WO2017168765A1 - インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法 - Google Patents

インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法 Download PDF

Info

Publication number
WO2017168765A1
WO2017168765A1 PCT/JP2016/061640 JP2016061640W WO2017168765A1 WO 2017168765 A1 WO2017168765 A1 WO 2017168765A1 JP 2016061640 W JP2016061640 W JP 2016061640W WO 2017168765 A1 WO2017168765 A1 WO 2017168765A1
Authority
WO
WIPO (PCT)
Prior art keywords
central axis
blade
gas
disk
impeller
Prior art date
Application number
PCT/JP2016/061640
Other languages
English (en)
French (fr)
Inventor
豊隆 吉田
星 徹
洋輔 段本
洋二 秋山
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201680083989.4A priority Critical patent/CN108884754B/zh
Priority to US16/082,855 priority patent/US11313229B2/en
Priority to PCT/JP2016/061640 priority patent/WO2017168765A1/ja
Priority to JP2018508347A priority patent/JP6627129B2/ja
Priority to EP16896982.2A priority patent/EP3412891B1/en
Publication of WO2017168765A1 publication Critical patent/WO2017168765A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an impeller, a turbocharger, and a method for forming a gas flow field in these.
  • a turbocharger rotates a turbine wheel by exhaust gas fed from an engine into a turbine housing.
  • the compressor wheel provided in the compressor housing rotates and compresses air.
  • the air compressed by the compressor is supplied to the engine.
  • the turbine wheel is integrally provided with a disk-shaped disk and a plurality of blades (moving blades) provided on one surface side of the disk at intervals in the circumferential direction.
  • the exhaust gas sent from the engine passes through a scroll flow path provided on the radially outer side of the turbine wheel, swirls in the circumferential direction, flows into the radially inner side, and collides with the blades of the turbine wheel. Thereby, a turbine wheel is rotationally driven.
  • Exhaust gas that collides with the blades of the turbine wheel flows radially inward through a flow path formed between the turbine housing and the disk, and is discharged from the inner peripheral side of the turbine wheel along the central axis of the turbine wheel.
  • the exhaust gas flows through a gas flow path between a disk of the turbine wheel and a shroud provided radially outside the blade.
  • the exhaust gas flow velocity distribution may be non-uniform. If the flow velocity distribution becomes non-uniform in this way, the exhaust gas sent from the trailing edge of the blade will be mixed on the downstream side with a high flow velocity portion and a low flow velocity portion so that the average flow velocity distribution is obtained. Therefore, the exhaust gas is disturbed. Thereby, turbine efficiency will fall.
  • the present invention provides an impeller, a turbocharger, and a method for forming a gas flow field in these that can achieve uniform gas flow velocity distribution in the vicinity of a blade trailing edge of a turbine wheel and increase turbine efficiency. With the goal.
  • the impeller is formed in a disk shape having a disk front surface that gradually goes outward in the radial direction toward the other side in the central axis direction on one side in the central axis direction, and around the central axis.
  • a plurality of discs provided rotatably, and a plurality of discs are provided in the circumferential direction around the central axis on the front surface of the disc, and a gas introduced from a radially outer front edge is guided radially inward while the center A blade that forms a flow path to be discharged from the trailing edge on one side in the axial direction, and the blade is provided at the rear side in the rotational direction of the disk in the blade and at least the rear side of the positive pressure surface on which the gas collides.
  • the recess is depressed toward the front side in the rotational direction of the disk, and the gas is dispersed at the trailing edge over the entire radial direction of the blade.
  • the impeller rotates about the central axis. As the impeller rotates, centrifugal force acts on the gas flowing from the leading edge toward the trailing edge, so that the gas tends to deviate radially outward as it approaches the trailing edge.
  • the concave surface that disperses the gas flowing from the leading edge toward the trailing edge over the entire radial direction of the blade is formed on the pressure surface, so that the gas is biased radially outward. It becomes difficult. As a result, the gas flow is dispersed in the entire radial direction downstream of the trailing edge of the blade, and it is difficult for flow rate imbalance to occur downstream of the trailing edge of the blade, thereby suppressing loss.
  • the impeller is configured such that the concave curved surface of the impeller of the first aspect is formed only in a partial region in the central axis direction including the trailing edge of the blade. Also good.
  • the gas flowing from the leading edge of the blade toward the trailing edge is radial by centrifugal force before the concave curved surface. Even if it is biased to the outside, the flow direction changes by entering the concave curved surface. Thereby, the gas flow can be efficiently controlled in the vicinity of the trailing edge of the blade, and deviation due to centrifugal force can be suppressed.
  • the impeller is the base end of the blade in the impeller according to the first aspect, wherein the concave curved surface has a virtual line connecting the base end of the blade and the tip of the blade.
  • the intermediate part between the part and the tip part may be formed so as to be offset forward in the rotational direction.
  • the gas that is biased radially outward before the concave curved surface flows toward the intermediate portion on the concave curved surface, and further flows to the proximal end side on the radial inner side due to its momentum (inertia). In this way, the gas is efficiently dispersed throughout the radial direction of the blade.
  • the impeller is an impeller according to the first aspect, wherein the concave curved surface is inclined so that a tip end portion of the blade is positioned forward in the rotational direction with respect to a base end portion of the blade. It may be formed as follows. This configuration balances the efficiency in which the gas collides with the pressure surface of the blade and rotates the impeller, and the effect of preventing the gas from being biased radially outward by centrifugal force near the trailing edge of the blade. be able to.
  • the turbocharger is provided on the rotating shaft extending along the axis, and on the first end portion side of the rotating shaft, and the impeller according to any one of the first to fourth aspects.
  • the turbocharger in the turbocharger according to the fifth aspect, is formed in the turbine housing and is continuous in the circumferential direction on the radially outer side of the turbine wheel, and rotates the turbine wheel.
  • a scroll passage through which gas flows, a nozzle passage for guiding the gas radially inward from the scroll passage, and supplying the gas to the turbine wheel, and a vane for adjusting the amount of the gas introduced into the nozzle passage And comprising.
  • the flow tends to be biased radially outward due to the centrifugal force of the impeller.
  • the flow can be prevented from being biased by the impeller having a concave curved surface on the blade. Then, the flow velocity imbalance is unlikely to occur downstream of the trailing edge of the blade, and loss can be suppressed.
  • the impeller is formed in a disk shape having a disk front surface gradually moving outward in the radial direction toward the other side in the central axis direction on one side in the central axis direction, and rotates around the central axis.
  • a plurality of discs provided on the front surface of the disc and spaced from each other in the circumferential direction around the central axis, and a gas introduced from a radially outer front edge centered on the central axis;
  • a flow field that flows from the radially outer side toward the radially inner side is formed in the flow path.
  • the method for forming the gas flow field in the impeller is a disk having a disk front surface that gradually goes outward in the radial direction toward the other side in the central axis direction on one side in the central axis direction.
  • a disc rotatably provided around the central axis, and a plurality of discs provided in the circumferential direction around the central axis in front of the disc, and introduced from a radially outer front edge centered on the central axis.
  • the gas introduced from the front edge forms a flow field in the flow path so as to flow from the radially outer side toward the radially inner side in the vicinity of the rear edge.
  • a method for forming a gas flow field in a turbocharger is provided on a rotating shaft extending along an axis, and on the first end portion side of the rotating shaft.
  • a compressor wheel provided on the second end side of the rotating shaft, a bearing housing that rotatably supports the rotating shaft, a turbine housing that houses the turbine wheel, and the turbine housing
  • a scroll passage that flows in a circumferential direction on the radially outer side of the turbine wheel and flows through the gas for rotationally driving the turbine wheel, and the gas is guided radially inward from the scroll passage.
  • a method of forming a gas flow in a turbocharger wherein the gas introduced from the leading edge during rotation of the disk in a state in which the nozzle flow path is narrowed by the vane is radial in the vicinity of the trailing edge.
  • a flow field that flows from the outside toward the inside in the radial direction is formed in the flow path.
  • the gas flow velocity distribution in the vicinity of the blade trailing edge of the turbine wheel can be made uniform, and the turbine efficiency can be increased.
  • FIG. 6 is a diagram illustrating an analysis result of a gas flow from the leading edge to the trailing edge in the blade illustrated in FIG. 5. It is a figure which shows the analysis result of the flow of the gas which goes to the rear edge from the front edge in the braid
  • FIG. 1 is a cross-sectional view showing the overall configuration of a turbocharger according to an embodiment of the present invention.
  • the turbocharger 10 of this embodiment includes a turbocharger main body 11, a compressor 17, and a turbine 30.
  • the turbocharger 10 is mounted on an automobile or the like as an engine auxiliary machine in such a posture that the rotating shaft 14 extends in the horizontal direction.
  • the turbocharger main body 11 includes a rotating shaft 14, bearings 15 ⁇ / b> A and 15 ⁇ / b> B, and a bearing housing 16.
  • the bearing housing 16 is supported on the vehicle body or the like via a bracket (not shown), the compressor 17, the turbine 30, and the like.
  • the bearing housing 16 has an opening 16a on one end side and an opening 16b on the other end side.
  • the bearings 15 ⁇ / b> A and 15 ⁇ / b> B are provided inside the bearing housing 16.
  • the bearings 15A and 15B support the rotary shaft 14 so as to be rotatable around the central axis C.
  • the first end portion 14a and the second end portion 14b of the rotary shaft 14 protrude outside the bearing housing 16 through the openings 16a and 16b.
  • the compressor 17 is provided on the other end side of the bearing housing 16.
  • the compressor 17 includes a compressor wheel 13 and a compressor housing 18.
  • the compressor wheel 13 is provided on the second end 14 b of the rotating shaft 14 outside the bearing housing 16.
  • the compressor wheel 13 rotates around the central axis C integrally with the rotary shaft 14.
  • the compressor housing 18 is connected to the other end side of the bearing housing 16.
  • the compressor housing 18 accommodates the compressor wheel 13 therein.
  • the turbine 30 is provided on one end side of the bearing housing 16.
  • the turbine 30 includes a turbine wheel (impeller) 12 and a turbine housing 31.
  • the turbine wheel 12 is provided integrally with the first end portion 14 a of the rotating shaft 14 outside the bearing housing 16.
  • the turbine wheel 12 rotates around the central axis C integrally with the rotary shaft 14.
  • the turbine housing 31 is connected to one end side of the bearing housing 16.
  • the turbine housing 31 accommodates the turbine wheel 12 therein.
  • the turbine wheel 12 provided in the turbine 30 rotates around the central axis (axis) C by the flow of exhaust gas (gas) supplied from the engine (not shown) to the turbine 30.
  • the rotating shaft 14 and the compressor wheel 13 rotate around the central axis C integrally with the turbine wheel 12.
  • the compressor wheel 13 provided in the compressor 17 compresses air by rotating. The air compressed by the compressor 17 is supplied to an engine (not shown).
  • FIG. 2 is a cross-sectional view showing a configuration around a turbine wheel constituting the turbocharger.
  • the turbine housing 31 includes a gas introduction part (not shown), a scroll flow path 34, a nozzle flow path 35, and an exhaust part 36.
  • a gas introduction unit (not shown) sends exhaust gas discharged from an engine (not shown) into the scroll flow path 34.
  • the scroll flow path 34 is formed continuously in the circumferential direction on the radially outer side of the turbine wheel 12 continuously from the gas introduction part (not shown).
  • the scroll flow path 34 forms a flow path in which exhaust gas for rotating the turbine wheel 12 flows in the circumferential direction.
  • the nozzle channel 35 is formed on the turbine housing 31 on the side close to the bearing housing 16.
  • the nozzle channel 35 is formed so as to communicate the scroll channel 34 and the turbine wheel 12 in the radial direction over the entire circumference.
  • exhaust gas discharged from the turbine wheel 12 flows.
  • the exhaust part 36 is formed continuously from the outer peripheral part of the turbine wheel 12 in the direction away from the turbocharger main body 11 along the central axis C of the rotating shaft 14.
  • the exhaust gas that has flowed from the gas introduction portion flows in the circumferential direction on the outer peripheral side of the turbine wheel 12 along the scroll flow path 34.
  • the exhaust gas flowing in the circumferential direction in this manner flows radially inward through the nozzle flow path 35 and hits the blades 23 of the turbine wheel 12, whereby the turbine wheel 12 is rotationally driven.
  • the exhaust gas that has passed through the turbine wheel 12 is discharged from the inner peripheral side of the turbine wheel 12 into the exhaust part 36.
  • the nozzle passage 35 is provided with a variable vane mechanism 50 that adjusts the amount of exhaust gas supplied from the scroll passage 34 to the turbine wheel 12 through the nozzle passage 35.
  • the variable vane mechanism 50 includes a nozzle mount 51, a nozzle plate 52, a vane 53, and a drive unit 55.
  • the nozzle mount 51 is provided on the bearing housing 16 side of the nozzle flow path 35 and has an annular plate shape positioned in a plane orthogonal to the central axis C.
  • the nozzle plate 52 is provided on the opposite side of the nozzle flow path 35 from the nozzle mount 51 and spaced from the nozzle mount 51.
  • a nozzle flow path 35 is formed between the nozzle mount 51 and the nozzle plate 52.
  • the vane 53 has a plate shape and is provided between the nozzle mount 51 and the nozzle plate 52.
  • a plurality of vanes 53 are provided at intervals in the circumferential direction in the nozzle flow path 35 continuous in the circumferential direction.
  • Each vane 53 is supported by a shaft 54 penetrating the nozzle mount 51 in the direction of the central axis C so as to be rotatable around the central axis of the shaft 54.
  • the driving unit 55 adjusts the angle of the vane 53 by rotating the shaft 54 protruding from the nozzle mount 51 toward the bearing housing 16.
  • the drive unit 55 is provided on the bearing housing 16 side with respect to the nozzle mount 51.
  • the drive unit 55 includes a drive ring 56 and a link arm 57.
  • the drive ring 56 has an annular shape and is provided on the outer peripheral side in the radial direction from the shaft 54.
  • the drive ring 56 is provided so as to be turnable in the circumferential direction by an actuator (not shown) or the like.
  • the link arm 57 is connected to each shaft 54.
  • Each link arm 57 has one end connected to the shaft 54 and the other end rotatably connected to the drive ring 56.
  • the link arm 57 rotates about the shaft 54 when the drive ring 56 rotates. As a result, the angle of the vane 53 changes around the central axis of the shaft 54.
  • a back plate 41 is provided on the inner side in the radial direction of the nozzle mount 51 so as to close the gap in the outer peripheral portion of the first end portion 14a of the rotating shaft 14.
  • the turbine wheel 12 includes a disk 22 and a blade 23.
  • the disk 22 has a fixed length in the direction of the central axis C, and is fixed to the first end portion 14 a of the rotating shaft 14.
  • the disk 22 has a disk shape extending outward in the radial direction, and is provided so as to be rotatable about the central axis C integrally with the rotary shaft 14.
  • the disk 22 has a disk surface (front surface) 22f on the exhaust part 36 side on one side in the central axis C direction.
  • the disk surface 22f is formed by a concave curved surface that gradually goes from the side closer to the exhaust portion 36 on one side in the central axis C direction toward the bearing housing 16 on the other side in the central axis C direction as it goes outward in the radial direction. .
  • a plurality of blades 23 are provided on the disk surface 22f at intervals in the circumferential direction around the central axis C.
  • the blade 23 has a front edge 23f facing outward in the radial direction and facing the nozzle flow path 35, and a rear edge 23r facing one side in the central axis C direction and facing the exhaust part 36.
  • the blade 23 is formed such that the outer edge 23s on the outer side in the radial direction is close to the nozzle plate 52 located on the outer side in the radial direction.
  • Exhaust gas that flows inward in the radial direction from the nozzle flow path 35 radially outside the turbine wheel 12 is between the disk surface 22f of the disk 22 and the nozzle plate 52 and is adjacent to each other in the circumferential direction. Through the impeller channel 25 between the two. Exhaust gas that has flowed inward in the radial direction from the front edge 23f of the blade 23 changes its flow direction due to the curvature of the disk surface 22f, and is discharged along the central axis C from the rear edge 23r of the blade 23.
  • each blade 23 has only a region S including the trailing edge 23 r on the positive pressure surface 23 p that receives the flow of the exhaust gas flowing from the scroll channel 34 through the nozzle channel 35.
  • a concave curved surface 27 that is recessed toward the front side in the rotational direction R of the turbine wheel 12 is formed.
  • the concave curved surface 27 is such that the intermediate portion 27m of the blade 23 is offset to the front side in the rotational direction R with respect to the base portion (base end portion) 27c on the inner peripheral side of the blade 23 and the distal end portion 27s on the outer peripheral side of the blade 23. It is formed to be curved.
  • the region S where the concave curved surface 27 is formed is relative to the blade length Lc of the blade 23 in the central axis C direction from the position B of the trailing edge 23 r toward the other side in the central axis C direction. For example, it is set up to a position A of 20%.
  • the concave curved surface 27 is formed so that its curvature gradually decreases from the position A to the position B.
  • the concave curved surface 27 may be formed with a constant curvature or may be formed with a free curved surface.
  • the offset dimension W between the straight line (imaginary line) L connecting the root portion 27c and the tip end portion 27s of the blade 23 at the rear edge 23r of the concave curved surface 27 and the intermediate portion 27m of the concave curved surface 27 is
  • the radial dimension (blade height) H (see FIG. 3) of the trailing edge 23r for example, 0.03H ⁇ W ⁇ 0.1H Is preferable.
  • the concave curved surface 27 has a straight line L connecting the root portion 27c and the tip portion 27s with respect to a tangent Ls at the position of the root portion 27c on the outer peripheral surface of the hub 21, for example, 100 ° ⁇ ⁇ ⁇ 140 ° In this range, it is preferable to incline forward in the rotational direction R.
  • the blade 23 when the blade 23 is formed so that the curvature of the concave curved surface 27 is larger than the offset dimension W, the flow of the exhaust gas rising from the disk surface 22f side toward the outer edge 23s is suppressed. The effect of bringing the flow toward the outer edge 23s becomes stronger. However, as an exhaust event, the flow of exhaust gas on the side close to the outer edge 23 s decreases, so that the balance of the flow inside the turbine wheel 12 is lost. This reduces the work of the exhaust gas flow to make the blades 23. This will reduce turbine efficiency. If the blade 23 is formed so that the curvature of the concave curved surface 27 is larger than the offset dimension W, the centrifugal stress applied to the blade surface of the blade 23 becomes excessive, and the strength condition of the blade 23 may not be satisfied. is there.
  • the exhaust gas introduced from the radially outer front edge 23f collides with the positive pressure surface 23p of the blade 23, whereby the turbine wheel 12 has the central axis C. Rotate around. Since the centrifugal force acts on the exhaust gas flowing from the front edge 23f toward the rear edge 23r by the rotation of the turbine wheel 12, the exhaust gas tends to be biased radially outward as it approaches the rear edge 23r. However, since the positive pressure surface 23p of the blade 23 is the concave curved surface 27, the exhaust gas is less likely to be biased radially outward and is dispersed throughout the radial direction.
  • the concave curved surface 27 is formed in the region 23 of the blade 23 only in a part of the central axis C direction including the rear edge 23r.
  • the concave curved surface 27 is formed in the region 23 of the blade 23 only in a part of the central axis C direction including the rear edge 23r.
  • the concave curved surface 27 is formed so that the intermediate portion 27m is offset to the front side in the rotational direction R with respect to the straight line L connecting the root portion 27c of the blade 23 and the tip portion 27s of the blade 23.
  • the exhaust gas that has collided with the pressure surface 23p of the blade 23 is likely to move closer to the intermediate portion 27m side that is recessed most offset and can be prevented from being biased toward the distal end portion 27s side on the radially outer side.
  • the exhaust gas that is biased radially outward before the concave curved surface 27 flows from the radial outer side toward the intermediate portion 27m on the concave curved surface 27, and then the root portion 27c on the radial inner side due to the momentum (inertia) thereof. Also flows to the side. That is, the exhaust gas forms a flow field in the flow path that flows from the radially outer side toward the radially inner side in the vicinity of the trailing edge 32 (for example, in the embodiment). In this way, the exhaust gas is efficiently dispersed throughout the radial direction of the blade 23.
  • the concave curved surface 27 is formed so as to be inclined so that the tip 27 s is located in front of the rotation direction R with respect to the root 27 c of the blade 23.
  • the turbocharger 10 in this embodiment is a variable capacity type in which the gas introduction amount can be adjusted by changing the channel cross-sectional area of the nozzle channel 35 by the vane 53.
  • the nozzle flow path 35 is narrowed by the vane 53.
  • the flow rate of the exhaust gas increases because the nozzle flow path 35 is narrow, and flows into the blade 23 with a strong swirl component. Then, the flow tends to be biased radially outward due to the centrifugal force of the turbine wheel 12.
  • the turbine wheel 12 having the concave curved surface 27 on the blade 23 can prevent the flow from being biased.
  • the efficiency of the turbocharger 10 can be increased in the small flow rate region, and as a result, the performance of the engine that feeds the gas compressed by the turbocharger 10 can be improved.
  • the flow Fh of the exhaust gas flowing from the front edge 23f is biased radially outward near the rear edge 23r due to centrifugal force.
  • the exhaust gas flow F flowing from the front edge 23f is in the vicinity of the rear edge 23r. It flows from the radially outer side to the radially inner side. That is, the exhaust gas forms a flow field in the flow path that flows from the radially outer side toward the radially inner side in the vicinity of the trailing edge 23r. In this way, it was confirmed that by providing the blade 23 with the concave curved surface 27, it is possible to suppress the deviation of the flow F in the vicinity of the trailing edge 23r.
  • the present invention is not limited to the above-described embodiment, and design changes can be made without departing from the spirit of the present invention.
  • the intermediate portion 27m is offset forward in the rotational direction R with respect to the root portion 27c and the tip portion 27s of the blade 23, but the position of the intermediate portion 27m in the radial direction and the intermediate portion 27m
  • the offset dimension W may be changed as appropriate.
  • each part of the turbocharger main body 11, the compressor 17, the turbine 30 and the like of the turbocharger 10 is not limited to those exemplified above, and may be changed to other configurations.
  • the flow rate is adjusted by rotating the vane 53.
  • a slide vane type in which the flow rate is adjusted by letting the vane with a fixed angle appear and disappear in the nozzle flow path may be used.
  • the same configuration as described above can be applied to a turbocharger that does not include flow rate adjustment.
  • This invention can be applied to impellers and turbochargers. According to the present invention, by forming a concave curved surface in a region including at least the trailing edge of the pressure surface of the impeller, the gas flow velocity distribution in the vicinity of the blade trailing edge of the turbine wheel can be made uniform, and the turbine efficiency can be improved. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)

Abstract

タービンホイール(12)は、中心軸(C)回りに回転可能に設けられたディスク(22)と、ディスク面(23f)に周方向に間隔をあけて複数が設けられ、径方向外側の前縁(23f)から導入されるガスを、中心軸(C)方向一方の側の後縁(23r)から排出させるブレード(23)と、備え、ブレード(23)は、後縁(23r)を含む中心軸(C)方向一方の側の領域に、回転方向(R)の後方側の正圧面(23p)が、回転方向(R)の前方側に向かって窪みガスをブレード(23)の径方向全体に分散させる凹曲面(27)を備える。

Description

インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法
 この発明は、インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法に関する。
 例えば特許文献1等に開示されているように、ターボチャージャーは、エンジンからタービンハウジング内に送り込まれる排気ガスによってタービンホイールを回転させる。タービンホイールの回転に伴って、コンプレッサハウジング内に設けられたコンプレッサホイールが回転し、空気を圧縮する。コンプレッサで圧縮された空気は、エンジンに供給される。
 タービンホイールは、円盤状のディスクと、ディスクの一面側に周方向に間隔をあけて複数枚設けられたブレード(動翼)と、を一体に備える。エンジンから送り込まれた排気ガスは、タービンホイールの径方向外側に設けられたスクロール流路を通り、周方向に旋回しつつ、径方向内側に流れ込んでタービンホイールのブレードに衝突する。これにより、タービンホイールが回転駆動される。タービンホイールのブレードに衝突した排気ガスは、タービンハウジングとディスクとの間に形成された流路を通って径方向内側に流れ、タービンホイールの内周側からタービンホイールの中心軸に沿って排出される。
特開2015−31219号公報
 ブレードの後縁近傍において、排気ガスは、タービンホイールのディスクと、ブレードの径方向外側に設けられたシュラウドとの間のガス流路を流れる。このとき、排気ガスの流速分布が不均一となる場合がある。このように流速分布が不均一になると、ブレードの後縁から送り出された排気ガスは、その下流側で、流速の高い部分と流速の低い部分とで流れが混合するようにして流速分布の平均化を図るため、排気ガスに乱れが生じる。これにより、タービン効率が低下してしまう。
 この発明は、タービンホイールのブレード後縁近傍におけるガス流の流速分布の均一化を図り、タービン効率を高めることのできるインペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法を提供することを目的とする。
 この発明の第一態様によれば、インペラは、中心軸方向一方の側に、前記中心軸方向他方の側に向かうに従って漸次径方向外側に向かうディスク正面を有する円盤状をなし、中心軸回りに回転可能に設けられたディスクと、前記ディスク正面に前記中心軸回りの周方向に間隔をあけて複数設けられ、径方向外側の前縁から導入されるガスを径方向内側に導きつつ、前記中心軸方向一方の側の後縁から排出させる流路を形成するブレードと、備え、前記ブレードは、前記ブレードにおいて前記ディスクの回転方向後方側に設けられて前記ガスが衝突する正圧面の少なくとも前記後縁を含む前記中心軸方向一方の側の領域において、前記ディスクの回転方向前方側に向かって窪み、前記ガスを前記後縁で前記ブレードの径方向全体に分散させる凹曲面を備える。
 径方向外側の前縁から導入されるガスがブレードの正圧面に衝突すると、インペラは中心軸回りに回転する。インペラの回転によって、前縁から後縁に向かって流れるガスには遠心力が作用するため、ガスは、後縁に近づくにつれて径方向外側に偏ろうとする。しかし、ブレードの少なくとも後縁を含む領域で、前縁から後縁に向かって流れるガスをブレードの径方向全体に分散させる凹曲面が正圧面に形成されているため、ガスは径方向外側に偏りにくくなる。これにより、ガスの流れは、ブレードの後縁の下流で径方向全体に分散し、ブレードの後縁の下流で流速の不均衡が生じにくく、損失を抑えることができる。
 この発明の第二態様によれば、インペラは、第一態様のインペラにおける前記凹曲面が、前記ブレードの前記後縁を含む前記中心軸方向の一部の領域のみに形成されているようにしてもよい。
 このように、ブレードの後縁を含む一部の領域のみに凹曲面を形成することで、ブレードの前縁から後縁に向かって流れてきたガスは、凹曲面の手前で遠心力によって径方向外側に偏っていたとしても、凹曲面に入り込むことでその流れ方向が変わる。これにより、ブレードの後縁近傍でガスの流れを効率よく制御し、遠心力による偏りを抑えることができる。
 また、ブレードの前縁から後縁までの全体に凹曲面を形成することなく、ガスが遠心力によって偏るのを抑えることができる。これにより、ブレードが複雑な3次元形状を有している場合であっても、ブレードの製作の難度が高まるのを抑えることができる。
 この発明の第三態様によれば、インペラは、第一態様のインペラにおいて、前記凹曲面が、前記ブレードの基端部と前記ブレードの先端部とを結ぶ仮想線に対し、前記ブレードの基端部と前記先端部との間の中間部が、前記回転方向前方側にオフセットするよう形成されているようにしてもよい。
 このように構成することで、ブレードの正圧面に衝突したガスは、最もオフセットして窪んでいる中間部側に寄りやすく、径方向外側の先端部側に偏るのを抑えることができる。さらに、凹曲面の手前で径方向外側に偏っていたガスは、凹曲面で中間部に向かって流れた後、さらにその勢い(慣性)によって径方向内側の基端部側にも流れる。このようにして、ガスは、ブレードの径方向全体に効率よく分散する。
 この発明の第四態様によれば、インペラは、第一態様のインペラにおいて、前記凹曲面は、前記ブレードの基端部に対し、前記ブレードの先端部が前記回転方向前方に位置するよう、傾斜して形成されているようにしてもよい。
 このように構成することで、ガスがブレードの正圧面に衝突してインペラを回転させる効率と、ガスがブレードの後縁近傍で遠心力によって径方向外側に偏るのを抑える効果とのバランスを取ることができる。
 この発明の第五態様によれば、ターボチャージャーは、軸線に沿って延びる回転軸と、前記回転軸の第一端部側に設けられ、第一から第四態様の何れか一つの態様におけるインペラからなるタービンホイールと、前記回転軸の第二端部側に設けられたコンプレッサホイールと、前記回転軸を回転可能に支持する軸受ハウジングと、前記タービンホイールを収容するタービンハウジングと、を備える。
 これにより、ガスが径方向外側に偏りにくくなり径方向全体に分散するため、タービン効率を向上してターボチャージャー全体の効率向上に寄与できる。
 この発明の第六態様によれば、ターボチャージャーは、第五態様のターボチャージャーにおいて、前記タービンハウジングに形成され、前記タービンホイールの径方向外側で周方向に連続し、前記タービンホイールを回転駆動させるガスが流れるスクロール流路と、前記スクロール流路から径方向内側に前記ガスを導き、前記タービンホイールに前記ガスを供給するノズル流路と、前記ノズル流路における前記ガスの導入量を調整するベーンと、を備える。
 このように構成することで、タービンホイールへのガス導入量を調整できる可変容量型となる。可変容量型のターボチャージャーでは、ベーンによってノズル流路が狭められてガスの導入量が小さい小流量領域では、ノズル流路が狭いためにガスの流速が上がり、スクロール流路の方向に強い旋回成分を持ってブレードに流れ込む。すると、インペラの遠心力によって、流れが径方向外側に偏りやすい。これに対し、ブレードに凹曲面を有したインペラにより、流れが偏るのを抑えることができる。すると、ブレードの後縁の下流で、流速の不均衡が生じにくく、損失を抑えることができる。
 この発明の第七態様によれば、インペラは、中心軸方向一方の側に前記中心軸方向他方の側に向かうに従って漸次径方向外側に向かうディスク正面を有する円盤状をなし、中心軸回りに回転可能に設けられたディスクと、前記ディスク正面に前記中心軸回りの周方向に間隔をあけて複数設けられ、前記中心軸を中心とした径方向外側の前縁から導入されるガスを、径方向内側に導きつつ、前記中心軸方向一方の側の後縁から排出させる流路を形成するブレードと備え、前記ディスクの回転時において、前記前縁から導入された前記ガスは、前記後縁近傍において径方向外側から径方向内側に向けて流す流れ場を前記流路に形成している。
 この発明の第八態様において、インペラにおけるガスの流れ場の形成方法は、中心軸方向一方の側に前記中心軸方向他方の側に向かうに従って漸次径方向外側に向かうディスク正面を有する円盤状をなし、中心軸回りに回転可能に設けられたディスクと、前記ディスク正面に前記中心軸回りの周方向に間隔をあけて複数設けられ、前記中心軸を中心とした径方向外側の前縁から導入されるガスを、径方向内側に導きつつ、前記中心軸方向一方の側の後縁から排出させる流路を形成するブレードと備えたインペラにおけるガスの流れ場の形成方法であって、前記ディスクの回転時に、前記前縁から導入された前記ガスは、前記後縁近傍において径方向外側から径方向内側に向けて流すような流れ場を前記流路に形成している。
 この発明の第九態様において、ターボチャージャーにおけるガスの流れ場の形成方法は、軸線に沿って延びる回転軸と、前記回転軸の第一端部側に設けられ、請求項8に記載の流れ場を形成可能なインペラと、前記回転軸の第二端部側に設けられたコンプレッサホイールと、前記回転軸を回転可能に支持する軸受ハウジングと、前記タービンホイールを収容するタービンハウジングと、前記タービンハウジングに形成され、前記タービンホイールの径方向外側で周方向に連続し、前記タービンホイールを回転駆動させるガスが流れるスクロール流路と、前記スクロール流路から径方向内側に前記ガスを導き、前記タービンホイールに前記ガスを供給するノズル流路と、前記ノズル流路における前記ガスの導入量を調整するベーンと、を備えるターボチャージャーにおけるガス流れの形成方法であって、前記ベーンによって前記ノズル流路が狭められた状態において、前記ディスクの回転時に、前記前縁から導入された前記ガスは、前記後縁近傍において径方向外側から径方向内側に向けて流すような流れ場を前記流路に形成する。
 上述したインペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法によれば、タービンホイールのブレード後縁近傍におけるガスの流速分布の均一化を図り、タービン効率を高めることが可能となる。
この発明の実施形態に係るターボチャージャーの全体構成を示す断面図である。 上記ターボチャージャーを構成するタービンホイールの周辺の構成を示す断面図である。 上記タービンホイールのブレードを示す図である。 上記ブレードを、タービンホイールの中心軸方向から見た図である。 解析の比較のために用いた凹曲面を備えないブレードにおける流れの様子を示す図である。 図5に示したブレードにおいて、前縁から後縁に向かうガスの流れの解析結果を示す図である。 上記実施形態で示したブレードにおいて、前縁から後縁に向かうガスの流れの解析結果を示す図である。
 図1は、この発明の実施形態に係るターボチャージャーの全体構成を示す断面図である。
 図1に示すように、この実施形態のターボチャージャー10は、ターボチャージャー本体11と、コンプレッサ17と、タービン30と、を備えている。このターボチャージャー10は、例えば、回転軸14が水平方向に延在するような姿勢で自動車等にエンジンの補機として搭載される。
 ターボチャージャー本体11は、回転軸14と、軸受15A,15Bと、軸受ハウジング16と、を備えている。
 軸受ハウジング16は、ブラケット(図示せず)、コンプレッサ17、タービン30等を介して車体等に支持される。軸受ハウジング16は、その一端側に開口部16aを有し、その他端側に開口部16bを有している。
 軸受15A,15Bは、軸受ハウジング16の内部に設けられている。軸受15A,15Bは、回転軸14を中心軸C回りに回転自在に支持する。
 回転軸14の第一端部14a、第二端部14bは、開口部16a、16bを通して軸受ハウジング16の外部に突出している。
 コンプレッサ17は、軸受ハウジング16の他端側に設けられている。コンプレッサ17は、コンプレッサホイール13と、コンプレッサハウジング18と、を備えている。
 コンプレッサホイール13は、軸受ハウジング16の外部で、回転軸14の第二端部14bに設けられている。コンプレッサホイール13は、回転軸14と一体に中心軸C回りに回転する。
 コンプレッサハウジング18は、軸受ハウジング16の他端側に連結されている。コンプレッサハウジング18は、コンプレッサホイール13を内部に収容している。
 タービン30は、軸受ハウジング16の一端側に設けられている。タービン30は、タービンホイール(インペラ)12と、タービンハウジング31と、を備えている。
 タービンホイール12は、軸受ハウジング16の外部で、回転軸14の第一端部14aに一体に設けられている。タービンホイール12は、回転軸14と一体に中心軸C回りに回転する。
 タービンハウジング31は、軸受ハウジング16の一端側に連結されている。タービンハウジング31は、タービンホイール12を内部に収容している。
 このようなターボチャージャー10は、図示しないエンジンからタービン30に供給される排気ガス(ガス)の流れによってタービン30内に設けられたタービンホイール12が中心軸(軸線)Cを中心に回転する。回転軸14及びコンプレッサホイール13は、タービンホイール12と一体に中心軸Cを中心に回転する。コンプレッサ17内に設けられたコンプレッサホイール13は、回転することによって空気を圧縮する。コンプレッサ17で圧縮された空気は、図示しないエンジンに供給される。
 次に、タービン30のタービンホイール12を含む周辺部位の構成を説明する。
 図2は、ターボチャージャーを構成するタービンホイールの周辺の構成を示す断面図である。
 図2に示すように、タービンハウジング31は、ガス導入部(図示無し)と、スクロール流路34と、ノズル流路35と、排気部36と、を備えている。
 ガス導入部(図示無し)は、エンジン(図示無し)から排出される排気ガスをスクロール流路34に送り込む。
 スクロール流路34は、ガス導入部(図示無し)に連続して、タービンホイール12の径方向外側で周方向に連続して形成されている。スクロール流路34は、タービンホイール12を回転駆動させる排気ガスが周方向に流れる流路を形成する。
 ノズル流路35は、タービンハウジング31において軸受ハウジング16に近い側に形成されている。このノズル流路35は、周方向全周にわたって、スクロール流路34とタービンホイール12とを径方向に連通するよう形成されている。
 排気部36は、タービンホイール12から排出される排気ガスが流れる。排気部36は、タービンホイール12の外周部から、回転軸14の中心軸Cに沿ってターボチャージャー本体11から離間する方向に連続して形成されている。
 このようなタービン30において、ガス導入部(図示無し)から流れ込んだ排気ガスは、スクロール流路34に沿ってタービンホイール12の外周側を周方向に流れる。このように周方向に流れる排気ガスは、ノズル流路35を通って径方向内側に流れ、タービンホイール12のブレード23に当たることで、タービンホイール12が回転駆動される。タービンホイール12を経た排気ガスは、タービンホイール12の内周側から排気部36内に排出される。
 ノズル流路35には、このノズル流路35を通してスクロール流路34からタービンホイール12に供給する排気ガスの量を調整する可変ベーン機構50が設けられている。
 可変ベーン機構50は、ノズルマウント51と、ノズルプレート52と、ベーン53と、駆動部55と、を備えている。
 ノズルマウント51は、ノズル流路35の軸受ハウジング16側に設けられ、中心軸Cに直交する面内に位置する円環プレート状をなしている。
 ノズルプレート52は、ノズル流路35においてノズルマウント51と反対側に、ノズルマウント51と間隔を空けて設けられている。これらノズルマウント51とノズルプレート52との間が、ノズル流路35とされている。
 ベーン53は、板状で、ノズルマウント51とノズルプレート52との間に設けられている。ベーン53は、周方向に連続するノズル流路35において、周方向に間隔を空けて複数が設けられている。各ベーン53は、ノズルマウント51を中心軸C方向に貫通するシャフト54によって、シャフト54の中心軸回りに回転自在に支持されている。
 駆動部55は、ノズルマウント51から軸受ハウジング16側に突出したシャフト54を回転させることによって、ベーン53の角度を調整する。駆動部55は、ノズルマウント51に対し、軸受ハウジング16側に設けられている。駆動部55は、ドライブリング56と、リンクアーム57と、を備えている。
 ドライブリング56は、円環状で、シャフト54よりも径方向外周側に設けられている。ドライブリング56は、アクチュエータ(図示無し)等によって、その周方向に旋回可能に設けられている。
 リンクアーム57は、各シャフト54のそれぞれに連結されている。各リンクアーム57は、一端がシャフト54に連結され、他端がドライブリング56に回動自在に連結されている。リンクアーム57は、ドライブリング56が回転すると、シャフト54を中心として回動する。これによって、ベーン53の角度がシャフト54の中心軸回りに変わる。
 また、ノズルマウント51の径方向内側には、回転軸14の第一端部14aの外周部の隙間を塞ぐバックプレート41が設けられている。
 次に、タービンホイール12の構成について詳述する。
 タービンホイール12は、ディスク22と、ブレード23と、を備える。
 ディスク22は、中心軸C方向に一定長を有し、回転軸14の第一端部14aに固定されている。
 ディスク22は、径方向外側に延びる円盤状をなし、回転軸14と一体に中心軸Cを中心として回転可能に設けられている。ディスク22は、中心軸C方向の一方側の排気部36側に、ディスク面(表面)22fを有している。ディスク面22fは、径方向外側に向かうにしたがって、中心軸C方向一方側の排気部36に近い側から中心軸C方向の他方側の軸受ハウジング16に漸次向かう凹状の湾曲面により形成されている。
 ブレード23は、ディスク面22fに、中心軸C回りの周方向に間隔をあけて複数が設けられている。ブレード23は、径方向外側を向き、ノズル流路35に面する前縁23fと、中心軸C方向一方側を向き、排気部36に面する後縁23rと、を有する。ブレード23は、径方向外側の外縁23sが、径方向外側に位置するノズルプレート52に近接するよう形成されている。
 タービンホイール12の径方向外側のノズル流路35から径方向内側に向かって流入する排気ガスは、ディスク22のディスク面22fとノズルプレート52との間であって、周方向で互いに隣接するブレード23の間のインペラ流路25を通る。ブレード23の前縁23fから径方向内側に向かって流れ込んだ排気ガスは、ディスク面22fの湾曲によって流れの向きを変え、ブレード23の後縁23rから中心軸Cに沿って排出される。
 ここで、図3、図4に示すように、各ブレード23は、スクロール流路34からノズル流路35を経て流入する排気ガスの流れを受ける正圧面23pに、後縁23rを含む領域Sのみに、タービンホイール12の回転方向Rの前方側に向かって窪む凹曲面27が形成されている。
 凹曲面27は、ブレード23の内周側の根元部(基端部)27c、及びブレード23の外周側の先端部27sに対し、ブレード23の中間部27mが、回転方向Rの前方側にオフセットして位置するよう、湾曲して形成されている。
 図3に示すように、凹曲面27が形成される領域Sは、後縁23rの位置Bから中心軸C方向の他方の側に向かって、中心軸C方向におけるブレード23の翼長Lcに対し、例えば20%の位置Aまでの間に設定される。この領域Sにおいて、凹曲面27は、位置Aから位置Bに向かって、その曲率が漸次小さくなるように形成されている。
 なお、凹曲面27は、一定の曲率で形成されていてもよいし、自由曲面で形成されていてもよい。
 図4に示すように、凹曲面27の後縁23rにおけるブレード23の根元部27cと先端部27sとを結んだ直線(仮想線)Lと、凹曲面27の中間部27mとのオフセット寸法Wは、後縁23rの径方向寸法(翼高さ)H(図3参照)に対し、例えば、
 0.03H≦W≦0.1H
とするのが好ましい。
 さらに、凹曲面27は、根元部27cと先端部27sとを結んだ直線Lが、ハブ21の外周面の根元部27cの位置における接線Lsに対し、例えば、
 100°≦θ≦140°
の範囲で、回転方向Rの前方側に傾斜しているのが好ましい。
 ここで、例えば、上記オフセット寸法Wよりも、凹曲面27の曲率が大きくなるようにブレード23を形成すると、翼面をディスク面22f側から外縁23sに向かってせり上がる排気ガスの流れが抑制され、流れを外縁23s側に寄せる効果がより強くなる。しかし、排反事象として、外縁23sに近い側の排気ガスの流れが少なくなることで、タービンホイール12の内部の流れのバランスが崩れる。このことによって排気ガスの流れがブレード23にする仕事が少なくなる。これは、タービン効率を低下させることになってしまう。また、上記オフセット寸法Wよりも凹曲面27の曲率が大きくなるようにブレード23を形成すると、ブレード23の翼面に掛かる遠心応力が過大になり、ブレード23の強度条件を満足できなくなる可能性もある。
 上述した実施形態のタービンホイール12、及びターボチャージャー10によれば、径方向外側の前縁23fから導入される排気ガスがブレード23の正圧面23pに衝突することで、タービンホイール12は中心軸C回りに回転する。タービンホイール12の回転によって、前縁23fから後縁23rに向かって流れる排気ガスには遠心力が作用するため、排気ガスは、後縁23rに近づくにつれて径方向外側に偏ろうとする。しかし、ブレード23の正圧面23pが凹曲面27であるため、排気ガスは径方向外側に偏りにくくなり、径方向全体に分散する。これにより、ブレード23の後縁23rの下流で流速の不均衡が生じにくくなり、損失を抑えることができる。その結果、タービンホイール12のブレード23後縁23rの下流側におけるガスの流速分布の均一化を図り、タービン効率を高めることが可能となる。
 さらに、凹曲面27は、ブレード23において、後縁23rを含む中心軸C方向の一部のみの領域Sに形成されている。このように、ブレード23の後縁23rを含む一部の領域Sのみに凹曲面27を形成することで、ブレード23の前縁23fから後縁23rに向かって流れてきた排気ガスは、凹曲面27の手前で遠心力によって径方向外側に偏っていたとしても、凹曲面27に入り込むことでその流れ方向が変わる。これにより、ブレード23の後縁23r近傍において、排気ガスの流れを効率よく制御し、遠心力による偏りを抑えることができる。
 さらに、ブレード23の前縁23fから後縁23rまでの全体に凹曲面27を形成することなく、排気ガスが遠心力によって偏るのを抑えることができる。これにより、ブレード23が複雑な3次元形状を有している場合であっても、凹曲面27を形成することによってブレード23の製作の難度が高まるのを抑えることができる。
 さらに、凹曲面27が、ブレード23の根元部27cと、ブレード23の先端部27sとを結ぶ直線Lに対し、中間部27mが、回転方向Rの前方側にオフセットするよう形成されている。これにより、ブレード23の正圧面23pに衝突した排気ガスは、最もオフセットして窪んでいる中間部27m側に寄りやすく、径方向外側の先端部27s側に偏るのを抑えることができる。さらに、凹曲面27の手前で径方向外側に偏っていた排気ガスは、凹曲面27において径方向外側から中間部27mに向かって流れた後、その勢い(慣性)によって径方向内側の根元部27c側にも流れる。つまり、排気ガスは、後縁32(例えば、実施形態における)近傍において径方向外側から径方向内側に向けて流すような流れ場を流路に形成している。このようにして、排気ガスは、ブレード23の径方向全体に効率よく分散する。
 さらに、凹曲面27は、ブレード23の根元部27cに対して先端部27sが、回転方向Rの前方に位置するよう、傾斜して形成されている。これにより、排気ガスがブレード23の正圧面23pに衝突することでタービンホイール12を回転させる効率と、排気ガスがブレード23の後縁23r近傍で遠心力によって径方向外側に偏るのを抑える効果とのバランスを取ることができる。
 この実施形態におけるターボチャージャー10は、ベーン53によってノズル流路35の流路断面積を変化させることでガス導入量を調整できる可変容量型となる。可変容量型のターボチャージャー10では、ベーン53によってノズル流路35が狭められている。これによって、ガスの導入量が小さい小流量領域では、ノズル流路35が狭いために排気ガスの流速が上がり、強い旋回成分を持ってブレード23に流れ込む。すると、タービンホイール12の遠心力によって、流れが径方向外側に偏りやすい。これに対し、ブレード23に凹曲面27を有したタービンホイール12により、流れが偏るのを抑えることができる。すると、ブレード23の後縁23rの下流で、流速の不均衡が生じにくく、損失を抑えることができる。
 したがって、小流量領域において、ターボチャージャー10の効率を高めることができ、ひいてはターボチャージャー10で圧縮したガスを送り込むエンジンの性能を高めることが可能となる。
(解析例)
 ここで、上記したような凹曲面27を備えたブレード23における、排気ガスの流れについて、シミュレーションによる解析を行ったので、その結果を示す。
 比較例として、図5に示すように、凹曲面を備えないブレード23Hについても、解析を行った。
 図5、図6に示すように、凹曲面を備えないブレード23Hの場合、前縁23fから流れ込んだ排気ガスの流れFhは、遠心力によって、後縁23r近傍で径方向外側に偏ってしまう。
 これに対し、図3,図7に示すように、上記実施形態で示したように、凹曲面27を備えるブレード23においては、前縁23fから流れ込んだ排気ガスの流れFは、後縁23r近傍で径方向外側から径方向内側に流れている。つまり、排気ガスは、後縁23rの近傍において径方向外側から径方向内側に向けて流すような流れ場を流路に形成している。このようにして、ブレード23に凹曲面27を備えることで、後縁23rの近傍で流れFが偏るのを抑えることができることが確認された。
(その他の実施形態)
 この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、設計変更可能である。
 例えば、凹曲面27において、ブレード23の根元部27c及び先端部27sに対し、中間部27mが回転方向Rの前方にオフセットしているが、径方向における中間部27mの位置や、中間部27mのオフセット寸法Wは、適宜変更してもよい。
 例えば、ターボチャージャー10のターボチャージャー本体11、コンプレッサ17、タービン30等の各部の構成については、上記に例示したものに限らず、他の構成に変更してもよい。
 さらに、上記実施形態では、ベーン53を回転させることによって、流量を調整するようにしたが、角度が固定されたベーンをノズル流路に出没させることで流量を調整するスライドベーン式としてもよい。さらには、流量調整を備えないターボチャージャーにおいても、上記と同様の構成を適用することができる。
 この発明は、インペラ、および、ターボチャージャーに適用できる。この発明によれば、インペラの正圧面の少なくとも後縁を含む領域に凹曲面を形成することで、タービンホイールのブレード後縁近傍におけるガスの流速分布の均一化を図り、タービン効率を高めることができる。
10 ターボチャージャー
11 ターボチャージャー本体
12 タービンホイール(インペラ)
12w タービン翼
13 コンプレッサホイール
14 回転軸
14a 第一端部
14b 第二端部
15A,15B 軸受
16 軸受ハウジング
16a 開口部
16b 開口部
17 コンプレッサ
18 コンプレッサハウジング
21 ハブ
22 ディスク
22f ディスク面(表面)
23 ブレード
23f 前縁
23p 正圧面
23r 後縁
23s 外縁
25 インペラ流路
27 凹曲面
27c 根元部(基端部)
27m 中間部(中間部)
27s 先端部
30 タービン
31 タービンハウジング
31s スクロール形成部
34 スクロール流路
35 ノズル流路
36 排気部
41 バックプレート
50 可変ベーン機構
51 ノズルマウント
52 ノズルプレート
53 ベーン
54 シャフト
55 駆動部
56 ドライブリング
57 リンクアーム
A 位置
B 位置
C 中心軸
L 直線(仮想線)
R 回転方向
S 領域
W オフセット寸法

Claims (9)

  1.  中心軸方向一方の側に、前記中心軸方向他方の側に向かうに従って漸次径方向外側に向かうディスク正面を有する円盤状をなし、中心軸回りに回転可能に設けられたディスクと、
     前記ディスク正面に前記中心軸回りの周方向に間隔をあけて複数設けられ、前記中心軸を中心とした径方向外側の前縁から導入されるガスを、径方向内側に導きつつ、前記中心軸方向一方の側の後縁から排出させる流路を形成するブレードと、備え、
     前記ブレードは、前記ディスクの回転方向後方側に設けられて前記ガスが衝突する正圧面の少なくとも前記後縁を含む前記中心軸方向一方の側の領域に、前記ディスクの回転方向前方側に向かって窪み、前記ガスを前記後縁で前記ブレードの径方向全体に分散させる凹曲面を備えるインペラ。
  2.  前記凹曲面は、前記ブレードの前記後縁を含む前記中心軸方向の一部の領域のみに形成されている、請求項1に記載のインペラ。
  3.  前記凹曲面は、前記ブレードの基端部と前記ブレードの先端部とを結ぶ仮想線に対し、前記ブレードの基端部と前記先端部との間の中間部が、前記回転方向前方側にオフセットするよう形成されている請求項1に記載のインペラ。
  4.  前記凹曲面は、前記ブレードの基端部に対し、前記ブレードの先端部が前記回転方向前方に位置するよう、傾斜して形成されている請求項1に記載のインペラ。
  5.  軸線に沿って延びる回転軸と、
     前記回転軸の第一端部側に設けられ、請求項1から4の何れか一項に記載のインペラからなるタービンホイールと、
     前記回転軸の第二端部側に設けられたコンプレッサホイールと、
     前記回転軸を回転可能に支持する軸受ハウジングと、
     前記タービンホイールを収容するタービンハウジングと、
    を備えるターボチャージャー。
  6.  前記タービンハウジングに形成され、前記タービンホイールの径方向外側で周方向に連続し、前記タービンホイールを回転駆動させるガスが流れるスクロール流路と、
     前記スクロール流路から径方向内側に前記ガスを導き、前記タービンホイールに前記ガスを供給するノズル流路と、
     前記ノズル流路における前記ガスの導入量を調整するベーンと、
    を備える請求項5に記載のターボチャージャー。
  7.  中心軸方向一方の側に前記中心軸方向他方の側に向かうに従って漸次径方向外側に向かうディスク正面を有する円盤状をなし、中心軸回りに回転可能に設けられたディスクと、
     前記ディスク正面に前記中心軸回りの周方向に間隔をあけて複数設けられ、前記中心軸を中心とした径方向外側の前縁から導入されるガスを、径方向内側に導きつつ、前記中心軸方向一方の側の後縁から排出させる流路を形成するブレードと備え、
     前記ディスクの回転時において、前記前縁から導入された前記ガスは、前記後縁近傍において径方向外側から径方向内側に向けて流す流れ場を前記流路に形成しているインペラ。
  8.  中心軸方向一方の側に前記中心軸方向他方の側に向かうに従って漸次径方向外側に向かうディスク正面を有する円盤状をなし、中心軸回りに回転可能に設けられたディスクと、
     前記ディスク正面に前記中心軸回りの周方向に間隔をあけて複数設けられ、前記中心軸を中心とした径方向外側の前縁から導入されるガスを、径方向内側に導きつつ、前記中心軸方向一方の側の後縁から排出させる流路を形成するブレードと備えたインペラにおけるガスの流れ場の形成方法であって、
    前記ディスクの回転時に、
    前記前縁から導入された前記ガスは、前記後縁近傍において径方向外側から径方向内側に向けて流すような流れ場を前記流路に形成しているインペラにおけるガスの流れ場の形成方法。
  9.  軸線に沿って延びる回転軸と、
     前記回転軸の第一端部側に設けられ、請求項8に記載の流れ場を形成可能なインペラと、
     前記回転軸の第二端部側に設けられたコンプレッサホイールと、
     前記回転軸を回転可能に支持する軸受ハウジングと、
     前記タービンホイールを収容するタービンハウジングと、
     前記タービンハウジングに形成され、前記タービンホイールの径方向外側で周方向に連続し、前記タービンホイールを回転駆動させるガスが流れるスクロール流路と、
     前記スクロール流路から径方向内側に前記ガスを導き、前記タービンホイールに前記ガスを供給するノズル流路と、
     前記ノズル流路における前記ガスの導入量を調整するベーンと、
    を備えるターボチャージャーにおけるガス流れの形成方法であって、前記ベーンによって前記ノズル流路が狭められた状態において、前記ディスクの回転時に、前記前縁から導入された前記ガスは、前記後縁近傍において径方向外側から径方向内側に向けて流すような流れ場を前記流路に形成するターボチャージャーにおけるガスの流れ場の形成方法。
PCT/JP2016/061640 2016-03-31 2016-03-31 インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法 WO2017168765A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680083989.4A CN108884754B (zh) 2016-03-31 2016-03-31 叶轮、涡轮增压器及它们中的气体流动场的形成方法
US16/082,855 US11313229B2 (en) 2016-03-31 2016-03-31 Impeller, turbocharger, and method for forming flow field for gas in impeller and turbocharger
PCT/JP2016/061640 WO2017168765A1 (ja) 2016-03-31 2016-03-31 インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法
JP2018508347A JP6627129B2 (ja) 2016-03-31 2016-03-31 インペラ、ターボチャージャー
EP16896982.2A EP3412891B1 (en) 2016-03-31 2016-03-31 Impeller, turbocharger, and method for forming flow field for gas in impeller and turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061640 WO2017168765A1 (ja) 2016-03-31 2016-03-31 インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法

Publications (1)

Publication Number Publication Date
WO2017168765A1 true WO2017168765A1 (ja) 2017-10-05

Family

ID=59962833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061640 WO2017168765A1 (ja) 2016-03-31 2016-03-31 インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法

Country Status (5)

Country Link
US (1) US11313229B2 (ja)
EP (1) EP3412891B1 (ja)
JP (1) JP6627129B2 (ja)
CN (1) CN108884754B (ja)
WO (1) WO2017168765A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112944A4 (en) * 2020-04-23 2023-09-06 Mitsubishi Heavy Industries Marine Machinery & Equipment Co., Ltd. IMPELLER AND CENTRIFUGAL COMPRESSOR

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349202A (ja) * 2001-05-25 2002-12-04 Toyota Central Res & Dev Lab Inc タービンロータ
JP2008128064A (ja) * 2006-11-20 2008-06-05 Mitsubishi Heavy Ind Ltd 斜流タービンまたはラジアルタービン
JP2009191639A (ja) * 2008-02-12 2009-08-27 Toyota Central R&D Labs Inc 可変容量タービン及び可変容量ターボチャージャ
JP2012047085A (ja) * 2010-08-26 2012-03-08 Ihi Corp タービンインペラ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124806A (ja) 1986-11-12 1988-05-28 Mitsubishi Heavy Ind Ltd 輻流タ−ボ機械
DE3801353C1 (ja) * 1988-01-19 1989-03-23 Rhein-Flugzeugbau Gmbh, 4050 Moenchengladbach, De
JPH09296799A (ja) * 1996-05-02 1997-11-18 Mitsubishi Heavy Ind Ltd 遠心圧縮機のインペラ
DE10247358B3 (de) * 2002-10-10 2004-02-12 Künstler, Georg Thermoentzugsturbine
US20090155076A1 (en) * 2007-12-18 2009-06-18 Minebea Co., Ltd. Shrouded Dual-Swept Fan Impeller
JP5035692B2 (ja) 2008-01-18 2012-09-26 哲哉 速水 燃料改質装置及びそれを用いた燃料供給システム
JP2009243395A (ja) * 2008-03-31 2009-10-22 Ihi Corp タービン翼
GB0814764D0 (en) * 2008-08-13 2008-09-17 Cummins Turbo Tech Ltd Engine braking method and system
CN102011614A (zh) * 2010-11-18 2011-04-13 大同北方天力增压技术有限公司 高效混流涡轮
WO2013162896A1 (en) * 2012-04-23 2013-10-31 Borgwarner Inc. Turbocharger shroud with cross-wise grooves and turbocharger incorporating the same
JP2015031219A (ja) 2013-08-05 2015-02-16 株式会社Ihi ラジアルタービン及び過給機
JP6497183B2 (ja) * 2014-07-16 2019-04-10 トヨタ自動車株式会社 遠心圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349202A (ja) * 2001-05-25 2002-12-04 Toyota Central Res & Dev Lab Inc タービンロータ
JP2008128064A (ja) * 2006-11-20 2008-06-05 Mitsubishi Heavy Ind Ltd 斜流タービンまたはラジアルタービン
JP2009191639A (ja) * 2008-02-12 2009-08-27 Toyota Central R&D Labs Inc 可変容量タービン及び可変容量ターボチャージャ
JP2012047085A (ja) * 2010-08-26 2012-03-08 Ihi Corp タービンインペラ

Also Published As

Publication number Publication date
EP3412891A1 (en) 2018-12-12
JPWO2017168765A1 (ja) 2018-12-06
EP3412891B1 (en) 2020-04-22
CN108884754A (zh) 2018-11-23
US20190136694A1 (en) 2019-05-09
US11313229B2 (en) 2022-04-26
JP6627129B2 (ja) 2020-01-08
EP3412891A4 (en) 2019-02-27
CN108884754B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
JP5599528B2 (ja) 遠心圧縮機
EP3372803B1 (en) Adjustable-trim centrifugal compressor for a turbocharger
WO2014102981A1 (ja) ラジアルタービン動翼
US9810225B2 (en) Turbine for turbocharger and method for assembling turbocharger
JP6578617B2 (ja) ターボチャージャー
WO2017168765A1 (ja) インペラ、ターボチャージャー、および、これらにおけるガスの流れ場の形成方法
CN109804148B (zh) 可变喷嘴单元以及增压器
JP6959992B2 (ja) タービン及びターボチャージャ
JP2020186649A (ja) 遠心圧縮機のインペラ、遠心圧縮機及びターボチャージャ
US20180142569A1 (en) Inlet guide wheel for a turbo engine
JP6088134B2 (ja) 超音速圧縮機ロータ及びその組み立て方法
EP3456937B1 (en) Turbocharger
JPWO2020129234A1 (ja) ターボ機械
CN110770449A (zh) 压缩机叶轮、压缩机以及涡轮增压器
WO2021234886A1 (ja) コンプレッサハウジングおよび遠心圧縮機
JP2008163761A (ja) ラジアルタービン
JP2011252431A (ja) タービンインペラ
JPH0666300A (ja) 圧縮機の入口旋回付与装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508347

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2016896982

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896982

Country of ref document: EP

Effective date: 20180906

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896982

Country of ref document: EP

Kind code of ref document: A1