WO2017168680A1 - 交流電力調整器及び交流電力制御方法 - Google Patents
交流電力調整器及び交流電力制御方法 Download PDFInfo
- Publication number
- WO2017168680A1 WO2017168680A1 PCT/JP2016/060668 JP2016060668W WO2017168680A1 WO 2017168680 A1 WO2017168680 A1 WO 2017168680A1 JP 2016060668 W JP2016060668 W JP 2016060668W WO 2017168680 A1 WO2017168680 A1 WO 2017168680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- value
- load
- load factor
- output
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/12—Regulating voltage or current wherein the variable actually regulated by the final control device is ac
- G05F1/40—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
- G05F1/44—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
- G05F1/45—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
Definitions
- the present invention relates to an AC power regulator and an AC power control method for controlling power supply from an AC power supply to a load by phase control.
- While the voltage (effective value) of a commercial AC power supply is a predetermined value (for example, 200V), since various electric devices (loads) have a power that varies depending on the operating state, An AC power regulator that adjusts the voltage of an AC power supply and supplies the load to a load is used.
- Such a power regulator includes a phase control method, a time division control method, an amplitude control method, and the like as its control method.
- control constant power control
- Patent Document 1 discloses a technique related to constant power control in a phase control method.
- the present invention controls an AC power regulator and an AC power control method using a phase control method to follow a load having a resistance value variation due to aging degradation or the like.
- An object of the present invention is to provide an AC power regulator and an AC power control method capable of reducing the cost and downsizing the apparatus.
- An AC power regulator for controlling power supply to a load by phase control, the voltage information of a power source connected to the load set in advance, and a measured value of a current flowing through the load in a past phase control cycle, Based on the phase control information, an output power estimation unit that calculates an output power estimation value, a given target load factor, and a target power supplied to the load when the preset target load factor is 100% Based on the maximum target power value and the estimated output power value, the output power load factor / ignition angle is calculated by calculating the output power load factor obtained by correcting the target load factor and calculating the corresponding firing angle.
- An AC power regulator characterized by performing pseudo constant power control by comprising a calculation unit.
- (Configuration 2) The AC power regulator according to Configuration 1, wherein the phase control information in the past phase control cycle is an ignition angle in the past phase control cycle or an output power load factor in the past phase control cycle.
- (Configuration 3) An output current measuring unit that measures a current flowing through the load; an input unit that receives an input of a current value flowing through the load; and a power supply voltage storage unit in which voltage information of the power supply is set.
- the estimated output voltage is calculated based on the output power load factor in the past phase control cycle or the effective load factor corresponding to the firing angle in the past phase control cycle, and the voltage information of the power source.
- An AC power adjustment according to Configuration 2 wherein the output power estimation value is calculated based on the output voltage estimation value and a current value flowing through the load. vessel.
- Configurations 1 to 3 further comprising a feedback control unit that performs feedback control based on a deviation between the target power calculated from the target load factor and the maximum target power value and the estimated output power value.
- AC power regulator as described in any one.
- An output current measuring unit that measures a current flowing through the load; an input unit that receives an input of a current value flowing through the load; and a power supply voltage storage unit in which voltage information of the power supply is set. , Based on the output power load factor in the past phase control cycle or the effective load factor corresponding to the firing angle in the past phase control cycle, the current value flowing through the load, and the voltage information of the power source. And a maximum firing angle output power estimation unit that calculates a maximum firing angle output power estimation value that is an estimated value of output power when the firing angle is maximum.
- the AC power regulator described.
- An output voltage estimated value is calculated based on the output power load factor in the past phase control cycle or the effective load factor corresponding to the firing angle in the past phase control cycle and the voltage information of the power source.
- a process, a process of calculating the output power estimated value based on a current value obtained by measuring the output voltage estimated value and a current flowing through the load are executed. AC power control method.
- the output power estimated value is calculated based on the voltage information of the power source connected to the preset load and the measured value of the current flowing through the load.
- the target power value product of given target load factor and preset maximum target power value
- FIG. 1 is a schematic block diagram showing the configuration of an AC power regulator according to a first embodiment of the present invention.
- the flowchart which shows the outline of the processing operation regarding the present invention of the alternating current power regulator of Embodiment 1.
- A A graph showing the correspondence of conversion from the average power load factor to the firing angle
- (b) A graph showing the correspondence of conversion from the firing angle to the effective load factor
- the schematic block diagram which shows another structural example of the alternating current power regulator which concerns on this invention
- the schematic block diagram which shows the structure of the alternating current power regulator of Embodiment 2 which concerns on this invention.
- the flowchart which shows the outline of the processing operation regarding the present invention of the alternating current power regulator of Embodiment 2.
- the schematic block diagram which shows another structural example of the alternating current power regulator which concerns on this invention
- FIG. 1 is a block diagram showing an outline of the configuration of the AC power regulator according to the first embodiment of the present invention.
- the AC power regulator 100 according to this embodiment is an AC power regulator that performs phase control to control power supply to a load.
- the AC power regulator 100 of the present embodiment is The preset voltage information of the AC power supply 3, the measured value of the current flowing through the load 2 in the past phase control cycle, and the phase control information in the past phase control cycle (in this embodiment, the phase control of the past phase control cycle)
- Output power estimation unit 120 that calculates an output power estimation value based on the firing angle of the previous phase control cycle as information), A target load factor given from a temperature controller (not shown), a preset maximum target power value (target power supplied to the load when the target load factor is 100%), and an output power estimation value
- An output power load factor / ignition angle calculation unit 110 that calculates an output power load factor ⁇ corrected for the target load factor and calculates an ignition angle ⁇ corresponding to the output power load factor ⁇ ;
- a thyristor ignition processing unit 130 for controlling the thyristor 140 based on the ignition angle ⁇ , A thyristor 140 that switches power supply from the AC power supply 3 to the load 2 by an ignition signal output from the thyristor ignition processing unit
- the ignition angle is a half cycle of AC voltage in the section from the ignition point, which is the timing of turning on a semiconductor element that controls AC power, such as a thyristor, to the 0 V point of the AC voltage at which the element is turned off. Is the ratio of
- the output power estimation unit 120 An output voltage estimator 121 of the previous cycle that calculates an output voltage estimated value based on the load factor of the effective value corresponding to the firing angle ⁇ and the voltage of the AC power supply 3; An output current measuring unit 122 of the previous cycle that receives a signal from the current transformer 4 (external device) and measures an output current flowing through the load 2; The output power estimated value calculation part 123 of the previous cycle which calculates an output power estimated value from an output voltage estimated value and an output current measured value is provided.
- the output voltage estimation unit 121 of the previous cycle is Calculating the load factor of the effective value corresponding to the ignition angle ⁇ , the ignition angle of the previous cycle ⁇ the effective value load factor conversion unit 1211; A power supply voltage storage unit 1212 in which voltage information (effective value) of the AC power supply 3 is set; An output voltage estimated value calculation unit 1213 for the previous cycle that calculates an output voltage estimated value based on the load factor of the effective value and the voltage of the AC power supply 3.
- the output power load factor / ignition angle calculation unit 110 is A maximum target power value storage unit 112 in which a maximum target power value to be given to the load 2 is stored; A target power calculation unit 111 that calculates a target power value based on a target load factor and a maximum target power value given from a temperature controller that is an external device; Based on the deviation between the target power value and the output power estimation value obtained from the output power estimation unit 120 (deviation between the output value and the target value), PID control (feedback control) is performed, and the output power load factor a PID control calculation unit 113 for calculating ⁇ (corrected target load factor); A power load factor for converting the output power load factor ⁇ into the firing angle ⁇ ⁇ the firing angle conversion unit 114.
- each of the above-described configurations may be configured in hardware by a dedicated circuit or the like, or may be realized in software on a general-purpose circuit such as a microcomputer.
- the output current measuring unit 122 in the previous cycle measures the value of the output current in the load 2, but it is fundamental to acquire the output current value output in each control cycle in real time during the control cycle. Therefore, the output current value obtained from the output current measuring unit 122 in the previous cycle is the output current value in the previous control cycle.
- “It is basically impossible to obtain the output current value in real time during the control cycle” means that the current measurement value (AD conversion instantaneous value) that is an instantaneous value obtained based on the sampling period is Because the output current value is obtained during the control cycle and the output current value is calculated based on this, the output current value of the current control cycle (real-time control cycle) can be obtained only at the timing when the current control cycle ends. is there.
- This process (phase control) is for calculating the firing angle ⁇ in the current control cycle, and in principle it is difficult to use the output current value of the current control cycle (real-time control cycle). The value of is used.
- the output power estimation unit 120 is based on the preset voltage of the AC power supply 3, the load factor in the previous control cycle, and the measured value of the output current (output current value in the previous control cycle). Thus, an output power estimated value is calculated. Further, the output power load factor / ignition angle calculation unit 110 calculates the ignition angle ⁇ corresponding to the output power load factor ⁇ based on the given target load factor, the maximum target power value, and the output power estimation value. Specifically, the target power value is calculated by the product of the given target load factor and the maximum target power value, and the deviation between the target power value and the estimated output power in the previous control cycle is calculated. Based on the PID control, the output power load factor ⁇ is calculated, and the call angle ⁇ corresponding to this is obtained. In addition, PID control itself uses the technique used conventionally, The description regarding this is omitted.
- the case where the resistance value is used until it becomes twice the initial value (when the resistance value becomes twice, the life of the heater is described) will be described below.
- the initial resistance value of the load (heater) is 20 ⁇ , it is used until it becomes 40 ⁇ due to aging, and the case where the power supply voltage is 200V will be described as a specific numerical value.
- the load power consumption 1000W (200V ⁇ 40 ⁇ ⁇ 200V) at the maximum firing angle at the resistance value 40 ⁇ judged to be the life of the load is set as the maximum target power value and the target load factor is 100% This will be explained with specific numerical values.
- the target power is 1000 W (1.0 ⁇ (100%) 1000 W), but since there is no information on the previous cycle at the first control cycle, the target load factor (100%) is used as the output power load factor. Since the arc angle is calculated to be 100%, the output power is 2000 W (200 V ⁇ 20 ⁇ ⁇ 200 V). In the second cycle, since the firing angle of the previous cycle is 100%, the calculated value of the effective value load factor is 100%, and the output voltage estimated value of the previous cycle is calculated to be 200V. Further, since the ignition angle of the previous cycle is 100%, the measured current is 10 A (200 V ⁇ 20 ⁇ ), so the estimated output power of the previous cycle is calculated as 2000 W (200 V ⁇ 10 A).
- the target power is 1000 W
- the deviation from the estimated output power is +1000 W.
- the output power load factor of the next cycle becomes a value smaller than 100%.
- the output current is 5 A ( 200V ⁇ 40 ⁇ ), and the output power is 1000 W (200 V ⁇ 5 A).
- the power load factor is 100%
- the measured current is 5 A
- the output power estimation value is 1000 W (200 V ⁇ 5 A)
- the output power continues to be 1000 W.
- the target load factor is 100%
- the output power is the target load factor ⁇ the maximum firing angle output power value. Controlled by value. Further, the problem that the power value at the start of control becomes large when the load resistance value is 20 ⁇ can be easily prevented by the soft start (function of gradually increasing the output), which is a conventional technique.
- the power load factor ⁇ ignition angle conversion unit 114 supports each output power load factor ⁇ for simplification and speedup of calculation.
- the table has a predetermined firing angle ⁇ .
- FIG. 3A shows a graph of the correspondence relationship between the output power load factor ⁇ (the load factor of power (average value)) and the firing angle ⁇ .
- a table corresponding to the correspondence relationship of the graph is provided in the power load factor ⁇ ignition angle conversion unit 114.
- the ignition angle ⁇ effective value load factor conversion unit 1211 in the previous cycle determines the effective value load factor corresponding to each ignition angle ⁇ . Table. FIG. FIG.
- 3B shows a graph of the correspondence relationship between the firing angle ⁇ and the effective value load factor.
- a table corresponding to the correspondence relationship of the graph is provided in the firing angle ⁇ effective value load factor conversion unit 1211 of the previous cycle.
- the firing angle ⁇ is calculated from the output power load factor ⁇ as needed based on the mathematical formula corresponding to the graph of FIG. 3 (or the effective load factor is calculated from the firing angle ⁇ as needed. ).
- each value such as voltage and current in the embodiment is an effective value, and the above-described load factor obtained by converting the firing angle ⁇ is also an effective value load factor.
- the effective value load factor is the maximum value of the effective voltage value and effective current value (the effective value of the voltage applied to the load when the ignition angle is 100% or the effective value of the current flowing through the load). It is a value obtained by normalizing the effective value of the output voltage at the angle ⁇ or the effective value of the output current.
- the target load factor is a signal sent from the temperature controller, and is a load factor as an average power value in the phase control of the constant power control method. That is, the product of the target load factor and the maximum target power value is the target power value (average power value) supplied to the load.
- the output power load factor obtained by correcting the target load factor is also a load factor as an average power value.
- the thyristor ignition processing unit 130 drives the thyristor 140, and turns on the thyristor 140 at the timing of the ignition angle ⁇ input from the output power load factor / ignition angle calculation unit 110.
- the thyristor 140 is turned off at the timing of zero crossing, whereby the power supplied from the AC power source 3 to the load 2 is controlled (constant power phase control is performed).
- a switching element for phase control a thyristor or a triac is generally used, but other various switching elements may be used to perform phase control.
- the output voltage estimated value is obtained by calculating (estimating) the output voltage based on the load factor and the power supply voltage (set value), and the estimated output voltage and the actually measured value are
- the output power estimated value is obtained by estimating the output power from a certain output current value.
- the power supply voltage is different, for example, when a power supply having a very poor quality is used, but usually the fluctuation is not large, and it is in the range of several percent if any.
- the resistance value reaches 3 to 4 times the initial value due to aging (the life is reached when it reaches 3 to 4 times).
- Step 201 is an initialization process, and 1 is substituted for n.
- n is a variable used for convenience of explanation, and is not necessarily required in the actual control processing of the apparatus.
- step 202 it is determined whether or not the control cycle n is 1. If it is 1, the process proceeds to step 203. If it is not 1, the process proceeds to step 204. In the case of the first control cycle, the given target load factor is set as the output power load factor ⁇ (step 202: Yes ⁇ step 203). In the first control cycle, since there is no “previous control cycle”, processing that requires a result in the previous control cycle (feedback control) is skipped.
- the routine proceeds to step 204 where the target power calculation unit 111 sets the target load factor n (target load factor in the nth control cycle.
- the subscript n is the nth control cycle. This indicates that there is, and the following subscripts are also synonymous) and is multiplied by the maximum target power value, and this is set as the target power value n .
- the firing angle ⁇ n ⁇ 1 (processed in step 211 (process of the previous cycle) described later) is stored in the firing angle ⁇ effective value load factor conversion unit 1211 of the previous cycle. Is converted into an execution value load factor n ⁇ 1, and the output voltage estimated value calculation unit 1213 of the previous cycle multiplies the effective value load factor n ⁇ 1 by the power supply voltage obtained from the power supply voltage storage unit 1212.
- the output voltage estimated value n-1 is calculated (steps 205 to 206). Further, the output current flowing through the load 2 is measured by the output current measuring unit 122 in the previous cycle, and the output current measured value n-1 is obtained (step 207).
- the output power estimated value calculation unit 123 in the previous cycle multiplies the output voltage estimated value n ⁇ 1 obtained in steps 205 to 207 by the output current measured value n ⁇ 1 to thereby obtain the output power estimated value n. -1 is calculated (step 208). Note that the processing in steps 204 to 208 is to calculate values (target power value n and output power estimated value n ⁇ 1 ) necessary for the next processing in step 209. As long as the value is calculated, the order of each processing in steps 204 to 208 does not matter.
- step 209 the PID control calculation unit 113 performs PID control based on the deviation between the target power value n obtained in step 204 and the output power estimated value n-1 obtained in step 208.
- the output power load factor ⁇ n is calculated.
- the process of converting the output power load factor ⁇ n to the firing angle ⁇ n is performed in the power load factor ⁇ ignition angle conversion unit 114 (step 210), and the thyristor firing processing unit is based on the firing angle ⁇ n.
- 130 drives the thyristor 140 (step 212). Since the firing angle ⁇ n acquired in step 210 is used in the processing of the next cycle, it is temporarily stored (step 211).
- step 212 The series of processing from step 202 to step 212 is repeated for each control cycle. That is, n is incremented in synchronization with the control cycle (step 213), the process returns to step 202, and the above process is repeated (if the end instruction is given, the process ends (step 214: Yes). ⁇ End)).
- the voltage information of the preset AC power source, the firing angle of the previous cycle, the measured value of the current flowing through the load 2 Based on the output power estimated value, and based on the difference between this and the target power value (the product of a given target load factor and a preset maximum target power value), a pseudo-tracking load variation Constant power control can be performed.
- a pseudo-tracking load variation Constant power control can be performed.
- an AC power regulator that can perform control following a load having a resistance value fluctuation due to aging deterioration or the like, and that can achieve cost reduction and downsizing of the apparatus is obtained. (Transformer for voltage measurement, which has been a burden in terms of cost and required space, can be eliminated).
- the output power estimation unit 120 outputs based on the preset voltage information of the AC power source, the firing angle (the load factor of the effective value corresponding thereto), and the measured value of the current flowing through the load 2. Any device capable of calculating the power estimation value may be used.
- the AC power regulator 100 of FIG. 1 is an example that calculates the output power estimated value n ⁇ 1 by multiplying the output voltage estimated value n ⁇ 1 by the output current measured value n ⁇ 1 . For example, as shown in FIG. 4, the load resistance estimation value n-1 is calculated from the output voltage estimation value n-1 and the output current measurement value n-1 (the load resistance estimation unit 124 of the previous cycle is provided).
- An output power estimated value n-1 is calculated from the load resistance estimated value n-1 and the output voltage estimated value n-1 (the output voltage estimated value n-1 squared is the load resistance estimated value n- ( Divide by 1 ). (Or the square of the output current measurement value n-1 may be multiplied by the load resistance estimation value n-1 , both of which are conceptually similar.)
- FIG. 5 is a block diagram showing an outline of the configuration of the AC power regulator according to the second embodiment of the present invention.
- symbol similar to FIG. 1 is used, and description here is abbreviate
- the output power load factor ⁇ is calculated by calculating the output power estimated value and performing feedback control based on the deviation between the output power estimated value and the target power value.
- the AC power regulator 300 according to the present embodiment calculates an output power estimated value at the maximum firing angle, which is an estimated value of the output power when the firing angle is maximum (100%), and this maximum firing angle.
- the output power load factor ⁇ obtained by correcting the target load factor is calculated based on the estimated output power value and the target power value.
- the AC power adjuster 300 uses the output power estimation unit 120 in the previous cycle maximum firing angle output current estimation unit 125 and the previous cycle maximum firing. And an angular output power estimation unit 126.
- the output power load factor / ignition angle calculation unit 110 uses an output power load factor calculation unit 115 instead of the PID control calculation unit 113. I have.
- the output power estimation unit 120 in the AC power regulator 300 includes an effective load ratio corresponding to the firing angle in the previous control cycle, a current value flowing through the load 2 in the previous control cycle, voltage information of the power source, Based on the above, an output power estimated value at the maximum firing angle is calculated. Therefore, the maximum firing angle output current estimation unit 125 of the previous cycle has an effective value load corresponding to the ignition angle in the previous control cycle obtained from the ignition angle of the previous cycle ⁇ the effective value load factor conversion unit 1211. Based on the rate and the output current measurement value in the previous control cycle obtained from the output current measurement unit 122, the output current in the case of the maximum firing angle (100%) in the previous control cycle is calculated (estimated).
- the maximum firing angle output power estimation unit 126 of the previous cycle is an estimated output current value in terms of the maximum firing angle (100%) in the previous control cycle obtained from the maximum firing angle output current estimation unit 125 of the previous cycle. Based on (maximum firing angle output current estimated value) and the power supply voltage value obtained from the power supply voltage storage unit 1212, the maximum firing angle output power estimated value is calculated. Specifically, the maximum firing angle (100% in the previous control cycle) is obtained by dividing the output current measurement value in the previous control cycle by the effective load factor corresponding to the firing angle in the previous control cycle. ) Calculate the converted output current estimated value (maximum firing angle output current estimated value) and multiply this by the power supply voltage value to calculate the maximum firing angle output power estimated value in the previous control cycle .
- the output power load factor calculation unit 115 in the output power load factor / ignition angle calculation unit 110 includes a target power value obtained from the target power calculation unit 111 and an output at the maximum ignition angle obtained from the output power estimation unit 120. Based on the estimated power value, an output power load factor ⁇ obtained by correcting the target load factor is calculated. Specifically, the output power load factor ⁇ is calculated by dividing the target power value by the estimated output power at the maximum firing angle in the previous control cycle.
- the load power consumption 1000 W (200 V ⁇ 40 ⁇ ⁇ 200 V) when the resistance value determined to be the life of the load becomes 40 ⁇ is set to the maximum target power value, thereby using the load.
- a specific numerical value will explain that the relationship between the target load factor and the power consumption of the load can be kept unchanged from the start to the lifetime.
- the target power is 1000 W (1.0 (100%) ⁇ 1000 W).
- the output power load factor is set to 100%, which is the same as the target load factor.
- the output current becomes 10 A (200 V ⁇ 20 ⁇ ), and the output power becomes 2000 W (200 V ⁇ 10 A).
- the maximum point of the previous control cycle is calculated from the effective load factor 100% of the previous cycle calculated from the firing angle 100% of the first control cycle and the output current measurement value 10A of the first control cycle.
- An arc angle output current estimated value 10A is calculated, and the maximum ignition angle output power estimated value of the previous control cycle is calculated as 2000 W from the value and the power supply voltage (200 V). If the target power is 1000 W, the same as the first control cycle, the output power load factor (target power / maximum firing angle output power estimated value) will be 0.5 (50%).
- the thyristor is turned on with 50% converted to a corner. As a result, the output power becomes 1000 W which is the same as the target power.
- the effective load factor 0.707 (0.5 (50%) square root) of the previous cycle calculated from the firing angle 50% of the second control cycle and the second control cycle From the output current measured value 7.07A (effective value), the maximum firing angle output current estimated value 10A (7.07A ⁇ 0.707 (70.7%)) of the previous control cycle is calculated.
- the output power becomes 1000 W, the same as in the second control cycle. Since the fourth time is the same numerical processing as the third control cycle, the output power is 1000 W, which is the same value as the target power.
- the resistance value of the load is 20 ⁇
- the output power of the second and subsequent control cycles becomes the same value as the target power.
- the output power load factor is set to 100% which is the same as the target load factor, and the value is converted to the firing angle, which is 100%.
- the output current is 5A (200V ⁇ 40 ⁇ ), and the output power is 1000W (200V ⁇ 5A).
- the effective load factor 100% calculated from the firing angle 100% of the previous cycle and the output current estimated value 5A (5A ⁇ 1 (100%) at the maximum firing angle from the output current measurement value 5A of the previous cycle )) Is calculated, and the output power estimated value 1000 W (200 V ⁇ 5 A) of the previous cycle is calculated from the value and the power supply voltage. Since the target power is 1000 W, the output power load factor (target power / maximum firing angle output power estimated value) is 1.0 (100%), and when this value is converted into the firing angle, it becomes 100%. Therefore, the output power is 1000 W which is the same as the target power.
- the target load factor is 100% has been described.
- the output power is the target load factor ⁇ the maximum firing angle output power. Controlled by value. Also, the problem that the power in the first control cycle becomes large when the load resistance value is 20 ⁇ can be easily prevented by the soft start (function of gradually increasing the output), which is a conventional technique.
- step 201 to step 207 is basically the same as in the first embodiment, but in this embodiment, instead of the output voltage estimated value n ⁇ 1 calculation processing (step 206) in the first embodiment, the maximum point The calculation process (step 601) of the output current estimated value n-1 at the arc angle (100%) is executed. As described above, this processing is performed by dividing the output current measurement value n ⁇ 1 by the load factor n ⁇ 1 of the execution value in the maximum firing angle output current estimation unit 125 of the previous cycle.
- step 602 the maximum firing angle output power estimation unit 126 of the previous cycle multiplies the maximum firing angle output current estimated value n-1 by the power supply voltage value obtained from the power supply voltage storage unit 1212. Thus, the maximum firing angle output power estimated value n ⁇ 1 is calculated.
- the output power load factor calculation unit 115 divides the target power value n obtained from the target power calculation unit 111 by the maximum firing angle output power estimated value n-1 calculated in step 602. Thus, the output power load factor ⁇ n is calculated.
- the processing after the output power load factor ⁇ n is calculated is the same as in the first embodiment.
- the circuit for voltage measurement (particularly the transformer) can be deleted as in the first embodiment. It is possible to obtain an AC power regulator in which the size of the device is reduced. In addition, it is possible to obtain a faster response than feedback control such as PID control in the first embodiment.
- the output power estimation unit 120 determines the maximum point based on the preset voltage information of the power source, the firing angle (the load factor of the effective value corresponding thereto), and the measured value of the current flowing through the load 2. What is necessary is just to be able to calculate the estimated output power at the arc angle.
- the maximum firing angle output current estimated value n ⁇ 1 is calculated, and then multiplied by the power supply voltage, whereby the maximum firing angle output power estimated value n ⁇ 1.
- the load resistance estimated value n-1 is calculated from the output voltage estimated value n-1 and the output current measured value n-1 as shown in FIG.
- a cycle load resistance estimation unit 124 is provided, and the maximum firing angle output power estimated value n-1 may be calculated by dividing the square of the power supply voltage by the load resistance estimated value n-1. . (Alternatively, the output current estimated value n-1 at the maximum firing angle may be calculated and squared to be multiplied by the load resistance estimated value n-1 . Both concepts are similar in concept. )
- the firing angle of the previous cycle is used as the “phase control information in the past phase control cycle” by the firing angle of the previous cycle ⁇ the effective value load factor conversion unit 1211 to load the effective value.
- a square root (effective value load factor) of the output power load factor ⁇ of the previous control cycle calculated by the PID control calculation unit 113 and the output power load factor calculation unit 115 is obtained. This may be used as “phase control information in the past phase control cycle”.
- a correct result can be obtained by simply using the square root of the output power load factor ⁇ of the previous control cycle. Absent.
- the output current measurement unit 122 in the previous cycle that receives the signal from the current transformer 4 (external device) and obtains the output current value is taken as an example, but the current transformer 4 is included in the AC power regulator. It may be. Or as an alternating current power regulator, what is provided only with an input part which receives input of an output current value (thing which does not have output current measurement part 122 of the previous cycle), etc. may be sufficient.
- the “previous control cycle (past phase control cycle)” is described as the most recent (previous) cycle.
- Control cycle) is not limited to this, and for example, a few cycles before may be referred to as “previous control cycle (past phase control cycle)".
- each operation of the “current control cycle” is determined based on the measurement value of the most recent (one previous) cycle or the like (each embodiment), for example, the control cycle two cycles before As the “previous control cycle (past phase control cycle)”, even if each operation of the “current control cycle” is determined based on the measured value in the control cycle two cycles before, Absent.
- the output power estimated value (or the maximum firing angle output power estimated value) or each value for calculating the value is calculated as an example for each control cycle. It is not limited to this. For example, if the main purpose is to follow the resistance value over time, it is not always necessary to detect the effect of a change in resistance value for each control cycle.
- the maximum firing angle output power estimation value described in the second embodiment is calculated in a cycle such as a daily unit or a monthly unit, and is stored (in a cycle such as daily or monthly unit) Update), and the target power value is calculated by the target power calculation unit 111 by multiplying the stored maximum firing angle output power estimated value by the target load factor. Good.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Power Conversion In General (AREA)
Abstract
負荷に対する電力供給の制御を位相制御によって行う交流電力調整器において、予め設定された前記負荷に接続される電源の電圧情報と、前記負荷に流れる電流の測定値と、に基づいて、出力電力推定値を算出し、これと目標電力値(与えられる目標負荷率と予め設定された最大目標電力値の積)との相違に基づいて、疑似的な定電力制御を行う。これにより、経年劣化等により抵抗値変動がある負荷に対しても、これに追従した制御をすることが可能であり、且つ、コスト低減及び装置の小型化が図られた交流電力調整器を得ることができる。
Description
本発明は、負荷に対する交流電源からの電力供給の制御を位相制御によって行う交流電力調整器及び交流電力制御方法に関する。
商用の交流電源の電圧(実効値)が所定の値(例えば200V)であるのに対し、種々の電気機器(負荷)では動作状態に応じて必要な電力が変化するものがあるため、商用の交流電源の電圧を調整して負荷に供給する交流電力調整器が利用されている。
このような電力調整器では、その制御方法として、位相制御方式や時分割制御方式、振幅制御方式などがある。また、これらの制御方法の種別とは別に、電源電圧変動や抵抗値変動(経年劣化や温度変化によるもの等)においても入力に比例した電力を出力するための制御(定電力制御)もある。
このような制御方式に関し、特許文献1に位相制御方式における定電力制御に関する技術が開示されている。
このような電力調整器では、その制御方法として、位相制御方式や時分割制御方式、振幅制御方式などがある。また、これらの制御方法の種別とは別に、電源電圧変動や抵抗値変動(経年劣化や温度変化によるもの等)においても入力に比例した電力を出力するための制御(定電力制御)もある。
このような制御方式に関し、特許文献1に位相制御方式における定電力制御に関する技術が開示されている。
定電力制御を用いることにより、電源電圧変動や抵抗値変動が生じても、自動的にこれらに追従した制御が行われるため、例えば炭化ケイ素系のヒーター(経年劣化による抵抗値変動が大きい負荷)に対する電力制御等に好適なものである。
しかしながら、従来の定電力制御においては、負荷における電圧と電流を測定することが必須となるため、そのための回路が必要である。特に電圧測定に必要な部品(主に変圧器)は、コスト及び必要スペースの面で負担となるものであった。
しかしながら、従来の定電力制御においては、負荷における電圧と電流を測定することが必須となるため、そのための回路が必要である。特に電圧測定に必要な部品(主に変圧器)は、コスト及び必要スペースの面で負担となるものであった。
本発明は、上記の点に鑑み、位相制御方式を用いた交流電力調整器、交流電力制御方法において、経年劣化等により抵抗値変動がある負荷に対しても、これに追従して制御をすることが可能であり、コスト低減及び装置の小型化が可能な交流電力調整器及び交流電力制御方法を提供することを目的とする。
(構成1)
負荷に対する電力供給の制御を位相制御によって行う交流電力調整器であって、予め設定された前記負荷に接続される電源の電圧情報と、過去の位相制御サイクルにおける前記負荷に流れる電流の測定値と位相制御情報と、に基づいて、出力電力推定値を算出する出力電力推定部と、与えられた目標負荷率と、予め設定された目標負荷率が100%の時に負荷に供給する目標電力である最大目標電力値と、前記出力電力推定値と、に基づいて、前記目標負荷率を補正した出力電力負荷率を算出し、これに対応する点弧角を算出する出力電力負荷率・点弧角算出部と、を備えることにより、疑似的な定電力制御を行うことを特徴とする交流電力調整器。
負荷に対する電力供給の制御を位相制御によって行う交流電力調整器であって、予め設定された前記負荷に接続される電源の電圧情報と、過去の位相制御サイクルにおける前記負荷に流れる電流の測定値と位相制御情報と、に基づいて、出力電力推定値を算出する出力電力推定部と、与えられた目標負荷率と、予め設定された目標負荷率が100%の時に負荷に供給する目標電力である最大目標電力値と、前記出力電力推定値と、に基づいて、前記目標負荷率を補正した出力電力負荷率を算出し、これに対応する点弧角を算出する出力電力負荷率・点弧角算出部と、を備えることにより、疑似的な定電力制御を行うことを特徴とする交流電力調整器。
(構成2)
前記過去の位相制御サイクルにおける位相制御情報が、過去の位相制御サイクルにおける点弧角または過去の位相制御サイクルにおける出力電力負荷率であることを特徴とする構成1に記載の交流電力調整器。
前記過去の位相制御サイクルにおける位相制御情報が、過去の位相制御サイクルにおける点弧角または過去の位相制御サイクルにおける出力電力負荷率であることを特徴とする構成1に記載の交流電力調整器。
(構成3)
前出力電力推定部が、前記負荷に流れる電流を測定する出力電流測定部、または、前記負荷に流れる電流値の入力を受ける入力部と、前記電源の電圧情報が設定される電源電圧記憶部と、前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記電源の電圧情報と、に基づいて、出力電圧推定値を算出する出力電圧推定部と、を備え、前記出力電圧推定値と、前記負荷に流れる電流値と、に基づいて、前記出力電力推定値を算出することを特徴とする構成2に記載の交流電力調整器。
前出力電力推定部が、前記負荷に流れる電流を測定する出力電流測定部、または、前記負荷に流れる電流値の入力を受ける入力部と、前記電源の電圧情報が設定される電源電圧記憶部と、前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記電源の電圧情報と、に基づいて、出力電圧推定値を算出する出力電圧推定部と、を備え、前記出力電圧推定値と、前記負荷に流れる電流値と、に基づいて、前記出力電力推定値を算出することを特徴とする構成2に記載の交流電力調整器。
(構成4)
前記目標負荷率と前記最大目標電力値とから算出される目標電力と、前記出力電力推定値と、の偏差に基づくフィードバック制御を行うフィードバック制御部を備えることを特徴とする構成1から構成3の何れか1つに記載の交流電力調整器。
前記目標負荷率と前記最大目標電力値とから算出される目標電力と、前記出力電力推定値と、の偏差に基づくフィードバック制御を行うフィードバック制御部を備えることを特徴とする構成1から構成3の何れか1つに記載の交流電力調整器。
(構成5)
前出力電力推定部が、前記負荷に流れる電流を測定する出力電流測定部、または、前記負荷に流れる電流値の入力を受ける入力部と、前記電源の電圧情報が設定される電源電圧記憶部と、前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記負荷に流れる電流値と、前記電源の電圧情報と、に基づいて、点弧角が最大の時の出力電力の推定値である最大点弧角時出力電力推定値を算出する最大点弧角時出力電力推定部と、を備えることを特徴とする構成2に記載の交流電力調整器。
前出力電力推定部が、前記負荷に流れる電流を測定する出力電流測定部、または、前記負荷に流れる電流値の入力を受ける入力部と、前記電源の電圧情報が設定される電源電圧記憶部と、前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記負荷に流れる電流値と、前記電源の電圧情報と、に基づいて、点弧角が最大の時の出力電力の推定値である最大点弧角時出力電力推定値を算出する最大点弧角時出力電力推定部と、を備えることを特徴とする構成2に記載の交流電力調整器。
(構成6)
前記目標負荷率に前記最大目標電力値を乗算した値を、前記最大点弧角時出力電力推定値で除算することで、前記出力電力負荷率を算出することを特徴とする構成5に記載の交流電力調整器。
前記目標負荷率に前記最大目標電力値を乗算した値を、前記最大点弧角時出力電力推定値で除算することで、前記出力電力負荷率を算出することを特徴とする構成5に記載の交流電力調整器。
(構成7)
サイリスタと、前記点弧角に基づいて前記サイリスタを制御するサイリスタ点弧処理部と、を備えることを特徴とする構成1から構成6の何れか1つに記載の交流電力調整器。
サイリスタと、前記点弧角に基づいて前記サイリスタを制御するサイリスタ点弧処理部と、を備えることを特徴とする構成1から構成6の何れか1つに記載の交流電力調整器。
(構成8)
負荷に対する電力供給の制御を位相制御によって行う交流電力制御方法であって、予め設定された前記負荷に接続される電源の電圧情報と、過去の位相制御サイクルにおける前記負荷に流れる電流の測定値と位相制御情報と、に基づいて、出力電力推定値を算出する処理と、与えられた目標負荷率と、予め設定された目標負荷率が100%の時に負荷に供給する目標電力である最大目標電力値と、前記出力電力推定値と、に基づいて、前記目標負荷率を補正した出力電力負荷率を算出する処理と、前記出力電力負荷率に対応する点弧角を算出する処理と、を実行することにより、疑似的な定電力制御を行うことを特徴とする交流電力制御方法。
負荷に対する電力供給の制御を位相制御によって行う交流電力制御方法であって、予め設定された前記負荷に接続される電源の電圧情報と、過去の位相制御サイクルにおける前記負荷に流れる電流の測定値と位相制御情報と、に基づいて、出力電力推定値を算出する処理と、与えられた目標負荷率と、予め設定された目標負荷率が100%の時に負荷に供給する目標電力である最大目標電力値と、前記出力電力推定値と、に基づいて、前記目標負荷率を補正した出力電力負荷率を算出する処理と、前記出力電力負荷率に対応する点弧角を算出する処理と、を実行することにより、疑似的な定電力制御を行うことを特徴とする交流電力制御方法。
(構成9)
前記過去の位相制御サイクルにおける位相制御情報が、過去の位相制御サイクルにおける点弧角または過去の位相制御サイクルにおける出力電力負荷率であることを特徴とする構成8に記載の交流電力制御方法。
前記過去の位相制御サイクルにおける位相制御情報が、過去の位相制御サイクルにおける点弧角または過去の位相制御サイクルにおける出力電力負荷率であることを特徴とする構成8に記載の交流電力制御方法。
(構成10)
前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記電源の電圧情報と、に基づいて、出力電圧推定値を算出する処理と、前記出力電圧推定値と、前記負荷に流れる電流を測定した電流値と、に基づいて、前記出力電力推定値を算出する処理と、を実行することを特徴とする構成9に記載の交流電力制御方法。
前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記電源の電圧情報と、に基づいて、出力電圧推定値を算出する処理と、前記出力電圧推定値と、前記負荷に流れる電流を測定した電流値と、に基づいて、前記出力電力推定値を算出する処理と、を実行することを特徴とする構成9に記載の交流電力制御方法。
(構成11)
前記目標負荷率と前記最大目標電力値とから算出される目標電力と、前記出力電力推定値と、の偏差に基づくフィードバック制御を行うことを特徴とする構成8から構成10の何れか1つに記載の交流電力制御方法。
前記目標負荷率と前記最大目標電力値とから算出される目標電力と、前記出力電力推定値と、の偏差に基づくフィードバック制御を行うことを特徴とする構成8から構成10の何れか1つに記載の交流電力制御方法。
(構成12)
前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記負荷に流れる電流を測定した電流値と、前記電源の電圧情報と、に基づいて、点弧角が最大の時の出力電力の推定値である最大点弧角時出力電力推定値を算出する処理を実行することを特徴とする構成9に記載の交流電力制御方法。
前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記負荷に流れる電流を測定した電流値と、前記電源の電圧情報と、に基づいて、点弧角が最大の時の出力電力の推定値である最大点弧角時出力電力推定値を算出する処理を実行することを特徴とする構成9に記載の交流電力制御方法。
(構成13)
前記目標負荷率に前記最大目標電力値を乗算した値を、前記最大点弧角時出力電力推定値で除算することで、前記出力電力負荷率を算出する処理を実行することを特徴とする構成12に記載の交流電力制御方法。
前記目標負荷率に前記最大目標電力値を乗算した値を、前記最大点弧角時出力電力推定値で除算することで、前記出力電力負荷率を算出する処理を実行することを特徴とする構成12に記載の交流電力制御方法。
本発明の交流電力調整器及び交流電力制御方法によれば、予め設定された負荷に接続される電源の電圧情報と、負荷に流れる電流の測定値と、に基づいて、出力電力推定値を算出し、これと目標電力値(与えられる目標負荷率と予め設定された最大目標電力値の積)との相違に基づいて、疑似的な定電力制御を行うこと可能であるため、経年劣化等により抵抗値変動がある負荷に対しても、これに追従した制御をすることが可能である。且つ、電圧測定のための回路を不要とすることができるため、コストの低減及び装置の小型化を図ることができる。
以下、本発明の実施態様について、図面を参照しながら具体的に説明する。なお、以下の実施態様は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。
<実施形態1>
図1は、本発明に係る実施形態1の交流電力調整器の構成の概略を示すブロック図である。本実施形態の交流電力調整器100は、負荷に対する電力供給の制御を位相制御によって行う交流電力調整器であり、外部装置である温度調節器(図示せず)から入力される目標負荷率(0~100%)に基づいて、負荷2であるヒーターに対する交流電源3からの電力供給の制御を行うものである。
本実施形態の交流電力調整器100は、
予め設定された交流電源3の電圧情報と、過去の位相制御サイクルにおける負荷2に流れる電流の測定値と、過去の位相制御サイクルにおける位相制御情報(本実施形態では過去の位相制御サイクルの位相制御情報として、前の位相制御サイクルの点弧角を使用)と、に基づいて、出力電力推定値を算出する出力電力推定部120と、
温度調節器(図示せず)から与えられた目標負荷率と、予め設定された最大目標電力値(目標負荷率が100%の時に負荷に供給する目標電力)と、出力電力推定値と、に基づいて、目標負荷率を補正した出力電力負荷率θを算出し、当該出力電力負荷率θに対応する点弧角φを算出する出力電力負荷率・点弧角算出部110と、
点弧角φに基づいてサイリスタ140を制御するサイリスタ点弧処理部130と、
前記サイリスタ点弧処理部130が出力する点弧信号により交流電源3から負荷2への電力供給をスイッチングするサイリスタ140と、を備える。
なお、点弧角とは、サイリスタ等の交流電力を制御する半導体素子をオンするタイミングである点弧点から、当該素子がオフになる交流電圧の0V点までの区間の、交流電圧の半サイクルに対する比率の事である。
図1は、本発明に係る実施形態1の交流電力調整器の構成の概略を示すブロック図である。本実施形態の交流電力調整器100は、負荷に対する電力供給の制御を位相制御によって行う交流電力調整器であり、外部装置である温度調節器(図示せず)から入力される目標負荷率(0~100%)に基づいて、負荷2であるヒーターに対する交流電源3からの電力供給の制御を行うものである。
本実施形態の交流電力調整器100は、
予め設定された交流電源3の電圧情報と、過去の位相制御サイクルにおける負荷2に流れる電流の測定値と、過去の位相制御サイクルにおける位相制御情報(本実施形態では過去の位相制御サイクルの位相制御情報として、前の位相制御サイクルの点弧角を使用)と、に基づいて、出力電力推定値を算出する出力電力推定部120と、
温度調節器(図示せず)から与えられた目標負荷率と、予め設定された最大目標電力値(目標負荷率が100%の時に負荷に供給する目標電力)と、出力電力推定値と、に基づいて、目標負荷率を補正した出力電力負荷率θを算出し、当該出力電力負荷率θに対応する点弧角φを算出する出力電力負荷率・点弧角算出部110と、
点弧角φに基づいてサイリスタ140を制御するサイリスタ点弧処理部130と、
前記サイリスタ点弧処理部130が出力する点弧信号により交流電源3から負荷2への電力供給をスイッチングするサイリスタ140と、を備える。
なお、点弧角とは、サイリスタ等の交流電力を制御する半導体素子をオンするタイミングである点弧点から、当該素子がオフになる交流電圧の0V点までの区間の、交流電圧の半サイクルに対する比率の事である。
出力電力推定部120は、
点弧角φに対応する実効値の負荷率と、交流電源3の電圧と、に基づいて、出力電圧推定値を算出する前サイクルの出力電圧推定部121と、
カレントトランス4(外部装置)からの信号を受けて、負荷2に流れる出力電流を測定する前サイクルの出力電流測定部122と、
出力電圧推定値と、出力電流測定値と、から、出力電力推定値を算出する、前サイクルの出力電力推定値算出部123と、を備える。
前サイクルの出力電圧推定部121は、
点弧角φに対応する実効値の負荷率を算出する、前サイクルの点弧角→実効値負荷率変換部1211と、
交流電源3の電圧情報(実効値)が設定される電源電圧記憶部1212と、
実効値の負荷率と、交流電源3の電圧と、に基づいて、出力電圧推定値を算出する、前サイクルの出力電圧推定値算出部1213と、を備える。
点弧角φに対応する実効値の負荷率と、交流電源3の電圧と、に基づいて、出力電圧推定値を算出する前サイクルの出力電圧推定部121と、
カレントトランス4(外部装置)からの信号を受けて、負荷2に流れる出力電流を測定する前サイクルの出力電流測定部122と、
出力電圧推定値と、出力電流測定値と、から、出力電力推定値を算出する、前サイクルの出力電力推定値算出部123と、を備える。
前サイクルの出力電圧推定部121は、
点弧角φに対応する実効値の負荷率を算出する、前サイクルの点弧角→実効値負荷率変換部1211と、
交流電源3の電圧情報(実効値)が設定される電源電圧記憶部1212と、
実効値の負荷率と、交流電源3の電圧と、に基づいて、出力電圧推定値を算出する、前サイクルの出力電圧推定値算出部1213と、を備える。
出力電力負荷率・点弧角算出部110は、
負荷2に与える最大目標電力値が記憶されている最大目標電力値記憶部112と、
外部装置である温度調節器から与えられた目標負荷率と最大目標電力値とに基づいて目標電力値を算出する目標電力算出部111と、
目標電力値と、出力電力推定部120から得られる出力電力推定値と、の間の偏差(出力値と目標値との偏差)に基づいて、PID制御(フィードバック制御)を行い、出力電力負荷率θ(補正された目標負荷率)を算出するPID制御演算部113と、
出力電力負荷率θを、点弧角φに変換する電力負荷率→点弧角変換部114と、を備える。
負荷2に与える最大目標電力値が記憶されている最大目標電力値記憶部112と、
外部装置である温度調節器から与えられた目標負荷率と最大目標電力値とに基づいて目標電力値を算出する目標電力算出部111と、
目標電力値と、出力電力推定部120から得られる出力電力推定値と、の間の偏差(出力値と目標値との偏差)に基づいて、PID制御(フィードバック制御)を行い、出力電力負荷率θ(補正された目標負荷率)を算出するPID制御演算部113と、
出力電力負荷率θを、点弧角φに変換する電力負荷率→点弧角変換部114と、を備える。
なお、上記各構成は、それぞれ専用回路等でハード的に構成されるものであってもよいし、マイコン等の汎用的な回路上でソフトウェア的に実現されるものであってもよい。
前サイクルの出力電流測定部122は、負荷2における出力電流の値を測定するものであるが、各制御サイクルにおいて出力される出力電流値を、その制御サイクル中にリアルタイムに取得することは基本的にはできないので、前サイクルの出力電流測定部122から得られる出力電流値は前の制御サイクルにおける出力電流値である。
“出力電流値を、その制御サイクル中にリアルタイムに取得することは基本的にはできない”とは、サンプリング周期に基づいて得られる瞬時値である電流測定値(AD変換瞬時値)を、一つの制御サイクル中にわたって取得し、これに基づいて出力電流値を算出するため、今回の制御サイクルが終了するタイミングでしか、今回の制御サイクル(リアルタイムの制御サイクル)の出力電流値が得られないからである。
本処理(位相制御)は今回の制御サイクルにおける点弧角φを算出するためのものであり、今回の制御サイクル(リアルタイムの制御サイクル)の出力電流値を用いることが原理的に難しいため前サイクルの値を使用するものである。
“出力電流値を、その制御サイクル中にリアルタイムに取得することは基本的にはできない”とは、サンプリング周期に基づいて得られる瞬時値である電流測定値(AD変換瞬時値)を、一つの制御サイクル中にわたって取得し、これに基づいて出力電流値を算出するため、今回の制御サイクルが終了するタイミングでしか、今回の制御サイクル(リアルタイムの制御サイクル)の出力電流値が得られないからである。
本処理(位相制御)は今回の制御サイクルにおける点弧角φを算出するためのものであり、今回の制御サイクル(リアルタイムの制御サイクル)の出力電流値を用いることが原理的に難しいため前サイクルの値を使用するものである。
上述のごとく、出力電力推定部120は、予め設定された交流電源3の電圧と、前の制御サイクルにおける負荷率と、出力電流の測定値(前の制御サイクルにおける出力電流値)と、に基づいて、出力電力推定値を算出するものである。
また、出力電力負荷率・点弧角算出部110は、与えられた目標負荷率と最大目標電力値と出力電力推定値と、に基づいて、出力電力負荷率θに対応する点弧角φを算出するものであり、具体的には、与えられた目標負荷率と最大目標電力値の積により目標電力値を算出し、当該目標電力値と前の制御サイクルにおける出力電力推定値との偏差に基づいてPID制御を行うことで出力電力負荷率θを算出し、さらにこれに対応する点呼角φを取得するものである。
なお、PID制御自体は従来から用いられている技術を使用するものであり、これに関しての説明は割愛する。
また、出力電力負荷率・点弧角算出部110は、与えられた目標負荷率と最大目標電力値と出力電力推定値と、に基づいて、出力電力負荷率θに対応する点弧角φを算出するものであり、具体的には、与えられた目標負荷率と最大目標電力値の積により目標電力値を算出し、当該目標電力値と前の制御サイクルにおける出力電力推定値との偏差に基づいてPID制御を行うことで出力電力負荷率θを算出し、さらにこれに対応する点呼角φを取得するものである。
なお、PID制御自体は従来から用いられている技術を使用するものであり、これに関しての説明は割愛する。
具体的に、SiCヒーターの劣化を例に、例えば、抵抗値が初期値の2倍になるまで使用する(抵抗値が2倍になったらヒーターの寿命とする)場合で説明すると以下となる。
負荷(ヒーター)の初期の抵抗値が20Ωで、経年劣化で40Ωになるまで使用し、電源電圧が200Vの場合を例として具体的な数値で説明する。
負荷の寿命と判断される抵抗値40Ωにおける最大点弧角時の負荷の消費電力1000W(200V÷40Ω×200V)を、最大目標電力値として設定し、且つ、目標負荷率が100%の場合を具体的数値で説明する。この場合、目標電力は1000W(1.0×(100%)1000W)だが、1回目の制御サイクルの時は前サイクルの情報がないため、目標負荷率(100%)を出力電力負荷率として点弧角を算出すると100%になるので、出力電力は2000Wに(200V÷20Ω×200V)なる。2回目のサイクルでは、前サイクルの点弧角が100%なので、実効値負荷率の算出値は100%になり、前サイクルの出力電圧推定値は200Vと算出される。また、前サイクルの点弧角は100%のため測定電流は10A(200V÷20Ω)になるので、前サイクルの出力電力推定値は2000W(200V×10A)と算出される。一方、目標電力は1000Wであるため、出力電力推定値との偏差は+1000Wになる。この偏差をPID演算すると、次のサイクルの出力電力負荷率は100%より小さな値になる。3回目以降も同様の動作を繰り返して、最終的には出力電力と目標電力が一致する出力電力負荷率50%(点弧角=50%)で安定する。
次に、上記例において負荷の抵抗値が40Ωに劣化した場合について説明する。20Ωの場合と同様に1回目の制御サイクルでは前制御サイクルの情報がないため出力電力負荷率を目標負荷率と同じ100%とすると、点弧角は100%となり、その結果出力電流は5A(200V÷40Ω)、出力電力は1000W(200V×5A)になる。このため、2回目以降のサイクルでは、電力負荷率100%、測定電流は5Aとなり、出力電力推定値は目標電力と同じ1000W(200V×5A)になるので両者の偏差は0Wになり、PID演算しても出力電力負荷率は100%から変化しないため、点弧角は100%のまま維持される。その結果、出力電力は1000Wの状態を継続する。
以上、目標負荷率が100%の場合で説明したが、目標負荷率が0~100%の間の何れの値であっても、出力電力は目標負荷率×最大点弧角時出力電力値の値に制御される。また、負荷抵抗値が20Ωの時に制御開始時の電力値が大きな値になる問題は、従来技術であるソフトスタート(出力を徐々に大きくする機能)等により簡単に防止することが出来る。
負荷(ヒーター)の初期の抵抗値が20Ωで、経年劣化で40Ωになるまで使用し、電源電圧が200Vの場合を例として具体的な数値で説明する。
負荷の寿命と判断される抵抗値40Ωにおける最大点弧角時の負荷の消費電力1000W(200V÷40Ω×200V)を、最大目標電力値として設定し、且つ、目標負荷率が100%の場合を具体的数値で説明する。この場合、目標電力は1000W(1.0×(100%)1000W)だが、1回目の制御サイクルの時は前サイクルの情報がないため、目標負荷率(100%)を出力電力負荷率として点弧角を算出すると100%になるので、出力電力は2000Wに(200V÷20Ω×200V)なる。2回目のサイクルでは、前サイクルの点弧角が100%なので、実効値負荷率の算出値は100%になり、前サイクルの出力電圧推定値は200Vと算出される。また、前サイクルの点弧角は100%のため測定電流は10A(200V÷20Ω)になるので、前サイクルの出力電力推定値は2000W(200V×10A)と算出される。一方、目標電力は1000Wであるため、出力電力推定値との偏差は+1000Wになる。この偏差をPID演算すると、次のサイクルの出力電力負荷率は100%より小さな値になる。3回目以降も同様の動作を繰り返して、最終的には出力電力と目標電力が一致する出力電力負荷率50%(点弧角=50%)で安定する。
次に、上記例において負荷の抵抗値が40Ωに劣化した場合について説明する。20Ωの場合と同様に1回目の制御サイクルでは前制御サイクルの情報がないため出力電力負荷率を目標負荷率と同じ100%とすると、点弧角は100%となり、その結果出力電流は5A(200V÷40Ω)、出力電力は1000W(200V×5A)になる。このため、2回目以降のサイクルでは、電力負荷率100%、測定電流は5Aとなり、出力電力推定値は目標電力と同じ1000W(200V×5A)になるので両者の偏差は0Wになり、PID演算しても出力電力負荷率は100%から変化しないため、点弧角は100%のまま維持される。その結果、出力電力は1000Wの状態を継続する。
以上、目標負荷率が100%の場合で説明したが、目標負荷率が0~100%の間の何れの値であっても、出力電力は目標負荷率×最大点弧角時出力電力値の値に制御される。また、負荷抵抗値が20Ωの時に制御開始時の電力値が大きな値になる問題は、従来技術であるソフトスタート(出力を徐々に大きくする機能)等により簡単に防止することが出来る。
なお、上記の、出力電力負荷率θを点呼角φに変換する処理のため、電力負荷率→点弧角変換部114は、計算の簡単化及び高速化のため各出力電力負荷率θに対応する点弧角φが定められたテーブルを有している。
図3(a)には、出力電力負荷率θ(電力(平均値)の負荷率)と点弧角φの対応関係のグラフを示した。当該グラフの対応関係に応じたテーブルが電力負荷率→点弧角変換部114に備えられるものである。
同様に、前の制御サイクルにおける実効値の負荷率を取得するために、前サイクルの点弧角→実効値負荷率変換部1211は、各点弧角φに対応する実効値の負荷率が定められたテーブルを有している。
図3(b)には、点弧角φと実効値の負荷率の対応関係のグラフを示した。当該グラフの対応関係に応じたテーブルが前サイクルの点弧角→実効値負荷率変換部1211に備えられるものである。
テーブルを保有するのではなく、図3のグラフに対応する数式に基づいて出力電力負荷率θから点弧角φを随時算出する(又は、点弧角φから実効値の負荷率を随時算出する)ものであってもよい。
なお、特にことわりが無い限り、実施形態における電圧や電流等の各値は実効値であり、上述した、点弧角φを変換した負荷率も、実効値の負荷率である。実効値の負荷率とは、電圧実効値、電流実効値の最大値(点弧角が100%の時に負荷に印加される電圧の実効値または、負荷に流れる電流の実効値)で、点弧角φの時の出力電圧の実効値または、出力電流の実効値を正規化した値である。
一方、目標負荷率は、温度調節器から送られてくる信号であり、定電力制御方式の位相制御では平均電力値としての負荷率である。即ち、目標負荷率と最大目標電力値の積は、負荷に供給する目標電力値(平均電力値)になる。目標負荷率を補正した出力電力負荷率も平均電力値としての負荷率である。
図3(a)には、出力電力負荷率θ(電力(平均値)の負荷率)と点弧角φの対応関係のグラフを示した。当該グラフの対応関係に応じたテーブルが電力負荷率→点弧角変換部114に備えられるものである。
同様に、前の制御サイクルにおける実効値の負荷率を取得するために、前サイクルの点弧角→実効値負荷率変換部1211は、各点弧角φに対応する実効値の負荷率が定められたテーブルを有している。
図3(b)には、点弧角φと実効値の負荷率の対応関係のグラフを示した。当該グラフの対応関係に応じたテーブルが前サイクルの点弧角→実効値負荷率変換部1211に備えられるものである。
テーブルを保有するのではなく、図3のグラフに対応する数式に基づいて出力電力負荷率θから点弧角φを随時算出する(又は、点弧角φから実効値の負荷率を随時算出する)ものであってもよい。
なお、特にことわりが無い限り、実施形態における電圧や電流等の各値は実効値であり、上述した、点弧角φを変換した負荷率も、実効値の負荷率である。実効値の負荷率とは、電圧実効値、電流実効値の最大値(点弧角が100%の時に負荷に印加される電圧の実効値または、負荷に流れる電流の実効値)で、点弧角φの時の出力電圧の実効値または、出力電流の実効値を正規化した値である。
一方、目標負荷率は、温度調節器から送られてくる信号であり、定電力制御方式の位相制御では平均電力値としての負荷率である。即ち、目標負荷率と最大目標電力値の積は、負荷に供給する目標電力値(平均電力値)になる。目標負荷率を補正した出力電力負荷率も平均電力値としての負荷率である。
サイリスタ点弧処理部130は、サイリスタ140を駆動するものであり、出力電力負荷率・点弧角算出部110から入力された点弧角φのタイミングにてサイリスタ140をONにする。サイリスタ140はゼロクロスのタイミングでOFFになり、これにより、交流電源3から負荷2へ供給される電力が制御される(定電力位相制御がなされる)。
なお、位相制御用のスイッチング素子としては、サイリスタやトライアックが一般的に使用されているが、その他各種のスイッチング素子を用いて位相制御を行わせるものであっても良い。
なお、位相制御用のスイッチング素子としては、サイリスタやトライアックが一般的に使用されているが、その他各種のスイッチング素子を用いて位相制御を行わせるものであっても良い。
上述から理解されるように、出力電圧推定値とは、負荷率と電源電圧(設定値)に基づいて出力電圧を算出(推定)したものであり、当該推定された出力電圧と、実測値である出力電流値によって、出力電力を推定したものが、出力電力推定値である。
電源電圧は、品質の非常に悪い電源を使用している場合等は別であるが、通常はその変動は大きくなく、あったとしても数%の範囲である。一方、例えば、炭化ケイ素系のヒーターにおいては、経年劣化によって抵抗値が初期値の3~4倍にまで達する(3~4倍に達した時点で寿命とされる)。即ち、“電源電圧変動や負荷変動に対しても入力に比例した電力を出力するための定電力制御”を考えた場合、実質的には、負荷変動対応の方が圧倒的に比重が大きく、電源電圧変動への対応の必要性は高くないといえる。本発明は、今まで特に意識されてこなかったこの点に着目し、出力電圧については測定値でなく、予めの設定値として記憶した電源電圧と、出力した点弧角から算出した推定値を用いることで、コストの低減及び装置の小型化を図るものである。
電源電圧は、品質の非常に悪い電源を使用している場合等は別であるが、通常はその変動は大きくなく、あったとしても数%の範囲である。一方、例えば、炭化ケイ素系のヒーターにおいては、経年劣化によって抵抗値が初期値の3~4倍にまで達する(3~4倍に達した時点で寿命とされる)。即ち、“電源電圧変動や負荷変動に対しても入力に比例した電力を出力するための定電力制御”を考えた場合、実質的には、負荷変動対応の方が圧倒的に比重が大きく、電源電圧変動への対応の必要性は高くないといえる。本発明は、今まで特に意識されてこなかったこの点に着目し、出力電圧については測定値でなく、予めの設定値として記憶した電源電圧と、出力した点弧角から算出した推定値を用いることで、コストの低減及び装置の小型化を図るものである。
次に、以上で説明した構成を有する実施形態1の交流電力調整器100の、本発明に関する処理動作について、図2を参照しつつ説明する。
ステップ201は、初期化処理であり、nに1を代入している。nは制御サイクルを示す整数値であり、n=1であれば1回目の制御サイクル、n=100であれば100回目の制御サイクルを示す。なお、位相制御の制御サイクルは、通常、交流電源電圧の半サイクルと同一であり、本実施形態においても交流電源電圧の半サイクルを制御サイクルとしている。
nは説明の便宜上のために使用している変数であり、実際の装置の制御処理では必ずしも必要ない。
nは説明の便宜上のために使用している変数であり、実際の装置の制御処理では必ずしも必要ない。
ステップ202では、制御サイクルnが1であるか否かを判別し、1であればステップ203へ、1以外であればステップ204へと移行する。
1回目の制御サイクルの場合には、与えられた目標負荷率を出力電力負荷率θとする(ステップ202:Yes→ステップ203)。
1回目の制御サイクルにおいては、“前の制御サイクル”が存在しないため、前の制御サイクルにおける結果を必要とする処理(フィードバック制御)をスキップしているものである。
1回目の制御サイクルの場合には、与えられた目標負荷率を出力電力負荷率θとする(ステップ202:Yes→ステップ203)。
1回目の制御サイクルにおいては、“前の制御サイクル”が存在しないため、前の制御サイクルにおける結果を必要とする処理(フィードバック制御)をスキップしているものである。
一方、2回目以降の制御サイクルである場合、ステップ204へと移行し、目標電力算出部111において、目標負荷率n(n回目の制御サイクルにおける目標負荷率。添字nはn回目の制御サイクルであることを示すものであり、以降の各添字も同義)に、最大目標電力値を乗算し、これを目標電力値nとする。
前サイクルの出力電圧推定部121では、前サイクルの点弧角→実効値負荷率変換部1211において点弧角φn-1(後に説明するステップ211の処理(前サイクルの処理)によって記憶されている)を実行値の負荷率n-1に変換し、前サイクルの出力電圧推定値算出部1213において、実効値の負荷率n-1に電源電圧記憶部1212から得られる電源電圧を乗算することにより、出力電圧推定値n-1を算出する(ステップ205~206)。
また、前サイクルの出力電流測定部122によって、負荷2に流れる出力電流を測定し、出力電流測定値n-1を取得する(ステップ207)。
また、前サイクルの出力電流測定部122によって、負荷2に流れる出力電流を測定し、出力電流測定値n-1を取得する(ステップ207)。
前サイクルの出力電力推定値算出部123では、ステップ205~207によって得られた、出力電圧推定値n-1と、出力電流測定値n-1と、を乗算することにより、出力電力推定値n-1を算出する(ステップ208)。
なお、ステップ204~208の処理は、次のステップ209の処理に必要な値(目標電力値nと出力電力推定値n-1)を算出しているものであり、ステップ209の前にこれらの値が算出されるものであれば、ステップ204~208の各処理の順番の前後は問わない。
なお、ステップ204~208の処理は、次のステップ209の処理に必要な値(目標電力値nと出力電力推定値n-1)を算出しているものであり、ステップ209の前にこれらの値が算出されるものであれば、ステップ204~208の各処理の順番の前後は問わない。
ステップ209では、PID制御演算部113において、ステップ204で得られた目標電力値nと、ステップ208で得られた出力電力推定値n-1と、の偏差に基づいて、PID制御を行うことで、出力電力負荷率θnを算出する。
当該出力電力負荷率θnを点弧角φnに変換する処理を電力負荷率→点弧角変換部114において行い(ステップ210)、当該点弧角φnに基づいて、サイリスタ点弧処理部130がサイリスタ140を駆動する(ステップ212)。ステップ210で取得した点弧角φnは、次サイクルの処理で使用するため、これを一時記憶しておく(ステップ211)。
当該出力電力負荷率θnを点弧角φnに変換する処理を電力負荷率→点弧角変換部114において行い(ステップ210)、当該点弧角φnに基づいて、サイリスタ点弧処理部130がサイリスタ140を駆動する(ステップ212)。ステップ210で取得した点弧角φnは、次サイクルの処理で使用するため、これを一時記憶しておく(ステップ211)。
上記のステップ202~ステップ212の一連の処理が、制御サイクル毎に繰り返される。即ち、制御サイクルに同期してnをインクリメント(ステップ213)してステップ202へと戻り、上記処理を繰り返すものである(なお、終了指示があった場合には処理を終了する(ステップ214:Yes→終了))。
以上の構成及び処理動作を備える本実施形態の交流電力調整器100によれば、予め設定された交流電源の電圧情報と、前サイクルの点弧角と、負荷2に流れる電流の測定値と、に基づいて、出力電力推定値を算出し、これと目標電力値(与えられる目標負荷率と予め設定された最大目標電力値の積)との相違に基づいて、負荷変動に追従した疑似的な定電力制御を行うことができる。これにより、経年劣化等により抵抗値変動がある負荷に対しても、これに追従した制御をすることが可能であり、且つ、コスト低減及び装置の小型化が図られた交流電力調整器を得ることができる(コスト及び必要スペースの面で負担となっていた、電圧測定のための変圧器を削除することができる)。
具体的な適用用途としては、炭化ケイ素系のヒーター等の経年劣化による抵抗値変動が大きい負荷において好適であるが、その他の要因で負荷変動があるもの(例えば温度変化に伴い抵抗値変動がある負荷等)に対しても有効である。
具体的な適用用途としては、炭化ケイ素系のヒーター等の経年劣化による抵抗値変動が大きい負荷において好適であるが、その他の要因で負荷変動があるもの(例えば温度変化に伴い抵抗値変動がある負荷等)に対しても有効である。
なお、出力電力推定部120は、予め設定された交流電源の電圧情報と、点弧角(に対応する実効値の負荷率)と、負荷2に流れる電流の測定値と、に基づいて、出力電力推定値を算出できるものであればよい。図1の交流電力調整器100では、出力電圧推定値n-1と、出力電流測定値n-1と、を乗算することにより、出力電力推定値n-1を算出するものを例としているが、例えば図4に示したように、出力電圧推定値n-1と、出力電流測定値n-1とから、負荷抵抗推定値n-1を算出し(前サイクルの負荷抵抗推定部124を設け)、負荷抵抗推定値n-1と、出力電圧推定値n-1と、から出力電力推定値n-1を算出(出力電圧推定値n-1を2乗したものを負荷抵抗推定値n-1で除算)してもよい。(または、出力電流測定値n-1を2乗したものに、負荷抵抗推定値n-1を乗算してもよい。何れも概念としては同様である。)
本実施形態では、フィードバック制御の一例としてPID制御をするものを例としているが、その他のフィードバック制御(例えばPI制御等)を用いるものであってよい。
<実施形態2>
図5は、本発明に係る実施形態2の交流電力調整器の構成の概略を示すブロック図である。実施形態1と同様の構成については、図1と同様の符号を使用し、ここでの説明を省略若しくは簡略化する。
図5は、本発明に係る実施形態2の交流電力調整器の構成の概略を示すブロック図である。実施形態1と同様の構成については、図1と同様の符号を使用し、ここでの説明を省略若しくは簡略化する。
実施形態1の交流電力調整器100では、出力電力推定値を算出して、これと目標電力値との偏差に基づいてフィードバック制御を行う事で、出力電力負荷率θを算出しているのに対し、本実施形態の交流電力調整器300では、点弧角が最大(100%)の時の出力電力の推定値である最大点弧角時出力電力推定値を算出し、この最大点弧角時出力電力推定値と、目標電力値とに基づいて、目標負荷率を補正した出力電力負荷率θを算出するものである。
交流電力調整器300は、最大点弧角時出力電力推定値を算出するために、出力電力推定部120において、前サイクルの最大点弧角時出力電流推定部125と、前サイクルの最大点弧角時出力電力推定部126と、を備えている。
また、最大点弧角時出力電力推定値を用いた補正処理を行うために、出力電力負荷率・点弧角算出部110において、PID制御演算部113に替えて出力電力負荷率算出部115を備えている。
交流電力調整器300は、最大点弧角時出力電力推定値を算出するために、出力電力推定部120において、前サイクルの最大点弧角時出力電流推定部125と、前サイクルの最大点弧角時出力電力推定部126と、を備えている。
また、最大点弧角時出力電力推定値を用いた補正処理を行うために、出力電力負荷率・点弧角算出部110において、PID制御演算部113に替えて出力電力負荷率算出部115を備えている。
交流電力調整器300における出力電力推定部120は、前の制御サイクルにおける点弧角に対応する実効値の負荷率と、前の制御サイクルにおける負荷2に流れる電流値と、電源の電圧情報と、に基づいて、最大点弧角時出力電力推定値を算出するものである。
そのために、前サイクルの最大点弧角時出力電流推定部125では、前サイクルの点弧角→実効値負荷率変換部1211から得られる前の制御サイクルにおける点弧角に対応する実効値の負荷率と、出力電流測定部122から得られる前の制御サイクルにおける出力電流測定値と、に基づいて、前の制御サイクルにおける最大点弧角(100%)の場合の出力電流が算出(推定)される。
前サイクルの最大点弧角時出力電力推定部126は、前サイクルの最大点弧角時出力電流推定部125から得られる前の制御サイクルにおける最大点弧角(100%)換算の出力電流推定値(最大点弧角時出力電流推定値)と、電源電圧記憶部1212から得られる電源電圧値に基づいて、最大点弧角時出力電力推定値を算出する。
具体的には、前の制御サイクルにおける出力電流測定値を、前の制御サイクルにおける点弧角に対応する実効値の負荷率で除算することにより、前の制御サイクルにおける最大点弧角(100%)換算の出力電流推定値(最大点弧角時出力電流推定値)を算出し、これに電源電圧値を乗算することで、前の制御サイクルにおける最大点弧角時出力電力推定値を算出する。
また、出力電力負荷率・点弧角算出部110における出力電力負荷率算出部115は、目標電力算出部111から得られる目標電力値と、出力電力推定部120から得られる最大点弧角時出力電力推定値と、に基づいて、目標負荷率を補正した出力電力負荷率θを算出する。
具体的には、目標電力値を、前の制御サイクルにおける最大点弧角時出力電力推定値で除算することにより、出力電力負荷率θを算出する。
そのために、前サイクルの最大点弧角時出力電流推定部125では、前サイクルの点弧角→実効値負荷率変換部1211から得られる前の制御サイクルにおける点弧角に対応する実効値の負荷率と、出力電流測定部122から得られる前の制御サイクルにおける出力電流測定値と、に基づいて、前の制御サイクルにおける最大点弧角(100%)の場合の出力電流が算出(推定)される。
前サイクルの最大点弧角時出力電力推定部126は、前サイクルの最大点弧角時出力電流推定部125から得られる前の制御サイクルにおける最大点弧角(100%)換算の出力電流推定値(最大点弧角時出力電流推定値)と、電源電圧記憶部1212から得られる電源電圧値に基づいて、最大点弧角時出力電力推定値を算出する。
具体的には、前の制御サイクルにおける出力電流測定値を、前の制御サイクルにおける点弧角に対応する実効値の負荷率で除算することにより、前の制御サイクルにおける最大点弧角(100%)換算の出力電流推定値(最大点弧角時出力電流推定値)を算出し、これに電源電圧値を乗算することで、前の制御サイクルにおける最大点弧角時出力電力推定値を算出する。
また、出力電力負荷率・点弧角算出部110における出力電力負荷率算出部115は、目標電力算出部111から得られる目標電力値と、出力電力推定部120から得られる最大点弧角時出力電力推定値と、に基づいて、目標負荷率を補正した出力電力負荷率θを算出する。
具体的には、目標電力値を、前の制御サイクルにおける最大点弧角時出力電力推定値で除算することにより、出力電力負荷率θを算出する。
実施形態1と同様の例で具体的に説明をする。
実施形態1と同様に、負荷の寿命と判断される抵抗値が40Ωになった時の負荷の消費電力1000W(200V÷40Ω×200V)を、最大目標電力値に設定することにより、負荷の使用開始時から寿命までの間、目標負荷率と負荷の消費電力の関係が変化しないように出来ることを具体的数値で説明する。初めに、負荷の抵抗値が初期値の20Ωで且つ、目標負荷率が100%の場合を説明する。この場合の目標電力は1000W(1.0(100%)×1000W)となるが、1回目の制御サイクルでは前サイクルの情報がないため出力電力負荷率を目標負荷率と同じ100%として、その値を点弧角に変換した100%でサイリスタをオンすると、出力電流は10A(200V÷20Ω)になり、出力電力は2000W(200V×10A)になる。2回目のサイクルでは、1回目の制御サイクルの点弧角100%から算出した前サイクルの実効値負荷率100%と、1回目の制御サイクルの出力電流測定値10Aから、前制御サイクルの最大点弧角時出力電流推定値10Aを算出し、その値と電源電圧(200V)から前制御サイクルの最大点弧角時出力電力推定値を2000Wと算出する。また、目標電力は1回目の制御サイクルと同じ1000Wとすると、出力電力負荷率(目標電力÷最大点弧角時出力電力推定値)は0.5(50%)になり、この値を点弧角に変換した50%で、サイリスタをオンにする。その結果、出力電力は目標電力と同じ1000Wになる。3回目の制御サイクルでは、2回目の制御サイクルの点弧角50%から算出した前サイクルの実効値負荷率0.707(0.5(50%)の平方根)と、2回目の制御サイクルの出力電流測定値7.07A(実効値)から、前制御サイクルの最大点弧角時出力電流推定値10A(7.07A÷0.707(70.7%))を算出する。この値と電源電圧の積から算出した前サイクルの最大点弧角時出力電力推定値2000Wと目標電力1000W(1回目の制御サイクルと同じ)から、出力電力負荷率50%(1000W÷2000W=0.5)を算出する。この値を点弧角に変換した50%でサイリスタをオンにすると、出力電力は2回目の制御サイクルと同じ1000Wになる。4回目は3回目の制御サイクルと同じ数値処理になるので出力電力は目標電力と同じ値の1000Wになる。以上のように、負荷の抵抗値が20Ωの場合には、2回目以降の制御サイクルの出力電力は目標電力と同じ値になる。
次に、上記具体例において負荷の抵抗値が40Ωに劣化した場合について説明する。負荷抵抗が20Ωの時と同様に、1回目の制御サイクルでは前サイクルの情報がないため出力電力負荷率を目標負荷率と同じ100%として、その値を点弧角に変換すると100%なので、出力電流は5A(200V÷40Ω)になり、出力電力は1000W(200V×5A)になる。2回目のサイクルでは、前サイクルの点弧角100%から算出した実効値負荷率100%と前サイクルの出力電流測定値5Aから最大点弧角時出力電流推定値5A(5A÷1(100%))を算出し、その値と電源電圧から前サイクルの出力電力推定値1000W(200V×5A)を算出する。また、目標電力は1000Wなので、出力電力負荷率(目標電力÷最大点弧角時出力電力推定値)は1.0(100%)になり、この値を点弧角に変換すると100%になるため出力電力は目標電力と同じ1000Wになる。3回目以降も同様の結果になる。
以上、目標負荷率が100%の場合で説明したが、目標負荷率が0~100%の間のどの様な値であっても、出力電力は目標負荷率×最大点弧角時出力電力の値に制御される。また、負荷抵抗値が20Ωの時に1回目の制御サイクルにおける電力が大きな値になる問題は、従来技術であるソフトスタート(出力を徐々に大きくする機能)等により簡単に防止することが出来る。
実施形態1と同様に、負荷の寿命と判断される抵抗値が40Ωになった時の負荷の消費電力1000W(200V÷40Ω×200V)を、最大目標電力値に設定することにより、負荷の使用開始時から寿命までの間、目標負荷率と負荷の消費電力の関係が変化しないように出来ることを具体的数値で説明する。初めに、負荷の抵抗値が初期値の20Ωで且つ、目標負荷率が100%の場合を説明する。この場合の目標電力は1000W(1.0(100%)×1000W)となるが、1回目の制御サイクルでは前サイクルの情報がないため出力電力負荷率を目標負荷率と同じ100%として、その値を点弧角に変換した100%でサイリスタをオンすると、出力電流は10A(200V÷20Ω)になり、出力電力は2000W(200V×10A)になる。2回目のサイクルでは、1回目の制御サイクルの点弧角100%から算出した前サイクルの実効値負荷率100%と、1回目の制御サイクルの出力電流測定値10Aから、前制御サイクルの最大点弧角時出力電流推定値10Aを算出し、その値と電源電圧(200V)から前制御サイクルの最大点弧角時出力電力推定値を2000Wと算出する。また、目標電力は1回目の制御サイクルと同じ1000Wとすると、出力電力負荷率(目標電力÷最大点弧角時出力電力推定値)は0.5(50%)になり、この値を点弧角に変換した50%で、サイリスタをオンにする。その結果、出力電力は目標電力と同じ1000Wになる。3回目の制御サイクルでは、2回目の制御サイクルの点弧角50%から算出した前サイクルの実効値負荷率0.707(0.5(50%)の平方根)と、2回目の制御サイクルの出力電流測定値7.07A(実効値)から、前制御サイクルの最大点弧角時出力電流推定値10A(7.07A÷0.707(70.7%))を算出する。この値と電源電圧の積から算出した前サイクルの最大点弧角時出力電力推定値2000Wと目標電力1000W(1回目の制御サイクルと同じ)から、出力電力負荷率50%(1000W÷2000W=0.5)を算出する。この値を点弧角に変換した50%でサイリスタをオンにすると、出力電力は2回目の制御サイクルと同じ1000Wになる。4回目は3回目の制御サイクルと同じ数値処理になるので出力電力は目標電力と同じ値の1000Wになる。以上のように、負荷の抵抗値が20Ωの場合には、2回目以降の制御サイクルの出力電力は目標電力と同じ値になる。
次に、上記具体例において負荷の抵抗値が40Ωに劣化した場合について説明する。負荷抵抗が20Ωの時と同様に、1回目の制御サイクルでは前サイクルの情報がないため出力電力負荷率を目標負荷率と同じ100%として、その値を点弧角に変換すると100%なので、出力電流は5A(200V÷40Ω)になり、出力電力は1000W(200V×5A)になる。2回目のサイクルでは、前サイクルの点弧角100%から算出した実効値負荷率100%と前サイクルの出力電流測定値5Aから最大点弧角時出力電流推定値5A(5A÷1(100%))を算出し、その値と電源電圧から前サイクルの出力電力推定値1000W(200V×5A)を算出する。また、目標電力は1000Wなので、出力電力負荷率(目標電力÷最大点弧角時出力電力推定値)は1.0(100%)になり、この値を点弧角に変換すると100%になるため出力電力は目標電力と同じ1000Wになる。3回目以降も同様の結果になる。
以上、目標負荷率が100%の場合で説明したが、目標負荷率が0~100%の間のどの様な値であっても、出力電力は目標負荷率×最大点弧角時出力電力の値に制御される。また、負荷抵抗値が20Ωの時に1回目の制御サイクルにおける電力が大きな値になる問題は、従来技術であるソフトスタート(出力を徐々に大きくする機能)等により簡単に防止することが出来る。
次に、実施形態2の交流電力調整器300の、本発明に関する制御サイクル毎の処理動作について、図6を参照しつつ説明する。実施形態1(図2)と同様の処理概念となるものについては同一の符号を使用し、ここでの説明を省略若しくは簡略化する。
ステップ201~207までの処理は、基本的に実施形態1と同様であるが、本実施形態では、実施形態1における出力電圧推定値n-1の算出処理(ステップ206)の替わりに、最大点弧角(100%)時出力電流推定値n-1の算出処理(ステップ601)が実行される。当該処理は、上記のごとく、前サイクルの最大点弧角時出力電流推定部125において、出力電流測定値n-1を実行値の負荷率n-1で除算することで行われる。
ステップ601に続くステップ602では、前サイクルの最大点弧角時出力電力推定部126において、最大点弧角時出力電流推定値n-1に電源電圧記憶部1212から得られる電源電圧値を乗算することで、最大点弧角時出力電力推定値n-1を算出する。
続くステップ603では、出力電力負荷率算出部115において、目標電力算出部111から得られる目標電力値nを、ステップ602で算出された最大点弧角時出力電力推定値n-1で除算することで、出力電力負荷率θnを算出する。
続くステップ603では、出力電力負荷率算出部115において、目標電力算出部111から得られる目標電力値nを、ステップ602で算出された最大点弧角時出力電力推定値n-1で除算することで、出力電力負荷率θnを算出する。
出力電力負荷率θnが算出された後の処理は、実施形態1と同様である。
以上の構成及び処理動作を備える本実施形態の交流電力調整器300によれば、実施形態1と同様に、電圧測定のための回路(特に変圧器)を削除することができるため、コスト低減及び装置の小型化が図られた交流電力調整器を得ることができる。
また、実施形態1におけるPID制御等のフィードバック制御に比べて、高速な応答を得ることが可能となる。
また、実施形態1におけるPID制御等のフィードバック制御に比べて、高速な応答を得ることが可能となる。
なお、出力電力推定部120は、予め設定された電源の電圧情報と、点弧角(に対応する実効値の負荷率)と、負荷2に流れる電流の測定値と、に基づいて、最大点弧角時出力電力推定値を算出できるものであればよい。図5の交流電力調整器300では、最大点弧角出力電流推定値n-1を算出した上で、これと電源電圧とを乗算することにより、最大点弧角時出力電力推定値n-1を算出するものを例としているが、例えば図7に示したように、出力電圧推定値n-1と、出力電流測定値n-1とから、負荷抵抗推定値n-1を算出し(前サイクルの負荷抵抗推定部124を設け)、電源電圧を2乗したものを負荷抵抗推定値n-1で除算することにより、最大点弧角時出力電力推定値n-1を算出してもよい。(または、最大点弧角時出力電流推定値n-1を算出してこれを2乗したものに、負荷抵抗推定値n-1を乗算してもよい。何れも概念としては同様である。)
上記各実施形態では、前サイクルの点弧角→実効値負荷率変換部1211によって、前の制御サイクルの点弧角を、“過去の位相制御サイクルにおける位相制御情報”として用い、実効値の負荷率に変換するものを例としているが、PID制御演算部113や出力電力負荷率算出部115によって算出された、前の制御サイクルの出力電力負荷率θの平方根(実効値の負荷率)を求めて、これを“過去の位相制御サイクルにおける位相制御情報”として用いるものであってもよい。ただし、例えばソフトスタート等の他の機能によって点弧角が補正されるような場合には、単純に前の制御サイクルの出力電力負荷率θの平方根を用いるだけであると、正しい結果が得られない。従って、この場合には、実施形態で説明した方法を用いるか、ソフトスタート等の他の機能の影響も考慮した処理とする必要がある。なお、出力電力負荷率θの平方根(実効値の負荷率)の算出処理は、計算の負荷が大きくなるため、予めテーブル(出力電力負荷率θを、実効値の負荷率に変換するテーブル)を備えるようにしてもよい。
各実施形態では、カレントトランス4(外部装置)からの信号を受けて出力電流値を取得する前サイクルの出力電流測定部122を例としているが、カレントトランス4が交流電力調整器に含まれるものであっても良い。若しくは、交流電力調整器としては、出力電流値の入力を受ける入力部のみを備えるもの(前サイクルの出力電流測定部122が無いもの)等であってもよい。
各実施形態では“前の制御サイクル(過去の位相制御サイクル)”が、直近の(1つ前の)サイクルであるものとして説明しているが、本発明における“前の制御サイクル(過去の位相制御サイクル)”をこれに限るものではなく、例えば、数サイクル前を“前の制御サイクル(過去の位相制御サイクル)”とするものであってもよい。
直近の(1つ前の)サイクルの測定値等に基づいて“今回の制御サイクル”の各動作を定めるもの(各実施形態)の方がより好適ではあるが、例えば、2サイクル前の制御サイクルを、“前の制御サイクル(過去の位相制御サイクル)”として、2サイクル前の制御サイクルにおける測定値等に基づいて“今回の制御サイクル”の各動作を定めるものであっても動作として問題はない。
直近の(1つ前の)サイクルの測定値等に基づいて“今回の制御サイクル”の各動作を定めるもの(各実施形態)の方がより好適ではあるが、例えば、2サイクル前の制御サイクルを、“前の制御サイクル(過去の位相制御サイクル)”として、2サイクル前の制御サイクルにおける測定値等に基づいて“今回の制御サイクル”の各動作を定めるものであっても動作として問題はない。
また、各実施形態では、制御サイクル毎に、出力電力推定値(または最大点弧角時出力電力推定値)、若しくはこれを算出するための各値を算出するものを例としているが、本発明をこれに限るものではない。例えば、抵抗値の経年劣化に対する追従処理を主な目的とするのであれば、制御サイクル毎に抵抗値の変化の影響を検知する必要は必ずしもない。このような場合には、例えば、日単位や月単位等のサイクルで実施形態2において説明した最大点弧角時出力電力推定値を算出してこれを記憶(日単位や月単位等のサイクルで更新)しておき、目標電力算出部111における目標電力値の算出を、当該記憶している最大点弧角時出力電力推定値に、目標負荷率を乗算することによって行うもの等であってもよい。
100,200,300,400...交流電力調整器
110...出力電力負荷率・点弧角算出部
111...目標電力算出部
112...最大目標電力値記憶部
113...PID制御演算部(フィードバック制御部)
114...電力負荷率→点弧角変換部
115...出力電力負荷率算出部
120...出力電力推定部
121...前サイクルの出力電圧推定部
1211...前サイクルの点弧角→実効値負荷率変換部
1212...電源電圧記憶部
1213...出力電圧推定値算出部
122...前サイクルの出力電流測定部
123...前サイクルの出力電力推定値算出部
124...前サイクルの負荷抵抗推定部
125...前サイクルの最大点弧角時出力電流推定部
126...前サイクルの最大点弧角時出力電力推定部
130...サイリスタ点弧処理部
140...サイリスタ
110...出力電力負荷率・点弧角算出部
111...目標電力算出部
112...最大目標電力値記憶部
113...PID制御演算部(フィードバック制御部)
114...電力負荷率→点弧角変換部
115...出力電力負荷率算出部
120...出力電力推定部
121...前サイクルの出力電圧推定部
1211...前サイクルの点弧角→実効値負荷率変換部
1212...電源電圧記憶部
1213...出力電圧推定値算出部
122...前サイクルの出力電流測定部
123...前サイクルの出力電力推定値算出部
124...前サイクルの負荷抵抗推定部
125...前サイクルの最大点弧角時出力電流推定部
126...前サイクルの最大点弧角時出力電力推定部
130...サイリスタ点弧処理部
140...サイリスタ
Claims (7)
- 負荷に対する電力供給の制御を位相制御によって行う交流電力調整器であって、
予め設定された前記負荷に接続される電源の電圧情報と、過去の位相制御サイクルにおける前記負荷に流れる電流の測定値と位相制御情報と、に基づいて、出力電力推定値を算出する出力電力推定部と、
与えられた目標負荷率と、予め設定された目標負荷率が100%の時に負荷に供給する目標電力である最大目標電力値と、前記出力電力推定値と、に基づいて、前記目標負荷率を補正した出力電力負荷率を算出し、これに対応する点弧角を算出する出力電力負荷率・点弧角算出部と、
を備えることにより、疑似的な定電力制御を行うことを特徴とする交流電力調整器。 - 前記過去の位相制御サイクルにおける位相制御情報が、過去の位相制御サイクルにおける点弧角または過去の位相制御サイクルにおける出力電力負荷率であることを特徴とする請求項1に記載の交流電力調整器。
- 前出力電力推定部が、
前記負荷に流れる電流を測定する出力電流測定部、または、前記負荷に流れる電流値の入力を受ける入力部と、
前記電源の電圧情報が設定される電源電圧記憶部と、
前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記電源の電圧情報と、に基づいて、出力電圧推定値を算出する出力電圧推定部と、
を備え、
前記出力電圧推定値と、前記負荷に流れる電流値と、に基づいて、前記出力電力推定値を算出することを特徴とする請求項2に記載の交流電力調整器。 - 前記目標負荷率と前記最大目標電力値とから算出される目標電力と、前記出力電力推定値と、の偏差に基づくフィードバック制御を行うフィードバック制御部を備えることを特徴とする請求項1から請求項3の何れか1つに記載の交流電力調整器。
- 前出力電力推定部が、
前記負荷に流れる電流を測定する出力電流測定部、または、前記負荷に流れる電流値の入力を受ける入力部と、
前記電源の電圧情報が設定される電源電圧記憶部と、
前記過去の位相制御サイクルにおける出力電力負荷率または前記過去の位相制御サイクルにおける点弧角に対応する実効値の負荷率と、前記負荷に流れる電流値と、前記電源の電圧情報と、に基づいて、点弧角が最大の時の出力電力の推定値である最大点弧角時出力電力推定値を算出する最大点弧角時出力電力推定部と、
を備えることを特徴とする請求項2に記載の交流電力調整器。 - 前記目標負荷率に前記最大目標電力値を乗算した値を、前記最大点弧角時出力電力推定値で除算することで、前記出力電力負荷率を算出することを特徴とする請求項5に記載の交流電力調整器。
- サイリスタと、
前記点弧角に基づいて前記サイリスタを制御するサイリスタ点弧処理部と、
を備えることを特徴とする請求項1から請求項6の何れか1つに記載の交流電力調整器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/060668 WO2017168680A1 (ja) | 2016-03-31 | 2016-03-31 | 交流電力調整器及び交流電力制御方法 |
PCT/JP2017/003708 WO2017169084A1 (ja) | 2016-03-31 | 2017-02-02 | 交流電力調整器及び交流電力制御方法 |
CN201780008846.1A CN108604104B (zh) | 2016-03-31 | 2017-02-02 | 交流电力调整器及交流电力控制方法 |
JP2018508477A JP6521174B2 (ja) | 2016-03-31 | 2017-02-02 | 交流電力調整器及び交流電力制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/060668 WO2017168680A1 (ja) | 2016-03-31 | 2016-03-31 | 交流電力調整器及び交流電力制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017168680A1 true WO2017168680A1 (ja) | 2017-10-05 |
Family
ID=59962787
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060668 WO2017168680A1 (ja) | 2016-03-31 | 2016-03-31 | 交流電力調整器及び交流電力制御方法 |
PCT/JP2017/003708 WO2017169084A1 (ja) | 2016-03-31 | 2017-02-02 | 交流電力調整器及び交流電力制御方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/003708 WO2017169084A1 (ja) | 2016-03-31 | 2017-02-02 | 交流電力調整器及び交流電力制御方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6521174B2 (ja) |
CN (1) | CN108604104B (ja) |
WO (2) | WO2017168680A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039218A (ja) * | 1983-08-12 | 1985-03-01 | Matsushita Electric Works Ltd | 負荷制御装置 |
JPS63307513A (ja) * | 1987-06-09 | 1988-12-15 | Anelva Corp | 交流位相制御電力における電力検出器 |
JP2012178030A (ja) * | 2011-02-25 | 2012-09-13 | Rkc Instrument Inc | 電力調整器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62195814U (ja) * | 1986-05-30 | 1987-12-12 | ||
JP5352936B2 (ja) * | 2010-07-06 | 2013-11-27 | 理化工業株式会社 | 電力調整器 |
JP2014155232A (ja) * | 2013-02-05 | 2014-08-25 | Hitachi Automotive Systems Hanshin Ltd | 位相制御装置 |
KR101666768B1 (ko) * | 2013-07-19 | 2016-10-14 | 리카고교가부시키가이샤 | 전력 제어기 및 전력 제어 방법 |
-
2016
- 2016-03-31 WO PCT/JP2016/060668 patent/WO2017168680A1/ja active Application Filing
-
2017
- 2017-02-02 WO PCT/JP2017/003708 patent/WO2017169084A1/ja active Application Filing
- 2017-02-02 CN CN201780008846.1A patent/CN108604104B/zh active Active
- 2017-02-02 JP JP2018508477A patent/JP6521174B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039218A (ja) * | 1983-08-12 | 1985-03-01 | Matsushita Electric Works Ltd | 負荷制御装置 |
JPS63307513A (ja) * | 1987-06-09 | 1988-12-15 | Anelva Corp | 交流位相制御電力における電力検出器 |
JP2012178030A (ja) * | 2011-02-25 | 2012-09-13 | Rkc Instrument Inc | 電力調整器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017169084A1 (ja) | 2018-09-06 |
JP6521174B2 (ja) | 2019-05-29 |
WO2017169084A1 (ja) | 2017-10-05 |
CN108604104A (zh) | 2018-09-28 |
CN108604104B (zh) | 2020-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2019044717A1 (ja) | モータの制御装置及び記憶媒体 | |
WO2017168680A1 (ja) | 交流電力調整器及び交流電力制御方法 | |
KR20160028232A (ko) | 화상형성장치 및 위상 제어 방법 | |
JP2018137841A (ja) | 力率改善回路及び充電装置 | |
JP2018085827A (ja) | 電圧制御装置 | |
US20060186851A1 (en) | Method and system for limiting the current output by a speed controller operating according to a U/F control law | |
JP6504268B2 (ja) | 交流電力調整器及び交流電力制御方法 | |
JP4970011B2 (ja) | 力率補正形直流電源装置 | |
JP3969579B2 (ja) | 電磁流量計 | |
JP4300998B2 (ja) | 電力制御方法および電力制御装置 | |
WO2016143114A1 (ja) | 交流電力調整器及び出力制御方法 | |
JPH08223920A (ja) | コンバータの制御方法とその装置及びそれに使用するコンバータ交流電流の補正方法 | |
JP4931129B2 (ja) | 電力変換装置 | |
Anuchin | Structures of a digital PI controller for an electric drive | |
JP2006254575A (ja) | 誘導電動機の制御方法 | |
JP6666575B2 (ja) | 交流電力調整器 | |
JP6900848B2 (ja) | インバータ装置の調整方法、インバータ装置の調整装置、及びインバータ装置 | |
JP5352936B2 (ja) | 電力調整器 | |
JP2017062542A (ja) | 制御装置および制御方法 | |
JP7301611B2 (ja) | 電力供給装置、及び、電力供給装置の制御方法 | |
US10790745B2 (en) | Control device and method for controlling a DC-to-DC converter having input interference | |
CN106877770B (zh) | 电动机的转矩控制装置和转矩控制系统 | |
JP2008257625A (ja) | 位相制御方法および位相制御装置 | |
KR101786244B1 (ko) | 역률보상회로 제어방법 | |
JP5020010B2 (ja) | 発電機力率制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16896898 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16896898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |