WO2017169219A1 - エゼクタ、エゼクタの製造方法及びディフューザの出口流路の設定方法 - Google Patents

エゼクタ、エゼクタの製造方法及びディフューザの出口流路の設定方法 Download PDF

Info

Publication number
WO2017169219A1
WO2017169219A1 PCT/JP2017/005469 JP2017005469W WO2017169219A1 WO 2017169219 A1 WO2017169219 A1 WO 2017169219A1 JP 2017005469 W JP2017005469 W JP 2017005469W WO 2017169219 A1 WO2017169219 A1 WO 2017169219A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
channel
ejector
diffuser
attachment
Prior art date
Application number
PCT/JP2017/005469
Other languages
English (en)
French (fr)
Inventor
川島史裕
糸賀友則
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to CN201780019732.7A priority Critical patent/CN108884839B/zh
Priority to EP17773767.3A priority patent/EP3438466B1/en
Priority to JP2017527831A priority patent/JP6352543B2/ja
Publication of WO2017169219A1 publication Critical patent/WO2017169219A1/ja
Priority to US16/147,040 priority patent/US20190032679A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/18Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for compressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/461Adjustable nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/469Arrangements of nozzles for steam engines

Definitions

  • the technology disclosed herein includes an ejector that sucks and discharges the second fluid together with the first fluid by the negative pressure generated when the first fluid is ejected, and an outlet flow path of a diffuser used in the ejector. It relates to the setting method.
  • Patent Document 1 discloses a general ejector.
  • the first fluid driving fluid
  • the second fluid driven fluid
  • the first fluid and the second fluid are mixed and discharged from the diffuser (exit).
  • the diffuser is provided with an enlarged channel (a channel whose channel cross-sectional area increases as it goes downstream), and the mixed fluid of the first fluid and the second fluid is decelerated and pressurized when flowing through the enlarged channel. .
  • the mixed fluid discharged from the ejector is supplied to a device or the like on the downstream side of the ejector.
  • the discharge pressure may fluctuate due to, for example, a change in operating conditions (amount of mixed fluid used or a pressure used) of a steam supply destination device. For example, when the amount of the mixed fluid in the supply destination apparatus is temporarily decreased or the operating pressure is temporarily increased, the discharge flow rate of the ejector is decreased and the discharge pressure is increased. If the discharge pressure becomes too high, the second fluid becomes difficult to be sucked, and eventually the suction flow rate of the second fluid is significantly reduced. In such a case, an ejector that can secure a sufficient suction flow rate of the second fluid up to the highest possible discharge pressure is desired.
  • Ejector performance such as the discharge pressure of the mixed fluid and the suction flow rate of the second fluid varies depending on the specifications of the diffuser flow path, that is, the dimensions.
  • the dimensions that is, the dimensions.
  • changing the size of the diffuser flow path may deteriorate the performance of the ejector.
  • the technology disclosed herein has been made in view of such circumstances, and its purpose is to change the upper limit of the discharge pressure at which the suction flow rate of the second fluid can be ensured, while reducing the performance of the ejector at that time. It is to reduce.
  • the ejector disclosed herein includes a nozzle that ejects a first fluid, a suction chamber in which the nozzle is accommodated, and a second fluid is sucked by a negative pressure generated by ejecting the first fluid from the nozzle, A diffuser that mixes and discharges the first fluid and the second fluid in the suction chamber, and the outlet channel has a first tapered surface that narrows toward the downstream side.
  • a reduced flow channel a parallel flow channel connected to the downstream end of the reduced flow channel and having a constant cross-sectional area, and a second tapered surface connected to the downstream end of the parallel flow channel and becoming thicker toward the downstream side
  • the diffuser further includes a changing unit that changes the size of the outlet channel, and the changing unit has a smaller cross-sectional area of the parallel channel.
  • the first tapered surface with respect to the taper angle The ratio of the taper angle to change the dimensions of the outlet channel so as to increase.
  • the ejector manufacturing method disclosed herein includes a setting step for setting the dimension of the outlet channel, and a preparation step for preparing the diffuser having the dimension of the outlet channel set in the setting step.
  • the dimension of the outlet channel is set so that the ratio of the taper angle of the first taper surface to the taper angle of the second taper surface increases as the cross-sectional area of the parallel channel decreases. .
  • the method for setting the outlet flow path of the diffuser disclosed herein includes the step of setting a cross-sectional area of the parallel flow path, and the smaller the cross-sectional area of the parallel flow path, the taper angle of the second tapered surface is Setting the dimension of the outlet flow path so that the ratio of the taper angle of the first taper surface is increased.
  • the ejector it is possible to reduce the deterioration of the ejector performance at that time while changing the upper limit of the discharge pressure that can secure the suction flow rate of the second fluid.
  • the ejector manufacturing method it is possible to provide an ejector that reduces the deterioration of the ejector performance at that time while changing the upper limit of the discharge pressure that can secure the suction flow rate of the second fluid.
  • the setting method of the outlet flow path of the diffuser it is possible to realize an ejector that reduces the deterioration of the ejector performance at that time while changing the upper limit of the discharge pressure that can secure the suction flow rate of the second fluid.
  • FIG. 1 is a diagram schematically illustrating a configuration of an ejector according to the embodiment.
  • FIG. 2 is a graph showing the relationship between the discharge pressure and the suction flow rate.
  • FIG. 3 is a schematic cross-sectional view of the diffuser to which the first attachment is attached.
  • FIG. 4 is a schematic cross-sectional view of the diffuser to which the second attachment is attached.
  • the ejector 10 is a steam ejector that sucks low-pressure steam (second fluid) by ejecting high-pressure steam (first fluid), and mixes and discharges these steam. That is, in the ejector 10, the high-pressure steam is the driving fluid, and the low-pressure steam is the suction fluid.
  • the ejector 10 includes a nozzle 20, a suction chamber 30, and a diffuser 40.
  • the nozzle 20 is connected to an inflow pipe 91 connected to a supply source of high-pressure steam.
  • the nozzle 20 ejects the supplied high-pressure steam.
  • the tip of the nozzle 20 is accommodated in the suction chamber 30.
  • the suction chamber 30 is provided with a suction port 31 for low-pressure steam.
  • the low pressure steam is sucked from the suction port 31 into the suction chamber 30 by the negative pressure (pressure drop) generated when the high pressure steam is ejected from the nozzle 20. That is, in the suction chamber 30, a suction force for sucking the low-pressure steam is generated by the negative pressure generated by the jet pump effect of the high-pressure steam.
  • the suction port 31 is connected to a suction pipe 92 connected to the supply source of the low-pressure steam.
  • the diffuser 40 is connected to the suction chamber 30.
  • the diffuser 40 mixes and discharges the high-pressure steam ejected into the suction chamber 30 and the low-pressure steam sucked into the suction chamber 30.
  • An outflow pipe 93 connected to the supply destination of the mixed steam is connected to the downstream end of the diffuser 40.
  • the diffuser 40 has a divided structure including an upstream portion 41, an attachment 42 and a downstream portion 43.
  • the upstream end of the upstream portion 41 is connected to the suction chamber 30.
  • a flange 41 a is provided at the downstream end of the upstream portion 41.
  • a first flange 43 a is provided at the upstream end of the downstream portion 43, and a second flange 43 b is provided at the downstream end of the downstream portion 43.
  • the downstream part 43 is connected to the outflow pipe 93 via the second flange 43b.
  • the attachment 42 is sandwiched between the upstream portion 41 and the downstream portion 43.
  • the attachment 42 is held by the upstream portion 41 and the downstream portion 43 by tightening the flange 41 a of the upstream portion 41 and the first flange 43 a of the downstream portion 43 with a bolt 44. That is, the attachment 42 can be replaced by loosening the fastening of the bolt 44.
  • the attachment 42 is an example of a changing unit.
  • the diffuser 40 is formed with an outlet channel 50 for high-pressure steam and low-pressure steam that communicates with the suction chamber 30.
  • the outlet channel 50 includes a reduced channel 51, a parallel channel 52, and an enlarged channel 53 that are sequentially connected from the upstream side.
  • the cross section of the outlet channel 50 is substantially circular. The diffuser 40 decelerates and pressurizes the mixed steam when the mixed steam flows through the enlarged flow path 53.
  • the upstream end of the reduced flow path 51 is open to the suction chamber 30.
  • the upstream end of the reduced flow path 51 faces the downstream end of the nozzle 20 in the suction chamber 30.
  • the cross-sectional area, that is, the inner diameter of the reduced flow channel 51 gradually decreases toward the downstream side. That is, the reduced flow path 51 has a first tapered surface 54 that becomes narrower toward the downstream side.
  • a parallel flow path 52 is connected to the downstream end of the reduction flow path 51.
  • the parallel flow path 52 is a flow path having a constant cross-sectional area, that is, an inner diameter.
  • the parallel flow path 52 is a portion having the smallest inner diameter in the outlet flow path 50 and constitutes a so-called throat portion.
  • An enlarged channel 53 is connected to the downstream end of the parallel channel 52.
  • the cross-sectional area of the enlarged flow path 53 that is, the inner diameter gradually increases toward the downstream side. That is, the enlarged flow path 53 has a second tapered surface 55 that becomes thicker toward the
  • the reduced flow path 51 is formed from the upstream portion 41 to the attachment 42.
  • the parallel flow path 52 is formed in the attachment 42.
  • the enlarged flow path 53 is formed from the attachment 42 to the downstream portion 43. That is, at least the upstream end portion of the reduced flow channel 51 is formed in the upstream portion 41.
  • the attachment 42 is formed with at least the downstream end of the reduced flow channel 51, the parallel flow channel 52, and at least the upstream end of the enlarged flow channel 53. At the downstream portion 43, at least the downstream end portion of the enlarged flow path 53 is formed.
  • the high-pressure steam flowing through the inflow pipe 91 is ejected from the nozzle 20 into the suction chamber 30, and the low-pressure steam is ejected from the suction port 31 into the suction chamber 30 by the ejection of the high-pressure steam. Sucked.
  • the high pressure steam and low pressure steam in the suction chamber 30 are mixed and discharged from the diffuser 40.
  • the steam discharged from the diffuser 40 is supplied to the downstream apparatus.
  • the flow velocity of the mixed steam is approximately the speed of sound in the parallel flow path 52 of the diffuser 40. Thereafter, the mixed steam is decelerated and pressurized when flowing through the enlarged flow path 53.
  • the discharge pressure of the ejector 10 may increase depending on the operating conditions and specifications of the steam supply destination device.
  • this discharge pressure is referred to as “maximum discharge pressure” that can secure the suction flow rate of the low-pressure steam.
  • Pmax the maximum discharge pressure
  • the suction pressure starts to rise.
  • the flow velocity in the parallel flow path 52 becomes lower than the sound velocity and becomes a non-critical state, and the suction pressure rises to a value almost equal to the discharge pressure. That is, when the discharge pressure exceeds the maximum discharge pressure Pmax, the suction flow rate of the low-pressure steam decreases rapidly.
  • the maximum discharge pressure Pmax can be changed according to the specifications of the outlet channel 50, that is, the dimensions.
  • the diffuser 40 is configured such that the dimensions of the outlet channel 50 can be changed by replacing the attachment 42.
  • changing only the inner diameter D of the parallel flow path 52 may not only increase the maximum discharge pressure Pmax but also may not maintain the performance of the ejector 10. For example, even if the maximum discharge pressure Pmax can be increased, the suction flow rate of low-pressure steam may be significantly reduced, or conversely, the maximum discharge pressure Pmax may be reduced. That is, various dimensions of the outlet channel 50 are related to the performance of the ejector 1, and it is necessary to change dimensions other than the inner diameter D of the parallel channel 52.
  • the dimension of the outlet channel 50 is set so that ⁇ / ⁇ is increased.
  • the inner diameter D of the parallel flow path 52 is set smaller as the target maximum discharge pressure is higher.
  • the taper angles ⁇ and ⁇ are set so that the taper angle ratio ⁇ / ⁇ increases as the inner diameter D decreases.
  • the taper angle ⁇ of the portion of the first taper surface 54 formed on the attachment 42 and the taper angle ⁇ of the portion of the second taper surface 55 formed on the attachment 42 are changed.
  • taper angle ⁇ and “taper angle ⁇ ” mean the taper angle of the taper surface of the portion formed on the attachment 42.
  • the taper angle ⁇ of the first taper surface 54 is changed so as to increase as the inner diameter D decreases.
  • the taper angles ⁇ and ⁇ are set so that the taper angle ratio ⁇ / ⁇ increases as the inner diameter D decreases. That is, when it is necessary to increase at least one of the taper angles ⁇ and ⁇ as the inner diameter D decreases, the taper angle ⁇ is increased more greatly to suppress the increase in the taper angle ⁇ .
  • the taper angle is larger than the enlargement ratio of the taper angle ⁇ (that is, the taper angle ⁇ after change / taper angle ⁇ before change).
  • the taper angles ⁇ and ⁇ are set such that the enlargement ratio of ⁇ (that is, the taper angle ⁇ after change / taper angle ⁇ before change) is larger.
  • the taper angle ⁇ of the first taper surface 54 and the taper angle ⁇ of the second taper surface 55 can affect the turbulence of the mixed steam flow. When these angles increase, separation may occur and the flow may be disturbed. When the flow turbulence increases, the performance of the ejector 10 deteriorates.
  • the taper angle ⁇ of the enlarged flow channel 53 has a greater influence on the flow disturbance than the taper angle ⁇ of the reduced flow channel 51.
  • the taper angle ⁇ is changed more greatly to suppress the increase in the taper angle ⁇ . Therefore, the deterioration of the disturbance of a flow can be suppressed and the deterioration of the performance of the ejector 10 can be suppressed.
  • the length P of the parallel flow path 52 is set to be shorter as the inner diameter D is smaller.
  • the length P of the parallel flow path 52 is set so as to satisfy the following formula (1), that is, in proportion to the inner diameter D.
  • the length Q of the reduced flow path 51 is also shorter as the inner diameter D is smaller.
  • the length of the enlarged flow path 53 is set to a value that does not affect the performance of the ejector 10 even if the lengths of the reduced flow path 51 and the parallel flow path 52 are changed.
  • FIG. 3 is a schematic cross-sectional view of the diffuser 40 to which the first attachment 42A is attached
  • FIG. 4 is a schematic cross-sectional view of the diffuser 40 to which the second attachment 42B is attached.
  • the first attachment 42A has a parallel flow path 52 having an inner diameter D of d1. At this time, the length p1 of the parallel flow path 52 is M ⁇ d1. The length of the reduced flow path 51 is q1.
  • the taper angle ⁇ 1 of the portion of the first taper surface 54 formed on the first attachment 42A is the same as the taper angle ⁇ 0 of the portion of the first taper surface 54 formed on the upstream portion 41.
  • the taper angle ⁇ 1 of the portion of the second taper surface 55 formed on the first attachment 42A is the same as the taper angle ⁇ 0 of the portion of the second taper surface 55 formed on the downstream portion 43.
  • the second attachment 42B has a parallel flow path 52 having an inner diameter D of d2.
  • the length p2 of the parallel flow path 52 in the second attachment 42B is M ⁇ d2.
  • the length of the reduced flow path 51 is q2.
  • the taper angle ⁇ 2 of the portion of the first taper surface 54 formed on the second attachment 42B is larger than the taper angle ⁇ 0 of the portion of the first taper surface 54 formed on the upstream portion 41.
  • the taper angle ⁇ 2 of the portion of the second taper surface 55 formed on the second attachment 42B is larger than the taper angle ⁇ 0 of the portion of the second taper surface 55 formed on the downstream portion 43.
  • the parallel flow path 52 of the second attachment 42B is the parallel flow path of the first attachment 42A. It is shorter than 52.
  • the taper angle ⁇ 2 of the first taper surface 54 of the second attachment 42B is larger than the taper angle ⁇ 1 of the first taper surface 54 of the first attachment 42A.
  • the taper angle ⁇ 2 of the second taper surface 55 of the second attachment 42B is larger than the taper angle ⁇ 1 of the second taper surface 55 of the first attachment 42A.
  • the taper angle ratio ⁇ 2 / ⁇ 2 of the second attachment 42B is larger than the taper angle ratio ⁇ 1 / ⁇ 1 of the first attachment 42A. That is, when the inner diameter D is changed from d1 to d2, the enlargement rate of the taper angle ⁇ is larger than the enlargement rate of the taper angle ⁇ .
  • the maximum discharge pressure Pmax of the diffuser 40 in which the second attachment 42B is incorporated is the first attachment. It becomes higher than the case where 42A is incorporated.
  • the taper angle ⁇ is further increased, and the increase in the taper angle ⁇ is suppressed. Thereby, deterioration of the performance of the ejector 1 is reduced.
  • the taper angle ⁇ of the first taper surface 54 and the taper angle ⁇ of the second taper surface 55 are large, flow disturbance may occur.
  • the increase in the taper angle ⁇ of the first taper surface 54 and the increase in the taper angle ⁇ of the second taper surface 55 can be suppressed to reduce the deterioration of the flow turbulence.
  • the maximum discharge pressure Pmax can be increased while ensuring a sufficient suction flow rate.
  • inhalation flow rate of a low pressure steam reduces a little.
  • the portion formed in the upstream portion 41 of the first taper surface 54 and the portion formed in the downstream portion 43 of the second taper surface 55 are not changed, so the taper angle ⁇ 0 in the upstream portion 41 is not changed.
  • the taper angle ratio ⁇ 2 / ⁇ 2 in the second attachment 42B is larger than the taper angle ratio ⁇ 0 / ⁇ 0 in the upstream portion 41 and the downstream portion 43.
  • the taper angle ⁇ increases more greatly than the taper angle ⁇ .
  • an increase in the taper angle ⁇ is suppressed.
  • the method for manufacturing the ejector 1 includes a setting step for setting the dimension of the outlet channel 50 and a preparation step for preparing the diffuser 40 having the dimension set in the setting step.
  • the inner diameter D and length P of the parallel flow path 52 in the attachment 42, the taper angle ⁇ of the first taper surface 54, and the taper angle ⁇ of the second taper surface 55 are set.
  • the taper angles ⁇ and ⁇ are set so that the taper angle ratio ⁇ / ⁇ increases as the cross-sectional area of the parallel flow path 52, that is, the inner diameter D decreases.
  • the inner diameter D (that is, the cross-sectional area) of the parallel flow path 52 that can achieve the target maximum discharge pressure is set.
  • the length P of the parallel flow path 52 is set based on the formula (1).
  • the taper angles ⁇ and ⁇ are set so that the taper angle ratio ⁇ / ⁇ increases as the inner diameter D decreases.
  • the relationship between the inner diameter D and the taper angles ⁇ and ⁇ is obtained in advance.
  • the corresponding taper angles ⁇ and ⁇ are set.
  • a diffuser 40 that realizes the dimensions of the outlet channel 50 set in the setting step is prepared.
  • an attachment 42 that realizes the dimensions of the outlet channel 50 set in the setting step is created.
  • an attachment 42 suitable for the operating condition and specifications of the apparatus to which the steam is supplied is Selected.
  • the manufacturing method of the ejector 1 further includes an assembly step.
  • the nozzle 20, the suction chamber 30, and the diffuser 40 are assembled.
  • the upstream portion 41 of the nozzle 20 and the diffuser 40 is attached to the suction chamber 30.
  • the attachment 42 and the downstream portion 43 are attached to the upstream portion 41 in a state where the attachment 42 is sandwiched between the upstream portion 41 and the downstream portion 43.
  • the attachment 42 having a smaller inner diameter D and a larger taper angle ratio ⁇ / ⁇ than before the replacement.
  • Such an attachment 42 is newly created, or such an attachment 42 is selected from a plurality of attachments 42. Then, the attachment 42 of the ejector 10 is replaced with the attachment 42 prepared in the preparation step.
  • the ejector 10 includes the nozzle 20 that ejects the high-pressure steam (first fluid) and the low-pressure steam (second fluid) due to the negative pressure that is generated when the nozzle 20 is accommodated and the high-pressure steam is ejected from the nozzle 20.
  • a reduced flow channel 51 having a first tapered surface 54, a parallel flow channel 52 having a constant cross-sectional area, connected to the downstream end of the reduced flow channel 51, and connected to the downstream end of the parallel flow channel 52.
  • the diffuser 40 further includes an attachment 42 (changing portion) that changes the size of the outlet flow channel 50, and the attachment 42 is parallel.
  • the ratio alpha / beta taper angle alpha of the first tapered surface 54 to change the size of the outlet channel 50 so as to increase as the cross-sectional area of the road 52 is smaller in the second tapered surface 55 against the taper angle beta.
  • the dimensions of the outlet channel 50 are changed by the attachment 42.
  • the cross-sectional area of the parallel flow path 52 that is, the inner diameter D
  • the maximum discharge pressure Pmax of the ejector 10 can be changed.
  • the dimension of the outlet channel 50 is set so that the taper angle ratio ⁇ / ⁇ increases as the cross-sectional area of the parallel channel 52 decreases. That is, when it is necessary to increase at least one of the taper angles ⁇ and ⁇ in order to cope with the reduction in the cross-sectional area of the parallel flow path 52, the taper angle ⁇ is increased more greatly, and the taper angle ⁇ is increased. Suppress.
  • the maximum discharge pressure Pmax of the ejector 10 can be changed, and the disturbance of the flow due to the increase in the taper angles ⁇ and ⁇ can be suppressed, and the deterioration of the performance of the ejector 10 can be reduced.
  • the attachment 42 changes the dimension of the outlet channel 50 so that the length P of the parallel channel 52 becomes shorter as the cross-sectional area of the parallel channel 52 becomes smaller.
  • the maximum discharge pressure Pmax can be changed while further reducing the deterioration of the performance of the ejector 1.
  • the attachment 42 changes the dimension of the outlet channel 50 so that the length P of the parallel channel 52 changes in proportion to the inner diameter D of the parallel channel 52.
  • the relationship between the inner diameter D and the length P is kept constant before and after the dimension of the parallel flow path 52 is changed.
  • the maximum discharge pressure Pmax can be changed while reducing the deterioration of the performance of the ejector 1.
  • a part of the diffuser 40 is configured by an exchangeable attachment 42, and the attachment 42 includes at least a part of the reduced flow path 51, a parallel flow path 52, and at least a part of the enlarged flow path 53.
  • the size of the outlet channel 50 is changed by replacing the attachment 42.
  • the diffuser 40 is configured such that the attachment 42 can be replaced.
  • the plurality of attachments 42 are formed with outlet channels 50 having different dimensions.
  • the taper angle ratio ⁇ / ⁇ of the attachment 42 having the smaller inner diameter D is the taper angle of the attachment 42 having the larger inner diameter D. Greater than the ratio ⁇ / ⁇ .
  • the maximum discharge pressure Pmax of the ejector 10 can be changed by replacing the attachment 42 without replacing the entire diffuser 40, and the deterioration of the performance of the ejector 10 at that time can be reduced. Can do.
  • the dimension of the exit flow path 50 can be changed easily.
  • the manufacturing method of the ejector 10 includes a setting step for setting the dimension of the outlet flow channel 50 and a preparation step for preparing the diffuser 40 having the dimension of the outlet flow channel 50 set in the setting step.
  • the dimensions of the outlet channel 50 are set so that the ratio ⁇ / ⁇ of the taper angle ⁇ of the first taper surface 54 to the taper angle ⁇ of the second taper surface 55 increases as the cross-sectional area of the parallel channel 52 decreases.
  • the diffuser 40 having the outlet channel 50 set in the setting step is prepared by replacing the attachment 42 of the diffuser 40 including the replaceable attachment 42.
  • the dimension of the outlet flow path 50 of the diffuser 40 is changed by replacing the attachment 42. Therefore, the dimensions of the reduced flow path 51 and the parallel flow path 52 can be changed without changing the entire diffuser 40.
  • the method for setting the outlet flow path of the diffuser 40 includes the step of setting the cross-sectional area of the parallel flow path 52 and the first taper surface with respect to the taper angle ⁇ of the second taper surface 55 as the cross-sectional area of the parallel flow path 52 is smaller. And setting the dimension of the outlet channel 50 so that the ratio ⁇ / ⁇ of the taper angle ⁇ of 54 becomes large.
  • the diffuser 40 has a three-part structure, but may have two or four or more parts.
  • the fixing method of the attachment 42 is not limited to the method by sandwiching the upstream portion 41 and the downstream portion 42. Any fixing method can be employed as long as the attachment 42 can be fixed.
  • the configuration for changing the dimension of the outlet channel 50 is not limited to that by the attachment 42.
  • the diffuser may have a deformation mechanism capable of deforming the inner diameter.
  • the deformation mechanism partitions the outlet flow channel 50 and has a flexible tubular wall portion, and a plurality of pressing members that are arranged circumferentially on the outer periphery of the wall portion and press the wall portion radially inward (
  • a bolt may be included.
  • a plurality of sets of pressing members are provided at different positions in the axial direction of the wall portion, with a plurality of pressing members arranged in the circumferential direction of the wall portion as one set. That is, depending on which position in the axial direction is pressed by the pressing member, the length Q of the reduced flow path 51, and consequently the taper angle ⁇ of the first tapered surface 54, the length Y of the parallel flow path 52, and the enlarged flow path 53. , And thus the taper angle ⁇ of the second taper surface 55 can be changed.
  • any configuration that can change the dimensions of the outlet channel 50 can be employed.
  • the diffuser 40 has a divided structure including the attachment 42, but is not limited to this.
  • the diffuser 40 may be an integral structure.
  • each of the plurality of diffusers 40 has outlet channels 50 of different dimensions, and the taper angle ratio ⁇ / ⁇ increases as the inner diameter D decreases.
  • An appropriate diffuser 40 is selected from these, and incorporated in the ejector 10. That is, in the preparation step in the method for manufacturing the ejector 10, the diffuser 40 having the dimensions (inner diameter D and taper angles ⁇ , ⁇ ) of the outlet channel 50 set in the setting step is selected from the plurality of diffusers 40. Or create a new one.
  • both the taper angle ⁇ of the first taper surface 54 and the taper angle ⁇ of the second taper surface 55 are increased by decreasing the inner diameter D from d1 to d2.
  • the taper angle ⁇ increases as the inner diameter D decreases, the taper angle ⁇ may remain constant or decrease. Even in such a case, since the increase in the taper angle ⁇ is suppressed, the deterioration of the flow is reduced.
  • the technique disclosed herein is useful for an ejector, a method for manufacturing the ejector, and a method for setting an outlet flow path of a diffuser used in the ejector.
  • Ejector 20 Nozzle 30 Suction chamber 40 Diffuser 42 Attachment (change part) 42A 1st attachment (change part) 42B 2nd attachment (change part) 50 outlet channel 51 reduced channel 52 parallel channel 53 expanded channel 54 first taper surface 55 second taper surface ⁇ taper angle ⁇ of first taper surface taper angle P of second taper surface length of parallel channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Nozzles (AREA)

Abstract

エゼクタ10は、ノズル20と吸引室30とディフューザ40とを備えている。出口流路50は、下流側に向かって細くなる第1テーパ面54を有する縮小流路51と、断面積が一定の平行流路52と、下流側に向かって太くなる第2テーパ面55を有する拡大流路53とを含んでいる。ディフューザ40は、出口流路50の寸法を変更するアタッチメント42をさらに有している。アタッチメント42は、平行流路52の断面積、即ち、内径Dが小さいほど第2テーパ面55のテーパ角度βに対する第1テーパ面54のテーパ角度αの比が大きくなるように出口流路50の寸法を変更する。

Description

エゼクタ、エゼクタの製造方法及びディフューザの出口流路の設定方法
 ここに開示された技術は、第1流体が噴出されることによって生じる負圧により第2流体を吸引して第1流体と共に吐出するエゼクタ及びその製造方法、並びにエゼクタに用いられるディフューザの出口流路の設定方法に関する。
 例えば特許文献1に一般的なエゼクタが開示されている。このエゼクタでは、第1流体(駆動流体)が噴射口から噴射されることによって負圧(圧力降下)が発生し、この負圧により第2流体(被駆動流体)が吸引される。そして、第1流体及び第2流体は混合されディフューザ(出口)から吐出される。ディフューザには拡大流路(下流にいくに従って流路断面積が大きくなる流路)が設けられており、第1流体及び第2流体の混合流体は拡大流路を流れる際に減速及び昇圧される。こうしてエゼクタから吐出された混合流体は、エゼクタの下流側の装置等に供給される。
特開2000-356305号公報
 ところで、上述したようなエゼクタでは、蒸気の供給先の装置の運転条件(混合流体の使用量や使用圧力)の変更等によって吐出圧力が変動し得る。例えば、供給先の装置における混合流体の使用量が一時的に低下したり、使用圧力が一時的に上昇操作されたりすると、エゼクタの吐出流量が減少して吐出圧力が上昇する。吐出圧力が高くなり過ぎると、第2流体が吸引され難くなり、やがて、第2流体の吸入流量が著しく減少する。このような場合には、できるだけ高い吐出圧力まで十分な第2流体の吸入流量を確保できるエゼクタが望まれる。
 混合流体の吐出圧力や第2流体の吸入流量等のエゼクタの性能は、ディフューザの流路の仕様、即ち、寸法によって変わる。ただし、ディフューザの流路の様々な寸法がエゼクタの性能に影響しているので、ディフューザの流路の寸法を変更することによってエゼクタの性能が悪化する場合もあり得る。
 ここに開示された技術は、かかる事情に鑑みてなされたものであり、その目的は、第2流体の吸入流量を確保できる吐出圧力の上限を変更しつつ、その際のエゼクタの性能の悪化を低減することにある。
 ここに開示されたエゼクタは、第1流体を噴出するノズルと、前記ノズルが収容され、前記ノズルから前記第1流体が噴出することによって生じる負圧により第2流体が吸引される吸引室と、出口流路を有し、前記吸引室の前記第1流体及び前記第2流体を混合して吐出するディフューザとを備え、前記出口流路は、下流側に向かって細くなる第1テーパ面を有する縮小流路と、前記縮小流路の下流端に接続され、断面積が一定の平行流路と、前記平行流路の下流端に接続され、下流側に向かって太くなる第2テーパ面を有する拡大流路とを含んでおり、前記ディフューザは、前記出口流路の寸法を変更する変更部をさらに有し、前記変更部は、前記平行流路の断面積が小さいほど前記第2テーパ面のテーパ角度に対する前記第1テーパ面のテーパ角度の比が大きくなるように前記出口流路の寸法を変更する。
 また、ここに開示されたエゼクタの製造方法は、前記出口流路の寸法を設定する設定ステップと、前記設定ステップで設定された前記出口流路の寸法を有する前記ディフューザを準備する準備ステップとを含み、前記設定ステップでは、前記平行流路の断面積が小さいほど前記第2テーパ面のテーパ角度に対する前記第1テーパ面のテーパ角度の比が大きくなるように前記出口流路の寸法を設定する。
 さらに、ここに開示されたディフューザの出口流路の設定方法は、前記平行流路の断面積を設定するステップと、前記平行流路の断面積が小さいほど前記第2テーパ面のテーパ角度に対する前記第1テーパ面のテーパ角度の比が大きくなるように前記出口流路の寸法を設定するステップとを含んでいる。
 前記エゼクタによれば、第2流体の吸入流量を確保できる吐出圧力の上限を変更しつつ、その際のエゼクタの性能の悪化を低減することができる。
 前記エゼクタの製造方法によれば、第2流体の吸入流量を確保できる吐出圧力の上限を変更しつつ、その際のエゼクタの性能の悪化を低減するエゼクタを提供することができる。
 前記ディフューザの出口流路の設定方法によれば、第2流体の吸入流量を確保できる吐出圧力の上限を変更しつつ、その際のエゼクタの性能の悪化を低減するエゼクタを実現することができる。
図1は、実施形態に係るエゼクタの構成を模式的に示す図である。 図2は、吐出圧力と吸入流量との関係を示すグラフである。 図3は、第1アタッチメントが取り付けられたディフューザの模式的な断面図である。 図4は、第2アタッチメントが取り付けられたディフューザの模式的な断面図である。
 以下、例示的な実施形態を図面に基づいて詳細に説明する。
 エゼクタ10は、高圧蒸気(第1流体)を噴出させることによって低圧蒸気(第2流体)を吸引し、これら蒸気を混合して吐出する蒸気エゼクタである。つまり、エゼクタ10において、高圧蒸気は駆動流体であり、低圧蒸気は吸引流体である。エゼクタ10は、ノズル20と、吸引室30と、ディフューザ40とを備えている。
 ノズル20には、高圧蒸気の供給元に繋がる流入配管91が接続されている。ノズル20は、供給される高圧蒸気を噴出する。ノズル20の先端部は、吸引室30に収容されている。
 吸引室30には、低圧蒸気の吸引口31が設けられている。ノズル20から高圧蒸気が噴出することにより生じる負圧(圧力降下)によって、低圧蒸気が吸引口31から吸引室30へ吸引される。つまり、吸引室30では、高圧蒸気のジェットポンプ効果によって生じる負圧により、低圧蒸気を吸引するための吸引力が発生する。吸引口31には、低圧蒸気の供給元に繋がる吸引配管92が接続されている。
 ディフューザ40は、吸引室30に接続されている。ディフューザ40は、吸引室30に噴出された高圧蒸気と吸引室30に吸引された低圧蒸気とを混合して吐出するものである。ディフューザ40の下流端には、混合蒸気の供給先に繋がる流出配管93が接続されている。
 ディフューザ40は、上流部41とアタッチメント42と下流部43とを含む分割構造となっている。上流部41の上流端は、吸引室30に接続されている。上流部41の下流端には、フランジ41aが設けられている。下流部43の上流端には、第1フランジ43aが設けられ、下流部43の下流端には、第2フランジ43bが設けられている。下流部43は、第2フランジ43bを介して流出配管93に接続されている。アタッチメント42は、上流部41と下流部43とに挟み込まれている。上流部41のフランジ41aと下流部43の第1フランジ43aとがボルト44により締め付けられることによって、アタッチメント42は、上流部41と下流部43とに保持されている。つまり、ボルト44の締結を緩めることによって、アタッチメント42を交換することができる。アタッチメント42は、変更部の一例である。
 ディフューザ40には、吸引室30に連通する、高圧蒸気及び低圧蒸気の出口流路50が形成されている。出口流路50は、上流側から順に連なる、縮小流路51、平行流路52及び拡大流路53を含んでいる。出口流路50の断面は、略円形をしている。ディフューザ40は、混合蒸気が拡大流路53を流れる際に混合蒸気を減速及び昇圧させる。
 縮小流路51の上流端は、吸引室30に開口している。縮小流路51の上流端は、吸引室30においてノズル20の下流端と対向している。縮小流路51の断面積、即ち、内径は、下流側に向かってしだいに小さくなっている。すなわち、縮小流路51は、下流側に向かって細くなる第1テーパ面54を有している。縮小流路51の下流端には、平行流路52が接続されている。平行流路52は、断面積、即ち、内径が一定の流路である。平行流路52は、出口流路50において最も内径が小さい部分であり、いわゆる、喉部を構成している。平行流路52の下流端には、拡大流路53が接続されている。拡大流路53の断面積、即ち、内径は、下流側に向かってしだいに大きくなっている。すなわち、拡大流路53は、下流側に向かって太くなる第2テーパ面55を有している。
 縮小流路51は、上流部41からアタッチメント42に亘って形成されている。平行流路52は、アタッチメント42に形成されている。拡大流路53は、アタッチメント42から下流部43に亘って形成されている。すなわち、上流部41には、縮小流路51の少なくとも上流端部が形成されている。アタッチメント42には、縮小流路51の少なくとも下流端部と平行流路52と拡大流路53の少なくとも上流端部とが形成されている。下流部43には、拡大流路53の少なくとも下流端部が形成されている。
 このように構成されたエゼクタ10では、流入配管91を流通する高圧蒸気がノズル20から吸引室30内に噴出されると共に、その高圧蒸気の噴出によって低圧蒸気が吸引口31から吸引室30内に吸引される。そして、吸引室30の高圧蒸気及び低圧蒸気は、混合してディフューザ40から吐出される。ディフューザ40から吐出された蒸気は、下流側の装置に供給される。混合蒸気の流速は、ディフューザ40の平行流路52で概ね音速となる。その後、混合蒸気は、拡大流路53を流れる際に減速及び昇圧される。
 ここで、蒸気の供給先の装置の運転状況や仕様の変更によってはエゼクタ10の吐出圧力が上昇する場合がある。しかしながら、図2に示すように、エゼクタ10において、低圧蒸気の吸入流量を確保できる吐出圧力には上限(以下、この吐出圧力を「最高吐出圧力」という)がある。吐出圧力が最高吐出圧力Pmaxを超えて上昇すると、吸入圧力も上昇し始める。やがて、平行流路52における流速が音速よりも低下して非臨界状態となり、吸入圧力が吐出圧力とほぼ同等の値まで上昇してゆく。つまり、吐出圧力が最高吐出圧力Pmaxを超えると、低圧蒸気の吸入流量が急激に減少していく。
 最高吐出圧力Pmaxは、出口流路50の仕様、即ち、寸法によって変更することができる。ディフューザ40は、アタッチメント42を取り替えることによって出口流路50の寸法を変更可能に構成されている。
 例えば、平行流路52の内径Dを小さくすることによって、最大吐出圧力Pmaxを高めることが考えられる。平行流路52の内径Dが減少すると、平行流路52における混合蒸気の流速が上昇するので、平行流路52における圧力の臨界状態が確保されやすくなる。
 しかしながら、平行流路52の内径Dだけを変更するのでは、最大吐出圧力Pmaxを高めることができないばかりか、エゼクタ10の性能を維持することができない場合もある。例えば、最大吐出圧力Pmaxを高めることができても低圧蒸気の吸入流量が大幅に減少したり、逆に最大吐出圧力Pmaxが低下したりする場合もある。つまり、エゼクタ1の性能には、出口流路50の様々な寸法が関係しており、平行流路52の内径D以外の寸法も変更する必要がある。
 そこで、エゼクタ10では、平行流路52の断面積、即ち、内径Dが小さいほど、第2テーパ面55のテーパ角度βに対する第1テーパ面54のテーパ角度αの比(以下、「テーパ角度比」という)α/βが大きくなるように出口流路50の寸法が設定される。
 詳しくは、目標とする最高吐出圧力が高いほど、平行流路52の内径Dが小さく設定される。そして、エゼクタ10の性能の悪化を低減するために、内径Dが小さいほどテーパ角度比α/βが大きくなるように、テーパ角度α,βが設定される。
 ディフューザ40では、上流部41及び下流部43は交換されないので、アタッチメント42の全長、アタッチメント42の上流端における縮小流路51の内径、及び、アタッチメント42の下流端における拡大流路53の内径は、変わらない。そのため、内径Dの変更に応じて、第1テーパ面54のうちアタッチメント42に形成された部分のテーパ角度α及び第2テーパ面55のうちアタッチメント42に形成された部分のテーパ角度βが変更される。以下、「テーパ角度α」及び「テーパ角度β」は、特に断りがない限り、アタッチメント42に形成された部分のテーパ面のテーパ角度を意味する。
 第1テーパ面54のテーパ角度αは、内径Dが小さくなるほど大きくなるように変更される。このとき、内径Dが小さいほどテーパ角度比α/βが大きくなるようにテーパ角度α,βが設定される。つまり、内径Dの減少に伴ってテーパ角度α,βの少なくとも一方を増大させる必要がある場合には、テーパ角度αをより大きく増大させて、テーパ角度βの増大を抑制する。
 例えば、内径Dの減少に伴ってテーパ角度α,βの両方を増大させる場合には、テーパ角度βの拡大率(即ち、変更後のテーパ角度β/変更前のテーパ角度β)よりもテーパ角度αの拡大率(即ち、変更後のテーパ角度α/変更前のテーパ角度α)の方が大きくなるように、テーパ角度α,βが設定される。
 これにより、エゼクタ10の性能の悪化が低減される。詳しくは、第1テーパ面54のテーパ角度α及び第2テーパ面55のテーパ角度βは、混合蒸気の流れの乱れに影響を与え得る。これらの角度が大きくなると、剥離が生じて流れが乱れ得る。流れの乱れが大きくなると、エゼクタ10の性能が悪化する。ここで、ディフューザ40においては、縮小流路51のテーパ角度αよりも拡大流路53のテーパ角度βの方が流れの乱れに与える影響が大きい。そこで、平行流路52の内径Dの減少に合わせてテーパ角度α,βを大きくする必要がある場合には、テーパ角度αをより大きく変化させ、テーパ角度βの増大を抑制する。これにより、流れの乱れの悪化を抑制し、エゼクタ10の性能の悪化を抑制することができる。
 それに加えて、エゼクタ10の性能の悪化をさらに低減するために、平行流路52の長さPは、内径Dが小さいほど短く設定される。具体的には、平行流路52の長さPは、下記式(1)を満たすように、即ち、内径Dに比例して設定される。
  P=M×D ・・・(1)
 ここで、Mは定数である。
 つまり、平行流路52の寸法が変更される場合であっても、変更の前後で式(1)が満たされる。換言すると、P/Dは、変更の前後で実質的に等しい。
 尚、内径Dが小さいほどテーパ角度αを大きくする結果として、縮小流路51の長さQも内径Dが小さいほど短くなる。
 また、拡大流路53の長さは、縮小流路51及び平行流路52の長さが変化してもエゼクタ10の性能に影響を与えない程度の値に設定されている。
 図3は、第1アタッチメント42Aが取り付けられたディフューザ40の模式的な断面図であり、図4は、第2アタッチメント42Bが取り付けられたディフューザ40の模式的な断面図である。
 第1アタッチメント42Aは、内径Dがd1の平行流路52を有している。このとき、平行流路52の長さp1は、M×d1となる。また、縮小流路51の長さはq1である。第1テーパ面54のうち第1アタッチメント42Aに形成された部分のテーパ角度α1は、第1テーパ面54のうち上流部41に形成された部分のテーパ角度α0と同じである。第2テーパ面55のうち第1アタッチメント42Aに形成された部分のテーパ角度β1は、第2テーパ面55のうち下流部43に形成された部分のテーパ角度β0と同じである。
 それに対し、第2アタッチメント42Bは、内径Dがd2の平行流路52を有している。このとき、第2アタッチメント42Bにおける平行流路52の長さp2は、M×d2である。また、縮小流路51の長さはq2である。第1テーパ面54のうち第2アタッチメント42Bに形成された部分のテーパ角度α2は、第1テーパ面54のうち上流部41に形成された部分のテーパ角度α0よりも大きい。第2テーパ面55のうち第2アタッチメント42Bに形成された部分のテーパ角度β2は、第2テーパ面55のうち下流部43に形成された部分のテーパ角度β0よりも大きい。
 第2アタッチメント42Bの平行流路52の内径d2は、第1アタッチメント42Aの平行流路52の内径d1よりも小さいので、第2アタッチメント42Bの平行流路52は、第1アタッチメント42Aの平行流路52よりも短くなっている。
 ここで、内径d2が内径d1よりも小さいことに対応して、第2アタッチメント42Bの第1テーパ面54のテーパ角度α2は、第1アタッチメント42Aの第1テーパ面54のテーパ角度α1よりも大きく、且つ、第2アタッチメント42Bの第2テーパ面55のテーパ角度β2は、第1アタッチメント42Aの第2テーパ面55のテーパ角度β1よりも大きくなっている。このとき、第2アタッチメント42Bのテーパ角度比α2/β2は、第1アタッチメント42Aのテーパ角度比α1/β1よりも大きい。つまり、内径Dをd1からd2に変更する際において、テーパ角度βの拡大率よりもテーパ角度αの拡大率の方が大きくなっている。
 尚、テーパ角度αが大きくなったことによって、縮小流路51の長さQは、q1からq2へ短くなっている。
 このように、第2アタッチメント42Bの平行流路52の内径d2は、第1アタッチメント42Aよりも小さくなっているので、第2アタッチメント42Bが組み込まれたディフューザ40の最高吐出圧力Pmaxは、第1アタッチメント42Aを組み込んだ場合と比べて高くなる。このとき、テーパ角度αがより大きく増大し、テーパ角度βの増大が抑制されている。これにより、エゼクタ1の性能の悪化が低減される。具体的には、第1テーパ面54のテーパ角度α及び第2テーパ面55のテーパ角度βが大きくなっているので流れの乱れが生じ得る。しかし、第1テーパ面54のテーパ角度αをより大きく増大させ、第2テーパ面55のテーパ角度βの増大を抑制することによって、流れの乱れの悪化を低減することができる。その結果、十分な吸入流量を確保したまま最高吐出圧力Pmaxを高めることができる。尚、平行流路52の内径Dが小さくなるので低圧蒸気の吸入流量は、若干低減する。
 尚、異なる観点からは、第1テーパ面54のうち上流部41に形成された部分及び第2テーパ面55のうち下流部43に形成された部分は変わらないので、上流部41におけるテーパ角度α0及び下流部43におけるテーパ角度β0を基準とすると、第2アタッチメント42Bにおけるテーパ角度比α2/β2が上流部41及び下流部43におけるテーパ角度比α0/β0よりも大きくなっている。つまり、アタッチメント42のテーパ角度α,βの少なくとも一方が上流部41及び下流部43におけるテーパ角度α0,β0よりも大きい場合には、テーパ角度βに比べてテーパ角度αの方がより大きく増大しており、テーパ角度βの増大が抑制されている。
 さらに、出口流路50の寸法の変更前後で式(1)の関係が維持される。つまり、p2/d2は、p1/d1と実質的に等しい。このことによっても、エゼクタ1の性能の悪化が低減される。
 これらの結果、蒸気の供給先の装置の運転状況や仕様の変更によってエゼクタ10の吐出圧力が上昇したとしても、低圧蒸気の吸入流量を確保することができる。
 続いて、このようなエゼクタ1の製造方法について説明する。
 具体的には、エゼクタ1の製造方法は、出口流路50の寸法を設定する設定ステップと、設定ステップで設定された寸法を有するディフューザ40を準備する準備ステップとを含んでいる。
 設定ステップでは、アタッチメント42における平行流路52の内径D及び長さP、第1テーパ面54のテーパ角度α、並びに、第2テーパ面55のテーパ角度βを設定する。このとき、平行流路52の断面積、即ち、内径Dが小さいほどテーパ角度比α/βが大きくなるように、テーパ角度α,βが設定される。
 例えば、目標とする最高吐出圧力を達成できるような平行流路52の内径D(即ち、断面積)が設定される。内径Dが決まると、平行流路52の長さPが式(1)に基づいて設定される。そして、内径Dが小さいほどテーパ角度比α/βが大きくなるように、テーパ角度α,βが設定される。内径Dとテーパ角度α,βとの関係は、予め求められている。内径Dが決まると、それに対応するテーパ角度α,βが設定される。
 平行流路52の長さP及びテーパ角度α,βが設定されると、アタッチメント42の全長から縮小流路51の長さ及び拡大流路53の長さQが必然的に決定される。
 準備ステップでは、設定ステップで設定された出口流路50の寸法を実現するディフューザ40が準備される。例えば、設定ステップで設定された出口流路50の寸法を実現するアタッチメント42が作成される。あるいは、平行流路51の内径Dが異なり且つ内径Dが小さいほどテーパ角度比α/βが大きい複数のアタッチメント42の中から、蒸気の供給先の装置の運転状況や仕様に適したアタッチメント42が選択される。
 エゼクタ1の製造方法は、組立ステップをさらに含んでいる。組立ステップでは、ノズル20、吸引室30及びディフューザ40が組み立てられる。具体的には、吸引室30に、ノズル20及びディフューザ40の上流部41が取り付けられる。そして、アタッチメント42及び下流部43が上流部41に、上流部41と下流部43とでアタッチメント42を挟み込む状態で取り付けられる。
 あるいは、既に組み立てられたエゼクタ10のアタッチメント42を交換して新たなエゼクタ10を製造する場合は、準備ステップにおいて、交換前に比べて、内径Dが小さく且つテーパ角度比α/βが大きいアタッチメント42を準備する。そのようなアタッチメント42が新たに作成されるか、又は、複数のアタッチメント42の中からそのようなアタッチメント42が選択される。そして、エゼクタ10のアタッチメント42を準備ステップで準備されたアタッチメント42に交換する。
 以上のように、エゼクタ10は、高圧蒸気(第1流体)を噴出するノズル20と、ノズル20が収容され、ノズル20から高圧蒸気が噴出することによって生じる負圧により低圧蒸気(第2流体)が吸引される吸引室30と、出口流路50を有し、吸引室30の高圧蒸気及び低圧蒸気を混合して吐出するディフューザ40とを備え、出口流路50は、下流側に向かって細くなる第1テーパ面54を有する縮小流路51と、縮小流路51の下流端に接続され、断面積が一定の平行流路52と、平行流路52の下流端に接続され、下流側に向かって太くなる第2テーパ面55を有する拡大流路53とを含んでおり、ディフューザ40は、出口流路50の寸法を変更するアタッチメント42(変更部)をさらに有し、アタッチメント42は、平行流路52の断面積が小さいほど第2テーパ面55のテーパ角度βに対する第1テーパ面54のテーパ角度αの比α/βが大きくなるように出口流路50の寸法を変更する。
 この構成によれば、アタッチメント42によって出口流路50の寸法が変更される。その際に、平行流路52の断面積、即ち、内径Dが変更されると、エゼクタ10の最高吐出圧力Pmaxが変更され得る。このとき、平行流路52の断面積が小さいほどテーパ角度比α/βが大きくなるように出口流路50の寸法が設定される。つまり、平行流路52の断面積が小さくなるのに対応すべくテーパ角度α,βの少なくとも一方を大きくする必要がある場合には、テーパ角度αをより大きく増大させ、テーパ角度βの増大を抑制する。これにより、エゼクタ10の最高吐出圧力Pmaxを変更することができると共に、テーパ角度α,βの増大に起因する流れの乱れを抑制し、エゼクタ10の性能の悪化を低減することができる。
 また、アタッチメント42は、平行流路52の断面積が小さいほど平行流路52の長さPが短くなるように出口流路50の寸法を変更する。
 この構成によれば、平行流路52の断面積だけでなく、長さPも変更されるので、エゼクタ1の性能の悪化をさらに低減しつつ、最高吐出圧力Pmaxを変更することができる。
 より具体的には、アタッチメント42は、平行流路52の内径Dに比例して平行流路52の長さPが変化するように出口流路50の寸法を変更する。
 この構成によれば、平行流路52の寸法の変更の前後で、内径Dと長さPとの関係が一定に保たれる。これにより、エゼクタ1の性能の悪化を低減しつつ、最高吐出圧力Pmaxを変更することができる。
 また、ディフューザ40の一部は、交換可能なアタッチメント42で構成され、アタッチメント42は、縮小流路51の少なくとも一部と、平行流路52と、拡大流路53の少なくとも一部とを含んでおり、出口流路50の寸法は、アタッチメント42を交換することによって変更される。
 つまり、ディフューザ40は、アタッチメント42を交換可能に構成されている。複数のアタッチメント42には、寸法が異なる出口流路50が形成されている。平行流路52の断面積、即ち、内径Dが異なるアタッチメント42を比較した場合に、内径Dが小さい方のアタッチメント42におけるテーパ角度比α/βは、内径Dが大きい方のアタッチメント42におけるテーパ角度比α/βよりも大きい。その結果、ディフューザ40の全体を交換しなくても、アタッチメント42を交換することによって、エゼクタ10の最高吐出圧力Pmaxを変更することができると共に、その際のエゼクタ10の性能の悪化を低減することができる。また、エゼクタ10の全体を交換する必要がないので、出口流路50の寸法を簡単に変更することができる。
 また、エゼクタ10の製造方法は、出口流路50の寸法を設定する設定ステップと、設定ステップで設定された出口流路50の寸法を有するディフューザ40を準備する準備ステップとを含み、設定ステップでは、平行流路52の断面積が小さいほど第2テーパ面55のテーパ角度βに対する第1テーパ面54のテーパ角度αの比α/βが大きくなるように出口流路50の寸法を設定する。
 この構成によれば、エゼクタ10の性能の悪化を低減しつつ、最高吐出圧力Pmaxの異なるエゼクタ10を製造することができる。
 また、準備ステップでは、交換可能なアタッチメント42を含むディフューザ40のアタッチメント42を交換することによって、設定ステップで設定された出口流路50を有するディフューザ40を準備する。
 つまり、アタッチメント42を交換することによってディフューザ40の出口流路50の寸法が変更される。そのため、ディフューザ40の全体を変更しなくても、縮小流路51及び平行流路52の寸法を変更することができる。
 また、ディフューザ40の出口流路の設定方法は、平行流路52の断面積を設定するステップと、平行流路52の断面積が小さいほど第2テーパ面55のテーパ角度βに対する第1テーパ面54のテーパ角度αの比α/βが大きくなるように出口流路50の寸法を設定するステップとを含んでいる。
 《その他の実施形態》
 以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 前記実施形態について、以下のような構成としてもよい。
 ディフューザ40は、3分割構造であるが、2つ又は4つ以上の分割構造であってもよい。
 また、アタッチメント42の固定方法は、上流部41と下流部42との挟み込みによるものに限られない。アタッチメント42を固定できる限りは任意の固定方法を採用することができる。
 さらに、出口流路50の寸法を変更する構成は、アタッチメント42によるものに限られない。例えば、ディフューザは、内径を変形可能な変形機構を有していてもよい。変形機構は、出口流路50を区画すると共に可撓性を有する管状の壁部と、前記壁部の外周に周方向に配列され、前記壁部を半径方向内側へ押圧する複数の押圧部材(例えば、ボルト等)とを有していてもよい。押圧部材によって壁部を半径方向内側に押圧することによって壁部が変形して、壁部の内径が小さくなる。これにより、平行流路52の内径D、即ち、断面積を変更することができる。さらに、壁部の周方向に配列された複数の押圧部材を1セットとして、壁部の軸方向の異なる位置に複数セットの押圧部材が設けられている。つまり、軸方向のどの位置の押圧部材で押圧するかによって、縮小流路51の長さQ、ひいては、第1テーパ面54のテーパ角度α、平行流路52の長さY、拡大流路53の長さ、ひいては、第2テーパ面55のテーパ角度βを変更することができる。このような構成以外でも、出口流路50の寸法を変更できる任意の構成を採用することができる。
 さらに、ディフューザ40は、アタッチメント42を含む分割構造であるが、これに限られるものではない。例えば、ディフューザ40は、一体的な構造体であってもよい。その場合、複数のディフューザ40のそれぞれは、異なる寸法の出口流路50を有しており、内径Dが小さいほどテーパ角度比α/βが大きくなっている。その中から適切なディフューザ40が選択され、エゼクタ10に組み込まれる。つまり、エゼクタ10の製造方法における準備ステップでは、設定ステップで設定された出口流路50の寸法(内径D及びテーパ角度α,β)を有するディフューザ40を複数のディフューザ40の中から選択するか、又は新たに作成する。
 また、前述の図3,4の例では、内径Dをd1からd2に減少させることによって、第1テーパ面54のテーパ角度α及び第2テーパ面55のテーパ角度βの両方が大きくなっているが、これに限られるものではない。内径Dの減少に伴ってテーパ角度αが増大する一方、テーパ角度βは一定のままか、減少してもよい。このような場合であっても、テーパ角度βの増大が抑制されているので、流れの悪化が低減される。
 ここに開示された技術は、エゼクタ及びその製造方法、並びにエゼクタに用いられるディフューザの出口流路の設定方法について有用である。
10    エゼクタ
20   ノズル
30   吸引室
40   ディフューザ
42   アタッチメント(変更部)
42A  第1アタッチメント(変更部)
42B  第2アタッチメント(変更部)
50   出口流路
51   縮小流路
52   平行流路
53   拡大流路
54   第1テーパ面
55   第2テーパ面
α    第1テーパ面のテーパ角度
β    第2テーパ面のテーパ角度
P    平行流路の長さ

 

Claims (7)

  1.  第1流体を噴出するノズルと、
     前記ノズルが収容され、前記ノズルから前記第1流体が噴出することによって生じる負圧により第2流体が吸引される吸引室と、
     出口流路を有し、前記吸引室の前記第1流体及び前記第2流体を混合して吐出するディフューザとを備え、
     前記出口流路は、下流側に向かって細くなる第1テーパ面を有する縮小流路と、前記縮小流路の下流端に接続され、断面積が一定の平行流路と、前記平行流路の下流端に接続され、下流側に向かって太くなる第2テーパ面を有する拡大流路とを含んでおり、
     前記ディフューザは、前記出口流路の寸法を変更する変更部をさらに有し、
     前記変更部は、前記平行流路の断面積が小さいほど前記第2テーパ面のテーパ角度に対する前記第1テーパ面のテーパ角度の比が大きくなるように前記出口流路の寸法を変更することを特徴とするエゼクタ。
  2.  請求項1に記載のエゼクタにおいて、
     前記変更部は、前記平行流路の断面積が小さいほど前記平行流路の長さが短くなるように前記出口流路の寸法を変更することを特徴とするエゼクタ。
  3.  請求項2に記載のエゼクタにおいて、
     前記変更部は、前記平行流路の内径に比例して前記平行流路の長さが変化するように前記出口流路の寸法を変更することを特徴とするエゼクタ。
  4.  請求項1乃至3の何れか1つに記載のエゼクタにおいて
     前記ディフューザの一部は、交換可能なアタッチメントで構成され、
     前記変更部は、前記アタッチメントであり、
     前記アタッチメントは、前記縮小流路の少なくとも一部と、前記平行流路と、前記拡大流路の少なくとも一部とを含んでおり、
     前記出口流路の寸法は、前記アタッチメントを交換することによって変更されることを特徴とするエゼクタ。
  5.  第1流体を噴出するノズルと、前記ノズルが収容され、前記ノズルから前記第1流体が噴出することによって生じる負圧により第2流体が吸引される吸引室と、下流側に向かって細くなる第1テーパ面を有する縮小流路、前記縮小流路の下流端に接続され、断面積が一定の平行流路、及び、前記平行流路の下流端に接続され、下流側に向かって太くなる第2テーパ面を有する拡大流路とを含む出口流路を有し、前記吸引室の前記第1流体及び前記第2流体を混合して吐出するディフューザとを備えたエゼクタの製造方法であって、
     前記出口流路の寸法を設定する設定ステップと、
     前記設定ステップで設定された前記出口流路の寸法を有する前記ディフューザを準備する準備ステップとを含み、
     前記設定ステップでは、前記平行流路の断面積が小さいほど前記第2テーパ面のテーパ角度に対する前記第1テーパ面のテーパ角度の比が大きくなるように前記出口流路の寸法を設定することを特徴とするエゼクタの製造方法。
  6.  請求項5に記載のエゼクタの製造方法において、
     前記準備ステップでは、交換可能なアタッチメントを含むディフューザの前記アタッチメントを交換することによって、前記設定ステップで設定された前記出口流路を有する前記ディフューザを準備することを特徴とするエゼクタの製造方法。
  7.  下流側に向かって細くなる第1テーパ面を有する縮小流路、前記縮小流路の下流端に接続され、断面積が一定の平行流路、及び、前記平行流路の下流端に接続され、下流側に向かって太くなる第2テーパ面を有する拡大流路とを含む出口流路を有し、エゼクタに用いられるディフューザの出口流路の設定方法であって、
     前記平行流路の断面積を設定するステップと、
     前記平行流路の断面積が小さいほど前記第2テーパ面のテーパ角度に対する前記第1テーパ面のテーパ角度の比が大きくなるように前記出口流路の寸法を設定するステップとを含むことを特徴とするディフューザの出口流路の設定方法。
PCT/JP2017/005469 2016-04-01 2017-02-15 エゼクタ、エゼクタの製造方法及びディフューザの出口流路の設定方法 WO2017169219A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780019732.7A CN108884839B (zh) 2016-04-01 2017-02-15 喷射器、喷射器的制造方法以及扩散器的出口流路的设定方法
EP17773767.3A EP3438466B1 (en) 2016-04-01 2017-02-15 Ejector, ejector production method, and method for setting outlet flow path of diffuser
JP2017527831A JP6352543B2 (ja) 2016-04-01 2017-02-15 エゼクタ、エゼクタの製造方法及びディフューザの出口流路の設定方法
US16/147,040 US20190032679A1 (en) 2016-04-01 2018-09-28 Ejector, ejector production method, and method for setting outlet flow path of diffuser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-074570 2016-04-01
JP2016074570 2016-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/147,040 Continuation US20190032679A1 (en) 2016-04-01 2018-09-28 Ejector, ejector production method, and method for setting outlet flow path of diffuser

Publications (1)

Publication Number Publication Date
WO2017169219A1 true WO2017169219A1 (ja) 2017-10-05

Family

ID=59962889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005469 WO2017169219A1 (ja) 2016-04-01 2017-02-15 エゼクタ、エゼクタの製造方法及びディフューザの出口流路の設定方法

Country Status (5)

Country Link
US (1) US20190032679A1 (ja)
EP (1) EP3438466B1 (ja)
JP (1) JP6352543B2 (ja)
CN (1) CN108884839B (ja)
WO (1) WO2017169219A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018214376A1 (de) * 2018-08-24 2020-02-27 Audi Ag Ejektor für ein Brennstoffzellensystem sowie Brennstoffzellensystem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779152U (ja) * 1980-10-29 1982-05-15
US6877960B1 (en) * 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448691A (en) * 1967-07-03 1969-06-10 David M Frazier Energy controller
FR2239142A5 (en) * 1973-07-27 1975-02-21 Utilisation Ration Gaz Hot gas flow generator - has burner delivering high-speed gas into coaxial venturi
US4123800A (en) * 1977-05-18 1978-10-31 Mazzei Angelo L Mixer-injector
US4595344A (en) * 1982-09-30 1986-06-17 Briley Patrick B Ejector and method of controlling same
FR2554874B1 (fr) * 1983-11-10 1988-04-15 Bertin & Cie Ejecteur-melangeur a effet de trompe a section variable et application
US4898517A (en) * 1988-10-21 1990-02-06 Eriksen Olof A Steam/air ejector for generating a vacuum
US5611673A (en) * 1994-07-19 1997-03-18 Shin-Ei Kabushiki Kaisha Vacuum jet pump for recovering a mixed fluid of gas and liquid condensates from steam-using apparatus
US6623154B1 (en) * 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector
KR100381194B1 (ko) * 2000-10-10 2003-04-26 엘지전자 주식회사 용량 가변형 이젝터
US20060140780A1 (en) * 2003-06-20 2006-06-29 John Stark Double cone for generation of a pressure difference
US20050061378A1 (en) * 2003-08-01 2005-03-24 Foret Todd L. Multi-stage eductor apparatus
SG157325A1 (en) * 2008-05-29 2009-12-29 Denso Corp Ejector and manufacturing method thereof
EP2646763B1 (en) * 2010-11-30 2016-08-10 Carrier Corporation Ejector
WO2012092685A1 (en) * 2011-01-04 2012-07-12 Carrier Corporation Ejector
CN202251138U (zh) * 2011-08-16 2012-05-30 河南理工大学 可变喉管入口角度的引射器
JP6452275B2 (ja) * 2013-08-08 2019-01-16 株式会社ササクラ サーモコンプレッサ
GB2524499B (en) * 2014-03-24 2020-02-12 Caltec Ltd Jet pump
KR102303676B1 (ko) * 2014-12-30 2021-09-23 삼성전자주식회사 이젝터 및 이를 갖는 냉동장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779152U (ja) * 1980-10-29 1982-05-15
US6877960B1 (en) * 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system

Also Published As

Publication number Publication date
EP3438466B1 (en) 2020-04-01
CN108884839A (zh) 2018-11-23
EP3438466A4 (en) 2019-03-27
EP3438466A1 (en) 2019-02-06
CN108884839B (zh) 2020-03-31
US20190032679A1 (en) 2019-01-31
JPWO2017169219A1 (ja) 2018-04-05
JP6352543B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
US6877960B1 (en) Lobed convergent/divergent supersonic nozzle ejector system
US20070041266A1 (en) Cavitation mixer or stabilizer
EP3163093B1 (en) High vacuum ejector
JP6352543B2 (ja) エゼクタ、エゼクタの製造方法及びディフューザの出口流路の設定方法
JP6352544B2 (ja) エゼクタ、エゼクタの製造方法及びディフューザの出口流路の設定方法
JP2001295800A (ja) エゼクタ式真空発生器
US9295952B2 (en) Venturi tube fluid mixer with at least two inflection points in the divergent section
JP2007247622A (ja) 遠心形ターボ機械
US11577261B2 (en) High velocity fluid nozzle
JP6144854B1 (ja) エゼクタ
CN113614386A (zh) 射流泵
EP3858472B1 (en) Ejector for a heat recovery or work recovery system and fluid mixing method
JP4505523B2 (ja) 遠心型圧縮機のアキシャルディフューザ
JP7490945B2 (ja) エジェクタ
JP6585487B2 (ja) 流路可変機構とそれを備えたエゼクタ
JP2018048578A (ja) エゼクタ及び取付構造
JP5630029B2 (ja) ノズル及び分散装置
JP7172331B2 (ja) エジェクタ
JP7155897B2 (ja) エジェクタ
JP2017155621A (ja) エジェクタ
WO2012166058A1 (en) The nozzle with an ejected fluid inlet
WO2018193795A1 (ja) エジェクタの吸入量の調整方法およびその方法に使用するエジェクタ
RU72736U1 (ru) Эжектор
RU2666683C2 (ru) Плоскощелевой эжектор
RU2354856C1 (ru) Эжектор

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017527831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773767

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773767

Country of ref document: EP

Effective date: 20181102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773767

Country of ref document: EP

Kind code of ref document: A1