes more difficult. If the electrolyte solution is not sufficiently impregnated, since the charge and discharge efficiency due to lithium ions and the like is lowered, there is a disadvantage in that the performance of the secondary battery is reduced.
  • the present invention has been made to solve such a problem
  • the first technical problem to be solved by the present invention is to improve the performance and life of the lithium secondary battery by improving the electrolyte impregnation, and to provide a secondary battery manufacturing method that can improve the safety of the battery.
  • a second technical problem to be solved by the present invention is to provide a secondary battery manufactured by the manufacturing method.
  • Providing a film layer comprising a first solvent having a melting temperature of at least 25 ° C. and a viscosity of at least 40 cP at 40 ° C. between the separator and the electrode step 1;
  • It provides a method of manufacturing a secondary battery comprising a; receiving the electrode assembly in a case, injecting and sealing an injection solution containing a second solvent (step 3).
  • step 1 Providing the film layer (step 1)
  • the film layer may further include a softener.
  • the weight ratio of the first solvent: softener in the film layer may be 99.5: 0.5 to 90:10, specifically 99: 1 to 95: 5.
  • the film layer may further include a first lithium salt.
  • the second solvent may include a liquid at room temperature, a solvent having a viscosity of less than 1.5 cP at 25 ° C, or a solid at room temperature, and a solvent having a viscosity of at least 1.5 cP at 40 ° C.
  • the injection liquid may further include a second lithium salt.
  • the weight ratio of the first solvent to the second solvent may be 1: 0.2 to 1: 2.
  • Anode cathode, separator, electrolyte, and
  • a secondary battery including a film layer manufactured by the method of the present invention interposed between at least one or more of the separator and the negative electrode, or between the separator and the positive electrode.
  • the film layer is composed of a first solvent
  • the electrolyte may include a second solvent and a second lithium salt.
  • the film layer may include a first solvent and a first lithium salt
  • the electrolyte may include a second solvent and a second lithium salt
  • the film layer may include a first solvent and a first lithium salt, and the electrolyte may be composed of a second solvent.
  • a secondary battery of the present invention by introducing a film layer containing the first solvent in the solid state at a temperature of less than 25 °C to the electrode assembly, and further injecting the injection solution containing the second solvent, It is possible to manufacture a secondary battery with improved impregnation and safety. Such a secondary battery can be usefully applied to high capacity and large area.
  • FIG. 1 and 2 schematically show the position and shape of the film layer containing the first solvent in the method of manufacturing a secondary battery of the present invention.
  • 3 to 5 schematically show various configuration examples of an injection solution including a film layer and a second solvent, each including a first solvent in a method of manufacturing a secondary battery according to an embodiment of the present invention.
  • electrolyte solution injection solution containing a second solvent and a second lithium salt
  • film layer comprising a first solvent and a first lithium salt
  • the film layer formed by using a high viscosity solvent which is a solid at room temperature is first interposed between the separator and the electrode, and then a low viscosity solvent is further injected to solve the electrolyte impregnation problem.
  • Providing a film layer comprising a first solvent having a melting temperature of at least 25 ° C. and a viscosity of at least 40 cP at 40 ° C. between the separator and the electrode step 1;
  • It provides a method of manufacturing a secondary battery comprising a; receiving the electrode assembly in a case, injecting and sealing an injection solution containing a second solvent (step 3).
  • the coating (b) may further comprise the step of cooling the first solvent to a solid state.
  • an injection liquid containing a second solvent is added between the separator and the electrode in a state where a film layer including the first solvent having a viscosity of 1.5 cP or more at 40 ° C. is present.
  • the separation membrane and the film layer comprising a first solvent in the solid state at a melting temperature of 25 °C or more, that is, less than 25 °C Providing between the electrodes (step 1).
  • a film layer in a solid form is first formed using a first solvent in a solid state at a temperature of less than 25 ° C., and then the previously formed film layer is formed between at least one of the separator and the anode, or between the separator and the cathode. It may be provided via one or more locations.
  • the melting temperature of the first solvent is 25 °C or more, specifically 25 °C to 200 °C, more specifically 25 °C to 100 °C, more specifically 25 °C To 80 ° C.
  • the melting temperature of the solvent is less than 25 °C, it may be difficult to implement a film layer of a solid because it is liquid at room temperature. That is, the first solvent is convenient for sheet production when it is in a solid state at a temperature of less than 25 ° C., for example. Sometimes, even in the case of a solvent having a melting point of room temperature or less, sheeting and electrode assembly may be possible when the temperature is kept below room temperature in the manufacturing process.
  • room temperature or Not cooling Not As a yearly average temperature, it means the range of 20 ⁇ 5 ° C, and refers to a temperature of 25 ° C in this specification .
  • the first solvent is a high viscosity solvent having a viscosity of 1.5 cP or more, preferably 1.5 cP to 50 cP, more preferably 1.5 cP to 20 cP at 40 ° C. as measured by a Brookfield viscometer. If the viscosity of the first solvent is less than 1.5 cP, there may be a problem that the safety and performance of the secondary battery is reduced.
  • the viscosity of the first solvent is a viscosity measured at the time of liquefaction at a temperature higher than the melting temperature.
  • the film layer may be manufactured by various methods using a first solvent having a melting temperature of 25 ° C. or more and a viscosity of 1.5 cP or more at 40 ° C.
  • the film layer 130 may be manufactured in an appropriate size suitable for the purpose by applying pressure to a first solvent having a melting temperature of 25 ° C. or higher and a viscosity of 1.5 cP or higher at 40 ° C. .
  • the film layer 130 using the first solvent is 50 Kgf / cm 2 It can be formed by applying a pressure in the range of from 300 Kgf / cm 2 .
  • the film can be filmed in a state suitable for the performance of the secondary battery desired in the present invention without damage. That is, by applying an appropriate pressure to the solid materials at room temperature it can be formed into a thin film.
  • the electrode assembly 100 may be formed using the negative electrode 140, the film layer 130, the separator 120, and the positive electrode 110 formed using the first solvent.
  • the film layer 130 may be positioned between the anode 110 and the separator 120 (not shown), between the cathode 140 and the separator 120, or both (not shown).
  • the first solvent is a melting temperature of 25 °C or more, at 40 °C satisfies a condition of more than 1.5 cP, inhibiting the effect of the present invention
  • Various solvents can be used in the range which is not.
  • the first solvent is ethylene carbonate (EC), cis-4,5-dimethyl-1,3-dioxolan-2-one (cis-4,5-Dimethyl-1,3-dioxolan-2-one ), Trans-4,5-dimethyl-1,3-dioxolan-2-one (trans-4,5-Dimethyl-1,3-dioxolan-2-one), 1,2-cyclopentylene carbonate (1 , 2-Cyclopentylene carbonate, cyclohexene carbonate, Pinacolone cyclic carbonate, 1,3-propylene carbonate, 5,5-dimethyl-1,3-dioxan-2-one (5,5- Dimethyl-1,3-dioxan-2-one), sulfolane, ethyl methyl sulfone, diethyl sulfone, ethyldimethylcarbamate, and at least one selected from the group consisting of phenyl dimethylcarbamate.
  • the film layer may further include a softener to impart ductility.
  • ductility may be added by adding a softener that does not affect the performance of the secondary battery.
  • the softener may be a material commonly used in the art as an electrode active material binder, and examples thereof include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP) and polyvinylidene fluoride.
  • Polyacrylonitrile Polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, poly
  • a single substance selected from the group consisting of acrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, and polyacrylic acid, or a mixture of two or more thereof may be used.
  • the low conductivity ductile agent is present in the film layer in a simple mixture with the first solvent, it is difficult to dissolve in the second solvent additionally injected. Therefore, since only the inside of the film layer between the electrode and the separator, and does not penetrate into the electrode or the separator, there is a structural difference from the general gel electrolyte, there is a relatively small problem such as increased resistance.
  • the weight ratio of the first solvent: softener in the film layer may be 99.5: 0.5 to 90:10, specifically 99: 1 to 95: 5.
  • the resistance may increase, and the effect of imparting ductility to the film layer at only less than 0.5 may be insignificant.
  • the thickness of the film layer is preferably in the range of 10 ⁇ m to 100 ⁇ m, when formed in the thickness range, it is possible to ensure the optimum amount of solvent for impregnation of the electrolyte solution.
  • the film layer may be composed of only a first solvent having a viscosity of 1.5 cP or more and a high viscosity, or may further include a first lithium salt as necessary.
  • the first lithium salt may be included in the first solvent at a concentration of 0.3M to 2.0M.
  • Examples of the first lithium salt include electrolyte salts commonly used in the art, and include, for example, Li + as a cation, and F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , NO 3 ⁇ , as an anion.
  • the film layer 130 is (a) freestanding by compressing the first solvent in a solid state at a temperature of less than 25 °C (a) After preparing a film layer having a freestanding form, it may be provided between the separator 120 and the electrode 140, or as shown in FIG. 2 (b) after melting the first solvent, the separator 120 It may be formed by directly coating on one side or both sides of, then cooling to room temperature or less.
  • the coating may be coated by various methods such as spraying or immersing a separator in a first solvent and then drying, but is not limited thereto.
  • the film layer may be formed by sheeting the first solvent using the separator as a support layer without melting the first solvent (not shown).
  • the secondary battery manufacturing method of the present invention may include a step (step 2) of preparing an electrode assembly using a film layer, an electrode and a separator comprising a first solvent.
  • Electrodes and separators for forming the electrode assembly may be prepared using a method commonly used in the art.
  • the separator is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer It may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of glass fibers of high melting point, polyethylene terephthalate fibers and the like can be used, but is not limited thereto.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer It may be used alone or by laminating them, or
  • the electrode also includes an anode and a cathode.
  • the positive electrode may be prepared by mixing and stirring a positive electrode active material, a binder, a conductive material, and a solvent to prepare a slurry, followed by coating (coating), compressing, and drying the positive electrode current collector.
  • the cathode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide including lithium and one or more metals such as cobalt, manganese, nickel, or aluminum. have. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( here, 0 ⁇ Z ⁇ 2) and the like), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1) and the like), lithium-manganese-
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides may be improved in capacity and stability of the battery.
  • the lithium composite metal oxide may be Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , in view of the remarkable improvement effect according to the type and content ratio of the member forming the lithium composite metal oxide.
  • the cathode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the cathode slurry.
  • the binder is a component that assists in the bonding between the positive electrode active material and the conductive material and the current collector, and is generally added in an amount of 1 to 20 wt% based on the total weight of solids in the positive electrode slurry.
  • binders include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber
  • SBR ethylene-propylene-diene monomer
  • EPDM sulfonated EPDM
  • the conductive material is typically added in an amount of 1 to 20% by weight based on the total weight of solids in the positive electrode slurry.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • Preferred examples of the solvent include dimethyl sulfoxide (DMSO), alcohols, N-methylpyrrolidone (NMP), acetone or water and the like, and are removed in the drying process.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the positive electrode current collector may be formed on a surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. The surface-treated with carbon, nickel, titanium, silver, etc. are mentioned.
  • Such a positive electrode current collector generally has a thickness of 3 ⁇ m to 500 ⁇ m.
  • the positive electrode current collector may increase the adhesion of the positive electrode active material by forming minute unevenness on the surface, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode may be prepared by mixing and stirring a negative electrode active material, a binder, a conductive material, and a solvent to prepare a slurry, followed by coating (coating), compressing, and drying the negative electrode current collector.
  • the negative electrode active material is typically a carbon material such as natural graphite or artificial graphite in which lithium ions may be occluded and released; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me); And it can be used one or two or more selected from the group consisting of a complex of the metals (Me) and carbon.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists the bonding between the negative electrode active material and the conductive material and the current collector, and is generally added in an amount of 1 to 20 wt% based on the total weight of solids in the negative electrode slurry.
  • binders include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber
  • SBR ethylene-propylene-diene monomer
  • EPDM sulfonated EPDM
  • the conductive material is typically added in an amount of 1 to 20% by weight based on the total weight of solids in the negative electrode slurry.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone or water and the like, and are removed in a drying process.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver and the like, aluminum-cadmium alloy and the like can be used.
  • Such negative electrode current collectors generally have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the negative electrode current collector like the positive electrode current collector, may form fine irregularities on the surface to strengthen the bonding strength of the negative electrode active material, and may be used in various forms such as film, sheet, foil, net, porous body, foam, and nonwoven fabric. Can be.
  • an electrode assembly may be manufactured by stacking, winding or folding the cathode, the separator including the film layer including the first solvent, and the anode in a conventional manner.
  • the separator including the film layer including the first solvent may be located between the cathode, or optionally, both between the anode and the separator and between the cathode and the separator.
  • the method of manufacturing a secondary battery according to an embodiment of the present invention may include a step (step 3) of accommodating the electrode assembly in a case and injecting an injection liquid containing a second solvent.
  • the injection liquid may consist of only the second solvent in liquid form, or may optionally further comprise a second lithium salt or additive in the second solvent.
  • the second lithium salt may be included in a concentration of 0.7M to 3.0M in the second solvent.
  • the second solvent is optionally a liquid at less than 25 ° C. and a low viscosity solvent having a viscosity of less than 1.5 cP at 25 ° C. and a solid at less than 25 ° C. as measured by a Brookfield viscometer and the first solvent is Brookfield ( Brookfield)
  • At least one solvent selected from the group consisting of high viscosity solvents having a viscosity of 1.5 cP or higher at 40 ° C. can be used as measured by a viscometer.
  • the second solvent is a high viscosity solvent that is solid at less than 25 °C and 1.5cP or more, it may be injected after melting it.
  • the second solvent is a low viscosity solvent of less than 1.5 cP
  • representative examples thereof include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), butylene carbonate (BC), diethyl carbonate (DEC), dipropyl Carbonates such as carbonate (DPC) or fluoroethylene carbonate (FEC); methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP) or butyl propionate ( Esters such as BP) and lactones such as gamma-butyrolactone (GBL), or a mixture of two or more thereof.
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • BC butylene carbonate
  • DEC diethyl carbonate
  • DPC dipropyl Carbonates
  • carbonate DPC
  • FEC fluoroethylene carbonate
  • MP methyl propionate
  • EP ethyl propionate
  • PP propyl prop
  • the second solvent is a high viscosity solvent having 1.5 cP or more
  • a solvent having the same high viscosity as the first solvent may be used.
  • a low viscosity solvent having a viscosity of less than 1.5 cP and a high viscosity solvent having a viscosity of 1.5 cP or more in the second solvent a low viscosity solvent having a viscosity of less than 1.5 cP: a high viscosity solvent having a viscosity of 1.5 cP or more is 1 : 9 to 9: 1.
  • the second solvent may be a solvent having a viscosity of less than 1.5 cP, in this case, when the battery is charged and stored in a high temperature environment, the low-viscosity solvent at the electrode is oxidatively decomposed carbon dioxide gas Is generated, so that expansion of the battery can be prevented, which is preferable.
  • the ratio of the first solvent and the second solvent is preferably 1: 0.2 to 1: 2 by weight. If the ratio of the second solvent is less than 0.2, the ionic conductivity may be reduced, and if the ratio of the second solvent exceeds 2, not only the low temperature and high temperature output characteristics of the secondary battery, but also the capacity characteristics after high temperature storage are reduced. There may be a problem. When the first solvent and the second solvent in the above range is satisfied, the optimum effect can be achieved in the ion conductivity and the capacity and life characteristics of the secondary battery.
  • a secondary battery is prepared including only a solid electrolyte without additional solvent.
  • the characteristics of the solid electrolyte layer itself should be excellent.
  • the ionic conductivity is inferior to that of the liquid electrolyte, various problems may occur in the practical application of the battery using the solid electrolyte.
  • problems such as ionic conductivity which may be caused by using the film layer including the high viscosity first solvent may be improved by additionally injecting the injection liquid containing the second solvent having the low viscosity.
  • the electrode assembly is generally contained in the battery case by injecting the injection solution including the second solvent.
  • a film layer including a high viscosity solvent and an injection solution containing a second solvent are injected and used in different ways, so that the low temperature and In addition to the high temperature output characteristics, the optimum effect can be achieved in capacity characteristics after high temperature storage.
  • Anode cathode, separator, electrolyte, and
  • a secondary battery including a film layer manufactured by the method of the present invention interposed between at least one or more of the separator and the negative electrode, or between the separator and the positive electrode.
  • the secondary battery of the present invention may be manufactured in various structures including a first solvent and a second solvent.
  • FIGS. 3 to 5 included in the present specification schematically show examples of various configurations of the secondary battery manufactured by the method of manufacturing the secondary battery according to the embodiment of the present invention.
  • the secondary battery of the present invention does not include the first lithium salt, the film layer 230 includes only the first solvent, the second solvent, and the second lithium salt. It may include an electrolyte (injection solution) 250 including a.
  • the secondary battery according to the exemplary embodiment includes a solid film layer 230 made of a first solvent that is solid at room temperature or less without a first lithium salt, between the separator 220 and the electrodes 210 and 240.
  • the electrode assembly 200 is housed in a case, and an electrolyte solution (injection liquid) 250 containing a second solvent and a second lithium salt is injected and sealed.
  • injection liquid injection liquid
  • the second lithium salt may be included in 0.7M to 3.0M with respect to the second solvent.
  • the secondary battery of the present invention according to the embodiment, the film layer 330 including the first solvent and the first lithium salt, and the electrolyte solution containing the second solvent and the second lithium salt as shown in FIG. (Injection amount) 350.
  • the film layer 330 including the first solvent and the first lithium salt in a solid state at room temperature or less is disposed between the separator 320 and the electrodes 310 and 340.
  • the electrode assembly 300 is housed in a case, and an electrolyte solution (injection solution) 350 containing a second solvent and a second lithium salt is injected and sealed. Can be prepared.
  • the first lithium salt may be included in a concentration of 0.3M to 2.0M with respect to the first solvent
  • the second lithium salt may be included in a concentration of 0.7M to 3.0M with respect to the second solvent.
  • the film layer 430 including the first solvent and the first lithium salt having a high viscosity of 1.5 cP or more is positioned between the separator 420 and the electrodes 410 and 440.
  • the electrode assembly 400 is housed in a case and manufactured by injecting and sealing an electrolyte solution (injection solution) 450 containing only the second solvent without a second lithium salt. Can be.
  • the first lithium salt may be included in a concentration of 0.3M to 2.0M with respect to the first solvent.
  • the first lithium salt and the second lithium salt each include Li + as a cation, and as an anion, F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , NO 3 ⁇ , N ( CN) 2 -, BF 4 - , ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3 ) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (F 2 SO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH
  • the battery case used in the present invention may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch type using a can Or a coin type.
  • the present invention may provide a secondary battery manufactured by the method of manufacturing the secondary battery.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium and large devices include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.
  • ethylene carbonate (EC) having a viscosity of 1.9 cP at 40 ° C. and a melting temperature of 36.4 ° C. as measured by a Brookfield viscometer was subjected to a pressure of 200 Kgf / cm 2 under a nitrogen atmosphere to 100 ⁇ m in thickness. The film layer of was formed.
  • ethylmethyl carbonate (EMC) and LiPF 6 having a viscosity of 0.65 cP at 25 ° C. as measured by a Brookfield viscometer An injection solution containing 3M was prepared. (At this time, when the mixture was mixed with the first solvent film layer, the LiPF 6 concentration was 1 M in total).
  • a mixture of LiCoO 2 as a positive electrode active material, 8% by weight of carbon black as a conductive material, and 3% by weight of polyvinylidene fluoride (PVDF) as a binder were used as a solvent, N-methyl-2-pyrrolidone ( NMP) to prepare a positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, and dried, followed by roll press to prepare a positive electrode.
  • Al aluminum
  • a negative electrode mixture slurry was prepared by adding 97 wt%, 2 wt%, and 1 wt% of graphite black as a negative electrode active material, PVDF as a binder, and carbon black as a conductive material, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a thin copper (Cu) thin film, which was a negative electrode current collector having a thickness of 10 ⁇ m, and dried, followed by roll press to prepare a negative electrode.
  • polypropylene was uniaxially stretched using a dry method to prepare a separator having a microporous structure having a melting point of 165 ° C and a width of one side of 200 mm.
  • the prepared negative electrode, the film layer including the first solvent, the separator and the positive electrode were sequentially stacked, and then the unit cells were placed on the long sheet polyolefin separation film and folded to form the electrode assembly of FIG. 3.
  • the injection solution was injected and sealed to complete the manufacture of a lithium secondary battery.
  • the weight ratio of the first solvent and the second solvent was injected to be 1: 0.5.
  • LiPF 6 as the first lithium salt in the first solvent Further adding 0.5M to prepare a solid film layer, LiPF 6 as a second lithium salt in a second solvent Except that 0.5M was added, the electrode assembly of FIG. 4 and a lithium secondary battery having the same were manufactured in the same manner as in Example 1.
  • LiPF 6 in the first solvent The electrode assembly of FIG. 5 and the lithium secondary battery including the same were manufactured in the same manner as in Example 1, except that 1.5M was added to prepare a solid film layer, and only the second solvent was added as an injection liquid. Prepared.
  • An electrode assembly and a lithium secondary battery including the same were manufactured in the same manner as in Example 1 except that the electrode assembly was formed by folding the separator, the cathode, and the cathode including the film layer.
  • Example 1 and 1 except that the first solvent in the ethylene carbonate (EC) instead of ethylene carbonate (EC) and a sulfolane having a viscosity of 10 cP at 30 °C in a 1: 1 weight ratio.
  • a lithium secondary battery was produced in the same manner.
  • Example 1 except that ethylene carbonate (EC) and 1,3-propylene carbonate were mixed in a 1: 1 weight ratio instead of ethylene carbonate (EC) as the first solvent, in the same manner as in Example 1. A lithium secondary battery was prepared.
  • EC ethylene carbonate
  • 1,3-propylene carbonate were mixed in a 1: 1 weight ratio instead of ethylene carbonate (EC) as the first solvent, in the same manner as in Example 1.
  • a lithium secondary battery was prepared.
  • Example 1 In Example 1, except that ethylene carbonate (EC) and 1,3-propylene carbonate were mixed in a 1: 1 weight ratio instead of ethylene carbonate (EC) as the first solvent. A lithium secondary battery was prepared.
  • EC ethylene carbonate
  • 1,3-propylene carbonate were mixed in a 1: 1 weight ratio instead of ethylene carbonate (EC) as the first solvent.
  • a lithium secondary battery was prepared.
  • Example 1 except that ethylene carbonate (EC) and 1,3-propylene carbonate were mixed in a 1: 1 weight ratio instead of ethylene carbonate (EC) as the first solvent, in the same manner as in Example 3. A lithium secondary battery was prepared.
  • EC ethylene carbonate
  • 1,3-propylene carbonate were mixed in a 1: 1 weight ratio instead of ethylene carbonate (EC) as the first solvent, in the same manner as in Example 3.
  • a lithium secondary battery was prepared.
  • a lithium secondary battery was manufactured in the same manner as in Example 6, except that the first solvent and the softener (polyvinylidene fluoride) were included in a weight ratio of 97: 3 in Example 6.
  • Example 1 Except for using trans-4,5-dimethyl-1,3-dioxolan-2-one as the first solvent in Example 1 and using dimethyl carbonate as the second solvent. A lithium secondary battery was manufactured in the same manner as in Example 1.
  • Example 1 ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a weight ratio of 9: 1 by weight instead of ethyl methyl carbonate (EMC), and a second lithium salt LiPF 6 was used.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 0.5 M was used.
  • the electrode assembly is assembled through a separator between the prepared positive electrode and the negative electrode and then inserted into a battery case, and then the injection liquid containing only the second solvent prepared in Example 1 was injected and sealed
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a lithium secondary battery was manufactured.
  • the electrode assembly was assembled through a separator between the positive electrode and the negative electrode and the prepared positive electrode and the negative electrode and inserted into the battery case, and the ethylene carbonate (EC) having a viscosity of 1.9 cP at 25 ° C. and 25 Except that a lithium secondary battery was prepared by pouring and sealing an injection solution prepared by adding LiPF 6 1M to a mixed solution containing an ethyl methyl carbonate (EMC) having a viscosity of 0.65 cP at a 2: 1 weight ratio. And the lithium secondary battery was manufactured by the method similar to Example 1.
  • EMC ethyl methyl carbonate
  • Each of the secondary batteries prepared in Examples 1 to 11 and Comparative Examples 1 to 3 was subjected to constant current / constant voltage condition charging and 0.05C cut off charging to 0.85C at 4.35V, and discharged at 0.5C to 3.0V.
  • Table 1 shows the discharge capacity at this time as the initial capacity. Then, constant current / constant voltage condition charging and 0.05C cut-off charging up to 4.35V at 0.8C rate are performed, and then discharged at 0.5C 3.0V at room temperature as one cycle, and the capacity after 100 cycles is performed once. It is shown in Table 1 below as a percentage of the dose.
  • the secondary batteries of Examples 1 to 11 of the present invention have a high conductivity due to the improvement of the electrolyte impregnation effect, the initial discharge amount and cycle capacity (discharge capacity remaining ratio) of the secondary batteries of Comparative Examples 1 to 3 are high. It can be seen that it is excellent in preparation.
  • the high-viscosity solvent is sheeted with the first solvent, and the low-viscosity solvent or the mixed solvent of the low-viscosity solvent and the high-viscosity solvent is poured into the second solvent, thereby eliminating the film layer. It can be confirmed that the battery performance is superior to the secondary batteries of Comparative Examples 1 and 3 in which only the low viscosity solvent was injected and the mixed solvent in which the high and low viscosity solvents were mixed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 용융온도가 25℃ 이상이고, 점도가 1.5cP 이상인 제1 용매를 포함하는 필름층을 분리막과 전극 사이에 제공하는 단계(단계 1); 상기 전극, 필름층 및 분리막을 이용하여 전극조립체를 제조하는 단계 (단계 2); 및 상기 전극조립체를 케이스에 수납하고 제2 용매를 포함하는 주입액을 주입하여 밀봉하는 단계(단계 3);를 포함하는 이차전지의 제조방법 및 이러한 방법에 의해 제조된 이차전지에 관한 것이다. 본 발명의 이차전지의 제조방법에 따르면, 전해액 함침성을 향상시킬 수 있으므로, 이차전지의 성능 및 안전성을 더욱 향상시킬 수 있다.

Description

이차전지의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2016년 03월 31일자 한국 특허 출원 제10-2016-0039273호 및 2017년 3월 28일자 한국 특허 출원 제10-2017-0039348호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지의 제조방법에 관한 것으로, 보다 상세하게는 전해액의 함침성을 개선할 수 있는 이차전지의 제조방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급증하고 있고, 그러한 이차전지 중에서 고에너지 밀도와 높은 방전 전압의 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 주로 리튬계 금속 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용하고, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 상기 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재를 구비한다.
상기 마지막 단계에서 전지 내에 주입된 전해액은 전극 조립체를 구성하는 양극판, 음극판 및 세퍼레이터 사이로 모세관 힘에 의해 스며들게 된다. 이차전지가 고용량 및 고에너지 밀도를 갖고 긴 수명을 유지하기 위해서는 전지 내부에 개재된 전극조립체가 전해액에 완전히 함침되어 전극들 간의 리튬 이온 반응이 활발히 일어날 수 있도록 하여야 한다.
하지만, 미세구조의 다공성 전극의 특성과, 전극 및 전지를 구성하는 요소들의 물리, 화학적 특성으로 인하여 전해액의 함침은 쉽지 않다. 특히 고용량을 위하여 이차전지의 양극 및 음극 로딩이 점차 증가하고, 자동차 전지 등의 대면적 전극이 늘어남에 따라 전해액 함침은 더욱 어려워지는 추세이다. 전해액이 충분히 함침되지 못하는 경우, 리튬 이온 등에 의한 충방전 효율이 떨어지므로, 이차전지의 성능은 감소하는 단점이 있다.
최근 이차전지의 안전성과 성능을 위해 고점도의 용매를 사용하면서 전해액의 함침성이 더욱 어려워지고 있다.
이에, 이차전지의 성능을 개선하고 안전성을 향상시키기 위해 이차전지의 전해액 함침성을 개선할 수 있는 방법이 필요한 실정이다.
선행기술문헌
일본 공개특허공보 제1996-171934A호
본 발명은 이와 같은 문제를 해결하기 위하여 안출된 것으로,
본 발명에서 해결하고자 하는 제1 기술적 과제는 전해액 함침성을 개선하여 리튬 이차전지의 성능 및 수명을 향상시키고, 전지의 안전성을 향상시킬 수 있는 이차전지 제조방법을 제공하는 것이다.
또한, 본 발명에서 해결하고자 하는 제2 기술적 과제는 상기 제조방법에 의해 제조된 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에서는
용융온도가 25℃ 이상이고, 40℃에서 점도가 1.5cP 이상인 제1 용매를 포함하는 필름층을 분리막과 전극 사이에 제공하는 단계(단계 1);
상기 전극, 필름층 및 분리막을 이용하여 전극조립체를 제조하는 단계(단계 2); 및
상기 전극조립체를 케이스에 수납하고, 제2 용매를 포함하는 주입액을 주입하여 밀봉하는 단계(단계 3);를 포함하는 이차전지의 제조방법을 제공한다.
상기 필름층을 제공하는 단계(단계 1)는
(a) 25℃ 미만의 온도에서 고체상태의 제1 용매를 압축하여 프리스탠딩(freestanding) 형태의 필름층을 제조한 후, 분리막과 전극 사이에 제공하는 단계, 또는 (b) 25℃ 미만의 온도에서 고체상태인 제1 용매를 용융시킨 후, 분리막의 일면 또는 양면에 직접 코팅하여 제공하는 단계를 포함할 수 있다.
상기 필름층은 연성제를 추가로 포함할 수 있다.
상기 필름층 내에서 제1 용매:연성제의 중량비는 99.5:0.5 내지 90:10, 구체적으로 99:1 내지 95:5일 수 있다.
상기 필름층은 제1 리튬염을 추가로 포함할 수 있다.
상기 제2 용매는 상온에서 액체이며, 25℃에서 점도가 1.5cP 미만인 용매 또는 상온에서 고체이며,40℃에서 점도가 1.5cP 이상인 용매를 포함할 수 있다.
또한, 상기 주입액은 제2 리튬염을 추가로 포함할 수 있다.
상기 제1 용매 : 제2 용매의 중량비는 1:0.2 내지 1:2일 수 있다.
또한, 본 발명의 일 실시예에서는
양극, 음극, 분리막, 전해액, 및
상기 분리막과 음극 사이, 또는 분리막과 양극 사이 중 적어도 하나 이상의 위치에 개재된 본 발명의 방법에 의해 제조된 필름층을 포함하는 이차전지를 제공한다.
일 구현예에서, 상기 필름층은 제1 용매로 구성되고, 상기 전해액은 제2 용매 및 제2 리튬염을 포함할 수 있다.
다른 구현에에서, 상기 필름층은 제1 용매 및 제1 리튬염을 포함하고, 상기 전해액은 제2 용매 및 제2 리튬염을 포함할 수 있다.
또 다른 구현예에서, 상기 필름층은 제1 용매 및 제1 리튬염을 포함하고, 상기 전해액은 제2 용매로 구성될 수 있다.
본 발명의 이차전지의 제조방법에 따르면, 25℃ 미만의 온도에서 고체상태인 제1 용매를 포함하는 필름층을 전극조립체에 도입하고, 제2 용매를 포함하는 주입액을 추가로 주입함으로써, 전해액 함침성 및 안전성이 향상된 이차전지를 제조할 수 있다. 이러한 이차전지는 고용량화 및 대면적화에 유용하게 적용할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1 및 도 2는 본 발명의 이차전지의 제조방법에 있어서, 제1 용매를 포함하는 필름층의 위치 및 형태를 모식적으로 나타낸 것이다.
도 3 내지 도 5는 각각 본 발명의 일 실시예에 따른 이차전지의 제조방법에 있어서, 제1 용매를 포함하는 필름층 및 제2 용매를 포함하는 주입액의 다양한 구성 예를 모식적으로 나타낸 것이다.
부호의 설명
100, 200, 300, 400: 전극 조립체
120, 220, 320, 420: 분리막
130, 230: 제1 용매를 포함하는 필름층
110, 140, 210, 240, 310, 340, 410, 440: 전극
250, 350: 제2 용매 및 제2 리튬염을 포함하는 전해액(주입액)
330, 430: 제1 용매 및 제1 리튬염을 포함하는 필름층
450: 제2 용매를 포함하는 전해액(주입액)
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
최근 고용량화를 위하여 전지의 양극 및 음극 로딩이 점차 증가하고, 전지 내에 공간은 감소하면서, 전해액 함침은 점점 어려워지는 추세이다. 특히, 전지의 안전성과 셀 성능을 위해서는 고점도의 용매가 일정량 이상 반드시 필요하게 되면서, 전해액 함침성을 보다 향상시키기 위한 연구가 대두되고 있다.
이에, 본 발명에서는 상온에서 고체상인 고점도 용매를 이용하여 형성된 필름층을 분리막과 전극 사이에 먼저 개재한 다음, 저점도 용매를 추가로 주입함으로써, 전해액 함침 문제를 해결하고자 한다.
구체적으로, 본 발명의 일 실시예에서는
용융온도가 25℃ 이상이고, 40℃에서 점도가 1.5cP 이상인 제1 용매를 포함하는 필름층을 분리막과 전극 사이에 제공하는 단계(단계 1);
상기 전극, 필름층 및 분리막을 이용하여 전극조립체를 제조하는 단계(단계 2); 및
상기 전극조립체를 케이스에 수납하고, 제2 용매를 포함하는 주입액을 주입하여 밀봉하는 단계(단계 3);를 포함하는 이차전지의 제조방법을 제공한다.
이때, 상기 본 발명의 방법에서 상기 필름층을 제공하는 단계 (단계 1)는
(a) 25℃ 미만의 온도에서 고체상태인 제1 용매를 압축하여 프리스탠딩(freestanding) 형태의 필름층을 제조한 후, 분리막과 전극 사이에 제공하는 단계, 또는 (b) 25℃ 미만의 온도에서 고체상태인 제1 용매를 용융시킨 후, 분리막의 일면 또는 양면에 직접 코팅하여 제공하는 단계를 포함할 수 있다.
이때, 상기 (b) 코팅 후, 제1 용매를 냉각하여 고체 상태로 하는 단계를 추가로 포함할 수 있다.
전술한 바와 같이, 본 발명의 방법에 따르면, 분리막 및 전극 사이에 40℃에서 점도가 1.5 cP 이상인 제1 용매를 포함하는 필름층이 존재하고 있는 상태에서, 제2 용매를 포함하는 주입액을 추가로 주입함으로써, 종래 방법인 전지케이스에 제1 용매와 제2 용매를 혼합한 혼합 용매를 주액한 경우보다, 향상된 전해액 함침 효과를 구현할 수 있다.
이하, 본 발명의 이차전지의 제조방법을 단계별로 구체적으로 살펴보면 다음과 같다.
먼저, 일 구현예에 따른 본 발명의 일 실시예에 따른 이차전지의 제조방법은, 용융온도가 25℃ 이상인, 즉 25℃ 미만의 온도에서 고체상태인 제1 용매를 포함하는 필름층을 분리막 및 전극 사이에 제공하는 단계(단계 1)를 포함할 수 있다.
상기 (단계 1)은 25℃ 미만의 온도에서 고체상태인 제1 용매를 이용하여 고체형태의 필름층을 먼저 형성한 다음, 상기 기 형성된 필름층을 분리막과 양극 사이, 또는 분리막과 음극 사이 중 적어도 하나 이상의 위치에 개재하여 제공할 수 있다.
일 구현예에 따른 본 발명의 이차전지의 제조방법에 있어서, 상기 제1 용매의 용융온도는 25℃ 이상, 구체적으로 25℃ 내지 200℃, 보다 구체적으로 25℃ 내지 100℃, 더욱 구체적으로 25℃ 내지 80℃일 수 있다.
상기 용매의 용융온도가 25℃ 미만인 경우, 상온에서 액체화되기 때문에 고체의 필름층을 구현하는 데에 어려움이 있을 수 있다. 즉, 상기 제1 용매는 상온, 예컨대 25℃ 미만의 온도에서 고체상태인 경우에 시트(sheet) 제작상 편리하다. 간혹, 상온 이하의 용융점을 가지는 용매인 경우에도, 제조 공정에서 상온 이하로 유지할 경우 시트화 및 전극 조립이 가능할 수도 있다.
이때, 상기 "상온"이란 용어는 가열하거나 냉각하지 않은 년(年) 평균 온도로서, 20±5℃의 범위를 의미하며, 본 명세서에서는 25℃ 온도를 가리킨다.
또한, 상기 제1 용매는 브룩필드(Brookfield) 점도계로 측정시 40℃에서 점도가 1.5cP 이상, 바람직하게는 1.5cP 내지 50cP, 더욱 바람직하게는 1.5cP 내지 20cP의 고점도 용매인 것이 바람직하다. 만일, 상기 제1 용매의 점도가 1.5cP 미만인 경우 이차전지의 안전성 및 성능이 감소하는 문제가 있을 수 있다.
이때 상기 제1 용매의 점도는 용융온도 이상의 온도에서 액화 시에 측정된 점도이다.
일 구현예에 따른 본 발명의 이차전지의 제조방법에 있어서, 상기 필름층은 용융온도가 25℃ 이상이고, 40℃에서 점도가 1.5cP 이상인 제1 용매를 이용하여 다양한 방법으로 제조될 수 있다.
예들 들면, 도 1에 나타낸 바와 같이, 상기 필름층(130)은 용융온도가 25℃ 이상이고, 40℃에서 점도가 1.5cP 이상인 제1 용매에 압력을 가하여, 용도에 맞는 적당한 크기로 제작할 수 있다.
구체적으로, 상기 제1 용매를 이용한 필름층(130)은 50 Kgf/cm2 내지 300 Kgf/cm2의 범위의 압력을 가하여 형성할 수 있다. 상기 압력 범위를 만족하는 경우 손상 없이 본 발명에서 목적하는 이차전지의 성능에 적합한 상태로 필름화시킬 수 있다. 즉, 상온에서 고체인 물질들에 적당한 압력을 가하여 얇은 두께의 필름으로 형태를 만들 수 있다.
본 발명의 이차전지의 제조방법에서는 음극(140)과, 상기 제1 용매를 이용하여 형성한 필름층(130), 분리막(120) 및 양극(110)을 이용하여 전극 조립체(100)를 형성할 수 있으며, 이때 상기 필름층(130)은 양극(110)과 분리막(120) 사이(미도시), 음극(140)과 분리막(120) 사이, 또는 둘 다 (미도시)에 위치될 수 있다.
일 구현예에 따른 본 발명의 이차전지의 제조방법에 있어서, 상기 제1 용매는 상기 용융온도가 25℃ 이상이며, 40℃에서 점도가 1.5cP 이상인 조건을 만족하는 것이면, 본 발명의 효과를 저해하지 않은 범위에서 다양한 용매를 이용할 수 있다. 구체적으로, 상기 제1 용매는 에틸렌 카보네이트(EC), 시스-4,5-디메틸-1,3-디옥솔란-2-온(cis-4,5-Dimethyl-1,3-dioxolan-2-one), 트란스-4,5-디메틸-1,3-디옥솔란-2-온(trans-4,5-Dimethyl-1,3-dioxolan-2-one), 1,2-사이클로펜틸렌 카보네이트(1,2-Cyclopentylene carbonate), 사이클로헥센 카보네이트, 피나콜론 사이클릭 카보네이트(Pinacolone cyclic carbonate), 1,3-프로필렌 카보네이트, 5,5-디메틸-1,3-디옥산-2-온(5,5-Dimethyl-1,3-dioxan-2-one), 설포란(Sulfolane), 에틸 메틸 설폰, 디에틸 설폰, 에틸디메틸카바메이트 및 페닐 디메틸카바메이트로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
또한, 본 발명의 이차전지의 제조 방법에 따르면, 상기 필름층은 연성을 부여하기 위하여 연성제를 추가로 포함할 수 있다.
즉, 후속 적층, 권취 또는 폴딩 등의 단계에서 적절한 연성을 부여하기 위하여 이차전지의 성능에 영향을 주지 않는 연성제를 추가하여 연성을 부여할 수 있다. 상기 연성제는 당 분야에서 통상적으로 전극 활물질 바인더로 사용되는 물질 등을 사용할 수 있으며, 그 대표적인 예로 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 및 폴리아크릴산으로 이루어진 군으로부터 선택된 단일물 또는 이들 중 2종 이상의 혼합물이 사용될 수 있다.
이때, 상기 전도도가 낮은 연성제는 제1 용매와 단순 혼합된 상태로 필름층에 존재하며, 추가 주액되는 제2 용매에 잘 용해되지 않는다. 따라서, 전극과 분리막 사이의 필름층 내부에 존재할 뿐, 전극이나 분리막 내부로 침투하지 않기 때문에, 일반적인 겔 전해액과는 구조적으로 차이가 있어, 이로 인한 저항 증가 등의 문제가 상대적으로 적다.
상기 필름층 내에서 제1 용매:연성제의 중량비는 99.5:0.5 내지 90:10, 구체적으로 99:1 내지 95:5일 수 있다.
이때, 연성제의 중량비가 10을 초과하는 경우, 저항이 증가할 수 있고, 0.5 미만인 겨우 필름층에 연성을 부여하는 효과가 미미할 수 있다.
또한, 상기 필름층의 두께는 10 ㎛ 내지 100 ㎛의 범위인 것이 바람직하며, 상기 두께 범위로 형성된 경우, 전해액의 함침성을 위한 최적의 용매량을 확보할 수 있다.
상기 필름층은 점도가 1.5cP 이상 고점도의 제1 용매만으로 구성될 수 있고, 또는 필요에 따라서 제1 리튬염을 추가로 포함할 수 있다.
상기 제1 리튬염은 상기 제1 용매 내에 0.3M 내지 2.0M 농도로 포함될 수 있다.
상기 제1 리튬염은 당 분야에서 통상적으로 사용되는 전해질염을 들 수 있으며, 예를 들면 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
일 구현예에 따른 본 발명의 이차전지 제조 방법에 있어서, 상기 필름층(130)은 도 1에 도시한 바와 같이 (a) 25℃ 미만의 온도에서 고체상태의 제1 용매를 압축하여 프리스탠딩(freestanding) 형태의 필름층을 제조한 후, 분리막(120)과 전극(140) 사이에 제공할 수도 있고, 또는 도 2에 도시한 바와 같이 (b) 제1 용매를 용융시킨 후, 분리막(120)의 일면 또는 양면에 직접 코팅한 다음, 상온 이하로 냉각하여 형성할 수도 있다.
상기 코팅은 스프레이법 또는 제1 용매에 분리막을 침지한 후 건조시키는 방법 등 다양한 방법으로 코팅될 수 있으며, 이에 한정되는 것은 아니다.
본 발명의 또 다른 일 실시예에 따르면, 상기 필름층은 상기 제1 용매를 용융시키지 않고 상기 분리막을 지지층으로 이용하여 제1 용매를 시트화하여 형성할 수도 있다(미도시).
또한, 일 구현예에 따른 본 발명의 이차전지 제조 방법은 제1 용매를 포함하는 필름층, 전극 및 분리막을 이용하여 전극조립체를 제조하는 단계 (단계 2)를 포함할 수 있다.
상기 전극조립체를 형성하기 위한 전극 및 분리막은 당 분야에서 통상적으로 사용되는 방법을 이용하여 제조할 수 있다.
즉, 상기 분리막은 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 전극은 양극 및 음극을 포함한다.
상기 양극은 양극 활물과, 바인더, 도전재 및 용매를 혼합 및 교반하여 슬러리를 제조한 후 양극 집전체에 도포(코팅)하고 압축한 뒤 건조하여 제조할 수 있다.
상기 양극활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2 - z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 L(iNi0 . 8Mn0 . 1Co0 . 1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매의 바람직한 예로는 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 알코올, N-메틸피롤리돈(NMP), 아세톤 또는 물 등을 들 수 있으며, 건조 과정에서 제거된다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등을 들 수 있다. 이러한 양극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께를 가진다. 상기 양극 집전체는 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
또한, 상기 음극은 음극 활물과, 바인더, 도전재 및 용매를 혼합 및 교반하여 슬러리를 제조한 후 음극 집전체에 도포(코팅)하고 압축한 뒤 건조하여 제조할 수 있다.
상기 음극 활물질은 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 천연흑연 또는 인조흑연 등의 탄소재; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물; 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 음극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 도전재는 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 써멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
또한, 상기 용매의 바람직한 예로는 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 알코올, N-메틸피롤리돈(NMP), 아세톤 또는 물 등을 들 수 있으며, 건조 과정에서 제거된다.
상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 이러한 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께를 가진다. 이러한 음극 집전체는, 상기 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극, 제1 용매를 포함하는 필름층을 포함하는 분리막, 및 양극을 통상적인 방법으로 적층, 권취 또는 폴딩 등을 실시하여 전극 조립체를 제조할 수 있다. 상기 제1 용매를 포함하는 필름층을 포함하는 분리막은 음극 사이에 위치할 수 있으며, 또는 선택적으로 양극과 분리막 사이 및 음극과 분리막 사이의 둘 다에 위치할 수 있다.
또한, 일 구현예에 따른 본 발명의 이차전지의 제조방법은 상기 전극조립체를 케이스에 수납하고, 제2 용매를 포함하는 주입액을 주입하여 밀봉하는 단계(단계 3)를 포함할 수 있다.
상기 주입액은 액체 형태로 제2 용매만으로 구성될 수 있고, 또는 선택적으로 제2 용매에 제2 리튬염 또는 첨가제를 추가로 포함할 수 있다.
이때, 상기 제2 리튬염은 상기 제2 용매 중에 0.7M 내지 3.0M의 농도로 포함될 수 있다.
또한, 상기 제2 용매는 선택적으로 25℃ 미만에서 액체이고 브룩필드(Brookfield) 점도계로 측정시 25℃에서 점도가 1.5cP 미만인 저점도 용매 및 25℃ 미만에서 고체이며 상기 제1 용매는 브룩필드(Brookfield) 점도계로 측정시 40℃에서 점도가 1.5cP 이상인 고점도 용매로 이루어진 군으로부터 선택된 적어도 하나 이상의 용매를 사용할 수 있다. 이때, 상기 제2 용매가 25℃ 미만에서 고체이며 1.5cP 이상인 고점도 용매인 경우, 이를 용융시킨 후 주입할 수도 있다.
구체적으로, 상기 제2 용매가 1.5cP 미만의 저점도 용매인 경우, 그 대표적인 예로 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 부틸렌 카보네이트(BC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 또는 플루오로에틸렌카보네이트(fluoroethylene carbonate(FEC) 등의 카보네이트류; 메틸프로피오네이트(MP), 에틸 프로피오네이트(EP), 프로필프로피오네이트(PP) 또는 부틸프로피오네이트(BP) 등의 에스테르류 및 감마-부티로락톤(GBL) 등의 락톤류로 이루어진 군으로부터 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 들 수 있다.
상기 제2 용매가 1.5cP 이상인 고점도 용매인 경우, 상기 제1 용매와 동일한 고점도의 용매를 사용할 수 있다.
이때, 상기 제 2 용매에서, 점도가 1.5cP 미만인 저점도 용매와 점도가 1.5cP 이상인 고점도 용매를 혼합하여 사용할 경우에 점도가 1.5cP 미만인 저점도 용매:점도가 1.5cP 이상인 고점도 용매의 중량비는 1:9 내지 9:1일 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 용매는 점도가 1.5cP 미만인 용매가 바람직할 수 있으며, 이 경우 전지를 충전하여 고온 환경하에서 저장하는 경우, 전극에서 저점도 용매가 산화 분해되어 탄산가스가 발생하여, 전지에 팽창이 생기는 것이 방지될 수 있으므로 바람직하다.
본 발명의 일 실시예에 따르면, 상기 제1 용매 및 제2 용매의 비율은 중량비로 1:0.2 내지 1:2인 것이 좋다. 만일 상기 제2 용매의 비율이 0.2 미만인 경우, 이온 전도도가 감소할 수 있고, 상기 제2 용매의 비율이 2을 초과하는 경우 이차전지의 저온 및 고온 출력 특성뿐 아니라, 고온 저장 후 용량 특성이 저하되는 문제가 있을 수 있다. 상기 범위의 제1 용매 및 제2 용매를 만족할 경우, 이온 전도도 및 이차전지의 용량 및 수명특성 등에 있어 최적의 효과를 달성할 수 있다.
일반적으로 고체 전해질을 사용하는 경우 추가되는 용매 없이 고체 전해질만을 포함하여 이차전지가 제조되는데, 이 경우 고체 전해질층 자체의 특성이 우수하여야 한다. 하지만, 고체 전해질의 경우 액체 전해질에 비해 이온 전도도가 열악하므로, 고체 전해질을 이용한 전지를 실제로 다양하게 적용하는 데는 여러 가지 문제가 발생할 수 있다.
반면에, 본 발명에서는 상기 고점도의 제1 용매를 포함하는 필름층을 사용함으로써 야기될 수 있는 이온 전도도 등의 문제를 상기 저점도의 제2 용매를 포함하는 주입액을 추가로 주입함으로써 개선할 수 있다. 또한, 상기 분리막 및 전극 사이에 제1 용매가 필름층으로 존재하는 상태에서, 추가로 제2 용매를 포함하는 상기 주입액을 주입함으로써 일반적으로 전극조립체를 전지케이스 수납한 이후에, 상기 전지케이스 내부에 제1 용매와 제2 용매를 혼합한 비수 전해액을 주입한 경우보다 전해액이 더욱 빠른 속도로 함침되는 장점이 있다.
상술한 바와 같이, 본 발명에서는 특성과 형태가 다른 2종의 용매, 즉 고점도의 용매를 포함하는 필름층 및 제2 용매를 포함하는 주입액을 서로 다른 방법으로 주입하여 사용함으로써 이차전지의 저온 및 고온 출력 특성뿐 아니라, 고온 저장 후 용량 특성 등에 있어 최적의 효과를 달성할 수 있다.
또한, 본 발명의 일 실시예에서는
양극, 음극, 분리막, 전해액, 및
상기 분리막과 음극 사이, 또는 분리막과 양극 사이 중 적어도 하나 이상의 위치에 개재된 본 발명의 방법에 의해 제조된 필름층을 포함하는 이차전지를 제공한다.
상기 본 발명의 이차전지는 제1 용매 및 제2 용매를 포함하는 다양한 구조로 제조될 수 있다. 구체적으로, 본 명세서에 포함되는 도 3 내지 도 5는 각각 본 발명의 실시예에 따른 이차전지의 제조방법에 의해 제조된 이차전지의 다양한 구성의 예를 모식적으로 나타낸 것이다.
즉, 일 구현예에 따른 본 발명의 이차전지는, 도 3에 나타낸 바와 같이, 제1 리튬염을 포함하지 않고 제1 용매만을 포함하는 필름층(230)과, 제2 용매 및 제2 리튬염을 포함하는 전해액(주입액)(250)을 포함할 수 있다.
예를 들면, 상기 일 실시예에 따른 이차전지는 제1 리튬염 없이, 상온 이하에서 고체상태인 제1 용매로 이루어진 고체 필름층(230)을 분리막(220) 및 전극(210, 240) 사이에 위치시키고, 이들을 이용하여 전극조립체(200)를 제조한 후, 상기 전극조립체(200)를 케이스에 수납하고 제2 용매 및 제2 리튬염을 포함하는 전해액(주입액)(250)을 주입하고 밀봉하여 제조될 수 있다.
이때, 상기 제2 리튬염은 상기 제2 용매에 대하여 0.7M 내지 3.0M로 포함될 수 있다.
또한, 일 구현예에 따른 본 발명의 이차전지는, 도 4에 나타낸 바와 같이 제1 용매 및 제1 리튬염을 포함하는 필름층(330)과, 제2 용매 및 제2 리튬염을 포함하는 전해액(주입액) (350)을 포함할 수 있다.
예를 들면, 상기 일 실시예에 따른 이차전지는 상온 이하에서 고체상태인 제1 용매 및 제1 리튬염을 포함하는 필름층(330)을 분리막(320) 및 전극(310, 340) 사이에 위치시키고, 이들을 이용하여 전극조립체(300)를 제조한 후, 상기 전극조립체(300)를 케이스에 수납하고 제2 용매 및 제2 리튬염을 포함하는 전해액(주입액) (350)을 주입하고 밀봉하여 제조될 수 있다.
이때, 상기 제1 리튬염은 상기 제1 용매에 대하여 0.3M 내지 2.0M 농도로 포함되고, 상기 제2 리튬염은 상기 제2 용매에 대하여 0.7M 내지 3.0M 농도로 포함할 수 있다.
또한, 일 구현예에 따른 본 발명의 이차전지는, 도 5에 나타낸 바와 같이 제1 용매 및 제1 리튬염을 포함하는 필름층(430)과, 제2 리튬염을 포함하지 않고 제2 용매만을 포함하는 전해액(주입액) (450)을 포함할 수 있다.
예를 들면, 상기 일 실시예에 따른 이차전지는 1.5cP 이상의 고점도의 제1 용매 및 제1 리튬염을 포함하는 필름층(430)을 분리막(420) 및 전극(410, 440) 사이에 위치시키고, 이들을 이용하여 전극조립체(400)를 제조한 후, 상기 전극조립체(400)를 케이스에 수납하고 제2 리튬염 없이 제2 용매만을 포함하는 전해액(주입액) (450)을 주입하고 밀봉하여 제조될 수 있다.
이때, 상기 제1 리튬염은 상기 제1 용매에 대하여 0.3M 내지 2.0M 농도로 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 리튬염 및 제2 리튬염은 각각 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
또한, 본 발명에서 사용되는 전지 케이스는 당 분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
또한, 본 발명은 상기 이차전지의 제조방법에 의해 제조된 이차전지를 제공할 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
(필름층 제조)
제1 용매로서, 브룩필드(Brookfield) 점도계로 측정시 40℃에서 점도가 1.9cP이고, 용융온도가 36.4℃인 에틸렌 카보네이트(EC)를 질소 분위기하에서 200 Kgf/cm2의 압력을 가하여 100㎛ 두께의 필름층을 형성하였다.
(주입액 제조)
제2 용매로서, 브룩필드(Brookfield) 점도계로 측정시 25℃에서 점도가 0.65cP 인 에틸메틸카보네이트(EMC) 및 LiPF6 3M을 포함한 주입액을 제조하였다. (이때, 주액 후 제1 용매 필름층과 섞이게 되면 LiPF6 농도는 총 1 M가 되게 하였다).
(전극조립체 제조)
양극 활물질로서 LiCoO2의 혼합물 89 중량%, 도전재로 카본 블랙(carbon black) 8 중량%, 바인더로 폴리비닐리덴플루오라이드(PVDF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
이어서, 음극 활물질로 흑연계 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 각각 97 중량%, 2 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
그 다음으로, 폴리프로필렌을 건식 방법을 사용하여 일축 연신하여, 융점이 165℃이고, 일측의 너비가 200 mm인 미세 다공성 구조의 분리막을 제조하였다.
상기 제조된 음극, 제1 용매를 포함하는 필름층, 분리막 및 양극을 순차적으로 적층한 다음, 긴 시트형의 폴리올레핀 분리필름상에 단위셀을 위치시킨 후 폴딩하여 도 3의 전극조립체를 형성하였다.
(이차전지 제조)
상기 전극조립체를 전지 케이스에 삽입한 후, 상기 주입액을 주액하고 밀봉하여 리튬 이차전지의 제조를 완성하였다.
이때, 상기 제1 용매와 제2 용매의 중량비는 1:0.5가 되도록 주액하였다.
실시예 2
제1 용매에 제1 리튬염인 LiPF6 0.5M을 추가로 첨가하여 고체 필름층을 제조하고, 제2 용매에 제2 리튬염인 LiPF6 0.5M을 첨가한 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 도 4의 전극조립체 및 이를 구비한 리튬 이차전지를 제조하였다.
실시예 3
제1 용매에 LiPF6 1.5M을 첨가하여 고체 필름층을 제조하고, 주입액으로서 제2 용매만을 구성하여 첨가한 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 도 5의 전극조립체 및 이를 구비한 리튬 이차전지를 제조하였다.
실시예 4
40℃에서 용융된 에틸렌 카보네이트(EC)를 다공층 분리막에 코팅한 후 상온으로 저감시켜 100 ㎛ 두께의 필름층을 포함하는 분리막을 형성하였다. 이러한 필름층을 포함하는 분리막과 양극, 음극을 폴딩하여 전극조립체를 형성하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 전극조립체 및 이를 구비한 리튬 이차전지를 제조하였다.
실시예 5
상기 실시예 1에서 제1 용매로 에틸렌 카보네이트(EC) 대신 에틸렌 카보네이트(EC)와 30℃에서의 점도가 10cP인 설포란을 1:1 중량비로 혼합하여 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실시예 6
상기 실시예 1에서 제1 용매로 에틸렌 카보네이트(EC) 대신 에틸렌 카보네이트(EC)와 1,3-프로필렌 카보네이트를 1:1 중량비로 혼합하여 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실시예 7
상기 실시예 1에서 제1 용매로 에틸렌 카보네이트(EC) 대신 에틸렌 카보네이트(EC)와 1,3-프로필렌 카보네이트를 1:1 중량비로 혼합하여 사용하는 것을 제외하고는 상기 실시예 2와 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실시예 8
상기 실시예 1에서 제1 용매로 에틸렌 카보네이트(EC) 대신 에틸렌 카보네이트(EC)와 1,3-프로필렌 카보네이트를 1:1 중량비로 혼합하여 사용하는 것을 제외하고는 상기 실시예 3과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실시예 9
상기 실시예 6에서 제1 용매와 연성제 (폴리비닐리덴플루오라이드)를 97:3 중량비로 포함하여 사용하는 것을 제외하고는 상기 실시예 6과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실시예 10
상기 실시예 1에서 제1 용매로 에틸렌 카보네이트(EC) 대신 트란스-4,5-디메틸-1,3-디옥솔란-2-온을 사용하고, 제2 용매로 디메틸 카보네이트를 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실시예 11
상기 실시예 1에서 제2 용매로 에틸메틸카보네이트(EMC) 대신 에틸렌 카보네이트(EC)와 에틸메틸카보네이트(EMC)를 9:1 중량비로 혼합하고, 제2 리튬염인 LiPF6 0.5M을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 1
상기 필름층 형성 없이, 제조된 양극과 음극 사이에 분리막을 개재하여 전극조립체를 조립한 다음 전지케이스에 삽입하고, 이어서 상기 실시예 1에서 제조한 제2 용매만을 포함하는 주입액을 주액하고 밀봉하여 리튬 이차전지를 제조한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 2
상기 필름층 형성 없이, 양극과 음극 및 상기 제조된 양극과 음극 사이에 분리막을 개재하여 전극조립체를 조립하여 전지케이스에 삽입한 후, 40℃에서의 점도가 1.9cP인 에틸렌 카보네이트(EC)와 25℃에서의 점도가 0.65cP인 에틸메틸카보네이트(EMC)를 2:1 중량비로 혼합한 혼합 용액에 LiPF6 1M을 첨가하여 제조한 주입액을 주액하고 밀봉하여 리튬 이차전지를 제조한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 3
주입액으로 에틸렌 카보네이트(EC)와 에틸메틸카보네이트(EMC)의 혼합 용액 대신 EC:설포란:EMC를 1:1:1 중량비로 혼합한 용액을 주액하는 것을 제외하고는, 상기 비교예 2와 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실험예
실험예 1: 이차전지의 성능실험
실시예 1 내지 11 및 비교예 1 내지 3에서 제조된 각각의 이차전지를 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 0.5C 3.0V로 방전하였다. 이때의 방전 용량을 초기 용량으로 하여 표 1에 기재하였다. 이어서 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 이후 상온에서 0.5C 3.0V로 방전하는 것을 1회 사이클로 하여, 100회 사이클을 실시한 후의 용량을 1회 사이클 용량에 대한 %로 나타내어 하기 표 1에 기재하였다.
Figure PCTKR2017003491-appb-T000001
상기 표 1로부터, 본 발명의 실시예 1 내지 11의 이차전지는 전해액 함침 효과 향상에 따른 도전율이 높기 때문에, 초기 방전량 및 사이클 용량 (방전 용량 잔존율)이 비교예 1 내지 3의 이차전지에 대비하여 우수한 것을 알 수 있다. 이때, 실시예 1 내지 10의 이차전지와 비교하여 추가 주입액으로 고점도 용매를 사용한 실시예 11의 이차전지의 경우, 점도 증가에 따른 함침 능력이 저하되어 전지 성능이 실시예 1 내지 10의 이차전지에 비하여 상대적으로 저감되는 것을 알 수 있다.
즉, 본 발명의 실시예 1 내지 11의 이차전지는 고점도 용매를 제1 용매로 시트화하고, 저점도 용매, 또는 저점도 용매와 고점도 용매의 혼합 용매를 제2 용매로 주액함으로써, 필름층 없이 저점도 용매만을 주액한 비교예 1 및 고점도 용매와 저점도 용매를 혼합한 혼합 용매를 주액한 비교예 2 및 3의 이차전지보다 전지 성능이 우수한 것을 확인할 수 있다.

Claims (20)

  1. 용융온도가 25℃ 이상이고, 40℃에서 점도가 1.5cP 이상인 제1 용매를 포함하는 필름층을 분리막과 전극 사이에 제공하는 단계(단계 1);
    상기 전극, 필름층 및 분리막을 이용하여 전극조립체를 제조하는 단계 (단계 2); 및
    상기 전극조립체를 케이스에 수납하고 제2 용매를 포함하는 주입액을 주입하여 밀봉하는 단계(단계 3);를 포함하는 이차전지의 제조방법.
  2. 청구항 1에 있어서,
    상기 필름층을 제공하는 단계(단계 1)는
    (a) 25℃ 미만의 온도에서 고체상태인 제1 용매를 압축하여 프리스탠딩(freestanding) 형태의 필름층을 제조한 후, 분리막과 전극 사이에 제공하는 단계, 또는
    (b) 25℃ 미만의 온도에서 고체상태인 제1 용매를 용융시킨 후, 분리막의 일면 또는 양면에 직접 코팅하여 제공하는 단계를 포함하는 것인 이차전지의 제조방법.
  3. 청구항 1에 있어서,
    상기 제1 용매는 에틸렌 카보네이트, 시스-4,5-디메틸-1,3-디옥솔란-2-온, 트란스-4,5-디메틸-1,3-디옥솔란-2-온, 1,2-사이클로펜틸렌 카보네이트, 사이클로헥센 카보네이트, 피나콜론 사이클릭 카보네이트, 1,3-프로필렌 카보네이트, 5,5-디메틸-1,3-디옥산-2-온, 설포란, 에틸 메틸 설폰, 디에틸 설폰, 에틸디메틸카바메이트 및 페닐 디메틸카바메이트로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물인 것인 이차전지의 제조방법.
  4. 청구항 1에 있어서,
    상기 필름층은 연성제를 추가로 포함하는 것인 이차전지의 제조방법.
  5. 청구항 4에 있어서,
    상기 연성제는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스, 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무(SBR), 및 불소 고무로 이루어진 군으로부터 선택된 단일물 또는 이들 중 2종 이상의 혼합물인 것인 이차전지의 제조방법.
  6. 청구항 4에 있어서,
    상기 필름층 내에서 제1 용매:연성제의 중량비는 99.5:0.5 내지 90:10인 것인 이차전지의 제조방법.
  7. 청구항 1에 있어서,
    상기 필름층의 두께는 10 ㎛ 내지 500 ㎛인 것인 이차전지의 제조방법.
  8. 청구항 1에 있어서,
    상기 필름층은 제1 리튬염을 추가로 포함하는 것인 이차전지의 제조방법.
  9. 청구항 8에 있어서,
    상기 제1 리튬염은 상기 제1 용매에 대하여 0.3M 내지 2.0M의 농도로 포함되는 것인 이차전지의 제조방법.
  10. 청구항 1에 있어서,
    상기 제2 용매는 상온에서 액체이며, 25℃에서 점도가 1.5cP 미만인 저점도 용매; 및 상온에서 고체이며, 40℃에서 점도가 1.5cP 이상인 고점도 용매로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 이차전지의 제조방법.
  11. 청구항 10에 있어서,
    상기 제2 용매가 저점도 용매인 경우,
    상기 제2 용매는 카보네이트류; 에스테르류; 및 락톤류로 이루어진 군으로부터 선택되는 단일물 또는 이들 중 2종 이상의 혼합물을 포함하는 것인 이차전지의 제조방법.
  12. 청구항 11에 있어서,
    상기 제2 용매는 디메틸카보네이트, 에틸메틸카보네이트, 부틸렌 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 플루오로에틸렌카보네이트, 메틸프로피오네이트, 에틸 프로피오네이트, 프로필프로피오네이트, 부틸프로피오네이트, 및 감마-부티로락톤으로 이루어진 군으로부터 선택되는 단일물 또는 2종 이상의 혼합물을 포함하는 것인 이차전지의 제조방법.
  13. 청구항 1에 있어서,
    상기 제2 용매가 고점도 용매인 경우,
    상기 제2 용매는 에틸렌 카보네이트, 시스-4,5-디메틸-1,3-디옥솔란-2-온, 트란스-4,5-디메틸-1,3-디옥솔란-2-온, 1,2-사이클로펜틸렌 카보네이트, 사이클로헥센 카보네이트, 피나콜론 사이클릭 카보네이트, 1,3-프로필렌 카보네이트, 5,5-디메틸-1,3-디옥산-2-온, 설포란, 에틸 메틸 설폰, 디에틸 설폰, 에틸디메틸카바메이트 및 페닐 디메틸카바메이트로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물인 것인 이차전지의 제조방법.
  14. 청구항 1에 있어서,
    상기 주입액은 제2 리튬염을 추가로 포함하는 것인 이차전지의 제조방법.
  15. 청구항 14에 있어서,
    상기 제2 리튬염은 상기 제2 용매에 대하여 0.7M 내지 3.0M의 농도로 포함되는 것인 이차전지의 제조방법.
  16. 청구항 1에 있어서,
    상기 제1 용매:제2 용매의 중량비는 1:0.2 내지 1:2인 것인 이차전지의 제조방법
  17. 양극, 음극, 분리막, 전해액, 및
    상기 분리막과 음극 사이, 또는 분리막과 양극 사이 중 적어도 하나 이상의 위치에 개재된 용융온도가 25℃ 이상이고, 40℃에서 점도가 1.5cP 이상인 제1 용매를 포함하는 필름층을 포함하는 청구항 1의 방법에 의해 제조된 이차전지.
  18. 청구항 17에 있어서,
    상기 전해액은 제2 용매 및 제2 리튬염을 포함하는 것인 이차전지.
  19. 청구항 17에 있어서,
    상기 필름층은 제1 리튬염을 추가로 포함하고,
    상기 전해액은 제2 용매 및 제2 리튬염을 포함하는 것인 이차전지.
  20. 청구항 17에 있어서,
    상기 필름층은 제1 리튬염을 추가로 포함하고,
    상기 전해액은 제2 용매로 구성되는 것인 이차전지.
PCT/KR2017/003491 2016-03-31 2017-03-30 이차전지의 제조방법 WO2017171433A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL17775857T PL3301749T3 (pl) 2016-03-31 2017-03-30 Sposób wytwarzania akumulatora
CN201780002436.6A CN108780926B (zh) 2016-03-31 2017-03-30 制备二次电池的方法
JP2018515064A JP6600085B2 (ja) 2016-03-31 2017-03-30 二次電池の製造方法
EP17775857.0A EP3301749B1 (en) 2016-03-31 2017-03-30 Method for producing secondary battery
US15/740,920 US11367905B2 (en) 2016-03-31 2017-03-30 Method of preparing secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0039273 2016-03-31
KR20160039273 2016-03-31
KR1020170039348A KR20170113333A (ko) 2016-03-31 2017-03-28 이차전지의 제조방법
KR10-2017-0039348 2017-03-28

Publications (1)

Publication Number Publication Date
WO2017171433A1 true WO2017171433A1 (ko) 2017-10-05

Family

ID=59966135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003491 WO2017171433A1 (ko) 2016-03-31 2017-03-30 이차전지의 제조방법

Country Status (1)

Country Link
WO (1) WO2017171433A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131096A (zh) * 2021-03-04 2021-07-16 深圳市璞厉科技有限公司 一种锂离子电池极片和隔膜的复合方法及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073856A (ko) * 2002-03-13 2003-09-19 주식회사 뉴턴에너지 고분자 전해질 필름 제조방법 및 이를 이용한 리튬 폴리머이차 전지의 제조방법
KR20040078587A (ko) * 2003-03-03 2004-09-10 소니 가부시끼 가이샤 전지
JP2010272492A (ja) * 2009-05-25 2010-12-02 Sumitomo Chemical Co Ltd ナトリウム二次電池の製造方法およびナトリウム二次電池
JP2015076121A (ja) * 2013-10-04 2015-04-20 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073856A (ko) * 2002-03-13 2003-09-19 주식회사 뉴턴에너지 고분자 전해질 필름 제조방법 및 이를 이용한 리튬 폴리머이차 전지의 제조방법
KR20040078587A (ko) * 2003-03-03 2004-09-10 소니 가부시끼 가이샤 전지
JP2010272492A (ja) * 2009-05-25 2010-12-02 Sumitomo Chemical Co Ltd ナトリウム二次電池の製造方法およびナトリウム二次電池
JP2015076121A (ja) * 2013-10-04 2015-04-20 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECS: "Ethylene Carbonate (EC) Electronic Grade", TECHNICAL LEAFLET, November 2002 (2002-11-01), XP055444280 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131096A (zh) * 2021-03-04 2021-07-16 深圳市璞厉科技有限公司 一种锂离子电池极片和隔膜的复合方法及锂离子电池

Similar Documents

Publication Publication Date Title
WO2019103463A1 (ko) 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
WO2019164319A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2019194433A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2020080887A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 그의 제조방법
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2018143733A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2019004699A1 (ko) 리튬 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2016052881A1 (ko) 리튬 이차전지의 제조방법
WO2021172857A1 (ko) 이차전지의 제조방법
WO2019203455A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021060811A1 (ko) 이차전지의 제조방법
WO2017057968A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020231088A1 (ko) 음극의 제조방법
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017775857

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018515064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE