WO2017170848A1 - リニアソレノイド駆動装置 - Google Patents

リニアソレノイド駆動装置 Download PDF

Info

Publication number
WO2017170848A1
WO2017170848A1 PCT/JP2017/013204 JP2017013204W WO2017170848A1 WO 2017170848 A1 WO2017170848 A1 WO 2017170848A1 JP 2017013204 W JP2017013204 W JP 2017013204W WO 2017170848 A1 WO2017170848 A1 WO 2017170848A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
linear solenoid
reference voltage
drive
output
Prior art date
Application number
PCT/JP2017/013204
Other languages
English (en)
French (fr)
Inventor
杉山 浩之
白松 敏夫
Original Assignee
アイシン・エィ・ダブリュ株式会社
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, 株式会社東芝 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112017000328.8T priority Critical patent/DE112017000328B4/de
Priority to US16/080,801 priority patent/US10566123B2/en
Priority to JP2018509428A priority patent/JP6461427B2/ja
Priority to CN201780016891.1A priority patent/CN108780691B/zh
Publication of WO2017170848A1 publication Critical patent/WO2017170848A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16552Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies in I.C. power supplies
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/463Sources providing an output which depends on temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/618Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series and in parallel with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element

Definitions

  • the invention of the present disclosure disclosed in the present specification relates to a linear solenoid driving device.
  • a PWM signal generating unit that generates a PWM signal based on a control current target value from a microcomputer, and a linear solenoid driving signal is output by the PWM signal from the PWM signal generating unit.
  • Solenoid drive circuit, solenoid drive transistor that is driven by a drive signal from the solenoid drive circuit to drive the linear solenoid, a current monitor that detects and feeds back the drive current flowing through the linear solenoid, and a control current for the output value of the current monitor
  • An apparatus including an error correction unit that corrects an error with respect to a target value has been proposed (see, for example, Patent Document 1).
  • a PWM signal generation unit, a solenoid drive circuit, a solenoid drive transistor, a current monitor, and an error correction unit are configured by a one-chip drive IC.
  • the linear solenoid drive device can be reduced in size by integrating each component into one chip, the temperature of the current monitor may rise due to the influence of heat generated by driving the solenoid drive transistor. If so, the output value of the current monitor may become small depending on the temperature characteristics of the current monitor, and the drive current flowing through the linear solenoid may not be detected accurately.
  • the main object of the present disclosure is to improve the controllability of feedback control by accurately detecting the drive current flowing through the linear solenoid even when the current detection circuit is affected by heat.
  • the linear solenoid driving device of the present disclosure has taken the following means in order to achieve the above-mentioned main purpose.
  • the linear solenoid drive device of the present disclosure is A linear solenoid drive device for driving a linear solenoid, A drive circuit that performs switching control of a switching element connected to the linear solenoid based on a drive command; A current detection circuit having a detection resistor for current detection connected to the switching element and the linear solenoid, and an operational amplifier that amplifies and outputs the voltage across the detection resistor; A reference voltage output circuit for outputting a reference voltage having a temperature characteristic similar to the output voltage of the operational amplifier; The output voltage and the reference voltage are input, the drive current flowing through the linear solenoid is calculated from the output voltage whose temperature characteristics are corrected based on the reference voltage, and the calculated drive current becomes a predetermined target current.
  • a control unit that generates the drive command by feedback control and outputs the drive command to the drive circuit; It is a summary to provide.
  • a current detection circuit having an operational amplifier that amplifies and outputs a voltage across a detection resistor for current detection, and an element that outputs a reference voltage having a temperature characteristic similar to the output voltage of the operational amplifier.
  • a reference voltage output circuit configured to calculate the drive current flowing through the linear solenoid from the output voltage whose temperature characteristics have been corrected based on the reference voltage, and drive by feedback control so that the calculated drive current becomes a predetermined target current A command is generated and output to the drive circuit.
  • FIG. 2 is a configuration diagram showing an outline of a configuration of a reference voltage output circuit 40.
  • FIG. It is a block diagram which shows an example of the basic composition of a band gap reference circuit. It is explanatory drawing which shows an example of the relationship between the output voltage Vopa and the reference voltage Vref.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of an electronic control unit 10 as an embodiment of the present disclosure.
  • the electronic control unit 10 according to the embodiment is configured to drive a linear solenoid 60 that controls a hydraulic pressure supplied to a clutch or a brake incorporated in an automatic transmission of a vehicle, for example.
  • the electronic control unit 10 includes a drive circuit (driver) 20 for flowing a drive current to the coil C of the linear solenoid 60 by switching control of the switching element, a current detection circuit 30 for detecting the drive current flowing to the coil C of the linear solenoid 60, A microcomputer (hereinafter referred to as a reference voltage output circuit 40 for outputting a predetermined reference voltage Vref), a CPU (not shown), a ROM, a RAM, and the like that perform feedback control so that the drive current flowing through the coil C of the linear solenoid 60 becomes the target current. 50).
  • the drive circuit 20, the current detection circuit 30, and the reference voltage output circuit 40 are integrated in one chip 12 to be integrated into one chip.
  • the drive circuit 20 includes a first transistor 22 as a switching element connected to the DC power source 14 and one end of the coil C of the linear solenoid 60, a connection point between the first transistor 22 and one end of the coil C, and the other of the coil C.
  • the second transistor 24 serving as a switching element connected to the end is configured to drive and control.
  • the drive circuit 20 performs switching control of the first and second transistors 22 and 24 based on the drive command output from the microcomputer 50.
  • the first transistor 22 is switching-controlled so that the drive current flowing in the coil C of the linear solenoid 60 becomes the target current, and the second transistor 24 has a back electromotive force generated in the coil C when the first transistor 22 is turned off. Switching control is performed so as to circulate.
  • a detection resistor 32 connected in series between the first transistor 22 and one end of the coil C, and a connection point between the first transistor 22 and the detection resistor 32 are connected to a non-inverting input terminal.
  • an operational amplifier 34 having a connection point between the detection resistor 32 and one end of the coil C connected to the inverting input terminal.
  • the current detection circuit 30 amplifies the voltage across the detection resistor 32 by the operational amplifier 34 and outputs it to the microcomputer 50 as the output voltage Vopa, and can detect the drive current flowing through the coil C from this output voltage Vopa.
  • the output voltage Vopa may change.
  • the reference voltage output circuit 40 is configured to output a reference voltage Vref for correcting an output change of the output voltage Vopa of the operational amplifier 34 accompanying such a temperature change of the current detection circuit 30.
  • FIG. 2 is a configuration diagram showing an outline of the configuration of the reference voltage output circuit 40.
  • the reference voltage output circuit 40 of the embodiment includes a band gap reference circuit 42 that uses a band gap voltage that is a physical property of silicon as a semiconductor material, and an output voltage from the band gap reference circuit 42 that is input to a non-inverting input terminal and amplified. And an operational amplifier 46 that outputs the reference voltage Vref. Note that the output of the operational amplifier 46 is fed back to the inverting input terminal of the operational amplifier 46.
  • the bandgap reference circuit is a known circuit capable of various configurations.
  • FIG. 3 shows an example of the basic configuration of the bandgap reference circuit. Such a basic configuration is described in, for example, JP-A-2014-98984.
  • the band gap reference circuit 42 of the embodiment is not limited to this configuration.
  • the band gap reference circuit includes, for example, diodes D1 and D2, resistors R1 to R3, and an operational amplifier OPA.
  • the output voltage Vbgr of the bandgap reference circuit is expressed by the following equation (1).
  • Vbe1 is a forward voltage of the pn junction diode D1, and has a negative temperature dependency that decreases as the temperature rises.
  • Q is the charge of the electron
  • k is the Boltzmann constant
  • T is the absolute temperature.
  • Vbgr Vbe1 + (kT / q) ⁇ [ln (R2 / R1)] ⁇ (R2 / R3) ⁇ ⁇ ⁇ (1)
  • Such a bandgap reference circuit normally has resistances R1, R2, R3 and a diode D1 so that the change in the first term of the right side “Vbe1” is canceled by the second term of the right side having a positive temperature dependency.
  • D2 can be selected appropriately so that the output voltage Vbgr does not depend on the temperature change.
  • the band gap reference circuit 42 of the present embodiment is configured such that the output voltage Vbgr depends on the temperature change.
  • the resistance values of the resistors R1, R2, and R3 included in the second term on the right side of Equation (1) are appropriately adjusted, and the positive temperature in the second term on the right side is determined. By increasing or decreasing the dependency, the output voltage Vbgr can have temperature characteristics.
  • the band gap reference circuit 42 of the embodiment selectively realizes a plurality of (for example, three types) temperature characteristics by combining each semiconductor element such as a diode and a transistor and each resistor, although detailed illustration is omitted. It has a circuit configuration (voltage output circuit). For example, as shown in the relationship diagram between the temperature (° C.) and the output voltage (V) in FIG. 2, the circuit configuration 42a in which the output voltage decreases as the temperature increases from a low temperature, and the output voltage increases as the temperature increases up to a certain temperature. When the temperature exceeds a certain temperature, the circuit configuration 42b has a lower output voltage as the temperature increases, and the circuit configuration 42c has a higher output voltage as the temperature increases from a low temperature.
  • a circuit configuration voltage output circuit
  • the band gap reference circuit 42 includes a selection switching unit 44 that selectively switches to any one of these circuit configurations 42 a to 42 c and connects to the non-inverting input terminal of the operational amplifier 46.
  • the selection switching unit 44 receives an adjustment signal As (switching signal) when the drive circuit 20, the current detection circuit 30, and the reference voltage output circuit 40 are integrated into one chip, and receives any of the circuit configurations 42a to 42c. It shall be fixed in the state which selected.
  • the adjustment signal As is used to select one circuit configuration closest to the temperature characteristic of the current detection circuit 30 (output voltage Vopa) mounted in the same chip 12 among the circuit configurations 42a to 42c of the reference voltage output circuit 40. Signal.
  • the reference voltage output circuit 40 outputs to the microcomputer 50 a reference voltage Vref having a temperature characteristic close to that of the current detection circuit 30 (output voltage Vopa) arranged in the same chip 12.
  • the microcomputer 50 uses the reference voltage Vref output in this way as a temperature characteristic correction coefficient of the output voltage Vopa.
  • the electronic control unit 10 thus configured performs the following feedback control.
  • the microcomputer 50 sets a target current to be supplied to the coil C of the linear solenoid 60 based on the shift stage of the automatic transmission, the accelerator opening, the vehicle speed, and the like.
  • the output voltage Vopa of the operational amplifier 34 of the current detection circuit 30 and the reference voltage Vref of the reference voltage output circuit 40 are input.
  • FIG. 4 is an explanatory diagram showing an example of the relationship between the output voltage Vopa and the reference voltage Vref.
  • FIG. 4 shows a state in which the output voltage Vopa changes as the output voltage Vopa changes due to temperature even if a certain voltage is to be output. For example, the output voltage Vopa tends to decrease as the temperature increases.
  • the reference voltage Vref since the reference voltage Vref has a temperature characteristic close to that of the output voltage Vopa (here, for example, the circuit configuration 42a in FIG. 2), the reference voltage Vref also has a high temperature so as to follow the output voltage Vopa. It tends to be lower.
  • the microcomputer 50 corrects the temperature characteristic of the output voltage Vopa based on the reference voltage Vref having the same temperature characteristic as the output voltage Vopa as described above, and calculates the drive current flowing through the coil C of the linear solenoid 60 from the corrected output voltage. Calculate (detect).
  • the temperature characteristic is corrected by dividing the output voltage Vopa by the reference voltage Vref, for example.
  • the drive current is compared with the target current, and the target duty ratio (for example, the ON time with respect to the sum of the ON time and the OFF time of the first transistor 22) is controlled by feedback control so that the drive current approaches the target current. Ratio). Then, a drive command at the target duty ratio is output to the drive circuit 20 to cause the drive circuit 20 to perform switching control.
  • the target duty ratio for example, the ON time with respect to the sum of the ON time and the OFF time of the first transistor 22
  • the electronic control unit 10 of the present disclosure described above includes the reference voltage output circuit 40 that outputs the reference voltage Vref having the same temperature characteristics as the output voltage Vopa of the operational amplifier 34 of the current detection circuit 30. Based on the output voltage Vopa corrected based on the temperature characteristic, a drive current flowing through the linear solenoid 60 is calculated, and a drive command is generated by feedback control so that the calculated drive current becomes a predetermined target current, and output to the drive circuit 20 for switching. Take control. As a result, even if the output voltage Vopa fluctuates due to the heat generated by the switching of the first and second transistors 22 and 24, the output voltage Vopa is corrected based on the reference voltage Vref and the drive current flowing through the linear solenoid 60 is accurate. Since it can be detected (calculated) well, the controllability of the feedback control can be improved.
  • the drive circuit 20, the current detection circuit 30 (the operational amplifier 34), and the reference voltage output circuit 40 are integrated in the chip 12 to form one chip.
  • the same temperature change occurs in the current detection circuit 30 and the reference voltage output circuit 40.
  • it is possible to accurately detect the drive current by correcting the temperature characteristic of the output voltage Vopa without providing a temperature sensor for detecting the temperature of the current detection circuit 30, thereby further improving the controllability of the feedback control. be able to.
  • the resin mold necessary for mounting each component on the substrate and the wiring when connecting the components can be reduced. The controllability of the feedback control can be improved while downsizing the substrate of the electronic control unit 10.
  • the reference voltage output circuit 40 includes the band gap reference circuit 42, the reference voltage Vref having a desired temperature characteristic is output with a relatively simple configuration. be able to.
  • the reference voltage output circuit 40 since the reference voltage output circuit 40 is configured to realize a plurality of temperature characteristics, the reference voltage output circuit 40 can be provided with versatility and a current detection circuit.
  • the reference voltage Vref close to the temperature characteristic of 30 (output voltage Vopa) can be easily output.
  • the selection of each circuit configuration 42a to 42c is performed when the drive circuit 20, the current detection circuit 30, and the reference voltage output circuit 40 are integrated into one chip, so that the correction accuracy of temperature characteristics is guaranteed with the chip 12 alone. Can be. For this reason, in the process of incorporating the chip 12 into the electronic control unit 10, it is not necessary to adjust the temperature characteristics in a high temperature environment or a low temperature environment.
  • the drive circuit 20, the current detection circuit 30 (the operational amplifier 34), and the reference voltage output circuit 40 are integrated in the chip 12 to be integrated into one chip. However, it may be a single chip.
  • each circuit configuration 42a to 42c of the reference voltage output circuit 40 is selected (fixed) when it is integrated into one chip, but the present invention is not limited to this. For example, it may be performed in the process of incorporating the chip 12 into the electronic control unit 10.
  • the reference voltage output circuit 40 is not limited to one having a plurality of circuit configurations 42a to 42c, but a bandgap reference circuit having only a circuit configuration corresponding to the temperature characteristics of the current detection circuit 30 mounted in the same chip 12. It is good.
  • the reference voltage output circuit 40 includes the band gap reference circuit.
  • the present invention is not limited to this, and the reference voltage Vref has the same temperature characteristics as the output voltage Vopa of the operational amplifier 34. Any circuit may be used as long as it is configured by an element capable of outputting.
  • the electronic control unit 10 of the present disclosure corrects the temperature characteristic of the output voltage Vopa using the reference voltage Vref as it is, but is not limited thereto.
  • a map defining the relationship between the reference voltage Vref and the temperature correction coefficient is stored in the ROM of the microcomputer 50, the temperature correction coefficient is derived from the input reference voltage Vref, and the derived temperature correction coefficient is used.
  • the temperature characteristics of the output voltage Vopa may be corrected.
  • the linear solenoid drive device (10) of the present disclosure is the linear solenoid drive device (10) that controls the drive of the linear solenoid (60), and is connected to the linear solenoid (60).
  • a reference voltage output circuit (40) the output voltage and the reference voltage are input, and the output voltage with temperature characteristics corrected based on the reference voltage.
  • a control unit (50) that calculates a drive current flowing through the linear solenoid (60) from the motor, generates the drive command so that the calculated drive current becomes a predetermined target current, and outputs the drive command to the drive circuit (20);
  • the gist is to provide.
  • the linear solenoid drive device (10) includes the drive circuit (20), the current detection circuit (30), and the reference voltage output circuit (40) mounted in one chip (12). You can also For this reason, compared with the case where each component is respectively mounted on the board
  • the reference voltage output circuit (40) may include a bandgap reference circuit (42).
  • the reference voltage output circuit (40) is configured to output a plurality of types of voltages having different temperature characteristics by switching the circuit configuration of the band gap reference circuit (42), and according to the temperature characteristics of the output voltage.
  • the output voltage can be selectively output as the reference voltage.
  • the drive circuit 20 corresponds to the “drive circuit”
  • the current detection circuit 30 having the detection resistor 32 and the operational amplifier 34 corresponds to the “current detection circuit”
  • the reference voltage output circuit 40 corresponds to the “reference voltage output”.
  • the microcomputer 50 corresponds to a “control unit”.
  • the invention of the present disclosure can be used in the manufacturing industry of linear solenoid driving devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

検出抵抗32の両端の電圧を増幅して出力するオペアンプ34の出力電圧Vopaと同様の温度特性となる基準電圧Vrefを出力する基準電圧出力回路40を備え、基準電圧Vrefに基づいて温度特性を補正した出力電圧Vopaからリニアソレノイド60に流れる駆動電流を算出し、算出した駆動電流が所定の目標電流となるよう駆動指令を生成して駆動回路20に出力してスイッチング制御を行う。これにより、第1,第2トランジスタ22,24のスイッチングに伴う発熱の影響により出力電圧Vopaが変動しても、リニアソレノイド60に流れる駆動電流を精度よく検出することができるから、フィードバック制御の制御性を向上させることができる。

Description

リニアソレノイド駆動装置
 本明細書において開示する本開示の発明は、リニアソレノイド駆動装置に関する。
 従来、この種のリニアソレノイド駆動装置として、マイクロコンピュータからの制御電流目標値に基づいてPWM信号を生成するPWM信号生成部と、PWM信号生成部からのPWM信号によりリニアソレノイドの駆動信号を出力するソレノイド駆動回路と、ソレノイド駆動回路からの駆動信号により作動してリニアソレノイドを駆動するソレノイド駆動トランジスタと、リニアソレノイドに流れる駆動電流を検出してフィードバックする電流モニタと、電流モニタの出力値の制御電流目標値に対する誤差を補正する誤差補正部とを備えるものが提案されている(例えば、特許文献1参照)。特許文献1のリニアソレノイド駆動装置は、PWM信号生成部とソレノイド駆動回路、ソレノイド駆動トランジスタ、電流モニタ、誤差補正部が1チップの駆動ICにて構成されている。
特開2007-276702号公報
 上述したように、各構成要素を1チップにまとめることでリニアソレノイド駆動装置を小型化することができるものの、ソレノイド駆動トランジスタの駆動などによる発熱の影響によって電流モニタの温度が上昇することがある。そうなると、電流モニタの温度特性によって電流モニタの出力値が小さくなったりすることがあり、リニアソレノイドに流れる駆動電流を精度よく検出することができない場合がある。
 本開示の発明は、電流検出回路が熱の影響を受けた場合でも、リニアソレノイドに流れる駆動電流を精度よく検出して、フィードバック制御の制御性を向上させることを主目的とする。
 本開示のリニアソレノイド駆動装置は、上述の主目的を達成するために以下の手段を採った。
 本開示のリニアソレノイド駆動装置は、
 リニアソレノイドを駆動するリニアソレノイド駆動装置であって、
 前記リニアソレノイドに接続されるスイッチング素子を駆動指令に基づいてスイッチング制御する駆動回路と、
 前記スイッチング素子と前記リニアソレノイドとに接続される電流検出用の検出抵抗と、前記検出抵抗の両端の電圧を増幅して出力するオペアンプとを有する電流検出回路と、
 前記オペアンプの出力電圧と同様の温度特性となる基準電圧を出力する基準電圧出力回路と、
 前記出力電圧と前記基準電圧とを入力し、前記基準電圧に基づいて温度特性を補正した前記出力電圧から前記リニアソレノイドに流れる駆動電流を算出し、該算出した駆動電流が所定の目標電流となるようフィードバック制御により前記駆動指令を生成して前記駆動
回路に出力する制御部と、
 を備えることを要旨とする。
 このリニアソレノイド駆動装置では、電流検出用の検出抵抗の両端の電圧を増幅して出力するオペアンプを有する電流検出回路と、オペアンプの出力電圧と同様の温度特性となる基準電圧を出力するよう素子により構成される基準電圧出力回路とを備え、基準電圧に基づいて温度特性を補正した出力電圧からリニアソレノイドに流れる駆動電流を算出し、算出した駆動電流が所定の目標電流となるようフィードバック制御により駆動指令を生成して駆動回路に出力する。これにより、スイッチング素子の駆動による発熱の影響により電流検出回路の温度が上昇してオペアンプの出力電圧が変動しても、リニアソレノイドに流れる駆動電流を精度よく検出することができるから、フィードバック制御の制御性を向上させることができる。
本開示の一実施例としての電子制御ユニット10の構成の概略を示す構成図である。 基準電圧出力回路40の構成の概略を示す構成図である。 バンドギャップリファレンス回路の基本構成の一例を示す構成図である。 出力電圧Vopaと基準電圧Vrefの関係の一例を示す説明図である。
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
 図1は本開示の一実施例としての電子制御ユニット10の構成の概略を示す構成図である。実施例の電子制御ユニット10は、例えば、車両の自動変速機に組み込まれたクラッチやブレーキへの供給油圧を制御するリニアソレノイド60を駆動するものとして構成されている。
 電子制御ユニット10は、スイッチング素子のスイッチング制御によりリニアソレノイド60のコイルCに駆動電流を流す駆動回路(ドライバ)20と、リニアソレノイド60のコイルCに流れる駆動電流を検出する電流検出回路30と、所定の基準電圧Vrefを出力する基準電圧出力回路40と、図示しないCPUやROM,RAMなどを内蔵しリニアソレノイド60のコイルCに流れる駆動電流が目標電流となるようフィードバック制御するマイクロコンピュータ(以下、マイコンという)50と、を備える。実施例では、駆動回路20と電流検出回路30と基準電圧出力回路40とが1つのチップ12内に集積されて、1チップ化されたものとなっている。
 駆動回路20は、直流電源14とリニアソレノイド60のコイルCの一端とに接続されたスイッチング素子としての第1トランジスタ22と、第1トランジスタ22とコイルCの一端との接続点とコイルCの他端とに接続されたスイッチング素子としての第2トランジスタ24と、を駆動制御するよう構成されている。この駆動回路20は、マイコン50から出力された駆動指令に基づいて第1,第2トランジスタ22,24をスイッチング制御する。第1トランジスタ22は、リニアソレノイド60のコイルCに流れる駆動電流が目標電流となるようにスイッチング制御され、第2トランジスタ24は、第1トランジスタ22のオフに伴ってコイルCに生じる逆起電力が環流するようにスイッチング制御される。
 電流検出回路30は、第1トランジスタ22とコイルCの一端との間に直列に接続される検出抵抗32と、第1トランジスタ22と検出抵抗32との接続点が非反転入力端子に接続されると共に検出抵抗32とコイルCの一端との接続点が反転入力端子に接続されるオペアンプ34と、を備える。電流検出回路30は、検出抵抗32の両端の電圧をオペアンプ34が増幅し出力電圧Vopaとしてマイコン50に出力するものであり、この出力電圧VopaからコイルCに流れる駆動電流を検出することができる。ここで、駆動回路20の第1,第2トランジスタ22,24のスイッチング制御による発熱に伴って、電流検出回路30の検出抵抗32やオペアンプ34の温度が上昇(変化)すると、検出抵抗32やオペアンプ34の温度特性に起因して、出力電圧Vopaが変化することがある。
 基準電圧出力回路40は、そのような電流検出回路30の温度変化に伴うオペアンプ34の出力電圧Vopaの出力変化を補正するための基準電圧Vrefを出力するよう構成されている。図2は、基準電圧出力回路40の構成の概略を示す構成図である。実施例の基準電圧出力回路40は、半導体材料のシリコンの物性であるバンドギャップ電圧を利用したバンドギャップリファレンス回路42と、バンドギャップリファレンス回路42からの出力電圧を非反転入力端子に入力して増幅し基準電圧Vrefとして出力するオペアンプ46と、を備える。なお、オペアンプ46の出力は、オペアンプ46の反転入力端子に帰還されている。
 ここで、バンドギャップリファレンス回路は、種々の構成が可能な周知の回路である。図3にバンドギャップリファレンス回路の基本構成の一例を示す。このような基本構成は、例えば特開2014-98984号などに記載されている。なお、実施例のバンドギャップリファレンス回路42がこの構成に限定されるものではない。図3に示すように、バンドギャップリファレンス回路は、例えば、ダイオードD1,D2と、抵抗R1~R3と、オペアンプOPAとにより構成されている。特開2014-98984号によれば、バンドギャップリファレンス回路の出力電圧Vbgrは、次式(1)のようになる。なお、「Vbe1」はpn接合のダイオードD1の順方向電圧であり、温度の上昇に伴って減少する負の温度依存性をもつ。また、「q」は電子の電荷であり、「k」はボルツマン定数であり、「T」は絶対温度である。
 Vbgr = Vbe1 + (kT/q)・[ln(R2/R1)]・(R2/R3)  ・・・(1)
 このようなバンドギャップリファレンス回路は、通常は、右辺第1項の「Vbe1」の変化分を、正の温度依存性をもつ右辺第2項で相殺するよう各抵抗R1,R2,R3やダイオードD1,D2を適切に選定することにより、出力電圧Vbgrが温度変化に依存しないようにすることができる。これに対し、本実施例のバンドギャップリファレンス回路42は、出力電圧Vbgrが温度変化に依存するよう構成するものとした。なお、図3のバンドギャップリファレンス回路の基本構成においても、式(1)の右辺第2項に含まれる各抵抗R1,R2,R3の抵抗値を適宜調整し、右辺第2項の正の温度依存性を大きくしたり小さくしたりすることによって、出力電圧Vbgrに温度特性をもたせることが可能である。
 また、実施例のバンドギャップリファレンス回路42は、詳細な図示は省略するが、ダイオードやトランジスタなどの各半導体素子や各抵抗の組合せにより、複数(例えば3種類)の温度特性を選択的に実現する回路構成(電圧出力回路)を有している。例えば、図2の温度(℃)と出力電圧(V)との関係図に示すように、低温から高温になるほど出力電圧が低くなる回路構成42aと、ある温度までは高温になるほど出力電圧が高くなりある温度を超えると高温になるほど出力電圧が低くなる回路構成42bと、低温から高温になるほど出力電圧が高くなる回路構成42cとを有するものとなっている。バンドギャップリファレンス回路42は、これらの回路構成42a~42cのうちいずれかに選択的に切り替えてオペアンプ46の非反転入力端子に接続する選択切替部44を備える。この選択切替部44は、駆動回路20と電流検出回路30と基準電圧出力回路40とを1チップ化した際に、調整信号As(切替信号)の入力を受けて、回路構成42a~42cのいずれかを選択した状態で固定されるものとする。調整信号Asは、基準電圧出力回路40の回路構成42a~42cのうち、同一チップ12内に搭載された電流検出回路30(出力電圧Vopa)の温度特性に最も近い一の回路構成を選択させるための信号である。これにより、基準電圧出力回路40は、同一チップ12内に配置された電流検出回路30(出力電圧Vopa)と温度特性の近い基準電圧Vrefをマイコン50に出力するものとなる。なお、マイコン50は、このようにして出力される基準電圧Vrefを出力電圧Vopaの温度特性補正係数として使用する。
 こうして構成された電子制御ユニット10では、次のようなフィードバック制御が行われる。まず、マイコン50が、自動変速機の変速段やアクセル開度,車速などに基づいて、リニアソレノイド60のコイルCに供給すべき目標電流を設定する。マイコン50へは、電流検出回路30のオペアンプ34の出力電圧Vopaと基準電圧出力回路40の基準電圧Vrefとが入力される。ここで、図4は、出力電圧Vopaと基準電圧Vrefの関係の一例を示す説明図である。図4では、出力電圧Vopaとして、ある電圧を出力しようとしていても温度の変化によって出力電圧Vopaが変化する様子を示しており、例えば温度が高くなるほど出力電圧Vopaが低くなる傾向となっている。また、基準電圧Vrefは、出力電圧Vopaと温度特性の近いもの(ここでは、例えば図2の回路構成42a)が選択されるから、出力電圧Vopaに追従するように、基準電圧Vrefも温度が高くなるほど低くなる傾向となっている。マイコン50は、このように出力電圧Vopaと同様の温度特性をもつ基準電圧Vrefに基づいて出力電圧Vopaの温度特性を補正し、補正後の出力電圧からリニアソレノイド60のコイルCに流れる駆動電流を算出(検出)する。なお、温度特性の補正は、例えば出力電圧Vopaを基準電圧Vrefで除すことにより行われる。こうして駆動電流を算出すると、駆動電流と目標電流とを比較し、駆動電流が目標電流に近付くようフィードバック制御により目標デューティ比(例えば第1トランジスタ22のオン時間とオフ時間との和に対するオン時間の割合)を設定する。そして、目標デューティ比での駆動指令を駆動回路20に出力し、駆動回路20にスイッチング制御を行わせる。
 以上説明した本開示の電子制御ユニット10によれば、電流検出回路30のオペアンプ34の出力電圧Vopaと同様の温度特性となる基準電圧Vrefを出力する基準電圧出力回路40を備え、基準電圧Vrefに基づいて温度特性を補正した出力電圧Vopaからリニアソレノイド60に流れる駆動電流を算出し、算出した駆動電流が所定の目標電流となるようフィードバック制御により駆動指令を生成し駆動回路20に出力してスイッチング制御を行う。これにより、第1,第2トランジスタ22,24のスイッチングによる発熱の影響により出力電圧Vopaが変動しても、基準電圧Vrefに基づいて出力電圧Vopaを補正してリニアソレノイド60に流れる駆動電流を精度よく検出(算出)することができるから、フィードバック制御の制御性を向上させることができる。
 また、本開示の電子制御ユニット10によれば、駆動回路20と電流検出回路30(オペアンプ34)と基準電圧出力回路40とがチップ12内に集積されて1チップ化されているため、第1,第2トランジスタ22,24のスイッチング制御による発熱に伴って、電流検出回路30と基準電圧出力回路40とに同様の温度変化が生じることになる。このため、電流検出回路30の温度を検出する温度センサを設けることなく、出力電圧Vopaの温度特性を補正して駆動電流を精度よく検出することができるから、フィードバック制御の制御性をより向上させることができる。また、各構成要素をそれぞれ電子制御ユニット10の基板に実装する場合と比べて、各構成要素を基板に実装する際に必要な樹脂モールド及び、構成要素同士を接続する際の配線を低減できるため、電子制御ユニット10の基板を小型化しつつ、フィードバック制御の制御性を向上させることができる。
 また、本開示の電子制御ユニット10によれば、基準電圧出力回路40がバンドギャップリファレンス回路42を含んで構成されるから、所望の温度特性となる基準電圧Vrefを比較的簡易な構成で出力することができる。
 また、本開示の電子制御ユニット10によれば、基準電圧出力回路40が複数の温度特性を実現するよう構成されているから、基準電圧出力回路40に汎用性をもたせることができると共に電流検出回路30(出力電圧Vopa)の温度特性に近い基準電圧Vrefを容易に出力させることができる。また、各回路構成42a~42cの選択は、駆動回路20と電流検出回路30と基準電圧出力回路40とが1チップ化された際に行うことで、チップ12単品で温度特性の補正精度が保証されたものとすることができる。このため、チップ12の電子制御ユニット10への組み込み工程において、高温環境や低温環境で温度特性を調整する必要がないものとすることができる。
 本開示の電子制御ユニット10は、駆動回路20と電流検出回路30(オペアンプ34)と基準電圧出力回路40とがチップ12内に集積されて1チップ化されているものとしたが、これに限られず、1チップ化されていないものとしてもよい。
 本開示の電子制御ユニット10は、基準電圧出力回路40の各回路構成42a~42cの選択(固定)は1チップ化された際に行うものとしたが、これに限られるものではない。例えば、チップ12の電子制御ユニット10への組み込み工程で行うものなどとしてもよい。また、基準電圧出力回路40は、複数の回路構成42a~42cを備えるものに限られず、同一チップ12内に搭載される電流検出回路30の温度特性に応じた回路構成のみを有するバンドギャップリファレンス回路としてもよい。
 本開示の電子制御ユニット10は、基準電圧出力回路40がバンドギャップリファレンス回路を含んで構成されるものとしたが、これに限られず、オペアンプ34の出力電圧Vopaと同様の温度特性をもって基準電圧Vrefを出力可能な素子により構成されるものであれば如何なる回路としてもよい。
 本開示の電子制御ユニット10は、基準電圧Vrefをそのまま用いて出力電圧Vopaの温度特性を補正するものとしたが、これに限られるものではない。例えば、基準電圧Vrefと温度補正係数との関係を定めたマップをマイコン50のROMなどに記憶しておき、入力された基準電圧Vrefから温度補正係数を導出し、導出した温度補正係数を用いて出力電圧Vopaの温度特性を補正するものなどとしてもよい。
 以上説明したように、本開示のリニアソレノイド駆動装置(10)は、リニアソレノイド(60)の駆動を制御するリニアソレノイド駆動装置(10)であって、前記リニアソレノイド(60)に接続されるスイッチング素子(22)を駆動指令に基づいてスイッチング制御する駆動回路(20)と、前記スイッチング素子(22)と前記リニアソレノイド(60)とに接続される電流検出用の検出抵抗(32)と、前記検出抵抗(32)の両端の電圧を増幅して出力するオペアンプ(34)とを有する電流検出回路(30)と、前記オペアンプ(34)の出力電圧と同様の温度特性となる基準電圧を出力する基準電圧出力回路(40)と、前記出力電圧と前記基準電圧とを入力し、前記基準電圧に基づいて温度特性を補正した前記出力電圧から前記リニアソレノイド(60)に流れる駆動電流を算出し、該算出した駆動電流が所定の目標電流となるよう前記駆動指令を生成して前記駆動回路(20)に出力する制御部(50)と、を備えることを要旨とする。
 これにより、スイッチング素子(22)の駆動に伴う発熱の影響により電流検出回路(30)のオペアンプ(34)の出力電圧が変動しても、出力電圧と同様の温度特性となる基準電圧に基づいて出力電圧を補正してリニアソレノイド(60)に流れる駆動電流を適切に検出することができる。したがって、リニアソレノイド(60)に流れる駆動電流を精度よく検出してフィードバック制御の制御性を向上させることができる。
 また、リニアソレノイド駆動装置(10)は、前記駆動回路(20)と前記電流検出回路(30)と前記基準電圧出力回路(40)とが、1チップ(12)内に搭載されているものとすることもできる。このため、各構成要素をそれぞれリニアソレノイド駆動装置の基板に実装する場合と比べて、各構成要素を基板に実装する際に必要な樹脂モールド及び、構成要素同士を接続する際の配線を低減できるため、リニアソレノイド駆動装置の基板を小型化しつつ、フィードバック制御の制御性を向上させることができる。
 また、前記基準電圧出力回路(40)は、バンドギャップリファレンス回路(42)を含んで構成されるものとすることもできる。
 また、前記基準電圧出力回路(40)は、前記バンドギャップリファレンス回路(42)の回路構成を切り替えることにより温度特性の異なる複数種の電圧を出力可能に構成され、前記出力電圧の温度特性に応じた電圧を前記基準電圧として選択的に出力するものとすることもできる。
 ここで、上記実施形態における主要な要素と発明の概要の欄に記載した本開示の発明の主要な要素との対応関係について説明する。上記実施形態では、駆動回路20が「駆動回路」に相当し、検出抵抗32とオペアンプ34とを有する電流検出回路30が「電流検出回路」に相当し、基準電圧出力回路40が「基準電圧出力回路」に相当し、マイコン50が「制御部」に相当する。
 そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
 本開示の発明は、リニアソレノイド駆動装置の製造産業などに利用可能である。

Claims (4)

  1.  リニアソレノイドを駆動するリニアソレノイド駆動装置であって、
     前記リニアソレノイドに接続されるスイッチング素子を駆動指令に基づいてスイッチング制御する駆動回路と、
     前記スイッチング素子と前記リニアソレノイドとに接続される電流検出用の検出抵抗と、前記検出抵抗の両端の電圧を増幅して出力するオペアンプとを有する電流検出回路と、
     前記オペアンプの出力電圧と同様の温度特性となる基準電圧を出力する基準電圧出力回路と、
     前記出力電圧と前記基準電圧とを入力し、前記基準電圧に基づいて温度特性を補正した前記出力電圧から前記リニアソレノイドに流れる駆動電流を算出し、該算出した駆動電流が所定の目標電流となるようフィードバック制御により前記駆動指令を生成して前記駆動回路に出力する制御部と、
     を備えるリニアソレノイド駆動装置。
  2.  請求項1に記載のリニアソレノイド駆動装置であって、
     前記駆動回路と前記電流検出回路と前記基準電圧出力回路とが、1チップ内に搭載されている
     リニアソレノイド駆動装置。
  3.  請求項1または2に記載のリニアソレノイド駆動装置であって、
     前記基準電圧出力回路は、バンドギャップリファレンス回路を含んで構成される
     リニアソレノイド駆動装置。
  4.  請求項3に記載のリニアソレノイド駆動装置であって、
     前記基準電圧出力回路は、前記バンドギャップリファレンス回路の回路構成を切り替えることにより温度特性の異なる複数種の電圧を出力可能に構成され、前記出力電圧の温度特性に応じた電圧を前記基準電圧として選択的に出力する
     リニアソレノイド駆動装置。
PCT/JP2017/013204 2016-03-30 2017-03-30 リニアソレノイド駆動装置 WO2017170848A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017000328.8T DE112017000328B4 (de) 2016-03-30 2017-03-30 Linearsolenoid-Ansteuervorrichtung
US16/080,801 US10566123B2 (en) 2016-03-30 2017-03-30 Linear solenoid driving device
JP2018509428A JP6461427B2 (ja) 2016-03-30 2017-03-30 リニアソレノイド駆動装置
CN201780016891.1A CN108780691B (zh) 2016-03-30 2017-03-30 线性螺线管驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069089 2016-03-30
JP2016-069089 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170848A1 true WO2017170848A1 (ja) 2017-10-05

Family

ID=59965944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013204 WO2017170848A1 (ja) 2016-03-30 2017-03-30 リニアソレノイド駆動装置

Country Status (5)

Country Link
US (1) US10566123B2 (ja)
JP (1) JP6461427B2 (ja)
CN (1) CN108780691B (ja)
DE (1) DE112017000328B4 (ja)
WO (1) WO2017170848A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325042A (zh) * 2021-12-06 2022-04-12 珠海格力电器股份有限公司 一种电流检测电路及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216262A (ja) * 2001-12-03 2008-09-18 Sanken Electric Co Ltd 電流検出回路
JP2009193185A (ja) * 2008-02-13 2009-08-27 Hitachi Ltd 電子制御装置
JP2014175456A (ja) * 2013-03-08 2014-09-22 Denso Corp 車両用電子制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358812A (en) 1981-02-04 1982-11-09 Motorola, Inc. Driver circuit for use with inductive loads or the like
JPH09280411A (ja) 1996-04-15 1997-10-31 Aisin Aw Co Ltd リニアソレノイドの電流制御装置
JP2005150550A (ja) * 2003-11-18 2005-06-09 Sanken Electric Co Ltd ソレノイド駆動装置
CN101034535A (zh) * 2006-03-08 2007-09-12 天利半导体(深圳)有限公司 一种温度系数可调节的基准电路
JP2007276702A (ja) 2006-04-10 2007-10-25 Toyota Motor Corp リニアソレノイド駆動装置
DE102006019681A1 (de) 2006-04-27 2007-11-15 Infineon Technologies Ag Integrierte Schaltungsanordnung zur Stromregelung
JP2008032424A (ja) * 2006-07-26 2008-02-14 Rohm Co Ltd センサ回路、半導体装置、電子機器
JP5093037B2 (ja) * 2008-10-03 2012-12-05 サンケン電気株式会社 負荷駆動回路
US8810227B2 (en) * 2011-01-14 2014-08-19 Infineon Technologies Austria Ag System and method for controlling a switched-mode power supply
JP6073112B2 (ja) 2012-11-13 2017-02-01 ルネサスエレクトロニクス株式会社 基準電圧発生回路
JP5803987B2 (ja) * 2013-06-20 2015-11-04 株式会社デンソー 負荷駆動制御装置
JP2015103544A (ja) * 2013-11-21 2015-06-04 トヨタ自動車株式会社 記憶装置
US9866133B2 (en) * 2014-01-10 2018-01-09 Astec International Limited Control circuits and methods for regulating output voltages using multiple and/or adjustable reference voltages
US10514715B2 (en) 2015-02-24 2019-12-24 Infineon Technologies Ag Partitioning of a chip supporting a SW-control architecture for inductive loads

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216262A (ja) * 2001-12-03 2008-09-18 Sanken Electric Co Ltd 電流検出回路
JP2009193185A (ja) * 2008-02-13 2009-08-27 Hitachi Ltd 電子制御装置
JP2014175456A (ja) * 2013-03-08 2014-09-22 Denso Corp 車両用電子制御装置

Also Published As

Publication number Publication date
DE112017000328B4 (de) 2019-03-28
JP6461427B2 (ja) 2019-01-30
JPWO2017170848A1 (ja) 2018-10-18
DE112017000328T5 (de) 2018-11-15
CN108780691B (zh) 2021-06-25
CN108780691A (zh) 2018-11-09
US20190074122A1 (en) 2019-03-07
US10566123B2 (en) 2020-02-18

Similar Documents

Publication Publication Date Title
JP5093037B2 (ja) 負荷駆動回路
US5550469A (en) Hall-effect device driver with temperature-dependent sensitivity compensation
JP5712483B2 (ja) 過電流検出装置
US8392077B1 (en) Transmission control apparatus
US10910136B2 (en) Semiconductor device, in-vehicle valve system and solenoid driver
JP2007178342A (ja) 温度検出回路及び温度検出方法
US7222694B2 (en) Control unit for electric power steering
JP2009194599A (ja) 電圧比較回路、その電圧比較回路を有する半導体集積回路及び電子機器
US9329615B2 (en) Trimmed thermal sensing
JP6461427B2 (ja) リニアソレノイド駆動装置
JP2007263667A (ja) 応力測定装置
JP5136144B2 (ja) 負荷電流供給回路
WO2011118446A1 (ja) 酸素濃度センサ入力装置
JP2010251653A5 (ja) 抵抗ばらつき検出回路
US20150346241A1 (en) Broad-range current measurement using variable resistance
US20100327979A1 (en) Current Detection Apparatus and Control System Using the Same
JP5130835B2 (ja) 差動増幅回路とそれを用いた電流制御装置
US8624610B2 (en) Synthesized current sense resistor for wide current sense range
JP5516971B2 (ja) リニアソレノイド制御装置
US10897196B2 (en) Arrangement and method for delivering a current-controlled voltage
JP2008282313A (ja) 電源回路
JP4781320B2 (ja) 定電圧回路、電子機器、電子制御機器
EP2385438B1 (en) Current output stage and method for providing an output current
JP2008151749A (ja) 負荷電流検出装置及び制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509428

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775382

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775382

Country of ref document: EP

Kind code of ref document: A1