WO2017169666A1 - インタークーラ - Google Patents

インタークーラ Download PDF

Info

Publication number
WO2017169666A1
WO2017169666A1 PCT/JP2017/009769 JP2017009769W WO2017169666A1 WO 2017169666 A1 WO2017169666 A1 WO 2017169666A1 JP 2017009769 W JP2017009769 W JP 2017009769W WO 2017169666 A1 WO2017169666 A1 WO 2017169666A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
cooling water
intake air
plate
heat
Prior art date
Application number
PCT/JP2017/009769
Other languages
English (en)
French (fr)
Inventor
雄史 川口
功 畔柳
真樹 原田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2018508935A priority Critical patent/JP6460281B2/ja
Priority to CN201780020776.1A priority patent/CN109072765B/zh
Priority to US16/089,016 priority patent/US10544727B2/en
Priority to DE112017001679.7T priority patent/DE112017001679B4/de
Publication of WO2017169666A1 publication Critical patent/WO2017169666A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an intercooler that cools supercharged intake air pressurized by a supercharger.
  • the high temperature heat exchange unit has an inlet for receiving the first cooling water, a high temperature heat exchange region through which the first cooling water from the inlet flows, and an outlet for discharging the first cooling water that has passed through the high temperature heat exchange region.
  • Inner fins constituting a plurality of cooling water flow paths for flowing the first cooling water are arranged in the high-temperature heat exchange region.
  • the inner fin promotes heat exchange between the supercharged intake air that flows outside the high-temperature heat exchange unit and the first cooling water that flows in the high-temperature heat exchange region.
  • the flow direction of the cooling water flowing through the plurality of cooling water flow paths intersects the flow direction of the supercharging intake air.
  • the plurality of cooling water flow paths are arranged in the flow direction of the supercharged intake air.
  • the first cooling water in the cooling water flow path (hereinafter referred to as the upstream cooling water flow path) located upstream in the flow direction of the supercharging intake air among the plurality of cooling water flow paths is in the flow direction of the supercharging intake air.
  • the upstream cooling water flow path located upstream in the flow direction of the supercharging intake air among the plurality of cooling water flow paths.
  • the cooling water may boil on the outlet side of the upstream side cooling water flow path in the high temperature heat exchange region.
  • the cooling water boils in the high temperature heat exchange region the temperature of the components constituting the high temperature heat exchange region in the intercooler is increased, and the strength of the components may be reduced.
  • This disclosure aims to suppress boiling of the heat medium in an intercooler that cools the supercharged intake air with two types of heat medium having different temperatures.
  • the intercooler that cools the supercharged intake air that is supercharged to the engine by the supercharger is lower than the first heat exchange region in which the first heat medium flows and the first heat medium.
  • the first heat medium flowing through the first heat exchange area exchanges heat with the supercharged intake air to cool the supercharged intake air.
  • the second heat medium flowing through the second heat exchange region exchanges heat with the supercharged intake air to cool the supercharged intake air.
  • the heat exchange unit includes an inner fin that promotes heat exchange between the first heat medium and the supercharged intake air.
  • a heat exchange part is provided with the boiling suppression member which suppresses that the 1st heat medium which flows into the flow direction of a supercharged intake in the 1st heat exchange area
  • a heat exchange section having a heat exchange area, an outlet for discharging the first heat medium that has passed through the first heat exchange area, and a second heat exchange area through which a second heat medium having a temperature lower than that of the first heat medium flows.
  • the first heat medium flowing through the first heat exchange area exchanges heat with the supercharged intake air to cool the supercharged intake air.
  • the second heat medium flowing through the second heat exchange region exchanges heat with the supercharged intake air to cool the supercharged intake air.
  • the heat exchange unit includes an inner fin that promotes heat exchange between the first heat medium and the supercharged intake air.
  • the first heat exchange region has a turn portion that turns the heat medium from the inlet and guides it to the outlet. In the first heat exchange region, the heat exchange unit is configured such that the inlet side with respect to the turn part is provided on the upstream side in the flow direction of the supercharging intake air, rather than the outlet side with respect to the turn part.
  • the temperature of the supercharging intake air heat-exchanged with the first heat medium flowing on the outlet side in the first heat exchange region is exchanged with the first heat medium flowing on the inlet side in the first heat exchange region. It becomes lower than the temperature of the supercharged intake air. For this reason, it is suppressed that the 1st heat carrier which flows into an exit side among the 1st heat exchange fields boils.
  • the outlet side of the first heat exchange region Even if the inlet side of the first heat exchange region is provided upstream of the outlet direction of the first heat exchange region in the flow direction of the supercharged intake air, the outlet side of the first heat exchange region The pressure of the first heat medium flowing through the inlet side in the first heat exchange region is higher than the pressure of the first heat medium flowing through the first heat medium. For this reason, it is suppressed that the 1st heat carrier which flows into the entrance side among the 1st heat exchange fields boils.
  • boiling of the heat medium can be suppressed in the intercooler that cools the supercharged intake air with two types of heat medium having different temperatures.
  • FIG. 1 It is a block diagram which shows the outline
  • FIG. 1 It is a perspective view which shows the intercooler in 1st Embodiment. It is a top view of the intercooler in a 1st embodiment. It is VV sectional drawing in FIG. It is a front view of a channel pipe and an outer fin in a 1st embodiment. It is sectional drawing of the flow-path pipe and outer fin in 1st Embodiment. It is the enlarged view which expanded the vertical dimension in the flow-path pipe
  • FIG. 12 is a cross-sectional view corresponding to FIG. 11 and showing a rib in the first modification of the first embodiment.
  • FIG. 12 is a cross-sectional view corresponding to FIG. 11 and showing ribs in a second modification of the first embodiment.
  • It is a fragmentary sectional view of a channel pipe in a 2nd embodiment.
  • It is sectional drawing which shows the inner fin single-piece
  • It is a perspective view which sees through a plate among the flow-path pipes in 3rd Embodiment, and shows the internal structure of a flow-path pipe.
  • a supercharger 15 for supercharging intake air to the engine 10 is provided in an intake system of a vehicle engine (that is, an internal combustion engine) 10.
  • the supercharger 15 is provided to supplement the maximum output of the engine 10. That is, in the vehicle according to the present embodiment, the engine 10 has a small displacement for the purpose of improving the fuel consumption, and the supercharger 15 compensates for the decrease in the maximum output that accompanies this small displacement.
  • an intercooler 20 that cools intake air to the engine 10 is provided on the downstream side of the intake air flow from the supercharger 15.
  • the intercooler 20 serves to cool the supercharged intake air compressed by the supercharger 15 and supply it to the engine 10 to improve the charging efficiency of the intake air into the engine 10.
  • the first cooling water circulating through the cooling water circuit 60 and the second cooling water circulating through the cooling water circuit 50 are circulated inside the intercooler 20 of FIG.
  • the intercooler 20 heat-exchanges the supercharged intake air compressed by the supercharger 15 with the first cooling water and the second cooling water to cool the supercharged intake air.
  • the cooling water circuit 50 is provided with a water pump 51 that circulates the second cooling water.
  • the heat of the second cooling water is radiated between the water pump 51 and the intercooler 20 to the outside air.
  • the 1st radiator 52 which cools cooling water is provided.
  • the cooling water circuit 60 is provided with a water pump 61, a second radiator 62, and a heater core 63.
  • the water pump 61 circulates the first cooling water in the cooling water circuit 60.
  • the second radiator 62 radiates the heat absorbed by the first cooling water from the engine 10 to the outside air.
  • the heater core 63 heats the blown air by exchanging heat between the blown air blown into the vehicle interior and the first cooling water.
  • the intercooler 20, the second radiator 62 and the heater core 63 are arranged in parallel in the cooling water circuit 60.
  • the first cooling water absorbs heat from the engine 10. For this reason, when the 1st, 2nd cooling water distribute
  • the first cooling water is a first heat medium (that is, high-temperature cooling water), and the second cooling water is a second heat medium (that is, low-temperature cooling water).
  • first and second cooling water LLC (that is, antifreeze), water, or the like can be used.
  • the water pumps 51 and 61 of the present embodiment are driven by the driving force output from the engine 10.
  • the intercooler 20 includes a support portion 21 and a heat exchanger 22 as shown in FIGS. 2, 3, and 4.
  • the support unit 21 sandwiches the heat exchanger 22 by combining the upper support unit 21a and the lower support unit 21b. Between the upper support portion 21a and the lower support portion 21b, an air inlet that leads the supercharged intake air from the supercharger 15 to the heat exchanger 22, and a supercharged air intake that has passed through the heat exchanger 22 is led to the engine. An air outlet is provided.
  • the heat exchanger 22 is configured as a so-called drone cup type heat exchanger. As shown in FIGS. 4 and 5, a plurality of flow path pipes 23 and outer fins 24 joined between adjacent flow path pipes 23 are alternately stacked.
  • the heat exchanger 22 is configured to exchange heat between the first and second cooling waters flowing inside the plurality of flow channel tubes 23 and the supercharged intake air flowing outside the plurality of flow channel tubes 23.
  • a space in which the outer fins 24 are arranged between two adjacent channel pipes 23 among the plurality of channel pipes 23 constitutes a supercharged intake channel through which the supercharged intake air flows.
  • the outer fin 24 promotes heat exchange between the first and second cooling water and the supercharged intake air.
  • the outer fin 24 of the present embodiment is a corrugated fin in which a plate is formed into a wave shape.
  • the outer fin 24 has a wave shape in which top portions 24a and trough portions 24b are repeatedly arranged alternately.
  • the outer fin 24 is configured as a louver fin in which a louver 24d is formed in a middle part 24c between the top part 24a and the valley part 24b.
  • top 24 a and valley 24 b of the outer fin 24 are brazed to the flow channel pipe 23.
  • the louver 24d is not shown.
  • each of the plurality of flow channel pipes 23 is a heat exchanging portion formed flat by joining a pair of plates 25a and 25b.
  • the plate 25a corresponds to the first plate
  • the plate 25b corresponds to the second plate.
  • concave portions 26a, 26b, 26c, and 26d are formed in the plate 25a.
  • the concave portions 26a, 26b, 26c, and 26d of the plate 25a are closed by the plate 25b.
  • a cooling water flow path 27a through which the second cooling water flows is formed between the recess 26a and the plate 25b. Between the recessed part 26b and the plate 25b, the cooling water flow path 27b through which the second cooling water flows is configured.
  • the cooling water flow paths 27a and 27b together with the U-turn portion 27c constitute a heat exchange area 27 as a second heat exchange area. See also FIG.
  • the cooling water flow path 27a guides the second cooling water flowing from the inlet 27d to the U-turn portion 27c.
  • the U-turn portion 27c is a cooling water flow path bent in a U shape, and makes the U-turn the second cooling water from the cooling water flow path 27a.
  • the cooling water channel 27b guides the second cooling water from the U-turn part 27c to the outlet 27e.
  • the inlet 27d and the outlet 27e are configured by forming through holes in the plates 25a and 25b, respectively.
  • the cooling water channels 27a and 27b are separated by a partition portion 27f.
  • the inner fin 29a is arrange
  • the inner fin 29a is a corrugated fin that divides the cooling water passage 27a into a plurality of first low-temperature cooling water passages.
  • An inner fin 29b is disposed in the cooling water flow path 27b.
  • the plurality of first low-temperature cooling water flow paths are arranged in the supercharging intake air flow direction.
  • the inner fin 29b is a corrugated fin that divides the cooling water flow path 27b into a plurality of second low-temperature cooling water flow paths.
  • the plurality of second low-temperature cooling water flow paths are arranged in the supercharging intake air flow direction.
  • the cooling water flow path 28a through which the first cooling water flows is configured between the recess 26c and the plate 25b of the present embodiment.
  • a cooling water flow path 28b through which the first cooling water flows is formed between the recess 26d and the plate 25b.
  • the cooling water flow paths 28a and 28b together with the U-turn portion 28c constitute a heat exchange area 28 as a first heat exchange area. See also FIG.
  • the cooling water flow path 28a guides the first cooling water flowing from the inlet 28d to the U-turn portion 28c.
  • the U-turn portion 28c is a cooling water flow path bent in a U shape, and makes the U-turn the first cooling water from the cooling water flow path 28a.
  • the cooling water flow path 28b guides the first cooling water from the U-turn part 28c to the outlet 28e.
  • the outlet 28e discharges the first cooling water that has passed through the heat exchange region 28.
  • the inlet 28d and the outlet 28e are configured by forming through holes in the plates 25a and 25b, respectively.
  • the cooling water passages 28a and 28b are separated by a partition portion 28f.
  • An inner fin 30a is disposed in the cooling water passage 28a.
  • the inner fin 30a is a corrugated fin that divides the cooling water passage 28a into a plurality of first high-temperature cooling water passages.
  • the plurality of first high temperature cooling water flow paths are arranged in the flow direction of the supercharged intake air.
  • the inner fin 30b is disposed in the cooling water flow path 28b.
  • the inner fin 30b is a corrugated fin that divides the cooling water passage 28b into a plurality of second high-temperature cooling water passages.
  • the plurality of second high temperature cooling water flow paths are arranged in the flow direction of the supercharging intake air.
  • the flow direction of the second cooling water in the plurality of first low-temperature cooling water flow paths is defined as a cooling water flow direction A
  • the flow direction of the second cooling water in the plurality of second low-temperature cooling water flow paths is defined as the cooling water flow direction.
  • the flow direction of the first cooling water in the plurality of first high temperature cooling water flow paths is defined as a cooling water flow direction C
  • the flow direction of the first cooling water in the plurality of second high temperature cooling water flow paths is defined as a cooling water flow direction D. .
  • the cooling water flow direction A, the cooling water flow direction B, the cooling water flow direction C, and the cooling water flow direction D of this embodiment are parallel.
  • the cooling water flow direction A, the cooling water flow direction B, the cooling water flow direction C, and the cooling water flow direction D are orthogonal to the supercharging intake air flow direction, specifically, the supercharging intake air flow direction. It has become a direction.
  • the cooling water flow path 28b is disposed upstream of the cooling water flow path 28a in the supercharging intake air flow direction.
  • the cooling water passage 28a is disposed upstream of the cooling water passage 27b in the flow direction of the supercharging intake air.
  • the cooling water passage 27b is disposed upstream of the cooling water passage 27a in the flow direction of the supercharging intake air. For this reason, the cooling water flow path 28b is arrange
  • the channel lengths of the cooling water channels 27a and 27b are the same.
  • the length of the cooling water passages 27a and 27b in the flow direction of the supercharging intake air (that is, the length of the cooling water passages 27a and 27b in the width direction) is the same.
  • the channel lengths of the cooling water channels 28a and 28b are the same.
  • the length of the cooling water passages 28a, 28b in the flow direction of the supercharging intake air (that is, the length of the cooling water passages 28a, 28b in the width direction) is the same.
  • the length of the cooling water flow paths 28a, 28b in the flow direction of the supercharging intake air is shorter than the length of the cooling water flow paths 27a, 27b in the flow direction of the supercharging intake air.
  • 1st distribution tank part is comprised by connecting the inlet 27d of two adjacent flow path pipes 23 for every two adjacent flow path pipes 23 among several flow path pipes 23. As shown in FIG.
  • the first distribution tank unit distributes the second cooling water to the heat exchange areas 27 of the plurality of flow path pipes 23.
  • the first distribution tank part is connected to a cooling water pipe (not shown) that penetrates the through hole 31a of the upper support part 21a.
  • a first collecting tank portion is configured.
  • the first collecting tank unit collects the second cooling water from the heat exchange areas 27 of the plurality of flow path pipes 23.
  • the first collecting tank portion is connected to a cooling water pipe (not shown) that penetrates the through hole 31b of the upper support portion 21a.
  • the cooling water piping that penetrates the through holes 31 a and 31 b of the upper support portion 21 a constitutes the cooling water circuit 50.
  • the second distribution tank unit is configured by connecting the inlets 28d of the two adjacent flow path tubes 23 among the plurality of flow path pipes 23 for each of the two adjacent flow path tubes 23.
  • the second distribution tank unit distributes the first cooling water to the heat exchange regions 28 of the plurality of flow path pipes 23.
  • the second distribution tank part is connected to a cooling water pipe (not shown) that penetrates the through hole 31c of the upper support part 21a.
  • the second collecting tank portion is configured by connecting the outlets 28e of the two adjacent flow passage tubes 23 among the plurality of flow passage tubes 23 for each of the two adjacent flow passage tubes 23.
  • the second collecting tank unit collects the first cooling water from the heat exchange regions 28 of the plurality of flow path pipes 23.
  • the second collecting tank portion is connected to a cooling water pipe (not shown) that penetrates the through hole 31d of the upper support portion 21a.
  • the cooling water piping that penetrates the through holes 31 c and 31 d of the upper support portion 21 a constitutes the cooling water circuit 60.
  • FIG. 8 is an enlarged view in which the vertical dimension of the channel tube 23 in FIG. 5 is enlarged in order to clarify the internal structure of the channel tube 23 in FIG. That is, for the convenience of explanation, the vertical dimension of the flow path pipe 23 in FIG. 8 is made larger than the vertical dimension of the flow path pipe 23 in FIG.
  • FIG. 9 is a perspective view of the flow path pipe 23 through the plate 25a in order to show the internal structure of the flow path pipe 23.
  • FIG. FIG. 10 is a partially enlarged view showing the vicinity of the outlet 28e of the heat exchange region 28 in the internal structure of the flow channel tube 23 with the plate 25a removed from the flow channel tube 23.
  • FIG. 10 is a corrugated fin that divides the cooling water flow path 28b into a plurality of second high-temperature cooling water flow paths (that is, a plurality of heat medium flow paths) as described above.
  • the second high temperature cooling water flow channel 70 that is located on the most upstream side in the supercharging intake air flow direction among the plurality of second high temperature cooling water flow channels is referred to as a second high temperature cooling water flow channel 70. See also FIG.
  • a second high temperature cooling water flow channel 71 is a second high temperature cooling water flow channel 71 that is located downstream of the second high temperature cooling water flow channel 70 in the flow direction of the supercharged intake air, among the plurality of second high temperature cooling water flow channels 70.
  • the second high temperature cooling water flow path 70 corresponds to the first flow path
  • the second high temperature cooling water flow path 71 corresponds to the second flow path.
  • a plurality of ribs 41 as boiling suppression members are provided in the heat exchange regions 28 of the plurality of flow channel tubes 23 of the present embodiment.
  • Each of the plurality of ribs 41 is a resistor disposed between the plurality of second high-temperature cooling water flow paths 71 and the outlet 28e, as shown in FIG.
  • the plurality of ribs 41 are respectively disposed downstream of the plurality of second high-temperature cooling water flow paths 71 in the flow direction of the first cooling water. More specifically, each of the plurality of ribs 41 is disposed on the side of the plurality of second high temperature cooling water flow paths 71 between the plurality of second high temperature cooling water flow paths 71 and the outlet 28e. Therefore, the ribs 41 are arranged offset in the downstream direction of the flow in the cooling water flow path 28b of the first cooling water with respect to the inner fin 30b in the heat exchange region 28. On the other hand, the rib 41 is not disposed on the outlet side of the second high-temperature cooling water channel 70.
  • Each of the plurality of ribs 41 is a resistor that generates resistance to the flow of the first cooling water flowing through the plurality of second high-temperature cooling water flow paths 71.
  • each of the plurality of ribs 41 generates a pressure loss of the first cooling water flowing through the plurality of second high-temperature cooling water flow paths 71.
  • the plurality of ribs 41 of the present embodiment are configured such that the tip side of the convex portion 41a of the plate 25a is joined to the tip side of the convex portion 41b of the plate 25b.
  • the convex portion 41a is formed to be convex toward the plate 25b side.
  • the convex portion 41b is formed to be convex toward the plate 25a side.
  • intercooler 20 all or some of the components of the intercooler 20 are formed of a clad material in which a brazing material is clad on the surface of a core material made of aluminum, for example. By heating with the flux applied to the surface of the clad material, each component of the intercooler 20 is brazed and joined.
  • the water pumps 51 and 61 are driven by the driving force output from the engine 10.
  • the water pump 61 sucks the first cooling water from the intercooler 20, the first cooling water from the heater core 63, and the first cooling water from the second radiator 62, and Lead to the cooling water inlet.
  • the first cooling water that has passed through the engine 10 is distributed to each of the intercooler 20, the heater core 63, and the second radiator 62.
  • the first cooling water that has passed through the engine 10 is distributed to each of the plurality of flow path pipes 23 by the second distribution tank unit.
  • the first cooling water distributed to each of the plurality of flow path pipes 23 is distributed to each of the plurality of first high temperature cooling water flow paths.
  • the first cooling water that has passed through each of the plurality of first high-temperature cooling water channels is collected by the U-turn portion 28c, and the collected first cooling water is U-turned to form a plurality of second high-temperature cooling water channels. Distributed to.
  • the first cooling water that has passed through the plurality of second high-temperature cooling water flow paths is collected in the first collecting tank portion and flows to the outlet of the water pump 61.
  • the supercharged intake air thus cooled by the first cooling water passes outside the heat exchange region 28.
  • the second cooling water from the water pump 51 flows in the order of the first radiator 52, the intercooler 20, and the water pump 51.
  • the second cooling water that has passed through the first radiator 52 flows to the plurality of flow path pipes 23 by the first distribution tank unit.
  • the second cooling water distributed to each of the plurality of flow path pipes 23 is distributed to each of the plurality of first low-temperature cooling water flow paths.
  • the second cooling water that has passed through each of the plurality of first low-temperature cooling water channels is collected by the U-turn portion 27c, and the collected second cooling water is U-turned to form a plurality of second low-temperature cooling water channels. Distributed to.
  • the second cooling water that has passed through the plurality of second low-temperature cooling water flow paths is collected in the first collecting tank section and flows to the outlet of the water pump 51.
  • the plurality of ribs 41 are respectively arranged on the downstream side in the flow direction of the first cooling water with respect to the second high-temperature cooling water flow path 71.
  • the rib 41 is not disposed on the downstream side in the flow direction of the first cooling water with respect to the second high-temperature cooling water flow path 70.
  • the plurality of ribs 41 cause pressure loss of the first cooling water flowing through the plurality of second high-temperature cooling water flow paths 71. Therefore, the flow rate of the 1st cooling water which flows through the 2nd high temperature cooling water flow path 70 can be made slow, and the flow rate of the 1st cooling water which flows through the 2nd high temperature cooling water flow path 70 can be made quick.
  • the flow rate of the first cooling water in the second high-temperature cooling water channel 70 can be increased.
  • the intercooler 20 includes the plurality of flow path pipes 23 that cool the supercharged intake air that is supercharged to the engine 10 by the supercharger 15.
  • Each of the plurality of flow path pipes 23 forms a heat exchange region 28 through which the first cooling water flows, and the first cooling water flowing through the heat exchange region 28 cools the supercharged intake air.
  • Each of the plurality of flow path pipes 23 forms a heat exchange region 27 through which second cooling water having a temperature lower than that of the first cooling water flows, and the second cooling water flowing through the heat exchange region 27 cools the supercharging intake air. .
  • Inner fins 30a and 30b that promote heat exchange between the first cooling water and the supercharged intake air are arranged.
  • Inner fin 30a divides cooling water channel 28a into a plurality of 1st high temperature cooling water channels.
  • the inner fin 30 b divides the cooling water flow path 28 b into a plurality of second high temperature cooling water flow paths 71 and second high temperature cooling water flow paths 70.
  • the heat exchange area 28 is arranged on the upstream side of the air flow of the supercharged air with respect to the heat exchange area 27.
  • the cooling water passage 28b is disposed on the upstream side of the air flow of the supercharged air with respect to the cooling water passage 28a.
  • the second high temperature cooling water flow path 70 is disposed on the upstream side of the air flow of the supercharged air with respect to the plurality of second high temperature cooling water flow paths 71. For this reason, the temperature of the 1st cooling water which flows through the 2nd high temperature cooling water flow path 70 tends to rise.
  • the plurality of ribs 41 are respectively disposed between the plurality of second high-temperature cooling water flow paths 71 and the outlets 28e.
  • Each of the plurality of ribs 41 causes resistance to the flow of the first cooling water flowing through the plurality of second high-temperature cooling water flow paths 71. Therefore, the flow rate of the 1st cooling water which flows through the 2nd high temperature cooling water flow path 70 is made slow, and the flow rate of the 1st cooling water which flows through the 2nd high temperature cooling water flow path 70 is made quick.
  • the flow rate of 1st cooling water can be made faster. Therefore, the temperature of the 1st cooling water which flows through the 2nd high temperature cooling water flow path 70 can be lowered
  • the plate 25b is not provided with a convex portion, and the upper portion 25c on the plate 25a side of the plate 25b is formed in a planar shape.
  • the convex part of the plate 25a joined to the upper part 25c of the plate 25b is a rib 41 as a boiling suppression member.
  • the convex portion of the plate 25a is a convex portion that protrudes from the plate 25a side to the plate 25b.
  • the plate 25a is not provided with a convex portion, and the lower portion 25d on the plate 25b side of the plate 25a is formed in a planar shape.
  • the convex part of the plate 25b joined to the lower part 25d of the plate 25a is a rib 41 as a boiling suppression member.
  • the convex portion of the plate 25b is a convex portion that protrudes from the plate 25b side to the plate 25a.
  • FIG. 14 is a schematic diagram showing the internal structure of the flow path pipe 23 of the present embodiment.
  • FIG. 15 shows the inner fin 30b alone.
  • the inner fin 30b has a plurality of top portions 80 and a plurality of valley portions 81, and is formed in a wave shape in which the top portions 80 and the valley portions 81 are alternately arranged in a direction orthogonal to the flow direction of the first cooling water. .
  • the plurality of top portions 80 are each joined to the plate 25a.
  • Each of the plurality of valley portions 81 is joined to the plate 25b.
  • the middle abdominal portion 82 is a portion between the adjacent top portion 80 and valley portion 81 of the inner fin 30b.
  • the second high-temperature cooling water flow channel 70a is a second high-temperature cooling water flow channel located on the most upstream side in the supercharging intake air flow direction among the plurality of second high-temperature cooling water flow channels.
  • the plurality of second high-temperature cooling water channels 71a that are located downstream of the second high-temperature cooling water channel 70a in the flow direction of the supercharging intake air are connected to the plurality of second high-temperature cooling water channels 71a. To do.
  • the fin pitch fp of the inner fin 30b is set so that the channel cross-sectional area of the second high-temperature cooling water channel 70a is larger than the channel cross-sectional area of the second high-temperature cooling water channel 71a.
  • the flow path cross-sectional area of the second high temperature cooling water flow paths 71a and 70a is the area of the cross section perpendicular to the flow direction of the first cooling water in the second high temperature cooling water flow paths 71a and 70a.
  • the inner fin 30b as the boiling suppression member is set so that the fin pitch fp on the downstream side in the flow direction of the supercharged intake air is larger than the fin pitch fp on the upstream side in the flow direction of the supercharged intake air.
  • the fin pitch fp is a distance between two middle abdominal portions 82 adjacent to each other in the inner fin 30b.
  • the “fin pitch fp on the downstream side in the flow direction of the supercharged intake air” has an amplitude of zero in the middle part 82 of the inner fin 30b. It is set at the reference position. Further, when the inner fin 30b in FIG. 15 is regarded as a wave, the “fin pitch fp on the upstream side in the supercharging intake air flow direction” is also a reference position where the amplitude is zero in the middle part 82 of the inner fin 30b. Is set.
  • the reference position is the center position in the amplitude direction of the middle abdomen 82.
  • the plurality of top portions 80 are respectively set at positions having the same amplitude value.
  • Each of the plurality of valleys 81 is set at a position having the same amplitude value.
  • the flow path cross-sectional area of the second high temperature cooling water flow path 70a is larger than the flow path cross sectional area of the second high temperature cooling water flow path 71a.
  • the second high-temperature cooling water flow path 70a is compared to the case where the “fin fin fp on the downstream side in the flow direction of the supercharged intake air” and the “fin pitch fp on the upstream side in the flow direction of the supercharged intake air” are the same.
  • the amount of the first cooling water flowing through can be increased.
  • the heat capacity in the second high temperature cooling water channel 70a is increased as compared with the case where the channel cross sectional area of the second high temperature cooling water channel 70a and the channel cross sectional area of the second high temperature cooling water channel 71a are the same. Can be made. Therefore, the temperature of the 1st cooling water in the 2nd high temperature cooling water flow path 70a can be lowered
  • boiling of the first cooling water can be suppressed in the intercooler 20.
  • FIG. 16 is a perspective view showing the internal structure of the flow path tube 23 through the plate 25a of the flow path tube 23 in the present embodiment.
  • the inlet 28d side with respect to the U-turn portion 28c is disposed upstream of the U-turn portion 28c in the flow direction of the supercharged intake air compared with the outlet 28e side.
  • the cooling water flow path 28a through which the first cooling water from the inlet 28d flows is disposed upstream of the cooling water flow path 28b that guides the first cooling water to the outlet 28e in the supercharging intake air flow direction.
  • cooling is performed as compared with the case where the inlet 28d side with respect to the U-turn portion 28c is disposed downstream of the U-turn portion 28c in the flow direction of the supercharged intake air compared with the outlet 28e side.
  • the temperature of the supercharging intake air heat-exchanged with the 1st cooling water which flows the exit 28e side among the water flow paths 28b becomes low.
  • the water pressure of the first cooling water flowing on the inlet 28d side in the heat exchange region 28 is higher than the water pressure of the first cooling water flowing on the inlet 28d side in the heat exchange region 28.
  • the first cooling water flowing on the inlet 28d side in the heat exchange region 28 has a temperature higher than “supercharged intake air heat-exchanged with the first cooling water flowing on the outlet 28e side in the cooling water flow path 28b”. Heat exchange with supercharged intake air. However, boiling of the first cooling water flowing on the inlet 28d side in the heat exchange region 28 is suppressed.
  • boiling of the first cooling water can be suppressed in the intercooler 20.
  • U-turn portion 27c may be provided in the heat exchange region 27 instead.
  • the U-turn portion 27c is not provided, and the heat exchange region 27 through which the first cooling water flows linearly may be configured.
  • the flow directions A and B of the second cooling water and the flow directions C and D of the first cooling water are excessive.
  • the example which made it the direction orthogonal to the flow direction of supply / intake air was demonstrated.
  • the present invention is not limited to this, and the flow directions A and B of the second cooling water and the flow directions C and D of the first cooling water may be any direction that intersects the flow direction of the supercharged intake air.
  • the flow direction A of the second cooling water is the flow direction of the second cooling water in the plurality of first low-temperature cooling water flow paths
  • the flow direction B of the second cooling water is the plurality of second low-temperature cooling water flows. It is the flow direction of the 2nd cooling water in a path.
  • the flow direction C of the first cooling water is the flow direction of the first cooling water in the plurality of first high-temperature cooling water flow paths
  • the flow direction D of the first cooling water is the flow direction in the plurality of second high-temperature cooling water flow paths. The flow direction of the first cooling water.
  • the first cooling is performed in the direction in which the top portions 80 and the valley portions 81 are alternately arranged one by one in the inner fin 30b.
  • the example made into the direction orthogonal to the flow direction of water was demonstrated.
  • the present invention is not limited to this, and may be as follows.
  • the turbocharger applies the engine.
  • the intercooler for cooling the supercharged intake air to be supercharged has the following characteristics.
  • the intercooler includes a heat exchange unit having a first heat exchange region in which a first heat medium flows and a second heat exchange region in which a second heat medium having a temperature lower than that of the first heat medium flows.
  • the first heat medium flowing through the first heat exchange region exchanges heat with the supercharged intake air to cool the supercharged intake air
  • the second heat medium flowing through the second heat exchange region exchanges heat with the supercharged intake air to supercharged intake air. Cool down.
  • the heat exchange unit includes an inner fin that promotes heat exchange between the first heat medium and the supercharged intake air, and the heat exchange unit is located upstream in the flow direction of the supercharged air intake in the first heat exchange region.
  • a boiling suppression member that suppresses boiling of the first heat medium flowing through the.
  • the inner fin constitutes a plurality of flow paths through which the first heat medium flows in the first heat exchange region.
  • a channel positioned upstream in the flow direction of the supercharged intake air is defined as a first flow channel, and among the plurality of flow channels, the flow path of the supercharged intake air is disposed downstream of the first flow channel.
  • the channel which is located be the 2nd channel.
  • the boiling suppression member includes a resistor that slows the flow rate of the first heat medium in the second flow path as compared to the first heat medium in the first flow path.
  • the temperature of the first heat medium flowing in the first flow path is reduced. Can be lowered. Therefore, it can suppress that the 1st heat medium which flows through a 1st flow path boils. Thereby, it can suppress that the 1st heat medium which flows the upstream of the flow direction of a supercharging intake air in a 1st heat exchange area
  • the heat exchange unit includes a first plate and a second plate.
  • a concave portion is provided in one of the first plate and the second plate.
  • the first plate and the second plate are joined so that the other plate closes the concave portion of the one plate and forms the first heat exchange region between the concave portion and the other plate.
  • the resistor is disposed in the first heat exchange region and is provided so as to protrude from one of the first plate and the second plate toward the other plate, and the heat medium in the second flow path A rib that creates resistance to flow.
  • the heat exchange unit includes a first plate and a second plate.
  • a concave portion is provided in one of the first plate and the second plate.
  • the first plate and the second plate are joined so that the other plate closes the concave portion of the one plate and forms the first heat exchange region between the other plate and the concave portion.
  • the inner fin includes a plurality of top portions joined to one plate of the first plate and the second plate, and a plurality of trough portions joined to the other plate, one top portion and one trough portion. It is formed in the shape of alternating waves.
  • each of the two inner fin portions adjacent to each other of the inner fins constitutes a plurality of flow paths through which the first heat medium flows.
  • Each distance between two adjacent middle abdominal portions of the inner fins is defined as a fin pitch.
  • the boiling suppression member includes an inner fin that is set so that the fin pitch on the upstream side in the flow direction of the supercharged intake air is larger than the fin pitch on the downstream side in the flow direction of the supercharged air intake.
  • the flow rate of the first heat medium in the first flow path can be increased as compared with the case where the flow path cross-sectional area of the first flow path is equal to or smaller than the flow path cross-sectional area of the second flow path. Accordingly, the heat capacity in the first channel can be increased as compared with the case where the channel cross-sectional area of the first channel is made equal to or smaller than the channel cross-sectional area of the second channel.
  • the temperature of the first heat medium flowing in the first flow path can be lowered.
  • boiling of the first heat medium flowing through the first flow path can be suppressed. Thereby, it can suppress that the 1st heat medium which flows the upstream of the flow direction of a supercharging intake air in a 1st heat exchange area
  • region is boiling.
  • the heat exchange unit is configured such that the first heat exchange region is located on the upstream side in the flow direction of the supercharged intake air compared to the second heat exchange region.
  • the heat exchanging unit forms an inlet through which the first heat medium enters and an outlet through which the heat medium flowing through the first heat exchange region is discharged from the inlet.
  • the first heat medium from the inlet is turned to have a turn portion that leads to the outlet.
  • the intercooler that cools the supercharged intake air that is supercharged to the engine by the supercharger has the following characteristics.
  • the intercooler includes an inlet through which the first heat medium enters, a first heat exchange region through which the first heat medium from the inlet flows, an outlet through which the first heat medium that has passed through the first heat exchange region is discharged, and first heat.
  • the heat exchange part which has a 2nd heat exchange area
  • the first heat medium flowing through the first heat exchange region exchanges heat with the supercharged intake air to cool the supercharged intake air
  • the second heat medium flowing through the second heat exchange region exchanges heat with the supercharged intake air to supercharged intake air. Cool down.
  • the heat exchange unit includes an inner fin that promotes heat exchange between the first heat medium and the supercharged intake air.
  • the first heat exchange region has a turn portion that turns the heat medium from the inlet and guides it to the outlet.
  • the heat exchange unit is configured such that the inlet side with respect to the turn part is provided on the upstream side in the flow direction of the supercharging intake air, rather than the outlet side with respect to the turn part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Supercharger (AREA)

Abstract

インタークーラは、第1熱媒体が流れる第1熱交換領域(28)と、前記第1熱媒体よりも低い温度の第2熱媒体が流れる第2熱交換領域(27)とを有する熱交換部(23)を備える。前記第1熱交換領域を流れる第1熱媒体が前記過給吸気と熱交換して前記過給吸気を冷却する。前記第2熱交換領域を流れる第2熱媒体が前記過給吸気と熱交換して前記過給吸気を冷却する。前記熱交換部は、前記第1熱媒体と前記過給吸気との間の熱交換を促進するインナーフィン(30b)を備えている。前記熱交換部は、前記第1熱交換領域のうち前記過給吸気の流れ方向の上流側を流れる前記第1熱媒体が沸騰することを抑制する沸騰抑制部材(30b、41)を備える。

Description

インタークーラ 関連出願への相互参照
 本出願は、2016年3月31日に出願された日本特許出願番号2016-70719号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、過給機にて加圧された過給吸気を冷却するインタークーラに関するものである。
 従来、過給機によってエンジンに過給される過給空気を第1冷却水によって冷却する高温熱交換部と、第1冷却水よりも温度が低い第2冷却水によって過給空気を冷却する低温熱交換部とを備えるインタークーラがある。例えば、特許文献1にそのようなインタークーラが記載されている。
 高温熱交換部は、第1冷却水が入る入口と、入口からの第1冷却水が流れる高温熱交換領域と、高温熱交換領域を通過した第1冷却水を排出する出口とを有している。高温熱交換領域には、第1冷却水を流す複数の冷却水流路を構成するインナーフィンが配置されている。インナーフィンは、高温熱交換部の外側を流れる過給吸気と高温熱交換領域を流れる第1冷却水との熱交換を促進する。複数の冷却水流路を流れる冷却水の流れ方向は、過給吸気の流れ方向に交差している。複数の冷却水流路は、過給吸気の流れ方向に並べられている。
特開2015-155692号公報
 上記特許文献1に記載のインタークーラでは、インナーフィンによって複数の冷却水流路を構成している。このため、複数の冷却水流路のそれぞれの幅寸法が狭くなるため、高温熱交換領域を冷却水が流れる際に生じる冷却水の圧損が大きくなる。したがって、高温熱交換領域のうち出口側では、水圧が低下するため、冷却水の沸点が低下する。
 これに加えて、複数の冷却水流路のうち過給吸気の流れ方向上流側に位置する冷却水流路(以下、上流側冷却水流路という)内の第1冷却水は、過給吸気の流れ方向下流側に位置する冷却水流路内の第1冷却水に比べて、高温の過給吸気との間で熱交換される。このため、上流側冷却水流路内の第1冷却水の温度は上昇し易い。
 この結果、高温熱交換領域の上流側冷却水流路のうち出口側では、冷却水が沸騰する恐れがある。高温熱交換領域内で冷却水が沸騰した場合には、インタークーラのうち高温熱交換領域を構成する部品の温度上昇を招き、部品の強度低下の恐れがある。
 本開示は、温度が異なる2種類の熱媒体で過給吸気を冷却するインタークーラにおいて、熱媒体の沸騰を抑制することを目的とする。
 本開示の1つの観点によれば、過給機によってエンジンに過給される過給吸気を冷却するインタークーラは、第1熱媒体が流れる第1熱交換領域と、第1熱媒体よりも低い温度の第2熱媒体が流れる第2熱交換領域とを有する熱交換部を備える。
 第1熱交換領域を流れる第1熱媒体が過給吸気と熱交換して過給吸気を冷却する。第2熱交換領域を流れる第2熱媒体が過給吸気と熱交換して過給吸気を冷却する。熱交換部は、第1熱媒体と過給吸気との間の熱交換を促進するインナーフィンを備えている。熱交換部は、第1熱交換領域のうち過給吸気の流れ方向の上流側を流れる第1熱媒体が沸騰することを抑制する沸騰抑制部材を備える。
 したがって、温度が異なる2種類の熱媒体で過給吸気を冷却するインタークーラにおいて、熱媒体の沸騰を抑制することができる。
 本開示の他の観点によれば、過給機によってエンジンに過給される過給吸気を冷却するインタークーラは、第1熱媒体が入る入口と、入口からの第1熱媒体が流れる第1熱交換領域と、第1熱交換領域を通過した第1熱媒体を排出する出口と、第1熱媒体よりも低い温度の第2熱媒体が流れる第2熱交換領域を有する熱交換部を備える。
 第1熱交換領域を流れる第1熱媒体が過給吸気と熱交換して過給吸気を冷却する。第2熱交換領域を流れる第2熱媒体が過給吸気と熱交換して過給吸気を冷却する。熱交換部は、第1熱媒体と過給吸気との間の熱交換を促進するインナーフィンを備えている。第1熱交換領域は、入口からの熱媒体をターンさせて出口に導くターン部を有して構成されている。第1熱交換領域のうちターン部に対する出口側よりも、ターン部に対する入口側が過給吸気の流れ方向の上流側に設けられるように熱交換部が構成されている。
 これによれば、第1熱交換領域のうち出口側を流れる第1熱媒体と熱交換される過給吸気の温度は、第1熱交換領域のうち入口側を流れる第1熱媒体と熱交換される過給吸気の温度よりも、低くなる。このため、第1熱交換領域のうち出口側を流れる第1熱媒体が沸騰することが抑制される。
 これに加えて、第1熱交換領域のうち入口側が第1熱交換領域のうち出口側よりも過給吸気の流れ方向の上流側に設けられていても、第1熱交換領域のうち出口側を流れる第1熱媒体の圧力よりも、第1熱交換領域のうち入口側を流れる第1熱媒体の圧力が高い。このため、第1熱交換領域のうち入口側を流れる第1熱媒体が沸騰することが抑制される。
 以上によれば、温度が異なる2種類の熱媒体で過給吸気を冷却するインタークーラにおいて、熱媒体の沸騰を抑制することができる。
第1実施形態における車両の過給吸気冷却システムの概要を示す構成図である。 第1実施形態の過給吸気冷却システムの概要を示す構成図である。 第1実施形態におけるインタークーラを示す斜視図である。 第1実施形態におけるインタークーラの上面図である。 図4中V-V断面図である。 第1実施形態における流路管およびアウタフィンの正面図である。 第1実施形態における流路管およびアウタフィンの断面図である。 図5中の流路管においてその縦寸法を拡大した拡大図である。 第1実施形態における流路管のうちプレートを透視して流路管の内部構造を示す透視図である。 図9中の流路管の内部において熱交換領域の出口側を示す部分拡大図である。 図9中XI-XI断面図である。 第1実施形態の第1変形例において、図11に相当し、リブを示す断面図である。 第1実施形態の第2変形例において、図11に相当し、リブを示す断面図である。 第2実施形態における流路管の部分断面図である。 図14中のインナーフィン単体を示す断面図である。 第3実施形態における流路管のうちプレートを透視して流路管の内部構造を示す透視図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
 (第1実施形態)
 本開示の本実施形態について図面に基づいて説明する。本実施形態は、本開示のインタークーラ20を、車両の過給吸気冷却システム1に適用した例について説明する。
 車両のエンジン(すなわち、内燃機関)10の吸気系には、図1に示すように、エンジン10に吸気を過給するための過給機15が設けられている。この過給機15はエンジン10の最高出力を補うために設けられている。つまり、本実施形態における車両は、燃費向上を目的としてエンジン10が小排気量化されており、この小排気量化に伴う最高出力の低下を過給機15によって補っている。
 吸気系において過給機15よりも吸気流れ下流側には、エンジン10への吸気を冷却するインタークーラ20が設けられている。このインタークーラ20は、過給機15によって圧縮された過給吸気を冷却してエンジン10に供給してエンジン10への吸気の充填効率を向上させる役割を果たす。
 図2のインタークーラ20の内部には、冷却水回路60を循環する第1冷却水と冷却水回路50を循環する第2冷却水とが流通するようになっている。インタークーラ20は、過給機15によって圧縮された過給吸気を、第1冷却水および第2冷却水と熱交換させて過給吸気を冷却する。
 冷却水回路50には第2冷却水を循環させるウォータポンプ51が設けられ、冷却水回路50においてウォータポンプ51とインタークーラ20との間には第2冷却水の熱を外気に放熱させて第2冷却水を冷却する第1ラジエータ52が設けられている。
 冷却水回路60には、ウォータポンプ61と、第2ラジエータ62と、ヒータコア63とが設けられている。ウォータポンプ61は、冷却水回路60に第1冷却水を循環させる。第2ラジエータ62は、第1冷却水がエンジン10から吸熱した熱を外気に放熱する。
 ヒータコア63は、車室内へ送風される送風空気と第1冷却水とを熱交換させて送風空気を加熱する。インタークーラ20、第2ラジエータ62およびヒータコア63は、冷却水回路60において並列に配置されている。
 第1冷却水はエンジン10から吸熱している。このため、第1、第2冷却水がインタークーラ20の内部を流通する際に、第1冷却水の方が第2冷却水よりも温度が高くなっている。
 つまり、第1冷却水は第1熱媒体(すなわち、高温冷却水)であり、第2冷却水は第2熱媒体(すなわち、低温冷却水)である。第1、第2冷却水としてはLLC(すなわち不凍液)や水等を用いることができる。
 本実施形態のウォータポンプ51、61は、エンジン10から出力される駆動力によって駆動される。
 次に、本実施形態のインタークーラ20の構造の詳細について図2~図10を参照して説明する。
 本実施形態のインタークーラ20は、図2、図3および図4に示すように、支持部21、および熱交換器22を備える。
 支持部21は、上側支持部21aと下側支持部21bとを組み合わせて熱交換器22を挟んでいる。上側支持部21aと下側支持部21bとの間には、過給機15からの過給吸気を熱交換器22に導く空気入口と、熱交換器22を通過した過給吸気をエンジンに導く空気出口が設けられている。
 熱交換器22は、いわゆるドロンカップ型の熱交換器として構成されている。図4、図5に示すように、複数の流路管23と、隣り合う流路管23の間に接合されるアウタフィン24とが交互に積層配置されている。
 熱交換器22は、複数の流路管23の内部を流れる第1、第2冷却水と、複数の流路管23の外部を流れる過給吸気とを熱交換させるように構成されている。
 複数の流路管23のうち隣り合う2つの流路管23の間でアウタフィン24が配置された空間が、過給吸気が流通する過給吸気流路を構成している。アウタフィン24は、第1、第2冷却水と過給吸気との間の熱交換を促進する。
 図5、図6に示すように、本実施形態のアウタフィン24は、プレートを波形状に成形したコルゲートフィンである。
 アウタフィン24は、頂部24aと谷部24bとが繰り返し交互に並ぶ波形状となっている。アウタフィン24は、頂部24aおよび谷部24bの間の中腹部24cにルーバ24dが形成されたルーバフィンとして構成されている。
 アウタフィン24の頂部24a、谷部24bは、流路管23にろう付け接合されている。図5では、ルーバ24dの図示を省略しています。
 複数の流路管23は、それぞれ、図7、図8に示すように、一対のプレート25a、25bを接合することで扁平に形成されている熱交換部である。プレート25aが第1プレートに対応し、プレート25bが第2プレートに対応する。
 具体的には、プレート25aには、図8に示すように、凹部26a、26b、26c、26dが形成されている。プレート25aの凹部26a、26b、26c、26dがプレート25bによって塞がれている。
 凹部26aとプレート25bとの間は、第2冷却水が流れる冷却水流路27aを構成している。凹部26bとプレート25bとの間は、第2冷却水が流れる冷却水流路27bを構成している。
 冷却水流路27a、27bは、Uターン部27cとともに、第2熱交換領域としての熱交換領域27を構成する。図9も参照のこと。
 冷却水流路27aは、入口27dから流れる第2冷却水をUターン部27cに導く。Uターン部27cは、U字状に屈曲された冷却水流路であって、冷却水流路27aからの第2冷却水をUターンさせる。
 冷却水流路27bは、Uターン部27cからの第2冷却水を出口27eに導く。入口27dおよび出口27eは、それぞれ、プレート25a、25bに貫通孔を形成することにより構成されている。冷却水流路27a、27bは、仕切部27fによって区切られている。
 冷却水流路27a内には、インナーフィン29aが配置されている。インナーフィン29aは、冷却水流路27aを複数の第1低温冷却水流路に分割するコルゲートフィンである。
 冷却水流路27b内には、インナーフィン29bが配置されている。複数の第1低温冷却水流路は、過給吸気の流れ方向に並べられている。
 インナーフィン29bは、冷却水流路27bを複数の第2低温冷却水流路に分割するコルゲートフィンである。複数の第2低温冷却水流路は、過給吸気の流れ方向に並べられている。
 本実施形態の凹部26cとプレート25bとの間は、第1冷却水が流れる冷却水流路28aを構成している。凹部26dとプレート25bとの間は、第1冷却水が流れる冷却水流路28bを構成している。
 冷却水流路28a、28bは、Uターン部28cとともに、第1熱交換領域としての熱交換領域28を構成する。図9も参照のこと。
 冷却水流路28aは、入口28dから流れる第1冷却水をUターン部28cに導く。Uターン部28cは、U字状に屈曲された冷却水流路であって、冷却水流路28aからの第1冷却水をUターンさせる。
 冷却水流路28bは、Uターン部28cからの第1冷却水を出口28eに導く。出口28eは、熱交換領域28を通過した第1冷却水を排出する。入口28dおよび出口28eは、それぞれ、プレート25a、25bに貫通孔を形成することにより構成されている。冷却水流路28a、28bは、仕切部28fによって区切られている。
 冷却水流路28a内には、インナーフィン30aが配置されている。インナーフィン30aは、冷却水流路28aを複数の第1高温冷却水流路に分割するコルゲートフィンである。複数の第1高温冷却水流路は、過給吸気の流れ方向に並べられている。
 冷却水流路28b内には、インナーフィン30bが配置されている。インナーフィン30bは、冷却水流路28bを複数の第2高温冷却水流路に分割するコルゲートフィンである。複数の第2高温冷却水流路は、過給吸気の流れ方向に並べられている。
 ここで、複数の第1低温冷却水流路内の第2冷却水の流れ方向を冷却水流れ方向Aとし、複数の第2低温冷却水流路内の第2冷却水の流れ方向を冷却水流れ方向Bとする。
 複数の第1高温冷却水流路内の第1冷却水の流れ方向を冷却水流れ方向Cとし、複数の第2高温冷却水流路内の第1冷却水の流れ方向を冷却水流れ方向Dとする。
 本実施形態の冷却水流れ方向A、冷却水流れ方向B、冷却水流れ方向C、および冷却水流れ方向Dは、平行になっている。冷却水流れ方向A、冷却水流れ方向B、冷却水流れ方向C、および冷却水流れ方向Dは、過給吸気の流れ方向に交差する方向、具体的には過給吸気の流れ方向に直交する方向となっている。
 冷却水流路28bは、冷却水流路28aに対して過給吸気の流れ方向の上流側に配置されている。冷却水流路28aは、冷却水流路27bに対して過給吸気の流れ方向の上流側に配置されている。
 冷却水流路27bは、冷却水流路27aに対して過給吸気の流れ方向の上流側に配置されている。このため、冷却水流路28bは、冷却水流路28a、28b、27a、27bのうち過給吸気の流れ方向の最上流側に配置されている。
 冷却水流路27a、27bの流路長は同じになっている。冷却水流路27a、27bの過給吸気の流れ方向の長さ(すなわち、冷却水流路27a、27bの幅方向の長さ)は、同じになっている。
 冷却水流路28a、28bの流路長は同じになっている。冷却水流路28a、28bの過給吸気の流れ方向の長さ(すなわち、冷却水流路28a、28bの幅方向の長さ)は、同じになっている。冷却水流路28a、28bの過給吸気の流れ方向の長さは、冷却水流路27a、27bの過給吸気の流れ方向の長さよりも短くなっている。
 複数の流路管23のうち隣り合う2つの流路管23の入口27dを前記隣り合う2つの流路管23毎に連結することにより第1分配タンク部を構成する。第1分配タンク部は、複数の流路管23の熱交換領域27に第2冷却水を分配する。第1分配タンク部は、上側支持部21aの貫通孔31aを貫通する不図示の冷却水配管に接続されている。
 複数の流路管23のうち隣り合う2つの流路管23の出口27eを前記隣り合う2つの流路管23毎に連結することにより第1集合タンク部を構成する。第1集合タンク部は、複数の流路管23の熱交換領域27から第2冷却水を集合させる。第1集合タンク部は、上側支持部21aの貫通孔31bを貫通する不図示の冷却水配管に接続されている。
 上側支持部21aの貫通孔31a、31bを貫通する冷却水配管は、冷却水回路50を構成する。
 複数の流路管23のうち隣り合う2つの流路管23の入口28dを前記隣り合う2つの流路管23毎に連結することにより第2分配タンク部を構成する。第2分配タンク部は、複数の流路管23の熱交換領域28に第1冷却水を分配する。第2分配タンク部は、上側支持部21aの貫通孔31cを貫通する不図示の冷却水配管に接続されている。
 複数の流路管23のうち隣り合う2つの流路管23の出口28eを前記隣り合う2つの流路管23毎に連結することにより第2集合タンク部を構成する。第2集合タンク部は、複数の流路管23の熱交換領域28から第1冷却水を集合させる。第2集合タンク部は、上側支持部21aの貫通孔31dを貫通する不図示の冷却水配管に接続されている。
 上側支持部21aの貫通孔31c、31dを貫通する冷却水配管は、冷却水回路60を構成する。
 次に、本実施形態の特徴である第1冷却水の沸騰を抑制する構造について図11~図8を参照して説明する。
 図8は、図5中の流路管23の内部構造の図示を明確にするために、図5中の流路管23においてその縦寸法を拡大した拡大図である。つまり、説明の便宜上、図5中の流路管23の縦寸法よりも図8の流路管23の縦寸法を大きくしている。図9は、流路管23の内部構造を示すために流路管23のうちプレート25aを透視した透視図である。図10は、流路管23のうちプレート25aを外した状態で流路管23の内部構造において熱交換領域28の出口28e付近を示す部分拡大図である。
 図10のインナーフィン30bは、上述の如く、冷却水流路28bを複数の第2高温冷却水流路(すなわち、複数の熱媒体流路)に分割するコルゲートフィンである。
 ここで、複数の第2高温冷却水流路のうち過給吸気の流れ方向の最上流側に位置する第2高温冷却水流路を第2高温冷却水流路70とする。図9も参照のこと。複数の第2高温冷却水流路のうち第2高温冷却水流路70に対して過給吸気の流れ方向の下流側に位置する第2高温冷却水流路を第2高温冷却水流路71とする。第2高温冷却水流路70が第1流路に対応し、第2高温冷却水流路71が第2流路に対応する。
 本実施形態の複数の流路管23のそれぞれの熱交換領域28には、沸騰抑制部材としての複数のリブ41が設けられている。複数のリブ41は、それぞれ、図10に示すように、複数の第2高温冷却水流路71と出口28eとの間に配置されている抵抗体である。
 すなわち、複数のリブ41は、それぞれ、複数の第2高温冷却水流路71に対して第1冷却水の流れ方向下流側に配置されている。より具体的には、複数のリブ41は、それぞれ、複数の第2高温冷却水流路71および出口28eの間において、複数の第2高温冷却水流路71側に配置されている。したがって、リブ41は、熱交換領域28のうちインナーフィン30bに対して第1冷却水の冷却水流路28bにおける流れの下流方向にオフセットして配置されている。一方、第2高温冷却水流路70に対してその出口側には、リブ41が配置されていない。
 複数のリブ41は、それぞれ、複数の第2高温冷却水流路71を流れる第1冷却水の流れに対する抵抗を生じさせる抵抗体である。
 すなわち、複数のリブ41は、それぞれ、複数の第2高温冷却水流路71を流れる第1冷却水の圧力損失を発生させる。
 本実施形態の複数のリブ41は、それぞれ、プレート25aの凸部41aの先端側がプレート25bの凸部41bの先端側に接合することにより構成されている。凸部41aは、プレート25b側に凸となるように形成されている。凸部41bは、プレート25a側に凸となるように形成されている。
 なお、インタークーラ20の構成部品のうち全部品または一部の部品は、例えばアルミニウムで形成された芯材の表面にろう材をクラッドしたクラッド材で形成されている。クラッド材の表面にフラックスを塗布した状態で加熱することによって、インタークーラ20の各構成部品がろう付け接合される。
 次に、本実施形態の過給吸気冷却システム1の作動について説明する。
 まず、ウォータポンプ51、61がエンジン10から出力される駆動力によって駆動される。
 この際に、冷却水回路60において、ウォータポンプ61は、インタークーラ20からの第1冷却水とヒータコア63からの第1冷却水と第2ラジエータ62からの第1冷却水とを吸い込んでエンジン10の冷却水入口に導く。
 エンジン10を通過した第1冷却水は、インタークーラ20、ヒータコア63、および第2ラジエータ62のそれぞれに分配される。
 このとき、エンジン10を通過した第1冷却水は、第2分配タンク部によって複数の流路管23のそれぞれに分配される。複数の流路管23のそれぞれに分配された第1冷却水は、複数の第1高温冷却水流路のそれぞれに分配される。
 複数の第1高温冷却水流路のそれぞれを通過した第1冷却水は、Uターン部28cで集められ、この集められた第1冷却水は、Uターンされて、複数の第2高温冷却水流路に分配される。
 その後、複数の第2高温冷却水流路を通過した第1冷却水は、第1集合タンク部で集合されてウォータポンプ61の出口に流れる。
 したがって、複数の第1高温冷却水流路、Uターン部28c、および複数の第2高温冷却水流路を第1冷却水が流れる際に、流路管23の外側を通過する過給吸気と第1冷却水とが熱交換されることにより、第1冷却水によって過給吸気が冷却される。
 このように第1冷却水によって冷却された過給吸気は、熱交換領域28の外側を通過する。
 また、冷却水回路50において、ウォータポンプ51からの第2冷却水が第1ラジエータ52、インタークーラ20、ウォータポンプ51の順に流れる。
 このとき、第1ラジエータ52を通過した第2冷却水は、第1分配タンク部によって複数の流路管23に流れる。複数の流路管23のそれぞれに分配された第2冷却水は、複数の第1低温冷却水流路のそれぞれに分配される。
 複数の第1低温冷却水流路のそれぞれを通過した第2冷却水は、Uターン部27cで集められ、この集められた第2冷却水は、Uターンされて、複数の第2低温冷却水流路に分配される。
 その後、複数の第2低温冷却水流路を通過した第2冷却水は、第1集合タンク部で集合されてウォータポンプ51の出口に流れる。
 このため、第2冷却水が複数の第1低温冷却水流路、Uターン部27c、および複数の第2低温冷却水流路を通過する際に、流路管23の外側を通過する過給吸気と第2冷却水とが熱交換されることにより、第2冷却水によって過給吸気が冷却される。
 このように第2冷却水および第1冷却水によって冷却された過給吸気がエンジン10に吸入される。
 ここで、複数のリブ41は、それぞれ、第2高温冷却水流路71に対して第1冷却水の流れ方向下流側に配置されている。一方、第2高温冷却水流路70に対して第1冷却水の流れ方向の下流側には、リブ41が配置されていない。
 このため、複数のリブ41は、複数の第2高温冷却水流路71を流れる第1冷却水の圧力損失を生じさせる。よって、複数の第2高温冷却水流路71を流れる第1冷却水の流速を遅くして、第2高温冷却水流路70を流れる第1冷却水の流速を速くすることができる。
 したがって、複数のリブ41を設けない従来のインタークーラ20に比べて、第2高温冷却水流路70内の第1冷却水の流速を速くすることができる。
 以上説明した本実施形態によれば、インタークーラ20は、過給機15によってエンジン10に過給される過給吸気を冷却する複数の流路管23を備える。複数の流路管23は、それぞれ、第1冷却水が流れる熱交換領域28を形成し、熱交換領域28を流れる第1冷却水が過給吸気を冷却する。
 複数の流路管23は、それぞれ、第1冷却水よりも低い温度の第2冷却水が流れる熱交換領域27を形成し、熱交換領域27を流れる第2冷却水が過給吸気を冷却する。
 熱交換領域28内には、第1冷却水と過給吸気との間の熱交換を促進するインナーフィン30a、30bが配置されている。インナーフィン30aは、冷却水流路28aを複数の第1高温冷却水流路に分割する。インナーフィン30bは、冷却水流路28bを複数の第2高温冷却水流路71と第2高温冷却水流路70とに分割する。
 ここで、熱交換領域28内には、インナーフィン30a、30bやUターン部28cが設けられているので、第1冷却水の圧力損失が大きくなっている。このため、熱交換領域28内のうち出口28e側で水圧が大きく低下するため、熱交換領域28内のうち出口28e側において沸点が低下する。
 特に、熱交換領域28は、熱交換領域27に対して過給空気の空気流れ上流側に配置されている。これに加えて、冷却水流路28bは、冷却水流路28aに対して過給空気の空気流れ上流側に配置されている。第2高温冷却水流路70は、複数の第2高温冷却水流路71に対して過給空気の空気流れ上流側に配置されている。このため、第2高温冷却水流路70を流れる第1冷却水の温度は上昇し易い。
 これに対して、本実施形態では、複数のリブ41が、それぞれ、複数の第2高温冷却水流路71および出口28eの間に配置されている。複数のリブ41は、それぞれ、複数の第2高温冷却水流路71を流れる第1冷却水の流れに対する抵抗を生じさせる。よって、複数の第2高温冷却水流路71を流れる第1冷却水の流速を遅くして、第2高温冷却水流路70を流れる第1冷却水の流速を速くしている。
 これにより、複数のリブ41を設けない従来のインタークーラ20に比べて、第1冷却水の流速を速くさせることができる。よって、複数のリブ41を設けない従来のインタークーラ20に比べて、第2高温冷却水流路70を流れる第1冷却水の温度を下げることができる。これにより、第2高温冷却水流路70を流れる第1冷却水が沸騰することを抑制することができる。
 (第1実施形態の第1変形例)
 上記第1実施形態では、プレート25aの凸部41aとプレート25bの凸部41bとを組み合わせてリブ41を構成した例について説明したが、これに代えて、図12に示すように、リブ41を構成してもよい。
 すなわち、第1変形例では、プレート25bに凸部が設けられていなく、プレート25bのうちプレート25a側の上部25cが平面状に形成されている。
 プレート25bの上部25cに接合されているプレート25aの凸部を沸騰抑制部材としてのリブ41とする。プレート25aの凸部は、プレート25a側からプレート25bに凸となる凸部である。
 (第1実施形態の第2変形例)
 上記第1実施形態では、プレート25aの凸部41aとプレート25bの凸部41bとを組み合わせてリブ41を構成した例について説明したが、これに代えて、図13に示すように、リブ41を構成してもよい。
 すなわち、第2変形例では、プレート25aに凸部が設けられていなく、プレート25aのうちプレート25b側の下部25dが平面状に形成されている。
 プレート25aの下部25dに接合されているプレート25bの凸部を沸騰抑制部材としてのリブ41とする。プレート25bの凸部は、プレート25b側からプレート25aに凸となる凸部である。
 (第2実施形態)
 上記第1実施形態では、複数のリブ41を用いて過給吸気の流れ方向の上流側の第2高温冷却水流路を流れる第1冷却水の流量を増大化した例について説明したが、これ代えて、インナーフィン30bのフィンピッチの設定により過給吸気の流れ方向の上流側の第2高温冷却水流路を流れる第1冷却水の流量を増大化する第2実施形態について説明する。
 図14に本実施形態の流路管23の内部構造を示す模式図を示す。図15にインナーフィン30b単体を示す。
 インナーフィン30bは、複数の頂部80、複数の谷部81を有し、第1冷却水の流れ方向に直交する方向に頂部80および谷部81が1つずつ交互に並ぶ波状に形成されている。
 ここで、第1冷却水の流れ方向に直交する方向は、過給吸気の流れ方向に一致している。複数の頂部80は、それぞれ、プレート25aに接合されている。複数の谷部81は、それぞれ、プレート25bに接合されている。
 インナーフィン30bのうち隣り合う2つの中腹部82の間は、第2高温冷却水流路を構成する。このため、プレート25a、25bの間においてインナーフィン30bが過給吸気の流れ方向に並ぶ複数の第2高温冷却水流路を構成することになる。中腹部82は、インナーフィン30bのうち隣り合う頂部80および谷部81の間の部位である。
 ここで、複数の第2高温冷却水流路のうち過給吸気の流れ方向最上流側に位置する第2高温冷却水流路を第2高温冷却水流路70aとする。複数の第2高温冷却水流路のうち第2高温冷却水流路70aに対して過給吸気の流れ方向下流側に位置する複数の第2高温冷却水流路を複数の第2高温冷却水流路71aとする。
 本実施形態では、第2高温冷却水流路70aの流路断面積が第2高温冷却水流路71aの流路断面積よりも大きくなるようにインナーフィン30bのフィンピッチfpが設定されている。
 第2高温冷却水流路71a、70aの流路断面積は、第2高温冷却水流路71a、70aにおいて第1冷却水の流れ方向に直交する断面の面積である。
 換言すれば、過給吸気の流れ方向の下流側のフィンピッチfpが過給吸気の流れ方向の上流側のフィンピッチfpよりも大きくなるように沸騰抑制部材としてのインナーフィン30bが設定されている。
 フィンピッチfpは、インナーフィン30bにおいて隣り合う2つの中腹部82の間の距離である。
 具体的には、図15のインナーフィン30bを波とみなしたときに、「過給吸気の流れ方向の下流側のフィンピッチfp」は、インナーフィン30bの中腹部82のうち振幅が零となる基準位置で設定されている。また、図15のインナーフィン30bを波とみなしたときに、「過給吸気の流れ方向の上流側のフィンピッチfp」も、インナーフィン30bの中腹部82のうち振幅が零となる基準位置で設定されている。
 紙面において過給吸気の流れ方向に直交する方向を振幅方向としたとき、基準位置は、中腹部82のうち振幅方向の中央位置である。ここで、図15のインナーフィン30bにおいて、複数の頂部80は、それぞれ、同一振幅値となる位置に設定されている。複数の谷部81は、それぞれ、同一振幅値となる位置に設定されている。
 このようにインナーフィン30bにおいてフィンピッチfpが設定されているため、第2高温冷却水流路70aの流路断面積が第2高温冷却水流路71aの流路断面積よりも大きくなっている。
 したがって、複数の第2高温冷却水流路71aを流れる第1冷却水の流水量を減らして、第2高温冷却水流路70aを流れる第1冷却水の流水量を増大させることができる。
 したがって、「過給吸気の流れ方向の下流側のフィンピッチfp」と「過給吸気の流れ方向の上流側のフィンピッチfp」とを同一にした場合に比べて、第2高温冷却水流路70aを流れる第1冷却水の流水量を増大させることができる。
 これにより、第2高温冷却水流路70aの流路断面積と第2高温冷却水流路71aの流路断面積とを同一にした場合に比べて、第2高温冷却水流路70a内の熱容量を増加させることができる。よって、第2高温冷却水流路70a内の第1冷却水の温度を下げることができる。これにより、第2高温冷却水流路70aを流れる第1冷却水が沸騰することを抑制することができる。
 以上説明した本実施形態によれば、インタークーラ20において、第1冷却水の沸騰を抑制することができる。
 (第3実施形態)
 上記第1実施形態では、入口28dを出口28eに対して過給吸気の流れ方向の下流側に配置した例について説明したが、これに代えて、入口28dを出口28eに対して過給吸気の流れ方向の上流側に配置した本第3実施形態について図16を参照して説明する。
 図16は、本実施形態における流路管23のうちプレート25aを透視して流路管23の内部構造を示す透視図である。
 本実施形態の流路管23の熱交換領域28においてUターン部28cに対して入口28d側が、Uターン部28cに対して出口28e側に比べて、過給吸気の流れ方向の上流側に配置されている。このため、入口28dからの第1冷却水が流れる冷却水流路28aが、出口28eに第1冷却水を導く冷却水流路28bに対して、過給吸気の流れ方向の上流側に配置されている。
 したがって、熱交換領域28においてUターン部28cに対して入口28d側を、Uターン部28cに対して出口28e側に比べて過給吸気の流れ方向の下流側に配置した場合に比べて、冷却水流路28bのうち出口28e側を流れる第1冷却水と熱交換される過給吸気の温度が低くなる。
 これにより、インナーフィン30a、30bが起因して熱交換領域28のうち出口28e側を流れる第1冷却水の水圧が低下するものの、第1冷却水が沸騰することが抑制される。
 これに加えて、熱交換領域28のうち入口28d側を流れる第1冷却水の水圧は、熱交換領域28のうち入口28d側を流れる第1冷却水の水圧に比べて高い。
 このため、熱交換領域28のうち入口28d側を流れる第1冷却水は、「冷却水流路28bのうち出口28e側を流れる第1冷却水と熱交換される過給吸気」よりも高い温度の過給吸気と熱交換される。しかし、熱交換領域28のうち入口28d側を流れる第1冷却水が沸騰することが抑制される。
 以上説明した本実施形態によれば、インタークーラ20において、第1冷却水の沸騰を抑制することができる。
 (他の実施形態)
 (1)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、ウォータポンプ51、61をエンジン10から出力される駆動力によって駆動した例について説明したが、これに代えて、ウォータポンプ51、61として羽根車を電動モータにより駆動する電動ウォータポンプを用いてもよい。
 (2)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、インナーフィン29a、29b、30a、30bとしてコルゲートフィンを用いた例について説明した。しかし、これに代えて、コルゲートフィン以外の各種のタイプのフィン(例えば、オフセットフィン、ルーバフィン)をインナーフィン29a、29b、30a、30bとして用いてもよい。
 (3)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、熱交換領域28において1つのUターン部28cを設けた例について説明したが、これに代えて、熱交換領域28において2つ以上のUターン部28cを設けてもよい。或いは、Uターン部28cが設けられていなく、直線状に流路が延びる熱交換領域28を構成してもよい。
 同様に、熱交換領域27において1つのUターン部27cを設けた例について説明したが、これに代えて、熱交換領域27において2つ以上のUターン部27cを設けてもよい。或いは、Uターン部27cが設けられていなく、直線状に第1冷却水が流れる熱交換領域27を構成してもよい。
 (4)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、流路管23において、熱交換領域28を熱交換領域27に対して過給吸気の流れ方向上流側に配置した例について説明した。しかし、これに代えて、熱交換領域28を熱交換領域27に対して過給吸気の流れ方向下流側に配置してもよい。
 (5)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、第2冷却水の流れ方向A、B、第1冷却水の流れ方向C、Dを過給吸気の流れ方向に直交する方向とした例について説明した。しかし、これに限らず、第2冷却水の流れ方向A、B、第1冷却水の流れ方向C、Dは、過給吸気の流れ方向に交差する方向であればよい。
 ここで、第2冷却水の流れ方向Aは、複数の第1低温冷却水流路内の第2冷却水の流れ方向であり、第2冷却水の流れ方向Bは、複数の第2低温冷却水流路内の第2冷却水の流れ方向である。第1冷却水の流れ方向Cは、複数の第1高温冷却水流路内の第1冷却水の流れ方向であり、第1冷却水の流れ方向Dは、複数の第2高温冷却水流路内の第1冷却水の流れ方向である。
 (6)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、プレート25a或いは、25bの凸部をリブ41とした例について説明した。しかし、これに代えて、インナーフィン30a、30bに設けられた凸部をリブ41としてもよい。
 (7)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、1つの流路管23によって熱交換領域27、28を構成した例について説明した。しかし、これに代えて、熱交換領域27、28をそれぞれ独立した流路管によって構成してもよい。
 (8)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、インナーフィン30bにおいて、頂部80および谷部81が1つずつ交互に並ぶ方向を第1冷却水の流れ方向に直交する方向とした例について説明した。しかし、これに限らず、次のようにしてもよい。
 すなわち、インナーフィン30bにおいて「頂部80および谷部81が1つずつ交互に並ぶ方向」と「第1冷却水の流れ方向」とが交差するのであれば、「頂部80および谷部81が1つずつ交互に並ぶ方向」と「第1冷却水の流れ方向」とが交差する角度は、直角である必要はない。
 (9)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、複数の第2高温冷却水流路71に対して第1冷却水の流れ方向下流側に複数のリブ41を配置した例について説明した。しかし、これに代えて、複数の第2高温冷却水流路71に対して第1冷却水の流れ方向上流側に複数のリブ41を配置してもよい。
 (10)上記第1実施形態、第1、第2変形例、および第2、第3実施形態では、熱交換領域28において、ターン部として、Uターン部28cを設けた例について説明した。しかし、これに代えて、V字状に流路を屈曲させるVターン部をターン部として設けてもよい。
 (11)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 (まとめ)
 上記第1実施形態、第1、第2変形例、第2、第3実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、過給機によってエンジンに過給される過給吸気を冷却するインタークーラは以下のような特徴を有する。インタークーラは、第1熱媒体が流れる第1熱交換領域と、第1熱媒体よりも低い温度の第2熱媒体が流れる第2熱交換領域とを有する熱交換部を備える。第1熱交換領域を流れる第1熱媒体が過給吸気と熱交換して過給吸気を冷却し、第2熱交換領域を流れる第2熱媒体が過給吸気と熱交換して過給吸気を冷却する。熱交換部は、第1熱媒体と過給吸気との間の熱交換を促進するインナーフィンを備えており、熱交換部は、第1熱交換領域のうち過給吸気の流れ方向の上流側を流れる第1熱媒体が沸騰することを抑制する沸騰抑制部材を備える。
 第2の観点によれば、インナーフィンは、第1熱交換領域内にて、第1熱媒体が流れる複数の流路を構成する。複数の流路のうち過給吸気の流れ方向の上流側に位置する流路を第1流路とし、複数の流路のうち第1流路に対して過給吸気の流れ方向の下流側に位置する流路を第2流路とする。沸騰抑制部材は、第1流路内の第1熱媒体に比べて、第2流路内の第1熱媒体の流速を遅くする抵抗体を備える。
 したがって、第2流路内の第1熱媒体の流速が、第1流路内の第1熱媒体の流速以上である場合に比べて、第1流路内を流れる第1熱媒体の温度を下げることができる。したがって、第1流路を流れる第1熱媒体が沸騰することを抑制することができる。これにより、第1熱交換領域のうち過給吸気の流れ方向の上流側を流れる第1熱媒体が沸騰することを抑制することができる。
 第3の観点によれば、熱交換部は、第1プレートと、第2プレートと、を備える。第1プレートおよび第2プレートのうちいずれか一方のプレートには、凹部が設けられる。他方のプレートが一方のプレートの凹部を塞いで凹部と他方のプレートとの間に第1熱交換領域を構成するように第1プレートおよび第2プレートが接合された状態になっている。抵抗体は、第1熱交換領域に配置されて、かつ第1プレートおよび第2プレートのうち一方のプレートから他方のプレートに向けて凸となるように設けられて第2流路内の熱媒体流れに対する抵抗を生じさせるリブである。
 第4の観点によれば、リブは、第1熱交換領域のうちインナーフィンに対して第1熱媒体の流れ方向にオフセットして配置されている。
 第5の観点によれば、熱交換部は、第1プレートと、第2プレートと、を備える。第1プレートおよび第2プレートのうちいずれか一方のプレートには、凹部が設けられる。他方のプレートが一方のプレートの凹部を塞いで他方のプレートと凹部との間に第1熱交換領域を構成するように第1プレートおよび第2プレートが接合された状態になっている。インナーフィンは、第1プレートおよび第2プレートのうち一方のプレートに接合されている複数の頂部と、他方のプレートに接合されている複数の谷部とを備え、頂部および谷部が1つずつ交互に並ぶ波状に形成されている。インナーフィンのうち隣り合う頂部および谷部の間を中腹部としたとき、インナーフィンのうち隣り合う2つの中腹部の間のそれぞれは、第1熱媒体が流れる複数の流路を構成している。インナーフィンのうち隣り合う2つの中腹部の間のそれぞれの距離をフィンピッチとする。沸騰抑制部材は、過給吸気の流れ方向の下流側のフィンピッチに比べて過給吸気の流れ方向の上流側のフィンピッチを大とするように設定されているインナーフィンを備える。
 したがって、第1流路の流路断面積を第2流路の流路断面積以下にする場合に比べて、第1流路内の第1熱媒体の流量を増加させることができる。これに伴い、第1流路の流路断面積を第2流路の流路断面積以下にする場合に比べて、第1流路内の熱容量を増加させることができる。
 このため、第1流路内を流れる第1熱媒体の温度を下げることができる。これに伴い、第1流路を流れる第1熱媒体が沸騰することを抑制することができる。これにより、第1熱交換領域のうち過給吸気の流れ方向の上流側を流れる第1熱媒体が沸騰することを抑制することができる。
 第6の観点によれば、第1熱交換領域が第2熱交換領域に比べて過給吸気の流れ方向の上流側に位置するように熱交換部が構成されている。
 第7の観点によれば、熱交換部は、第1熱媒体が入る入口と、入口から第1熱交換領域を流通した熱媒体を排出する出口とを形成し、第1熱交換領域は、入口からの第1熱媒体をターンさせて出口に導くターン部を有して構成されている。
 第8の観点によれば、過給機によってエンジンに過給される過給吸気を冷却するインタークーラは、以下のような特徴を有する。インタークーラは、第1熱媒体が入る入口と、入口からの第1熱媒体が流れる第1熱交換領域と、第1熱交換領域を通過した第1熱媒体を排出する出口と、第1熱媒体よりも低い温度の第2熱媒体が流れる第2熱交換領域を有する熱交換部を備える。第1熱交換領域を流れる第1熱媒体が過給吸気と熱交換して過給吸気を冷却し、第2熱交換領域を流れる第2熱媒体が過給吸気と熱交換して過給吸気を冷却する。熱交換部は、第1熱媒体と過給吸気との間の熱交換を促進するインナーフィンを備えている。第1熱交換領域は、入口からの熱媒体をターンさせて出口に導くターン部を有して構成されている。第1熱交換領域のうちターン部に対する出口側よりも、ターン部に対する入口側が過給吸気の流れ方向の上流側に設けられるように熱交換部が構成されている。

Claims (8)

  1.  過給機(15)によってエンジン(10)に過給される過給吸気を冷却するインタークーラであって、
     第1熱媒体が流れる第1熱交換領域(28)と、前記第1熱媒体よりも低い温度の第2熱媒体が流れる第2熱交換領域(27)とを有する熱交換部(23)を備え、
     前記第1熱交換領域を流れる第1熱媒体が前記過給吸気と熱交換して前記過給吸気を冷却し、
     前記第2熱交換領域を流れる第2熱媒体が前記過給吸気と熱交換して前記過給吸気を冷却し、
     前記熱交換部は、前記第1熱媒体と前記過給吸気との間の熱交換を促進するインナーフィン(30b)を備えており、
     前記熱交換部は、前記第1熱交換領域のうち前記過給吸気の流れ方向の上流側を流れる前記第1熱媒体が沸騰することを抑制する沸騰抑制部材(30b、41)を備えるインタークーラ。
  2.  前記インナーフィンは、前記第1熱交換領域内にて、前記第1熱媒体が流れる複数の流路(70、71)を構成するものであり、
     前記複数の流路のうち前記過給吸気の流れ方向の上流側に位置する流路を第1流路(70)とし、前記複数の流路のうち前記第1流路に対して前記過給吸気の流れ方向の下流側に位置する流路を第2流路(71)とした場合において、
     前記沸騰抑制部材は、前記第1流路内の第1熱媒体に比べて、前記第2流路内の第1熱媒体の流速を遅くする抵抗体(41)を備える請求項1に記載のインタークーラ。
  3.  前記熱交換部は、第1プレート(25a)と、第2プレート(25b)と、を備え、
     前記第1プレートおよび前記第2プレートのうちいずれか一方のプレートには、凹部(26d、26c)が設けられ、他方のプレートが前記一方のプレートの凹部を塞いで前記凹部と前記他方のプレートとの間に前記第1熱交換領域を構成するように前記第1プレートおよび前記第2プレートが接合された状態になっており、
     前記抵抗体は、前記第1熱交換領域に配置されて、かつ前記第1プレートおよび前記第2プレートのうち一方のプレートから他方のプレートに向けて凸となるように設けられて前記第2流路内の熱媒体流れに対する抵抗を生じさせるリブである請求項2に記載のインタークーラ。
  4.  前記リブは、前記第1熱交換領域のうち前記インナーフィンに対して前記第1熱媒体の流れ方向にオフセットして配置されている請求項3に記載のインタークーラ。
  5.  前記熱交換部は、第1プレート(25a)と、第2プレート(25b)と、を備え、
     前記第1プレートおよび前記第2プレートのうちいずれか一方のプレートには、凹部(26d、26c)が設けられ、他方のプレートが前記一方のプレートの凹部を塞いで前記他方のプレートと前記凹部との間に前記第1熱交換領域を構成するように前記第1プレートおよび前記第2プレートが接合された状態になっており、
     前記インナーフィンは、前記第1プレートおよび前記第2プレートのうち一方のプレートに接合されている複数の頂部(80)と、他方のプレートに接合されている複数の谷部(81)とを備え、前記頂部および前記谷部が1つずつ交互に並ぶ波状に形成されており、
     前記インナーフィンのうち隣り合う頂部および谷部の間を中腹部(82)としたとき、前記インナーフィンのうち隣り合う2つの中腹部の間のそれぞれは、前記第1熱媒体が流れる複数の流路を構成しており、
     前記インナーフィンのうち隣り合う2つの中腹部の間のそれぞれの距離をフィンピッチとした場合において、
     前記沸騰抑制部材は、前記過給吸気の流れ方向の下流側のフィンピッチに比べて前記過給吸気の流れ方向の上流側のフィンピッチを大とするように設定されている前記インナーフィンを備える請求項1に記載のインタークーラ。
  6.  前記第1熱交換領域が前記第2熱交換領域に比べて前記過給吸気の流れ方向の上流側に位置するように前記熱交換部が構成されている請求項1ないし5のいずれか1つに記載のインタークーラ。
  7.  前記熱交換部は、前記第1熱媒体が入る入口(28d)と、前記入口から前記第1熱交換領域を流通した熱媒体を排出する出口(28e)とを形成し、
     前記第1熱交換領域は、前記入口からの前記第1熱媒体をターンさせて前記出口に導くターン部(28c)を有して構成されている請求項1ないし6のいずれか1つに記載のインタークーラ。
  8.  過給機(15)によってエンジン(10)に過給される過給吸気を冷却するインタークーラであって、
     第1熱媒体が入る入口(28d)と、前記入口からの第1熱媒体が流れる第1熱交換領域(28)と、前記第1熱交換領域を通過した第1熱媒体を排出する出口(28e)と、前記第1熱媒体よりも低い温度の第2熱媒体が流れる第2熱交換領域(27)を有する熱交換部(23)を備え、
     前記第1熱交換領域を流れる第1熱媒体が前記過給吸気と熱交換して前記過給吸気を冷却し、
     前記第2熱交換領域を流れる第2熱媒体が前記過給吸気と熱交換して前記過給吸気を冷却し、
     前記熱交換部は、前記第1熱媒体と前記過給吸気との間の熱交換を促進するインナーフィン(30b)を備えており、
     前記第1熱交換領域は、前記入口からの熱媒体をターンさせて前記出口に導くターン部(28c)を有して構成されており、
     前記第1熱交換領域のうち前記ターン部に対する出口側よりも、前記ターン部に対する入口側が前記過給吸気の流れ方向の上流側に設けられるように前記熱交換部が構成されているインタークーラ。
PCT/JP2017/009769 2016-03-31 2017-03-10 インタークーラ WO2017169666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018508935A JP6460281B2 (ja) 2016-03-31 2017-03-10 インタークーラ
CN201780020776.1A CN109072765B (zh) 2016-03-31 2017-03-10 中冷器
US16/089,016 US10544727B2 (en) 2016-03-31 2017-03-10 Intercooler
DE112017001679.7T DE112017001679B4 (de) 2016-03-31 2017-03-10 Ladeluftkühler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070719 2016-03-31
JP2016-070719 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169666A1 true WO2017169666A1 (ja) 2017-10-05

Family

ID=59964215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009769 WO2017169666A1 (ja) 2016-03-31 2017-03-10 インタークーラ

Country Status (5)

Country Link
US (1) US10544727B2 (ja)
JP (1) JP6460281B2 (ja)
CN (1) CN109072765B (ja)
DE (1) DE112017001679B4 (ja)
WO (1) WO2017169666A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988769A4 (en) * 2019-06-21 2022-08-03 NISSAN MOTOR Co., Ltd. HEAT EXCHANGE DEVICE
GB2596327B (en) * 2020-06-25 2024-03-20 Denso Marston Ltd Heat exchanger
CN115217618B (zh) * 2021-06-24 2023-11-03 广州汽车集团股份有限公司 一种加压式水冷中冷器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332920A (ja) * 2001-05-10 2002-11-22 Denso Corp 排気熱交換装置
JP2004263616A (ja) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Egrクーラ用の偏平チューブ
JP2010144979A (ja) * 2008-12-17 2010-07-01 Denso Corp 熱交換器
JP2011190742A (ja) * 2010-03-15 2011-09-29 Denso Corp 内燃機関用排気再循環装置
JP2015155692A (ja) * 2014-01-14 2015-08-27 株式会社デンソー インタークーラ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962391A1 (de) 1999-12-23 2001-06-28 Behr Industrietech Gmbh & Co Ladeluftkühler
FR2829533B1 (fr) 2001-09-07 2004-04-23 Peugeot Citroen Automobiles Sa Dispositif perfectionne de regulation thermique de l'air d'admission d'un moteur a combustion interne de vehicule automobile
FR2847005B1 (fr) 2002-11-12 2005-02-18 Peugeot Citroen Automobiles Sa Dispositif perfectionne de regulation thermique de l'air d'admission d'un moteur et de gaz d'echappement recircules emis par ce moteur
ES2238121B1 (es) * 2002-11-28 2006-11-01 Radiadores Ordoñez, S.A. Un intercambiador de calor para vehiculos.
FR2852678B1 (fr) 2003-03-21 2005-07-15 Valeo Thermique Moteur Sa Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes
DE102006008826B4 (de) 2006-02-25 2012-03-22 Audi Ag Thermische Entdrosselung bei aufgeladenen Verbrennungsmotoren
US8191365B2 (en) 2008-10-30 2012-06-05 GM Global Technology Operations LLC Intercooler system for engine air charger
DE102009051184A1 (de) * 2009-10-29 2011-05-05 Behr Gmbh & Co. Kg Wärmetauscher
DE102010063324A1 (de) 2010-12-17 2012-06-21 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung von Ladeluft, System zum Konditionieren von Ladeluft und Ansaugmodul für einen Verbrennungsmotor
FR2993354B1 (fr) * 2012-07-13 2018-07-13 Delphi Automotive Systems Lux Refroidisseur d'air de suralimentation
JP6011474B2 (ja) 2013-06-21 2016-10-19 株式会社デンソー 車両用冷却装置
JP6201886B2 (ja) 2014-01-06 2017-09-27 株式会社デンソー 吸気冷却装置
CN203742761U (zh) * 2014-01-23 2014-07-30 潍柴动力股份有限公司 一种中冷系统
CN203796397U (zh) * 2014-01-24 2014-08-27 安徽江淮汽车股份有限公司 一种中冷器
WO2016010238A1 (ko) * 2014-07-16 2016-01-21 한온시스템 주식회사 통합형 열교환기
JP6327032B2 (ja) 2014-07-17 2018-05-23 株式会社デンソー 吸気冷却装置
JP5814445B1 (ja) 2014-09-29 2015-11-17 三菱電機株式会社 レゾルバ
DE102016006127B4 (de) * 2015-06-08 2022-12-29 Modine Manufacturing Company Ladeluftkühler und Verfahren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332920A (ja) * 2001-05-10 2002-11-22 Denso Corp 排気熱交換装置
JP2004263616A (ja) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Egrクーラ用の偏平チューブ
JP2010144979A (ja) * 2008-12-17 2010-07-01 Denso Corp 熱交換器
JP2011190742A (ja) * 2010-03-15 2011-09-29 Denso Corp 内燃機関用排気再循環装置
JP2015155692A (ja) * 2014-01-14 2015-08-27 株式会社デンソー インタークーラ

Also Published As

Publication number Publication date
JP6460281B2 (ja) 2019-01-30
DE112017001679B4 (de) 2021-05-06
US20190055879A1 (en) 2019-02-21
US10544727B2 (en) 2020-01-28
DE112017001679T5 (de) 2018-12-20
CN109072765B (zh) 2020-08-28
CN109072765A (zh) 2018-12-21
JPWO2017169666A1 (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
JP5293077B2 (ja) 熱交換器
CN105917094B (zh) 中冷器
JP2015534030A (ja) 熱交換器
JP6460281B2 (ja) インタークーラ
JP5906250B2 (ja) 熱交換器、及び関連する流動摂動体の形成方法
JP2013195024A (ja) 熱交換器用フィンおよび熱交換器
JP6607151B2 (ja) インタークーラ
JP2009266937A (ja) 積層型冷却器
JP6708172B2 (ja) インタークーラ
JP4941398B2 (ja) 積層型冷却器
JP5533685B2 (ja) 車両用空調装置
US20140318754A1 (en) Plate For Heat Exchanger And Heat Exchanger Equipped With Such Plates
JP2018514741A (ja) 重ねられた複数のプレートを有する熱交換器
WO2020170651A1 (ja) 複合型熱交換器
WO2014103639A1 (ja) 複合型熱交換器
JP2018169058A (ja) 熱交換器
US20120247731A1 (en) Heat exchanger assembly having a seal
JP2018146216A (ja) 複数流路熱交換器
JP5772608B2 (ja) 熱交換器
KR102605321B1 (ko) 열교환기
CN113557403B (zh) 热交换器
US11840989B2 (en) Heat exchanger with partition wall interposed between different flow paths
JP2010106723A (ja) ハイブリッド型熱交換器
US10655530B2 (en) Intercooler
US10612457B2 (en) Intercooler

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508935

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774210

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774210

Country of ref document: EP

Kind code of ref document: A1