WO2017169046A1 - 同期リニアモータ - Google Patents

同期リニアモータ Download PDF

Info

Publication number
WO2017169046A1
WO2017169046A1 PCT/JP2017/002697 JP2017002697W WO2017169046A1 WO 2017169046 A1 WO2017169046 A1 WO 2017169046A1 JP 2017002697 W JP2017002697 W JP 2017002697W WO 2017169046 A1 WO2017169046 A1 WO 2017169046A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving direction
mover
linear motor
permanent magnets
synchronous linear
Prior art date
Application number
PCT/JP2017/002697
Other languages
English (en)
French (fr)
Inventor
研太 元吉
ザイニ アリフ
一将 伊藤
敏則 田中
信一 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017001733.5T priority Critical patent/DE112017001733B4/de
Priority to KR1020187027416A priority patent/KR102177893B1/ko
Priority to US16/078,977 priority patent/US10778077B2/en
Priority to JP2017533360A priority patent/JP6388080B2/ja
Priority to CN201780019259.2A priority patent/CN108886317B/zh
Priority to TW106104440A priority patent/TWI609556B/zh
Publication of WO2017169046A1 publication Critical patent/WO2017169046A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • H02K41/033Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type with armature and magnets on one member, the other member being a flux distributor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a synchronous linear motor including a stator and a mover facing the stator.
  • linear motors are used in machine tools and semiconductor manufacturing apparatuses.
  • the linear motor is used in direct drive for driving the apparatus without using a transmission. Therefore, compared to a drive system that converts a rotation mechanism that combines a rotary servo motor and a ball screw into a linear motion, high response can be realized without a decrease in rigidity due to the backlash of the ball screw. For this reason, high speed, high acceleration, and high precision positioning by a linear motor are possible.
  • a conventional linear motor includes a stator and a movable element that faces the stator with a certain gap and moves relative to the stator.
  • the mover is configured by winding a coil around each tooth of a plurality of divided cores made of a magnetic material.
  • the stator has an iron core made of a magnetic material and a permanent magnet that is magnetized in the gap direction.
  • the permanent magnet is arranged at a constant distance along the moving direction of the mover. Moreover, the magnetization directions of adjacent permanent magnets are different from each other.
  • the conveyance device having the linear motor described above is likely to increase in cost because the number of permanent magnets increases as the moving distance of the mover increases.
  • the permanent magnets conventionally arranged on the stator are arranged on the teeth of the split core of the mover.
  • a linear motor configured by a mover configured by winding a coil around a split core and a stator having an iron core having salient poles (see, for example, Patent Documents 1 and 2).
  • auxiliary split cores in which permanent magnets are arranged and coils are not wound are arranged on both ends in the moving direction of the mover. Furthermore, the shape of the permanent magnet arranged in the auxiliary divided core is different from the shape of the permanent magnet arranged in the divided core around which the coil is wound. Further, the length of the gap between the auxiliary split core and the stator is different from the length of the gap between the split core around which the coil is wound and the stator. With these configurations, the cogging thrust generated between the permanent magnet and the core of the mover is reduced.
  • the auxiliary split cores arranged on both ends in the moving direction of the mover increase the size of the mover that represents the volume of the mover, and the stroke that is the movable range of the mover in the moving direction is reduced. was there.
  • the mass of the mover is increased by the amount of the auxiliary split core, and the thrust density, which is a value obtained by dividing the thrust of the linear motor by the mass of the mover, is reduced.
  • the present invention has been made to solve the above-described problems, and suppresses a decrease in stroke due to an increase in the size of the mover and a decrease in thrust density due to an increase in the mass of the mover.
  • An object is to obtain a synchronous linear motor that reduces cogging thrust.
  • the synchronous linear motor according to the present invention is A stator having a base and a plurality of salient poles protruding from the base and made of a magnetic material; And a mover arranged to face a plurality of salient poles through a gap, The plurality of salient poles are spaced apart from each other along the moving direction of the mover,
  • the mover has a core made of a magnetic material, a plurality of coils, and a plurality of permanent magnets arranged along the moving direction.
  • the core includes a core back and a plurality of teeth protruding from the core back toward the salient pole and arranged along the moving direction,
  • the plurality of coils are wound at least on the teeth on both ends in the moving direction,
  • the plurality of permanent magnets are arranged along the protruding direction of the teeth at the center of the teeth,
  • the polarity of the magnetic pole of the permanent magnet is the same as the polarity of the opposing magnetic pole in the adjacent permanent magnet,
  • the number of different shapes in the plurality of permanent magnets or the number of different magnetic properties in the plurality of permanent magnets has two or more.
  • the auxiliary split cores are not arranged at both ends in the moving direction of the mover, so that the stroke density decreases due to the increase in the mover's physique and the thrust density due to the increase in the mass of the mover. Reduction can be suppressed. Further, since the number of different shapes in the plurality of permanent magnets or the number of different magnetic characteristics in the plurality of permanent magnets is two or more, the phase of the cogging thrust generated in the core can be changed, and the mover The generated cogging thrust can be reduced.
  • FIG. 1 It is a perspective view which shows the synchronous linear motor in Embodiment 1 of this invention. It is sectional drawing perpendicular
  • FIG. FIG. 1 is a perspective view showing a synchronous linear motor according to Embodiment 1 for carrying out the present invention.
  • the synchronous linear motor 101 includes a mover 2 and a stator 3.
  • the movable element 2 of the synchronous linear motor 101 is supported by a slider or the like (not shown). For this reason, the mover 2 is movable relative to the stator 3 along the moving direction A.
  • the stacking direction B is a direction perpendicular to the moving direction A of the mover 2 and the protruding direction of the teeth 7.
  • the mover 2 includes six divided cores 4 made of a magnetic material formed by laminating electromagnetic steel plates along the lamination direction B and configured as a laminated iron core, and six permanent cores respectively disposed on the six divided cores 4. It has a magnet 5 and six coils 6 wound around six divided cores 4 respectively.
  • the six permanent magnets 5 are arranged along the moving direction A.
  • the six divided cores 4 are arranged along the moving direction A to form a core 14 made of a magnetic material. That is, the mover 2 has a core 14 made of a magnetic material, a plurality of coils 6, and a plurality of permanent magnets 5 arranged along the moving direction A.
  • the core 14 is composed of a plurality of divided cores 4 arranged along the moving direction A.
  • FIG. 2 is a cross-sectional view perpendicular to the laminating direction of the electromagnetic steel plates in the synchronous linear motor in the present embodiment. That is, FIG. 2 is a longitudinal sectional view along the moving direction A perpendicular to the stacking direction B of FIG. 1, and so on.
  • a synchronous linear motor 101 is opposed to a plurality of salient poles 11 via a stator 10 having a base 10 and a plurality of salient poles 11 protruding from the base 10 and made of a magnetic material, and gaps g that are gaps.
  • the mover 2 is arranged.
  • the gap g represents the shortest distance between the mover 2 and the stator 3 and is constant along the moving direction A.
  • the synchronous linear motor 101 is a wound magnet movable element type synchronous linear motor in which a coil 6 as a winding and a permanent magnet 5 are arranged on the movable element 2.
  • the plurality of salient poles 11 are arranged at predetermined intervals from each other along the moving direction A of the mover 2.
  • each of the six divided cores 4 includes a core back 8 and teeth 7 that protrude from the core back 8 toward the salient poles 11 of the stator 3. That is, the core 14 includes a core back 8 and a plurality of teeth 7 that protrude from the core back 8 toward the salient pole 11 and are arranged along the moving direction A.
  • the core 14 is divided at the core back 8 between the adjacent teeth 7.
  • symbols (1) to (6) are assigned to the divided cores 4 in order from the left side in the moving direction A for convenience.
  • the split core 4 is further divided into two at the center of the teeth 7 and the core back 8, and has two half-split cores 4-1.
  • the six divided cores 4 are composed of twelve half-divided cores 4-1.
  • the half-divided core 4-1 is composed of a half core back 8 and a half tooth 7 which are divided into left and right at the center of the width in the moving direction A.
  • the core backs 8 are in contact with the core backs 8 of the adjacent split cores 4 on a plane perpendicular to the moving direction A, and are fixed to each other by welding or the like.
  • the six teeth 7 are each intensively wound one by one through an insulating member such as an insulator (not shown) to form six coils. That is, the plurality of coils 6 are wound at least around the teeth 7 on both ends in the moving direction A.
  • the core back 8 in one half-divided core 4-1 of the divided core 4 and the core back 8 in the other half-divided core 4-1 of the adjacent divided core 4 are connected. May be integrated. That is, the core 14 is divided at the teeth 7.
  • one half-divided core 4-1 of the divided core 4 and the other half-divided core 4-1 of the adjacent divided core 4 are units of a new divided core.
  • the half-divided cores 4-1 of the adjacent divided cores 4 can be connected to each other, so that the positioning accuracy in the direction perpendicular to the moving direction A and the stacking direction B of the teeth 7 of the adjacent half-divided cores 4-1 is improved.
  • the dimensional accuracy of the gap g can be improved and the thrust of the synchronous linear motor 101 can be suppressed from varying.
  • the core back 8 in one half-divided core 4-1 of the divided core 4 and the core back 8 in the other half-divided core 4-1 of the same divided core 4 are composed of permanent magnets 5.
  • the leakage magnetic flux may be integrated so as not to increase.
  • the teeth 7 in one half-divided core 4-1 of the divided core 4 and the teeth 7 in the other half-divided core 4-1 of the same divided core 4 cause leakage of the permanent magnet 5.
  • the tip portion on the side opposite to the core back 8 side may be connected and integrated so that the magnetic flux does not increase.
  • the half-divided cores 4-1 of the same divided core 4 can be connected to each other, positioning accuracy in the direction perpendicular to the moving direction A and the stacking direction B of the teeth 7 of the half-divided core 4-1 is improved.
  • the dimensional accuracy of g can be improved and the thrust of the synchronous linear motor 101 can be suppressed from varying.
  • the force in the moving direction A applied from the half-divided core 4-1 to the permanent magnet 5 is dispersed and reduced in the portion where the half-divided cores 4-1 are connected.
  • the six permanent magnets 5 are arranged in the center of the tooth 7 along the protruding direction of the tooth 7.
  • the magnetization direction 9 of the permanent magnet 5 arranged on the split core 4 is along the moving direction A. And it is magnetized so that the polarity of the opposing magnetic poles of the permanent magnet 5 arrange
  • the magnetic poles of the permanent magnet 5 are both end faces in the magnetization direction 9 of the permanent magnet 5, and the magnetic poles on one end face in the direction indicated by the arrow of the magnetization direction 9 have the polarity of the N pole,
  • the magnetic pole on the other end surface has the polarity of the S pole.
  • the thickness of the permanent magnet 5 disposed on the split core 4 located on both ends in the moving direction A is hm1
  • the thickness of the permanent magnet 5 disposed on the second split core 4 from both ends in the moving direction A is hm2.
  • the thickness of the permanent magnet 5 arranged on the third divided core 4 from both ends in the moving direction A is hm3, hm1 ⁇ hm2.
  • hm1 hm3. That is, the number of different shapes in the plurality of permanent magnets 5 is two.
  • the difference between hm1 and hm2 is shown more emphasized than in FIG. 1 in order to visually clarify the difference between hm1 and hm2.
  • the two permanent magnets 5 having a thickness of hm1 are the split cores 4 at positions symmetrical with respect to the center of the width in the moving direction A of the mover 2 (1) and the teeth 7 of (6).
  • the two permanent magnets 5 having a thickness of hm2 are the split cores 4 at positions symmetrical with respect to the center of the width in the moving direction A of the mover 2 (2) and the teeth 7 of (5).
  • the two permanent magnets 5 having a thickness of hm3 are the split cores 4 at positions symmetrical with respect to the center of the width in the moving direction A of the mover 2 (3) and the teeth 7 of (4).
  • a plurality of permanent magnets 5 having the same shape are arranged on the teeth 7 of the split core 4 at positions symmetrical with respect to the center of the width in the moving direction A of the mover 2.
  • the size of the mover 2 of the synchronous linear motor 101 representing the volume of the mover 2 can be reduced without providing auxiliary iron cores around which the coil for reducing the cogging thrust is not wound on both ends of the mover 2.
  • the decrease in the stroke of the mover 2 can be suppressed.
  • the thrust density which is a value obtained by dividing the thrust of the linear motor by the mass of the mover, is not reduced, and the acceleration / deceleration is not reduced. .
  • FIG. 6 is a cross-sectional view perpendicular to the laminating direction of the electromagnetic steel plates of the mover of the synchronous linear motor of the first comparative example with respect to the synchronous linear motor in the present embodiment.
  • the same reference numerals are assigned to the same components as those of the synchronous linear motor 101 according to the present embodiment.
  • the first comparative example 201 of the synchronous linear motor is different from the synchronous linear motor 101 according to the present embodiment in the following points.
  • FIG. 7 is a diagram of a cogging thrust waveform generated in the synchronous linear motor of the second comparative example with respect to the synchronous linear motor in the present embodiment.
  • the horizontal axis in FIG. 7 represents the moving distance of the mover 2 along the moving direction A in electrical angle.
  • the vertical axis in FIG. 7 represents the cogging thrust [N].
  • the second comparative example 202 of the synchronous linear motor is different from the first comparative example 201 of the synchronous linear motor in that there are no cut ends at both ends in the moving direction A of the movable element 2 and the stator 3, and the movable element 2 and the stator This assumes a synchronous linear motor in which 3 continues indefinitely.
  • FIG. 7 shows the result of electromagnetic field analysis of the cogging thrust of the second comparative example 202 of the synchronous linear motor.
  • FIG. 8 is a diagram of a cogging thrust waveform generated in the first comparative example for the synchronous linear motor in the present embodiment.
  • the horizontal axis of FIG. 8 represents the moving distance of the mover 2 along the moving direction A in electrical angle.
  • the vertical axis in FIG. 8 represents the cogging thrust [N].
  • the first comparative example 201 of the synchronous linear motor all the permanent magnets 5 arranged in the split core 4 have the same shape and magnetic characteristics, and the width of the mover 2 in the moving direction A is finite, that is, the movable linear motor is movable. There are both ends in the moving direction A of the child 2.
  • FIG. 8 shows the result of electromagnetic field analysis of the cogging thrust of the first comparative example 201 of the synchronous linear motor.
  • FIG. 9 is a comparison diagram of cogging thrust in the first comparative example and the second comparative example with respect to the synchronous linear motor in the present embodiment.
  • the right side represents the case of the first comparative example 201 in which the movable element 2 has both ends.
  • the vertical axis of FIG. 9 shows the value of pp of the cogging thrust of the second comparative example 202 in which the difference (pp: Peak-to-Peak) from the maximum value to the minimum value of the amplitude of the cogging thrust is not in the mover 2. Represents a value [p.u.] normalized with 1 as the value.
  • pp Peak-to-Peak
  • the value of pp of the cogging thrust waveform of the second comparative example 202 in which the mover 2 has no end corresponds to the value of pp of the cogging thrust waveform of FIG.
  • the value pp of the cogging thrust waveform in Example 201 corresponds to the value pp of the cogging thrust waveform in FIG.
  • FIG. 10 is a phaser diagram of the primary cogging thrust vector generated in each divided core of the second comparative example for the synchronous linear motor in the present embodiment.
  • the horizontal axis in FIG. 10 represents the cos component of the primary cogging thrust vector
  • the vertical axis in FIG. 10 represents the sin component of the primary cogging thrust vector.
  • FIG. 10 is a phasor diagram of the primary cogging thrust vector generated in each divided core of the mover 2 in the second comparative example 202 having no end where the mover 2 continues infinitely.
  • (1) to (6) in FIG. 10 indicate first-order cogging thrust vectors generated in the split cores 4 corresponding to (1) to (6) in order from the left side in the moving direction A shown in FIG. Represents.
  • the primary cogging thrust vector generated in each divided core 4 in the second comparative example 202 is distributed in each quadrant at equal intervals of 60 °. For this reason, in the synchronous linear motor without an end like the 2nd comparative example 202, the primary cogging thrust vector which generate
  • FIG. 11 is a phaser diagram of the primary cogging thrust vector generated in each divided core of the first comparative example for the synchronous linear motor in the present embodiment.
  • the horizontal axis in FIG. 11 represents the cos component of the primary cogging thrust vector, and the vertical axis in FIG. 11 represents the sin component of the primary cogging thrust vector.
  • FIG. 11 it can be seen that, unlike FIG. 10, the primary cogging thrust vectors are not equally spaced and the primary cogging thrust vectors are not canceled out. From FIG. 10 and FIG.
  • the present inventors have analyzed the factors that cause the primary cogging thrust vectors not to be equally spaced, and as a result, the magnetic flux density generated at the gap surface between each divided core 4 and the stator 3 facing each other is as follows. I found that the difference is a factor.
  • FIG. 12 is a comparison diagram of magnetic flux density generated on the gap surface of each divided core in the first comparative example and the second comparative example for the synchronous linear motor in the present embodiment.
  • the horizontal axis of FIG. 12 represents the divided cores 4 corresponding to (1) to (6) in order from the left side of the moving direction A shown in FIG.
  • the vertical axis in FIG. 12 indicates that the magnetic flux density generated on the gap surface of each divided core 4 is 1 as the value of the magnetic flux density generated on the gap surface of each divided core 4 of the second comparative example 202 that has no end on the mover 2.
  • a second comparative example 202 having no end on the mover 2 and a first comparative example 201 having both ends on the mover 2 are shown.
  • the present inventors manipulate the phase of the primary cogging thrust vector by changing the magnetic flux density generated in the gap surface between each divided core 4 and the stator 3 facing the primary core. It was found that thrust can be reduced.
  • FIG. 13 is a phasor diagram of the primary cogging thrust vector generated in each divided core of the synchronous linear motor in the present embodiment.
  • the horizontal axis in FIG. 13 represents the cos component of the primary cogging thrust vector, and the vertical axis in FIG. 13 represents the sin component of the primary cogging thrust vector.
  • the present inventor 2 In order to change the phase of the primary cogging thrust vector generated in each divided core 4 by changing the value of the magnetic flux density generated in the gap surface between each divided core 4 and the stator 3 facing each other, the present inventor 2, the thickness hm1 of the permanent magnet 5 disposed on the split core 4 at both ends in the moving direction A and the second split core 4 from both ends in the moving direction A are disposed, as shown in FIG.
  • the shape of the permanent magnet 5 and the thickness hm2 was changed so that hm1 ⁇ hm2, and the cogging thrust was obtained by electromagnetic field analysis.
  • the phasor diagram of the primary cogging thrust changed to FIG. 13 with respect to FIG. 11, which is the phasor diagram of the primary cogging thrust of the first comparative example 201.
  • the primary cogging thrust vectors generated from (1) to (6), which are the divided cores 4 are arranged so as to suppress each other.
  • FIG. 14 is a comparison diagram of the primary cogging thrust in the synchronous linear motor and the first comparative example in the present embodiment.
  • the horizontal axis of FIG. 14 represents the first comparative example 201 having both ends of the mover 2 and the synchronous linear motor 101 according to the present embodiment.
  • the vertical axis in FIG. 14 represents the value [pu] that the amplitude of the primary cogging thrust is normalized with the value of the amplitude of the primary cogging thrust of the first comparative example 201 being 1.
  • the synchronous linear motor 101 according to the present embodiment corresponds to the case of hm1 ⁇ hm2.
  • the primary cogging thrust is reduced to 40% or less with respect to the primary cogging thrust of the first comparative example 201.
  • FIG. 15 is a cross-sectional view perpendicular to the stacking direction of the electromagnetic steel plates of the mover in the first modification of the synchronous linear motor in the present embodiment.
  • the first modification 102 of the synchronous linear motor is different from the synchronous linear motor 101 according to the present embodiment in the following points.
  • the thickness hm1 of the permanent magnet 5 arranged on the split core 4 located on both ends in the moving direction A is changed to the second split core 4 from both ends in the moving direction A. It is larger than the thickness hm2 of the arranged permanent magnet 5, that is, hm1> hm2.
  • the magnetic flux density generated on the gap surface of the split core 4 can also be a combination of hm1 ⁇ hm3, hm1> hm3, hm2 ⁇ hm3, hm2> hm3, or hm1 ⁇ hm3 and hm2> hm3.
  • the value of can be changed. That is, if the number of different shapes in the plurality of permanent magnets 5 is two or more, for example, as shown in FIG. 13, primary cogging generated from (1) to (6) of each divided core 4 The phase of the primary cogging thrust vector can be changed to an arrangement in which the thrust vector is suppressed. Therefore, as shown in FIG. 14, it is possible to reduce the primary cogging thrust.
  • FIG. 16 is a cross-sectional view perpendicular to the stacking direction of the electromagnetic steel plates of the mover in the second modification of the synchronous linear motor in the present embodiment.
  • the second modification 102-2 of the synchronous linear motor is different from the synchronous linear motor 101 according to the present embodiment in the following points.
  • the thickness hm1 of the permanent magnet 5 arranged on the split core 4 located on both ends in the moving direction A and the second split core from both ends in the moving direction A 4 and the thickness hm3 of the permanent magnet 5 arranged on the third divided core 4 from both ends in the moving direction A are different from each other. That is, hm1 ⁇ hm2 ⁇ hm3.
  • FIG. 17 is a comparison diagram of primary cogging thrusts in the first comparative example for the synchronous linear motor in the present embodiment, and in the first and second modified examples of the present invention.
  • the horizontal axis in FIG. 17 represents the first comparative example 201 having both ends of the mover 2, the first modification 102 of the synchronous linear motor according to the present embodiment, and the second comparative example of the synchronous linear motor according to the present embodiment.
  • a modification 102-2 is shown.
  • the vertical axis in FIG. 17 is a value obtained by normalizing the amplitude of the primary cogging thrust with the value of the amplitude of the primary cogging thrust of the first modification 102 of the synchronous linear motor according to the present embodiment as 1 [ p.u.].
  • the thicknesses hm1, hm2, and hm3 of the permanent magnet 5 are set to hm1 ⁇ hm2 ⁇ hm3 as shown in FIG.
  • the primary cogging thrust is reduced by about 70%. It is possible.
  • the relationship between the thicknesses hm1, hm2, and hm3 of the permanent magnet 5 is hm1 ⁇ hm2 ⁇ hm3.
  • the thickness of the permanent magnet 5 differs by three or more due to relationships other than this combination. If so, there is no problem.
  • FIG. 18 is a cross-sectional view perpendicular to the stacking direction of the electromagnetic steel plates of the mover in the third modification of the synchronous linear motor in the present embodiment.
  • the third modification 102-3 of the synchronous linear motor is different from the synchronous linear motor 101 according to the present embodiment in the following points.
  • the thickness hm1 of the permanent magnet 5 arranged on the split core 4 positioned on both ends in the moving direction A and the second split core from both ends in the moving direction A
  • the thickness hm2 of the permanent magnet 5 arranged at 4 is the same.
  • the primary cogging is arranged in such an arrangement that the primary cogging thrust vectors generated from (1) to (6) of the divided cores 4 are suppressed.
  • the phase of the thrust vector can be changed. Therefore, it is possible to reduce the primary cogging thrust.
  • the stroke of the mover 2 can be finely adjusted.
  • the thicknesses hm1, hm2, and hm3 of the permanent magnet 5 are shown by the thickness of the permanent magnet 5 that is not divided. As shown in FIG. 19, there is no problem even if the thickness hm is a thickness in which a plurality of permanent magnets 5 are stacked.
  • the primary cogging thrust vector is balanced to reduce the primary cogging thrust.
  • the primary cogging is performed.
  • the phase of the primary cogging thrust vector can be changed to an arrangement in which the thrust vector is suppressed. For this reason, the primary cogging thrust can be reduced.
  • the number of the split cores 4 and the permanent magnets 5 is six, and the stator 3 that is disposed opposite to the mover 2 is used.
  • the number of salient poles 11 is five. That is, the width in the moving direction A of the mover 2 that is the width in the moving direction A of the six divided cores 4 is one end surface in the moving direction A of the salient pole 11 adjacent to the one end surface in the moving direction A of the salient pole 11. Is equal to 5 times the interval in the moving direction A. As shown in FIG.
  • the number of the plurality of salient poles 11 facing the moving direction of the mover 2 becomes an integer. It is desirable. That is, the width of the mover 2 in the moving direction A is an integral multiple of the distance in the moving direction A between one end surface in the moving direction A of the salient pole 11 and one end surface in the moving direction A of the adjacent salient pole 11. desirable. However, even if the number of salient poles 11 of the stator 3 arranged opposite to the split core 4, the permanent magnet 5, and the mover 2 is a combination other than the above, the primary cogging thrust vector is suppressed. The phase of the first-order cogging thrust vector can be changed.
  • the primary cogging thrust can be reduced.
  • the number of permanent magnets 5 is smaller than the number of divided cores 4, for example, the permanent magnets 5 are not arranged on the second divided core 4 from both ends in the moving direction A.
  • the number of salient poles 11 facing the mover 2 is not an integer.
  • the length of the permanent magnet 5 in the protruding direction of the teeth 7 may be different from the thickness hm in the moving direction A of the permanent magnet 5.
  • the phase of the primary cogging thrust vector can be changed to an arrangement in which the primary cogging thrust vector generated in each divided core 4 is suppressed, and the primary cogging thrust can be reduced. It is.
  • the lengths of the permanent magnets 5 in the protruding direction of the teeth 7 are different, the permanent magnets 5 facing the teeth 7 in the cross section including the moving direction A and the protruding direction of the teeth 7 in FIG.
  • the inductance obtained from the magnetic flux interlinked with the coil 6 wound around the tooth 7 having a large magnetic saturation effect is larger than the inductance of the coil 6 wound around the tooth 7 having a small magnetic saturation effect. End up. Therefore, the inductance of each phase used for the drive control of the synchronous linear motor becomes unbalanced, the thrust pulsation at the time of driving the synchronous linear motor increases, and the controllability decreases.
  • the thickness hm in the moving direction A of the permanent magnet 5 is different. This is because the length of the permanent magnet 5 facing the teeth 7 is the same regardless of the divided core 4 in the cross section including the moving direction A and the protruding direction of the teeth 7.
  • the inductance of the coil 6 wound around the teeth 7 of (1) and (6) which are the split cores 4 on both ends in the moving direction A is affected by the ends, and the split cores 4 on both ends in the moving direction A are affected. It is easy to become smaller than the inductance of the coil 6 wound around the teeth 7 of (2) to (5), which are other divided cores 4, and the inductance of each phase tends to be unbalanced.
  • the length of the permanent magnet 5 facing the teeth 7 does not differ depending on the divided core 4, even if the coil 6 is wound at least around the teeth 7 on both ends in the moving direction A. This imbalance can be suppressed.
  • the coil 6 is wound around all the teeth 7 of the split core 4, so the length of the permanent magnet 5 facing the teeth 7 is the split core. If the difference is 4, the surface pressure applied to the permanent magnet 5 varies depending on the tightening force applied to the teeth when the coil 6 is wound. For this reason, the permanent magnet 5 may break depending on the surface pressure. For this reason, it is desirable that the thickness hm in the moving direction A of the permanent magnet 5 is different. With these configurations, the permanent magnet 5 can be prevented from cracking in the synchronous linear motor of the present embodiment.
  • FIG. FIG. 20 is a cross-sectional view parallel to the stacking direction and the moving direction of the electromagnetic steel plates of the mover in the synchronous linear motor according to Embodiment 2 for carrying out the present invention, as viewed from the stator side. More specifically, FIG. 20 and FIGS. 21 and 22 described later are, for example, cross-sectional views along the moving direction A at the position of the arrow in the magnetization direction 9 of FIG. 2, and so on. 20-22, the coil 6 is not shown. 20, the synchronous linear motor 103 according to the present embodiment is different from the synchronous linear motor 101 according to the first embodiment in the following points.
  • Wm2 and the width Wm3 in the stacking direction B of the permanent magnet 5 arranged in the third split core 4 from both ends in the moving direction A are Wm1 ⁇ Wm2.
  • Wm2 Wm3. That is, the number of different shapes in the plurality of permanent magnets 5, that is, the number of types of different shapes is two.
  • two permanent magnets 5 having a width Wm1 are divided cores 4 at positions symmetrical to the center of the width in the moving direction A of the mover 2 in the teeth 7 of (1) and (6). Each is arranged. Further, the two permanent magnets 5 having a width of Wm2 are the divided cores 4 at positions symmetrical with respect to the center of the width in the moving direction A of the mover 2 in the teeth 7 of (2) and (5). Each is arranged.
  • the two permanent magnets 5 having a thickness of Wm3 are the divided cores 4 at positions symmetrical with respect to the center of the width in the moving direction A of the mover 2 (3) and the teeth 7 of (4). Respectively. That is, a plurality of permanent magnets 5 having the same shape are arranged on the teeth 7 of the split core 4 at positions symmetrical with respect to the center of the width in the moving direction A of the mover 2.
  • FIG. 21 is a cross-sectional view parallel to the stacking direction and the moving direction of the electromagnetic steel plate of the mover in the comparative example with respect to the synchronous linear motor in the present embodiment, as viewed from the stator side.
  • the synchronous linear motor comparative example 201 differs from the synchronous linear motor 103 according to the present embodiment in the following points.
  • a synchronous linear motor comparative example 201 in FIG. 21 is the same configuration as that of the synchronous linear motor first comparative example 201 in FIG.
  • the coil 6 is not shown.
  • Embodiment 2 is demonstrated.
  • the thicknesses hm in the moving direction A of the permanent magnets 5 in FIGS. 20 and 21 are all the same.
  • the comparative example 201 of the synchronous linear motor shown in FIG. 21 since the shape and magnetic characteristics of the permanent magnet 5 are all the same, the primary cogging as shown in FIGS. 8 and 11 of the first embodiment. Thrust increases.
  • phase of the primary cogging thrust vector generated in each divided core 4 is changed by changing the value of the magnetic flux density generated in the gap surface of the divided core 4. Can do.
  • the lamination direction of the permanent magnet 5 shown in FIG. This is also possible by changing the width Wm in B.
  • the phase of the primary cogging thrust vector when it is necessary to change the phase of the primary cogging thrust vector in the opposite direction, by setting Wm1> Wm2, the phase of the primary cogging thrust vector is changed in the opposite direction to the case of Wm1 ⁇ Wm2. be able to. Therefore, as in FIG. 14 of the first embodiment, the primary cogging thrust vector can be suppressed and the primary cogging thrust can be reduced.
  • the magnetic flux density generated on the gap surface of the split core 4 can also be a combination of Wm1 ⁇ Wm3, Wm1> Wm3, Wm2 ⁇ Wm3, Wm2> Wm3, or Wm1 ⁇ Wm3 and Wm2> Wm3.
  • the value can be changed.
  • Wm1 Wm2 ⁇ Wm3. That is, if the number of different shapes in the plurality of permanent magnets 5 is two or more, for example, as shown in FIG. 13 of the first embodiment, it occurs in (1) to (6) of each divided core 4
  • the phase of the primary cogging thrust vector can be changed to an arrangement where the primary cogging thrust vector is suppressed. Therefore, the primary cogging thrust can be reduced as shown in FIG. 14 of the first embodiment.
  • FIG. 22 is a cross-sectional view parallel to the laminating direction and the moving direction of the electromagnetic steel plate of the mover in the fourth modification of the synchronous linear motor in the present embodiment, and is a view seen from the stator side.
  • the fourth modification 104 of the synchronous linear motor is different from the synchronous linear motor 103 according to the present embodiment in the following points.
  • the fourth modification 104 of the synchronous linear motor in FIG. 22 is the width in the stacking direction B of the permanent magnets 5 arranged on the split cores 4 positioned on both ends of the moving direction A in the synchronous linear motor 103 of the present embodiment.
  • the width Wm3 in the stacking direction B of the magnets 5 is different from each other. That is, Wm1 ⁇ Wm2 ⁇ Wm3.
  • the coil 6 is not shown.
  • the widths Wm1, Wm2, and Wm3 in the stacking direction B of the permanent magnets 5 are Wm1 ⁇ Wm2 ⁇ Wm3, and the stacking direction B of three or more permanent magnets 5
  • the phase of the primary cogging thrust vector can be changed to an arrangement in which the primary cogging thrust vectors generated from (1) to (6) of each divided core 4 are suppressed.
  • Wm1 ⁇ Wm2 ⁇ Wm3 is set, but there is no problem if the widths in the stacking direction B of the permanent magnets 5 are different by three or more due to relationships other than this combination.
  • the cogging thrust can be reduced without changing the stroke of the mover 2.
  • the width of the permanent magnet 5 in the stacking direction B is shown to be shorter than the width of the split core 4 in the stacking direction B. However, as shown in FIG. It doesn't matter if it gets longer.
  • the permanent magnet 5 may be divided into a plurality of pieces in the stacking direction B.
  • the length of the permanent magnet 5 in the protruding direction of the teeth 7 is different from the width Wm of the permanent magnet 5 in the stacking direction B as shown in FIGS. Also good. Also with this configuration, the phase of the primary cogging thrust vector can be changed to an arrangement in which the primary cogging thrust vector generated in each divided core 4 is suppressed, and the primary cogging thrust can be reduced. It is. However, when the length of the permanent magnet 5 in the protruding direction of the teeth 7 is different, as described in the first embodiment, the inductance of each phase used for the drive control of the synchronous linear motor becomes unbalanced, and the drive of the synchronous linear motor is performed. The thrust pulsation at the time increases, and the controllability decreases.
  • the width Wm in the stacking direction B of the permanent magnets 5 is different. This is because the length of the permanent magnet 5 facing the teeth 7 is the same regardless of the divided core 4 in the cross section including the moving direction A and the protruding direction of the teeth 7.
  • Embodiment 3 The synchronous linear motor in the third embodiment for carrying out the present invention is different from the synchronous linear motor 101 in FIG. 2 according to the first embodiment in the following points.
  • the synchronous linear motor according to the present embodiment has the same appearance as that of the first comparative example 201 of FIG. 6 compared to the synchronous linear motor of the first embodiment, but in the structure of the first comparative example 201, the magnetism of the permanent magnet 5 is the same.
  • the synchronous linear motor differs only in the residual magnetic flux density, which is a characteristic. Specifically, the residual magnetic flux density Br1 of the permanent magnet 5 disposed on the split core 4 on both ends in the moving direction A, and the residual of the permanent magnet 5 disposed on the second split core 4 from both ends in the moving direction A.
  • the two permanent magnets 5 having a residual magnetic flux density Br1 are the split cores 4 at positions symmetrical with respect to the center of the width in the moving direction A of the mover 2 (1) and (6) teeth. 7 are arranged respectively.
  • the two permanent magnets 5 having a residual magnetic flux density Br2 are the divided cores 4 at positions symmetrical with respect to the center of the width in the moving direction A in the mover 2 (2) and (5) teeth. 7 are arranged respectively.
  • the two permanent magnets 5 having a residual magnetic flux density of Br3 are the split cores 4 at positions symmetrical with respect to the center of the width in the moving direction A in the mover 2 (3) and (4) teeth. 7 are arranged respectively.
  • a plurality of permanent magnets 5 having the same magnetic characteristics are disposed on the teeth 7 of the split core 4 at positions symmetrical to the center of the width in the moving direction A of the mover 2. Moreover, all the shapes of the permanent magnets 5 of the synchronous linear motor according to the present embodiment are the same.
  • Embodiment 3 the effect of Embodiment 3 is demonstrated.
  • the phase of the primary cogging thrust vector generated in each divided core 4 can be changed by changing the value of the magnetic flux density generated in the gap surface of the divided core 4. .
  • the value of the magnetic flux density generated on the gap surface of the split core 4 can also be changed by changing the residual magnetic flux density Br of the magnet 5.
  • Br1 ⁇ Br2 is set to change the phase of the primary cogging thrust vector in the opposite direction to the case of Br1> Br2. be able to. Therefore, as in FIG. 14 of the first embodiment, the primary cogging thrust vector can be suppressed and the primary cogging thrust can be reduced.
  • the value of the magnetic flux density generated on the gap surface of the split core 4 can be changed as a combination of Br1 ⁇ Br3, Br1> Br3, Br2 ⁇ Br3, Br2> Br3, or Br1 ⁇ Br3 and Br2> Br3.
  • Br1 Br2 ⁇ Br3. That is, if the number of different magnetic characteristics in the plurality of permanent magnets 5 is two or more, for example, as shown in FIG. 13 of the first embodiment, the divided cores 4 are changed from (1) to (6).
  • the phase of the primary cogging thrust vector can be changed to an arrangement in which the generated primary cogging thrust vector is suppressed. Therefore, the primary cogging thrust can be reduced as shown in FIG. 14 of the first embodiment.
  • phase of the primary cogging thrust vector can be changed to an arrangement in which the next cogging thrust vector is suppressed.
  • the cogging thrust can be reduced without changing the stroke of the mover 2.
  • the permanent magnet 5 can be changed by changing the material, also called the grade of the permanent magnet 5, changing the production lot of the permanent magnet 5, or changing the magnetization rate of the permanent magnet 5. Any magnetic means may be used as long as they have different magnetic properties.
  • the magnetization rate of the permanent magnet 5 is a value obtained by dividing the magnetization remaining after the external magnetic field is removed by the magnetization in the saturated state when the permanent magnet 5 is magnetized by the external magnetic field in the magnetization process of magnetizing the permanent magnet 5. It is represented by For this reason, the magnetization of the permanent magnet 5 can be adjusted by the magnetizing step, and the increase in the number of parts can be suppressed by using one type of permanent magnet.
  • the number of different shapes in the plurality of permanent magnets 5 is two or more, and the number of different magnetic characteristics in the plurality of permanent magnets 5 is two or more.
  • a synchronous linear motor may be configured in combination with the above. That is, the present invention is not limited to the above embodiments, and includes all possible combinations thereof.
  • the synchronous linear motor according to the present invention can be applied to synchronous linear motors in various fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

同期リニアモータ101は、磁性体からなる複数の突極11を有する固定子3と、空隙gを介して突極11に対向して配置された可動子2とを備え、可動子2は、磁性体からなるコア14、複数のコイル6および移動方向Aに沿って並べられた複数の永久磁石5を有し、コア14は、コアバック8から突極11に向かって突出する複数のティース7を具備し、コイル6は、移動方向A両端側のティース7に少なくとも巻回され、永久磁石5は、ティース7の中央部にティース7の突出方向に沿って配置され、永久磁石5の磁極が有する極性は、隣り合う永久磁石5において対向する磁極が有する極性と同じであり、永久磁石5において異なる形状の数、または永久磁石5において異なる磁気特性の数は、2つ以上であるものである。

Description

同期リニアモータ
 この発明は、固定子とこの固定子に対向する可動子とを備えた同期リニアモータに関する。
 近年、工作機械のテーブル送り装置や半導体製造装置における搬送機器に用いられるアクチュエータに対して、高速化および高精度位置決め等の要求が高まっている。このため、工作機械や半導体製造装置などには、リニアモータが用いられる例が多い。また、リニアモータは、変速機を介さずに装置を駆動するダイレクト駆動で用いられる。よって、回転型サーボモータとボールネジとを組み合わせた回転機構を直線運動に変換する駆動方式に比べて、ボールネジのバックラッシュによる剛性の低下がなく高応答性を実現できる。このため、リニアモータによる高速度、高加速度、および高精度位置決めが可能である。
 従来のリニアモータは、固定子と、この固定子に一定の空隙を保って対向し固定子に対して相対的に移動する可動子とを備えている。可動子は、磁性体からなる複数の分割コアの各ティースにコイルを巻回して構成されている。固定子は、磁性体からなる鉄心と、空隙方向に着磁された永久磁石とを有している。永久磁石は、可動子の移動方向に沿って一定の距離を保って配置されている。また、隣り合う永久磁石の着磁方向は、互いに異なっている。
 前述したリニアモータを有する搬送機器は、可動子の移動距離が長くなるにつれて永久磁石の数が増加するため、コストが増加しやすい。このコストの増加を抑制するため、従来、固定子に配置されていた永久磁石は、可動子の分割コアのティースに配置されている。また、分割コアにコイルを巻回して構成された可動子と、突極を有する鉄心を有する固定子とによって構成されたリニアモータがある(例えば、特許文献1、2参照)。
特開2009―195104号公報 特開2009―195103号公報
 特許文献1、2に開示されるリニアモータでは、永久磁石が配置されコイルが巻回されていない補助分割コアが、可動子の移動方向の両端側に配置されている。さらに、補助分割コアに配置された永久磁石の形状と、コイルが巻かれている分割コアに配置された永久磁石の形状とが異なっている。また、補助分割コアと固定子との空隙の長さと、コイルが巻かれている分割コアと固定子との空隙の長さとが異なっている。これらの構成によって、永久磁石と可動子のコアとの間に発生するコギング推力が低減されている。
 しかしながら、可動子における移動方向の両端側に配置された補助分割コアによって、可動子の体積を表す可動子の体格が大きくなり、移動方向における可動子の移動可能範囲であるストロークが減少するという課題があった。
 また、可動子の質量が補助分割コアの分だけ増加し、リニアモータの推力を可動子の質量で割った値である推力密度が低下するため、加速度も低下してしまうという課題があった。
 この発明は、上記のような課題を解決するためになされたものであり、可動子の体格が大きくなることによるストロークの減少と、可動子の質量が増加することによる推力密度の低下とを抑制しながら、コギング推力を低減する同期リニアモータを得ることを目的とする。
 この発明に係る同期リニアモータは、
 基部およびこの基部から突出し磁性体からなる複数の突極を有する固定子と、
 空隙を介して複数の突極に対向して配置された可動子とを備え、
 複数の突極は、可動子の移動方向に沿って互いに離間して配置され、
 可動子は、磁性体からなるコア、複数のコイルおよび移動方向に沿って並べられた複数の永久磁石を有し、
 コアは、コアバックおよびコアバックから突極に向かって突出し移動方向に沿って並べられた複数のティースを具備し、
 複数のコイルは、移動方向両端側のティースに少なくとも巻回され、
 複数の永久磁石は、それぞれティースの中央部にティースの突出方向に沿って配置され、
 永久磁石の磁極が有する極性は、隣り合う永久磁石において対向する磁極が有する極性と同じであり、
 複数の永久磁石において異なる形状の数、または複数の永久磁石において異なる磁気特性の数は、2つ以上を有する。
 上記のように構成された同期リニアモータは、可動子の移動方向両端側に補助分割コアが配置されないため、可動子の体格の増加によるストロークの減少と、可動子の質量の増加による推力密度の低下を抑制できる。また、複数の永久磁石において異なる形状の数、または複数の永久磁石において異なる磁気特性の数が、2つ以上であるため、コアで発生するコギング推力の位相を変化させることができ、可動子が発生するコギング推力を低減することができる。
この発明の実施の形態1における同期リニアモータを示す斜視図である。 この発明の実施の形態1における同期リニアモータにおける電磁鋼板の積層方向に垂直な断面図である。 この発明の実施の形態1における同期リニアモータの隣接する分割コアの半分割コア同士が一体となっている構成の電磁鋼板の積層方向に垂直な断面図である。 この発明の実施の形態1における同期リニアモータの1つの分割コアの半分割コア同士がコアバックで一体となっている構成の電磁鋼板の積層方向に垂直な断面図である。 この発明の実施の形態1における同期リニアモータの隣接する分割コアの半分割コア同士がティース先端部で一体となっている構成の電磁鋼板の積層方向に垂直な断面図である。 この発明の実施の形態1における同期リニアモータに対する第1比較例の同期リニアモータの可動子の電磁鋼板の積層方向に垂直な断面図である。 この発明の実施の形態1における同期リニアモータに対する第2比較例の同期リニアモータで発生するコギング推力波形の図である。 この発明の実施の形態1における同期リニアモータに対する第1比較例で発生するコギング推力波形の図である。 この発明の実施の形態1における同期リニアモータに対する第1比較例と第2比較例とにおけるコギング推力の比較図である。 この発明の実施の形態1における同期リニアモータに対する第2比較例の各分割コアに発生する1次のコギング推力ベクトルのフェーザー図である。 この発明の実施の形態1における同期リニアモータに対する第1比較例の各分割コアに発生する1次のコギング推力ベクトルのフェーザー図である。 この発明の実施の形態1における同期リニアモータに対する第1比較例と第2比較例とにおける各分割コアのギャップ面に発生する磁束密度の比較図である。 この発明の実施の形態1における同期リニアモータの各分割コアに発生する1次のコギング推力ベクトルのフェーザー図である。 この発明の実施の形態1における同期リニアモータおよび第1比較例における1次のコギング推力の比較図である。 この発明の実施の形態1における同期リニアモータの第1変形例における可動子の電磁鋼板の積層方向に垂直な断面図である。 この発明の実施の形態1における同期リニアモータの第2変形例における可動子の電磁鋼板の積層方向に垂直な断面図である。 この発明の実施の形態1における同期リニアモータに対する第1比較例とこの発明の第1変形例と第2変形例とにおける1次のコギング推力の比較図である。 この発明の実施の形態1における同期リニアモータの第3変形例における可動子の電磁鋼板の積層方向に垂直な断面図である。 この発明の実施の形態1における同期リニアモータの第1変形例における永久磁石が進行方向に分割された可動子の積層方向に垂直な断面図である。 この発明の実施の形態2における同期リニアモータにおける可動子の電磁鋼板の積層方向および移動方向に平行な断面図であって、固定子側から見た図である。 この発明の実施の形態2における同期リニアモータの比較例における可動子の電磁鋼板の積層方向および移動方向に平行な断面図であって、固定子側から見た図である。 この発明の実施の形態2における同期リニアモータの第4変形例における可動子の電磁鋼板の積層方向および移動方向に平行な断面図であって、固定子側から見た図である。 この発明の実施の形態2における同期リニアモータにおける図20に示した永久磁石が電磁鋼板よりも長い場合の一例の断面図である。 この発明の実施の形態2における同期リニアモータにおける図20に示した永久磁石が積層方向に分割された場合の一例の断面図である。 この発明の実施の形態2における同期リニアモータにおける図20に示した永久磁石が積層方向に分割された場合の別の例の断面図である。 この発明の実施の形態1,2に対する永久磁石が突出方向に長さが異なる同期リニアモータの一例の積層方向に垂直な断面図である。 この発明の実施の形態1,2に対する永久磁石が突出方向に長さが異なる同期リニアモータの別の例の積層方向に垂直な断面図である。
 以下、本発明の同期リニアモータの好適な実施の形態につき図面を用いて説明する。
実施の形態1.
 図1は、この発明を実施するための実施の形態1における同期リニアモータを示す斜視図である。図1において、同期リニアモータ101は、可動子2と、固定子3とを備えている。同期リニアモータ101の可動子2は、図示しないスライダ等で支持されている。
このため、可動子2は、固定子3に対して移動方向Aに沿って相対的に移動可能となっている。図1において、積層方向Bは、可動子2の移動方向Aとティース7の突出方向とに垂直な方向である。
 可動子2は、電磁鋼板が積層方向Bに沿って積層されて積層鉄心として構成された磁性体からなる6個の分割コア4と、6個の分割コア4にそれぞれ配置された6個の永久磁石5と、6個の分割コア4にそれぞれ巻回された6個のコイル6とを有している。6個の永久磁石5は、移動方向Aに沿って並べられている。また、6個の分割コア4は、移動方向Aに沿って並べられて磁性体からなるコア14を構成している。
 すなわち、可動子2は、磁性体からなるコア14、複数のコイル6および移動方向Aに沿って並べられた複数の永久磁石5を有している。また、コア14は、移動方向Aに沿って並べられた複数の分割コア4からなる。
 図2は、本実施の形態における同期リニアモータにおける電磁鋼板の積層方向に垂直な断面図である。すなわち図2は図1の積層方向Bに垂直な、移動方向Aに沿った縦方向の断面図であり、以下同様である。図2において、同期リニアモータ101は、基部10およびこの基部10から突出し磁性体からなる複数の突極11を有する固定子3と、空隙であるギャップgを介して複数の突極11に対向して配置された可動子2とを備えている。ここで、ギャップgは、可動子2と固定子3との最短距離を表し、移動方向Aに沿って一定となっている。
同期リニアモータ101は、巻線であるコイル6と永久磁石5とが可動子2に配置された巻線磁石可動子型同期リニアモータとなっている。
 固定子3において、複数の突極11は、可動子2の移動方向Aに沿って互いに予め定められた間隔をおいて離間して配置されている。
 可動子2において、6個の分割コア4は、それぞれコアバック8と、コアバック8から固定子3の突極11に向かって突出するティース7とを具備している。すなわち、コア14は、コアバック8およびコアバック8から突極11に向かって突出し移動方向Aに沿って並べられた複数のティース7を具備している。また、コア14は、隣り合うティース7同士の間のコアバック8において分割されている。
 図2において、分割コア4には、移動方向Aの左側から順にそれぞれ符号(1)から(6)を便宜的に割り振っている。また、分割コア4は、ティース7およびコアバック8の中央部でさらに2つに分割されて2個の半分割コア4-1を有している。この結果、6個の分割コア4は、12個の半分割コア4-1で構成されている。そして、半分割コア4-1は、移動方向Aの幅の中央部で左右に分かれた半分のコアバック8と半分のティース7とで構成されている。コアバック8は、隣り合う分割コア4のコアバック8と移動方向Aに垂直な面で接しており、溶接等で互いに固定されている。6個のティース7には、それぞれ図示しないインシュレータ等の絶縁部材を介してコイル6が1個ずつ集中的に巻回されて6個のコイルを形成している。すなわち、複数のコイル6は、移動方向Aの両端側のティース7に少なくとも巻回されている。
 なお、図3に示すように、分割コア4の一方の半分割コア4-1におけるコアバック8と、隣り合う分割コア4の他方の半分割コア4-1におけるコアバック8とが、連結されて一体となっていてもよい。すなわち、コア14は、ティース7において分割されている。この場合、分割コア4の一方の半分割コア4-1と、隣り合う分割コア4の他方の半分割コア4-1とが、新しい分割コアの単位となる。
 この構成によって、隣り合う分割コア4の半分割コア4-1同士を連結できるため、隣り合う半分割コア4-1のティース7における移動方向Aおよび積層方向Bに垂直な方向の位置決め精度が向上し、ギャップgの寸法精度が向上して同期リニアモータ101の推力がばらつくのを抑制できる。
 また、図4に示すように、分割コア4の一方の半分割コア4-1におけるコアバック8と、同じ分割コア4の他方の半分割コア4-1におけるコアバック8とが、永久磁石5の漏れ磁束が大きくならない程度に連結されて一体となっていてもよい。また、図5に示すように、分割コア4の一方の半分割コア4-1におけるティース7と、同じ分割コア4の他方の半分割コア4-1におけるティース7とが、永久磁石5の漏れ磁束が大きくならない程度にコアバック8側と反対側の先端部などが連結されて一体となっていてもよい。
 この構成によって、同じ分割コア4の半分割コア4-1同士を連結できるため、半分割コア4-1のティース7における移動方向Aおよび積層方向Bに垂直な方向の位置決め精度が向上し、ギャップgの寸法精度が向上して同期リニアモータ101の推力がばらつくのを抑制できる。また、半分割コア4-1から永久磁石5にかかる移動方向Aの力が、半分割コア4-1同士が連結された部分に分散されて低減される。
 6個の永久磁石5は、それぞれティース7の中央部にティース7の突出方向に沿って配置されている。分割コア4に配置された永久磁石5の着磁方向9は、移動方向Aに沿っている。そして、隣り合う分割コア4に配置された永久磁石5の対向する磁極同士の極性が同じ極性となるように着磁されている。すなわち、永久磁石5の磁極が有する極性は、隣り合う永久磁石5において対向する磁極が有する極性と同じである。ここで、永久磁石5の磁極は、永久磁石5における着磁方向9の両端面であり、着磁方向9の矢印が指す方向の一端面の磁極はN極の極性を有し、反対側の他端面の磁極はS極の極性を有している。
 移動方向Aの両端側に位置する分割コア4に配置された永久磁石5の厚さをhm1、移動方向Aの両端側から2番目の分割コア4に配置された永久磁石5の厚さをhm2、および移動方向Aの両端側から3番目の分割コア4に配置された永久磁石5の厚さをhm3とすると、hm1≠hm2である。また、hm1=hm3となっている。すなわち、複数の永久磁石5において異なる形状の数は、2つとなっている。なお、図2では、hm1とhm2との差異を視覚的に明示するため、図1よりもhm1とhm2との差異が強調されて示されている。
 そして、厚さがhm1である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(1)および(6)のティース7にそれぞれ配置されている。また、厚さがhm2である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(2)および(5)のティース7にそれぞれ配置されている。そして、厚さがhm3である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(3)および(4)のティース7にそれぞれ配置されている。すなわち、同じ形状の複数の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4のティース7に配置されている。
 このため、可動子2の両端側にコギング推力を低減するためのコイルが巻かれていない補助鉄心を設けることなく、可動子2の体積を表す同期リニアモータ101の可動子2の体格を小さくでき、可動子2のストロークの減少を抑制できる。また、同期リニアモータ101は、補助鉄心分の質量増加がないため、リニアモータの推力を可動子の質量で割った値である推力密度を低減させることがなく、加減速度を低下させることがない。
 ここからは、本発明の効果であるコギング推力の低減について、電磁界解析の解析結果を用いて説明する。
 図6は、本実施の形態における同期リニアモータに対する第1比較例の同期リニアモータの可動子の電磁鋼板の積層方向に垂直な断面図である。図6において、本実施の形態に係る同期リニアモータ101の構成と同じ構成には、同じ符号が割り振られている。また、図6において、同期リニアモータの第1比較例201は、本実施の形態に係る同期リニアモータ101と、以下に述べる点で異なる。同期リニアモータの第1比較例201において、6個の永久磁石5の移動方向Aにおける厚さが全て等しくなっており、6個の永久磁石5の形状および磁気特性が同一となっている。すなわち、hm1=hm2=hm3である。
 図7は、本実施の形態における同期リニアモータに対する第2比較例の同期リニアモータで発生するコギング推力波形の図である。図7の横軸は、移動方向Aに沿う可動子2の移動距離を電気角で表したものである。図7の縦軸は、コギング推力[N]を表す。
 同期リニアモータの第2比較例202は、同期リニアモータの第1比較例201において、可動子2および固定子3の移動方向Aの両端側に切れ目である端がなく、可動子2および固定子3が無限に続く同期リニアモータを想定したものである。図7は、同期リニアモータの第2比較例202のコギング推力を電磁界解析した結果である。
 図8は、本実施の形態における同期リニアモータに対する第1比較例で発生するコギング推力波形の図である。図8の横軸は、移動方向Aに沿う可動子2の移動距離を電気角で表したものである。図8の縦軸は、コギング推力[N]を表す。
 同期リニアモータの第1比較例201では、分割コア4に配置された全ての永久磁石5の形状および磁気特性が同一で、可動子2の移動方向Aの幅が有限となっており、すなわち可動子2の移動方向Aに両端がある。図8は、同期リニアモータの第1比較例201のコギング推力を電磁界解析した結果である。
 図9は、本実施の形態における同期リニアモータに対する第1比較例と第2比較例とにおけるコギング推力の比較図である。図9の左側が可動子2に端がない第2比較例202の場合、右側が可動子2に両端がある第1比較例201の場合を表す。図9の縦軸は、コギング推力の振幅の最大値から最小値までの差(pp:Peak-to-Peak)が、可動子2に端のない第2比較例202のコギング推力のppの値を1として規格化された値[p.u.]を表す。図9において、可動子2に端がない第2比較例202のコギング推力波形のppの値は、図7のコギング推力波形のppの値に対応し、可動子2に両端がある第1比較例201のコギング推力波形のppの値は、図8のコギング推力波形のppの値に対応している。
 図9から、第1比較例201では移動方向Aの両端側に端があることによって、コギング推力が増加していることが分かる。これは、図8に示したように、電気角度1周期の360°に対して駆動周波数と同じ周波数の1次のコギング推力が発生しているためである。
 図10は、本実施の形態における同期リニアモータに対する第2比較例の各分割コアに発生する1次のコギング推力ベクトルのフェーザー図である。図10の横軸は、1次のコギング推力ベクトルのcos成分を表し、図10の縦軸は、1次のコギング推力ベクトルのsin成分を表す。
 図10において、可動子2が無限に続いている端のない第2比較例202において、可動子2の各分割コアに発生する1次のコギング推力ベクトルのフェーザー図である。ここで、図10の(1)から(6)は、それぞれ図2に示す移動方向Aの左側から順に(1)から(6)と対応する分割コア4に発生する1次のコギング推力ベクトルを表している。
 図10に示すように、第2比較例202における各分割コア4に発生する1次のコギング推力ベクトルは、60°等間隔で各象限に分散している。このため、第2比較例202のような端のない同期リニアモータでは、各分割コア4で発生する1次のコギング推力ベクトルが相殺し、1次のコギング推力が発生しない。
 図11は、本実施の形態における同期リニアモータに対する第1比較例の各分割コアに発生する1次のコギング推力ベクトルのフェーザー図である。図11の横軸は、1次のコギング推力ベクトルのcos成分を表し、図11の縦軸は、1次のコギング推力ベクトルのsin成分を表す。
 図11では、図10と異なり、1次のコギング推力ベクトルが等間隔にならず、1次のコギング推力ベクトルが相殺されないことが分かる。
 図10および図11から、本発明者らは、1次のコギング推力ベクトルが等間隔とならない要因について分析した結果、各分割コア4と対向する固定子3とのギャップ面で発生する磁束密度が異なることが要因であることを発見した。
 図12は、本実施の形態における同期リニアモータに対する第1比較例と第2比較例とにおける各分割コアのギャップ面に発生する磁束密度の比較図である。図12の横軸は、図2に示す移動方向Aの左側から順に(1)から(6)と対応する分割コア4を表す。図12の縦軸は、各分割コア4のギャップ面に発生する磁束密度が、可動子2に端がない第2比較例202の各分割コア4のギャップ面に発生する磁束密度の値を1として規格化された値[p.u.]を表す。図12において、可動子2に端がない第2比較例202と、可動子2に両端がある第1比較例201とが併記されている。
 図12において、可動子2に端がない第2比較例202では、各分割コア4と対向する固定子3とのギャップ面に発生する磁束密度は等しくなっている。一方、可動子2に両端がある第1比較例201では、各分割コア4と対向する固定子3とのギャップ面に発生する磁束密度の値は異なっている。
 以上から、可動子2に両端があることによって、各分割コア4と対向する固定子3とのギャップ面に発生する磁束密度に差異が発生していることが判明した。これによって、図11に示すように、1次のコギング推力ベクトルの位相が変化することを発見した。
 そこで、本発明者らは、各分割コア4と対向する固定子3とのギャップ面に発生する磁束密度を変化させることによって、1次のコギング推力ベクトルの位相を操作して、1次のコギング推力を低減できることを見出した。
 図13は、本実施の形態における同期リニアモータの各分割コアに発生する1次のコギング推力ベクトルのフェーザー図である。図13の横軸は、1次のコギング推力ベクトルのcos成分を表し、図13の縦軸は、1次のコギング推力ベクトルのsin成分を表す。
 各分割コア4と対向する固定子3とのギャップ面に発生する磁束密度の値を変化させて、各分割コア4に発生する1次のコギング推力ベクトルの位相を変化させるために、本発明者らは、図2に示すように、移動方向Aの両端側の分割コア4に配置された永久磁石5の厚さhm1と、移動方向Aの両端側から2番目の分割コア4に配置された永久磁石5の厚さhm2との形状を、hm1<hm2となるように変更して、コギング推力を電磁界解析で求めた。この結果、1次のコギング推力のフェーザー図は、第1比較例201の1次のコギング推力のフェーザー図である図11に対して、図13に変化した。このため、各分割コア4である(1)から(6)に発生する1次のコギング推力ベクトルが、互いに抑制しあう配置となった。
 図14は、本実施の形態における同期リニアモータおよび第1比較例における1次のコギング推力の比較図である。図14の横軸は、可動子2に両端がある第1比較例201と本実施の形態に係る同期リニアモータ101を表す。図14の縦軸は、1次のコギング推力の振幅が、第1比較例201の1次のコギング推力の振幅の値を1として規格化された値[p.u.]を表す。図14において、第1比較例201はhm1=hm2の場合に対応し、本実施の形態に係る同期リニアモータ101はhm1<hm2の場合に対応している。
 図14に示すように、本実施の形態に係る同期リニアモータ101では、1次のコギング推力が、第1比較例201の1次のコギング推力に対して40%以下に低減された。
 図15は、本実施の形態における同期リニアモータの第1変形例における可動子の電磁鋼板の積層方向に垂直な断面図である。図15において、同期リニアモータの第1変形例102は、本実施の形態に係る同期リニアモータ101と、以下に述べる点で異なる。同期リニアモータの第1変形例102において、移動方向Aの両端側に位置する分割コア4に配置された永久磁石5の厚さhm1が、移動方向Aの両端側から2番目の分割コア4に配置された永久磁石5の厚さhm2よりも大きく、すなわち、hm1>hm2となっている。
 図15に示すように、hm1>hm2とすることによって、1次のコギング推力のベクトルの位相を、hm1=hm2からhm1<hm2に変化する場合の位相変化の方向と反対の方向に変化させることができる。よって、分割コア4のギャップ面に発生する磁束密度の値を変更することができる。
 この構成によっても、例えば、図13に示すように、各分割コア4の(1)から(6)に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。したがって、図14に示すように、1次のコギング推力を低減することが可能である。
 また、上述と同様の理由によって、hm1<hm3、hm1>hm3、hm2<hm3、hm2>hm3、またはhm1<hm3およびhm2>hm3等の組合せとしても、分割コア4のギャップ面に発生する磁束密度の値を変更することできる。すなわち、複数の永久磁石5において異なる形状の数が2つ以上となっていれば、例えば、図13に示すように、各分割コア4の(1)から(6)に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。したがって、図14に示すように、1次のコギング推力を低減することが可能である。
 図16は、本実施の形態における同期リニアモータの第2変形例における可動子の電磁鋼板の積層方向に垂直な断面図である。図16において、同期リニアモータの第2変形例102-2は、本実施の形態に係る同期リニアモータ101と、以下に述べる点で異なる。同期リニアモータの第2変形例102-2において、移動方向Aの両端側に位置する分割コア4に配置された永久磁石5の厚さhm1と、移動方向Aの両端側から2番目の分割コア4に配置された永久磁石5の厚さhm2と、移動方向Aの両端側から3番目の分割コア4に配置された永久磁石5の厚さhm3とが、互いに異なっている。すなわち、hm1≠hm2≠hm3となっている。
 図17は、本実施の形態における同期リニアモータに対する第1比較例とこの発明の第1変形例と第2変形例とにおける1次のコギング推力の比較図である。図17の横軸は、可動子2に両端がある第1比較例201と、本実施の形態に係る同期リニアモータの第1変形例102と、本実施の形態に係る同期リニアモータの第2変形例102-2を表す。図17の縦軸は、1次のコギング推力の振幅が、本実施の形態に係る同期リニアモータの第1変形例102の1次のコギング推力の振幅の値を1として規格化された値[p.u.]を表す。
 図16に示すように、同期リニアモータの第2変形例102-2において、永久磁石5の厚さhm1、hm2、hm3をhm1≠hm2≠hm3とすることにより、図17に示すように、図2、15に示した本実施の形態に係るhm2>hm1=hm3の同期リニアモータ101およびhm1>hm2=hm3の第1変形例102と比較して、1次のコギング推力を約70%低減することが可能である。
 なお、図16では、永久磁石5の厚さhm1、hm2、hm3の関係は、hm1<hm2<hm3となっているが、この組合せ以外の関係で、永久磁石5の厚さが3つ以上異なっていれば問題ない。
 図18は、本実施の形態における同期リニアモータの第3変形例における可動子の電磁鋼板の積層方向に垂直な断面図である。図18において、同期リニアモータの第3変形例102-3は、本実施の形態に係る同期リニアモータ101と、以下に述べる点で異なる。同期リニアモータの第3変形例102-3において、移動方向Aの両端側に位置する分割コア4に配置された永久磁石5の厚さhm1と、移動方向Aの両端側から2番目の分割コア4に配置された永久磁石5の厚さhm2とが同じである。また、移動方向Aの両端側から3番目の分割コア4に配置された永久磁石5の厚さhm3と、hm1およびhm2とは、異なっている。すなわち、hm1=hm2≠hm3となっている。
 このような同期リニアモータの第3変形例102-3の構成によっても、各分割コア4の(1)から(6)に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。したがって、1次のコギング推力を低減することが可能である。
 また、永久磁石5の移動方向Aにおける厚さhmを変更するため、可動子2のストロークの微調整が可能となる。
 なお、本実施の形態における図2、図15、図16、図18では、永久磁石5の厚さhm1、hm2、hm3は、分割されていない永久磁石5全体の厚さで示されているが、厚さhmは、図19に示すように永久磁石5を複数枚重ねた厚さとしても問題はない。
 なお、本実施の形態に係る同期リニアモータ101、102、102-2、102-3において、図13に示すように、1次のコギング推力ベクトルをバランスさせて1次のコギング推力を低減するためには、同じ形状の複数の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称の位置の分割コア4に配置されているのが望ましい。
 しかしながら、同じ形状の複数の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称の位置の分割コア4に配置されていなくても、上述のように、1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。このため、1次のコギング推力を低減することが可能である。
 なお、本実施の形態に係る同期リニアモータ101、102、102-2、102-3では、分割コア4および永久磁石5の数が6個、可動子2と対向配置されている固定子3の突極11の数が5個となっている。すなわち、6個の分割コア4における移動方向Aの幅である可動子2における移動方向Aの幅が、突極11の移動方向Aにおける一端面と隣り合う突極11の移動方向Aにおける一端面との移動方向Aにおける間隔の5倍と等しい。図13に示すように、1次のコギング推力ベクトルをバランスさせて1次のコギング推力を低減するためには、可動子2の移動方向に対向する複数の突極11の数が整数となっているのが望ましい。すなわち、可動子2の移動方向Aの幅は、突極11の移動方向Aにおける一端面と隣り合う突極11の移動方向Aにおける一端面との移動方向Aにおける間隔の整数倍であるのが望ましい。
 しかしながら、分割コア4、永久磁石5、および可動子2と対向配置されている固定子3の突極11の数が、上記以外の数の組合せでも、1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。このため、1次のコギング推力を低減することが可能である。上記以外の数の組合せとしては、例えば、移動方向Aの両端側から2番目の分割コア4に永久磁石5が配置されていないなど、分割コア4の数よりも永久磁石5の数が少ない場合や、可動子2に対向する複数の突極11の数が整数でない場合などがある。
 なお、本実施の形態の同期リニアモータにおいて、永久磁石5の移動方向Aにおける厚さhmの代わりに、ティース7の突出方向における永久磁石5の長さが異なっていてもよい。この構成によっても、各分割コア4に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができ、1次のコギング推力を低減することが可能である。
 しかしながら、ティース7の突出方向における永久磁石5の長さが異なる場合、図2の磁束が流れる断面である移動方向Aおよびティース7の突出方向を含む断面内において、ティース7に対向する永久磁石5の長さが分割コア4によって異なるため、ティース7に対向する永久磁石5の長さが大きい方が、永久磁石5の磁束による磁気飽和の影響が大きくなり、永久磁石5の磁束が相対的に磁気抵抗の小さい固定子3側のギャップ面に流れやすくなる。このため、磁気飽和の影響が大きいティース7に巻回されたコイル6に鎖交する磁束から求まるインダクタンスが、磁気飽和の影響が小さいティース7に巻回されたコイル6のインダクタンスよりも大きくなってしまう。よって、同期リニアモータの駆動制御に用いる各相のインダクタンスがアンバランスとなり、同期リニアモータの駆動時の推力脈動が大きくなり、制御性が低下する。
 このため、永久磁石5の移動方向Aにおける厚さhmが異なる方が望ましい。これは、移動方向Aおよびティース7の突出方向を含む断面内において、ティース7に対向する永久磁石5の長さが分割コア4によって異ならず同じためである。これらの構成によって、本実施の形態の同期リニアモータにおいて、分割コア4のティース7に巻回されたコイル6のインダクタンスのアンバランスを抑制することができる。このため、同期リニアモータの駆動時の推力脈動を小さくすることができ、制御性が向上する。
 特に、移動方向Aの両端側の分割コア4である(1)および(6)のティース7に巻回されたコイル6のインダクタンスは、端の影響で、移動方向Aの両端側の分割コア4以外の分割コア4である(2)から(5)のティース7に巻回されたコイル6のインダクタンスよりも小さくなりやすく、さらに各相のインダクタンスがアンバランスになりやすい。
本実施の形態の同期リニアモータでは、ティース7に対向する永久磁石5の長さが分割コア4によって異ならないため、コイル6が移動方向Aの両端側のティース7に少なくとも巻き回されていても、このアンバランスを抑制することができる。
 また、ティース7の突出方向における永久磁石5の長さが異なる場合、コイル6が分割コア4のティース7すべてに巻回されているため、ティース7に対向する永久磁石5の長さが分割コア4によって異なると、コイル6が巻回される際にティースにかかる巻締まり力によって、永久磁石5にかかる面圧が異なってしまう。このため、この面圧によっては永久磁石5が割れる可能性がある。
 このため、永久磁石5の移動方向Aにおける厚さhmが異なる方が望ましい。これらの構成によって、本実施の形態の同期リニアモータにおいて、永久磁石5が割れるのを防ぐことができる。
実施の形態2.
 図20は、この発明を実施するための実施の形態2における同期リニアモータにおける可動子の電磁鋼板の積層方向および移動方向に平行な断面図であって、固定子側から見た図である。より詳細には図20および後述する図21、図22は、例えば図2の着磁方向9の矢印の位置での移動方向Aに沿った横断面図であり、以下同様である。なお、図20-22では、コイル6は図示されていない。
 図20において、本実施の形態に係る同期リニアモータ103は、実施の形態1に係る同期リニアモータ101と、以下に述べる点で異なる。
 移動方向Aの両端側の分割コア4に配置された永久磁石5の積層方向Bにおける幅Wm1、移動方向Aの両端側から2番目の分割コア4に配置された永久磁石5の積層方向Bにおける幅Wm2、および移動方向Aの両端側から3番目の分割コア4に配置された永久磁石5の積層方向Bにおける幅Wm3とすると、Wm1≠Wm2となっている。また、Wm2=Wm3となっている。すなわち、複数の永久磁石5において異なる形状の数、すなわちは異なる形状の種類の数は、2つとなっている。
 また、幅がWm1である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(1)および(6)のティース7にそれぞれ配置されている。また、幅がWm2である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(2)および(5)のティース7にそれぞれ配置されている。そして、厚さがWm3である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(3)および(4)のティース7にそれぞれ配置されている。すなわち、同じ形状の複数の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4のティース7に配置されている。
 図21は、本実施の形態における同期リニアモータに対する比較例における可動子の電磁鋼板の積層方向および移動方向に平行な断面図であって、固定子側から見た図である。図21において、同期リニアモータの比較例201は、本実施の形態に係る同期リニアモータ103と、以下に述べる点で異なる。図21における同期リニアモータの比較例201は、実施の形態1の図6における同期リニアモータの第1比較例201と同じ構成を異なる断面から見たものである。図21の比較例201では、Wm=Wm1=Wm2=Wm3となっている。なお、図21では、コイル6は図示されていない。
 ここからは、実施の形態2の効果について説明する。
 図20および図21の永久磁石5の移動方向Aにおける厚さhmは、全て同じである。また、図21に示す同期リニアモータの比較例201の場合、永久磁石5の形状および磁気特性が全て同じであるため、実施の形態1の図8および図11で示したように1次のコギング推力が大きくなる。
 また、実施の形態1で説明したように、分割コア4のギャップ面に発生する磁束密度の値を変更することにより、各分割コア4に発生する1次のコギング推力ベクトルの位相を変化させることができる。
 分割コア4のギャップ面に発生する磁束密度の値を変更するには、実施の形態1の図2で説明した永久磁石4の厚さhm以外に、図20に示した永久磁石5の積層方向Bにおける幅Wmを変更することによっても可能である。
 したがって、図20に示すように、Wm1≠Wm2とすることによって、分割コア4のギャップ面に発生する磁束密度の値を変化させ、各分割コア4に発生する1次のコギング推力ベクトルの位相を変化させることができる。これにより、実施の形態1の図13に示すように、各分割コア4で発生する1次のコギング推力が抑制しあうことができる。このため、実施の形態1の図14に示すように、1次のコギング推力を低減可能である。
 また、1次のコギング推力ベクトルの位相を反対方向に変化させる必要がある場合は、Wm1>Wm2とすることで、Wm1<Wm2の場合と反対方向に1次のコギング推力ベクトルの位相を変化させることができる。このため、実施の形態1の図14と同様に、1次のコギング推力ベクトルが抑制しあい、1次のコギング推力を低減することが可能である。
 また、上述と同様の理由によって、Wm1<Wm3、Wm1>Wm3、Wm2<Wm3、Wm2>Wm3、またはWm1<Wm3およびWm2>Wm3等の組合せとしても分割コア4のギャップ面に発生する磁束密度の値を変更することできる。また、Wm1=Wm2≠Wm3の組合せとしても同様である。すなわち、複数の永久磁石5において異なる形状の数が2つ以上となっていれば、例えば、実施の形態1の図13に示すように、各分割コア4の(1)から(6)に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。
 したがって、実施の形態1の図14に示すように、1次のコギング推力を低減することが可能である。
 図22は、本実施の形態における同期リニアモータの第4変形例における可動子の電磁鋼板の積層方向および移動方向に平行な断面図であって、固定子側から見た図である。図22において、同期リニアモータの第4変形例104は、本実施の形態に係る同期リニアモータ103と、以下に述べる点で異なる。図22における同期リニアモータの第4変形例104は、本実施の形態の同期リニアモータ103において、移動方向Aの両端側に位置する分割コア4に配置された永久磁石5の積層方向Bにおける幅Wm1と、移動方向Aの両端側から2番目の分割コア4に配置された永久磁石5の積層方向Bにおける幅Wm2と、移動方向Aの両端側から3番目の分割コア4に配置された永久磁石5の積層方向Bにおける幅Wm3とが、互いに異なっている。すなわち、Wm1≠Wm2≠Wm3となっている。なお、図22では、コイル6は図示されていない。
 図22に示すように、同期リニアモータの第4変形例104において、永久磁石5の積層方向Bにおける幅Wm1、Wm2、Wm3をWm1≠Wm2≠Wm3として3つ以上の永久磁石5の積層方向Bにおける幅を異ならせることにより、各分割コア4の(1)から(6)に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。
 なお、図22では、Wm1<Wm2<Wm3としているが、この組合せ以外の関係で、永久磁石5の積層方向Bの幅が3つ以上異なっていれば問題ない。
 また、永久磁石5の積層方向Bにおける幅Wmを変更するため、可動子2のストロークを変更せずにコギング推力の低減が可能となる。
 なお、図20において、永久磁石5の積層方向Bにおける幅は、分割コア4の積層方向Bにおける幅よりも短く図示されているが、図23に示すように分割コア4の積層方向Bにおける幅より長くなっても問題ない。また、図24、25に示すように積層方向Bに永久磁石5が複数個に分割されて配置されていてもよい。
 なお、本実施の形態の同期リニアモータにおいて、永久磁石5の積層方向Bにおける幅Wmの代わりに、図26、27に示すようにティース7の突出方向における永久磁石5の長さが異なっていてもよい。この構成によっても、各分割コア4に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができ、1次のコギング推力を低減することが可能である。
 しかしながら、ティース7の突出方向における永久磁石5の長さが異なる場合、実施の形態1で述べたように、同期リニアモータの駆動制御に用いる各相のインダクタンスがアンバランスとなり、同期リニアモータの駆動時の推力脈動が大きくなり、制御性が低下する。
 このため、永久磁石5の積層方向Bにおける幅Wmが異なる方が望ましい。これは、移動方向Aおよびティース7の突出方向を含む断面内において、ティース7に対向する永久磁石5の長さが分割コア4によって異ならず同じためである。これらの構成によって、本実施の形態の同期リニアモータにおいて、実施の形態1と同様に、コイル6が移動方向Aの両端側のティース7に少なくとも巻き回されていても、分割コア4のティース7に巻回されたコイル6のインダクタンスのアンバランスを抑制することができる。このため、同期リニアモータの駆動時の推力脈動を小さくすることができ、制御性が向上する。
実施の形態3.
 この発明を実施するための実施の形態3における同期リニアモータは、実施の形態1に係る図2の同期リニアモータ101と以下に述べる点で異なる。
 本実施の形態に係る同期リニアモータは、実施の形態1における同期リニアモータに対する図6の第1比較例201と外見は同じ形状であるが、第1比較例201の構造において永久磁石5の磁気特性である残留磁束密度のみが異なる同期リニアモータとなっている。具体的には、移動方向Aの両端側の分割コア4に配置された永久磁石5の残留磁束密度Br1、移動方向Aの両端側から2番目の分割コア4に配置された永久磁石5の残留磁束密度Br2、および移動方向Aの両端側から3番目の分割コア4に配置された永久磁石5の残留磁束密度Br3とすると、Br1≠Br2となっている。また、Br2=Br3となっている。すなわち、複数の永久磁石5において異なる磁気特性の数は、2つとなっている。
 また、残留磁束密度がBr1である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(1)および(6)のティース7にそれぞれ配置されている。また、残留磁束密度がBr2である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(2)および(5)のティース7にそれぞれ配置されている。そして、残留磁束密度がBr3である2個の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4である(3)および(4)のティース7にそれぞれ配置されている。すなわち、同じ磁気特性の複数の永久磁石5が、可動子2における移動方向Aの幅の中央に対して対称となる位置の分割コア4のティース7に配置されている。
 また、本実施の形態に係る同期リニアモータの永久磁石5の形状は全て同じである。
 ここからは、実施の形態3の効果について説明する。
 実施の形態1で説明したように、分割コア4のギャップ面に発生する磁束密度の値を変更することにより、各分割コア4に発生する1次のコギング推力ベクトルの位相を変化させることができる。
 実施の形態1の図2で説明した永久磁石5の厚さhmや、実施の形態2の図20で説明した永久磁石5の幅Wmだけでなく、実施の形態1の図2に示した永久磁石5の残留磁束密度Brを変更することによっても、分割コア4のギャップ面に発生する磁束密度の値を変更することができる。
 したがって、Br1≠Br2とすることによって、分割コア4のギャップ面に発生する磁束密度の値を変化させ、各分割コア4に発生する1次のコギング推力ベクトルの位相を変化させることができる。これにより、実施の形態1の図13に示したように、各分割コア4で発生する1次のコギング推力が抑制しあうようにすることができる。このため、実施の形態1の図14に示すように、1次のコギング推力を低減可能である。
 また、1次のコギング推力ベクトルの位相を反対方向に変化させる必要がある場合は、Br1<Br2とすることで、Br1>Br2の場合と反対方向に1次のコギング推力ベクトルの位相を変化させることができる。このため、実施の形態1の図14と同様に、1次のコギング推力ベクトルが抑制しあい、1次のコギング推力を低減することが可能である。
 また、Br1<Br3、Br1>Br3、Br2<Br3、Br2>Br3、またはBr1<Br3およびBr2>Br3等の組合せとしても分割コア4のギャップ面に発生する磁束密度の値を変更することできる。また、Br1=Br2≠Br3の組合せとしても同様である。すなわち、複数の永久磁石5において異なる磁気特性の数が2つ以上となっていれば、例えば、実施の形態1の図13に示すように、各分割コア4の(1)から(6)に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。したがって、実施の形態1の図14に示すように、1次のコギング推力を低減することが可能である。
 更に、Br1≠Br2≠Br3(例えば、Br1<Br2<Br3)として、永久磁石5の磁気特性を3つ以上異ならせることによっても、各分割コア4の(1)から(6)に発生する1次のコギング推力ベクトルが抑制しあう配置に1次のコギング推力ベクトルの位相を変化させることができる。
 また、永久磁石5の磁束密度を変更するため、可動子2のストロークを変更せずにコギング推力の低減が可能となる。
 また、永久磁石5の残留磁束密度Brを変更するには、永久磁石5のグレードとも呼ばれる材料の変更、永久磁石5の製造ロットの変更、または永久磁石5の着磁率の変更など、永久磁石5の磁気特性が異なっていればよく、その手段は問わない。
 ここで、永久磁石5の着磁率は、永久磁石5を着磁する着磁工程において外部磁場によって着磁されたとき、外部磁場が取り除かれた後に残る磁化を飽和した状態の磁化で割った値で表される。このため、着磁工程によって永久磁石5の磁化を調整でき、永久磁石を1種類にして部品点数の増加を抑制できる。
 なお、実施の形態1から実施の形態3までで述べた、複数の永久磁石5において異なる形状の数が2つ以上である場合と、複数の永久磁石5において異なる磁気特性の数が2つ以上である場合とを組み合わせて同期リニアモータを構成してもよい。
 すなわちこの発明は、上記各実施の形態に限定されるものではなく、これらの可能な組み合わせを全て含む。
産業上の利用の可能性
 この発明による同期リニアモータは、種々の分野の同期リニアモータに適用可能である。
 101、102、102-2、102-3、103、104 同期リニアモータ、 2 可動子、 3 固定子、 4 分割コア、 4-1 半分割コア、 5 永久磁石、 6 コイル、 7 ティース、 8 コアバック、 9 着磁方向、 10 基部、 11 突極、 14 コア、 201 同期リニアモータの第1比較例、 202 同期リニアモータの第2比較例。

Claims (16)

  1.  基部およびこの基部から突出し磁性体からなる複数の突極を有する固定子と、
     空隙を介して前記複数の突極に対向して配置された可動子とを備え、
     前記複数の突極は、前記可動子の移動方向に沿って互いに離間して配置され、
     前記可動子は、磁性体からなるコア、複数のコイルおよび前記移動方向に沿って並べられた複数の永久磁石を有し、
     前記コアは、コアバックおよび前記コアバックから前記突極に向かって突出し前記移動方向に沿って並べられた複数のティースを具備し、
     前記複数のコイルは、前記移動方向両端側の前記ティースに少なくとも巻回され、
     前記複数の永久磁石は、それぞれ前記ティースの中央部に前記ティースの突出方向に沿って配置され、
     前記永久磁石の磁極が有する極性は、隣り合う前記永久磁石において対向する磁極が有する極性と同じであり、
     前記複数の永久磁石において異なる形状の数、または前記複数の永久磁石において異なる磁気特性の数は、2つ以上である同期リニアモータ。
  2.  前記複数の永久磁石において異なる形状の数が2つ以上である場合には、
     前記複数の永久磁石の前記移動方向における厚さ、または前記複数の永久磁石の前記移動方向と前記ティースの突出方向とに垂直な方向における幅が異なる請求項1に記載の同期リニアモータ。
  3.  同じ形状または同じ磁気特性の前記複数の永久磁石が、前記可動子における前記移動方向幅の中央に対して対称となる位置の前記ティースに配置されている請求項1に記載の同期リニアモータ。
  4.  前記複数の永久磁石において異なる形状の数が2つ以上である場合には、
     前記可動子における前記移動方向両端側に配置された前記永久磁石の前記移動方向における厚さと、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の前記移動方向における厚さとが異なる請求項3に記載の同期リニアモータ。
  5.  前記複数の永久磁石において異なる形状の数が2つ以上である場合には、
     前記可動子における前記移動方向両端側に配置された前記永久磁石の前記移動方向と前記ティースの突出方向とに垂直な方向における幅と、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の前記移動方向と前記ティースの突出方向とに垂直な方向における幅とが異なる請求項3に記載の同期リニアモータ。
  6.  前記複数の永久磁石において異なる磁気特性の数が2つ以上である場合には、
     前記可動子における前記移動方向両端側に配置された前記永久磁石の残留磁束密度と、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の残留磁束密度とが異なる請求項3に記載の同期リニアモータ。
  7.  前記複数の永久磁石において異なる磁気特性の数が2つ以上である場合には、
     前記可動子における前記移動方向両端側に配置された前記永久磁石の着磁率と、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の着磁率とが異なる請求項3に記載の同期リニアモータ。
  8.  前記可動子における前記移動方向両端側に配置された前記永久磁石の形状と、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の形状とが同じ、または前記可動子における前記移動方向両端側に配置された前記永久磁石の磁気特性と、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の磁気特性とが同じ請求項3に記載の同期リニアモータ
  9.  前記複数の永久磁石において異なる形状の数が3つ以上である場合には、
     前記可動子における前記移動方向両端側に配置された前記永久磁石の前記移動方向における厚さと、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の前記移動方向における厚さと、前記可動子における前記移動方向両端側から3番目に配置された前記永久磁石の前記移動方向における厚さとがそれぞれ異なる請求項3に記載の同期リニアモータ。
  10.  前記複数の永久磁石において異なる形状の数が3つ以上である場合には、
     前記可動子における前記移動方向両端側に配置された前記永久磁石の前記移動方向に垂直な方向における幅と、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の前記移動方向に垂直な方向における幅と、前記可動子における前記移動方向両端側から3番目に配置された前記永久磁石の前記移動方向に垂直な方向における幅とがそれぞれ異なる請求項3に記載の同期リニアモータ。
  11.  前記複数の永久磁石において異なる磁気特性の数が3つ以上である場合には、
     前記可動子における前記移動方向両端側に配置された前記永久磁石の残留磁束密度と、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の残留磁束密度と、前記可動子における前記移動方向両端側から3番目に配置された前記永久磁石の残留磁束密度とがそれぞれ異なる請求項3に記載の同期リニアモータ。
  12.  前記複数の永久磁石において異なる磁気特性の数が3つ以上である場合には、
     前記可動子における前記移動方向両端側に配置された前記永久磁石の着磁率と、前記可動子における前記移動方向両端側から2番目に配置された前記永久磁石の着磁率と、前記可動子における前記移動方向両端側から3番目に配置された前記永久磁石の着磁率とがそれぞれ異なる請求項3に記載の同期リニアモータ。
  13.  前記可動子に対向する前記複数の突極の数は、整数である請求項1から請求項12のいずれか1項に記載の同期リニアモータ。
  14.  前記コアは、前記移動方向に沿って並べられた複数の分割コアからなり、
     前記複数の分割コアは、それぞれ前記コアバックおよび前記ティースを具備する請求項1から請求項13のいずれか1項に記載の同期リニアモータ。
  15.  前記コアは、隣り合う前記ティース同士の間の前記コアバックにおいて分割されている請求項14に記載の同期リニアモータ。
  16.  前記コアは、前記ティースにおいて分割されている請求項14に記載の同期リニアモータ。
PCT/JP2017/002697 2016-03-29 2017-01-26 同期リニアモータ WO2017169046A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112017001733.5T DE112017001733B4 (de) 2016-03-29 2017-01-26 Synchron-Linearmotor
KR1020187027416A KR102177893B1 (ko) 2016-03-29 2017-01-26 동기 리니어 모터
US16/078,977 US10778077B2 (en) 2016-03-29 2017-01-26 Synchronous linear motor
JP2017533360A JP6388080B2 (ja) 2016-03-29 2017-01-26 同期リニアモータ
CN201780019259.2A CN108886317B (zh) 2016-03-29 2017-01-26 同步线性电动机
TW106104440A TWI609556B (zh) 2016-03-29 2017-02-10 同步線性馬達

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-066218 2016-03-29
JP2016066218 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017169046A1 true WO2017169046A1 (ja) 2017-10-05

Family

ID=59963635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002697 WO2017169046A1 (ja) 2016-03-29 2017-01-26 同期リニアモータ

Country Status (7)

Country Link
US (1) US10778077B2 (ja)
JP (1) JP6388080B2 (ja)
KR (1) KR102177893B1 (ja)
CN (1) CN108886317B (ja)
DE (1) DE112017001733B4 (ja)
TW (1) TWI609556B (ja)
WO (1) WO2017169046A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178443A (ja) * 2019-04-18 2020-10-29 三菱電機株式会社 同期リニアモータおよび同期リニアモータの製造方法
JP6804705B1 (ja) * 2020-03-10 2020-12-23 三菱電機株式会社 可動子及びリニアサーボモータ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213661415U (zh) * 2020-09-03 2021-07-09 瑞声科技(南京)有限公司 直线电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332210A (ja) * 1998-05-12 1999-11-30 Nippon Seiko Kk リニアモータ
JP2008514175A (ja) * 2004-09-22 2008-05-01 シーメンス アクチエンゲゼルシヤフト 電気機械
JP2012178955A (ja) * 2011-02-28 2012-09-13 Mitsubishi Electric Corp リニアモータ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100205329B1 (ko) * 1996-05-06 1999-07-01 이해규 리니어 스텝 모터의 가동자 구조
JP2002325421A (ja) * 2001-02-23 2002-11-08 Canon Inc リニアモータ、およびこれを用いたステージ装置、露光装置ならびにデバイス製造方法
KR100820160B1 (ko) * 2006-07-28 2008-04-08 한국전기연구원 흡인력 저감 구조가 적용된 영구자석 여자 횡자속선형전동기
DE102006035674A1 (de) 2006-07-31 2008-02-07 Siemens Ag Linearmotor mit Kraftwelligkeitsausgleich
DE102006043893B4 (de) * 2006-09-19 2008-10-02 Siemens Ag Polzahn mit Permanentmagnet
DE102007021929A1 (de) * 2007-05-10 2008-11-20 Siemens Ag Primärteil mit einer Abdeckung für einen Linearmotor
EP2091137B1 (de) * 2008-02-18 2014-06-25 Siemens Aktiengesellschaft Primärteil und lineare elektrische Maschine mit Kraftwelligkeitsausgleich
EP2091138A1 (de) 2008-02-18 2009-08-19 Siemens Aktiengesellschaft Primärteil und lineare elektrische Maschine mit Kraftwelligkeitsausgleich
CN201667603U (zh) * 2010-03-08 2010-12-08 东南大学 绕组互补磁路对称结构的初级永磁型直线电机
CN103493338B (zh) * 2011-05-23 2016-05-18 三菱电机株式会社 永磁铁式旋转电机
US9281735B2 (en) * 2012-01-05 2016-03-08 Rensselaer Polytechnic Institute Flux-switching linear permanent magnet machine with yokeless translator
WO2015084366A1 (en) * 2013-12-05 2015-06-11 Otis Elevator Company Linear propulsion system
EP3386084B1 (en) * 2017-04-05 2020-11-11 KONE Corporation Linear flux switching permanent magnet motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332210A (ja) * 1998-05-12 1999-11-30 Nippon Seiko Kk リニアモータ
JP2008514175A (ja) * 2004-09-22 2008-05-01 シーメンス アクチエンゲゼルシヤフト 電気機械
JP2012178955A (ja) * 2011-02-28 2012-09-13 Mitsubishi Electric Corp リニアモータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178443A (ja) * 2019-04-18 2020-10-29 三菱電機株式会社 同期リニアモータおよび同期リニアモータの製造方法
JP7224232B2 (ja) 2019-04-18 2023-02-17 三菱電機株式会社 同期リニアモータおよび同期リニアモータの製造方法
JP6804705B1 (ja) * 2020-03-10 2020-12-23 三菱電機株式会社 可動子及びリニアサーボモータ
WO2021181516A1 (ja) * 2020-03-10 2021-09-16 三菱電機株式会社 可動子及びリニアサーボモータ

Also Published As

Publication number Publication date
DE112017001733B4 (de) 2021-12-02
JPWO2017169046A1 (ja) 2018-04-05
CN108886317A (zh) 2018-11-23
KR20180115777A (ko) 2018-10-23
JP6388080B2 (ja) 2018-09-12
TWI609556B (zh) 2017-12-21
US10778077B2 (en) 2020-09-15
KR102177893B1 (ko) 2020-11-12
TW201735502A (zh) 2017-10-01
DE112017001733T5 (de) 2018-12-20
CN108886317B (zh) 2020-03-31
US20190036437A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US8446054B2 (en) Periodic magnetic field generation device, and linear motor and rotary motor using the same
JP3996919B2 (ja) 永久磁石モータ
KR100932017B1 (ko) 이동자 및 관련 3상 선형 모터 시스템
US10700585B2 (en) Linear motor
US8502423B2 (en) Linear motor
US8179001B2 (en) Linear motor armature and linear motor
JP5018945B2 (ja) マルチヘッド形コア付きリニアモータ
JP6388080B2 (ja) 同期リニアモータ
JP2007318839A (ja) リニアモータ
JP5511713B2 (ja) リニアモータ
JP3916048B2 (ja) リニアモータ
US8164223B2 (en) Linear motor mounting structure
CN105009429A (zh) 直线电动机
JP6345355B1 (ja) リニアモータ
JP2001119919A (ja) リニアモータ
JP7466475B2 (ja) リニアモータ
JP7482480B2 (ja) 筒型リニアモータ
JP2002101636A (ja) リニアモータ
JP2024006584A (ja) リニアモータ
JP4756438B2 (ja) リニアモータ
WO2015146874A1 (ja) アクチュエータ、可動子及び電機子
JP2001045736A (ja) リニアモータ
JP2013021819A (ja) リニアモータの固定子
JPS60131069A (ja) リニアモ−タ
JP2004104858A (ja) リニアモータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017533360

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187027416

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773595

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773595

Country of ref document: EP

Kind code of ref document: A1