WO2017166139A1 - 中继传输的方法和装置 - Google Patents

中继传输的方法和装置 Download PDF

Info

Publication number
WO2017166139A1
WO2017166139A1 PCT/CN2016/077914 CN2016077914W WO2017166139A1 WO 2017166139 A1 WO2017166139 A1 WO 2017166139A1 CN 2016077914 W CN2016077914 W CN 2016077914W WO 2017166139 A1 WO2017166139 A1 WO 2017166139A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
data frame
relay
remote terminal
underlying data
Prior art date
Application number
PCT/CN2016/077914
Other languages
English (en)
French (fr)
Inventor
曾元清
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to KR1020187021247A priority Critical patent/KR20180127963A/ko
Priority to CN201680079729.XA priority patent/CN108496330B/zh
Priority to US16/069,700 priority patent/US10764961B2/en
Priority to JP2018538556A priority patent/JP6731488B2/ja
Priority to PCT/CN2016/077914 priority patent/WO2017166139A1/zh
Priority to EP16895920.3A priority patent/EP3393099B1/en
Priority to TW106110884A priority patent/TWI717490B/zh
Publication of WO2017166139A1 publication Critical patent/WO2017166139A1/zh
Priority to US16/944,296 priority patent/US11343874B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to methods and apparatus for relay transmission.
  • the device-to-device (D2D) technology means that adjacent terminal devices can transmit data through a direct link in a short range without forwarding through a network device.
  • D2D communication can share licensed band resources with the cellular system to form a unified hybrid cellular-D2D network.
  • some terminal devices may still operate in a cellular communication mode, that is, communicate with other terminal devices through network devices, and some terminal devices may operate in a D2D communication mode, that is, through a through link with other terminal devices. Direct data transfer with other terminal devices.
  • data transmission between the network device and the terminal device can be assisted by the D2D relay.
  • the D2D communication mode is adopted between the D2D relay and the D2D terminal, and the cellular communication mode is used between the D2D relay and the network device.
  • D2D relays receive and forward data in a half-duplex manner and perform mode conversion during reception and forwarding.
  • the D2D relay relays data transmission between the D2D terminal and the network device through an Internet Protocol (IP) layer (ie, layer 3), and needs to pass through layer 1 in sequence for the received data packet (ie, Physical layer), layer 2 (including Media Access Control (MAC) layer, Radio Link Control (RLC) layer and Packet Data Convergence Protocol (PDCP) layer) and layer 3
  • IP Internet Protocol
  • layer 3 includes Media Access Control (MAC) layer, Radio Link Control (RLC) layer and Packet Data Convergence Protocol (PDCP) layer
  • MAC Media Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the embodiments of the present invention provide a method and an apparatus for relay transmission, which can reduce the complexity of relay transmission and reduce the transmission delay.
  • the first aspect provides a method for relay transmission, including: receiving, by a relay terminal device, a first underlying data frame sent by a sending end device to a receiving end device, where the first underlying data frame is The sending end device processes the MAC PDU carrying the identification information of the remote terminal device by using the bottom layer; the relay terminal device determines that the first underlying data frame needs to be forwarded at the bottom layer; the relay terminal device is at the bottom layer An underlying data frame is forwarded; wherein the transmitting device is the remote terminal device and the receiving device is a network device, or the transmitting device is a network device and the receiving device is the remote terminal device.
  • the relay terminal device may process the received first underlying data frame only through the bottom layer. At this time, the relay terminal device may perform forwarding processing on the first underlying data frame without identifying the remote terminal device corresponding to the first underlying data frame.
  • the relay terminal device may forward the data carried in the first underlying data frame by using a transmission resource for relay transmission.
  • the relay terminal device may broadcast data carried in the first underlying data frame.
  • the relay terminal device relays data between the remote terminal device and the network device by using an underlying relay mode, wherein the remote terminal device or the network device to the relay terminal
  • the device sends the underlying data frame
  • the relay terminal device does not perform the identification of the remote terminal device at the bottom layer, but when it is determined that the received data frame carries the relay data, the data frame is relayed and processed through the bottom layer, and
  • the relay terminal device adopts the layer three relay mode, which can reduce the processing complexity of the relay terminal device, reduce the transmission delay of the relay data, and improve the overall performance of the system.
  • the method further includes The relay terminal device is addressed by relaying a specific RNTI; the relay terminal device determines that the first underlying data frame needs to be forwarded, including: if the first underlying data frame is received by the relay terminal device through the addressing The relay terminal device determines that the first underlying data frame needs to be forwarded.
  • the first bottom data frame is sent by the sending end device by using a transmission resource for performing relay transmission; the relay terminal The device determines that the first underlying data frame needs to be forwarded, and the method includes: determining, by the relay terminal device, that the first underlying data frame needs to be forwarded according to the transmission resource occupied by the first underlying data frame.
  • the identification information of the remote terminal device includes the layer 2 identifier of the remote terminal device or the terminal device identifier of the remote terminal device.
  • the bottom layer of the network device is specifically a physical layer, and the bottom layer of the remote terminal device and the remote terminal device and the relay terminal
  • the D2D communication technology adopted between the devices corresponds.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • the method further includes: the relay terminal device determines, according to a correspondence between the PUCCH resource and the data volume or the data volume interval, the bottom layer data frame carries The PUCCH resource corresponding to the data volume; the relay terminal device sends the scheduling request to the network device by using the corresponding PUCCH resource.
  • the method further includes: the relay terminal device determines, according to a correspondence between the preamble and the data volume or the data volume interval, the first downlink data frame carries The preamble corresponding to the data volume; the relay terminal device sends the corresponding preamble to the network device, where the corresponding preamble is used by the network device to allocate an uplink transmission resource for the relay terminal device.
  • the relay terminal device performs forwarding processing on the first bottom data frame at the bottom layer, including: the relay terminal device An underlying data frame is decoded to obtain data carried in the first underlying data frame; the relay terminal device encodes the data to obtain a second underlying data frame; and the relay terminal device sends the second underlying data frame.
  • the relay terminal device performs forwarding processing on the first bottom data frame at the bottom layer, including: the relay terminal device directly passes through the bottom layer Sending the first underlying data frame.
  • a method for relay transmission including: a source device generates a MAC PDU, where the MAC PDU carries identification information of the remote terminal device; and the sender device sends the message to the relay terminal device through the bottom layer.
  • the first underlying data obtained by processing the MAC PDU a frame; wherein the source device is the remote terminal device or the source device is a network device.
  • the method further includes: the network device And transmitting, to the relay terminal device, a physical downlink control channel PDCCH, where the PDCCH is used to schedule the first underlying data frame, and the PDCCH is scrambled by using a relay specific RNTI.
  • the sending end device sends the first bottom data frame to the relay terminal device, where the sending end device is configured to use the relay
  • the transmitted transmission resource transmits the first underlying data frame to the relay terminal device.
  • the identifier information of the remote terminal device includes a layer 2 identifier of the remote terminal device or a terminal device identifier of the remote terminal device .
  • the bottom layer of the network device is specifically a physical layer, and the bottom layer of the remote terminal device and the remote terminal device and the relay terminal
  • the D2D communication technology adopted between the devices corresponds.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • a method for relay transmission including: receiving, by a receiving end device, a second underlying data frame sent by a relay terminal device, where the second underlying data frame carries a remote terminal through an underlying pair Obtaining, by the receiving end device, the second bottom data frame corresponding to the remote terminal device according to the identifier information of the remote terminal device; wherein the receiving end device is The network device or the receiving device is the remote terminal device.
  • the upper layer may be specifically a layer higher than the bottom layer in the user plane protocol stack, such as a MAC layer, an RLC layer, or a PDCP layer in layer 2, and the like.
  • the receiving end device receives the second underlying data frame sent by the relay terminal device, where the receiving device receives the transmission that the relay terminal device uses for relay transmission.
  • the second underlying data frame sent by the resource the method further includes: the receiving end device determining, according to the transmission resource occupied by the second underlying data frame, that the second underlying data frame is forwarded by the relay terminal device.
  • the method further includes: if the receiving device is the network device, the network device determines a data transmission tunnel corresponding to the remote terminal device; and the network device sends the second underlying data to the core network device by using the corresponding data transmission tunnel The data carried in the frame.
  • the identifier information of the remote terminal device includes a layer 2 identifier of the remote terminal device or a terminal device identifier of the remote terminal device .
  • the bottom layer of the network device is specifically a physical layer, and the bottom layer of the remote terminal device and the remote terminal device and the relay terminal The D2D communication technology adopted between the devices corresponds.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • the receiving end device is a network device
  • the method further includes: the network device receiving the scheduling request sent by the relay terminal device; the network device determining, according to the correspondence between the PUCCH resource and the data volume or the data volume interval, the PUCCH resource corresponding to the scheduling request The data volume or the data volume interval; the network device allocates an uplink transmission resource to the relay terminal device according to the corresponding data volume or the data volume interval.
  • the receiving end device is a network device
  • the method further includes: the network device receiving a preamble sent by the relay terminal device; the network device determining, according to a correspondence between the preamble and the data volume or the data amount interval, the amount of data corresponding to the received preamble or a data volume interval; the network device allocates an uplink transmission resource to the relay terminal device according to the corresponding data volume or data volume interval.
  • the network device may perform uplink transmission resource allocation according to the received PUCCH resource occupied by the preamble or the scheduling request, and the relay terminal device does not need to carry a cache report for indicating the size of the buffered data when requesting the uplink authorization. Thereby saving signaling overhead.
  • an apparatus for relay transmission for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the apparatus comprises means for performing the method of any of the possible implementations of the third aspect or the third aspect described above.
  • another apparatus for relay transmission comprising: a storage unit for storing instructions, the processor for executing instructions stored by the memory, and when the processor executes the memory
  • the execution of the instructions causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • another apparatus for relay transmission comprising: a storage unit for storing instructions for executing instructions stored in the memory, and a processor for executing the memory
  • the execution of the instructions causes the processor to perform the method of the second aspect or any of the possible implementations of the second aspect.
  • another apparatus for relay transmission comprising: a storage unit for storing instructions, the processor for executing instructions stored by the memory, and when the processor executes the memory
  • the execution of the instructions causes the processor to perform the method of any of the possible implementations of the third aspect or the third aspect.
  • a tenth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a thirteenth aspect provides a system for relay transmission, where the system includes a relay terminal device, a remote terminal device, and a network device, wherein the user plane protocol stack of the relay terminal device may include an underlying layer (also referred to as The layer 1), the user plane protocol stack of the remote terminal device may include layer 1, layer 2, and layer 3.
  • the user plane protocol stack of the network device may include layer 1, layer 2, and layer 3, where the relay Layer 1 of the terminal device is respectively associated with layer 1 of the remote terminal device and layer 1 of the network device For the peer layer, layer 2 of the remote terminal device and layer 2 of the network device are peer layers.
  • the user plane protocol stack of the relay terminal device may include only layer one, and does not include upper layers (eg, layer two and layer three).
  • the relay terminal device performs relay transmission through layer 1, but may not identify the remote terminal device corresponding to the data frame that needs to be relayed.
  • the network device and the remote terminal device can identify the remote terminal device corresponding to the data frame through the upper layer.
  • the relay terminal device may be the device in any possible implementation manner of the fourth aspect or the fourth aspect, where the remote terminal device and the sender device in the network device may be the fifth aspect or the fifth aspect
  • the remote terminal device and the receiving device in the network device may be the device in any possible implementation manner of the sixth aspect or the sixth aspect.
  • the relay terminal device may be the device in any possible implementation manner of the seventh aspect or the seventh aspect, where the remote terminal device and the sender device in the network device may be the eighth aspect or the eighth aspect
  • the device in any possible implementation, the remote terminal device and the receiving device in the network device may be the device in any possible implementation manner of the ninth aspect or the ninth aspect.
  • FIG. 1 is a schematic flowchart of a wireless communication system to which an embodiment of the present invention is applied.
  • FIG. 2 is a schematic diagram of an example of a user plane protocol stack for relay communication of various devices according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for relay transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an example of a structure of a MAC PDU in a method for relay transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of another method for relay transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of another method for relay transmission according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an apparatus for relay transmission according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of another apparatus for relay transmission according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of another apparatus for relay transmission according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of another apparatus for relay transmission according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of another apparatus for relay transmission according to an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of another apparatus for relay transmission according to an embodiment of the present invention.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • Network device 100 can be a device that communicates with a terminal device. Each network device 100 can provide communication coverage for a particular geographic area and can communicate with terminal devices located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station (BTS) in a GSM system or a Code Division Multiple Access (CDMA) system, or may be a base station (NodeB, NB) in a WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a relay station, an access point, In-vehicle devices, wearable devices, network-side devices in future 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN).
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB NodeB
  • NB base station
  • An evolved base station Evolutional Node B, eNB or eNodeB
  • CRAN Cloud Radio Access Network
  • the network device may be a relay station, an access point, In-vehicle devices, wearable devices
  • the wireless communication system 100 also includes a plurality of terminal devices 120 located within the coverage of the network device 110.
  • the terminal device 120 can be mobile or fixed.
  • the terminal device 120 can refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • FIG. 1 exemplarily shows one network device and six terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The embodiment of the invention does not limit this.
  • the wireless communication system 100 may further include other network entities such as a Mobile Management Entity (MME), a Serving Gateway (S-GW), and a Packet Data Network Gateway (P-GW).
  • MME Mobile Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • the terminal device 120 can communicate in a cellular communication mode or a D2D communication mode, wherein in the cellular communication mode, the terminal device can communicate with other terminal devices through the network device; in the D2D communication mode, the terminal device can pass the D2D chain The road communicates directly with other terminal devices.
  • a cellular terminal device, a D2D terminal device, and a relay terminal device are included, wherein the cellular terminal device communicates with the network device 110 using a cellular communication technology.
  • the D2D terminal device implements data transmission with the network device by using the relay terminal device, wherein the relay terminal device and the D2D terminal device have a PC5 interface, and the D2D communication technology is used for communication, wherein the D2D communication technology may be specifically
  • the bypass (SideLink, SL) technology in the LTE may also be a technology such as WIFI or Bluetooth in the WLAN, or other D2D communication technologies, which is not limited by the embodiment of the present invention.
  • the relay terminal device has a Uu interface with the network device, and uses cellular communication technology for communication.
  • the relay terminal device uses the layer three relay mode for relaying, and the data processing complexity is high, and the processing delay is large.
  • the relay terminal device may use the underlying relay mode to relay data transmission between the network device and the D2D terminal device, where, for the LTE system, the bottom layer of the network device specifically refers to layer one, that is, physics. Layer, and the bottom layer of the D2D terminal device depends on the D2D communication technology adopted by the D2D terminal device and the relay terminal device.
  • the bottom layer may be specifically a physical layer, and if the D2D communication technology is a WLAN or other communication technology, and the bottom layer may have other names, and the embodiment of the present invention is not limited thereto.
  • data transmission on the Uu interface and the PC5 interface can be performed through the physical layer.
  • the data to be sent may be first encapsulated into a MAC PDU, such as a MAC PDU, and then The MAC PDU is processed to obtain an underlying data frame, and the underlying data frame is sent to the relay terminal device.
  • a MAC PDU such as a MAC PDU
  • the user plane protocol stack of the relay terminal device for relay transmission may only include layer one (ie, PHY layer),
  • the user plane protocol stack of the remote terminal device and the network device may include layer one (L1), layer two (L2), and layer three (L3).
  • Layer 1 of the relay terminal device may be peer-to-peer with layer 1 of the remote terminal device and layer 1 of the network device, and layer 2 of the remote terminal device may be paired with layer 2 of the network device Equal layer.
  • the relay terminal device may not identify the remote terminal device corresponding to the received underlying data frame, but the remote terminal device and the network device recognize and receive at a higher layer (eg, MAC layer or higher layer).
  • the remote terminal device corresponding to the data frame is not limited in this embodiment of the present invention.
  • the following embodiments mainly describe the bottom layer as a physical layer, but those skilled in the art can understand that if a D2D terminal device (also referred to as a remote terminal device) and a relay terminal device are used,
  • the D2D communication technology is another communication technology, and the bottom layer may have other names, which is not limited by the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a method 200 for relay transmission provided by an embodiment of the present invention.
  • the method 200 can be applied to the wireless communication system 100 described above, but the embodiment of the present invention is not limited thereto.
  • the method 200 can be applied to the relay transmission of the uplink data, that is, the remote terminal device transmits the uplink data to the network device by using the relay terminal device, and the device at the transmitting end is specifically the remote terminal device (also referred to as D2D terminal device), the receiving device is specifically a network device.
  • the method 200 is also applicable to the relay transmission of the downlink data, that is, the network device transmits the downlink data to the remote terminal device by using the relay terminal device.
  • the transmitting device is a network device
  • the receiving device is a remote device.
  • the terminal device is not limited in this embodiment of the present invention.
  • the sender device generates a protocol data unit (PDU), where the MAC PDU carries the identifier information of the remote terminal device.
  • PDU protocol data unit
  • the sending end device can perform the encapsulation processing on the data to obtain the MAC PDU.
  • the MAC PDU can carry the identifier information of the remote terminal device.
  • the identification information of the remote terminal device can be used to identify the remote terminal device.
  • the identifier information of the remote terminal device may include the terminal device identifier of the remote terminal device.
  • the terminal device identification can be used to uniquely identify the remote terminal device.
  • the terminal device identifier may be predefined.
  • the terminal device identifier may be specifically the remote terminal.
  • the identifier information of the remote terminal device may also include a specific identifier of the remote terminal device, where the specific identifier of the remote terminal device is used to uniquely identify the remote terminal device in the relay transmission.
  • the specific identifier may be predefined or configured by a network device.
  • the length of the specific identifier may be smaller than the length of the terminal device identifier to reduce signaling overhead.
  • the remote terminal device and the network device can identify the specific identifier at a high level, and the upper layer can refer to a layer located on the bottom layer, for example, layer 2 or layer 3, which is not limited by the embodiment of the present invention.
  • the specific identifier can be a layer two identifier.
  • the layer 2 identifier may be an identifier that is encapsulated and identified in layer two, for example, in the MAC layer, the RLC layer, or the PDCP layer.
  • the layer 2 identifier may be predefined, or the network device allocates the remote terminal device, for example, the layer 2 identifier is that the network device is the remote device in the process of establishing a bearer for the remote terminal device.
  • the terminal device is allocated, but the embodiment of the invention is not limited thereto.
  • the identification information of the remote terminal device can be carried in any possible location of the MAC PDU.
  • the identifier information of the remote terminal device may be carried in a MAC control element (Control Element, CE) of the MAC PDU, where the MAC CE may be an existing MAC CE or a new MAC CE, for example, as shown in FIG. 4
  • CE MAC control element
  • the sending end device processes the MAC PDU by using an underlying layer (for example, a physical layer) to generate a first underlying data frame.
  • an underlying layer for example, a physical layer
  • the sender device may transmit the MAC PDU to the bottom layer for processing, and send the processed MAC PDU to the relay terminal device through the bottom layer.
  • the sending end device may set the first underlying data frame, so that the relay terminal device can determine that the first underlying data frame carries the relay data, and needs to be forwarded.
  • the sending end device may send the first underlying data frame by using a transmission resource for performing relay transmission or other manner, so that the relay terminal device may determine that the first underlying data frame carries a relay according to the transmission resource.
  • the data is not limited in this embodiment of the present invention.
  • the network device configures the relay terminal device with a transmission resource for performing relay transmission.
  • the transmission resource used for the relay transmission may be adopted.
  • the data is sent to the relay terminal device; or the network device configures the transmission resource for the relay transmission for the remote terminal device.
  • the transmission resource for relay transmission transmits the data to the relay terminal device, but the embodiment of the present invention is not limited thereto.
  • the sending end device sends the first underlying data frame to the relay terminal device.
  • the relay terminal device receives, by the bottom layer, the first bottom layer sent by the sending end device. After the data frame, it can be determined at the bottom layer that the first underlying data frame needs to be forwarded.
  • the relay terminal device may determine, according to the transmission resource occupied by the first underlying data frame, The first underlying data frame carries relay data and needs to be forwarded.
  • the relay terminal device may be addressed by using a relay specific radio network Temporary Identity (RNTI).
  • the relay specific RNTI corresponds to a relay transmission.
  • the relay-specific RNTI may be pre-defined or pre-allocated by the network device, which is not limited in this embodiment of the present invention. If the relay terminal device receives the physical downlink control channel (Physical Downlink Control Channel, PDCCH) for scheduling the first underlying data frame by using the relay specific RNTI addressing, that is, for scheduling the first underlying data frame.
  • PDCCH Physical Downlink Control Channel
  • the relay terminal device may determine that the first underlying data frame carries the relay data according to the relay-specific RNTI, and needs to be forwarded, but the embodiment of the present invention is not limited thereto.
  • the relay terminal device may further determine, by using other methods, whether the received underlying data frame is sent to itself or needs to be forwarded.
  • the relay terminal device forwards the first underlying data frame at the bottom layer.
  • the relay terminal device may not decode the first underlying data frame, but directly through the bottom layer. Sending the first underlying data frame.
  • the relay terminal device may perform decoding processing on the first underlying data frame at the bottom layer, obtain data carried by the first underlying data frame, and send data carried in the first underlying data frame through the bottom layer.
  • the relay terminal device may perform encoding processing on the data obtained by the decoding process at the bottom layer to obtain a second underlying data frame, and send the second underlying data frame through the bottom layer, but the embodiment of the present invention is not limited thereto.
  • the relay terminal device does not identify the remote terminal device corresponding to the data carried by the first underlying data frame, and optionally, the relay terminal device
  • the data carried by the first underlying data frame may be sent in the form of a broadcast (specifically, the foregoing first underlying data frame or the second underlying data frame), for example, the relay terminal device may pass the transmission resource used for relay transmission.
  • the data carried by the first underlying data frame is sent, but the embodiment of the present invention is not limited thereto.
  • the relay terminal device may send the data carried in the first underlying data frame to the network device.
  • the relay terminal device The first underlying data frame or the second underlying data frame may be sent to the network device by using a transmission resource for relay transmission, but the embodiment of the present invention is not limited thereto.
  • the relay terminal device may further initiate an uplink authorization request procedure to request an uplink transmission resource, and use the network device to allocate The uplink transmission resource sends the first underlying data frame or the second underlying data frame to the network device.
  • the relay terminal device may determine the amount of data carried in the first underlying data frame.
  • the relay terminal device may perform decoding processing on the first underlying data frame at the bottom layer to obtain the first The amount of data carried in an underlying data frame; or the first underlying data frame may carry indication information indicating the amount of data carried by the first underlying data frame, and the embodiment of the present invention determines the first The manner in which the amount of data carried by an underlying data frame is not limited.
  • the relay terminal device may initiate an uplink authorization request according to the amount of data carried in the first underlying data frame.
  • a physical Uplink Control Channel (PUCCH) resource may have a corresponding relationship between a preset data volume or a preset data volume interval, where the correspondence may be predefined, or The network device is pre-configured. For example, the network device may pre-configure the corresponding relationship by using the broadcast signaling or the dedicated signaling, which is not limited by the embodiment of the present invention.
  • the relay terminal device may determine the target PUCCH resource according to the amount of data carried in the first underlying data frame and the correspondence between the PUCCH resource and the preset data volume or the data volume interval, and adopt the target PUCCH.
  • the resource sends a scheduling request to the network device, but the embodiment of the present invention is not limited thereto.
  • the network device may determine a data volume or a data volume interval corresponding to the scheduling request according to the PUCCH resource occupied by the scheduling request, and allocate an uplink according to the corresponding data volume or data volume interval.
  • the resource is transmitted, but the embodiment of the present invention is not limited thereto.
  • the relay terminal device initiates an uplink authorization request by transmitting a preamble to the network device.
  • a preamble there may be a corresponding relationship between the preamble and the preset data volume or the preset data volume interval, where the corresponding relationship may be predefined or pre-configured by the network device, for example, the network device may broadcast The corresponding relationship is pre-configured by the signaling or the dedicated signaling, which is not limited by the embodiment of the present invention.
  • the relay terminal device may determine the target preamble according to the amount of data carried in the first underlying data frame and the correspondence between the preamble and the preset data amount or the data amount interval, and the target preamble is determined to the network device.
  • the target preamble is transmitted, but the embodiment of the present invention is not limited thereto.
  • the network device may determine a data volume or a data volume interval corresponding to the preamble, and allocate an uplink transmission resource according to the corresponding data volume or data volume interval, but the embodiment of the present invention does not. Limited to this.
  • the relay terminal device may also initiate an uplink authorization request by using other methods, which is not limited in this embodiment of the present invention.
  • the receiving end device may be at a higher layer according to the remote terminal carried in the first underlying data frame or the second underlying data frame.
  • the identifier information of the device determines the remote terminal device corresponding to the first underlying data frame or the second underlying data frame.
  • the remote terminal device that receives the first underlying data frame or the second underlying data frame sent by the relay terminal device may identify the remote terminal device carried in the data frame by using a higher layer (for example, layer 2).
  • the identifier information determines whether the data frame is sent to itself. If it is determined that the data frame is sent to itself, the data frame may be decoded. Otherwise, the data frame may be discarded, but the embodiment of the present invention There is no limit to this.
  • the remote terminal device carried in the data frame may be identified at a higher layer (eg, layer 2). Identifying information, determining a remote terminal device corresponding to the data frame, and transmitting data carried in the data frame to the core network device according to the corresponding remote terminal device, for example, if the network device and the core network device (for example, A data transmission channel (such as a GPRS Tunneling Protocol (GTP) tunnel) of the remote terminal device is established between the P-GWs, and the network device can pass the data transmission channel corresponding to the remote terminal device to the core.
  • the network device sends the data carried in the data frame, but the embodiment of the present invention is not limited thereto.
  • the network device may also establish a bearer for the remote terminal device before performing the relay transmission.
  • a data transmission channel for example, a GTP tunnel
  • a radio bearer of the remote terminal device may be established between the network device and the relay terminal device.
  • embodiments of the invention are not limited thereto.
  • the relay terminal device may receive a connection establishment request of the remote terminal device, where the connection establishment request is used to request to establish a D2D communication link between the relay terminal device and the remote terminal device.
  • the connection establishment request may be specifically a direct communication request for requesting establishment of a PC5 connection with the relay terminal device.
  • the relay terminal device may send a bearer setup to the core network device according to the connection establishment request.
  • the request, the bearer setup request may carry the terminal device identifier of the remote terminal device.
  • the core network device may be an MME, and the MME may send the terminal device identifier of the remote terminal device carried in the bearer setup request to the P-GW, so as to establish the relationship between the P-GW and the network device.
  • a data transmission channel eg, a GTP tunnel
  • the network device can establish a radio bearer of the remote terminal device, where the radio bearer can include cellular data between the network device and the relay terminal device a transmission channel and a D2D data transmission channel between the relay terminal device and the remote terminal device.
  • the relay terminal device may receive a bearer setup response sent by the network device, where the bearer setup response carries the configuration information of the radio bearer established by the network device for the remote terminal device, where optionally, the configuration information of the radio bearer Physical layer configuration information can be included.
  • the configuration information of the radio bearer may further include at least one of the following information: MAC layer configuration information, PDCP layer configuration information, and RLC layer configuration information.
  • the configuration information of the radio bearer may further include a layer 2 identifier that is allocated by the network device to the remote terminal device, but the embodiment of the present invention is not limited thereto.
  • the relay terminal device may send a connection establishment response to the remote terminal device according to the bearer setup response, where the connection setup response carries the physical layer configuration information, or may further carry the MAC layer configuration information, At least one of the PDCP layer configuration information and the RLC layer configuration information may also carry the layer 2 identifier of the remote terminal device, but the embodiment of the present invention is not limited thereto.
  • the network device may also establish a bearer for the remote terminal device before performing the relay transmission.
  • a data transmission channel for example, a GTP tunnel
  • a radio bearer of the remote terminal device may be established between the network device and the relay terminal device.
  • embodiments of the invention are not limited thereto.
  • the relay terminal device may receive a connection establishment request of the remote terminal device, where the connection establishment request is used to request to establish a D2D communication link between the relay terminal device and the remote terminal device.
  • the connection establishment request may be specifically a direct communication request for requesting establishment of a PC5 connection with the relay terminal device.
  • the relay terminal device may send a bearer setup request to the core network device according to the connection setup request, where the bearer setup request may carry the terminal device identifier of the remote terminal device.
  • the core network device may be an MME, and the MME may send the terminal device identifier of the remote terminal device carried in the bearer setup request to the P-GW, so as to be built between the P-GW and the network device.
  • Establishing a data transmission channel (eg, a GTP tunnel) of the remote terminal device and the network device can establish a radio bearer of the remote terminal device, where the radio bearer can include the network device and the relay terminal device a cellular data transmission channel and a D2D data transmission channel between the relay terminal device and the remote terminal device.
  • the relay terminal device may receive a bearer setup response sent by the network device, where the bearer setup response carries the configuration information of the radio bearer established by the network device for the remote terminal device, where optionally, the configuration information of the radio bearer Physical layer configuration information can be included.
  • the physical layer configuration information may include relaying a specific RNTI and/or a physical resource used for relay transmission, where the physical resource used for the relay transmission may include a relay terminal device and a network. Physical resources for relay transmission between devices and/or physical resources for relay transmission between the relay terminal device and the remote terminal device.
  • the physical layer configuration information may further include indication information for indicating a correspondence between the preamble and the data amount interval, and/or indication information for indicating a correspondence between the PUCCH resource and the data amount interval,
  • indication information for indicating a correspondence between the preamble and the data amount interval
  • indication information for indicating a correspondence between the PUCCH resource and the data amount interval
  • the configuration information of the radio bearer may further include layer 2 configuration information, where the layer 2 configuration information may include at least one of MAC layer configuration information, RLC layer configuration information, and PDCP layer configuration information.
  • the layer 2 configuration information may include the layer 2 identifier allocated by the network device to the remote terminal device, but the embodiment of the present invention is not limited thereto.
  • the relay terminal device may send a connection establishment response to the remote terminal device according to the bearer setup response, where the connection setup response may carry the MAC layer configuration information, the RLC layer configuration information, and the PDCP layer configuration information. At least one.
  • the remote terminal device may configure the layer 2 according to the received D2D broadcast message of the relay terminal device; optionally, if The connection establishment response carries the configuration information of the layer 2, and the remote terminal device can configure the Layer 2 according to at least one of the MAC layer configuration information, the RLC layer configuration information, and the PDCP layer configuration information carried in the connection establishment response.
  • embodiments of the invention are not limited thereto.
  • the method for relay transmission relays data between the remote terminal device and the network device by using the underlying relay mode, wherein the remote terminal device or the network device is in the middle
  • the relay terminal device does not perform the identification of the remote terminal device at the bottom layer, and when it is determined that the received data frame carries the relay data, the data frame is relayed and processed through the bottom layer.
  • the processing complexity of the relay terminal device can be reduced, and the transmission of the relay data can be reduced. Delay, improve the overall performance of the system.
  • the cellular network has established a PDN connection and a bearer for the remote terminal device
  • the remote terminal device is specifically a remote UE
  • the relay terminal device is specifically a relay UE
  • the network device is specifically
  • the eNB and the bottom layer corresponding to the PC5 interface are specifically physical layers. It should be understood that if the PC5 interface adopts other D2D communication technologies different from the LTE bypass technology, the bottom layer may be specifically a layer 1 corresponding to the other D2D communication technologies, but the embodiment of the present invention is not limited thereto.
  • FIG. 5 schematically illustrates a method 300 of relay transmission provided by another embodiment of the present invention.
  • the method 300 can be applied to relay transmission of downlink data.
  • the P-GW When receiving the data sent to the remote terminal device, the P-GW sends the data to the eNB through the GTP tunnel of the S1-U interface allocated in the bearer setup process.
  • the eNB after receiving the data from the remote terminal device of the GTP tunnel, the eNB encapsulates the data into a MAC PDU of the Uu interface, where the MAC PDU of the Uu interface carries the identifier information of the remote terminal device, such as the layer 2 identifier or Terminal device identification.
  • the eNB may schedule the downlink data transmission by relaying the PDCCH addressed by the specific RNTI, and transmit the MAC PDU of the Uu interface to the relay terminal device by using a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the eNB may scramble the PDCCH by relaying a specific RNTI to indicate that the PDCCH is used to schedule relay data transmission.
  • the relay terminal device can perform addressing according to the relay specific RNTI, but the embodiment of the present invention is not limited thereto.
  • the relay terminal device may determine, at the physical layer, that the received MAC PDU carries the relay data, and sends the MAC PDU of the PC5 interface through the physical layer.
  • the relay terminal device may not identify the remote terminal device corresponding to the received MAC PDU.
  • the relay terminal device may not perform decoding processing on the received MAC PDU.
  • the MAC PDU of the Uu interface may be the same as the MAC PDU of the PC5 interface.
  • the relay terminal device may perform decoding and encoding processing on the received MAC PDU of the Uu interface at the physical layer to obtain a MAC PDU of the PC5 interface, but the embodiment of the present invention Not limited to this.
  • the relay terminal device sends the MAC PDU of the PC5 interface on a specific time-frequency resource used for relay transmission.
  • the relay terminal device may broadcast the MAC PDU of the PC5 interface on the time-frequency resource used for the relay transmission.
  • the remote terminal device may parse and process the identification information of the remote terminal device carried in the MAC PDU of the PC5 interface at a high layer (for example, layer 2) to determine Whether the MAC PDU is sent to itself.
  • a high layer for example, layer 2
  • the remote terminal device may be decoded and further processed. If the remote terminal device determines that the received MAC PDU is not sent to itself, the MAC PDU may be discarded, but the embodiment of the present invention is not limited thereto.
  • FIG. 6 schematically illustrates a method 400 of relay transmission provided by another embodiment of the present invention.
  • the method 400 can be applied to relay transmission of uplink data.
  • the remote terminal device When the remote terminal device has data to be sent to the cellular network, the remote terminal device encapsulates the data into a MAC PDU, where the MAC PDU carries the identification information of the remote terminal device.
  • the remote terminal device sends the MAC PDU on the time-frequency resource used by the physical layer for relay transmission through the PC5 interface.
  • the relay terminal device may perform decoding processing on the received MAC PDU at the physical layer to determine the amount of data carried by the MAC PDU.
  • the relay terminal device may not identify the remote terminal device corresponding to the received MAC PDU, but only identify the amount of data carried in the MAC PDU at the physical layer.
  • the relay terminal device determines, according to a correspondence between the preset data volume interval and the PUCCH resource, a PUCCH resource corresponding to the amount of data carried in the MAC PDU, and uses the corresponding PUCCH.
  • the resource sends a scheduling request to the eNB.
  • the eNB may determine, according to the PUCCH resource occupied by the scheduling request, a data volume interval to be sent by the relay terminal device, and pass the PDCCH according to the data volume interval.
  • the relay terminal device allocates an uplink transmission resource.
  • the relay terminal device may send the MAC PDU of the Uu interface on the uplink transmission resource allocated by the eNB through the physical layer.
  • the eNB may parse the MAC PDU of the Uu interface at a higher layer (for example, layer 2) to identify the remote terminal device corresponding to the MAC PDU.
  • a higher layer for example, layer 2
  • the eNB may transmit the data carried in the MAC PDU to the P-GW through a GTP tunnel corresponding to the remote terminal device through the S1 interface.
  • FIG. 5 and FIG. 6 are intended to help those skilled in the art to better understand the embodiments of the present invention and not to limit the scope of the embodiments of the present invention. It will be obvious to those skilled in the art that various modifications and changes can be made without departing from the scope of the embodiments of the present invention.
  • FIG. 7 is a schematic diagram of an apparatus 500 for relay transmission provided by an embodiment of the present invention.
  • the device 500 includes:
  • the receiving unit 510 is configured to receive, by the sending end device, the first underlying data frame that is sent by the sending end device to the receiving end device, where the first bottom data frame is the media access of the sending end device to the identifier information carrying the remote terminal device by using the bottom layer Controlling the MAC protocol data unit PDU for processing;
  • the processing unit 520 is configured to determine, at the bottom layer, that the first underlying data frame that is received by the receiving unit 510 needs to be forwarded, and perform forwarding processing on the first underlying data frame at the bottom layer;
  • the sending end device is the remote terminal device and the receiving end device is a network device, or the sending end device is a network device and the receiving end device is the remote terminal device.
  • the processing unit 520 is further configured to: after the receiving unit 510 receives the first underlying data frame sent by the sending end device to the receiving end device, by relaying the specific wireless network temporary identifier The RNTI is addressed. At this time, the processing unit 520 is specifically configured to: if the first underlying data frame is received by the relay terminal device by using the addressing, the relay terminal device determines that the first underlying data frame needs to be forwarded.
  • the first underlying data frame is sent by the sending end device by using a transmission resource for performing relay transmission.
  • the processing unit 520 is specifically configured to determine, according to the transmission resource occupied by the first underlying data frame, that the first underlying data frame needs to be forwarded.
  • the identifier information of the remote terminal device includes a layer 2 identifier of the remote terminal device or a terminal device identifier of the remote terminal device.
  • the bottom layer of the network device is specifically a physical layer
  • the bottom layer of the remote terminal device corresponds to a D2D communication technology used between the remote terminal device and the relay terminal device.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • the processing unit 520 is further configured to: before the bottom layer performs forwarding processing on the first underlying data frame, The corresponding relationship between the uplink control channel PUCCH resource and the data volume or the data volume interval is determined, and the physical uplink control channel PUCCH resource corresponding to the data quantity carried by the first bottom data frame is determined; correspondingly, the apparatus 500 further includes: And a sending unit, configured to send, by using the corresponding PUCCH resource determined by the processing unit 520, a scheduling request to the network device.
  • the processing unit 520 is further configured to perform the forwarding according to the preamble before the bottom layer performs forwarding processing on the first bottom data frame. Determining a preamble corresponding to the amount of data carried by the first underlying data frame; and correspondingly, the apparatus 500 further includes: a first sending unit, configured to send to the network The device sends the corresponding preamble, where the corresponding preamble is used by the network device to allocate an uplink transmission resource for the relay terminal device.
  • the processing unit 520 is configured to: perform decoding processing on the first underlying data frame, obtain data carried in the first underlying data frame, and perform encoding processing on the data to obtain a second underlying data frame;
  • the apparatus 500 further includes: a second sending unit, configured to send the second underlying data frame obtained by the processing unit 520.
  • the apparatus 500 further includes: a second sending unit, where the processing unit 520 is specifically configured to directly send the first underlying data frame by using the second sending unit at the bottom layer.
  • the device 500 may be specifically the relay terminal device in the foregoing embodiment, and the device 500 may be used to perform various processes and/or steps corresponding to the relay terminal device in the foregoing method embodiment, in order to avoid duplication. , will not repeat them here.
  • FIG. 8 is a schematic diagram of another apparatus 600 for relay transmission according to an embodiment of the present invention, where the apparatus 600 may be specifically the remote terminal device or the source device is a network device. As shown in FIG. 8, the apparatus 600 includes:
  • the processing unit 610 is configured to generate a media access control MAC protocol data unit PDU, where The MAC PDU carries identification information of the remote terminal device;
  • the sending unit 620 is configured to send, to the relay terminal device, the first underlying data frame obtained by processing the MAC PDU by using the bottom layer.
  • the sending unit 620 is further configured to send a PDCCH to the relay terminal device before sending the first underlying data frame to the relay terminal device, where the PDCCH is used for scheduling The first underlying data frame, and the PDCCH is scrambled with a relay specific radio network temporary identity RNTI.
  • the sending unit 620 is specifically configured to send the first underlying data frame to the relay terminal device by using a transmission resource for relay transmission.
  • the identifier information of the remote terminal device includes a layer 2 identifier of the remote terminal device or a terminal device identifier of the remote terminal device.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • the device 600 may be specifically the sender device in the foregoing embodiment, and the device 600 may be configured to perform various processes and/or steps corresponding to the sender device in the foregoing method embodiment, in order to avoid duplication, This will not be repeated here.
  • FIG. 9 shows another apparatus 700 for relay transmission provided by an embodiment of the present invention.
  • the device 700 may be specifically a network device or the receiving device is the remote terminal device.
  • the apparatus 700 includes:
  • the receiving unit 710 is configured to receive a second underlying data frame sent by the relay terminal device, where the second underlying data frame is performed by using a media access control MAC protocol data unit PDU that carries the identification information of the remote terminal device by using the bottom layer.
  • the processing unit 720 is configured to determine, according to the identifier information of the remote terminal device that is carried in the second bottom data frame that is received by the receiving unit 710, that the second bottom data frame corresponds to the remote terminal device.
  • the receiving unit 710 is specifically configured to receive, by the relay terminal device, a second underlying data frame that is sent by using a transmission resource for relay transmission;
  • the processing unit 720 is specifically configured to determine, according to the transmission resource occupied by the second underlying data frame, that the second underlying data frame is forwarded by the relay terminal device.
  • the processing unit 720 is further configured to determine a data transmission tunnel corresponding to the remote terminal device.
  • the apparatus 700 further includes: The sending unit 730 is configured to send, by using the corresponding data transmission tunnel determined by the processing unit 720, the data carried in the second underlying data frame to the core network device.
  • the identifier information of the remote terminal device includes a layer 2 identifier of the remote terminal device or a terminal device identifier of the remote terminal device.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • the receiving unit 710 is further configured to: before receiving the second underlying data frame sent by the relay terminal device, receive a scheduling request sent by the relay terminal device;
  • the processing unit 720 is further configured to determine, according to the correspondence between the physical uplink control channel PUCCH resource and the data volume or the data volume interval, the physical uplink control channel PUCCH resource occupied by the scheduling request received by the receiving unit 710.
  • the corresponding data amount or data amount interval, and the uplink transmission resource is allocated to the relay terminal device according to the corresponding data amount or data amount interval.
  • the receiving unit 710 is further configured to receive a preamble sent by the relay terminal device before receiving the second underlying data frame sent by the relay terminal device;
  • the processing unit 720 is further configured to determine, according to a correspondence between the preamble and the data volume or the data amount interval, a data amount corresponding to the preamble received by the receiving unit 710, and according to the corresponding data amount, The relay terminal device allocates an uplink transmission resource.
  • the apparatus 700 may be specifically the receiving end device in the foregoing embodiment, where the apparatus 700 may be used to perform various processes and/or steps corresponding to the receiving end device in the foregoing method embodiment, in order to avoid duplication, This will not be repeated here.
  • unit herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • FIG. 10 is a schematic diagram of an apparatus 800 for relay transmission provided by an embodiment of the present invention.
  • the device 800 includes:
  • the receiver 810 is configured to receive a first bottom data frame that is sent by the sending end device to the receiving end device, where the first bottom data frame is that the sending end device carries the remote terminal device through the bottom layer pair
  • the media access control MAC protocol data PDU of the identification information is processed
  • the processor 820 is configured to determine, at the bottom layer, that the first underlying data frame that is received by the receiver 810 needs to be forwarded, and perform forwarding processing on the first underlying data frame at the bottom layer;
  • the sending end device is the remote terminal device and the receiving end device is a network device, or the sending end device is a network device and the receiving end device is the remote terminal device.
  • the processor 820 is further configured to: after the receiver 810 receives the first underlying data frame sent by the sending end device to the receiving end device, by relaying the specific wireless network temporary identifier The RNTI is addressed. At this time, the processor 820 is specifically configured to: if the first underlying data frame is received by the relay terminal device by using the addressing, the relay terminal device determines that the first underlying data frame needs to be forwarded.
  • the first underlying data frame is sent by the sending end device by using a transmission resource for performing relay transmission.
  • the processor 820 is specifically configured to determine that the first underlying data frame needs to be forwarded according to the transmission resource occupied by the first underlying data frame.
  • the identifier information of the remote terminal device includes a layer 2 identifier of the remote terminal device or a terminal device identifier of the remote terminal device.
  • the bottom layer of the network device is specifically a physical layer
  • the bottom layer of the remote terminal device corresponds to a D2D communication technology used between the remote terminal device and the relay terminal device.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • the processor 820 is further configured to perform the forwarding processing on the first underlying data frame before the bottom layer is based on the physical layer.
  • the apparatus 800 further includes: a transmitter 830. Use the corresponding PUCCH resource determined by the processor 820 to send a scheduling request to the network device.
  • the processor 820 is further configured to: according to the preamble, before the bottom layer performs forwarding processing on the first underlying data frame
  • the preamble corresponding to the amount of data carried by the first underlying data frame is determined by the correspondence between the code and the data volume or the data amount interval; accordingly, as shown in FIG. 10, the apparatus 800 further includes: a transmitter 830, And sending the corresponding preamble to the network device, where the corresponding preamble is used by the network device to allocate an uplink transmission resource for the relay terminal device.
  • the processor 820 is specifically configured to: perform decoding processing on the first underlying data frame, obtain data carried in the first underlying data frame, and perform encoding processing on the data to obtain a second underlying data frame.
  • the apparatus 800 further includes: a transmitter 830, configured to send the second underlying data frame obtained by the processor 820.
  • the apparatus 800 further includes: a transmitter 830, where the processor 820 is specifically configured to directly send the first underlying data frame by using the transmitter 830.
  • the device 800 may be specifically the relay terminal device in the foregoing embodiment, and the device 800 may be used to perform various processes and/or steps corresponding to the relay terminal device in the foregoing method embodiment.
  • apparatus 800 can also include a memory, which can include read only memory and random access memory, and provides instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor can be operative to execute instructions stored in the memory, and when the processor executes instructions stored in the memory, the processor is operative to perform various steps and/or processes of the method embodiments described above.
  • FIG. 11 is a schematic diagram showing another apparatus 900 for relay transmission according to an embodiment of the present invention, where the apparatus 900 may be specifically the remote terminal device or the source device is a network device. As shown in FIG. 11, the device 900 includes:
  • the processor 910 is configured to generate a media access control MAC protocol data PDU, where the MAC PDU carries the identification information of the remote terminal device;
  • the transmitter 920 is configured to send, to the relay terminal device, the first underlying data frame obtained by processing the MAC PDU by using the bottom layer.
  • the transmitter 920 is further configured to send a PDCCH to the relay terminal device before sending the first underlying data frame to the relay terminal device, where the PDCCH is used for scheduling The first underlying data frame, and the PDCCH is scrambled with a relay specific radio network temporary identity RNTI.
  • the transmitter 920 is specifically configured to send the first underlying data frame to the relay terminal device by using a transmission resource for relay transmission.
  • the identifier information of the remote terminal device includes a layer 2 identifier of the remote terminal device or a terminal device identifier of the remote terminal device.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • the device 900 may be specifically the sender device in the foregoing embodiment.
  • the apparatus 900 can be configured to perform various processes and/or steps corresponding to the sender device in the foregoing method embodiments.
  • apparatus 900 can also include a memory, which can include read only memory and random access memory, and provides instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor can be operative to execute instructions stored in the memory, and when the processor executes instructions stored in the memory, the processor is operative to perform various steps and/or processes of the method embodiments described above.
  • FIG. 12 shows another apparatus 1000 for relay transmission provided by an embodiment of the present invention.
  • the device 1000 may be specifically a network device or the receiving device is the remote terminal device.
  • the apparatus 1000 includes:
  • the receiver 1010 is configured to receive a second underlying data frame sent by the relay terminal device, where the second underlying data frame is performed by using a media access control MAC protocol data PDU that carries the identification information of the remote terminal device by using the bottom layer.
  • the processor 1020 is configured to determine, according to the identifier information of the remote terminal device that is carried in the second bottom data frame that is received by the receiver 1010, that the second bottom data frame corresponds to the remote terminal device.
  • the receiver 1010 is specifically configured to receive, by the relay terminal device, a second underlying data frame that is sent by using a transmission resource for relay transmission;
  • the processor 1020 is specifically configured to determine, according to the transmission resource occupied by the second underlying data frame, that the second underlying data frame is forwarded by the relay terminal device.
  • the processor 1020 is further configured to determine a data transmission tunnel corresponding to the remote terminal device.
  • the apparatus 1000 further includes: a transmitter 1030, configured to send the data carried in the second underlying data frame to the core network device by using the corresponding data transmission tunnel determined by the processor 1020.
  • the identifier information of the remote terminal device includes a layer 2 identifier of the remote terminal device or a terminal device identifier of the remote terminal device.
  • the identifier information of the remote terminal device is carried in a MAC Control Element field of the MAC PDU.
  • the receiver 1010 is further configured to: before receiving the second underlying data frame sent by the relay terminal device, receive a scheduling request sent by the relay terminal device;
  • the processor 1020 is further configured to: according to a physical uplink control channel PUCCH resource and The data volume or the data volume interval corresponding to the physical uplink control channel PUCCH resource occupied by the scheduling request received by the receiver 1010, and the corresponding data amount or The data volume interval allocates uplink transmission resources for the relay terminal device.
  • the receiver 1010 is further configured to receive a preamble sent by the relay terminal device before receiving the second underlying data frame sent by the relay terminal device;
  • the processor 1020 is further configured to determine, according to a correspondence between the preamble and the data volume or the data amount interval, a data amount corresponding to the preamble received by the receiver 1010, and according to the corresponding data amount, The relay terminal device allocates an uplink transmission resource.
  • the device 1000 may be specifically the receiving device in the foregoing embodiment, and the device 1000 may be configured to perform various processes and/or steps corresponding to the receiving device in the foregoing method embodiment.
  • apparatus 1000 can also include a memory, which can include read only memory and random access memory, and provides instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor can be operative to execute instructions stored in the memory, and when the processor executes instructions stored in the memory, the processor is operative to perform various steps and/or processes of the method embodiments described above.
  • the processor may be a central processing unit (CPU), and the processor may also be other general purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory (Read-Only) Memory, ROM, random access memory (RAM), disk or optical disc, and other media that can store program code.

Abstract

本发明公开了一种中继传输的方法和装置,能够降低中继传输的复杂度,降低传输时延。该方法包括:中继终端设备接收发送端设备向接收端设备发送的第一底层数据帧,其中,该第一底层数据帧是该发送端设备通过底层对携带有远端终端设备的标识信息的MAC PDU进行处理得到的;该中继终端设备在底层确定需要转发该第一底层数据帧;该中继终端设备在底层对该第一底层数据帧进行转发处理;其中,该发送端设备为该远端终端设备且该接收端设备为网络设备,或该发送端设备为网络设备且该接收端设备为该远端终端设备。

Description

中继传输的方法和装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及中继传输的方法和装置。
背景技术
设备到设备(Device-to-Device,D2D)技术是指邻近的终端设备可以在近距离范围内通过直连链路的方式进行数据传输,而不需要通过网络设备进行转发。D2D通信可以与蜂窝系统共享授权频带资源,形成统一的混合蜂窝-D2D网络。在该混合网络中,部分终端设备可以仍工作于蜂窝通信模式,即通过网络设备与其它终端设备通信,而部分终端设备可以工作于D2D通信模式,即通过与其它终端设备之间的直通链路与其它终端设备进行数据的直接传输。
此外,可以通过D2D中继辅助网络设备和终端设备之间的数据传输,此时,D2D中继与D2D终端之间采用D2D通信模式,而D2D中继和网络设备之间使用蜂窝通信模式。D2D中继使用半双工的方式接收和转发数据,并且在接收和转发的过程中进行模式转换。
在现有技术中,D2D中继通过互联网协议(Internet Protocol,IP)层(即层3)中继D2D终端和网络设备之间的数据传输,对于接收到的数据包需要依次经过层1(即物理层)、层2(包括媒体访问控制(Media Access Control,MAC)层、无线链路控制(Radio Link Control,RLC)层和分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层)和层3进行解封装处理,并依次经过层3、层2和层1的封装处理实现数据的中继,复杂度较高,数据处理时延较大。
发明内容
本发明实施例提供一种中继传输的方法和装置,能够降低中继传输的复杂度,降低传输时延。
第一方面,提供了一种中继传输的方法,包括:中继终端设备接收发送端设备向接收端设备发送的第一底层数据帧,其中,该第一底层数据帧是该 发送端设备通过底层对携带有远端终端设备的标识信息的MAC PDU进行处理得到的;该中继终端设备在底层确定需要转发该第一底层数据帧;该中继终端设备在底层对该第一底层数据帧进行转发处理;其中,该发送端设备为该远端终端设备且该接收端设备为网络设备,或该发送端设备为网络设备且该接收端设备为该远端终端设备。
可选地,该中继终端设备可以仅通过底层对接收到的该第一底层数据帧进行处理。此时,该中继终端设备可以在不识别该第一底层数据帧所对应的远端终端设备的情况下对该第一底层数据帧进行转发处理。
可选地,该中继终端设备可以采用用于中继传输的传输资源转发该第一底层数据帧中携带的数据。
可选地,如果该发送端设备为网络设备,则该中继终端设备可以广播该第一底层数据帧中携带的数据。
本发明实施例提供的中继传输的方法,通过中继终端设备采用底层中继的方式中继远端终端设备和网络设备之间的数据,其中,远端终端设备或网络设备向中继终端设备发送底层数据帧,该中继终端设备在底层不进行远端终端设备的识别,而在确定接收到的数据帧携带中继数据时,通过底层对该数据帧进行中继转发处理,与现有技术中中继终端设备采用层三中继的方式相比,能够降低中继终端设备的处理复杂度,降低中继数据的传输时延,提高系统整体性能。
在第一方面的第一种可能的实现方式中,若该发送端设备为网络设备,在该中继终端设备接收发送端设备向接收端设备发送的第一底层数据帧之前,该方法还包括:该中继终端设备通过中继特定RNTI进行寻址;该中继终端设备确定需要转发该第一底层数据帧,包括:若该第一底层数据帧是该中继终端设备通过该寻址接收到的,该中继终端设备确定需要转发该第一底层数据帧。
结合上述可能的实现方式中,在第一方面的第二种可能的实现方式中,该第一底层数据帧是该发送端设备采用用于进行中继传输的传输资源发送的;该中继终端设备确定需要转发该第一底层数据帧,包括:该中继终端设备根据该第一底层数据帧占用的该传输资源,确定需要转发该第一底层数据帧。
结合上述可能的实现方式中,在第一方面的第三种可能的实现方式中, 该远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
结合上述可能的实现方式中,在第一方面的第四种可能的实现方式中,该网络设备的底层具体为物理层,该远端终端设备的底层与该远端终端设备和该中继终端设备之间采用的D2D通信技术相对应。
结合上述可能的实现方式中,在第一方面的第五种可能的实现方式中,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
结合上述可能的实现方式中,在第一方面的第六种可能的实现方式中,若该发送端设备为该远端终端设备且该接收端设备为该网络设备,在该中继终端设备在底层对该第一底层数据帧进行转发处理之前,该方法还包括:该中继终端设备在底层根据PUCCH资源与数据量或数据量区间之间的对应关系,确定该第一底层数据帧携带的数据量所对应的PUCCH资源;该中继终端设备采用该对应的PUCCH资源向该网络设备发送调度请求。
结合上述可能的实现方式中,在第一方面的第七种可能的实现方式中,若该发送端设备为该远端终端设备且该接收端设备为该网络设备,在该中继终端设备在底层对该第一底层数据帧进行转发处理之前,该方法还包括:该中继终端设备在底层根据前导码与数据量或数据量区间之间的对应关系,确定该第一底层数据帧携带的数据量所对应的前导码;该中继终端设备向该网络设备发送该对应的前导码,该对应的前导码用于该网络设备为该中继终端设备分配上行传输资源。
结合上述可能的实现方式中,在第一方面的第八种可能的实现方式中,该中继终端设备在底层对该第一底层数据帧进行转发处理,包括:该中继终端设备对该第一底层数据帧进行解码处理,获得该第一底层数据帧中携带的数据;该中继终端设备对该数据进行编码处理,得到第二底层数据帧;该中继终端设备发送该第二底层数据帧。
结合上述可能的实现方式中,在第一方面的第九种可能的实现方式中,该中继终端设备在底层对该第一底层数据帧进行转发处理,包括:该中继终端设备通过底层直接发送该第一底层数据帧。
第二方面,提供了另一种中继传输的方法,包括:发送端设备生成MAC PDU,其中,该MAC PDU携带远端终端设备的标识信息;该发送端设备向中继终端设备发送通过底层对该MAC PDU进行处理得到的第一底层数据 帧;其中,该发送端设备为该远端终端设备或该发送端设备为网络设备。
在第二方面的第一种可能的实现方式中,若该发送端设备为网络设备,在该发送端设备向中继终端设备发送该第一底层数据帧之前,该方法还包括:该网络设备向该中继终端设备发送物理下行控制信道PDCCH,其中,该PDCCH用于调度该第一底层数据帧,并且该PDCCH是采用中继特定RNTI加扰的。
结合上述可能的实现方式中,在第二方面的第二种可能的实现方式中,该发送端设备向中继终端设备发送该第一底层数据帧,包括:该发送端设备采用用于中继传输的传输资源向中继终端设备发送该第一底层数据帧。
结合上述可能的实现方式中,在第二方面的第三种可能的实现方式中,该远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
结合上述可能的实现方式中,在第二方面的第四种可能的实现方式中,该网络设备的底层具体为物理层,该远端终端设备的底层与该远端终端设备和该中继终端设备之间采用的D2D通信技术相对应。
结合上述可能的实现方式中,在第二方面的第五种可能的实现方式中,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
第三方面,提供了另一种中继传输的方法,包括:接收端设备接收中继终端设备发送的第二底层数据帧,其中,该第二底层数据帧是通过底层对携带有远端终端设备的标识信息的MAC PDU进行处理得到的;该接收端设备在高层根据该远端终端设备的标识信息,确定该第二底层数据帧对应于该远端终端设备;其中,该接收端设备为网络设备或该接收端设备为该远端终端设备。
其中,可选地,该高层可以具体为用户面协议栈中高于底层的层,例如层二中的MAC层、RLC层或PDCP层,等等。
在第三方面的第一种可能的实现方式中,该接收端设备接收中继终端设备发送的第二底层数据帧,包括:该接收端设备接收中继终端设备采用用于中继传输的传输资源发送的第二底层数据帧;该方法还包括:该接收端设备根据该第二底层数据帧占用的传输资源,确定该第二底层数据帧是该中继终端设备转发的。
结合上述可能的实现方式中,在第三方面的第二种可能的实现方式中, 该方法还包括:若该接收端设备为该网络设备,该网络设备确定该远端终端设备对应的数据传输隧道;该网络设备通过该对应的数据传输隧道向核心网设备发送该第二底层数据帧中携带的数据。
结合上述可能的实现方式中,在第三方面的第三种可能的实现方式中,该远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
结合上述可能的实现方式中,在第三方面的第四种可能的实现方式中,该网络设备的底层具体为物理层,该远端终端设备的底层与该远端终端设备和该中继终端设备之间采用的D2D通信技术相对应。
结合上述可能的实现方式中,在第三方面的第五种可能的实现方式中,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
结合上述可能的实现方式中,在第三方面的第六种可能的实现方式中,若该接收端设备为网络设备,在该接收端设备接收中继终端设备发送的第二底层数据帧之前,该方法还包括:该网络设备接收该中继终端设备发送的调度请求;该网络设备根据PUCCH资源与数据量或数据量区间之间的对应关系,确定该调度请求所占用的PUCCH资源所对应的数据量或数据量区间;该网络设备根据该对应的数据量或数据量区间,为该中继终端设备分配上行传输资源。
结合上述可能的实现方式中,在第三方面的第七种可能的实现方式中,若该接收端设备为网络设备,在该接收端设备接收中继终端设备发送的第二底层数据帧之前,该方法还包括:该网络设备接收该中继终端设备发送的前导码;该网络设备根据前导码与数据量或数据量区间之间的对应关系,确定该接收到的前导码对应的数据量或数据量区间;该网络设备根据该对应的数据量或数据量区间,为该中继终端设备分配上行传输资源。
这样,该网络设备可以根据接收到的该前导码或调度请求占用的PUCCH资源进行上行传输资源的分配,该中继终端设备在请求上行授权时无需携带用于指示缓存数据量大小的缓存报告,从而节约信令开销。
第四方面,提供了一种中继传输的装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第五方面,提供了另一种中继传输的装置,用于执行上述第二方面或第 二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第六方面,提供了另一种中继传输的装置,用于执行上述第三方面或第三方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的单元。
第七方面,提供了另一种中继传输的装置,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了另一种中继传输的装置,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了另一种中继传输的装置,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第三方面或第三方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十一方面,提供了另一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十二方面,提供了另一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的指令。
第十三方面,提供了一种中继传输的系统,该系统包括中继终端设备、远端终端设备和网络设备,其中,该中继终端设备的用户面协议栈可以包括底层(也可以称为层一),该远端终端设备的用户面协议栈可以包括层一、层二和层三,该网络设备的用户面协议栈可以包括层一、层二和层三,其中,该中继终端设备的层一分别与该远端终端设备的层一和该网络设备的层一 为对等层,该远端终端设备的层二和该网络设备的层二为对等层。
可选地,该中继终端设备的用户面协议栈可以仅包括层一,而不包括高层(例如层二和层三)。可选地,该中继终端设备通过层一进行中继传输,而可以不对需要中继的数据帧所对应的远端终端设备进行识别。此时,可以由网络设备和远端终端设备通过高层识别数据帧所对应的远端终端设备。
可选地,该中继终端设备可以为第四方面或第四方面的任意可能实现方式中的装置,该远端终端设备和网络设备中的发送端设备可以为第五方面或第五方面的任意可能的实现方式中的装置,该远端终端设备和网络设备中的接收端设备可以为第六方面或第六方面的任意可能的实现方式中的装置。
可选地,该中继终端设备可以为第七方面或第七方面的任意可能实现方式中的装置,该远端终端设备和网络设备中的发送端设备可以为第八方面或第八方面的任意可能的实现方式中的装置,该远端终端设备和网络设备中的接收端设备可以为第九方面或第九方面的任意可能的实现方式中的装置。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例应用的无线通信系统的示意性流程图。
图2是本发明实施例的各个设备的用于中继通信的用户面协议栈示例的示意图。
图3是本发明实施例提供的中继传输的方法的示意性流程图。
图4是本发明实施例提供的中继传输的方法中MAC PDU结构示例的示意图。
图5是本发明实施例提供的另一中继传输的方法的示意性流程图。
图6是本发明实施例提供的另一中继传输的方法的示意性流程图。
图7是本发明实施例提供的中继传输的装置的示意性框图。
图8是本发明实施例提供的另一中继传输的装置的示意性框图。
图9是本发明实施例提供的另一中继传输的装置的示意性框图。
图10是本发明实施例提供的另一中继传输的装置的示意性框图。
图11是本发明实施例提供的另一中继传输的装置的示意性框图。
图12是本发明实施例提供的另一中继传输的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图1是本发明实施例的应用的无线通信系统100的示意图,该无线通信系统100包括可以包括至少一个网络设备110。网络设备100可以是与终端设备通信的设备。每个网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。该网络设备100可以是GSM系统或码分多址(Code Division Multiple Access,CDMA)系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的多个终端设备120。该终端设备120可以是移动的或固定的。该终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信 功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
图1示例性地示出了一个网络设备和六个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本发明实施例对此不做限定。此外,该无线通信系统100还可以包括移动管理实体(Mobile Management Entity,MME)、服务网关(Serving Gateway,S-GW)、分组数据网络网关(Packet Data Network Gateway,P-GW)等其他网络实体,但本发明实施例不限于此。
具体地,终端设备120可以以蜂窝通信模式或D2D通信模式进行通信,其中,在蜂窝通信模式中,终端设备可以通过网络设备与其它终端设备通信;在D2D通信模式中,终端设备可以通过D2D链路直接与其它终端设备通信。
在图1示出的多个终端设备120中,包括蜂窝终端设备、D2D终端设备和中继终端设备,其中,蜂窝终端设备采用蜂窝通信技术与网络设备110进行通信。D2D终端设备通过中继终端设备实现与网络设备之间的数据传输,其中,中继终端设备与D2D终端设备之间具有PC5接口,采用D2D通信技术进行通信,其中,该D2D通信技术可以具体为LTE中的旁路(SideLink,SL)技术,也可以为WLAN中的WIFI或蓝牙等技术,或者为其它D2D通信技术,本发明实施例对此不做限定。中继终端设备与网络设备之间具有Uu接口,采用蜂窝通信技术进行通信。
现有技术中,中继终端设备采用层三中继方式进行中继,数据处理复杂度较高,处理时延较大。在本发明实施例中,中继终端设备可以采用底层中继的方式中继网络设备和D2D终端设备之间的数据传输,其中,对于LTE系统,该网络设备的底层具体指层一,即物理层,而D2D终端设备的底层依赖于该D2D终端设备与中继终端设备采用的D2D通信技术,例如,如果该D2D通信技术为LTE的旁路技术,则该底层可以具体为物理层,而如果该D2D通信技术为WLAN或其它通信技术,则该底层可以具有其它名称,本发明实施例不限于此。
在本发明实施例中,Uu接口和PC5接口上的数据传输都可以通过物理层进行。可选地,当网络设备或远端终端设备需要向对方发送数据时,可以首先将待发送数据封装为MAC PDU,例如MAC PDU,然后通过底层对该 MAC PDU进行处理,得到底层数据帧,并向中继终端设备发送该底层数据帧。图2示意性地示出了各个设备用于中继传输的用户面协议栈示例,其中,中继终端设备的用于中继传输的用户面协议栈可以仅包括层一(即PHY层),该远端终端设备和网络设备的用户面协议栈可以包括层一(L1)、层二(L2)和层三(L3)。该中继终端设备的层一可以分别与该远端终端设备的层一和该网络设备的层一为对等层,而该远端终端设备的层二可以与该网络设备的层二为对等层。此时,可选地,中继终端设备可以不识别接收到的底层数据帧所对应的远端终端设备,而由远端终端设备和网络设备在高层(例如MAC层或更高层)识别接收到的数据帧所对应的远端终端设备,但本发明实施例对此不做限定。
为了便于描述,以下实施例主要以该底层具体为物理层为例进行描述,但本领域技术人员可以理解,若D2D终端设备(也可称为远端终端设备)与中继终端设备之间采用的D2D通信技术为其它通信技术,则该底层可以具体具有其它名称,本发明实施例对此不做限定。
图3示意性地示出了本发明实施例提供的中继传输的方法200。该方法200可以应用于上述无线通信系统100,但本发明实施例不限于此。具体地,该方法200可以应用于上行数据的中继传输,即远端终端设备通过中继终端设备向网络设备传输上行数据,此时,发送端设备具体为远端终端设备(也可称为D2D终端设备),接收端设备具体为网络设备。可选地,该方法200也可以应用于下行数据的中继传输,即网络设备通过中继终端设备向远端终端设备传输下行数据,此时,发送端设备为网络设备,接收端设备为远端终端设备,但本发明实施例对此不做限定。
S210,发送端设备生成MAC协议数据单元(Protocol Data Unit,PDU),该MAC PDU携带远端终端设备的标识信息。
该发送端设备在确定需要向接收端设备发送数据时,可以通过在高层对数据进行封装处理,得到MAC PDU。其中,该MAC PDU中可以携带远端终端设备的标识信息。该远端终端设备的标识信息可以用于标识该远端终端设备。
可选地,该远端终端设备的标识信息可以包括该远端终端设备的终端设备标识。该终端设备标识可以用于唯一地标识该远端终端设备。其中,该终端设备标识可以是预先定义的。例如该终端设备标识可以具体为该远端终端 设备的设备标识或该远端终端设备的用户标识,等等。可选地,该远端终端设备的标识信息也可以包括该远端终端设备的特定标识,该远端终端设备的特定标识用于在中继传输中唯一地标识该远端终端设备。该特定标识可以是预定义的,也可以是网络设备配置的。该特定标识的长度可以小于终端设备标识的长度,以降低信令开销。该远端终端设备和网络设备可以在高层识别该特定标识,其中,高层可以指位于底层之上的层,例如层二或层三,本发明实施例对此不做限定。例如,该特定标识可以是层二标识。层二标识可以为在层二进行封装和识别的标识,例如在MAC层、RLC层或PDCP层进行识别。可选地,该层二标识可以是预定义的,或者是网络设备为远端终端设备分配的,例如该层二标识是网络设备在为该远端终端设备建立承载的过程中为该远端终端设备分配的,但本发明实施例不限于此。
该远端终端设备的标识信息可以承载于该MAC PDU的任意可能位置。可选地,该远端终端设备的标识信息可以承载于该MAC PDU的MAC控制元素(Control Element,CE)中,该MAC CE可以为现有MAC CE或新增MAC CE,例如如图4所示,但本发明实施例对此不做限定。
S220,发送端设备通过底层(例如物理层)对该MAC PDU进行处理,生成第一底层数据帧。
该发送端设备可以将该MAC PDU传输至底层进行处理,并通过底层向中继终端设备发送处理后的该MAC PDU。可选地,该发送端设备可以设置该第一底层数据帧,以使得该中继终端设备能够确定该第一底层数据帧携带中继数据,需要进行转发。或者,该发送端设备可以采用用于进行中继传输的传输资源或其它方式发送该第一底层数据帧,以使得该中继终端设备可以根据该传输资源确定该第一底层数据帧携带中继数据,本发明实施例对此不做限定。例如,网络设备为该中继终端设备配置了用于进行中继传输的传输资源,此时,当该网络设备需要向远端终端设备发送数据时,可以采用该用于中继传输的传输资源向该中继终端设备发送该数据;或者,网络设备为该远端终端设备配置了用于中继传输的传输资源,此时,当该远端终端设备需要向网络设备发送数据时,可以采用该用于中继传输的传输资源向该中继终端设备发送该数据,但本发明实施例不限于此。
S230,发送端设备向该中继终端设备发送该第一底层数据帧。
S240,该中继终端设备通过底层接收到该发送端设备发送的该第一底层 数据帧之后,可以在底层确定需要转发该第一底层数据帧。
可选地,如果该第一底层数据帧是发送端设备采用用于中继传输的传输资源发送的,则该中继终端设备可以在底层根据该第一底层数据帧占用的该传输资源,确定该第一底层数据帧携带中继数据,需要进行转发。
可选地,该中继终端设备可以采用中继特定无线网络临时标识(Radio Network Temporary Identity,RNTI)进行寻址。其中,该中继特定RNTI对应于中继传输。可选地,该中继特定RNTI可以是预定义的,或者是网络设备预先分配的,本发明实施例对此不做限定。如果该中继终端设备通过采用该中继特定RNTI寻址接收到用于调度该第一底层数据帧的物理下行控制信道Physical Downlink Control Channel,PDCCH),即用于调度该第一底层数据帧的PDCCH是采用该中继特定RNTI加扰的,则该中继终端设备可以根据中继特定RNTI,确定该第一底层数据帧携带中继数据,需要进行转发,但本发明实施例不限于此。
可选地,该中继终端设备还可以通过其他方式确定接收到的该底层数据帧是发送给自身的还是需要中继转发的,本发明实施例对此不做限定。
S250,该中继终端设备在底层对该第一底层数据帧进行转发处理。
当该中继终端设备确定该第一底层数据帧携带中继数据,需要进行中继转发时,可选地,该中继终端设备可以不对该第一底层数据帧进行解码处理,而直接通过底层发送该第一底层数据帧。或者,该中继终端设备也可以在底层对该第一底层数据帧进行解码处理,获得该第一底层数据帧携带的数据,并通过底层发送该第一底层数据帧中携带的数据。具体地,该中继终端设备可以在底层对该解码处理获得的数据进行编码处理,得到第二底层数据帧,并通过底层发送该第二底层数据帧,但本发明实施例不限于此。
可选地,如果该接收端设备为远端终端设备,则该中继终端设备并不识别该第一底层数据帧携带的数据所对应的远端终端设备,可选地,该中继终端设备可以以广播的形式发送该第一底层数据帧携带的数据(具体可以为上述第一底层数据帧或第二底层数据帧),例如,该中继终端设备可以通过用于中继传输的传输资源发送该第一底层数据帧携带的数据,但本发明实施例不限于此。
可选地,如果该接收端设备为网络设备,则该中继终端设备可以向网络设备发送该第一底层数据帧中携带的数据。其中,可选地,该中继终端设备 可以通过用于中继传输的传输资源向该网络设备发送该第一底层数据帧或第二底层数据帧,但本发明实施例不限于此。
可选地,在向网络设备发送该第一底层数据帧或该第二底层数据帧之前,该中继终端设备还可以发起上行授权请求流程,以请求上行传输资源,并且采用该网络设备分配的上行传输资源向该网络设备发送该第一底层数据帧或该第二底层数据帧。其中,可选地,该中继终端设备可以确定该第一底层数据帧中携带的数据量,例如,该中继终端设备可以在底层对该第一底层数据帧进行解码处理,以获得该第一底层数据帧中携带的数据量;或者,该第一底层数据帧可以携带用于指示该第一底层数据帧携带的数据量的指示信息,本发明实施例对该中继终端设备确定该第一底层数据帧携带的数据量的方式不做限定。
可选地,该中继终端设备可以根据该第一底层数据帧中携带的数据量,发起上行授权请求。作为一个可选实施例,物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源与预设数据量或预设数据量区间之间可以存在对应关系,其中,该对应关系可以是预先定义的,或者是网络设备预先配置的,例如,网络设备可以通过广播信令或专用信令预先配置该对应关系,本发明实施例对此不做限定。此时,该中继终端设备可以根据该第一底层数据帧中携带的数据量以及该PUCCH资源与预设数据量或数据量区间之间的对应关系,确定目标PUCCH资源,并采用该目标PUCCH资源向该网络设备发送调度请求,但本发明实施例不限于此。
此时,该网络设备在接收到该调度请求之后,可以根据该调度请求占用的PUCCH资源,确定该调度请求对应的数据量或数据量区间,并根据该对应的数据量或数据量区间分配上行传输资源,但本发明实施例不限于此。
作为另一个可选实施例,该中继终端设备通过向网络设备发送前导码发起上行授权请求。可选地,前导码与预设数据量或预设数据量区间之间可以存在对应关系,其中,该对应关系可以是预先定义的,或者是网络设备预先配置的,例如,网络设备可以通过广播信令或专用信令预先配置该对应关系,本发明实施例对此不做限定。此时,该中继终端设备可以根据该第一底层数据帧中携带的数据量以及该前导码与预设数据量或数据量区间之间的对应关系,确定目标前导码,并向该网络设备发送该目标前导码,但本发明实施例不限于此。
此时,该网络设备在接收到该前导码之后,可以确定该前导码对应的数据量或数据量区间,并根据该对应的数据量或数据量区间分配上行传输资源,但本发明实施例不限于此。
可选地,该中继终端设备还可以通过其他方式发起上行授权请求,本发明实施例对此不做限定。
S260,接收端设备在接收到该中继终端设备发送的第一底层数据帧或第二底层数据帧时,可以在高层根据该第一底层数据帧或第二底层数据帧中携带的远端终端设备的标识信息,确定该第一底层数据帧或该第二底层数据帧所对应的远端终端设备。
可选地,接收到该中继终端设备发送的第一底层数据帧或该第二底层数据帧的远端终端设备可以通过在高层(例如层二)识别该数据帧中携带的远端终端设备的标识信息,确定该数据帧是否是发送给自己的,如果确定该数据帧是发送给自己的,则可以对该数据帧进行解码处理;反之,则可以丢弃该数据帧,但本发明实施例对此不做限定。
可选地,当网络设备接收到中继终端设备发送的该第一底层数据帧或该第二底层数据帧,可以通过在高层(例如层二)识别该数据帧中携带的远端终端设备的标识信息,确定该数据帧所对应的远端终端设备,并根据该对应的远端终端设备,向核心网设备发送该数据帧中携带的数据,例如,如果该网络设备和核心网设备(例如P-GW)之间建立了该远端终端设备的数据传输通道(例如GPRS隧道协议(GPRS Tunneling Protocol,GTP)隧道),则该网络设备可以通过该远端终端设备对应的数据传输通道向核心网设备发送该数据帧中携带的数据,但本发明实施例不限于此。
可选地,在进行中继传输之前,该网络设备还可以为该远端终端设备建立承载。例如,该网络设备与P-GW之间可以建立该远端终端设备的数据传输通道(例如GTP隧道),并且该网络设备与该中继终端设备之间可以建立该远端终端设备的无线承载,但本发明实施例不限于此。
可选地,该中继终端设备可以接收该远端终端设备的连接建立请求,该连接建立请求用于请求建立该中继终端设备与该远端终端设备之间的D2D通信链路。可选地,该连接建立请求可以具体为直接通信请求,用于请求建立与该中继终端设备之间的PC5连接。
该中继终端设备可以根据该连接建立请求,向核心网设备发送承载建立 请求,该承载建立请求可以携带该远端终端设备的终端设备标识。可选地,该核心网设备可以为MME,该MME可以向P-GW发送该承载建立请求中携带的该远端终端设备的终端设备标识,以便于该P-GW与网络设备之间建立该远端终端设备的数据传输通道(例如GTP隧道),并且该网络设备可以建立该远端终端设备的无线承载,其中,该无线承载可以包括该网络设备与该中继终端设备之间的蜂窝数据传输通道以及该中继终端设备与该远端终端设备之间的D2D数据传输通道。
该中继终端设备可以接收该网络设备发送的承载建立响应,该承载建立响应携带该网络设备为该远端终端设备建立的无线承载的配置信息,其中,可选地,该无线承载的配置信息可以包括物理层配置信息。可选地,该无线承载的配置信息还可以包括下列信息中的至少一种:MAC层配置信息、PDCP层配置信息和RLC层配置信息。可选地,该无线承载的配置信息还可以包括该网络设备为该远端终端设备分配的层二标识,但本发明实施例不限于此。
可选地,该中继终端设备可以根据该承载建立响应,向该远端终端设备发送连接建立响应,该连接建立响应携带该物理层配置信息,或者还可以进一步携带和该MAC层配置信息、PDCP层配置信息和RLC层配置信息中的至少一种,或者还可以携带该远端终端设备的层二标识,但本发明实施例不限于此。
可选地,在进行中继传输之前,该网络设备还可以为该远端终端设备建立承载。例如,该网络设备与P-GW之间可以建立该远端终端设备的数据传输通道(例如GTP隧道),并且该网络设备与该中继终端设备之间可以建立该远端终端设备的无线承载,但本发明实施例不限于此。
可选地,该中继终端设备可以接收该远端终端设备的连接建立请求,该连接建立请求用于请求建立该中继终端设备与该远端终端设备之间的D2D通信链路。可选地,该连接建立请求可以具体为直接通信请求,用于请求建立与该中继终端设备之间的PC5连接。
该中继终端设备可以根据该连接建立请求,向核心网设备发送承载建立请求,该承载建立请求可以携带该远端终端设备的终端设备标识。可选地,该核心网设备可以为MME,该MME可以向P-GW发送该承载建立请求中携带的该远端终端设备的终端设备标识,以便于该P-GW与网络设备之间建 立该远端终端设备的数据传输通道(例如GTP隧道),并且该网络设备可以建立该远端终端设备的无线承载,其中,该无线承载可以包括该网络设备与该中继终端设备之间的蜂窝数据传输通道以及该中继终端设备与该远端终端设备之间的D2D数据传输通道。
该中继终端设备可以接收该网络设备发送的承载建立响应,该承载建立响应携带该网络设备为该远端终端设备建立的无线承载的配置信息,其中,可选地,该无线承载的配置信息可以包括物理层配置信息。其中,可选地,该物理层配置信息可以包括中继特定RNTI和/或用于中继传输的物理资源,其中,该用于中继传输的物理资源可以包括用于中继终端设备与网络设备之间进行中继传输的物理资源和/或用于中继终端设备与远端终端设备之间进行中继传输的物理资源。可选地,该物理层配置信息还可以包括用于指示前导码与数据量区间之间的对应关系的指示信息和/或用于指示PUCCH资源与数据量区间之间的对应关系的指示信息,但本发明实施例不限于此。
可选地,该无线承载的配置信息还可以包括层二配置信息,该层二配置信息可以包括MAC层配置信息、RLC层配置信息和PDCP层配置信息中的至少一种。可选地,该层二配置信息可以包括该网络设备为该远端终端设备分配的层二标识,但本发明实施例不限于此。
可选地,该中继终端设备可以根据该承载建立响应,向该远端终端设备发送连接建立响应,该连接建立响应可以携带该MAC层配置信息、RLC层配置信息和PDCP层配置信息中的至少一种。可选地,如果该连接建立响应不携带上述层二的配置信息,则该远端终端设备可以根据接收到的该中继终端设备的D2D广播消息,对层二进行配置;可选地,如果该连接建立响应携带上述层二的配置信息,该远端终端设备可以根据该连接建立响应携带的MAC层配置信息、RLC层配置信息和PDCP层配置信息中的至少一种,对层二进行配置,但本发明实施例不限于此。
因此,根据本发明实施例的中继传输的方法,通过中继终端设备采用底层中继的方式中继远端终端设备和网络设备之间的数据,其中,远端终端设备或网络设备向中继终端设备发送底层数据帧,该中继终端设备在底层不进行远端终端设备的识别,而在确定接收到的数据帧携带中继数据时,通过底层对该数据帧进行中继转发处理,与现有技术中中继终端设备采用层三中继的方式相比,能够降低中继终端设备的处理复杂度,降低中继数据的传输时 延,提高系统整体性能。
下面将结合具体的例子详细描述本发明实施例。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
为了便于描述,在下面的例子中假设蜂窝网络已经为远端终端设备建立了PDN连接和承载,假设远端终端设备具体为远端UE,中继终端设备具体为中继UE,网络设备具体为eNB,并且PC5接口对应的底层具体为物理层。应理解,如果PC5接口采用不同于LTE旁路技术的其它D2D通信技术,则该底层可以具体为与该其它D2D通信技术对应的层一,但本发明实施例不限于此。
图5示意性地示出了本发明另一实施例提供的中继传输的方法300。该方法300可以应用于下行数据的中继传输。
S310,P-GW在接收到向远端终端设备发送的数据时,将数据通过在承载建立过程中分配的S1-U接口的GTP隧道发送到eNB。
S320,eNB收到来自GTP隧道的远端终端设备的数据之后,将数据封装为Uu接口的MAC PDU,其中,该Uu接口的MAC PDU中携带远端终端设备的标识信息,例如层二标识或终端设备标识。
S330,eNB可以通过中继特定RNTI寻址的PDCCH调度下行数据传输,并通过物理层在物理下行数据信道(Physical Downlink Shared Channel,PDSCH)向中继终端设备传输该Uu接口的MAC PDU。
此时,可选地,该eNB可以通过中继特定RNTI对该PDCCH进行加扰,以指示该PDCCH用于调度中继数据传输。相应地,该中继终端设备可以根据该中继特定RNTI进行寻址,但本发明实施例不限于此。
S340,中继终端设备在通过物理层接收到Uu接口的MAC PDU之后,可以在物理层确定接收到的该MAC PDU携带中继数据,并通过物理层发送PC5接口的MAC PDU。
此时,该中继终端设备可以不识别接收到的该MAC PDU所对应的远端终端设备。可选地,该中继终端设备可以不对接收到的MAC PDU进行解码处理,此时,该Uu接口的MAC PDU可以与该PC5接口的MAC PDU相同。或者,该中继终端设备可以在物理层对接收到的Uu接口的MAC PDU进行解码和编码处理,得到PC5接口的MAC PDU,但本发明实施例 不限于此。
S350,中继终端设备在用于中继传输的特定时频资源上发送该PC5接口的MAC PDU。
其中,该中继终端设备可以在用于中继传输的时频资源上广播该PC5接口的MAC PDU。
S360,远端终端设备在通过物理层接收到PC5接口的MAC PDU之后,可以在高层(例如层二)对该PC5接口的MAC PDU中携带的远端终端设备的标识信息进行解析处理,以确定该MAC PDU是否是发送给自己的。可选地,如果该远端终端设备确定接收到的该MAC PDU是发送给自己的,则可以对该MAC PDU进行解码等进一步处理。如果该远端终端设备确定接收到的该MAC PDU不是发送给自己的,则可以丢弃该MAC PDU,但本发明实施例不限于此。
图6示意性地示出了本发明另一实施例提供的中继传输的方法400。该方法400可以应用于上行数据的中继传输。
S410,当远端终端设备有数据待发送到蜂窝网络时,远端终端设备将数据封装为MAC PDU,其中,该MAC PDU携带该远端终端设备的标识信息。
S420,远端终端设备通过PC5接口在物理层用于中继传输的时频资源上发送该MAC PDU。
S430,中继终端设备在通过物理层接收到来自远端终端设备的MAC PDU之后,可以在物理层对接收到的该MAC PDU进行解码处理,以确定该MAC PDU携带的数据量。
此时,该中继终端设备可以不对接收到的该MAC PDU所对应的远端终端设备进行识别,而仅在物理层识别该MAC PDU中携带的数据量。
可选地,在S440中,该中继终端设备根据预设的数据量区间与PUCCH资源之间的对应关系,确定该MAC PDU中携带的数据量所对应的PUCCH资源,并采用该对应的PUCCH资源向eNB发送调度请求。
S450,eNB接收到该中继终端设备发送的调度请求之后,可以根据该调度请求所占用的PUCCH资源,确定该中继终端设备待发送的数据量区间,并根据该数据量区间通过PDCCH为该中继终端设备分配上行传输资源。
S460,中继终端设备接收到该eNB发送的PDCCH之后,可以通过物理层在eNB分配的上行传输资源上发送Uu接口的MAC PDU。
S470,eNB在通过物理层接收到中继终端设备发送的MAC PDU之后,可以在高层(例如层二)解析Uu接口的MAC PDU,以识别该MAC PDU对应的远端终端设备。
S480,eNB可以通过S1接口将该MAC PDU中携带的数据在与远端终端设备对应的GTP隧道传输至P-GW。
应注意,图5和图6的例子是为了帮助本领域技术人员更好地理解本发明实施例,而非要限制本发明实施例的范围。本领域技术人员根据所给出的图5和图6的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文中结合图1至图6,详细描述了根据本发明实施例的中继传输的方法,下面将结合图7至图12,详细描述根据本发明实施例的中继传输的装置。
图7示意性地示出了本发明实施例提供的中继传输的装置500。该装置500包括:
接收单元510,用于接收发送端设备向接收端设备发送的第一底层数据帧,其中,该第一底层数据帧是该发送端设备通过底层对携带有远端终端设备的标识信息的媒体访问控制MAC协议数据单元PDU进行处理得到的;
处理单元520,用于在底层确定需要转发该接收单元510接收的该第一底层数据帧,以及在底层对该第一底层数据帧进行转发处理;
其中,该发送端设备为该远端终端设备且该接收端设备为网络设备,或该发送端设备为网络设备且该接收端设备为该远端终端设备。
可选地,若该发送端设备为网络设备,该处理单元520还用于在该接收单元510接收发送端设备向接收端设备发送的第一底层数据帧之前,通过中继特定无线网络临时标识RNTI进行寻址。此时,该处理单元520具体用于若该第一底层数据帧是该中继终端设备通过该寻址接收到的,该中继终端设备确定需要转发该第一底层数据帧。
可选地,该第一底层数据帧是该发送端设备采用用于进行中继传输的传输资源发送的。此时,该处理单元520具体用于根据该第一底层数据帧占用的该传输资源,确定需要转发该第一底层数据帧。
可选地,远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
可选地,该网络设备的底层具体为物理层,该远端终端设备的底层与该远端终端设备和该中继终端设备之间采用的D2D通信技术相对应。
可选地,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
可选地,若该发送端设备为该远端终端设备且该接收端设备为该网络设备,该处理单元520还用于在底层对该第一底层数据帧进行转发处理之前,在底层根据物理上行控制信道PUCCH资源与数据量或数据量区间之间的对应关系,确定该第一底层数据帧携带的数据量所对应的物理上行控制信道PUCCH资源;相应地,该装置500还包括:第一发送单元,用于采用该处理单元520确定的该对应的PUCCH资源向该网络设备发送调度请求。
可选地,若该发送端设备为该远端终端设备且该接收端设备为该网络设备,该处理单元520还用于在底层对该第一底层数据帧进行转发处理之前,在底层根据前导码与数据量或数据量区间之间的对应关系,确定该第一底层数据帧携带的数据量所对应的前导码;相应地,该装置500还包括:第一发送单元,用于向该网络设备发送该对应的前导码,该对应的前导码用于该网络设备为该中继终端设备分配上行传输资源。
可选地,该处理单元520具体用于:对该第一底层数据帧进行解码处理,获得该第一底层数据帧中携带的数据,以及对该数据进行编码处理,得到第二底层数据帧;相应地,该装置500还包括:第二发送单元,用于发送该处理单元520得到的该第二底层数据帧。
可选地,该装置500还包括:第二发送单元,其中,该处理单元520具体用于通过该第二发送单元在底层直接发送该第一底层数据帧。
在一个可选例子中,装置500可以具体为上述实施例中的中继终端设备,装置500可以用于执行上述方法实施例中与中继终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图8示意性地示出了本发明实施例提供的另一中继传输的装置600,其中,该装置600可以具体为该远端终端设备或该发送端设备为网络设备。如图8所示,该装置600包括:
处理单元610,用于生成媒体访问控制MAC协议数据单元PDU,其中, 该MAC PDU携带远端终端设备的标识信息;
发送单元620,用于向中继终端设备发送通过底层对该MAC PDU进行处理得到的第一底层数据帧。
可选地,若该装置600为网络设备,该发送单元620还用于在向中继终端设备发送该第一底层数据帧之前,向该中继终端设备发送PDCCH,其中,该PDCCH用于调度该第一底层数据帧,并且该PDCCH是采用中继特定无线网络临时标识RNTI加扰的。
可选地,该发送单元620具体用于采用用于中继传输的传输资源向中继终端设备发送该第一底层数据帧。
可选地,该远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
可选地,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
在一个可选例子中,装置600可以具体为上述实施例中的发送端设备,装置600可以用于执行上述方法实施例中与发送端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图9示出了本发明实施例提供的另一中继传输的装置700。其中,该装置700可以具体为网络设备或该接收端设备为该远端终端设备。如图9所示,该装置700包括:
接收单元710,用于接收中继终端设备发送的第二底层数据帧,其中,该第二底层数据帧是通过底层对携带有远端终端设备的标识信息的媒体访问控制MAC协议数据单元PDU进行处理得到的;
处理单元720,用于在高层根据该接收单元710接收到的该第二底层数据帧中携带的该远端终端设备的标识信息,确定该第二底层数据帧对应于该远端终端设备。
可选地,该接收单元710具体用于接收中继终端设备采用用于中继传输的传输资源发送的第二底层数据帧;
相应地,该处理单元720具体用于根据该第二底层数据帧占用的传输资源,确定该第二底层数据帧是该中继终端设备转发的。
可选地,若该装置700为该网络设备,该处理单元720还用于确定该远端终端设备对应的数据传输隧道。此时,如图9所示,该装置700还包括: 发送单元730,用于通过该处理单元720确定的该对应的数据传输隧道向核心网设备发送该第二底层数据帧中携带的数据。
可选地,该远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
可选地,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
可选地,若该装置700为网络设备,该接收单元710还用于在接收中继终端设备发送的第二底层数据帧之前,接收该中继终端设备发送的调度请求;
相应地,该处理单元720还用于根据物理上行控制信道PUCCH资源与数据量或数据量区间之间的对应关系,确定该接收单元710接收到的该调度请求所占用的物理上行控制信道PUCCH资源所对应的数据量或数据量区间,以及根据该对应的数据量或数据量区间,为该中继终端设备分配上行传输资源。
可选地,若该装置700为网络设备,该接收单元710还用于在接收中继终端设备发送的第二底层数据帧之前,接收该中继终端设备发送的前导码;
相应地,该处理单元720还用于根据前导码与数据量或数据量区间之间的对应关系,确定该接收单元710接收到的前导码对应的数据量,以及根据该对应的数据量,为该中继终端设备分配上行传输资源。
在一个可选例子中,装置700可以具体为上述实施例中的接收端设备,装置700可以用于执行上述方法实施例中与接收端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
应理解,上述装置500、装置600和装置700均以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
图10示意性地示出了本发明实施例提供的中继传输的装置800。该装置800包括:
接收器810,用于接收发送端设备向接收端设备发送的第一底层数据帧,其中,该第一底层数据帧是该发送端设备通过底层对携带有远端终端设备的 标识信息的媒体访问控制MAC协议数据器PDU进行处理得到的;
处理器820,用于在底层确定需要转发该接收器810接收的该第一底层数据帧,以及在底层对该第一底层数据帧进行转发处理;
其中,该发送端设备为该远端终端设备且该接收端设备为网络设备,或该发送端设备为网络设备且该接收端设备为该远端终端设备。
可选地,若该发送端设备为网络设备,该处理器820还用于在该接收器810接收发送端设备向接收端设备发送的第一底层数据帧之前,通过中继特定无线网络临时标识RNTI进行寻址。此时,该处理器820具体用于若该第一底层数据帧是该中继终端设备通过该寻址接收到的,该中继终端设备确定需要转发该第一底层数据帧。
可选地,该第一底层数据帧是该发送端设备采用用于进行中继传输的传输资源发送的。此时,该处理器820具体用于根据该第一底层数据帧占用的该传输资源,确定需要转发该第一底层数据帧。
可选地,远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
可选地,该网络设备的底层具体为物理层,该远端终端设备的底层与该远端终端设备和该中继终端设备之间采用的D2D通信技术相对应。
可选地,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
可选地,若该发送端设备为该远端终端设备且该接收端设备为该网络设备,该处理器820还用于在底层对该第一底层数据帧进行转发处理之前,在底层根据物理上行控制信道PUCCH资源与数据量或数据量区间之间的对应关系,确定该第一底层数据帧携带的数据量所对应的物理上行控制信道PUCCH资源;相应地,该装置800还包括:发送器830,用于采用该处理器820确定的该对应的PUCCH资源向该网络设备发送调度请求。
可选地,若该发送端设备为该远端终端设备且该接收端设备为该网络设备,该处理器820还用于在底层对该第一底层数据帧进行转发处理之前,在底层根据前导码与数据量或数据量区间之间的对应关系,确定该第一底层数据帧携带的数据量所对应的前导码;相应地,如图10所示,该装置800还包括:发送器830,用于向该网络设备发送该对应的前导码,该对应的前导码用于该网络设备为该中继终端设备分配上行传输资源。
可选地,该处理器820具体用于:对该第一底层数据帧进行解码处理,获得该第一底层数据帧中携带的数据,以及对该数据进行编码处理,得到第二底层数据帧;相应地,该装置800还包括:发送器830,用于发送该处理器820得到的该第二底层数据帧。
可选地,该装置800还包括:发送器830,其中,该处理器820具体用于通过该发送器830在底层直接发送该第一底层数据帧。
在一个可选例子中,装置800可以具体为上述实施例中的中继终端设备,装置800可以用于执行上述方法实施例中与中继终端设备对应的各个流程和/或步骤。可选地,装置800还可以包括存储器,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。处理器可以用于执行存储器中存储的指令,并且当该处理器执行存储器中存储的指令时,该处理器用于执行上述方法实施例的各个步骤和/或流程。
图11示意性地示出了本发明实施例提供的另一中继传输的装置900,其中,该装置900可以具体为该远端终端设备或该发送端设备为网络设备。如图11所示,该装置900包括:
处理器910,用于生成媒体访问控制MAC协议数据器PDU,其中,该MAC PDU携带远端终端设备的标识信息;
发送器920,用于向中继终端设备发送通过底层对该MAC PDU进行处理得到的第一底层数据帧。
可选地,若该装置900为网络设备,该发送器920还用于在向中继终端设备发送该第一底层数据帧之前,向该中继终端设备发送PDCCH,其中,该PDCCH用于调度该第一底层数据帧,并且该PDCCH是采用中继特定无线网络临时标识RNTI加扰的。
可选地,该发送器920具体用于采用用于中继传输的传输资源向中继终端设备发送该第一底层数据帧。
可选地,该远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
可选地,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
在一个可选例子中,装置900可以具体为上述实施例中的发送端设备, 装置900可以用于执行上述方法实施例中与发送端设备对应的各个流程和/或步骤。可选地,装置900还可以包括存储器,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。处理器可以用于执行存储器中存储的指令,并且当该处理器执行存储器中存储的指令时,该处理器用于执行上述方法实施例的各个步骤和/或流程。
图12示出了本发明实施例提供的另一中继传输的装置1000。其中,该装置1000可以具体为网络设备或该接收端设备为该远端终端设备。如图12所示,该装置1000包括:
接收器1010,用于接收中继终端设备发送的第二底层数据帧,其中,该第二底层数据帧是通过底层对携带有远端终端设备的标识信息的媒体访问控制MAC协议数据器PDU进行处理得到的;
处理器1020,用于在高层根据该接收器1010接收到的该第二底层数据帧中携带的该远端终端设备的标识信息,确定该第二底层数据帧对应于该远端终端设备。
可选地,该接收器1010具体用于接收中继终端设备采用用于中继传输的传输资源发送的第二底层数据帧;
相应地,该处理器1020具体用于根据该第二底层数据帧占用的传输资源,确定该第二底层数据帧是该中继终端设备转发的。
可选地,若该装置1000为该网络设备,该处理器1020还用于确定该远端终端设备对应的数据传输隧道。此时,如图12所示,该装置1000还包括:发送器1030,用于通过该处理器1020确定的该对应的数据传输隧道向核心网设备发送该第二底层数据帧中携带的数据。
可选地,该远端终端设备的标识信息包括该远端终端设备的层二标识或该远端终端设备的终端设备标识。
可选地,该远端终端设备的标识信息承载于该MAC PDU的MAC控制元素字段中。
可选地,若该装置1000为网络设备,该接收器1010还用于在接收中继终端设备发送的第二底层数据帧之前,接收该中继终端设备发送的调度请求;
相应地,该处理器1020还用于根据物理上行控制信道PUCCH资源与 数据量或数据量区间之间的对应关系,确定该接收器1010接收到的该调度请求所占用的物理上行控制信道PUCCH资源所对应的数据量或数据量区间,以及根据该对应的数据量或数据量区间,为该中继终端设备分配上行传输资源。
可选地,若该装置1000为网络设备,该接收器1010还用于在接收中继终端设备发送的第二底层数据帧之前,接收该中继终端设备发送的前导码;
相应地,该处理器1020还用于根据前导码与数据量或数据量区间之间的对应关系,确定该接收器1010接收到的前导码对应的数据量,以及根据该对应的数据量,为该中继终端设备分配上行传输资源。
在一个可选例子中,装置1000可以具体为上述实施例中的接收端设备,装置1000可以用于执行上述方法实施例中与接收端设备对应的各个流程和/或步骤。可选地,装置1000还可以包括存储器,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。处理器可以用于执行存储器中存储的指令,并且当该处理器执行存储器中存储的指令时,该处理器用于执行上述方法实施例的各个步骤和/或流程。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,为避免重复,本文对实施例的描述着重于强调各个实施例之间的不同之处,其相同或相似之处可以相互参考。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的 各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only  Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (46)

  1. 一种中继传输的方法,其特征在于,包括:
    中继终端设备接收发送端设备向接收端设备发送的第一底层数据帧,其中,所述第一底层数据帧是所述发送端设备通过底层对携带有远端终端设备的标识信息的媒体访问控制MAC协议数据单元PDU进行处理得到的;
    所述中继终端设备在底层确定需要转发所述第一底层数据帧;
    所述中继终端设备在底层对所述第一底层数据帧进行转发处理;
    其中,所述发送端设备为所述远端终端设备且所述接收端设备为网络设备,或所述发送端设备为网络设备且所述接收端设备为所述远端终端设备。
  2. 根据权利要求1所述的方法,其特征在于,若所述发送端设备为网络设备,在所述中继终端设备接收发送端设备向接收端设备发送的第一底层数据帧之前,所述方法还包括:
    所述中继终端设备通过中继特定无线网络临时标识RNTI进行寻址;
    所述中继终端设备确定需要转发所述第一底层数据帧,包括:
    若所述第一底层数据帧是所述中继终端设备通过所述寻址接收到的,所述中继终端设备确定需要转发所述第一底层数据帧。
  3. 根据权利要求1所述的方法,其特征在于,所述第一底层数据帧是所述发送端设备采用用于进行中继传输的传输资源发送的;
    所述中继终端设备确定需要转发所述第一底层数据帧,包括:
    所述中继终端设备根据所述第一底层数据帧占用的所述传输资源,确定需要转发所述第一底层数据帧。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述远端终端设备的标识信息包括所述远端终端设备的层二标识或所述远端终端设备的终端设备标识。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述网络设备的底层具体为物理层,所述远端终端设备的底层与所述远端终端设备和所述中继终端设备之间采用的D2D通信技术相对应。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述远端终端设备的标识信息承载于所述MAC PDU的MAC控制元素字段中。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,若所述发送端设备为所述远端终端设备且所述接收端设备为所述网络设备,在所述中 继终端设备在底层对该第一底层数据帧进行转发处理之前,所述方法还包括:
    所述中继终端设备在底层根据物理上行控制信道PUCCH资源与数据量或数据量区间之间的对应关系,确定所述第一底层数据帧携带的数据量所对应的物理上行控制信道PUCCH资源;
    所述中继终端设备采用所述对应的PUCCH资源向所述网络设备发送调度请求。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,若所述发送端设备为所述远端终端设备且所述接收端设备为所述网络设备,在所述中继终端设备在底层对该第一底层数据帧进行转发处理之前,所述方法还包括:
    所述中继终端设备在底层根据前导码与数据量或数据量区间之间的对应关系,确定所述第一底层数据帧携带的数据量所对应的前导码;
    所述中继终端设备向所述网络设备发送所述对应的前导码,所述对应的前导码用于所述网络设备为所述中继终端设备分配上行传输资源。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述中继终端设备在底层对所述第一底层数据帧进行转发处理,包括:
    所述中继终端设备对所述第一底层数据帧进行解码处理,获得所述第一底层数据帧中携带的数据;
    所述中继终端设备对所述数据进行编码处理,得到第二底层数据帧;
    所述中继终端设备发送所述第二底层数据帧。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述中继终端设备在底层对所述第一底层数据帧进行转发处理,包括:
    所述中继终端设备通过底层直接发送所述第一底层数据帧。
  11. 一种中继传输的方法,其特征在于,包括:
    发送端设备生成媒体访问控制MAC协议数据单元PDU,其中,所述MAC PDU携带远端终端设备的标识信息;
    所述发送端设备向中继终端设备发送通过底层对所述MAC PDU进行处理得到的第一底层数据帧;
    其中,所述发送端设备为所述远端终端设备或所述发送端设备为网络设备。
  12. 根据权利要求11所述的方法,其特征在于,若所述发送端设备为网络设备,在所述发送端设备向中继终端设备发送所述第一底层数据帧之前,所述方法还包括:
    所述网络设备向所述中继终端设备发送物理下行控制信道PDCCH,其中,所述PDCCH用于调度所述第一底层数据帧,并且所述PDCCH是采用中继特定无线网络临时标识RNTI加扰的。
  13. 根据权利要求11所述的方法,其特征在于,所述发送端设备向中继终端设备发送所述第一底层数据帧,包括:
    所述发送端设备采用用于中继传输的传输资源向中继终端设备发送所述第一底层数据帧。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述远端终端设备的标识信息包括所述远端终端设备的层二标识或所述远端终端设备的终端设备标识。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述网络设备的底层具体为物理层,所述远端终端设备的底层与所述远端终端设备和所述中继终端设备之间采用的D2D通信技术相对应。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述远端终端设备的标识信息承载于所述MAC PDU的MAC控制元素字段中。
  17. 一种中继传输的方法,其特征在于,包括:
    接收端设备接收中继终端设备发送的第二底层数据帧,其中,所述第二底层数据帧是通过底层对携带有远端终端设备的标识信息的媒体访问控制MAC协议数据单元PDU进行处理得到的;
    所述接收端设备在高层根据所述远端终端设备的标识信息,确定所述第二底层数据帧对应于所述远端终端设备;
    其中,所述接收端设备为网络设备或所述接收端设备为所述远端终端设备。
  18. 根据权利要求17所述的方法,其特征在于,所述接收端设备接收中继终端设备发送的第二底层数据帧,包括:
    所述接收端设备接收中继终端设备采用用于中继传输的传输资源发送的第二底层数据帧;
    所述方法还包括:
    所述接收端设备根据所述第二底层数据帧占用的传输资源,确定所述第二底层数据帧是所述中继终端设备转发的。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    若所述接收端设备为所述网络设备,所述网络设备确定所述远端终端设备对应的数据传输隧道;
    所述网络设备通过所述对应的数据传输隧道向核心网设备发送所述第二底层数据帧中携带的数据。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述远端终端设备的标识信息包括所述远端终端设备的层二标识或所述远端终端设备的终端设备标识。
  21. 根据权利要求17至20中任一项所述的方法,其特征在于,所述网络设备的底层具体为物理层,所述远端终端设备的底层与所述远端终端设备和所述中继终端设备之间采用的D2D通信技术相对应。
  22. 根据权利要求17至21中任一项所述的方法,其特征在于,所述远端终端设备的标识信息承载于所述MAC PDU的MAC控制元素字段中。
  23. 根据权利要求17至22中任一项所述的方法,其特征在于,若所述接收端设备为网络设备,在所述接收端设备接收中继终端设备发送的第二底层数据帧之前,所述方法还包括:
    所述网络设备接收所述中继终端设备发送的调度请求;
    所述网络设备根据物理上行控制信道PUCCH资源与数据量或数据量区间之间的对应关系,确定所述调度请求所占用的物理上行控制信道PUCCH资源所对应的数据量或数据量区间;
    所述网络设备根据所述对应的数据量或数据量区间,为所述中继终端设备分配上行传输资源。
  24. 根据权利要求17至22中任一项所述的方法,其特征在于,若所述接收端设备为网络设备,在所述接收端设备接收中继终端设备发送的第二底层数据帧之前,所述方法还包括:
    所述网络设备接收所述中继终端设备发送的前导码;
    所述网络设备根据前导码与数据量或数据量区间之间的对应关系,确定所述接收到的前导码对应的数据量或数据量区间;
    所述网络设备根据所述对应的数据量或数据量区间,为所述中继终端设 备分配上行传输资源。
  25. 一种中继传输的装置,其特征在于,包括:
    接收单元,用于接收发送端设备向接收端设备发送的第一底层数据帧,其中,所述第一底层数据帧是所述发送端设备通过底层对携带有远端终端设备的标识信息的媒体访问控制MAC协议数据单元PDU进行处理得到的;
    处理单元,用于在底层确定需要转发所述接收单元接收的所述第一底层数据帧,以及在底层对所述第一底层数据帧进行转发处理;
    其中,所述发送端设备为所述远端终端设备且所述接收端设备为网络设备,或所述发送端设备为网络设备且所述接收端设备为所述远端终端设备。
  26. 根据权利要求25所述的装置,其特征在于,若所述发送端设备为网络设备,
    所述处理单元还用于在所述接收单元接收发送端设备向接收端设备发送的第一底层数据帧之前,通过中继特定无线网络临时标识RNTI进行寻址;
    所述处理单元具体用于若所述第一底层数据帧是所述中继终端设备通过所述寻址接收到的,所述中继终端设备确定需要转发所述第一底层数据帧。
  27. 根据权利要求25所述的装置,其特征在于,所述第一底层数据帧是所述发送端设备采用用于进行中继传输的传输资源发送的;
    所述处理单元具体用于根据所述第一底层数据帧占用的所述传输资源,确定需要转发所述第一底层数据帧。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述远端终端设备的标识信息包括所述远端终端设备的层二标识或所述远端终端设备的终端设备标识。
  29. 根据权利要求25至28中任一项所述的装置,其特征在于,所述网络设备的底层具体为物理层,所述远端终端设备的底层与所述远端终端设备和所述中继终端设备之间采用的D2D通信技术相对应。
  30. 根据权利要求25至29中任一项所述的装置,其特征在于,所述远端终端设备的标识信息承载于所述MAC PDU的MAC控制元素字段中。
  31. 根据权利要求25至30中任一项所述的装置,其特征在于,若所述发送端设备为所述远端终端设备且所述接收端设备为所述网络设备,所述处理单元还用于在底层对该第一底层数据帧进行转发处理之前,在底层根据物 理上行控制信道PUCCH资源与数据量或数据量区间之间的对应关系,确定所述第一底层数据帧携带的数据量所对应的物理上行控制信道PUCCH资源;
    所述装置还包括:第一发送单元,用于采用所述处理单元确定的所述对应的PUCCH资源向所述网络设备发送调度请求。
  32. 根据权利要求25至30中任一项所述的装置,其特征在于,若所述发送端设备为所述远端终端设备且所述接收端设备为所述网络设备,所述处理单元还用于在底层对该第一底层数据帧进行转发处理之前,在底层根据前导码与数据量或数据量区间之间的对应关系,确定所述第一底层数据帧携带的数据量所对应的前导码;
    所述装置还包括:第一发送单元,用于向所述网络设备发送所述对应的前导码,所述对应的前导码用于所述网络设备为所述中继终端设备分配上行传输资源。
  33. 根据权利要求25至32中任一项所述的装置,其特征在于,所述处理单元具体用于:对所述第一底层数据帧进行解码处理,获得所述第一底层数据帧中携带的数据,以及对所述数据进行编码处理,得到第二底层数据帧;
    所述装置还包括:第二发送单元,用于发送所述处理单元得到的所述第二底层数据帧。
  34. 根据权利要求25至33中任一项所述的装置,其特征在于,所述装置还包括:第二发送单元,其中,所述处理单元具体用于通过所述第二发送单元在底层直接发送所述第一底层数据帧。
  35. 一种中继传输的装置,其特征在于,包括:
    处理单元,用于生成媒体访问控制MAC协议数据单元PDU,其中,所述MAC PDU携带远端终端设备的标识信息;
    发送单元,用于向中继终端设备发送通过底层对所述MAC PDU进行处理得到的第一底层数据帧;
    其中,所述装置为所述远端终端设备或所述装置为网络设备。
  36. 根据权利要求35所述的装置,其特征在于,若所述装置为网络设备,所述发送单元还用于在向中继终端设备发送所述第一底层数据帧之前,向所述中继终端设备发送物理下行控制信道PDCCH,其中,所述PDCCH用于调度所述第一底层数据帧,并且所述PDCCH是采用中继特定无线网络 临时标识RNTI加扰的。
  37. 根据权利要求35所述的装置,其特征在于,所述发送单元具体用于采用用于中继传输的传输资源向中继终端设备发送所述第一底层数据帧。
  38. 根据权利要求35至37中任一项所述的装置,其特征在于,所述远端终端设备的标识信息包括所述远端终端设备的层二标识或所述远端终端设备的终端设备标识。
  39. 根据权利要求35至38中任一项所述的装置,其特征在于,所述远端终端设备的标识信息承载于所述MAC PDU的MAC控制元素字段中。
  40. 一种中继传输的装置,其特征在于,包括:
    接收单元,用于接收中继终端设备发送的第二底层数据帧,其中,所述第二底层数据帧是通过底层对携带有远端终端设备的标识信息的媒体访问控制MAC协议数据单元PDU进行处理得到的;
    处理单元,用于在高层根据所述接收单元接收到的所述第二底层数据帧中携带的所述远端终端设备的标识信息,确定所述第二底层数据帧对应于所述远端终端设备;
    其中,所述装置为网络设备或所述装置为所述远端终端设备。
  41. 根据权利要求40所述的装置,其特征在于,所述接收单元具体用于接收中继终端设备采用用于中继传输的传输资源发送的第二底层数据帧;
    所述处理单元具体用于根据所述第二底层数据帧占用的传输资源,确定所述第二底层数据帧是所述中继终端设备转发的。
  42. 根据权利要求40或41所述的装置,其特征在于,若所述装置为所述网络设备,所述处理单元还用于确定所述远端终端设备对应的数据传输隧道;
    所述装置还包括:发送单元,用于通过所述处理单元确定的所述对应的数据传输隧道向核心网设备发送所述第二底层数据帧中携带的数据。
  43. 根据权利要求40至42中任一项所述的装置,其特征在于,所述远端终端设备的标识信息包括所述远端终端设备的层二标识或所述远端终端设备的终端设备标识。
  44. 根据权利要求40至43中任一项所述的装置,其特征在于,所述远端终端设备的标识信息承载于所述MAC PDU的MAC控制元素字段中。
  45. 根据权利要求40至44中任一项所述的装置,其特征在于,若所述 装置为网络设备,所述接收单元还用于在接收中继终端设备发送的第二底层数据帧之前,接收所述中继终端设备发送的调度请求;
    所述处理单元还用于根据物理上行控制信道PUCCH资源与数据量或数据量区间之间的对应关系,确定所述接收单元接收到的所述调度请求所占用的物理上行控制信道PUCCH资源所对应的数据量或数据量区间,以及根据所述对应的数据量或数据量区间,为所述中继终端设备分配上行传输资源。
  46. 根据权利要求40至44中任一项所述的装置,其特征在于,若所述装置为网络设备,所述接收单元还用于在接收中继终端设备发送的第二底层数据帧之前,接收所述中继终端设备发送的前导码;
    所述处理单元还用于根据前导码与数据量或数据量区间之间的对应关系,确定所述接收单元接收到的前导码对应的数据量或数据量区间,以及根据所述对应的数据量或数据量区间,为所述中继终端设备分配上行传输资源。
PCT/CN2016/077914 2016-03-30 2016-03-30 中继传输的方法和装置 WO2017166139A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020187021247A KR20180127963A (ko) 2016-03-30 2016-03-30 릴레이 전송 방법 및 장치
CN201680079729.XA CN108496330B (zh) 2016-03-30 2016-03-30 中继传输的方法和装置
US16/069,700 US10764961B2 (en) 2016-03-30 2016-03-30 Relay transmission method and device
JP2018538556A JP6731488B2 (ja) 2016-03-30 2016-03-30 中継伝送方法及び装置
PCT/CN2016/077914 WO2017166139A1 (zh) 2016-03-30 2016-03-30 中继传输的方法和装置
EP16895920.3A EP3393099B1 (en) 2016-03-30 2016-03-30 Relay transmission method and device
TW106110884A TWI717490B (zh) 2016-03-30 2017-03-30 中繼傳輸的方法和裝置
US16/944,296 US11343874B2 (en) 2016-03-30 2020-07-31 Relay transmission method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077914 WO2017166139A1 (zh) 2016-03-30 2016-03-30 中继传输的方法和装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/069,700 A-371-Of-International US10764961B2 (en) 2016-03-30 2016-03-30 Relay transmission method and device
US16/944,296 Continuation US11343874B2 (en) 2016-03-30 2020-07-31 Relay transmission method and device

Publications (1)

Publication Number Publication Date
WO2017166139A1 true WO2017166139A1 (zh) 2017-10-05

Family

ID=59963236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077914 WO2017166139A1 (zh) 2016-03-30 2016-03-30 中继传输的方法和装置

Country Status (7)

Country Link
US (2) US10764961B2 (zh)
EP (1) EP3393099B1 (zh)
JP (1) JP6731488B2 (zh)
KR (1) KR20180127963A (zh)
CN (1) CN108496330B (zh)
TW (1) TWI717490B (zh)
WO (1) WO2017166139A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249327A1 (zh) * 2020-06-09 2021-12-16 华为技术有限公司 一种建立中继承载的方法及通信装置
CN115412972A (zh) * 2020-02-24 2022-11-29 荣耀终端有限公司 一种数据传输方法、装置及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810923A (zh) * 2020-06-11 2021-12-17 维沃移动通信有限公司 承载配置方法、装置及终端
KR20210157315A (ko) * 2020-06-18 2021-12-28 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 릴레이가 직접 통신 요청 메시지를 송신하기 위한 방법 및 장치
CN114630389A (zh) * 2020-12-14 2022-06-14 维沃移动通信有限公司 远端终端业务识别方法、装置、设备及存储介质
CN112995960B (zh) * 2021-03-09 2023-10-31 保定市兆微软件科技有限公司 链式组网终端直通通信的数据传送方法
CN113114329A (zh) * 2021-03-19 2021-07-13 中国联合网络通信集团有限公司 一种信号中继方法、信号识别方法、装置及设备
WO2023188815A1 (ja) * 2022-03-31 2023-10-05 ソニーグループ株式会社 無線通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384020A (zh) * 2007-09-05 2009-03-11 中兴通讯股份有限公司 一种无线中继系统及其数据传输方法
CN101674153A (zh) * 2008-09-09 2010-03-17 普天信息技术研究院有限公司 一种信息处理方法、设备及系统
CN104601352A (zh) * 2013-10-30 2015-05-06 华为技术有限公司 一种网络上下行数据处理方法、电子设备及系统
WO2015108373A1 (en) * 2014-01-16 2015-07-23 Samsung Electronics Co., Ltd. Apparatus and method for operating user plane protocol stack in connectionless communicaton system

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469560B2 (ja) * 2000-04-10 2003-11-25 ヒュンダイ エレクトロニクス インダストリーズ カムパニー リミテッド 広帯域無線通信システムのダウンリンクにおけるハイブリッド自動再伝送要求2/3方式のためのデータ伝達方法
US20020021698A1 (en) * 2000-04-10 2002-02-21 Yu-Ro Lee Data transmission method for hybrid ARQ type II/III uplink for a wide-band radio communication system
US7224685B2 (en) * 2001-09-13 2007-05-29 Ipr Licensing, Inc. Method of detection of signals using an adaptive antenna in a peer-to-peer network
KR100414669B1 (ko) * 2001-10-29 2004-01-13 삼성전자주식회사 이동통신 시스템에서 비동기 전송모드 데이터 변환 장치
KR100498347B1 (ko) * 2003-04-01 2005-07-01 엘지전자 주식회사 Amr 코덱을 지원하기 위한 데이터 처리방법
EP1613003A1 (en) * 2004-06-30 2006-01-04 Alcatel Air interface protocols for a radio access network with ad-hoc extension
CN100477642C (zh) * 2005-05-31 2009-04-08 杭州华三通信技术有限公司 以太网接入装置及其接入方法
KR100824239B1 (ko) * 2005-11-07 2008-04-24 삼성전자주식회사 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 이동 중계국의 핸드오버를 처리하기 위한 장치및 방법
KR20070058772A (ko) * 2005-12-05 2007-06-11 삼성전자주식회사 무선통신시스템에서 음성패킷 통신 장치 및 방법
EP1855428A3 (en) * 2006-05-11 2011-04-13 Samsung Electronics Co., Ltd. Apparatus and method for providing relay link zone information in a multi-hop relay broadband wireless access communication system
GB2442783A (en) * 2006-10-13 2008-04-16 Fujitsu Ltd Wireless communication systems
CN101325564B (zh) * 2007-06-11 2010-10-20 华为技术有限公司 一种虚拟媒体网关选择方法、装置及系统
KR100976383B1 (ko) * 2007-07-05 2010-08-18 삼성전자주식회사 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 중계국이 구성한 브로드캐스트 메시지의 전송정보를 처리하기 위한 장치 및 방법
EP2237452B1 (en) * 2008-01-17 2012-10-10 Alcatel Lucent Method and device for data relay transmission in wireless relay network
US8020619B1 (en) 2008-03-26 2011-09-20 Robertson Intellectual Properties, LLC Severing of downhole tubing with associated cable
US9030972B2 (en) * 2008-09-26 2015-05-12 Nokia Solutions And Networks Oy Control signaling in system supporting relayed connections
CN101765229B (zh) 2008-12-25 2012-07-25 上海寰创通信科技股份有限公司 一种用终端中继解决wlan网络覆盖盲区的方法
JP5304889B2 (ja) * 2009-03-31 2013-10-02 富士通株式会社 無線通信ネットワークにおける中継局、基地局、中継方法、及び通信方法
KR101295584B1 (ko) * 2009-04-09 2013-09-03 엘지전자 주식회사 릴레이 방식의 통신 시스템에서 신호 전송 방법 및 장치
CN101882978A (zh) * 2009-05-04 2010-11-10 中兴通讯股份有限公司 一种中继站下行协作重传的方法和装置
CN101895925B (zh) * 2009-05-22 2014-11-05 中兴通讯股份有限公司 一种实现中继站下行协作重传的方法及中继站
US20100302999A1 (en) * 2009-05-29 2010-12-02 Yan Hui Method and apparatus for relaying in wireless networks
KR101669533B1 (ko) * 2009-07-06 2016-10-26 삼성전자주식회사 무선통신 시스템에서 매체 접속 제어 계층 패킷을 구성하는 방법 및 시스템
US9107184B2 (en) * 2011-02-14 2015-08-11 Alcatel Lucent Method for reduced-overhead short message transmission
CA2732440C (en) 2011-02-23 2017-10-31 Universite Laval Cystamine analogues for the treatment of parkinson`s disease
JP5990586B2 (ja) 2011-08-19 2016-09-14 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド 無線通信システム、方法、コンピュータプログラム、記憶媒体および装置
GB2493785B (en) 2011-08-19 2016-04-20 Sca Ipla Holdings Inc Wireless communications system and method
US8964679B2 (en) * 2011-12-23 2015-02-24 Blackberry Limited Method implemented in an eNodeB base station
US9072112B2 (en) * 2012-03-09 2015-06-30 Samsung Electronics Co., Ltd. Medium access control for wireless networks
WO2013154400A1 (en) * 2012-04-13 2013-10-17 Samsung Electronics Co., Ltd. Method and apparatus for communicating data packets in a cloud cell
EP2882222B1 (en) * 2012-08-02 2021-09-29 Sun Patent Trust Terminal device, base station device, and transmission method
US9332109B2 (en) 2012-08-15 2016-05-03 Scott Alexander Strozier Software routine and methods for implementing routine to extend time to trace a phone call
US20150223232A1 (en) 2012-08-27 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Methods and Arrangements for Resource Allocation
DE102012218460A1 (de) 2012-10-10 2014-04-10 Henkel Ag & Co. Kgaa Haarfärbemittel enthaltend Aminopyrimidinderivate
US9191097B2 (en) * 2012-12-20 2015-11-17 Intel Corporation Techniques for transmitting data via relay communication links
US8929277B2 (en) * 2013-02-15 2015-01-06 General Dynamics C4 Systems, Inc. Communication units and methods for relay-assisted uplink communication
CN104429156B (zh) 2013-06-28 2019-03-26 华为技术有限公司 一种无线网络的建立方法、设备及系统
JP5696186B2 (ja) * 2013-08-09 2015-04-08 株式会社Nttドコモ 移動局及び無線基地局
KR101845178B1 (ko) * 2013-10-31 2018-04-03 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2015128537A1 (en) * 2014-02-27 2015-09-03 Nokia Technologies Oy Device-to-device based user equipment to network relay
EP3251327A4 (en) * 2015-01-27 2018-06-20 LG Electronics Inc. Method for performing a packet filtering for prose in a d2d communication system and device therefor
WO2017147822A1 (zh) * 2016-03-02 2017-09-08 华为技术有限公司 一种上行传输方法、相关设备及系统
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384020A (zh) * 2007-09-05 2009-03-11 中兴通讯股份有限公司 一种无线中继系统及其数据传输方法
CN101674153A (zh) * 2008-09-09 2010-03-17 普天信息技术研究院有限公司 一种信息处理方法、设备及系统
CN104601352A (zh) * 2013-10-30 2015-05-06 华为技术有限公司 一种网络上下行数据处理方法、电子设备及系统
WO2015108373A1 (en) * 2014-01-16 2015-07-23 Samsung Electronics Co., Ltd. Apparatus and method for operating user plane protocol stack in connectionless communicaton system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3393099A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412972A (zh) * 2020-02-24 2022-11-29 荣耀终端有限公司 一种数据传输方法、装置及系统
CN115412972B (zh) * 2020-02-24 2023-10-20 荣耀终端有限公司 一种数据传输方法、装置及系统
WO2021249327A1 (zh) * 2020-06-09 2021-12-16 华为技术有限公司 一种建立中继承载的方法及通信装置

Also Published As

Publication number Publication date
JP6731488B2 (ja) 2020-07-29
EP3393099A4 (en) 2018-12-26
US20200367317A1 (en) 2020-11-19
CN108496330A (zh) 2018-09-04
EP3393099A1 (en) 2018-10-24
JP2019519945A (ja) 2019-07-11
TW201735717A (zh) 2017-10-01
KR20180127963A (ko) 2018-11-30
TWI717490B (zh) 2021-02-01
US10764961B2 (en) 2020-09-01
US20190029070A1 (en) 2019-01-24
CN108496330B (zh) 2021-07-09
EP3393099B1 (en) 2021-07-07
US11343874B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
TWI753914B (zh) 中繼傳輸的方法和裝置
WO2017166138A1 (zh) 中继传输的方法和装置
TWI725153B (zh) 用於中繼傳輸的方法和裝置以及中繼終端設備
TWI717490B (zh) 中繼傳輸的方法和裝置
TWI725156B (zh) 數據傳輸的方法、終端及基站
WO2019214729A1 (zh) 数据处理的方法和设备
WO2019136874A1 (zh) 中继传输的方法和中继节点
JP7018092B2 (ja) 中継伝送のための方法、装置、及び中継端末デバイス
WO2023207838A1 (zh) 一种通信方法及设备
JP2020171052A (ja) 中継伝送方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016895920

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018538556

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20187021247

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016895920

Country of ref document: EP

Effective date: 20180717

NENP Non-entry into the national phase

Ref country code: DE