JP2017155621A - エジェクタ - Google Patents

エジェクタ Download PDF

Info

Publication number
JP2017155621A
JP2017155621A JP2016037754A JP2016037754A JP2017155621A JP 2017155621 A JP2017155621 A JP 2017155621A JP 2016037754 A JP2016037754 A JP 2016037754A JP 2016037754 A JP2016037754 A JP 2016037754A JP 2017155621 A JP2017155621 A JP 2017155621A
Authority
JP
Japan
Prior art keywords
fluid
gas
housing
ejector
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016037754A
Other languages
English (en)
Inventor
徹太郎 中川
Tetsutaro Nakagawa
徹太郎 中川
哲 藤井
Satoru Fujii
哲 藤井
由紀則 漁長
Yukinori RYONAGA
由紀則 漁長
喜一朗 天野
Kiichiro AMANO
喜一朗 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2016037754A priority Critical patent/JP2017155621A/ja
Publication of JP2017155621A publication Critical patent/JP2017155621A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡便な構成で、流体の吸引効率を高めることのできるエジェクタを提供する。【解決手段】エジェクタ2は、第一流体の噴出口22aを有するノズル部22と、ノズル部22を同軸芯状に収容し、第二流体が吸引される第一吸引口23aを噴出口22aより第二流体の流通方向Xの上流側に設けたハウジング23と、を備え、ノズル部22の外面とハウジング23の内面との間隔が、流通方向Xに沿う噴出口22aを挟んだ領域において流通方向Xの下流側ほど狭くなり、ハウジング23の内面のうち噴出口22aより下流側には、拡径された段差部23bが形成されている。【選択図】図1

Description

本発明は、第一流体の噴出口を有するノズル部と、ノズル部を収容し、第二流体が吸引される吸引口を噴出口より上流側に有するハウジングとを備えたエジェクタに関する。
従来、ノズル部の絞り部(文献では喉部)により減圧膨張して第一流体を噴出口から高速で噴出させることで第一流体の周りに低圧の空間を生成し、吸引口から第二流体を吸引するエジェクタが知られている(例えば、特許文献1参照)。また、この低圧の空間となる噴出口より下流側の混合部で、第一流体と第二流体とを混合するものである。
特許文献1には、噴出口より下流側の空間である混合部の直径を一定に構成し、混合部の直径に対する長さの比や、ノズル部の噴出口の直径に対する混合部の直径の比を所定値に設定することで、高いエジェクタ効率(エジェクタ出口における昇圧効率)を維持すると記載されている。また、圧力損失を低減するために、混合部をテーパー状に形成する構成も開示されている(図12参照)。
特開2010−281567号公報
しかしながら、従来のエジェクタにあっては、ノズル部によって第一流体の噴出速度を高めて第二流体を吸引する構成であるため、第二流体の吸引量は、第一流体の噴出速度のみに依存することとなる。つまり、第二流体の吸引量をさらに高めるためには、加工が煩雑なノズル部の形状を改良する必要があった。一方、ポンプの駆動力を上げて第一流体の噴出速度を高めることも考えられるが、エネルギー効率が低下してしまう。
また、特許文献1のエジェクタは、ノズル部の噴出口の直径に対する混合部の直径の比を規定したり、混合部をテーパー状にしたりして、エジェクタ出口における昇圧効率を高めているが、第二流体の吸引量を高めることを目的としていない。このため、例えば、第二流体としての空気を第一流体としての液体に混合して浄化する空気浄化装置のように、空気の吸引効率を高める必要がある用途には適していない。
そこで、簡便な構成で、流体の吸引効率を高めることのできるエジェクタが望まれている。
エジェクタの特徴構成は、第一流体の噴出口を有するノズル部と、前記ノズル部を同軸芯状に収容し、第二流体が吸引される第一吸引口を前記噴出口より前記第二流体の流通方向の上流側に設けたハウジングと、を備え、前記ノズル部の外面と前記ハウジングの内面との間隔が、前記流通方向に沿う前記噴出口を挟んだ領域において前記流通方向の下流側ほど狭くなり、前記ハウジングの内面のうち前記噴出口より前記下流側には、拡径された段差部が形成されている点にある。
本構成によると、第二流体の流通方向に沿うノズル部の噴出口を挟んだ領域において、下流側ほどノズル部とハウジングとの間隔が狭くなっている。このため、第一流体の噴出エネルギー(速度エネルギー)によって、噴出口の周辺には第二流体の下流側に向かう負圧が発生する。このとき、第二流体の吸引口がノズル部の噴出口より上流側にあるので、ノズル部から噴出された第一流体の噴出速度に応じて第二流体が吸引される。
さらに、本構成では、ハウジングの内面の噴出口より下流側に拡径された段差部を形成しているので、噴出された第一流体は段差部から下流側の表面近傍に直ちに廻り込むことができず、段差部周辺に第一流体の無い死水域が存在することとなる。この拡径する死水域では、体積の増大により圧力低下が促進されて負圧が発生し、第二流体が急激に吸引される。
その結果、従来の段差部がない場合に比べて、第二流体を吸引する第一流体の流量を小さくすることが可能となり、所望の第二流体を吸引するために必要な第一流体の駆動電力を節約することができる。しかも、ハウジングに段差部を設けるだけなので、ノズル部を複雑形状にする必要がなく、加工が容易である。
また、第二流体が急激に吸引されるので、第一流体の表面が渦状となり、第一流体と第二流体との接触面積が増大し、多くの第二流体を第一流体に混合させることができる。このように、簡便な構成で、流体の吸引効率を高めることのできるエジェクタを提供できた。
他の特徴構成は、前記ハウジングの内面には、前記第一吸引口と前記段差部との間に前記下流側へ行くほど縮径するテーパー部が形成されている点にある。
本構成によると、第一吸引口と段差部との間に、段差部に近付くほど縮径するテーパー部を設けている。このため、吸引される第二流体がハウジングの内面から受ける抵抗を小さくすることができる。よって、第二流体が第一吸引口から段差部の方へと円滑に導かれるので、第一流体の駆動電力を節約することができる。しかも、第二流体の移動を阻害する抵抗が小さいので、第二流体の吸引量が増大する。
他の特徴構成は、前記ハウジングの内面には、前記テーパー部と前記段差部との間に平行部が形成され、前記噴出口が前記平行部よりも前記テーパー部の側に配置されている点にある。
本構成のようにテーパー部の側に噴出口を設ければ、第二流体は、平行部より上流側で吸引され始める。つまり、平行部より手前で第二流体の吸引速度が高まると共に、平行部では第一流体の拡がりを抑えて速度エネルギーが確保され、第二流体の吸引速度を維持することができる。しかも、第一流体の拡がり角度が規制されるので、死水域からの負圧による第二流体の吸引量がより増大する。
他の特徴構成は、前記噴出口は、正面視において、前記第一流体と接触する表面積を拡大させた表面積拡大部を有している点にある。
本構成によると、第一流体は、表面積が拡大された状態で噴出口から噴出される。その結果、第一流体と第二流体との接触面積が増大するので、第一流体と第二流体との混合確率を高めることができる。つまり、第一流体と第二流体とが速やかに混合されるので、新たな第二流体の吸引が促進される。
他の特徴構成は、前記ハウジングは、前記段差部より前記下流側で前記第一流体および前記第二流体が通過する第一流路と、前記第一流路の開口と隣接して前記第一流路の外周側に配置され、前記第二流体が吸引される第二吸引口を有する第二流路と、を備えた点にある。
本構成のように吸引口を2つ設けることで、第二流体の吸引量をさらに増大させることができる。しかも、第一流路の外側に第二流路を形成することで第二吸引口が形成されるので、新たにノズル部を設ける必要がなく、製造コストを低減することができる。
第一実施形態に係るエジェクタの概略図である。 第二実施形態に係るノズル部の概略図である。 第三実施形態に係るエジェクタの概略図である。 段差部の段差量を変化させた場合における気体吸引率の比較図である。 第一実施形態に係る気体吸引率を示す図である。 第一実施形態に係る気体吸引率を示す図である。 第一実施形態に係る気体吸引率を示す図である。 第二実施形態に係る気体吸引率を示す図である。 各実施形態における気体吸引率を比較した図である。 別実施形態に係るエジェクタの概略図である。
以下に、本発明に係るエジェクタの実施形態について、図面に基づいて説明する。本実施形態では、作動液体(例えば、水などの液体)をノズル部22から噴出させて、気体(例えば、空気)を吸引するエジェクタ2の一例について説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。
[第一実施形態]
本実施形態に係るエジェクタ2は、ポンプPで作動液体(第一流体の一例)をノズル部22から噴出させることで周囲に減圧空間を形成し、気体(第二流体の一例)を吸引するものである。このエジェクタ2は、例えば、空気浄化装置や脱臭装置などの用途に使用される。以下の実施形態において、第一流体を水(作動液体)とし、第二流体を空気(気体)として説明する。なお、第一流体を水以外の液体としても良いし、第二流体を空気以外の気体としても良い。また、第一流体を気体とし、第二流体を液体としても良いし、第一流体および第二流体を共に気体または液体としても良く、特に限定されない。
図1に示すように、エジェクタ2は、ポンプPの駆動力によって作動液体(第一流体、以下、「作動液体」と言う。)を噴出させる円筒状のノズル部22と、ノズル部22を同軸芯状に収容し、気体(第二流体、以下「気体」と言う。)が吸引される第一吸引口23aを噴出口22aより気体の流通方向Xの上流側に設けた円筒状のハウジング23と、を備えている。なお、ポンプPは、気体の投入口を設けた混気ポンプで構成しても良いし、ピストンなどのポンプP以外の駆動源を用いても良い。また、ノズル部22やハウジング23は円筒状に限定されず、角筒状に形成するなど、どのような形状であっても良い。
ノズル部22は、先端部が縮径され、作動液体が噴出される噴出口22aを有している。この噴出口22aは、正面視において、円形状に形成されている。また、噴出口22aから噴出される作動液体は、ポンプPで所定の噴出速度に制御されている。噴出される作動液体の周囲に負圧が発生し、第一吸引口23aから気体が吸引される。なお、噴出口22aは、正面視において、楕円形状や矩形状に形成するなど、どのような形状であっても良い。
ハウジング23は、ノズル部22を収容する収容部23Aと、収容部23Aから反応容器1に向かって延出する延出部23Bとを接合して構成されている。これら収容部23Aと延出部23Bとの境界、つまりハウジング23の内面のうちノズル部22の噴出口22aより下流側には、拡径された段差部23bが形成されている。なお、収容部23Aと延出部23Bとを一体で形成しても良い。
また、ノズル部22の外面とハウジング23の内面との間隔が、気体の流通方向Xに沿う噴出口22aを挟んだ領域において気体の流通方向Xの下流側ほど狭くなっている。特に、本実施形態では、ハウジング23の内面には、第一吸引口23aと段差部23bとの間に下流側へ行くほど縮径するテーパー部23cが形成されている。このテーパー部23cと段差部23bとの間に平行部23dが形成され、ノズル部22の噴出口22aは、平行部23dよりもテーパー部23cの側に配置されている。つまり、ノズル部22の噴出口22aがテーパー部23cの位置に配置され、ノズル部22が平行部23dに侵入しないように構成されている。
その結果、作動液体の噴出エネルギー(速度エネルギー)によって、噴出口22aの周辺には気体の下流側に向かう負圧が発生する。このとき、気体の吸引口23aがノズル部22の噴出口22aより上流側にあるので、ノズル部22から噴出された作動液体の噴出速度に応じて気体が吸引される。
上述したように、ノズル部22の噴出口22aがハウジング23と同軸芯上に配置されているので、ノズル部22の噴出口22aがハウジング23の中心に対して、対称となるように配置されている。つまり、噴出口22aの内径D1と平行部23dの内径D2との差の半分が、平行部23dで気体が通過する空間の通過径長H1となり、平行部23dの内径D2と延出部23Bの内径D3との差の半分が、段差部23bの段差量H2となっている。本実施形態では、ノズル部22の噴出口22aの内径D1に対する平行部23dの内径D2の比であるD2/D1が1.1以上10以下に設定され、平行部23dの内径D2に対する延出部23Bの内径D3の比であるD3/D2が1.1以上10以下に設定されている。
また、ノズル部22の噴出口22aから平行部23dまでの距離L0は、平行部23dの内径D2の10倍以下に設定され、平行部23dの長さL1が、平行部23dの内径D2の0.1倍以上10倍以下に設定されている。さらに、延出部23Bの内径D3に対する延出部23Bの長さL2の比であるL2/D3が、10以上200以下に設定されている。なお、このL2/D3が40以下の場合は、延出部23Bの先端を液中に挿入するのが好ましい。これは、L2/D3が小さい場合は、作動液体と延出部23Bの壁面との接触が不十分なまま排出され、後述する死水域25が形成され難くなるためである。
図1に示すように、ノズル部22の噴出口22aから噴出された作動液体は次第に拡がって、壁面に接触した状態で排出される。このとき、ハウジング23の内面に段差部23bを形成しているので、ノズル部22の噴出口22aから噴出された作動液体が段差部23bの表面近傍に直ちに廻り込むことができず、段差部23bの周辺に作動液体の無い死水域25が存在することとなる。なお、延出部23Bの先端を液体に浸す場合は、ノズル部22やハウジング23の形状寸法に応じた所望の死水域25が形成されるように、液体に浸す長さが設定されている。
この死水域25には、体積の増大により圧力低下が促進されて負圧が発生し、第一吸引口23aにある気体がハウジング23の内部に急激に吸引される。その結果、段差部23bが無い場合に比べて、作動液体の少ない噴出エネルギーで所望の吸引力を得られるので、ポンプPの駆動力を小さくすることができる。しかも、気体が急激に吸引されるので、作動液体の表面が渦状となり、気体が十分に撹拌されて微細な泡となる。その結果、作動液体と気体との接触面積が増大し、多くの気体を作動液体に混合させることができる。よって、例えば空気浄化装置にエジェクタ2を用いた場合、空気から異物を確実に除去することができる。
また、ハウジング23の内面にテーパー部23cを形成しているので、吸引される気体がハウジング23の内面から受ける抵抗を小さくすることができる。つまり、気体の移動を阻害する抵抗が小さいので、気体の吸引量が増大し、吸引効率を高めることができる。しかも、テーパー部23cの位置に噴出口22aを設けているので、気体は平行部23dより上流側で吸引され始める。つまり、平行部23dより手前で気体の吸引速度が高まると共に、平行部23dでは作動液体の拡がりを抑えて速度エネルギーが確保され、気体の吸引速度を維持することができる。しかも、作動液体の拡がり角度が規制されるので、死水域25からの負圧による気体の吸引量が増大し、吸引効率をより一層高めることができる。
図4を用いて、本実施形態におけるエジェクタ2の性能を評価する。図4には、エジェクタ2の段差部23bの段差量H2を変化させた場合の気体吸引率の違いが示される。ここで、気体吸引率とは、噴出された作動液体の流量(L/分)に対する吸引された気体の流量(L/分)の比率を示す。なお、本実施例では、エジェクタ2の先端を液体に浸さずに大気開放している。
本実施例におけるエジェクタ2は、ノズル部22の噴出口22aの内径D1を2mm、平行部23dの内径D2を6〜7.6mm、延出部23Bの内径D3を8mm〜14mm、延出部23Bの長さL2を750mmに設定した。また、ノズル部22の噴出口22aから平行部23dまでの距離L0を、約10mmに設定した。さらに、ノズル部22から噴出される駆動液体の流量を約4.2L/分に設定した。なお、図4では、ノズル部22の噴出口22aの内径D1に対する段差量H2の比(H2/D1)を横軸にしている。
図4に示されるように、延出部23Bの内径D3と平行部23dの内径D2をとの差(D3−D2)の半分である段差部23bの段差量H2(mm)がゼロの場合に比べて、段差部23bを設けた場合はガス吸引量が急激に増大する。これは、上述したように、段差部23bの周辺に存在する死水域25に負圧が発生したためであると考えられる。つまり、エジェクタ2を段差量がゼロのストレート管で構成する場合に比べ、段差部23bを設けることの優位性が検証された。一方、段差部23bを設けない場合でも、ある程度の気体吸引率が確保できた。これは、段差部23bの段差量H2以外の各パラメータ値(例えば、平行部23dで気体が通過する空間の通過径長H1や延出部23Bの長さL2)の最適化が図られたためであると考えられる。
[第二実施形態]
図2には、エジェクタ2の第二実施形態が示される。なお、図面の理解を容易にするため、同じ部材には同じ名称および符号を用いて説明する。
本実施形態では、気体の流通方向Xに沿う方向視(噴出口22aの正面視)において、ノズル部22の噴出口22aに、作動液体と接触する表面積を拡大させた表面積拡大部22bを形成している。この表面積拡大部22bは、断面が円形の噴出口22aを周方向に亘って、複数の切欠き(断面三角形状)を設けて形成されている。これによって、噴出口22aの断面は星形状を呈している。この切欠きは、ノズル部22の先端から所定の奥行きを持って形成されている。なお、表面積拡大部22bは、断面三角形状の切欠きで形成するのに代えて、断面円形状の切欠きでも良いし、噴出口22aを周方向の一部を切欠いたものでも良く、作動液体と接触する表面積を拡大させるものであればどのような形態であっても良い。
これによって、作動液体と気体との接触面積が増大するので、作動液体と気体との混合確率を高めることができる。その結果、作動液体と気体とが速やかに混合されるので、新たな気体の吸引を促進される。
[第三実施形態]
図3には、エジェクタ2の第三実施形態が示される。なお、図面の理解を容易にするため、同じ部材には同じ名称および符号を用いて説明する。
本実施形態では、ハウジング23の延出部23Bに、段差部23bより下流側で作動液体および気体が通過する第一流路30と、第一流路30の開口と隣接して第一流路30の外周側に配置され、気体が吸引される第二吸引口31を有する第二流路32と、を形成している。つまり、延出部23Bを、内筒部23B1と、内筒部23B1の先端部の外側に固定される外筒部23B2とで構成し、気体の吸引口23a,31を2段階に設定している。本実施形態では、第一実施形態における延出部23Bの長さL2が、第一流路30の第一流路長L3と、第一流路30と第二流路32との合流部から延出部23Bの先端までの第二流路長L4と、の合計に相当する。
図3では、内筒部23B1の先端を覆うように外筒部23B2を内筒部23B1に固定しているが、例えば、外筒部23B2が固定されたケースに内筒部23B1の先端を挿入する構成でも良い。この場合、内筒部23B1と外筒部23B2との隙間が第二吸引口31となる。
このように、吸引口23a,31を2段階に設定することで、第二流体の総吸引量をさらに増大させることができる。しかも、第一流路30の外側に第二流路32を形成することで、第二吸引口31が形成されるので、新たにノズルを設ける必要がなく製造コストを低減することができる。
[実施例]
図5〜図9を用いて、実施例を説明する。ただし、これらの実施例に限定されるものではない。なお、以下の実施例では、エジェクタ2の先端を液体に浸さずに大気開放している。
(実施例1)
図5〜図7には、第一実施形態におけるエジェクタ2において、気体吸引率を縦軸、所定のパラメータ値を横軸にしたものが示されている。ここで、気体吸引率とは、噴出された作動液体の流量(L/分)に対する吸引された気体の流量(L/分)の比率を示す。
図5に示すように、噴出口22aの内径D1に対する平行部23dで気体が通過する空間の通過径長H1の比(H1/D1)と、延出部23Bの内径D3に対する延出部23Bの長さL2の比(L2/D3)との積(H1/D1*L2/D3)が、100までであれば、気体吸引率が概ね正比例していることが理解できる。これは、段差部23bを有するエジェクタ2において、平行部23dで気体が通過する空間の通過径長H1を確保することで、死水域25と連なる所望の負圧空間が形成された結果であると推測される。つまり、H1/D1*L2/D3を大きくすれば、ポンプPの少ない駆動力で、多くの気体を吸引することができる。また、要求される気体吸引率に応じて、H1/D1*L2/D3を設定すれば良いことが理解される。
同様に、図6に示すように、噴出口22aの内径D1に対する段差部23bの段差量H2の比(H2/D1)と、延出部23Bの内径D3に対する延出部23Bの長さL2の比(L2/D3)との積(H2/D1*L2/D3)が、100までであれば、気体吸引率が概ね正比例していることが理解できる。これは、段差部23bの段差量H2を確保することで、所望の負圧空間(死水域25)が形成された結果であると推測される。つまり、H2/D1*L2/D3を大きくすれば、ポンプPの少ない駆動力で、多くの気体を吸引することができる。また、要求される気体吸引率に応じて、H2/D1*L2/D3を設定すれば良いことが理解される。
さらに、図7に示すように、噴出口22aの内径D1に対する平行部23dで気体が通過する空間の通過径長H1の比(H1/D1)と、噴出口22aの内径D1に対する段差部23bの段差量H2の比(H2/D1)と、延出部23Bの内径D3に対する延出部23Bの長さL2の比(L2/D3)との積(H1/D1*H2/D1*L2/D3)が、100までであれば、気体吸引率がより良い相関を示すことが理解できる。これは、平行部23dで気体が通過する空間の通過径長H1および段差部23bの段差量H2を確保することで、所望の負圧空間(死水域25および死水域25に連なる空間)が形成された結果であると推測される。つまり、H1/D1*H2/D1*L2/D3を大きくすれば、ポンプPの少ない駆動力で、多くの気体を吸引することができる。また、要求される気体吸引率に応じて、H1/D1*H2/D1*L2/D3を設定すればより良いことが理解される。
(実施例2)
図8には、第二実施形態におけるエジェクタ2において、気体吸引率を縦軸、所定のパラメータ値を横軸にしたものが示されている。
第一実施形態における図7と第二実施形態における図8とを比較しても、気体吸引率がほぼ同等であることが理解できる。つまり、表面積拡大部22bを設けたエジェクタ2であっても、所望の性能を維持しつつ作動液体と気体との混合確率を高めることができるものである。
また、図8に示すように、噴出口22aの内径D1に対する平行部23dで気体が通過する空間の通過径長H1の比(H1/D1)と、噴出口22aの内径D1に対する段差部23bの段差量H2の比(H2/D1)と、延出部23Bの内径D3に対する延出部23Bの長さL2の比(L2/D3)との積(H1/D1*H2/D1*L2/D3)が、130までであれば、気体吸引率がより概ね正比例していることが理解できる。つまり、H1/D1*H2/D1*L2/D3を大きくすれば、ポンプPの少ない駆動力で、多くの気体を吸引することができる。また、要求される気体吸引率に応じて、H1/D1*H2/D1*L2/D3を設定すれば良いことが理解される。
(実施例3)
図9には、第一実施形態〜第三実施形態におけるエジェクタ2において、気体吸引率を比較したものが示されている。
第一実施形態および第三実施形態のように、ノズル部22の噴出口22aが円形状の場合、各種パラメータ(噴出口22aの内径D1、平行部23dで気体が通過する空間の通過径長H1、段差部23bの段差量H2、延出部23Bの長さL2又は(L3+L4))を同一にした場合、第三実施形態のように、気体の吸引口23a,31を2段階に設定した方が、気体吸引率が高まることが理解できる。
特に、第一実施形態の場合、噴出口22aの内径D1、平行部23dで気体が通過する空間の通過径長H1、および段差部23bの段差量H2を全て同一に設定し、延出部23Bの長さL2を1000mmに設定したとき、気体吸引率が9.05と非常に大きなものとなった。また、第三実施形態の場合、噴出口22aの内径D1、平行部23dで気体が通過する空間の通過径長H1、および段差部23bの段差量H2を全て同一に設定し、延出部23Bの第一流路長L3を650mm、第二流路長L4を850mmに設定したとき、気体吸引率が13.90と非常に大きなものとなった。
同様に、第二実施形態のように、ノズル部22の噴出口22aに表面積拡大部22bを有する場合でも、各種パラメータ(噴出口22aの内径D1、平行部23dで気体が通過する空間の通過径長H1、段差部23bの段差量H2、延出部23Bの長さL2又は(L3+L4))を同一にした場合、第三実施形態のように、気体の吸引口23a,31を2段階に設定した方が、気体吸引率が高まることが理解できる。
以下、別実施形態について、上述した実施形態と異なる構成のみ説明する。なお、図面の理解を容易にするため、同じ部材には同じ名称および符号を用いて説明する。
[別実施形態]
第三実施形態のエジェクタ2は、気体の吸引口23a,31を2段階に設定した。これに代えて、図10に示すように、気体の吸引口23a,31,33を3段階に設定しても良い。これによって、気体の吸引効率をさらに高めることができる。なお、気体の吸引口を4段階以上設定しても良い。
[その他の実施形態]
(1)上述した実施形態ではハウジング23の内面にテーパー部23cを形成したが、テーパー部23cを省略しても良い。このとき、ノズル部22の外面とハウジング23の内面との間隔が、気体の流通方向Xに沿う噴出口22aを挟んだ領域において気体の流通方向Xの下流側ほど狭くなるように、噴出口22a付近に段差を設けるなどして、下流側を縮径させるのが好ましい。
(2)また、平行部23dを省略して、すべてテーパー部23cで構成しても良い。この場合でも、段差部23bで死水域25が形成されることによる負圧を受けて、気体の吸引効果が促進される。
本発明は、作動流体の噴出力によって流体を吸引するエジェクタを用いた様々な装置に利用可能である。
2 エジェクタ
22 ノズル部
22a 噴出口
22b 表面積拡大部
23 ハウジング
23a 第一吸引口
23b 段差部
23c テーパー部
23d 平行部
30 第一流路
31 第二吸引口
32 第二流路

Claims (5)

  1. 第一流体の噴出口を有するノズル部と、
    前記ノズル部を同軸芯状に収容し、第二流体が吸引される第一吸引口を前記噴出口より前記第二流体の流通方向の上流側に設けたハウジングと、を備え、
    前記ノズル部の外面と前記ハウジングの内面との間隔が、前記流通方向に沿う前記噴出口を挟んだ領域において前記流通方向の下流側ほど狭くなり、
    前記ハウジングの内面のうち前記噴出口より前記下流側には、拡径された段差部が形成されているエジェクタ。
  2. 前記ハウジングの内面には、前記第一吸引口と前記段差部との間に前記下流側へ行くほど縮径するテーパー部が形成されている請求項1に記載のエジェクタ。
  3. 前記ハウジングの内面には、前記テーパー部と前記段差部との間に平行部が形成され、前記噴出口が前記平行部よりも前記テーパー部の側に配置されている請求項2に記載のエジェクタ。
  4. 前記噴出口は、正面視において、前記第一流体と接触する表面積を拡大させた表面積拡大部を有している請求項1から3のいずれか1項に記載のエジェクタ。
  5. 前記ハウジングは、
    前記段差部より前記下流側で前記第一流体および前記第二流体が通過する第一流路と、
    前記第一流路の開口と隣接して前記第一流路の外周側に配置され、前記第二流体が吸引される第二吸引口を有する第二流路と、を備えた請求項1から4のいずれか1項に記載のエジェクタ。
JP2016037754A 2016-02-29 2016-02-29 エジェクタ Pending JP2017155621A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037754A JP2017155621A (ja) 2016-02-29 2016-02-29 エジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037754A JP2017155621A (ja) 2016-02-29 2016-02-29 エジェクタ

Publications (1)

Publication Number Publication Date
JP2017155621A true JP2017155621A (ja) 2017-09-07

Family

ID=59809428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037754A Pending JP2017155621A (ja) 2016-02-29 2016-02-29 エジェクタ

Country Status (1)

Country Link
JP (1) JP2017155621A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174879B2 (en) 2018-09-10 2021-11-16 Japan Aerospace Exploration Agency Industrial ejector having improved suction performance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174879B2 (en) 2018-09-10 2021-11-16 Japan Aerospace Exploration Agency Industrial ejector having improved suction performance

Similar Documents

Publication Publication Date Title
JP6169749B1 (ja) 微細気泡生成装置
CN106660842B (zh) 微气泡喷嘴
EP2529843B1 (en) Reverse-flow nozzle for generating cavitating or pulsed jets
US9447796B2 (en) Annular jet pump
CN109890493B (zh) 微细气泡产生喷嘴
JP6842249B2 (ja) 微細気泡発生ノズル
US8622715B1 (en) Twin turbine asymmetrical nozzle and jet pump incorporating such nozzle
CN105909567A (zh) 一种改善射流式离心泵空化性能的射流器
JP5573879B2 (ja) 微細気泡発生装置
US11274680B2 (en) Ejector device
JP2015034499A (ja) サーモコンプレッサ
JP2017155621A (ja) エジェクタ
KR20170096674A (ko) 미세기포 발생장치
JP6151555B2 (ja) 流体吸引混合装置
KR102649754B1 (ko) 제트 펌프
JPH08507345A (ja) エジェクターポンプ
JP2010115586A (ja) 微細気泡発生装置
JP6144854B1 (ja) エゼクタ
JP6755035B2 (ja) 気泡生成装置及び気泡生成方法
JPS63319030A (ja) エジエクタ
JP2016133372A (ja) ジェットポンプ
JP2009281362A (ja) マイクロポンプ
JP2012120988A (ja) 微小気泡発生装置
JP2019141828A (ja) 微細気泡発生ノズル
JP7155897B2 (ja) エジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519