WO2019214729A1 - 数据处理的方法和设备 - Google Patents

数据处理的方法和设备 Download PDF

Info

Publication number
WO2019214729A1
WO2019214729A1 PCT/CN2019/086456 CN2019086456W WO2019214729A1 WO 2019214729 A1 WO2019214729 A1 WO 2019214729A1 CN 2019086456 W CN2019086456 W CN 2019086456W WO 2019214729 A1 WO2019214729 A1 WO 2019214729A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
interface
iab node
drb
iab
Prior art date
Application number
PCT/CN2019/086456
Other languages
English (en)
French (fr)
Inventor
刘菁
朱元萍
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19799483.3A priority Critical patent/EP3790336A4/en
Publication of WO2019214729A1 publication Critical patent/WO2019214729A1/zh
Priority to US17/094,823 priority patent/US11553540B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0257Traffic management, e.g. flow control or congestion control per individual bearer or channel the individual bearer or channel having a maximum bit rate or a bit rate guarantee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present application relates to the field of communications and, more particularly, to methods and apparatus for data processing in the field of communications.
  • a technology supporting wireless backhaul can provide a more flexible and dense deployment of NR cells, which is an Integrated Access and Backhaul (IAB) technology.
  • IAB Integrated Access and Backhaul
  • 5G 5th Generation
  • NR New Radio
  • LTE Long Term Evolution
  • wireless backhaul can provide NR cells.
  • Extended coverage can also provide capacity enhancement for NR cells.
  • the network architecture of the IAB is mainly composed of user equipment, one or more relay nodes, a host base station and a core network.
  • the relay node may be a Relay node or an IAB node.
  • the donor base station can be a Donor gNB or an IAB donor.
  • the link between the user equipment and the relay node is called a wireless access link, and the link between the relay nodes and between the relay node and the donor base station is called a wireless backhaul link, and the host base station passes the NG interface. Connected to the core network.
  • the host base station and the relay node may adopt a separate unit (Central Unit, CU) and a distributed unit (Distributed Unit), that is, the host base station may be composed of one CU and one DU.
  • the CU and the DU are connected through the F1 interface, and the CU and the core network are connected through the NG interface.
  • the relay node is composed of a DU and an MT (Mobile Termination), wherein the DU of the relay node communicates with the CU of the host base station through the air interface link. Therefore, how to implement bearer mapping of control plane signaling and user plane data of each user interface on each interface under the IAB architecture is an urgent problem to be solved.
  • the present application provides a data processing method and device, which can implement bearer mapping of control plane signaling and user plane data of a user equipment on each interface.
  • a method for data processing in an access backhaul integrated IAB system comprising a centralized unit CU, a distributed unit DU, a first IAB node and a second IAB node, the method comprising:
  • the CU generates a downlink F1AP message, where the downlink F1AP message includes one or a combination of: an F1AP message of the terminal device, an F1AP message of the first IAB node, and an RRC message of the second IAB node;
  • the CU sends the downlink F1AP message to the DU, and indicates that the message type of the message included in the downlink F1AP message is one of the following: an RRC message type, an F1AP message type, an RRC message type, and an F1AP message type.
  • the DU receives the downlink F1AP message, and determines that the message type of the message included in the downlink F1AP message is one of the following: an RRC message type, an F1AP message type, an RRC message type, and an F1AP message type.
  • the CU and the DU in the IAB Donor in the embodiment of the present application may perform bearer mapping and processing on the control plane signaling according to the message type of the transmitted message or according to the message type of the message included in the transmitted message.
  • the CU indicates a message type of a message included in the downlink F1AP message, including:
  • the CU sends the indication information to the DU, where the indication information indicates the message type, where the indication information is carried in the downlink F1AP message or carries the F1 interface between the CU and the DU In the peer-to-peer adaptation layer.
  • the DU obtains the indication information.
  • the indication information indicating the type of the message included in the F1AP message is sent to the DU by the CU, so that the DU can be decapsulated according to different message types included in the IAB2-associated F1AP message.
  • the data packet is mapped to different bearers, and the DU performs bearer mapping on the control plane signaling.
  • the CU sends the downlink F1AP message to a DU in a GTP tunnel that is specific to the F1AP message type, and is used to indicate that the GTP tunnel is transmitted in the GTP tunnel.
  • Downstream F1AP message the DU receives the downlink F1AP message on the GTP tunnel, and determines that the downlink F1AP message is transmitted in the GTP tunnel. In this way, the DU can determine the F1AP message type based on a specific GTP tunnel bearer on the wired interface.
  • the CU sends the first message to the DU by using a control plane bearer of a wired interface with the DU.
  • the message type of the message included in the downlink F1AP message is an RRC message
  • the CU sends the first message to the DU by using a user plane bearer (such as a GTP tunnel) with the DU. .
  • a method for data processing in an access backhaul integrated IAB system wherein the system includes a centralized unit CU, a distributed unit DU, a first IAB node, and a second IAB node.
  • the methods include:
  • the CU receives the uplink F1AP message sent by the DU, where the uplink F1AP message includes one or a combination of the following: an F1AP message of the terminal device, an F1AP message of the first IAB node, and an RRC message of the second IAB node. .
  • the DU sends the uplink F1AP message to the CU.
  • the CU and the DU in the IAB Donor may perform bearer mapping and processing on the control plane signaling according to the message type of the transmitted message or according to the message type of the message included in the transmitted message.
  • the CU receives the indication information sent by the DU, where the indication information indicates that the message type of the message included in the uplink F1AP message is one of the following: an RRC message type, F1AP message type, RRC message type and F1AP message type.
  • the DU sends the indication information to the CU.
  • the indication information indicating the type of the message included in the F1AP message is sent to the CU through the DU, so that the CU can send the decapsulated message to different processing layers according to different message types included in the F1AP message. Perform bearer mapping on control plane signaling.
  • the CU determines, according to the bearer that receives the uplink F1AP message, a message type included in the uplink F1AP message.
  • the CU obtains the uplink F1AP message by using a control plane bearer of the wired interface with the DU, determining that the message type of the message included in the uplink F1AP message is an RRC message; when the CU passes The user plane bearer (for example, a GTP tunnel) between the DUs, when acquiring the uplink F1AP message, determines that the message type of the message included in the uplink F1AP message is an F1AP message.
  • the user plane bearer for example, a GTP tunnel
  • the indication information carries an adaptation layer that is equivalent in the uplink F1AP message or on the F1 interface between the CU and the DU.
  • the method further includes:
  • the CU acquires an RRC message of the second IAB node, and performs processing through an RRC layer that is peered with the second IAB node.
  • the method further includes:
  • the CU acquires the F1AP message included in the uplink F1AP message, and determines that the F1AP message included in the uplink F1AP message is the terminal.
  • the method further includes:
  • the CU processes the F1AP message of the terminal device by using an F1AP layer that is peered with the terminal device;
  • the CU processes the F1AP message of the first IAB node by using an F1AP layer that is peered with the first IAB node.
  • the CU may receive the node identifier sent by the DU, and determine, according to the node identifier, that the F1AP message included in the uplink F1AP message is the F1AP message of the terminal device or the F1AP message of the first IAB node. .
  • the CU may determine, according to the routing information of the F1AP message, that the F1AP message included in the uplink F1AP message is an F1AP message of the terminal device or an F1AP message of the first IAB node.
  • the DU sends the node identifier to the CU.
  • the node identifier may be carried in an uplink F1AP message or carried in an adaptation layer above the F1AP layer that is peered with IAB node2.
  • a method for data processing in an access backhaul integrated IAB system comprising a centralized unit CU and a distributed unit DU, a first IAB node and a second IAB node, the method comprising:
  • the second IAB node receives the downlink message sent by the DU, and when the downlink message is carried by the signaling radio bearer between the second IAB node and the DU, the second IAB node further receives the DU
  • the indication information that is sent the indication information indicating that the message type of the downlink message is an RRC message type or an F1AP message type.
  • the second IAB node determines, according to the received downlink message, whether the downlink message belongs to the second IAB node, and if it belongs to the second IAB node, processes the second IAB node, otherwise the received downlink message is further processed. Route to next hop node processing.
  • the DU sends the downlink message to the second IAB node, and when the downlink message is carried by the signaling radio bearer between the second AIB node and the DU, the DU is still
  • the second IAB node sends indication information, where the indication information indicates that the message type of the downlink message is an RRC message type or an F1AP message type.
  • the IAB node 2 may perform bearer mapping and processing on the control plane signaling according to the message type of the transmitted message or according to the message type of the message included in the transmitted message.
  • the downlink message when the second IAB node acquires the downlink message by using a signaling radio bearer with the DU, the downlink message may be determined as the second RRC message of the IAB node.
  • the second IAB node may determine that the downlink message does not belong to the second IAB node by using the dedicated radio bearer or the data radio bearer between the DU and the DU, and may determine the downlink message. Includes F1AP messages.
  • the downlink message is sent by using a signaling radio bearer.
  • the downlink message is sent by using a dedicated radio bearer or a data radio bearer between the second IAB node.
  • the F1AP message is transmitted on the dedicated RB (dedicated data radio bearer or dedicated signaling radio bearer) or the data radio bearer by transmitting the RRC message on the SRB, so that the IAB node can determine the message of the acquired message.
  • Type and then bearer mapping of control plane signaling according to different message types.
  • the second IAB node may obtain the first indication information sent by the DU, where the first indication information is used to indicate the type of the downlink message.
  • the DU sends the first indication information to the second IAB node.
  • the indication information is sent to the second IAB node by the DU, so that the IAB node can obtain the message type of the downlink message, and then map the control plane signaling according to different message types.
  • the second IAB node determines that the downlink message belongs to the second IAB node, determining that the message type of the downlink message is an RRC message, the second The IAB node acquires the RRC message, and sends the RRC message to the RRC layer of the second IAB node for processing.
  • the second IAB node determines a target routing node of the F1AP message according to the routing information of the F1AP message.
  • the first IAB node processes the downlink message, obtains a second RRC message, and the second RRC message is mapped to a radio bearer between the second IAB node and the next hop node;
  • the second IAB node maps the downlink message to a radio bearer between the second IAB node and the next hop node.
  • the method when the message type of the downlink message is an F1AP message, the method further includes:
  • the second IAB node acquires the second indication information, where the second indication information is used to indicate whether the second IAB node needs to process the first F1AP message.
  • the second indication information is sent by the DU to the second IAB node.
  • the second IAB node processes the downlink message to obtain a third RRC message, and the The third RRC message is mapped to the radio bearer between the second IAB node and the next hop node.
  • the second IAB node maps the downlink message to the second IAB node and the next One hop on the radio bearer between the nodes.
  • a fourth aspect provides a method for data processing in an access backhaul integrated IAB system, where the system includes a centralized unit CU and a distributed unit DU, a first IAB node, and a second IAB node, and the method includes:
  • the second IAB node indicates that the message type of the uplink message of the DU is an RRC message type or an F1AP message. Types of.
  • the IAB node 2 may perform bearer mapping and processing on the control plane signaling according to the message type of the transmitted message or according to the message type of the message included in the transmitted message.
  • the second IAB node maps the uplink message to a dedicated radio bearer or data radio bearer between the second IAB node and the DU.
  • the uplink message when the DU receives the uplink message sent by the second IAB node by using the signaling radio bearer between the second IAB node and the DU, the uplink message may be determined to be an RRC message.
  • the uplink message may be determined to be an F1AP message.
  • the F1AP message is transmitted on the dedicated RB (dedicated data radio bearer or dedicated signaling radio bearer) or the data radio bearer by transmitting the RRC message on the SRB, so that the IAB node can determine the message of the acquired message.
  • Type and then bearer mapping of control plane signaling according to different message types.
  • the second IAB node maps the uplink message to the same signaling radio bearer between the second IAB node and the DU, and sends the
  • the third indication information is used to indicate a message type of the message transmitted on the signaling radio bearer, and the message type includes an RRC message or an F1AP message.
  • the DU receives the third indication message.
  • the second IAB node sends the indication information to the DU, so that the DU can obtain the message type of the uplink message, and then map the control plane signaling according to different message types.
  • a fifth aspect provides a method for data processing in an access backhaul integrated IAB system, where the system includes a centralized unit CU and a distributed unit DU, a first IAB node, and a second IAB node, and the method includes:
  • the CU determines, according to the QoS parameter of the service data, the mapping relationship between the data radio bearer DRB on the air interface and the DRB on the first interface, and the mapping relationship between the DRB on the first interface and the DRB on the second interface, where the An interface is an interface between the first IAB node and the second IAB node, and the second interface is an interface between the second IAB node and the DU;
  • the CU notifies the first IAB node of the mapping relationship between the DRB on the air interface and the DRB on the first interface, and notifies the second IAB node of the mapping relationship between the DRB on the first interface and the DRB on the second interface.
  • the CU may perform unified QoS mapping management for each interface link, and send the bearer mapping relationship of each interface to the first IAB node and the second IAB node, so that the first IAB node and the second The IAB node can perform bearer mapping on the user plane data according to the respective received mapping relationship.
  • a method for data processing in an access backhaul integrated IAB system comprising a centralized unit CU and a distributed unit DU, a first IAB node, and a second IAB node, the method comprising:
  • the CU determines, according to the QoS parameter of the service data, the mapping relationship between the data radio bearer DRB on the air interface and the DRB on the first interface, and the mapping relationship between the DRB on the first interface and the DRB on the second interface, where the An interface is an interface between the first IAB node and the second IAB node, and the second interface is an interface between the second IAB node and the DU;
  • the CU notifies the second IAB node of the mapping relationship between the DRB on the air interface and the DRB on the first interface, and the mapping relationship between the DRB on the first interface and the DRB on the second interface.
  • the CU may perform unified QoS mapping management for each interface link, and send the bearer mapping relationship of each interface to the second IAB node, so that the second IAB node is in accordance with the received mapping relationship to the user.
  • the face data is bearer mapped.
  • the second IAB may send the indication information to the first IAB node to indicate the mapping of the user plane bearer by the first IAB node according to the received mapping relationship.
  • the indication information may be the identifier DRB ID of the UE DRB, so that the first IAB node maps the user data received from the IAB1 DRB to the corresponding UE DRB according to the indication information, and implements the first IAB node to the user plane. The data is carried over to bearer mapping.
  • a method for data processing in an access backhaul integrated IAB system comprising a centralized unit CU and a distributed unit DU, a first IAB node, and a second IAB node, the method comprising:
  • the first IAB node receives, from the CU, a QoS parameter corresponding to the DRB and the DRB on the first interface, and a QoS parameter corresponding to the DRB on the air interface and the DRB;
  • the first interface is an interface between the first IAB node and the second IAB node.
  • the first IAB node may perform distributed bearer mapping management on each interface link, and implement the bearer mapping of the user plane data by the first IAB node.
  • a method for data processing in an access backhaul integrated IAB system where the system includes a centralized unit CU and a distributed unit DU, a first IAB node, and a second IAB node, and the method includes:
  • the second IAB node receives, from the CU, a data radio bearer DRB on the first interface and a QoS parameter corresponding to the DRB, and a QoS parameter corresponding to the DRB and the DRB on the second interface;
  • the second IAB node determines the mapping relationship between the DRB on the first interface and the DRB on the second interface according to the QoS parameter corresponding to the data radio bearer DRB on the first interface and the QoS parameter corresponding to the DRB on the second interface.
  • the first interface is an interface between the first IAB node and the second IAB node.
  • the second interface is an interface between the second IAB node and the DU.
  • the second IAB node may perform distributed bearer mapping management on each interface link, and implement the bearer mapping of the user plane data by the second IAB node.
  • a ninth aspect a method for data processing in an access backhaul integrated IAB system, where the system includes a centralized unit CU and a distributed unit DU, a first IAB node, and a second IAB node, the method includes:
  • the second IAB node receives, from the CU, a QoS parameter corresponding to the DRB and the DRB on the first interface, and a service identifier of the terminal and a service QoS parameter corresponding to the service identifier;
  • the second IAB node determines, according to the QoS parameter corresponding to the DRB on the first interface and the QoS parameter corresponding to the terminal service identifier, a mapping relationship between the terminal service corresponding to the service identifier and the DRB on the first interface.
  • the first interface is an interface between the first IAB node and the second IAB node.
  • the second IAB node may perform distributed bearer mapping management on each interface link, and implement the bearer mapping of the user plane data by the second IAB node.
  • a tenth aspect a method for data processing in an access backhaul integrated IAB system, where the system includes a centralized unit CU and a distributed unit DU, a first IAB node, and a second IAB node, the method includes:
  • the first IAB node receives, from the CU, a QoS parameter corresponding to the DRB and the DRB on the air interface, and a service identifier of the terminal and a service QoS parameter corresponding to the service identifier;
  • the first IAB node determines, according to the QoS parameter corresponding to the DRB on the air interface and the QoS parameter corresponding to the terminal service identifier, a mapping relationship between the terminal service corresponding to the service identifier and the DRB on the air interface.
  • the first IAB node may perform distributed bearer mapping management on each interface link, and implement the bearer mapping of the user plane data by the first IAB node.
  • a method for data processing in an access backhaul integrated IAB system comprising a centralized unit CU and a distributed unit DU, a first IAB node and a second IAB node, the method comprising :
  • the second IAB node receives, from the CU, a mapping relationship between the DRB of the second interface and the QoS parameter corresponding to the DRB, and a service identifier of the terminal and a service QoS parameter corresponding to the service identifier;
  • the second IAB node determines, according to the QoS parameter corresponding to the DRB on the second interface and the QoS parameter corresponding to the terminal service identifier, a mapping relationship between the terminal service corresponding to the service identifier and the DRB on the second interface.
  • the second interface is an interface between the second IAB node and the DU.
  • the second IAB node may perform distributed bearer mapping management on each interface link, and implement the bearer mapping of the user plane data by the second IAB node.
  • a method for data processing in an access backhaul integrated IAB system comprising a centralized unit CU and a distributed unit DU, a first IAB node and a second IAB node, the method comprising :
  • the first IAB node receives, from the CU, a QoS parameter corresponding to the DRB and the DRB on the first interface, and a service identifier of the terminal and a service QoS parameter corresponding to the service identifier;
  • the first IAB node determines, according to the QoS parameter corresponding to the DRB on the first interface and the QoS parameter corresponding to the terminal service identifier, a mapping relationship between the terminal service corresponding to the service identifier and the DRB on the first interface.
  • the first interface is an interface between the first IAB node and the second IAB node.
  • the first IAB node may perform distributed bearer mapping management on each interface link, and implement the bearer mapping of the user plane data by the first IAB node.
  • the embodiment of the present application provides a data processing apparatus, which is used to perform the method in any of the foregoing aspects or any possible implementation manner of any of the foregoing aspects.
  • the embodiment of the present application provides an apparatus for data processing, including: a memory and a processor.
  • the memory is for storing instructions for executing the instructions stored by the memory, and when the processor executes the instructions stored by the memory, the executing causes the processor to perform any of any or any of the aspects The method in the implementation.
  • the embodiment of the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for executing the method in any of the aspects or any possible implementation of any of the aspects.
  • the embodiment of the present application further provides a computer program product comprising instructions, when the computer program product is run on a computer, causing the computer to perform any of the aspects or any possible implementation of any aspect. method.
  • the IAB Donor, the IAB node 1, and the IAB node 2 may perform bearer mapping and processing on the control plane signaling according to the message type of the transmitted message or according to the message type of the message included in the transmitted message.
  • the message type includes an RRC message and an F1AP message.
  • the interface between the IAB nodes such as the Un interface (such as the Un1 interface and the Un2 interface), and the Uu interface between the IAB node and the UE, establish a DRB bearer, and each IABnode can be configured according to each interface.
  • the mapping relationship between the DRB bearers is carried out, or the bearer mapping is performed on the user plane data according to the QoS parameters corresponding to the DRB bearers or according to the QoS parameters to which the UE service flows belong.
  • FIG. 1 shows a schematic diagram of a system architecture to which an embodiment of the present application is applied.
  • FIG. 2 shows a specific embodiment of bearer mapping and processing of a control plane signaling at each interface of the present application.
  • FIG. 3 is a schematic flowchart of a method for transmitting data provided by an embodiment of the present application.
  • FIG. 4 shows a specific embodiment of bearer mapping and processing of another control plane signaling at each interface of the present application.
  • FIG. 5 shows a specific embodiment of bearer mapping and processing of another control plane signaling at each interface of the present application.
  • FIG. 6 shows a specific embodiment of bearer mapping and processing of a user plane data on each interface of the present application.
  • FIG. 7 shows a specific embodiment of a bearer mapping of a user plane data on each interface of the present application.
  • FIG. 8 shows a specific embodiment of a bearer mapping of a user plane data on each interface of the present application.
  • Figure 9 illustrates an embodiment of a particular bearer mapping of the present application.
  • FIG. 10 is a schematic block diagram of an apparatus for data processing provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of another apparatus for data processing provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a schematic diagram of a system architecture to which an embodiment of the present application is applied.
  • the system architecture includes a UE 101, a relay node 102, a relay node 103, a host node 104, and a Next Generation Core (NGC) 105.
  • the host node 104 is directly connected to the NGC 105, and the host node 104 is connected to the relay node 103, the relay node 103 is connected to the relay node 102, and the relay node 102 is connected to the UE 101.
  • the physical interface between the UE 101 and the relay node 102 is a Uu interface
  • the physical interface between the host node 104 and the NGC 105 is an NG interface.
  • the physical interface between the relay node 102 and the relay node 103 and the name of the physical interface between the relay node 103 and the host node are not specifically limited in the embodiment of the present application.
  • the physical interface between the relay node 102 and the relay node 103, and the physical interface between the relay node 103 and the host node are Un interfaces.
  • the host node 104 may be connected to multiple relay nodes, and each relay node may also be connected to other relay nodes or UEs.
  • FIG. 1 shows One relay node 103 connected to the host node 104 also shows only one relay node 102 connected to the relay node 103, and one UE 101 connected to the relay node 102, but this does not constitute an embodiment of the present application. limited.
  • the system architecture may be an IAB system architecture.
  • the relay node may also be referred to as an IAB node (IAB node), and the host node may also be referred to as an IAB host (IAB Donor).
  • IAB node IAB node
  • IAB Donor IAB host
  • the host node and the relay node in the embodiment of the present application may be in the form of a base station, for example, may be a Global System of Mobile communication (GSM) system or a base station in Code Division Multiple Access (CDMA).
  • BTS Base Transceiver Station
  • BTS which may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station (eNB) in an LTE system.
  • eNodeB which may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future 5G network.
  • the network device in the network device or the network device in the future evolved PLMN network is not limited in this embodiment.
  • the UE in this embodiment may refer to a terminal device, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the host node may adopt a structure in which the CU is separated from the DU
  • the relay node may also adopt a structure in which the CU is separated from the DU, where the DU entity is located on the relay node, and the CU entity is located on the host node.
  • the relay node also includes a mobile terminal MT (Mobile Termination) entity.
  • the CU and the DU in the host node 104 in FIG. 1 are connected through an F1 interface
  • the CU and the NGC 105 are connected through an NG interface.
  • the DU in the host node 104 and the MT in the relay node 103 are connected through the Un2 interface, and the DU in the relay node 103 and the MT in the relay node 102 are connected through the Un1 interface, and the DU in the relay node 102 It is connected to the UE 101 through the Uu interface. That is to say, for the DU in the donor node 104, the MT in the relay node 103 is regarded as one UE, and for the MT in the relay node 103, the DU in the host node 104 is viewed. It is a base station.
  • the MT in the relay node 102 is regarded as one UE, and for the MT in the relay node 102, the DU in the relay node 103 is Think of it as a base station. Similarly, for the UE 101, the DU in the relay node 102 is considered to be a base station.
  • the host node 104 is the IAB Donor
  • the relay node 103 is the IAB node 2
  • the relay node 104 is the IAB node 1
  • the UE 101 is the UE.
  • the UE For a UE directly connected to the IAB Donor, in the uplink (UL), the UE generates a Radio Resource Control (RRC) message and then transmits a signalling radio bearer (SRB) through the Uu interface.
  • RRC Radio Resource Control
  • SRB signalling radio bearer
  • the message is sent to the DU, for example, SRB1
  • the DU encapsulates the received UE RRC message in the UE's F1AP (recorded as UE-associated F1AP) message and sends the message to the CU.
  • the CU In the downlink transmission (Downlink, DL), the CU encapsulates the generated RRC message in the UE-associated F1AP message and sends it to the DU.
  • the DU extracts the RRC message of the UE from the UE-associated F1AP message, and then sends the RRC message to the UE through the SUP of the Uu interface.
  • UE Radio Resource Control
  • the RRC message is terminated on the CU of the IAB Donor for the UE.
  • the MT entities in IAB node1 and IAB node2 their RRC messages are also terminated on the CU of the IAB Donor.
  • the IAB node 1 and the IAB node 2 may implement the encapsulation of the respective generated RRC messages in the respective F1AP messages, or decapsulate the respective F1AP messages to extract respective RRC messages.
  • the interface between the IAB node1 and the IAB node2 can transmit the F1AP message of the UE attached to the IAB node1 in addition to the RRC message of the IAB node1.
  • the F1AP message of the IAB node 1 attached to the IAB node 2 and the F1AP message of the UE attached to the IAB node 1 may be transmitted.
  • the F1AP message of the IAB node1 attached to the IAB node2 and the F1AP message of the UE attached to the IAB node1 may be transmitted.
  • the IAB Donor, the IAB node 1, and the IAB node 2 may perform bearer mapping and processing on the control plane signaling according to the message type of the transmitted message or according to the message type of the message included in the transmitted message.
  • the message type includes an RRC message and an F1AP message.
  • FIG. 2 shows a specific embodiment of bearer mapping and processing of a control plane signaling at each interface of the present application.
  • CU and DU are located in IAB Donor, respectively.
  • the CU, the DU, the IAB node 2, the IAB node 1, and the UE can be referred to the description above, and details are not described herein again.
  • the SRB1 of the UE (referred to as the UE SRB1) is established on the Uu interface between the UE and the IAB node1, and the RRC message of the UE is recorded as (UE RRC) and can be carried on the UE SRB1.
  • the SRB2 of the UE (referred to as the UE SRB2) is established on the Uu interface between the UE and the IAB node1, and the RRC message of the UE is recorded as (UE RRC) and can be carried on the UE SRB2.
  • An S1 of IAB1 (denoted as IAB1 SRB1) is established on the Un1 interface between the IAB node1 and the IAB node2, and an RRC message of IAB1 (denoted as IAB1 RRC) can be carried on the IAB1 SRB1.
  • SRB2 of IAB1 (denoted as IAB1 SRB2) is established on the Un1 interface between the IAB node1 and the IAB node2, and the RRC message of IAB1 (denoted as IAB1 RRC) can be carried on the IAB1 SRB2.
  • a dedicated RB (denoted as IAB1 RB) of IAB1 may also be established on the Un1 interface between the IAB node1 and the IAB node2.
  • the dedicated RB may be a newly defined SRB. This dedicated RB is different from the existing SRB0/1/2 in the prior art and is only used to transmit F1AP messages.
  • the dedicated RB may be a Data Radio Bearer (DRB).
  • DRB Data Radio Bearer
  • the IAB node1 after receiving the UE RRC from the UE SRB1, the IAB node1 encapsulates the UE RRC to generate an F1AP message (recorded as a UE-associated F1AP message) of the UE.
  • the UE-associated F1AP message can be carried on the IAB1 RB.
  • the SRB1 of IAB2 (denoted as IAB2 SRB1) is established on the Un2 interface between the IAB node2 and the DU.
  • the RRC message of IAB2 (denoted as IAB2 RRC) can be carried on the IAB2 SRB1.
  • SRB2 of IAB2 (denoted as IAB2 SRB2) is established on the Un2 interface between the IAB node2 and the DU, and the RRC message of IAB2 (denoted as IAB2 RRC) can be carried on the IAB2 SRB2.
  • a dedicated RB (denoted as IAB2 RB) of IAB2 may also be established on the Un2 interface between the IAB node 2 and the DU.
  • the dedicated RB may be a newly defined SRB. This dedicated RB can be distinguished from the existing SRB0/1/2 and is only used to transmit F1AP messages.
  • the dedicated RB may be a DRB.
  • the IAB node2 may carry the UE-associated F1AP message on the IAB2 RB for transmission.
  • the IAB node2 after receiving the IAB1 RRC from the IAB1 SRB1, the IAB node2 encapsulates the IAB1 RRC message to generate an F1AP message of the IAB1 (denoted as an IAB1-associated F1AP message).
  • the IAB1-associated F1AP message can be carried on the IAB2 RB.
  • the DU and CU are connected by a wired interface.
  • the F1AP message of IAB2 (denoted as IAB2-associated F1AP message) can be carried on the wired interface between the DU and the CU.
  • the DU encapsulates the IAB2 RRC message to generate an IAB2 F1AP message (referred to as an IAB2-associated F1AP message), and the IAB2-associated F1AP message is sent to the CU by wire.
  • IAB2 may also encapsulate the IAB1-associated F1AP message and/or the UE-associated F1AP message in the IAB2-associated F1AP message for transmission.
  • the bearer mapping of the UE RRC on each interface is as follows:
  • the UE RRC On the Uu interface, the UE RRC is mapped to be transmitted on SRB1 or SRB2.
  • the UE RRC On the Un1 interface, the UE RRC is encapsulated in a UE-associated F1AP message and then mapped onto a dedicated RB, which may be a DRB or a newly defined SRB.
  • the UE-associated F1AP message On the Un2 interface, the UE-associated F1AP message is mapped to be transmitted on the dedicated RB, which is the same as the dedicated RB on the Un1 interface.
  • the UE-associated F1AP message On the F1 interface, the UE-associated F1AP message is further encapsulated and transmitted in the IAB2-associated F1AP message.
  • the IAB node 2 before the UE accesses the network, the IAB node 2 first needs to access the network, and then the IAB node 1 accesses the network.
  • the IAB node 2 establishes an IAB2 SRB1 for transmitting an IAB2 RRC message on the Un2 interface.
  • the IAB node 2 can also establish an IAB2 RB dedicated to transmit the F1AP message on the Un2 interface while establishing the IAB2 SRB1.
  • the IAB2 RB may be used to transmit a UE-associated F1AP message and/or an IAB1-associated F1AP message.
  • the UL similar to IAB2SRB1, when the DU receives signaling from the IAB2 RB, it is encapsulated in the IAB2-associated F1AP message and sent to the CU.
  • the DU receives the signaling from the IAB2-associated F1AP message, and learns the signaling type carried in the IAB2-associated F1AP message according to the signaling type indication information sent by the CU. If it is an RRC message, the mapping is performed. It is sent to the IAB node 2 to the IAB2 SRB1; if it is an F1AP message, it is mapped to the IAB2 RB and sent to the IAB node2. In the process of accessing the network, the IAB node1 establishes an IAB1 SRB1 for transmitting an IAB1 RRC message on the Un1 interface.
  • the IAB node 1 can establish an IAB1 RB dedicated to transmit the F1AP message on the Un1 interface while establishing the IAB1 SRB1.
  • the IAB1 RB may be used to transmit a UE-associated F1AP message.
  • the IAB node2 maps it to the IAB2 RB and sends it to the DU.
  • the IAB node2 maps the signaling to the IAB1 RB and sends it to the IAB node1.
  • FIG. 3 is a schematic flowchart of a method for transmitting data provided by an embodiment of the present application.
  • 302 to 308 are data transmission processes in the DL direction
  • 310 to 316 are data transmission processes in the UL direction.
  • 302 to 308 can be applied to the system shown in FIG. 2, in which case 302 to 308 in FIG. 3 can be respectively recorded as 302' to 308', that is, 302' to 308 below.
  • the CU, DU, IAB node2, IAB node1, and UE in ' may be the corresponding network elements in FIG. 2.
  • the CU sends a message #1 to the DU.
  • the CU may send an IAB2-associated F1AP message (ie, the message #1) to the DU through the wired interface, where the IAB2-associated F1AP message may carry the IAB2 RRC message and the IAB1-associated F1AP message. , or at least one of the UE-associated F1AP messages. Specifically, the following may be possible: the IAB2-associated F1AP message includes the IAB2 RRC message; or the IAB2-associated F1AP message includes the IAB1-associated F1AP message; or the IAB2-associated F1AP message includes the UE-associated F1AP message.
  • the IAB2-associated F1AP message includes an IAB2 RRC message and an IAB1-associated F1AP message; or the IAB2-associated F1AP message includes an IAB2 RRC message and a UE-associated F1AP message; or, the IAB2-associated F1AP message includes IAB1- An associated F1AP message and a UE-associated F1AP message; or an IAB2-associated F1AP message includes an IAB2 RRC message and an IAB1-associated F1AP message and a UE-associated F1AP message.
  • the CU also sends a type indication information to the DU, which is used to indicate the type of the message carried in the IAB2-associated F1AP message.
  • the message type may be an RRC message type or an F1AP message type.
  • the DU performs different processing on different messages carried in the IAB2-associated F1AP according to the type indication information.
  • the CU may encapsulate the UE RRC message to generate a UE-associated F1AP message, and encapsulate the UE-associated F1AP message in an IAB2-associated F1AP message and send the message to the DU.
  • the CU may also encapsulate the IAB1 RRC message to generate an IAB1-associated F1AP message, and encapsulate the IAB1-associated F1AP message in an IAB2-associated F1AP message and send it to the DU.
  • the CU may also encapsulate the IAB2 RRC message to generate an IAB2-associated F1AP message and then send it to the DU.
  • the CU may carry the type indication information in the IAB2-associated F1AP message, or the type indication information may also be carried in the adaptation layer above the F1AP layer that is equivalent to the IAB node2. This is not specifically limited in the embodiment of the present application.
  • the IAB2-associated F1AP message may carry at least one of an IAB2 RRC message, an IAB1-associated F1AP message, or a UE-associated F1AP message.
  • each message carried in the IAB2-associated F1AP message may correspond to a type indication information, which is used to indicate the message type of the corresponding message.
  • the CU may further send an indication information to the DU, and the DU further forwards the indication information to the IAB node 2 and the IAB node 1 to indicate whether the IAB node 2 and the IAB node 1 need to process the received F1AP message.
  • the indication information may be identifier information of a node, for example, a node identifier of the IAB node1, an identifier of the UE, and the like.
  • the CU may carry the indication information in the IAB2-associated F1AP message, or may be sent to the DU in the adaptation layer that is carried on the F1AP layer that is peered with the IAB2. This is not specifically limited.
  • the DU sends a message #2 to the IAB node2.
  • the DU when the DU obtains the IAB2-associated F1AP message and the type indication information from the CU through the wired interface, if the type indication information indicates that the IAB2-associated F1AP message carries the RRC message, the DU will The RRC message extracted from the IAB2-associated F1AP message is mapped to the IAB2 SRB1 and sent to the IAB node2. At this time, the IAB2 RRC message is the message #2.
  • the DU when the DU obtains the IAB2-associated F1AP message and the type indication information from the CU through the wired interface, if the type indication information indicates that the IAB2-associated F1AP message carries the F1AP message, the DU will The F1AP message extracted from the IAB2-associated F1AP message is mapped to the IAB2 RB and sent to the IAB node2. At this time, the F1AP message is the message #2.
  • the DU may further send an indication information to the IAB node2, where the indication information is used to indicate whether the IAB node2 needs to process the F1AP message extracted from the IAB2-associated F1AP message.
  • the indication information may be identifier information of a node, for example, a node identifier of the IAB node1, an identifier of the UE, and the like.
  • the indication information may be carried in an RLC (Radio Link Control) layer header field of the Un2 interface, or in an adaptation layer of the Un2 interface.
  • RLC Radio Link Control
  • the indication information indicating the type of the message included in the IAB2-associated F1AP message is sent to the DU by the CU, so that the DU can solve the solution according to different message types included in the IAB2-associated F1AP message.
  • the encapsulated data packets are mapped to different bearers, and the DU performs bearer mapping on the control plane signaling.
  • IAB node2 sends message #3 to IAB node1.
  • the IAB node 2 when the IAB node 2 receives the data packet from the IAB2 SRB1 in the Un2 interface, it can determine that the data packet is an IAB2 RRC message, and the data packet can be directly sent to the RRC layer. deal with.
  • the IAB node 2 when the IAB node 2 receives the data packet from the IAB2 RB in the Un2 interface, it may determine that the data packet is an F1AP message.
  • the IAB node 2 may combine the routing information of the F1AP message to determine whether the F1AP message needs to be processed by itself. Specifically, when the routing information of the F1AP message indicates that the target routing node of the F1AP message is the IAB node1, it indicates that the F1AP message needs to be processed by the IAB node2, and the IAB node2 decapsulates the F1AP message, when the F1AP message is learned. When the RRC message carried in the IAB1 RRC message, the IAB1 RRC message is mapped to the IAB1 SRB1 in the Un1 interface and sent to the IAB node1. The IAB1 RRC message is the message #3.
  • the routing information of the F1AP message indicates that the target routing node of the F1AP message is a next hop node that is not connected to the IAB2, for example, when the target routing node is the UE, the F1AP message does not need to be processed by the IAB node2.
  • the IAB node 2 determines that the next hop node is the IAB node1 according to the routing information, and maps the F1AP message to the IAB1 RB of the Un1 interface and sends it to the IAB node1.
  • the F1AP message is the message #3.
  • the IAB node 2 may also determine, according to the indication information sent by the DU to the IAB node 2, whether the transmitted F1AP message on the IAB2 RB needs to be processed by itself.
  • the indication information may be identifier information of a node, for example, a node identifier of the IAB node1, an identifier of the UE, and the like.
  • the IAB node2 when the IAB node2 determines that the F1AP message needs to be processed by itself, the IAB node2 decapsulates the F1AP message, and when the RRC message carried in the F1AP message is IAB1 RRC, the IAB1 RRC is obtained.
  • the message is mapped to the IAB1 SRB1 in the Un1 interface and sent to the IAB node1.
  • the IAB1 RRC message is the message #3.
  • the IAB node2 determines that the next hop node is the IAB node1 according to the routing information, and maps the F1AP message to the IAB1 RB of the Un1 interface and sends the F1AP message to the IAB1 RB of the Un1 interface.
  • the F1AP message is now message #3.
  • IAB node1 sends message #4 to the UE.
  • the IAB node1 when the IAB node1 receives the message from the IAB1 SRB1 in the Un1 interface, it can determine that the message is an IAB1 RRC message, and the message can be directly sent to the RRC layer for processing.
  • the IAB node1 when the IAB node1 receives a message from the IAB1 RB in the Un1 interface, it can be determined that the message is an F1AP message. Specifically, the IAB node1 decapsulates the F1AP message, and when the RRC message carried in the F1AP message is the UE RRC, the UE RRC message is mapped to the UE SRB1 of the Uu interface, and the UE is RRC. The message is message #4.
  • the IAB1 RB on the Un1 interface and the IAB2 RB on the Un2 interface may be SRB (different from the existing SRB0/1/2), or may be a DRB, and are only used to transmit the F1AP message.
  • the F1AP message is transmitted on the dedicated RB by transmitting the RRC message on the SRB1, so that the IAB2 and the IAB1 can determine the message type of the obtained message, and can perform control plane signaling according to different message types. Bearer mapping.
  • the RRC message is transmitted on the SRB2
  • the F1AP message is transmitted on the dedicated RB, so that the IAB2 and the IAB1 can determine the message type of the obtained message, and perform bearer mapping on the control plane signaling according to different message types.
  • This embodiment of the present application does not specifically limit this.
  • 310 to 316 can be applied to the system shown in FIG. 2, and 310 to 316 in FIG. 3 can be respectively referred to as 310' to 316', that is, 310' to 316 below.
  • the CU, DU, IAB node2, IAB node1, and UE in ' may be the corresponding network elements in FIG.
  • the UE sends a message #5 to the IAB node1.
  • the UE generates a UE RRC message, and sends the UE RRC message to the IAB node1 through the UE SRB1 in the Uu interface.
  • the UE RRC message is message #5.
  • IAB node1 sends message #6 to IAB node2.
  • the IAB node1 when the IAB node1 receives the UE RRC message through the UE SRB1 in the Uu interface, the UE RRC message is encapsulated, a UE-associated F1AP message is generated, and the IAB1 RB in the Un1 interface is used.
  • the UE-associated F1AP message is sent to the IAB node2, and the UE-associated F1AP is the message #6.
  • the IAB1 RRC message may be generated by the IAB1 RRC message, and the IAB1 RRC message is sent to the IAB node2 through the IAB1 SRB1 in the Un1 interface.
  • the IAB1 RRC message is the message #6.
  • IAB node2 sends a message #7 to the DU.
  • the IAB node 2 may receive the UE-associated F1AP message from the IAB1 RB in the Un1 interface, and map the UE-associated F1AP to the IAB2 RB in the Un2 interface and send the message to the DU.
  • the UE-associated F1AP message is message #7.
  • the IAB node 2 may also receive the IAB1 RRC message from the IAB1 SRB1 in the Un1 interface, and encapsulate the IAB1 RRC message, generate an IAB1-associated F1AP message, and then the IAB1-associated F1AP message. It is mapped to the IAB2 RB in the Un2 interface and sent to the DU. At this time, the IAB1-associated F1AP is the message #7.
  • the IAB2 RRC message may be generated by the IAB2 RRC message, and the IAB2 RRC message is mapped to the IAB2 SRB1 in the Un2 interface and sent to the DU.
  • the IAB2 RRC message is the message #7.
  • the DU sends a message #8 to the CU.
  • the DU encapsulates the IAB2 RRC message received on the IAB2 SRB1, the IAB1-associated F1AP message received from the IAB2 RB, or at least one of the UE-associated F1AP messages to generate the IAB2-
  • the F1AP message is associated and sent to the CU through the wired interface.
  • the IAB2-associated F1AP is message #8.
  • the DU also needs to send a type indication message to the CU, which is used to indicate the type of the message carried in the IAB2-associated F1AP message, and the message type may be an RRC message, and/or an F1AP message, so that the CU indicates the information pair according to the type.
  • a type indication message to the CU, which is used to indicate the type of the message carried in the IAB2-associated F1AP message, and the message type may be an RRC message, and/or an F1AP message, so that the CU indicates the information pair according to the type.
  • Different messages carried in the IAB2-associated F1AP message are processed differently.
  • the CU decapsulates the IAB2-associated F1AP message, and extracts an RRC message and/or an F1AP message therefrom. Specifically, when the type indication information indicates that the message carried in the IAB2-associated F1AP message is an RRC message, the CU sends the RRC message to the RRC layer peered with the IAB node2 for processing.
  • the CU determines the F1AP message as a UE-associated F1AP message, or IAB1-associated, according to the IP address information carried by the IP layer or the node identifier. F1AP message.
  • the CU determines the UE-associated F1AP message
  • the UE sends the UE-associated F1AP message to the F1AP layer that is peered with the UE.
  • the CU performs the UE-associated F1AP message through the F1AP layer that is peered with the UE. Decapsulation obtains a UE RRC message.
  • the IAB1-associated F1AP message is sent to the F1AP layer that is peered with IAB1 for processing. Further, the CU decapsulates the IAB1-associated F1AP by using an F1AP layer that is peered with IAB1 to obtain an IAB1 RRC message.
  • the DU may send the foregoing node identifier to the CU.
  • the node identifier may be carried in an IAB2-associated F1AP message or in an adaptation layer above the F1AP layer that is peered with IAB node2.
  • the IAB1 RB on the Un1 interface and the IAB2 RB on the Un2 interface may be SRB (different from the existing SRB0/1/2), or may be a DRB, and are only used to transmit the F1AP message.
  • the F1AP message is transmitted on the dedicated RB by transmitting the RRC message on the SRB1, so that the IAB2, the IAB1, the DU can determine the message type of the obtained message, and can control the message according to different message types. Let the bearer mapping. And sending, by the DU, the type of the message included in the IAB2-associated F1AP message to the CU, so that the CU can send the decapsulated message to different processing layers according to different message types included in the IAB2-associated F1AP message, to implement Perform bearer mapping on control plane signaling.
  • the F1AP message may be transmitted on the dedicated RB by transmitting the RRC message on the SRB2, so that the IAB2, the IAB1, and the DU can determine the message type of the obtained message, and can perform control plane signaling according to different message types.
  • Bearer mapping sending, by the DU, the type of the message included in the IAB2-associated F1AP message to the CU, so that the CU can send the decapsulated message to different processing layers according to different message types included in the IAB2-associated F1AP message, to implement
  • the bearer mapping is performed on the control plane signaling, which is not specifically limited in this embodiment of the present application.
  • the DU maps the IAB2RRC to the IAB2 SRB1 or the IAB2 SRB2 according to the type indication information sent by the CU, and the UE-associated F1AP message and/or the IAB1-associated F1AP.
  • the message is mapped to the transport on the IAB2 RB.
  • the IAB node 2 extracts the F1AP message from the IAB2 RB, and further determines whether the F1AP message transmitted on the dedicated RB needs to be processed by itself according to the routing information or the node indication information sent by the DU.
  • the CU learns that the IAB2-associated F1AP message carries the RRC message and/or the F1AP message according to the type indication information sent by the DU, and learns the information according to the IP address of the IP layer or the node indication information sent by the DU.
  • the F1AP message is sent to the F1AP layer processing peered by the UE or sent to the F1AP layer processing peered with the IAB node1.
  • FIG. 4 shows a specific embodiment of bearer mapping and processing of another control plane signaling at each interface of the present application.
  • CU and DU are located in IAB Donor, respectively.
  • the CU, the DU, the IAB node 2, the IAB node 1, and the UE can be referred to the description above, and details are not described herein again.
  • the SRB1 of the UE (referred to as the UE SRB1) is established on the Uu interface between the UE and the IAB node1, and the RRC message of the UE is recorded as (UE RRC) and can be carried on the UE SRB1.
  • the S1 of the IAB node1 (denoted as IAB1 SRB1) is established on the Un1 interface between the IAB node1 and the IAB node2, and the RRC message of IAB1 (denoted as IAB1 RRC) can be carried on the IAB1 SRB1.
  • the UE RRC may be encapsulated in the IAB node1 to generate an F1AP message of the UE (referred to as a UE-associated F1AP message).
  • the UE-associated F1AP message may be carried on the IAB1 SRB1.
  • the SRB1 of the IAB node2 (denoted as IAB2 SRB1) is established on the Un2 interface between the IAB node 2 and the DU.
  • the RRC message of the IAB node 2 (denoted as IAB2 RRC) can be carried on the IAB2 SRB1.
  • the IAB node2 maps the UE-associated F1AP message to the IAB2 SRB1 for transmission.
  • the IAB node 2 may encapsulate the IAB1 RRC message to generate an F1AP message (denoted as an IAB1-associated F1AP message) of the IAB node1.
  • the IAB1-associated F1AP message map is transmitted on IAB2 SRB1.
  • the DU and CU are connected by a wired interface.
  • the wired interface between the DU and the CU may carry the F1AP message of the IAB node 2 (referred to as an IAB2-associated F1AP message).
  • the DU may encapsulate at least one of the RRC message (referred to as IAB2 RRC), the IAB1-associated F1AP message, or the UE-associated F1AP message of the IAB node2 in the IAB2-associated F1AP message.
  • IAB2 RRC the RRC message
  • IAB1-associated F1AP message the IAB1-associated F1AP message
  • UE-associated F1AP message the UE-associated F1AP message of the IAB node2 in the IAB2-associated F1AP message.
  • the existing IAB1 SRB1 transmission F1AP message can be multiplexed on the Un1 interface between the IAB node1 and the IAB node2, and the existing IAB2 SRB1 transmission can be multiplexed on the Un2 interface between the IAB node2 and the DU.
  • the F1AP message does not have to establish a new dedicated radio bearer between IAB node1 and IAB node2, between IAB node2 and the DU.
  • the bearer mapping of the UE RRC on each interface is as follows:
  • the UE RRC On the Uu interface, the UE RRC is mapped to be transmitted on SRB1 or SRB2.
  • the UE RRC On the Un1 interface, the UE RRC is encapsulated in a UE-associated F1AP message and then mapped to SRB1 or SRB2 for transmission.
  • the UE-associated F1AP message On the Un2 interface, the UE-associated F1AP message is mapped on SRB1 or SRB2 for transmission.
  • the UE-associated F1AP message On the F1 interface, the UE-associated F1AP message is further encapsulated and transmitted in the IAB2-associated F1AP message.
  • 302 to 308 can be applied to the system shown in FIG. 4, in which case 302 to 308 in FIG. 3 can be respectively recorded as 302" to 308", that is, 302" to
  • the CU, the DU, the IAB node 2, the IAB node 1 and the UE in the 308" may be the corresponding network elements in FIG.
  • the CU sends a message #1 to the DU.
  • 302" can be referred to the description in 302' above. To avoid repetition, details are not described herein again.
  • the DU sends a message #2 to the IAB node2.
  • the DU when the DU acquires the IAB2-associated F1AP message and the type indication information from the CU through the wired interface, the DU may decapsulate the IAB2-associated F1AP message to extract the IAB2 RRC message contained therein and/or The F1AP message is mapped to the IAB2 SRB1 and sent to the IAB node2 by mapping the extracted IAB2 RRC message and/or F1AP message. At this time, the IAB2 RRC message and/or the F1AP message is the message #2.
  • the DU needs to forward the type indication message to the IAB node 2.
  • the type indication information may be carried in the RLC header field in the Un2 interface, or in the adaptation layer of the Un2 interface.
  • the DU may further send an indication information to the IAB node2, where the indication information is used to indicate whether the IAB node2 needs to process the F1AP message extracted from the IAB2-associated F1AP message.
  • the indication information may be identifier information of a node, for example, a node identifier of the IAB node1, an identifier of the UE, and the like.
  • the indication information may be carried in the RLC header field of the Un2 interface or in the adaptation layer of the Un2 interface.
  • IAB node2 sends message #3 to IAB node1.
  • the type of the message received from the IAB2 SRB1 in the Un2 interface and receives the type indication information may be determined according to the type indication information. It can be an RRC message or an F1AP message.
  • the message may be directly sent to the RRC layer for processing.
  • the IAB node 2 can determine whether the F1AP message needs to be processed by itself according to the routing information of the F1AP message. Specifically, when the routing information of the F1AP message indicates that the target routing node of the F1AP message is the IAB node1, that is, the F1AP message needs to be processed by the IAB node2, the IAB node2 decapsulates the F1AP message, and learns the F1AP message. When the RRC message carried in the IAB1 RRC message, the IAB1 RRC message is mapped to the IAB1 SRB1 in the Un1 interface and sent to the IAB node1. The IAB1 RRC message is the message #3.
  • the IAB When the routing information of the F1AP message indicates that the target routing node of the F1AP message is a next hop node that is not connected to the IAB node2, for example, when the target routing node is a UE, that is, the F1AP message does not need to be processed by the IAB node2, the IAB The node 1 maps the F1AP message to the IAB1 SRB1 in the Un1 interface and sends it to the IAB node1.
  • the F1AP message is the message #3.
  • the IAB node 2 may determine, according to the indication information sent by the DU to the IAB node 2, whether the F1AP message on the IAB2 RB needs to be processed by itself. Specifically, when it is determined that the IAB node2 needs to process the F1AP message according to the indication information, the IAB node2 decapsulates the F1AP message, and when the RRC message carried in the F1AP message is IAB1 RRC, the IAB1 is obtained. The RRC message is mapped to the IAB1 SRB1 in the Un1 interface and sent to the IAB node1. At this time, the IAB1 RRC message is the message #3.
  • the IAB node 2 When it is determined that the IAB node 2 does not need to process the F1AP message according to the indication information, the IAB node 2 maps the F1AP message to the IAB1 SRB1 in the Un1 interface and sends the message to the IAB node1.
  • the F1AP message is the message #3.
  • the IAB node 2 may send a type indication information to the IAB node 1 through the Un1 interface, which is used to indicate the message type of the message transmitted in the IAB1 SRB1, so that the IAB node1 can be from the IAB1 according to the message type. Different messages received on SRB1 are processed differently.
  • the IAB2-associated F1AP message and the type indication information are sent by the CU to the DU, and the DU decapsulates the IAB2-associated F1AP message, and forwards the type indication message to the IAB node2, so that the IAB node2
  • the message can be mapped to different bearers according to the different message types of the received message, so that the DU and IAB node2 perform bearer mapping on the control plane signaling.
  • IAB node1 sends message #4 to the UE.
  • 308" can be referred to the description in 308' above, and to avoid repetition, no further details are provided herein.
  • the IAB node 2 by transmitting the RRC message and the F1AP message on the SRB1, and combining the type indication information or the routing information, the IAB node 2 can determine the message type of the obtained message, and can control the control surface according to different message types. Signaling performs bearer mapping.
  • the RRC message and the F1AP message are transmitted on the SRB2, and the type indication information or the routing information is combined, so that the IAB node2 can determine the message type of the obtained message, and can control the control plane according to different message types. Perform bearer mapping.
  • 310 to 316 can be applied to the system shown in FIG. 2, and 310 to 316 in FIG. 3 can be respectively referred to as 310" to 316", that is, 310" to 316 below.
  • the CU, DU, IAB node2, IAB node1, and UE in the middle may be the corresponding network elements in FIG.
  • the UE sends a message #5 to the IAB node1.
  • 310" can be referred to the description in 310' above. To avoid repetition, details are not described herein again.
  • IAB node1 sends message #6 to IAB node2.
  • the IAB node 1 may generate an IAB1 RRC message and map it to the IAB1 SRB1 in the Un1 interface and send it to the IAB node2.
  • the IAB1 RRC message is the message #6.
  • the UE RRC message may be encapsulated to generate a UE-associated F1AP message and mapped to the IAB1 SRB1 in the Un1 interface. It is sent to the IAB node2, and the UE-associated F1AP is the message #6.
  • the IAB node1 needs to send a type indication information to the IAB node 2, which is used to indicate the message type of the message transmitted on the IAB1 SRB1, and the message type may be an RRC message or an F1AP message, so that the IAB node2 is based on the message type.
  • the type indication information may be carried in the RLC header field of the Un1 interface or in the adaptation layer of the Un1 interface.
  • IAB node2 sends a message #7 to the DU.
  • the IAB node 2 may generate an IAB2 RRC message and map it to the IAB2 SRB1 in the Un2 interface and send it to the DU.
  • the IAB1 RRC message is message #7.
  • the IAB node 2 when the IAB node 2 receives the message through the IAB1 SRB1 in the Un1 interface, and the message type of the message is an RRC message, the IAB1 RRC message is encapsulated to generate an IAB1-associated F1AP message, and It is mapped to the IAB2 SRB1 in the Un2 interface and sent to the DU. At this time, the IAB-associated F1AP is the message #7.
  • the IAB node 2 when the IAB node 2 receives the message through the IAB1 SRB1 in the Un1 interface, and the message type of the message is an F1AP message, the F1AP message is mapped to the IAB2 SRB1 in the Un1 interface and sent to the DU. At this time, the UE-associated F1AP message is message #7.
  • the IAB node 2 needs to send a type indication information to the DU, which is used to indicate the message type of the message transmitted on the IAB2 SRB1 of the Un2 interface, and the message type may be an RRC message or an F1AP message, so that the DU is based on the message.
  • Types handle different messages differently.
  • the type indication information may be carried in the RLC header field of the Un2 interface or in the adaptation layer of the Un2 interface.
  • the DU sends a message #8 to the CU.
  • 316" can be referred to in the description of 316' above, and in order to avoid repetition, details are not described herein again.
  • the IAB node 2 by transmitting the RRC message and the F1AP message on the SRB1 and simultaneously transmitting the message type of the message, the IAB node 2, the IAB node 1, and the DU can perform bearer mapping on the control plane signaling according to different message types. . And sending, by the DU, the type of the message included in the IAB2-associated F1AP message to the CU, so that the CU can send the decapsulated data packet to different processing layers according to different message types included in the IAB2-associated F1AP message. Implement bearer mapping on control plane signaling.
  • the RRC message and the F1AP message are transmitted on the SRB2, and the message type of the message is sent, so that the IAB node2, the IAB node1, and the DU can perform bearer mapping on the control plane signaling according to different message types.
  • the DU maps all the messages received from the IAB2-associated F1AP message to the IAB2 SRB1 or IAB2 SRB2 for transmission.
  • the IAB node 2 learns that the RRC message and/or the F1AP message are received from the IAB2 SRB1 or the IAB2 SRB2 according to the type indication information sent by the DU, and performs different processing on different messages. If it is an RRC message, it is sent to the RRC layer for processing. If it is an F1AP message, it is learned whether the F1AP message needs to be processed by itself according to the routing information or the node indication information sent by the DU.
  • the IAB node 2 learns that the RRC message and/or the F1AP message is received from the IAB1SRB1 or the IAB2 SRB2 according to the type indication information sent by the IAB node1. Similarly, the IAB node 2 also sends the type indication information to the CU.
  • the CU learns that the IAB2-associated F1AP message carries the RRC message and/or the F1AP message according to the type indication information sent by the DU, and learns that the F1AP message is sent according to the IP address of the IP layer or the node indication information sent by the DU. It is processed by the F1AP layer that is peered with the UE, or sent to the F1AP layer that is peered with the IAB node1.
  • FIG. 5 shows a specific embodiment of bearer mapping and processing of another control plane signaling at each interface of the present application.
  • CU and DU are located in IAB Donor, respectively.
  • the CU, the DU, the IAB node 2, the IAB node 1, and the UE can be referred to the description above, and details are not described herein again.
  • the SRB1 of the UE (referred to as the UE SRB1) is established on the Uu interface between the UE and the IAB node1, and the RRC message of the UE is recorded as (UE RRC) and can be carried on the UE SRB1.
  • the SRB2 of the UE (referred to as the UE SRB2) is established on the Uu interface between the UE and the IAB node1, and the RRC message of the UE is recorded as (UE RRC) and can be carried on the UE SRB2.
  • An S1 of IAB1 (denoted as IAB1 SRB1) is established on the Un1 interface between the IAB node1 and the IAB node2, and an RRC message of IAB1 (denoted as IAB1 RRC) can be carried on the IAB1 SRB1.
  • SRB2 of IAB1 (denoted as IAB1 SRB2) is established on the Un1 interface between the IAB node1 and the IAB node2, and the RRC message of IAB1 (denoted as IAB1 RRC) can be carried on the IAB1 SRB2.
  • the DRB of IAB1 (denoted as IAB1 DRB) can also be established on the Un1 interface between the IAB node1 and the IAB node2.
  • the IAB1 DRB is a dedicated DRB, which can be distinguished from an existing DRB and used only for transmitting F1AP messages.
  • the IAB1 DRB can be used to transmit both F1AP messages and user plane data.
  • the IAB node1 encapsulates the UE RRC to generate an F1AP message of the UE (referred to as a UE-associated F1AP message).
  • the UE-associated F1AP message can be carried on the IAB1 DRB.
  • the SRB1 of IAB2 (denoted as IAB2 SRB1) is established on the Un2 interface between the IAB node2 and the DU.
  • the RRC message of IAB2 (denoted as IAB2 RRC) can be carried on the IAB2 SRB1.
  • IAB2 SRB1 can refer to FIG. 3 or FIG. 4, and FIG. 5 will focus on the IAB2 DRB, so the IAB2 SRB1 is not shown in FIG. 5.
  • a DRB of IAB2 may also be established on the Un2 interface between the IAB node 2 and the DU.
  • the IAB1 DRB is a dedicated DRB, which can be distinguished from an existing DRB and used only for transmitting F1AP messages.
  • the IAB1 DRB can be used to transmit both F1AP messages and user plane data.
  • the IAB2 may carry the UE-associated F1AP message on the IAB2 DRB for transmission.
  • the IAB node 2 encapsulates the IAB1 RRC message to generate an F1AP message of the IAB1 (denoted as an IAB1-associated F1AP message).
  • the IAB1-associated F1AP message can be carried on the IAB2 DRB.
  • the DU may encapsulate at least one of the IAB1-associated F1AP message or the UE-associated F1AP message in a GTP tunnel corresponding to the IAB2 and send the message to the CU.
  • the DU carries at least one of the IAB1-associated F1AP message or the UE-associated F1AP message in a GTP tunnel corresponding to the IAB2 and sends the message to the CU.
  • the GTP tunnel is mapped to the IAB2 DRB.
  • a wired interface is between the DU and the CU.
  • the GTP tunnel corresponding to the IAB2 is carried on the wired interface of the DU and the CU, and is used to transmit the F1AP message.
  • the IAB node 2 before the UE accesses the network, the IAB node 2 first needs to access the network, and then the IAB node 1 accesses the network.
  • the IAB node 2 establishes an IAB2 SRB1 for transmitting an IAB2 RRC message on the Un2 interface.
  • the CU can trigger the DU to establish a DRB bearer for the F1AP message on the Un2 interface, that is, the IAB2 DRB.
  • the IAB2 DRB can be used to transmit UE-associated F1AP messages and/or IAB1-associated F1AP messages.
  • the IAB2 DRB can be mapped to the GTP tunnel corresponding to one IAB2 between the CU and the DU.
  • At least one of the IAB1-associated F1AP message or the UE-associated F1AP message is carried on the GTP tunnel corresponding to the IAB2, and the IAB2 RRC message is still encapsulated in the IAB2-associated F1AP message.
  • the middle is sent through the wired interface, so that the CU and the DU can determine the type of the message transmitted in the different types of bearers according to different types of bearers.
  • the IAB node1 In the process of accessing the network, the IAB node1 establishes an IAB1 SRB1 for transmitting an IAB1 RRC message on the Un1 interface.
  • the IAB node 1 establishes the IAB1 SRB1, and the CU can trigger the IAB1 to establish an IAB1 DRB dedicated to transmitting the F1AP message on the Un1 interface.
  • the IAB1 DRB can be used to transmit UE-associated F1AP messages.
  • the IAB1 DRB on the Un1 interface is mapped to the IAB2 DRB on the Un2 interface.
  • the IAB node 2 may obtain a data packet from the IAB2 DRB, and map the obtained data packet to the IAB1 DRB according to the mapping relationship, or the IAB node2 may obtain the data packet from the IAB1 DRB according to the mapping relationship. , map the obtained packets to the IAB2 DRB.
  • the bearer mapping of the UE RRC on each interface is as follows:
  • the UE RRC On the Uu interface, the UE RRC is mapped to be transmitted on SRB1 or SRB2.
  • the UE RRC On the Un1 interface, the UE RRC is encapsulated in the UE-associated F1AP message and then mapped to the DRB for transmission.
  • the Un2 interface On the Un2 interface, the UE-associated F1AP message is mapped and transmitted on the DRB.
  • the F1 interface On the F1 interface, the UE-associated F1AP message is mapped to a GTP tunnel.
  • the GTP tunnel on the F1 interface corresponds to the DRB on the Un2 interface.
  • 302 to 308 can be applied to the system shown in FIG. 5, in which case 302 to 308 in FIG. 3 can be respectively recorded as 302"' to 308', that is, 302" below.
  • the CU, DU, IAB node 2, IAB node 1, and UE in 'to 308' may be the corresponding network elements in FIG.
  • the CU sends a message #1 to the DU.
  • the CU may send an IAB2-associated F1AP message (ie, the message #1) to the DU through the wired interface, where the IAB2-associated F1AP message includes an IAB2 RRC message. Specifically, the CU may encapsulate the IAB2 RRC message to generate an IAB2-associated F1AP message and then send the message to the DU.
  • IAB2-associated F1AP message ie, the message #1
  • IAB2-associated F1AP message includes an IAB2 RRC message.
  • the CU may encapsulate the IAB2 RRC message to generate an IAB2-associated F1AP message and then send the message to the DU.
  • the CU may send an F1AP message (ie, message #1) to the DU through the GTP tunnel corresponding to the IAB2, where the GTP tunnel carries at least one F1AP message including the IAB1-associated F1AP message or the UE-associated F1AP message.
  • F1AP message ie, message #1
  • the GTP tunnel carries at least one F1AP message including the IAB1-associated F1AP message or the UE-associated F1AP message.
  • the CU may encapsulate the IAB1 RRC message to generate an IAB1-associated F1AP message.
  • the CU may also encapsulate the UE RRC message to generate a UE-associated F1AP message.
  • the CU carries at least one of the IAB1-associated F1AP message or the UE-associated F1AP message in the GTP tunnel corresponding to the IAB2 and sends the message to the DU.
  • the DU can determine the type of the message transmitted on different bearers according to different bearers on the wired interface.
  • the DU sends message #2 to IAB node2.
  • the IAB2-associated F1AP message is decapsulated to extract the IAB2 RRC message, and the IAB2 RRC message is mapped to the IAB2 SRB1 or IAB2. SRB2 is sent to IAB node2. At this time, the IAB2 RRC message is the message #2.
  • the F1AP message is mapped to the IAB2 DRB corresponding to the Un2 interface and sent to the IAB2.
  • the F1AP message is the message #2.
  • the DU also needs to send an indication message to the IAB2 to indicate the data type sent on the IAB2 DRB, and the data type can be It is an F1AP message, or it can be user plane data.
  • the DU may also send an indication information to the IAB node 2, where the indication information is used to indicate whether the IAB node 2 needs to process the F1AP message.
  • the indication information may be carried in the RLC header field of the Un2 interface or in the adaptation layer of the Un2 interface.
  • the DU performs bearer mapping on the control plane signaling by sending an F1AP message in the GTP tunnel.
  • IAB node2 sends message #3 to IAB node1.
  • the IAB node 2 when the IAB node 2 receives the message from the IAB2 SRB1 in the Un2 interface, it can be determined that the message is an IAB2 RRC message, and the message can be directly sent to the RRC layer for processing.
  • the IAB2 DRB when the IAB2 DRB is dedicated to transmitting the F1AP message, if the IAB node2 receives data from the IAB2 DRB in the Un2 interface, it may be determined that the message is an F1AP message. Alternatively, IAB2 may use the indication information to determine that the message transmitted on the IAB2 DRB is an F1AP message.
  • the IAB2 may combine the routing information of the F1AP message to determine whether the F1AP message needs to be processed by itself. Specifically, when the routing information of the F1AP message indicates that the target routing node of the F1AP message is IAB1, that is, the F1AP message needs to be processed by the IAB node2, the IAB2 decapsulates the F1AP message, and when the F1AP message is learned, When the IAB1 RRC message is sent, the IAB1 RRC message is sent to the IAB node 1 through the IAB1 SRB1 in the Un1 interface, and the IAB1 RRC message is the message #3.
  • the routing information of the F1AP message indicates that the target routing node of the F1AP message is a next hop node that is not connected to the IAB node2, for example, when the target routing node is the UE, the F1AP message does not need to be processed by the IAB node2.
  • the IAB node 2 maps the F1AP message to the corresponding IAB1 DRB in the Un1 interface and sends it to the IAB node1.
  • the F1AP message is the message #3.
  • the IAB node 2 may determine whether the F1AP message on the IAB2 RB needs to be processed by itself according to the indication information sent by the DU to the IAB2. Specifically, when it is determined that the F1AP message needs to be processed by the IAB node2 according to the indication information, the IAB node2 decapsulates the F1AP message, and when the F1AP message is learned to be an IAB1 RRC message, the IAB1 RRC message is received. The IAB1 SRB1 mapped to the Un1 interface is sent to the IAB node1, and the IAB1 RRC message is the message #3.
  • the F1AP message is mapped to the corresponding IAB1 DRB of the Un1 interface and sent to the IAB node1.
  • the F1AP message is the message #3.
  • the IAB node2 sends an indication message to the IAB node1 to indicate the Type of data sent on the IAB1 DRB.
  • the data type can be either an F1AP message or user plane data.
  • IAB node1 sends message #4 to the UE.
  • the IAB node1 when the IAB node1 receives the message from the IAB1 SRB1 in the Un1 interface, it can determine that the message is an IAB1 RRC message, and the message can be directly sent to the RRC layer for processing.
  • IAB1 DRB when the IAB1 DRB is only used to transmit the F1AP message, if the IAB node1 receives data from the IAB1 DRB in the Un1 interface, it may be determined that the message is an F1AP message. Alternatively, IAB1 may combine the indication information to determine that the message transmitted on the IAB1 DRB is an F1AP message.
  • the IAB node1 decapsulates the F1AP message, and when it is learned that the F1AP message carries the UE RRC message, the UE RRC message is mapped to the UE SRB1 in the Uu interface, and the UE is RRC.
  • the message is message #4.
  • the F1AP message is transmitted on the DRB to implement bearer mapping on the control plane signaling.
  • 310 to 316 can be applied to the system shown in FIG. 5, and 310 to 316 in FIG. 3 can be respectively referred to as 310"' to 316"', that is, 310" below.
  • the CU, DU, IAB node 2, IAB node 1, and UE in 'to 316' may be the corresponding network elements in FIG.
  • the UE sends a message #5 to the IAB node1.
  • the UE generates a UE RRC message, and sends the UE RRC message to the IAB1 through the UE SRB1 in the Uu interface.
  • the UE RRC message is message #5.
  • IAB node1 sends message #6 to IAB node2.
  • the IAB node 1 may generate an IAB1 RRC message, and send the IAB1 RRC message to the IAB node2 through the IAB1 SRB1 in the Un1 interface, where the IAB1 RRC message is the message #6.
  • the IAB node1 when the IAB node1 receives the UE RRC message through the UE SRB1 in the Uu interface, the UE RRC message is encapsulated, a UE-associated F1AP message is generated, and the UE-associated F1AP message is mapped to The IAB1 DRB in the Un1 interface is sent to IAB2, and the UE-associated F1AP is the message #6.
  • IAB node2 sends a message #7 to the DU.
  • the IAB node 2 may generate an IAB2 RRC message and send the IAB1 RRC message to the DU through the IAB2 SRB1 in the Un2 interface. At this time, the IAB1 RRC message is the message #7.
  • the IAB node 2 when the IAB node 2 receives the IAB1 RRC message through the IAB1 SRB1 in the Un1 interface, the IAB1 RRC message is encapsulated, an IAB1-associated F1AP message is generated, and the IAB1-associated F1AP message is mapped to the Un2.
  • the IAB2 DRB in the interface is sent to the DU, and the IAB-associated F1AP is the message #7.
  • the IAB node 2 when the IAB node 2 receives the UE-associated F1AP message through the IAB1 DRB in the Un1 interface, the UE-associated F1AP message may be directly mapped to the IAB2 DRB and sent to the DU.
  • the associated F1AP message is message #7.
  • the DU sends a message #8 to the CU.
  • the DU encapsulates the IAB2 RRC message received from the IAB2 SRB1, generates an IAB2-associated F1AP message, and sends the IAB2-associated F1AP message to the CU through a wired interface.
  • the IAB2-associated F1AP is message #8.
  • the DU may carry at least one of the IAB1 associated F1AP message or the UE-associated F1AP message to the CU through a wired interface through a GTP tunnel mapped with the IAB2 DRB.
  • the IAB2-associated F1AP is message #8.
  • the CU may determine that the IAB2-associated F1AP message is received from the F1AP layer peered with IAB2, and the F1AP message is received from the GTP tunnel mapped with the IAB2 DRB, and according to the IP address of the IP layer. Or the node identifier to perform different processing on different F1AP messages received in the GTP tunnel.
  • the CU decapsulates the IAB2-associated F1AP message, and when it is learned that the F1AP message carries the IAB2 RRC message, the IAB2 RRC message is sent to the RRC layer that is peered with the IAB2 for processing.
  • the CU may determine the message type of the F1AP message according to the IP address carried by the IP layer or the node identifier carried in the GTP tunnel header field. It can be a UE-associated F1AP message or an IAB1-associated F1AP message.
  • the CU determines that it is a UE-associated F1AP message, the UE-associated F1AP message is sent to the F1AP layer that is peered with the UE, and further, the F1AP layer that is peered by the UE decapsulates the UE-associated F1AP message.
  • UE RRC message When the CU receives the F1AP message from the GTP tunnel corresponding to the IAB2 DRB, the CU may determine the message type of the F1AP message according to the IP address carried by the IP layer or the node identifier carried in the GTP tunnel header field. It can be a UE-associated F1AP message or an IAB1-associated F1AP message.
  • the IAB1-associated F1AP message is sent to the F1AP layer that is peered with IAB1 for processing. Further, the IAB1-associated F1AP message is decapsulated with the IAB1 peer F1AP layer to obtain an IAB1 RRC message.
  • the foregoing node identifier that the DU can send to the CU may also be carried in the adaptation layer above the GTP layer.
  • the RRC message is transmitted on the SRB1
  • the F1AP message is transmitted on the DRB
  • the F1AP message is transmitted in the GTP tunnel, so that bearer mapping and processing are performed on the control plane signaling.
  • the NR adopts a finer-grained Quality of Service (QoS) mechanism, that is, a bearer mapping based on flow granularity.
  • QoS Quality of Service
  • the corresponding bearer setup and bearer mapping includes mapping a QoS flow of the UE on the Uu interface to a DRB transmission between the UE and the DU, in the DU and the CU.
  • the mapping is mapped to a GTP tunnel, where the GTP tunnel is mapped to the DRB of the UE on the Uu interface.
  • the user plane data transmission of the UE does not need to pass through the UPF of any IAB node.
  • the interface between the IAB nodes such as the Un interface (such as the Un1 interface and the Un2 interface), and the Uu interface between the IAB node and the UE, establish a DRB bearer, and each IABnode can
  • the user plane data is bearer mapped according to the mapping relationship of the DRB bearers between the interfaces, or according to the QoS parameters corresponding to the DRB bearers, or according to the QoS parameters to which the UE service flows belong.
  • the QoS parameter may include a delay corresponding to the service flow, and/or a packet loss rate, and/or a guaranteed guaranteed bit rate (GFBR), and/or a maximum flow rate (Maximum Flow Bit Rate). Information about the quality of the traffic flow.
  • GFBR guaranteed guaranteed bit rate
  • Maximum Flow Bit Rate Maximum Flow Bit Rate
  • both the IAB node 1 and the IAB node 2 can learn whether the F1AP message needs to be processed by itself according to the routing information or the node indication information sent by the previous hop node. The processing is sent to the F1AP layer for processing, otherwise the F1AP message is routed to the next hop node according to the routing information.
  • the next hop node needs to obtain type indication information from the previous hop node to indicate that the F1AP message and/or data is transmitted on the DRB. .
  • FIG. 6 shows a specific embodiment of bearer mapping and processing of a user plane data on each interface of the present application.
  • the IAB Donor, the IAB node 2, the IAB node 1 and the UE can be referred to the description above, and are not described herein again.
  • FIG. 6 illustrates steps or operations of the method of data processing, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG. 6. Moreover, the various steps in FIG. 6 may be performed in a different order than that presented in FIG. 6, and it is possible that not all operations in FIG. 6 are to be performed.
  • the session management function (SMF) of the UE sends an N11 message to the Access and Mobility Management Function (AMF) of the UE, where the N11 message includes an identifier (PDU) that the UE requests to establish a session.
  • the session ID), the QoS Flow Identifier (QFI), and the QoS parameter (profile) of the service flow included in the PDU session are not specifically limited in this embodiment.
  • the AMF of the UE sends an N2 message to the CU in the IAB Donor.
  • the N2 message includes a PDU session ID, a QFI, and a QoS profile.
  • the embodiment of the present application does not specifically limit this.
  • the CU in the IAB Donor allocates a DRB ID to the UE service flow according to the QoS information of the UE service flow obtained from the AMF, and triggers the UE in the IAB node1 to establish a DRB bearer corresponding to the DRB ID. That is, the CU in the IAB Donor sends a UE-associated F1AP message to the DU in the IAB node1, where the UE-associated F1AP message includes the RRC reconfiguration message of the UE.
  • the RRC reconfiguration message includes a session identifier (session ID), a DRB ID, and the like, which are not limited in this embodiment of the present application.
  • the CU sends a UE-associated F1AP message to the IAB node1.
  • the CU sends a UE-associated F1AP message to the IAB node1.
  • the DU in the IAB node1 extracts an RRC reconfiguration message from the UE-associated F1AP message in 603, and sends the RRC reconfiguration message to the UE.
  • the IAB node1 sends an RRC message to the UE.
  • RRC message For details, refer to the description above. To avoid repetition, details are not described herein again.
  • the UE receives the RRC reconfiguration message sent by the IAB node1, and establishes the UE DRB bearer corresponding to the DRB ID according to the session identifier (session ID) and the DRB ID in the RRC reconfiguration message.
  • the CU in the IAB Donor may trigger the establishment/update of the user plane bearer of the IAB node on the Un interface according to the obtained service flow QoS information of the UE.
  • the corresponding DRB bearer may be established in advance for all the service flows of the UE on the Un interface.
  • the CU sends an IAB2-associated F1AP message to the DU, where the IAB2-associated F1AP message is a UE context Modification Request.
  • the DU sends an IAB2-associated F1AP message to the CU as a response to the received message in 606, where the response message is a UE context Modification Response.
  • a corresponding GTP tunnel is established between the DU and the CU for the service flow of the UE.
  • the CU sends an IAB2-associated F1AP message to the DU, where the IAB2-associated F1AP includes an RRC reconfiguration message of the IAB node2.
  • the RRC reconfiguration message is used to establish a corresponding UE DRB between the UE and the DU in the IAB node1 for the service flow of the UE.
  • the UE DRB is mapped to the GTP tunnel established between the CU and the DU.
  • the CU sends an IAB2-associated F1AP message to the IAB node2.
  • the description above To avoid repetition, details are not described here.
  • the DU extracts an RRC reconfiguration message from the IAB2-associated F1AP message in 608, and sends the RRC reconfiguration message to the MT of the IAB node2.
  • the RRC message sent by the DU to the IAB node 2 can be referred to in the foregoing description. To avoid repetition, details are not described herein again.
  • the IAB node 2 establishes a corresponding IAB2 DRB for the service flow of the UE on the Un2 interface according to the RRC reconfiguration message.
  • the CU sends an IAB1-associated F1AP message to the DU in the IAB node2, where the IAB1-associated F1AP includes an RRC reconfiguration message of the IAB node1.
  • the RRC reconfiguration message is used to establish a corresponding IAB1 DRB between the IAB node1 and the IAB node2 for the service flow of the UE.
  • the CU sends an F1AP message to the IAB node1.
  • the DU in the IAB node2 extracts an RRC reconfiguration message from the IAB1-associated F1AP message in the 610, and sends the RRC reconfiguration message to the MT of the IAB node1. Specifically, the IAB node 2 sends an RRC message to the IAB node1.
  • the IAB node 1 establishes a corresponding IAB1 DRB for the service flow of the UE on the Un1 interface according to the RRC reconfiguration message.
  • the CU may perform unified QoS mapping management for each interface link.
  • the CU may send the bearer mapping relationship of each interface to the IAB node 1 and the IAB node 2 through the following 612 and 613.
  • the CU may only send the bearer mapping relationship of each interface to the IAB node 2 through 612'.
  • the CU sends an IAB1-associated F1AP message to the DU in the IAB node2, where the IAB1-associated F1AP message includes a mapping relationship between the IAB1 DRB of the Un1 interface and the IAB2 DRB of the Un2 interface. For example, there are IAB1 DRB1 and IAB1 DRB2 on the Un1 interface, and IAB2 DRB1 and IAB2 DRB2 on the Un2 interface.
  • the CU determines the mapping between the IAB1 DRB and the IAB2 DRB on the Un1 interface. If IAB1 DRB1 and IAB2 DRB1 are mapped one by one, IAB1 DRB1 Mapping with IAB2 DRB2, the CU sends both mappings to IAB node2.
  • both IAB1 DRB1 and IAB1DRB2 are mapped to IAB2 DRB1, or both IAB1 DRB1 and IAB1 DRB2 are mapped to IAB2 DRB2, or both IAB2 DRB1 and IAB2 DRB2 are mapped to IAB1 DRB1, or both IAB2 DRB1 and IAB2 DRB2 are mapped to IAB1 DRB2. Then, the CU sends the determined mapping relationship to the IAB node2.
  • the IAB node2 maps the data packet received from the IAB2 DRB1 to the IAB1 DRB1, and maps the data packet received from the IAB2 DRB2 to the IAB1 DRB2 for transmission.
  • the IAB node2 maps the data packets received from the IAB1 DRB1 to the IAB2 DRB1, and the data packets received from the IAB1 DRB2 are mapped to the IAB2 DRB2 for transmission.
  • the CU sends an IAB1-associated F1AP message to the DU of the IAB node2.
  • IAB1-associated F1AP message For details, refer to the description above. To avoid repetition, details are not described herein again.
  • the CU sends a UE-associated F1AP message to the DU in the IAB node1, where the UE-associated F1AP message includes a mapping relationship between the UE DRB and the IAB1 DRB.
  • the mapping between the UE DRB on the Uu interface and the IAB1 DRB on the Un1 interface is the same as that described in 612. It can be a one-to-one mapping, or a many-to-one or one-to-many mapping.
  • the CU sends a UE-associated F1AP message to the DU in the IAB node1.
  • a UE-associated F1AP message to the DU in the IAB node1.
  • the DU can map the service flow of the UE to the IAB2 DRB corresponding to the Un2 interface according to the mapping relationship between the IAB2 DRB and the GTP tunnel. Sent to IAB node2.
  • the IAB node 2 can map the UE service flow on the IAB2DRB of the Un2 interface to the IAB1 DRB of the Un1 interface and send it to the IAB node1 according to the received mapping relationship between the IAB1 DRB and the IAB2 DRB.
  • the IAB node 1 maps the UE service on the IAB1 DRB of the Un1 interface to the UE DRB corresponding to the Uu interface and sends the message to the UE according to the received mapping relationship between the IAB1 DRB and the UE.
  • the IAB node1 and the IAB node2 can perform user plane bearer mapping according to the mapping relationship between the DRBs of different interfaces.
  • the DU can perform the user plane between the CU and the DU according to the correspondence between the IAB2 DRB and the GTP tunnel.
  • the mapping of the bearer finally sends the UE service to the CU.
  • the CU sends an F1AP message to the DU in the IAB node2, where the F1AP message includes a mapping relationship between the IAB1 DRB and the IAB2 DRB, and a mapping relationship between the UE DRB and the IAB1 DRB.
  • the IAB node2 can determine, according to the mapping relationship between the UE DRB and the IAB1 DRB, that the IAB node1 needs to map the user data transmitted on the IAB1 DRB to the UE DRB. Then, the IAB node 2 may send the indication information to the IAB node1 to indicate that the IAB node1 performs the mapping of the user plane bearer.
  • the indication information may be the identifier DRB ID of the UE DRB, so that the IAB node1 according to the indication information will be from the IAB1.
  • User data received on the DRB is mapped to the corresponding UE DRB.
  • the DU may map the service flow of the UE according to the mapping relationship between the IAB2 DRB and the GTP tunnel between the CU and the DU.
  • IAB2 is sent to IAB node2 in DRB.
  • the IAB node 2 can map the UE service on the IAB2DRB to the IAB1 DRB and send it to the IAB node1 according to the mapping relationship between the received IAB1 DRB and the IAB2 DRB.
  • the IAB node 2 determines, according to the mapping relationship between the received IAB1 DRB and the UE DRB, the IRB node1 needs to map the UE service flow to the UE DRB after receiving the UE service flow from the IAB1 DRB, and to the IAB.
  • Node1 sends indication information indicating the UE DRB.
  • the indication information may be carried in an adaptation layer.
  • the IAB node 1 receives the UE service flow through the IAB1 DRB, and after receiving the indication information, the UE service flow may be mapped to the corresponding UE DRB and sent to the UE.
  • the IAB node1 can perform UL mapping according to the reflective manner.
  • the IAB node2 can be based on the mapping relationship between the IAB1 DRB and the IAB2 DRB.
  • the DU can be based on the correspondence between the IAB2 DRB and the GTP tunnel.
  • the UE service is sent to the CU.
  • the CU performs unified QoS mapping management on each interface link, so that bearer mapping of user plane data can be implemented.
  • FIG. 7 shows a specific embodiment of a bearer mapping of a user plane data on each interface of the present application.
  • the IAB Donor, the IAB node 2, the IAB node 1 and the UE can be referred to the description above, and are not described herein again.
  • FIG. 7 illustrates steps or operations of the method of data processing, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the various operations in FIG. Moreover, the various steps in FIG. 7 may be performed in a different order than that presented in FIG. 7, and it is possible that not all operations in FIG. 7 are to be performed.
  • the SMF of the UE sends an N11 message to the AMF of the UE.
  • the SMF of the UE sends an N11 message to the AMF of the UE.
  • the AMF of the UE sends an N2 message to the CU in the IAB Donor.
  • 702 can be referred to the description in 602. To avoid repetition, details are not described herein again.
  • the CU in the IAB Donor sends an IAB2-associated F1AP message to the DU in the IAB Donor, where the IAB2-associated F1AP message may be a UE context Modification Request.
  • 703 can refer to the description of 606 above. To avoid repetition, no further details are provided herein.
  • the DU After receiving the IAB2-associated F1AP message in 703, the DU sends an IAB2-associated F1AP message to the CU, where the IAB2-associated F1AP message may be a UE context Modification Response.
  • the IAB2-associated F1AP message may be a UE context Modification Response.
  • the DU establishes a corresponding GTP tunnel between the CU and the DU for the UE service flow.
  • the CU in the IAB Donor sends an IAB2-associated F1AP message to the DU in the IAB Donor, where the IAB2-associated F1AP message includes an RRC reconfiguration message of the IAB node2.
  • the IAB2-associated F1AP message includes an RRC reconfiguration message of the IAB node2.
  • 705 can refer to the description in 608 above, and to avoid repetition, details are not described herein again.
  • the DU extracts an RRC reconfiguration message from the IAB2-associated F1AP message in 705, and sends the RRC reconfiguration message to the MT of the IAB node2.
  • the RRC message sent by the DU to the IAB node 2 can be referred to in the foregoing description. To avoid repetition, details are not described herein again.
  • the IAB node 2 establishes an IAB2 DRB mapped to the GTP tunnel on the Un2 interface according to the RRC reconfiguration message.
  • an IAB2 DRB and a GTP tunnel corresponding to the IAB2 DRB can be established.
  • the SMF sends an N11 message to the AMF.
  • the AMF sends an N2 message to the CU in the IAB Donor to request the CU to establish a PDU session.
  • the CU in the IAB Donor sends an IAB1-associated F1AP message to the DU in the IAB node2, where the IAB1-associated F1AP message may be a UE context Modification Request.
  • the context modification request includes an IAB2 DRB and its corresponding QoS profile information, and an IAB1 DRB and its corresponding QoS profile information.
  • the QoS profile information includes: 5G QoS identifier 5QI, GFBR, MFBR, and the like.
  • the IAB node2 determines the mapping relationship between the IAB2 DRB and the IAB1 DRB according to the information obtained in 709. At this time, the bearer mapping of each IAB is performed by the IAB node.
  • the DU in the IAB node2 sends a UE context Modification Response to the CU in the IAB Donor.
  • the CU sends an IAB2-associated F1AP message to the IAB node2, where the IAB2-associated F1AP message includes an RRC reconfiguration message of the IAB node1.
  • the IAB2-associated F1AP message includes an RRC reconfiguration message of the IAB node1.
  • 712 can be referred to the description in 610. To avoid repetition, no further details are provided herein.
  • the DU in the IAB node2 extracts an RRC reconfiguration message from the IAB2-associated F1AP message in the 712, and sends the RRC reconfiguration message to the MT of the IAB node1.
  • 713 can be referred to the description in 611. To avoid repetition, details are not described herein again.
  • the IAB node1 establishes an IAB1 DRB according to the RRC reconfiguration message.
  • the SMF of the UE sends an N11 message to the AMF of the UE.
  • the UE's AMF sends an N2 message to the CU in the IAB host (Donor).
  • the CU in the IAB Donor sends a UE-associated F1AP message to the DU in the IAB node1, where the UE-associated F1AP message may be a UE context Modification Request.
  • the context modification request includes an IAB1 DRB and its corresponding QoS profile information, and the UE DRB and its corresponding QoS profile information.
  • the IAB node1 determines, according to the information obtained in 716, the mapping relationship between the IAB1 DRB and the UE DRB. At this time, the bearer mapping of each IAB is performed by the IAB node.
  • the DU in the IAB node1 sends a UE context Modification Response to the CU in the IAB Donor.
  • the CU sends a UE-associated F1AP message to the DU in the IAB node1, where the UE-associated F1AP message includes an RRC reconfiguration message of the UE.
  • 719 can be referred to the description in 603. To avoid repetition, no further details are provided herein.
  • the DU in the IAB node1 extracts an RRC reconfiguration message from the UE-associated F1AP message in 719, and sends the RRC reconfiguration message to the UE.
  • 713 can refer to the description in 604. To avoid repetition, details are not described herein again.
  • the UE establishes the UEDRB according to the RRC reconfiguration message.
  • the DU can map the service flow of the UE to the IAB2 DRB according to the mapping relationship between the IAB2 DRB and the GTP tunnel. Sent to IAB node2.
  • the IAB node 2 can map the UE service on the IAB2DRB to the IAB1 DRB and send it to the IAB node1 according to the received mapping relationship between the IAB1 DRB and the IAB2 DRB.
  • the IAB node1 maps the UE service on the IAB1 DRB to the UE DRB and sends it to the UE according to the received mapping relationship between the IAB1 DRB and the UE DRB.
  • the IAB node1 and the IAB node2 can be based on the mapping relationship between the DRBs, and the DU can finally send the UE service to the CU according to the correspondence between the IAB2 DRB and the GTP tunnel.
  • steps 710 and 717 shown in FIG. 7 may not be performed in the embodiment of the present application, and 801 to 804 shown in FIG. 8 may also be performed.
  • the UE establishes a corresponding service bearer after the network is connected to the network, and the CU sends the relationship between the QFI and the QoS profile of the UE to the IAB node 1 and the IAB node 2 respectively.
  • the specific process is as follows:
  • the CU in the IAB Donor may send an IAB1-associated F1AP message to the DU in the IAB node2, where the IAB1-associated F1AP message may be a UE context Modification Request.
  • the context modification request includes a correspondence between a QFI of the UE service and a QoS profile.
  • the IAB node2 determines the correspondence between the UE QFI and the IAB1 DRB according to the IAB1 DRB and its corresponding QoS profile information, and the correspondence between the QFI and the QoS profile of the UE service.
  • the IAB node 2 determines the correspondence between the UE QFI and the IAB2 DRB according to the IAB2 DRB and its corresponding QoS profile information, and the correspondence between the QFI and the QoS profile of the UE service.
  • the CU in the IAB Donor may send a UE-associated F1AP message to the DU in the IAB node1, where the UE-associated F1AP message may be a UE context Modification Request.
  • the context modification request includes a correspondence between a QFI of the UE service and a QoS profile.
  • the IAB node1 determines the correspondence between the UE QFI and the UE DRB according to the UE DRB and its corresponding QoS profile information, and the correspondence between the QFI and the QoS profile of the UE service.
  • the IAB node1 determines the correspondence between the UE QFI and the IAB1 DRB according to the IAB1 DRB and its corresponding QoS profile information, and the correspondence between the QFI and the QoS profile of the UE service.
  • the correspondence between the QFI and the QoS profile of the UE service may also be solidified, that is, may be saved in the IAB node1 and the IAB node2.
  • the distributed bearer mapping management of each interface link by the IAB node can implement bearer mapping on the user plane data.
  • the scheme shown in FIG. 9 is optimized on the basis of the scheme shown in FIG. 7, that is, a one-to-one mapping method is adopted on the Un interface, for example, the UE DRB1 of the Uu interface is fixedly mapped to the IAB1 DRB1 of the Un1 interface, and The UE DRB2 of the Uu interface is fixedly mapped to the IAB1 DRB2 of the Un1 interface.
  • the UE DRB1 of the Uu interface is fixedly mapped to the IAB2 DRB1 of the Un2 interface
  • the UE DRB2 of the Uu interface is fixedly mapped to the IAB2 DRB2 of the Un2 interface.
  • mapping between the DRB of each interface and the logical channels (LCH) of each interface is one-to-one
  • the mapping between the UE DRB and the Un interface DRB may also be on the logical channel and the Un interface of the UE on the Uu interface.
  • the logical channel of the IAB is fixed by a one-to-one mapping.
  • the service flows of different UEs may be aggregated and aggregated on the bearer of one IAB node.
  • UE1 has two service flows on the Uu interface, which are respectively mapped to UE1 DRB1 and UE1 DRB2 of the Uu interface, where UE1 DRB1 corresponds to the logical channel LCH1 of UE1, and UE1 DRB2 corresponds to the logical channel LCH2 of UE1.
  • LCH1 is identified using LCID (LCH identifier, LCID) 1
  • LCH2 is identified using LCID2.
  • the UE2 has three service flows on the Uu interface, and is mapped to the UE2 DRB1, the UE2, the DRB2, and the UE2, the DRB3 of the Uu interface, where the UE2 DRB1 corresponds to the logical channel LCH1 of the UE2, and the UE2 DRB2 corresponds to the logical channel LCH2 of the UE2, and the UE2 DRB3 corresponds to The logical channel LCH3 of UE2, LCH1 is identified by LCID1, LCH2 is identified by LCID2, and LCH3 is identified by LCID3.
  • the IAB node establishes three user plane bearers, IAB DRB1, IAB DRB2, and IABDRB3.
  • the IAB DRB1 corresponds to the logical channel LCH1 of the IAB
  • the IAB DRB2 corresponds to the logical channel LCH2 of the IAB
  • the IAB DRB3 corresponds to the logical channel of the IAB.
  • LCH3, LCH1 is identified by LCID1
  • LCH2 is identified by LCID2
  • LCH3 is identified by LCID3.
  • the one-to-one fixed mapping mode is adopted, that is, the service flows transmitted on the UE1 LCID1 and the UE2 LCID1 are mapped to the IAB LCID1 for transmission, and the UE1 LCID2 is transmitted.
  • the service flows transmitted on the UE2 LCID2 are mapped to the transmission on the IAB LCID2, and the service flows transmitted on the UE2 LCID3 are mapped to the IAB LCID3 for transmission.
  • This fixed mapping method saves a large amount of signaling overhead.
  • FIG. 10 is a schematic block diagram of an apparatus 1000 for data processing in an access backhaul integrated IAB system provided by an embodiment of the present application.
  • the IAB system includes a centralized unit CU, a distributed unit DU, a first IAB node, and a second IAB node.
  • the apparatus 1000 includes a processing unit 1010, a transmitting unit 1020, and a receiving unit 1030.
  • the device 1000 can be a CU.
  • the processing unit 1010 when the device 1000 is a CU, the processing unit 1010 is configured to generate a downlink F1AP message, where the downlink F1AP message includes one or a combination of the following: an F1AP message of the terminal device, and a first IAB node.
  • the sending unit 1020 is further configured to send indication information to the DU, where the indication information indicates the message type, where the indication information is carried in the downlink F1AP message or carried in The peer-to-peer adaptation layer on the F1 interface between the CU and the DU.
  • the sending unit 1020 is specifically configured to: send the downlink F1AP message to the DU in a GTP tunnel that is specific to the message type, to indicate that the DU transmits the downlink in the specific GTP tunnel. F1AP message.
  • the receiving unit 1030 when the device 1000 is a CU, the receiving unit 1030 is configured to receive an uplink F1AP message sent by the DU, where the uplink F1AP message includes one or a combination of the following: an F1AP of the terminal device.
  • the message, the F1AP message of the first IAB node, the RRC message of the second IAB node, the receiving unit 1030 is further configured to receive the indication information sent by the DU, where the indication information indicates the message included in the uplink F1AP message.
  • the message type is one of the following: RRC message type, F1AP message type, RRC message type, and F1AP message type.
  • the indication information carries an adaptation layer that is equivalent in the uplink F1AP message or on the F1 interface between the CU and the DU.
  • the processing unit 1010 acquires an RRC message of the second IAB node, and passes the second The IAB node peers the RRC layer for processing.
  • the processing unit 1010 acquires an F1AP message included in the uplink F1AP message, and determines the uplink F1AP.
  • the F1AP message included in the message is an F1AP message of the terminal device or an F1AP message of the first IAB node.
  • the processing unit 1010 processes the terminal device by using an F1AP layer that is peered with the terminal device. If the F1AP message included in the uplink F1AP message is an F1AP message of the first IAB node, the processing unit 1010 processes the first by using an F1AP layer that is peered with the first IAB node. F1AP message of the IAB node.
  • device 1000 is a second IAB node.
  • the receiving unit 1030 is configured to receive a downlink message sent by the DU, where the downlink message carries a signaling wireless between the second IAB node and the DU.
  • the second IAB node further receives the indication information sent by the DU, where the indication information indicates that the message type of the downlink message is an RRC message type or an F1AP message type;
  • the processing unit 1010 is configured to determine, according to the received downlink message, whether the downlink message belongs to the second IAB node, and if it belongs to the second IAB node, process by the second IAB node, otherwise the received downlink message Further routing to the next hop node processing.
  • the sending unit 1020 is configured to send an uplink message to the DU.
  • the second IAB node indicates that the message type of the uplink message of the DU is an RRC message type or an F1AP message type.
  • the processing unit 1010 is configured to determine, according to the QoS parameter of the service data, the mapping relationship between the data radio bearer DRB on the air interface and the DRB on the first interface, where the first interface is Mapping between the DRB and the DRB on the second interface, where the first interface is an interface between the first IAB node and the second IAB node, and the second interface is the second IAB node and An interface between the DUs;
  • the sending unit 1020 is configured to notify the first IAB node of the mapping relationship between the DRB on the air interface and the DRB on the first interface, and notify the second IAB node of the mapping relationship between the DRB on the first interface and the DRB on the second interface.
  • the processing unit 1010 is configured to determine, according to the QoS parameter of the service data, the mapping relationship between the data radio bearer DRB on the air interface and the DRB on the first interface, where the first interface is Mapping between the DRB and the DRB on the second interface, where the first interface is an interface between the first IAB node and the second IAB node, and the second interface is the second IAB node and An interface between the DUs;
  • the sending unit 1020 is configured to notify the second IAB node of the mapping relationship between the DRB on the air interface and the DRB on the first interface, and the mapping relationship between the DRB on the first interface and the DRB on the second interface.
  • the receiving unit 1030 is configured to receive, from the CU, a QoS parameter corresponding to the DRB and the DRB on the first interface, and the DRB corresponding to the DRB on the air interface.
  • QoS parameters a QoS parameter corresponding to the DRB and the DRB on the first interface, and the DRB corresponding to the DRB on the air interface.
  • the processing unit 1010 is configured to determine, according to the QoS parameter corresponding to the DRB on the first interface and the QoS parameter corresponding to the DRB on the air interface, the mapping relationship between the DRB on the air interface and the DRB on the first interface.
  • the first interface is an interface between the first IAB node and the second IAB node.
  • the receiving unit 1030 is configured to receive, from the CU, a data radio bearer DRB on the first interface and a QoS parameter corresponding to the DRB, and a DRB on the second interface. a QoS parameter corresponding to the DRB;
  • the processing unit 1010 is configured to determine, according to the QoS parameter corresponding to the data radio bearer DRB on the first interface and the QoS parameter corresponding to the DRB on the second interface, the mapping relationship between the DRB on the first interface and the DRB on the second interface.
  • the first interface is an interface between the first IAB node and the second IAB node.
  • the second interface is an interface between the second IAB node and the DU.
  • the receiving unit 1030 is configured to receive, from the CU, a QoS parameter corresponding to the DRB and the DRB on the first interface, and a service identifier of the terminal and the service. Identify corresponding service QoS parameters;
  • the processing unit 1010 is configured to determine, according to the QoS parameter corresponding to the DRB on the first interface and the QoS parameter corresponding to the terminal service identifier, a mapping relationship between the terminal service corresponding to the service identifier and the DRB on the first interface.
  • the first interface is an interface between the first IAB node and the second IAB node.
  • the receiving unit 1030 is configured to receive, from the CU, the QoS parameter corresponding to the DRB on the air interface and the DRB, and the service identifier of the terminal and the service identifier.
  • Service QoS parameters
  • the processing unit 1010 is configured to determine, according to the QoS parameter corresponding to the DRB on the air interface and the QoS parameter corresponding to the terminal service identifier, a mapping relationship between the terminal service corresponding to the service identifier and the DRB on the air interface.
  • the receiving unit 1030 is configured to receive, from the CU, a mapping relationship between a DRB of the second interface and a QoS parameter corresponding to the DRB, and a service identifier of the terminal. a service QoS parameter corresponding to the service identifier;
  • the processing unit 1010 is configured to determine, according to the QoS parameter corresponding to the DRB on the second interface and the QoS parameter corresponding to the terminal service identifier, a mapping relationship between the terminal service corresponding to the service identifier and the DRB on the second interface.
  • the second interface is an interface between the second IAB node and the DU.
  • the receiving unit 1030 is configured to receive, by the first IAB node, the QoS parameters corresponding to the DRB and the DRB on the first interface, and the service identifier of the terminal, from the CU. a service QoS parameter corresponding to the service identifier;
  • the processing unit 1010 is configured to determine, according to the QoS parameter corresponding to the DRB on the first interface and the QoS parameter corresponding to the terminal service identifier, a mapping relationship between the terminal service corresponding to the service identifier and the DRB on the first interface.
  • the first interface is an interface between the first IAB node and the second IAB node.
  • the processing unit 1010 may be implemented by a processor, and the sending unit 1020 and the receiving unit 1030 may be implemented by a transceiver.
  • the apparatus 1100 for data processing may include a processor 1110, a memory 1120, and a communication interface 1130.
  • the memory 1120 can be used to store instructions or codes and the like executed by the processor 1110.
  • the processor 1110 is configured to execute the method provided by the foregoing method embodiment, and the processor 1110 is further configured to control the communication interface 1130 to communicate with the outside world.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1110 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1120, and the processor 1110 reads the information in the memory 1120 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the device 1000 for data processing shown in FIG. 10 or the device 1100 for data processing shown in FIG. 11 can implement various processes corresponding to the CU in the foregoing method embodiment, specifically, the device 1000 for data processing or data processing.
  • the device 1100 reference may be made to the description of the CU in the above, and to avoid repetition, details are not described herein again.
  • the device 1000 for data processing shown in FIG. 10 or the device 1100 for data processing shown in FIG. 11 can implement various processes corresponding to the first IAB node in the foregoing method embodiment.
  • the device 1000 for data processing For the device 1100 of the data processing reference may be made to the description of the first IAB node in the above, and to avoid repetition, details are not described herein again.
  • the apparatus 1000 for data processing shown in FIG. 10 or the apparatus 1100 for data processing shown in FIG. 11 can implement various processes corresponding to the second IAB node in the foregoing method embodiment.
  • the data processing apparatus 1000 For the device 1100 of the data processing reference may be made to the description of the second IAB node in the above. To avoid repetition, details are not described herein again.
  • the apparatus 1000 for data processing shown in FIG. 10 or the apparatus 1100 for data processing shown in FIG. 11 can implement the respective processes corresponding to the DUs in the foregoing method embodiments, specifically, the apparatus 1000 or data processing of the data processing.
  • the device 1100 reference may be made to the description of the DU in the above. To avoid repetition, details are not described herein again.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the embodiment of the present application further provides a computer readable storage medium, comprising: a computer program, when the computer program is run on a computer, causing the computer to execute the method provided by the foregoing method embodiment.
  • the embodiment of the present application further provides a computer program product comprising instructions, wherein when the computer program product is run on a computer, the computer is caused to execute the method provided by the foregoing method embodiment.
  • processors mentioned in the embodiment of the present invention may be a central processing unit (CPU), and may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory referred to in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM). SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced Synchronous Dynamic Random Access Memory (ESDRAM), Synchronous Connection Dynamic Random Access Memory (Synchlink DRAM, SLDRAM) ) and direct memory bus random access memory (DR RAM).
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) is integrated in the processor.
  • memories described herein are intended to comprise, without being limited to, these and any other suitable types of memory.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本申请提供一种数据处理的方法和设备,能够实现用户设备的控制面信令在各接口的承载映射。其中,IAB系统包括集中式单元CU,分布式单元DU,第一IAB节点和第二IAB节点,所述方法包括:所述CU生成下行F1AP消息,所述下行F1AP消息包含的消息为以下之一或组合:终端设备的F1AP消息,第一IAB节点的F1AP消息和第二IAB节点的RRC消息;所述CU向所述DU发送所述下行F1AP消息,并指示所述下行F1AP消息中所包含的消息的消息类型为以下之一:RRC消息类型,F1AP消息类型,RRC消息类型和F1AP消息类型。

Description

数据处理的方法和设备
本申请要求于2018年05月11日提交中国专利局、申请号为201810450350.6、申请名称为“数据处理的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体的,涉及通信领域中的数据处理的方法和设备。
背景技术
为了保证未来蜂窝网络的部署和应用,一种支持无线回传的技术能够提供更加灵活和密集的NR小区的部署,该技术即为接入回程一体化(Integrated Access and Backhaul,IAB)技术。由于第五代(5 Generation,5G)新空口(New Radio,NR)技术能够提供比长期演进(Long Term Evolution,LTE)技术更大的带宽,因此在NR中,无线回传可以为NR小区提供扩展覆盖,也可以为NR小区提供容量增强。
IAB的网络架构主要由用户设备、一个或者多个中继节点、一个宿主基站和核心网组成。其中,中继节点可以是Relay node,也可以是IAB node。宿主基站可以是Donor gNB,也可以是IAB donor。用户设备和中继节点之间的链路称为无线接入链路,中继节点之间以及中继节点和宿主基站之间的链路均称为无线回传链路,宿主基站通过NG接口与核心网相连。
进一步的,IAB网络架构中宿主基站和中继节点都可以采用集中式单元(Central Unit,CU)与分布式单元(Distributed Unit)分离的架构,即:宿主基站可以由一个CU和一个DU组成,其中,CU和DU通过F1接口连接,CU和核心网通过NG接口连接。中继节点由一个DU和一个MT(Mobile Termination)组成,其中,中继节点的DU通过空口链路与宿主基站的CU进行通信。因此,在该IAB架构下的如何实现用户设备的控制面信令和用户面数据在各接口的承载映射是亟需解决的问题。
发明内容
本申请提供一种数据处理的方法和设备,能够实现用户设备的控制面信令和用户面数据在各接口的承载映射。
第一方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU,分布式单元DU,第一IAB节点和第二IAB节点,所述方法包括:
所述CU生成下行F1AP消息,所述下行F1AP消息包含的消息为以下之一或组合:终端设备的F1AP消息,第一IAB节点的F1AP消息和第二IAB节点的RRC消息;
所述CU向所述DU发送所述下行F1AP消息,并指示所述下行F1AP消息中所包含的消息的消息类型为以下之一:RRC消息类型,F1AP消息类型,RRC消息类型和F1AP 消息类型。
对应的,所述DU接收所述下行F1AP消息,并确定所述下行F1AP消息中包括的消息的消息类型为以下之一:RRC消息类型,F1AP消息类型,RRC消息类型和F1AP消息类型。
因此,本申请实施例中IAB Donor中的CU、DU可以根据传输的消息的消息类型,或者根据传输的消息中包括的消息的消息类型,对控制面信令进行承载映射和处理。
在第一方面的一些可能的实现方式中,所述CU指示所述下行F1AP消息所包含的消息的消息类型,包括:
所述CU向所述DU发送指示信息,所述指示信息指示所述消息类型;其中,所述指示信息携带在所述下行F1AP消息中或者携带在所述CU与所述DU之间的F1接口上的对等的适配层中。对应的,DU获取该指示信息。
因此,本申请实施例中,通过CU向DU发送用于指示F1AP消息中包括的消息的类型的指示信息,使得DU能够根据IAB2-associated F1AP消息中包括的不同的消息类型,将解封装后的数据包映射到不同的承载上,实现DU对控制面信令进行承载映射。
在第一方面的一些可能的实现方式中,所述CU将所述下行F1AP消息携带在特定于所述F1AP消息类型的GTP隧道中发送给DU,用来指示DU所述GTP隧道中传输的是下行F1AP消息。对应的,DU在所述GTP隧道上接收该下行F1AP消息,并确定该GTP隧道中传输的是下行F1AP消息。这样,DU可以根据有线接口上的特定的GTP隧道承载,确定F1AP消息类型。
具体的,当所述下行F1AP消息中包括的消息的消息类型为RRC消息时,所述CU通过与所述DU之间的有线接口的控制面承载,将所述第一消息发送给所述DU;当所述下行F1AP消息中包括的消息的消息类型为F1AP消息时,所述CU通过与所述DU之间的用户面承载(如GTP隧道),将所述第一消息发送个所述DU。
第二方面,提供了一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU,分布式单元DU,第一IAB节点和第二IAB节点,所述方法包括:
所述CU接收所述DU发送的上行F1AP消息,其中所述上行F1AP消息包含的消息为以下之一或组合:终端设备的F1AP消息,第一IAB节点的F1AP消息,第二IAB节点的RRC消息。对应的,DU向CU发送该上行F1AP消息。
本申请实施例中IAB Donor中的CU、DU可以根据传输的消息的消息类型,或者根据传输的消息中包括的消息的消息类型,对控制面信令进行承载映射和处理。
在第二方面一些可能的实现方式中,所述CU接收所述DU发送的指示信息,所述指示信息指示所述上行F1AP消息中所包含的消息的消息类型为以下之一:RRC消息类型,F1AP消息类型,RRC消息类型和F1AP消息类型。对应的,DU向CU发送该指示信息。这样,通过DU向CU发送用于指示F1AP消息中包括的消息的类型的指示信息,使得CU能够根据F1AP消息中包括的不同的消息类型,将解封装后的消息发送到不同的处理层,实现对控制面信令进行承载映射。
在第二方面一些可能的实现方式中,所述CU根据接收到所述上行F1AP消息的承载,确定所述上行F1AP消息中包括的消息类型。当所述CU通过与所述DU之间的有线接口 的控制面承载,获取所述上行F1AP消息时,确定所述上行F1AP消息中包括的消息的消息类型为RRC消息;当所述CU通过与所述DU之间的用户面承载(例如GTP隧道),获取所述上行F1AP消息时,确定所述上行F1AP消息中包括的消息的消息类型为F1AP消息。
在第二方面的一些可能的实现方式中,所述指示信息携带在所述上行F1AP消息中或所述CU与所述DU之间F1接口上对等的适配层。
在第二方面的一些可能的实现方式中,所述方法还包括:
当所述上行F1AP消息中所包含消息的消息类型为RRC消息类型时,所述CU获取所述第二IAB节点的RRC消息,并通过与所述第二IAB节点对等的RRC层进行处理。
在第二方面的一些可能的实现方式中,所述方法还包括:
当所述上行F1AP消息所包含消息的消息类型为F1AP消息类型时,所述CU获取所述上行F1AP消息中所包含的F1AP消息,并确定所述上行F1AP消息所包含的F1AP消息为所述终端设备的F1AP消息或所述第一IAB节点的F1AP消息。
在第二方面的一些可能的实现方式中,所述方法还包括:
若所述上行F1AP消息所包含的F1AP消息为所述终端设备的F1AP消息,所述CU通过与所述终端设备对等的F1AP层处理所述终端设备的F1AP消息;或者,
若所述上行F1AP消息所包含的F1AP消息为所述第一IAB节点的F1AP消息,所述CU通过与所述第一IAB节点对等的F1AP层处理所述第一IAB节点的F1AP消息。
可选的,本申请实施例中,CU可以接收DU发送的节点标识,并根据节点标识确定上行F1AP消息所包含的F1AP消息为所述终端设备的F1AP消息或所述第一IAB节点的F1AP消息。
可选的,本申请实施例中,CU可以根据F1AP消息的路由信息,确定上行F1AP消息所包含的F1AP消息为所述终端设备的F1AP消息或所述第一IAB节点的F1AP消息。
对应的,DU向CU发送该节点标识。在一些可能的实现方式中,该节点标识可以携带在上行F1AP消息中,或者携带在与IAB node2对等的F1AP层之上的适配层中。
第三方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
第二IAB节点接收所述DU发送的下行消息,当所述下行消息承载在所述第二IAB节点和所述DU之间的信令无线承载时,所述第二IAB节点还接收所述DU发送的指示信息,所述指示信息指示所述下行消息的消息类型为RRC消息类型或F1AP消息类型。
第二IAB节点根据收到的下行消息,判断所述下行消息是否属于所述第二IAB节点,如果属于所述第二IAB节点,则由第二IAB节点处理,否则将收到的下行消息进一步路由到下一跳节点处理。
对应的,DU向所述第二IAB节点发送所述下行消息,并且当所述下行消息承载在所述第二AIB节点和所述DU之间的信令无线承载时,所述DU还向所述第二IAB节点发送指示信息,所述指示信息指示所述下行消息的消息类型为RRC消息类型或F1AP消息类型。
因此,本申请实施例中IAB node2可以根据传输的消息的消息类型,或者根据传输的消息中包括的消息的消息类型,对控制面信令进行承载映射和处理。
在第三方面的一些可能的实现方式中,当所述第二IAB节点通过与所述DU之间的信令无线承载,获取所述下行消息时,可以确定所述下行消息为所述第二IAB节点的RRC消息。
所述第二IAB节点通过与DU之间的专用无线承载或数据无线承载,获取所述第一消息时,可以确定所述下行消息不属于所述第二IAB节点,此时可以确定该下行消息中包括F1AP消息。
对应的,当DU确定所述下行消息为所述第二IAB节点的RRC消息时,通过信令无线承载发送所述下行消息。当DU确定所述下行消息为F1AP消息时,通过与所述第二IAB节点之间的专用无线承载或数据无线承载,发送所述下行消息。
因此,本申请实施例中,通过在SRB上传输RRC消息,在专用RB(专用数据无线承载或专用信令无线承载)或数据无线承载上传输F1AP消息,使得IAB节点能够确定获取的消息的消息类型,进而根据不同消息类型,对控制面信令进行承载映射。
在第三方面的一些可能的实现方式中,所述第二IAB节点可以获取所述DU发送的第一指示信息,所述第一指示信息用于指示所述该下行消息的类型。对应的,DU向第二IAB节点发送该第一指示信息。这样,通过DU向第二IAB节点发送指示信息,可以使得IAB节点获取下行消息的消息类型,进而根据不同的消息类型,对控制面信令进行映射承载。
在第三方面的一些可能的实现方式中,当所述第二IAB节点确定所述下行消息属于所述第二IAB节点时,则确定所述下行消息的消息类型为RRC消息,所述第二IAB节点获取所述RRC消息,并将所述RRC消息发送至所述第二IAB节点的RRC层进行处理。
在第三方面的一些可能的实现方式中,当所述下行消息的消息类型为F1AP消息时,所述第二IAB节点根据所述F1AP消息的路由信息,确定所述F1AP消息的目标路由节点。
当所述目标路由节点为所述第二IAB节点的下行方向上的下一跳节点时,所述第一IAB节点对所述下行消息进行处理,获得第二RRC消息,并将所述第二RRC消息映射到所述第二IAB节点与所述下一跳节点之间的无线承载上;
当所述目标路由节点不是所述下一跳节点时,所述第二IAB节点将所述下行消息映射到所述第二IAB节点与所述下一跳节点之间的无线承载上。
在一些可能的实现方式中,当所述下行消息的消息类型为F1AP消息时,所述方法还包括:
所述第二IAB节点获取第二指示信息,所述第二指示信息用于指示所述第二IAB节点是否需要对所述第一F1AP消息进行处理。一种实现方式中,该第二指示信息是DU发送给第二IAB节点的。
当所述第二指示信息用于指示所述第二IAB节点需要对所述下行消息进行处理时,所述第二IAB节点对所述下行消息进行处理获得第三RRC消息,并将所述第三RRC消息映射到所述第二IAB节点与所述下一跳节点之间的无线承载上。
当所述第二指示信息用于指示所述第二IAB节点不需要对所述下行消息进行处理时,所述第二IAB节点将所述下行消息映射到所述第二IAB节点与所述下一跳节点之间的无线承载上。
第四方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
所述第二IAB节点向所述DU发送上行消息;
如果所述上行消息承载在所述第二IAB节点和所述DU之间的信令无线承载上,所述第二IAB节点指示所述DU所述上行消息的消息类型为RRC消息类型或F1AP消息类型。
因此,本申请实施例中IAB node2可以根据传输的消息的消息类型,或者根据传输的消息中包括的消息的消息类型,对控制面信令进行承载映射和处理。
在第四方面的一种可能的实现方式,当所述上行消息为RRC消息时,所述第二IAB节点将所述RRC消息进行映射到所述第二IAB节点与DU之间的信令无线承载上;
当所述上行消息为F1AP消息时,所述第二IAB节点将所述上行消息映射到所述第二IAB节点与所述DU之间的专用无线承载或数据无线承载上。
对应的,DU通过第二IAB节点与DU之间的信令无线承载接收所述第二IAB节点发送的上行消息时,可以确定上行消息为RRC消息。当所述DU通过第二IAB节点与DU之间的专用无线承载或数据无线承载接收到所述第二IAB节点发送的上行消息时,可以确定上行消息为F1AP消息。
因此,本申请实施例中,通过在SRB上传输RRC消息,在专用RB(专用数据无线承载或专用信令无线承载)或数据无线承载上传输F1AP消息,使得IAB节点能够确定获取的消息的消息类型,进而根据不同消息类型,对控制面信令进行承载映射。
在第四方面的一种可能的实现方式,所述第二IAB节点将所述上行消息映射到所述第二IAB节点与DU之间的同一信令无线承载上,并向所述DU发送第三指示信息,所述第三指示信息用于指示所述所述信令无线承载上传输的消息的消息类型,所述消息类型包括RRC消息或F1AP消息。对应的,DU接收该第三指示消息。这样,通过第二IAB节点向DU发送指示信息,可以使得DU获取上行消息的消息类型,进而根据不同的消息类型,对控制面信令进行映射承载。
第五方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
所述CU确定根据业务数据的QoS参数,确定空口上数据无线承载DRB与第一接口上DRB的映射关系,所述第一接口上DRB与第二接口上DRB的映射关系,其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口,所述第二接口为所述第二IAB节点与所述DU之间的接口;
所述CU向第一IAB节点通知空口上DRB与第一接口上DRB的映射关系,并向第二IAB节点通知所述第一接口上DRB与第二接口上DRB的映射关系。
因此,本申请实施例中,CU可以针对各个接口链路进行统一的QoS映射管理,并将各个接口的承载映射关系发送给第一IAB节点和第二IAB节点,使得第一IAB节点和第二IAB节点可分别根据各自接收到的映射关系对用户面数据进行承载映射。
第六方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
所述CU确定根据业务数据的QoS参数,确定空口上数据无线承载DRB与第一接口上DRB的映射关系,所述第一接口上DRB与第二接口上DRB的映射关系,其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口,所述第二接口为所述第二IAB节点与所述DU之间的接口;
所述CU向第二IAB节点通知空口上DRB与第一接口上DRB的映射关系和所述第一接口上DRB与第二接口上DRB的映射关系。
因此,本申请实施例中,CU可以针对各个接口链路进行统一的QoS映射管理,并将各个接口的承载映射关系发送给第二IAB节点,使得第二IAB节点根据接收到的映射关系对用户面数据进行承载映射。
这时,第二IAB可以根据接收到的映射关系,向第一IAB节点发送指示信息,用于指示第一IAB节点进行用户面承载的映射。作为一例,该指示信息可以是UE DRB的标识DRB ID,使得第一IAB节点根据该指示信息,将从IAB1 DRB上接收的用户数据映射到对应的UE DRB上,实现第一IAB节点对用户面数据进行承载映射。
第七方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
所述第一IAB节点从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及空口上DRB和所述DRB对应的QoS参数;
所述第一IAB节点根据第一接口上DRB对应的QoS参数和空口上DRB对应的QoS参数,确定空口上DRB与第一接口上DRB的映射关系;
其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
因此,本申请实施例中,第一IAB节点可以对其各个接口链路进行分布式承载映射管理,实现第一IAB节点对用户面数据进行承载映射。
第八方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
所述第二IAB节点从所述CU接收第一接口上数据无线承载DRB和所述DRB对应的QoS参数,以及第二接口上DRB和所述DRB对应的QoS参数;
所述第二IAB节点根据第一接口上数据无线承载DRB对应的QoS参数和第二接口上DRB对应的QoS参数,确定第一接口上DRB与第二接口上DRB的映射关系。
其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。所述第二接口为所述第二IAB节点与所述DU之间的接口。
因此,本申请实施例中,第二IAB节点可以对其各个接口链路进行分布式承载映射管理,实现第二IAB节点对用户面数据进行承载映射。
第九方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
第二IAB节点从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
所述第二IAB节点根据第一接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与第一接口上DRB的映射关系。
其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
因此,本申请实施例中,第二IAB节点可以对其各个接口链路进行分布式承载映射管理,实现第二IAB节点对用户面数据进行承载映射。
第十方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
第一IAB节点从所述CU接收空口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
所述第一IAB节点根据空口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与所述空口上DRB的映射关系。
因此,本申请实施例中,第一IAB节点可以对其各个接口链路进行分布式承载映射管理,实现第一IAB节点对用户面数据进行承载映射。
第十一方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
第二IAB节点从所述CU接收第二接口上DRB和所述DRB对应的QoS参数的映射关系,以及终端的业务标识和所述业务标识对应的业务QoS参数;
所述第二IAB节点根据第二接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与第二接口上DRB的映射关系。
其中,所述第二接口为所述第二IAB节点与所述DU之间的接口。
因此,本申请实施例中,第二IAB节点可以对其各个接口链路进行分布式承载映射管理,实现第二IAB节点对用户面数据进行承载映射。
第十二方面,提供了一种接入回程一体化IAB系统中数据处理的方法,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
第一IAB节点从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
所述第一IAB节点根据第一接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与所述第一接口上DRB的映射关系。
其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
因此,本申请实施例中,第一IAB节点可以对其各个接口链路进行分布式承载映射管理,实现第一IAB节点对用户面数据进行承载映射。
第十三方面,本申请实施例提供了一种数据处理的装置,用于执行上述任一方面或任一方面的任意可能的实现方式中的方法,具体的,该装置包括用于执行上述任一方面或任一方面任意可能的实现方式中的方法的模块。
第十四方面,本申请实施例提供了一种数据处理的装置,包括:存储器和处理器。其中,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行任一方面或任一方面的任意可能的实现方式中的方法。
第十五方面,本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行任一方面或任一方面的任意可能的实现方式中的方法的指令。
第十六方面,本申请实施例还提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行任一方面或任一方面的任意可能的实现方式中的方法。
基于此,本申请实施例中IAB Donor、IAB node1、IAB node2可以分别根据传输的消息的消息类型,或者根据传输的消息中包括的消息的消息类型,对控制面信令进行承载映射和处理。这里,消息类型包括RRC消息和F1AP消息。
本申请实施例中,IAB node之间的接口,例如Un接口(比如Un1接口、Un2接口)以及IAB node与UE之间的Uu接口上都会建立DRB承载,并且,每个IABnode可以根据各接口之间的DRB承载的映射关系,或者根据DRB承载对应的QoS参数,或者根据UE业务流所属的QoS参数,对用户面数据进行承载映射。
附图说明
图1示出了应用本申请实施例的系统架构的示意图。
图2示出了本申请一个控制面信令在各接口的承载映射和处理的具体的实施例。
图3示出了本申请实施例提供的一种传输数据的方法的示意性流程图。
图4示出了本申请另一个控制面信令在各接口的承载映射和处理的具体的实施例。
图5示出了本申请另一个控制面信令在各接口的承载映射和处理的具体的实施例。
图6示出了本申请一个用户面数据在各接口的承载映射和处理的具体的实施例。
图7示出了本申请一个用户面数据在各接口的承载映射的具体的实施例。
图8示出了本申请一个用户面数据在各接口的承载映射的具体的实施例。
图9示出了本申请一个具体的承载映射的实施例。
图10示出了本申请实施例提供的一种数据处理的装置的示意性框图。
图11示出了本申请实施例提供的另一种数据处理的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
图1示出了应用本申请实施例的系统架构的示意图。如图1所示,该系统架构包括UE 101、中继节点102、中继节点103、宿主节点104以及下一代核心网(Next Generation Core,NGC)105。其中,该宿主节点104与NGC 105直接相连,并且该宿主节点104与中继节点103相连,中继节点103与中继节点102相连,中继节点102与UE 101连接。其中,UE 101和中继节点102之间的物理接口为Uu接口,宿主节点104与NGC 105之间的物理接口为NG接口。
应理解,本申请实施例对中继节点102和中继节点103之间的物理接口,以及中继节点103和宿主节点之间的物理接口的名称不作具体限定。作为示例,本申请实施例中,可以称中继节点102和中继节点103之间的物理接口,以及中继节点103和宿主节点之间的物理接口为Un接口。
还应理解,本申请实施例中该宿主节点104可以与多个中继节点连接,并且每个中继 节点还可以连接其他的中继节点或UE,作为示例,图1中仅示出了与宿主节点104连接的一个中继节点103,也仅示出了与中继节点103连接的一个中继节点102,与中继节点102连接的一个UE 101,但这并不会对本申请实施例构成限定。
另外,本申请实施例中,该系统架构具体可以为IAB系统架构,此时,该中继节点还可以称为IAB节点(IAB node),宿主节点还可以称为IAB宿主(IAB Donor),本申请实施例对此不作具体限定。
本申请实施例中的宿主节点和中继节点具体可以为基站形态,例如可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例中的UE可以指终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中,宿主节点可以采用CU与DU分离的架构,中继节点也可以采用CU与DU分离的架构,其中DU实体位于中继节点上,而CU实体位于宿主节点上。除了DU实体之外,中继节点还包含一个移动终端MT(Mobile Termination)实体。具体而言,图1中的宿主节点104中的CU和DU通过F1接口连接,CU和NGC 105通过NG接口连接。并且,该宿主节点104中的DU与中继节点103中的MT通过Un2接口连接,该中继节点103中的DU与中继节点102中的MT通过Un1接口连接,中继节点102中的DU与UE 101通过Uu接口连接。也就是说,对宿主节点104中的DU而言,中继节点103中的MT就被看成是一个UE,而对中继节点103中的MT而言,宿主节点104中的DU就被看成是一个基站。同理,对中继节点103中的DU而言,中继节点102中的MT就被看成是一个UE,而对中继节点102中的MT而言,中继节点103中的DU就被看成是一个基站。同理,对UE101而言,中继节点102中的DU就被看成是一个基站。
为了描述方便,下文将以宿主节点104为IAB Donor、中继节点103为IAB node2、中继节点104为IAB node1、UE 101为UE为例进行描述,但这并不对本申请实施例构成限定。
对于与IAB Donor直接连接的UE而言,在上行传输(Uplink,UL)时,UE生成无线资源控制(Radio Resource Control,RRC)消息后通过Uu接口的信令无线承载(signalling radio bearer,SRB)发送到DU,例如:SRB1,DU将收到的UE RRC消息封装在UE的 F1AP(记为UE-associated F1AP)消息中发送到CU。在下行传输(Downlink,DL)时,CU将生成的RRC消息封装在UE-associated F1AP消息中发送到DU,DU从UE-associatedF1AP消息中提取出UE的RRC消息,再通过Uu接口的SRB发送到UE。
对于图1中所示的场景,当系统中包括IAB Donor、IAB node1、IAB node2和UE时,对UE而言,其RRC消息是终结在IAB Donor的CU上。对IAB node1和IAB node2中的MT实体而言,其RRC消息也均终结在IAB Donor的CU上。本申请实施例中,IAB node1和IAB node2可以实现将各自生成的RRC消息封装在各自的F1AP消息中,或者对各自的F1AP消息进行解封装提取出各自的RRC消息。本申请实施例中,对IAB node1和IAB node2之间的接口上,除了可以传输IAB node1的RRC消息之外,还可以传输IAB node1下附着的UE的F1AP消息。对IAB node2和IAB Donor的DU之间的接口上,除了可以传输IAB node2的RRC消息之外,还可以传输IAB node2下附着的IAB node1的F1AP消息,以及IAB node1下附着的UE的F1AP消息。对IAB Donor的DU和CU之间的接口上,除了可以传输IAB2的F1AP消息之外,还可以传输IAB node2下附着的IAB node1的F1AP消息,以及IAB node1下附着的UE的F1AP消息。基于此,本申请实施例中IAB Donor、IAB node1、IAB node2可以分别根据传输的消息的消息类型,或者根据传输的消息中包括的消息的消息类型,对控制面信令进行承载映射和处理。这里,消息类型包括RRC消息和F1AP消息。
下面,结合具体的实施例,详细描述本申请实施例的控制面信令在不同接口上的承载映射和处理的方法。应注意,以下仅仅是为了帮助本领域技术人员理解和实现本申请的实施例,而非限制本申请实施例的范围。本领域技术人员可以根据这里给出的例子进行等价变换或修改,这样的变换或修改仍然应落入本申请实施例的范围内。
图2示出了本申请一个控制面信令在各接口的承载映射和处理的具体的实施例。这里,CU和DU分别位于IAB Donor中。具体的,CU、DU、IAB node2、IAB node1以及UE可以参见上文中的描述,这里不再赘述。
具体而言,UE和IAB node1之间的Uu接口上建立有UE的SRB1(记为UE SRB1),UE的RRC消息记为(UE RRC)可以承载在UE SRB1上传输。或者,UE和IAB node1之间的Uu接口上建立有UE的SRB2(记为UE SRB2),UE的RRC消息记为(UE RRC)可以承载在UE SRB2上传输。
IAB node1和IAB node2之间的Un1接口上建立有IAB1的SRB1(记为IAB1 SRB1),IAB1的RRC消息(记为IAB1 RRC)可以承载在IAB1 SRB1上传输。或者,IAB node1和IAB node2之间的Un1接口上建立有IAB1的SRB2(记为IAB1 SRB2),IAB1的RRC消息(记为IAB1 RRC)可以承载在IAB1 SRB2上传输。
作为一个可选的实施例,IAB node1和IAB node2之间的Un1接口上还可以建立有IAB1的专用RB(记为IAB1 RB)。作为一例,该专用RB可以为新定义的一种SRB。该专用RB区别于现有技术中已有的SRB0/1/2,仅用于传输F1AP消息。或者,该专用RB可以为数据无线承载(Data radio bearer,DRB)。本申请实施例中,IAB node1从UE SRB1中收到UE RRC后,对UE RRC进行封装生成UE的F1AP消息(记为UE-associated F1AP消息)。作为一例,该UE-associated F1AP消息可以承载在IAB1 RB上传输。
IAB node2和DU之间的Un2接口上建立有IAB2的SRB1(记为IAB2 SRB1),IAB2 的RRC消息(记为IAB2 RRC)可以承载在IAB2 SRB1上传输。或者,IAB node2和DU之间的Un2接口上建立有IAB2的SRB2(记为IAB2 SRB2),IAB2的RRC消息(记为IAB2 RRC)可以承载在IAB2 SRB2上传输。
作为一个可选的实施例,IAB node2和DU之间的Un2接口上还可以建立有IAB2的专用RB(记为IAB2 RB)。作为一例,该专用RB可以为新定义的一种SRB。该专用RB可以区别于已有的SRB0/1/2,仅用于传输F1AP消息。或者,该专用RB可以为DRB。作为一例,IAB node2在从IAB1 RB上接收到UE-associated F1AP消息之后,可以将该UE-associated F1AP消息承载在IAB2 RB上传输。
本申请实施例中,IAB node2从IAB1 SRB1中收到IAB1RRC后,对IAB1 RRC消息进行封装生成IAB1的F1AP消息(记为IAB1-associated F1AP消息)。作为一例,该IAB1-associated F1AP消息可以承载在IAB2 RB上传输。
DU和CU之间通过有线接口相连。DU和CU之间的有线接口上可以承载IAB2的F1AP消息(记为IAB2-associated F1AP消息)。
可选的,DU从IAB2 SRB1中收到IAB2 RRC后,对IAB2 RRC消息进行封装生成IAB2的F1AP消息(记为IAB2-associated F1AP消息),该IAB2-associated F1AP消息通过有线发送到CU。此外,IAB2还可以将IAB1-associated F1AP消息和/或UE-associated F1AP消息封装在该IAB2-associated F1AP消息中传输。
总的来说,本申请实施例中,UE RRC在各接口的承载映射如下:
在Uu接口上,UE RRC被映射在SRB1或者SRB2上传输。在Un1接口上,UE RRC被封装在UE-associated F1AP消息中,然后映射到专用RB上传输,该专用RB可以是DRB,或者是一种新定义的SRB。在Un2接口上,UE-associated F1AP消息被映射在专用RB上传输,该专用RB同Un1接口上的专用RB一致。在F1接口上,UE-associated F1AP消息被进一步封装在IAB2-associated F1AP消息中传输。
本申请实施例中,在UE接入网络之前,IAB node2首先需要接入网络,然后IAB node1接入网络。
具体的,IAB node2在接入网络的过程中,在Un2接口上建立用于传输IAB2 RRC消息的IAB2 SRB1。
并且可选的,IAB node2在建立IAB2 SRB1的同时,还可以在Un2接口上建立专门用于传输F1AP消息的IAB2 RB。作为一个示例,当IAB node1和UE都接入网络后,该IAB2 RB可以用于传输UE-associated F1AP消息和/或IAB1-associated F1AP消息。对UL而言,类似于IAB2SRB1,当DU从IAB2 RB上收到信令,则将其封装在IAB2-associatedF1AP消息中发送到CU。对DL而言,DU从IAB2-associated F1AP消息中收到信令,并根据CU发送的信令类型指示信息来获知该IAB2-associated F1AP消息中携带的信令类型,如果是RRC消息,则映射到IAB2 SRB1上发送给IAB node2;如果是F1AP消息,则映射到IAB2 RB上发送给IAB node2。IAB node1在接入网络的过程中,在Un1接口建立用于传输IAB1 RRC消息的IAB1 SRB1。
可选的,IAB node1在建立IAB1 SRB1的同时,可以在Un1接口建立专门用于传输F1AP消息的IAB1 RB。作为一个示例,当UE接入网络后,该IAB1 RB可以用于传输UE-associated F1AP消息。对UL而言,只要IAB node2从IAB1 RB上收到信令,则将其 映射到IAB2 RB上发送给DU。对DL而言,当IAB node2从IAB2 RB上收到信令,并且该信令需要路由到下一跳节点,则IAB node2将该信令映射到IAB1 RB上发送给IAB node1。
图3示出了本申请实施例提供的一种传输数据的方法的示意性流程图。其中,302至308为DL方向的数据传输流程,310至316为UL方向的数据传输流程。
下面将结合图3中的302至308,针对下行链路(DL)对本申请实施例的数据处理的方法进行具体描述。在一种可能的实现方式中,302至308可以应用于图2所示的系统中,此时可以将图3中的302至308分别记为302’至308’,即下文中302’至308’中的CU、DU、IAB node2、IAB node1以及UE可以为图2中的对应的网元。
302’,CU向DU发送消息#1。
作为一个可选的实施例,这里,CU可以通过有线接口向DU发送IAB2-associated F1AP消息(即该消息#1),其中,IAB2-associated F1AP消息中可以携带IAB2 RRC消息、IAB1-associated F1AP消息,或UE-associated F1AP消息中至少一种消息。具体的,可以存在以下几种可能:IAB2-associated F1AP消息中包含IAB2 RRC消息;或者,IAB2-associated F1AP消息中包含IAB1-associated F1AP消息;或者,IAB2-associated F1AP消息中包含UE-associated F1AP消息;或者,IAB2-associated F1AP消息中包含IAB2 RRC消息和IAB1-associated F1AP消息;或者,IAB2-associated F1AP消息中包含IAB2 RRC消息和UE-associated F1AP消息;或者,IAB2-associated F1AP消息中包含IAB1-associated F1AP消息和UE-associated F1AP消息;或者IAB2-associated F1AP消息中包含IAB2 RRC消息和IAB1-associated F1AP消息和UE-associated F1AP消息。
此时,CU还向DU发送一个类型指示信息,用于指示IAB2-associated F1AP消息中携带的消息类型。该消息类型可以是RRC消息类型,也可以是F1AP消息类型。DU根据该类型指示信息对IAB2-associated F1AP中携带的不同消息进行不同的处理。
具体的,CU可以对UE RRC消息进行封装生成UE-associated F1AP消息,并将该UE-associated F1AP消息封装在IAB2-associated F1AP消息中发送到DU。CU还可以对IAB1 RRC消息进行封装生成IAB1-associated F1AP消息,并将该IAB1-associated F1AP消息封装在IAB2-associated F1AP消息中发送到DU。CU还可以对IAB2 RRC消息进行封装生成IAB2-associated F1AP消息后发送到DU。
可选的,本申请实施例中,CU可以将该类型指示信息携带在IAB2-associated F1AP消息中,或者,该类型指示信息还可以携带在与IAB node2对等的F1AP层之上的适配层中发送给DU,本申请实施例对此不作具体限定。
应理解,本申请实施例中,IAB2-associated F1AP消息中可以携带IAB2 RRC消息、IAB1-associated F1AP消息或UE-associated F1AP消息中的至少一种消息。此时,IAB2-associated F1AP消息中携带的每个消息可以对应一个类型指示信息,用于指示其对应的消息的消息类型。
可选的,CU还可以向DU发送一个指示信息,由DU进一步将该指示信息转发给IAB node2和IAB node1,以便于指示IAB node2和IAB node1是否需要对收到的F1AP消息进行处理。作为一种示例,该指示信息可以是节点的标识信息,例如:IAB node1的节点标识,UE的标识等。在一些可能的实现方式中,CU可以将该指示信息携带在IAB2-associated  F1AP消息中,或者,携带在与IAB2对等的F1AP层之上的适配层中发送给DU,本申请实施例对此不作具体限定。
304’,DU向IAB node2发送消息#2。
作为一个可选的实施例,当DU通过有线接口从CU获取到IAB2-associated F1AP消息以及类型指示信息时,如果该类型指示信息指示IAB2-associated F1AP消息中携带的是RRC消息,则DU将从IAB2-associated F1AP消息中提取出来的RRC消息映射到IAB2 SRB1中发送到IAB node2。此时,该IAB2 RRC消息即为该消息#2。
作为另一个可选的实施例,当DU通过有线接口从CU获取到IAB2-associated F1AP消息以及类型指示信息时,如果该类型指示信息指示IAB2-associated F1AP消息中携带的是F1AP消息,则DU将从IAB2-associated F1AP消息中提取出来的F1AP消息映射到IAB2 RB中发送到IAB node2。此时,该F1AP消息即为该消息#2。
可选的,DU还可以向IAB node2发送一个指示信息,该指示信息用于指示IAB node2是否需要对从IAB2-associated F1AP消息中提取的F1AP消息进行处理。作为一种示例,该指示信息可以是节点的标识信息,例如:IAB node1的节点标识,UE的标识等。在一些可能的实现方式中,该指示信息可以携带在Un2接口的RLC(Radio Link Control)层头字段中,或者在Un2接口的适配层中。
因此,本申请实施例中,通过CU向DU发送用于指示IAB2-associated F1AP消息中包括的消息的类型的指示信息,使得DU能够根据IAB2-associated F1AP消息中包括的不同的消息类型,将解封装后的数据包映射到不同的承载上,实现DU对控制面信令进行承载映射。
306’,IAB node2向IAB node1发送消息#3。
作为一个可选的实施例,当IAB node2从Un2接口中的IAB2 SRB1上接收到数据包时,则可以确定该数据包即为IAB2 RRC消息,此时可以直接将该数据包送到RRC层进行处理。
作为一个可选的实施例,当IAB node2从Un2接口中的IAB2 RB上接收到数据包时,则可以确定该数据包即为F1AP消息。
此时,作为一种可选的实施例,IAB node2可以结合该F1AP消息的路由信息来决定该F1AP消息是否需要自己处理。具体而言,当该F1AP消息的路由信息表示该F1AP消息的目标路由节点为IAB node1时,则表明该F1AP消息需要IAB node2处理,则IAB node2对该F1AP消息进行解封装,当获知该F1AP消息中携带的RRC消息为IAB1 RRC时,将该IAB1 RRC消息映射到Un1接口中的IAB1 SRB1上发送给IAB node1,此时该IAB1 RRC消息即为消息#3。
当该F1AP消息的路由信息表示该F1AP消息的目标路由节点为不是与IAB2连接的下一跳节点时,例如当目标路由节点为UE时,即表明该F1AP消息不需要IAB node2处理,此时,IAB node2根据路由信息确定下一跳节点为IAB node1,并将该F1AP消息映射到Un1接口的IAB1 RB上发送到IAB node1,此时该F1AP消息即为消息#3。
作为另一种可选的实施例,IAB node2还可以结合DU向IAB node2发送的指示信息,来确定该IAB2 RB上的传输的F1AP消息是否需要自己处理。作为一种示例,该指示信息可以是节点的标识信息,例如:IAB node1的节点标识,UE的标识等。具体而言,根据 该指示信息,IAB node2确定该F1AP消息需要自己进行处理时,IAB node2对该F1AP消息进行解封装,当获知该F1AP消息中携带的RRC消息为IAB1 RRC时,将该IAB1 RRC消息映射到Un1接口中的IAB1 SRB1上发送给IAB node1,此时该IAB1 RRC消息即为消息#3。
根据该指示信息,IAB node2确定该F1AP消息不需要自己进行处理时,此时,IAB node2根据路由信息确定下一跳节点为IAB node1,并将该F1AP消息映射到Un1接口的IAB1 RB上发送到IAB node1,此时该F1AP消息即为消息#3。
308’,IAB node1向UE发送消息#4。
作为一个可选的实施例,当IAB node1从Un1接口中的IAB1 SRB1上接收到消息时,则可以确定该消息即为IAB1 RRC消息,此时可以直接将该消息送到RRC层进行处理。
作为一个可选的实施例,当IAB node1从Un1接口中的IAB1 RB上接收到消息时,则可以确定该消息即为F1AP消息。具体而言,IAB node1对该F1AP消息进行解封装,当获知该F1AP消息中携带的RRC消息为UE RRC时,将该UE RRC消息映射到Uu接口的UE SRB1发送给UE,此时该UE RRC消息即为消息#4。
本申请实施例中,Un1接口上的IAB1 RB和Un2接口上的IAB2 RB可以是SRB(不同于现有的SRB0/1/2),也可以是DRB,仅用于传输F1AP消息。
因此,本申请实施例中,通过在SRB1上传输RRC消息,在专用RB上传输F1AP消息,使得IAB2、IAB1能够确定获取的消息的消息类型,并可以根据不同消息类型,对控制面信令进行承载映射。可选的,还可以通过SRB2上传输RRC消息,在专用RB上传输F1AP消息,使得IAB2、IAB1能够确定获取的消息的消息类型,并可以根据不同消息类型,对控制面信令进行承载映射,本申请实施例对此不作具体限定。
下面将结合图3中的310至316,针对上行链路(UL)对本申请实施例的数据处理的方法进行具体描述。在一种可能的实现方式中,310至316可以应用于图2所示的系统中,此时可以将图3中的310至316分别记为310’至316’,即下文中310’至316’中的CU、DU、IAB node2、IAB node1以及UE可以为图4中的对应的网元。
310’,UE向IAB node1发送消息#5。
具体的,UE生成UE RRC消息,并通过Uu接口中的UE SRB1,将该UE RRC消息发送给IAB node1。此时,该UE RRC消息即为消息#5。
312’,IAB node1向IAB node2发送消息#6。
作为一个可选的实施例,当IAB node1通过Uu接口中的UE SRB1接收到UE RRC消息时,对该UE RRC消息进行封装,生成UE-associated F1AP消息,并通过Un1接口中的IAB1 RB将该UE-associated F1AP消息发送给IAB node2,此时该UE-associated F1AP即为消息#6。
作为一个可选的实施例,IAB node1也可以生成IAB1 RRC消息,并通过Un1接口中的IAB1 SRB1将该IAB1 RRC消息发送给IAB node2,此时该IAB1 RRC消息为消息#6。
314’,IAB node2向DU发消息#7。
作为一个可选的实施例,IAB node2可以从Un1接口中的IAB1 RB上接收到UE-associated F1AP消息,并将该UE-associated F1AP映射到Un2接口中的IAB2 RB上发送给DU,此时该UE-associated F1AP消息即为消息#7。
作为一个可选的实施例,IAB node2还可以从Un1接口中的IAB1 SRB1上接收到IAB1RRC消息,并对该IAB1 RRC消息进行封装,生成IAB1-associated F1AP消息,然后再将该IAB1-associated F1AP消息映射到Un2接口中的IAB2 RB上发送给DU,此时该IAB1-associated F1AP即为消息#7。
作为一个可选的实施例,IAB node2还可以生成IAB2 RRC消息,并将该IAB2 RRC消息映射到Un2接口中的IAB2 SRB1上发送给DU,此时,该IAB2 RRC消息为消息#7。
316’,DU向CU发送消息#8。
作为一个可选的实施例,DU将从IAB2 SRB1上接收到的IAB2 RRC消息、从IAB2 RB上接收到的IAB1-associated F1AP消息或UE-associated F1AP消息中的至少一个消息进行封装,生成IAB2-associated F1AP消息,并通过有线接口发送给CU。此时,该IAB2-associated F1AP即为消息#8。
此时,DU还需要向CU发送一个类型指示消息,用于指示IAB2-associated F1AP消息中携带的消息类型,该消息类型可以是RRC消息,和/或F1AP消息,以便CU根据该类型指示信息对IAB2-associated F1AP消息中携带的不同消息进行不同的处理。
具体的,CU对IAB2-associated F1AP消息进行解封装,从中提取出RRC消息和/或F1AP消息。具体而言,当该类型指示信息指示IAB2-associated F1AP消息中携带的消息是RRC消息时,此时CU将该RRC消息发送到与IAB node2对等的RRC层进行处理。
当该类型指示信息指示IAB2-associated F1AP消息中携带的消息是F1AP消息时,CU结合IP层携带的IP地址信息,或者节点标识,确定该F1AP消息为UE-associated F1AP消息,或者为IAB1-associated F1AP消息。当CU确定为UE-associated F1AP消息时,将该UE-associated F1AP消息发到与UE对等的F1AP层进行处理,进一步的,CU通过与UE对等的F1AP层对该UE-associated F1AP消息进行解封装获得UE RRC消息。当CU确定为IAB1-associated F1AP消息时,将该IAB1-associated F1AP消息发到与IAB1对等的F1AP层进行处理。进一步的,CU通过与IAB1对等的F1AP层对该IAB1-associated F1AP进行解封装获得IAB1 RRC消息。
可选的,DU可以向CU发送上述节点标识。在一些可能的实现方式中,该节点标识可以携带在IAB2-associated F1AP消息中,或者携带在与IAB node2对等的F1AP层之上的适配层中。
本申请实施例中,Un1接口上的IAB1 RB和Un2接口上的IAB2 RB可以是SRB(不同于现有的SRB0/1/2),也可以是DRB,仅用于传输F1AP消息。
因此,本申请实施例中,通过在SRB1上传输RRC消息,在专用RB上传输F1AP消息,使得IAB2、IAB1、DU能够确定获取的消息的消息类型,并可以根据不同消息类型,对控制面信令进行承载映射。并且,通过DU向CU发送IAB2-associated F1AP消息中包括的消息的类型,使得CU能够根据IAB2-associated F1AP消息中包括的不同的消息类型,将解封装后的消息发送到不同的处理层,实现对控制面信令进行承载映射。
可选的,还可以通过在SRB2上传输RRC消息,在专用RB上传输F1AP消息,使得IAB2、IAB1、DU能够确定获取的消息的消息类型,并可以根据不同消息类型,对控制面信令进行承载映射。并且,通过DU向CU发送IAB2-associated F1AP消息中包括的消息的类型,使得CU能够根据IAB2-associated F1AP消息中包括的不同的消息类型,将解封 装后的消息发送到不同的处理层,实现对控制面信令进行承载映射,本申请实施例对此不作具体限定。
总的来说,本申请实施例中,在下行方向,DU根据CU发送的类型指示信息,分别将IAB2RRC映射到IAB2 SRB1或者IAB2 SRB2上传输,将UE-associated F1AP消息和/或IAB1-associated F1AP消息映射到IAB2 RB上传输。IAB node2从IAB2 RB上提取出F1AP消息,并进一步根据DU发送的路由信息或者节点指示信息,来获知该专用RB上传输的F1AP消息是否需要自己处理。在上行方向,CU根据DU发送的类型指示信息,来获知IAB2-associated F1AP消息中携带的是RRC消息和/或F1AP消息,并根据IP层的IP地址或者DU发送的节点指示信息,来获知该F1AP消息是送到与UE对等的F1AP层处理,还是送到与IAB node1对等的F1AP层处理。
图4示出了本申请另一个控制面信令在各接口的承载映射和处理的具体的实施例。这里,CU和DU分别位于IAB Donor中。具体的,CU、DU、IAB node2、IAB node1以及UE可以参见上文中的描述,这里不再赘述。
具体而言,UE和IAB node1之间的Uu接口上建立有UE的SRB1(记为UE SRB1),UE的RRC消息记为(UE RRC)可以承载在UE SRB1上传输。
IAB node1和IAB node2之间的Un1接口上建立有IAB node1的SRB1(记为IAB1 SRB1),IAB1的RRC消息(记为IAB1 RRC)可以承载在IAB1 SRB1上传输。
本申请实施例中,IAB node1中可以对UE RRC进行封装生成UE的F1AP消息(记为UE-associated F1AP消息)。作为一个可选的实施例,该UE-associated F1AP消息可以承载在IAB1 SRB1上传输。
IAB node2和DU之间的Un2接口上建立有IAB node2的SRB1(记为IAB2 SRB1),IAB node2的RRC消息(记为IAB2 RRC)可以承载在IAB2 SRB1上传输。
作为一个可选的实施例,IAB node2在从IAB1 SRB1上接收到UE-associated F1AP消息之后,将该UE-associated F1AP消息映射到IAB2 SRB1上传输。
本申请实施例中,IAB node2可以对IAB1 RRC消息进行封装生成IAB node1的F1AP消息(记为IAB1-associated F1AP消息)。作为一个可选的实施例,该IAB1-associated F1AP消息映射在IAB2 SRB1上传输。
DU和CU之间通过有线接口相连。具体的,DU和CU之间的有线接口上可以承载IAB node2的F1AP消息(记为IAB2-associated F1AP消息)。
可选的,DU可以将IAB node2的RRC消息(记为IAB2 RRC)、IAB1-associated F1AP消息或UE-associated F1AP消息中的至少一种消息封装在该IAB2-associated F1AP消息中传输。
因此,本申请实施例中,IAB node1和IAB node2之间的Un1接口上可以复用现有的IAB1 SRB1传输F1AP消息,IAB node2和DU之间的Un2接口上可以复用现有的IAB2 SRB1传输F1AP消息,而不必在IAB node1和IAB node2之间、IAB node2和DU之间之间建立新的专用无线承载。
总的来说,本申请实施例中,UE RRC在各接口的承载映射如下:
在Uu接口上,UE RRC被映射在SRB1或者SRB2上传输。在Un1接口上,UE RRC被封装在UE-associated F1AP消息中,然后映射到SRB1或者SRB2上传输。在Un2接口上, UE-associated F1AP消息被映射在SRB1或者SRB2上传输。在F1接口上,UE-associated F1AP消息被进一步封装在IAB2-associated F1AP消息中传输。
下面将结合图3中的302至308,针对下行链路(DL)对本申请实施例的数据处理的方法进行具体描述。在另一种可能的实现方式中,302至308可以应用于图4所示的系统中,此时可以将图3中的302至308分别记为302”至308”,即下文中302”至308”中的CU、DU、IAB node2、IAB node1以及UE可以为图4中的对应的网元。
302”,CU向DU发送消息#1。
具体的,302”可以参见上文中302’中的描述,为避免重复,这里不再赘述。
304”,DU向IAB node2发送消息#2。
作为一个可选的实施例,当DU通过有线接口从CU获取到IAB2-associated F1AP消息以及类型指示信息时,DU可以将该IAB2-associated F1AP消息解封装以提取其中包含的IAB2 RRC消息和/或F1AP消息,并将提取到的IAB2 RRC消息和/或F1AP消息映射到IAB2 SRB1上发送给IAB node2。此时,该IAB2 RRC消息和/或F1AP消息即为该消息#2。
并且,DU需要向IAB node2转发该类型指示消息。具体的,该类型指示信息可以携带在Un2接口中的RLC头字段中,或者Un2接口的适配层中。
可选的,DU还可以向IAB node2发送一个指示信息,该指示信息用于指示IAB node2是否需要对从IAB2-associated F1AP消息中提取的F1AP消息进行处理。作为一种示例,该指示信息可以是节点的标识信息,例如:IAB node1的节点标识,UE的标识等。在一些可能的实现方式中,该指示信息可以携带在Un2接口的RLC头字段中,或者在Un2接口的适配层中。
306”,IAB node2向IAB node1发送消息#3。
作为一个可选的实施例,当IAB node2从Un2接口中的IAB2 SRB1上接收到消息并且接收到类型指示信息时,则可以根据类型指示信息,确定从IAB2 SRB1上接收到的消息类型,消息类型可以是RRC消息,也可以是F1AP消息。
具体的,当IAB node2确定该消息为IAB2 RRC消息,此时可以直接将该消息送到RRC层进行处理。
当IAB node2确定该消息为F1AP消息时,作为一种可选的实施例,IAB node2可以结合该F1AP消息的路由信息来决定该F1AP消息是否需要自己处理。具体而言,当该F1AP消息的路由信息表示该F1AP消息的目标路由节点为IAB node1时,即表示该F1AP消息需要IAB node2处理,则IAB node2对该F1AP消息进行解封装,当获知该F1AP消息中携带的RRC消息为IAB1 RRC时,将该IAB1 RRC消息映射到Un1接口中的IAB1 SRB1发送给IAB node1,此时该IAB1 RRC消息即为消息#3。
当该F1AP消息的路由信息表示该F1AP消息的目标路由节点为不是与IAB node2连接的下一跳节点时,例如当目标路由节点为UE时,即表示该F1AP消息不需要IAB node2处理,则IAB node2将该F1AP消息映射到Un1接口中的IAB1 SRB1发送给IAB node1,此时该F1AP消息即为消息#3。
作为另一种可选的实施例,IAB node2可以结合DU向IAB node2发送的指示信息,来确定该IAB2 RB上的F1AP消息是否需要自己处理。具体而言,当根据该指示信息,确定IAB node2需要对该F1AP消息进行处理时,IAB node2对该F1AP消息进行解封装, 当获知该F1AP消息中携带的RRC消息为IAB1 RRC时,将该IAB1 RRC消息映射到Un1接口中的IAB1 SRB1发送给IAB node1,此时该IAB1 RRC消息即为消息#3。
当根据该指示信息,确定IAB node2不需要对该F1AP消息进行处理时,IAB node2将该F1AP消息映射到Un1接口中的IAB1 SRB1发送给IAB node1,此时该F1AP消息即为消息#3。
可选的,本申请实施例中,IAB node2还可以通过Un1接口向IAB node1发送一个类型指示信息,用于指示IAB1 SRB1中传输的消息的消息类型,使得IAB node1可以根据消息类型,对从IAB1 SRB1上接收到的不同消息进行不同处理。
因此,本申请实施例中,通过CU向DU发送IAB2-associated F1AP消息以及类型指示信息,并且DU对该IAB2-associated F1AP消息进行解封装,并将该类型指示消息转发给IAB node2,使得IAB node2能够根据接收到的消息的不同的消息类型,将该消息映射到不同的承载上,实现DU、IAB node2对控制面信令进行承载映射。
308”,IAB node1向UE发送消息#4。
具体的,308”可以参见上文中308’中的描述,为避免重复,这里不再赘述。
因此,本申请实施例中,通过在SRB1上传输RRC消息以及F1AP消息,并结合类型指示信息或路由信息,使得IAB node2能够确定获取的消息的消息类型,并可以根据不同消息类型,对控制面信令进行承载映射。
可选的,还可以通过在SRB2上传输RRC消息以及F1AP消息,并结合类型指示信息或路由信息,使得IAB node2能够确定获取的消息的消息类型,并可以根据不同消息类型,对控制面信令进行承载映射。
下面将结合图3中的310至316,针对上行链路(UL)对本申请实施例的数据处理的方法进行具体描述。在一种可能的实现方式中,310至316可以应用于图2所示的系统中,此时可以将图3中的310至316分别记为310”至316”,即下文中310”至316”中的CU、DU、IAB node2、IAB node1以及UE可以为图4中的对应的网元。
310”,UE向IAB node1发送消息#5。
具体的,310”可以参见上文中310’中的描述,为避免重复,这里不再赘述。
312”,IAB node1向IAB node2发送消息#6。
作为一个可选的实施例,IAB node1可以生成IAB1 RRC消息,并映射到Un1接口中的IAB1 SRB1中发送给IAB node2,此时该IAB1 RRC消息为消息#6。
作为一个可选的实施例,当IAB node1通过Uu接口中的UE SRB1接收到UE RRC消息时,可以将该UE RRC消息进行封装,生成UE-associated F1AP消息,并映射到Un1接口中的IAB1 SRB1上发送给IAB node2,此时该UE-associated F1AP即为消息#6。
此时,IAB node1需要向IAB node2发送一个类型指示信息,用于指示该IAB1 SRB1上传输的消息的消息类型,该消息类型可以是RRC消息,也可以是F1AP消息,以使得IAB node2根据消息类型对不同消息进行不同的处理。在一些可能的实现方式中,该类型指示信息可以携带在Un1接口的RLC头字段中,或者Un1接口的适配层中传输。
314”,IAB node2向DU发消息#7。
作为一个可选的实施例,IAB node2可以生成IAB2 RRC消息,并映射到Un2接口中的IAB2 SRB1上发送给DU,此时,该IAB1 RRC消息为消息#7。
作为一个可选的实施例,当IAB node2通过Un1接口中的IAB1 SRB1接收到消息,并且该消息的消息类型为RRC消息时,则对该IAB1 RRC消息进行封装,生成IAB1-associated F1AP消息,并映射到Un2接口中的IAB2 SRB1上发送给DU,此时该IAB-associated F1AP即为消息#7。
作为一个可选的实施例,当IAB node2通过Un1接口中的IAB1 SRB1接收到消息,并且该消息的消息类型为F1AP消息时,则将该F1AP消息映射到Un1接口中的IAB2 SRB1上发送给DU,此时该UE-associated F1AP消息即为消息#7。
此时,IAB node2还需要向DU发送一个类型指示信息,用于指示Un2接口的IAB2 SRB1上传输的消息的消息类型,该消息类型可以是RRC消息,也可以是F1AP消息,以使得DU根据消息类型对不同消息进行不同的处理。在一些可能的实现方式中,该类型指示信息可以携带在Un2接口的RLC头字段中,或者Un2接口的适配层中传输。
316”,DU向CU发送消息#8。
具体的,316”可以参见上文中316’中的描述,为避免重复,这里不再赘述。
因此,本申请实施例中,通过在SRB1上传输RRC消息以及F1AP消息,并同时发送消息的消息类型,能够使得IAB node2、IAB node1、DU能够根据不同消息类型,对控制面信令进行承载映射。并且,通过DU向CU发送IAB2-associated F1AP消息中包括的消息的类型,使得CU能够根据IAB2-associated F1AP消息中包括的不同的消息类型,将解封装后的数据包发送到不同的处理层,实现对控制面信令进行承载映射。
可选的,还可以通过在SRB2上传输RRC消息以及F1AP消息,并同时发送消息的消息类型,能够使得IAB node2、IAB node1、DU能够根据不同消息类型,对控制面信令进行承载映射。并且,通过DU向CU发送IAB2-associated F1AP消息中包括的消息的类型,使得CU能够根据IAB2-associated F1AP消息中包括的不同的消息类型,将解封装后的数据包发送到不同的处理层,实现对控制面信令进行承载映射。
总的来说,本申请实施例中,在下行方向,DU将从IAB2-associated F1AP消息中收到的所有消息都映射到IAB2 SRB1或者IAB2 SRB2上传输。IAB node2根据DU发送的类型指示信息,来获知从IAB2 SRB1或者IAB2 SRB2上收到的是RRC消息和/或F1AP消息,并对不同的消息进行不同的处理。如果是RRC消息,则送到RRC层处理,如果是F1AP消息,则根据DU发送的路由信息或者节点指示信息,来获知该F1AP消息是否需要自己处理,如果需要自己处理,则送到F1AP层处理,否则根据路由信息将该F1AP消息路由到下一跳节点。同理,IAB node1的处理跟IAB node2的处理类似,这里就不再赘述。在上行方向,IAB node2根据IAB node1发送的类型指示信息,来获知从IAB1SRB1或者IAB2 SRB2上收到的是RRC消息和/或F1AP消息。同理,IAB node2也会向DU,DU也会向CU发送该类型指示信息。CU根据DU发送的类型指示信息,来获知IAB2-associated F1AP消息中携带的是RRC消息和/或F1AP消息,并根据IP层的IP地址或者DU发送的节点指示信息,来获知该F1AP消息是送到与UE对等的F1AP层处理,还是送到与IAB node1对等的F1AP层处理。
图5示出了本申请另一个控制面信令在各接口的承载映射和处理的具体的实施例。这里,CU和DU分别位于IAB Donor中。具体的,CU、DU、IAB node2、IAB node1以及UE可以参见上文中的描述,这里不再赘述。
具体而言,UE和IAB node1之间的Uu接口上建立有UE的SRB1(记为UE SRB1),UE的RRC消息记为(UE RRC)可以承载在UE SRB1上传输。或者,UE和IAB node1之间的Uu接口上建立有UE的SRB2(记为UE SRB2),UE的RRC消息记为(UE RRC)可以承载在UE SRB2上传输。
IAB node1和IAB node2之间的Un1接口上建立有IAB1的SRB1(记为IAB1 SRB1),IAB1的RRC消息(记为IAB1 RRC)可以承载在IAB1 SRB1上传输。或者,IAB node1和IAB node2之间的Un1接口上建立有IAB1的SRB2(记为IAB1 SRB2),IAB1的RRC消息(记为IAB1 RRC)可以承载在IAB1 SRB2上传输。
作为一个可选的实施例,IAB node1和IAB node2之间的Un1接口上还可以建立有IAB1的DRB(记为IAB1 DRB)。在一些可能的实施方式中,该IAB1 DRB为专用DRB,可以区别于已有的DRB,仅用于传输F1AP消息。或者,在另一些可能的实现方式中,该IAB1 DRB既可以用于传输F1AP消息,还可以用于传输用户面数据。
本申请实施例中,IAB node1对UE RRC进行封装生成UE的F1AP消息(记为UE-associated F1AP消息)。作为一例,该UE-associated F1AP消息可以承载在IAB1 DRB上传输。
IAB node2和DU之间的Un2接口上建立有IAB2的SRB1(记为IAB2 SRB1),IAB2的RRC消息(记为IAB2 RRC)可以承载在IAB2 SRB1上传输。具体的,IAB2 SRB1可以参见图3或图4,图5将重点描述IAB2 DRB,因此图5中并未示出该IAB2 SRB1。
作为一个可选的实施例,IAB node2和DU之间的Un2接口上还可以建立有IAB2的DRB(记为IAB2 DRB)。在一些可能的实施方式中,该IAB1 DRB为专用DRB,可以区别于已有的DRB,仅用于传输F1AP消息。或者,在另一些可能的实现方式中,该IAB1 DRB既可以用于传输F1AP消息,还可以用于传输用户面数据。作为一例,IAB2在从IAB1 DRB上接收到UE-associated F1AP消息之后,可以将该UE-associated F1AP消息承载在IAB2 DRB上传输。
本申请实施例中,IAB node2对IAB1 RRC消息进行封装生成IAB1的F1AP消息(记为IAB1-associated F1AP消息)。作为一例,该IAB1-associated F1AP消息可以承载在IAB2 DRB上传输。
可选的,DU可以将IAB1-associated F1AP消息或UE-associated F1AP消息中的至少一个消息封装在一个IAB2对应的GTP隧道中发送到CU。
可选的,DU将IAB1-associated F1AP消息或UE-associated F1AP消息中的至少一个消息承载在一个IAB2对应的GTP隧道中发送到CU。该GTP隧道与IAB2 DRB一一映射。
DU和CU之间为有线接口。具体的,DU和CU有线接口上承载IAB2对应的GTP隧道,用于传输F1AP消息。
本申请实施例中,在UE接入网络之前,IAB node2首先需要接入网络,然后IAB node1接入网络。
具体的,IAB node2在接入网络的过程中,在Un2接口上建立用于传输IAB2 RRC消息的IAB2 SRB1。
并且可选的,CU可以触发DU在Un2接口为F1AP消息建立一个DRB承载,即IAB2 DRB。作为一个示例,该IAB2 DRB可以用于传输UE-associated F1AP消息和/或 IAB1-associated F1AP消息。此时,该IAB2 DRB可以与CU和DU之间的一个IAB2对应的GTP隧道一一映射。
也就是说,本申请实施例中,将包含IAB1-associated F1AP消息或UE-associated F1AP消息中至少一个消息携带在一个IAB2对应的GTP隧道上传输,而IAB2 RRC消息还是封装在IAB2-associated F1AP消息中通过有线接口发送,这样,CU和DU可以根据不同类型的承载,确定不同类型承载中传输的消息类型。
IAB node1在接入网络的过程中,在Un1接口建立用于传输IAB1 RRC消息的IAB1 SRB1。
并且可选的,IAB node1在建立IAB1 SRB1的同时,CU可以触发IAB1在Un1接口建立专门用于传输F1AP消息的IAB1 DRB。作为一个示例,该IAB1 DRB可以用于传输UE-associated F1AP消息。此时,Un1接口上的IAB1 DRB与Un2接口上的IAB2 DRB一一映射。具体而言,IAB node2可以将从IAB2 DRB上获得数据包,并根据该映射关系,将获得的数据包映射到IAB1 DRB,或者,IAB node2可以将从IAB1 DRB获取数据包,并根据该映射关系,将获得的数据包映射到IAB2 DRB。
总的来说,本申请实施例中,UE RRC在各接口的承载映射如下:
在Uu接口上,UE RRC被映射在SRB1或者SRB2上传输。在Un1接口上,UE RRC被封装在UE-associated F1AP消息中,然后映射到DRB上传输。在Un2接口上,UE-associated F1AP消息被映射在DRB上传输。在F1接口上,UE-associated F1AP消息被映射到一个GTP隧道中传输,其中,F1接口的该GTP隧道与Un2接口上的DRB一一对应。
下面将结合图3中的302至308,针对下行链路(DL)对本申请实施例的数据处理的方法进行具体描述。在另一种可能的实现方式中,302至308可以应用于图5所示的系统中,此时可以将图3中的302至308分别记为302”’至308’,即下文中302”’至308”’中的CU、DU、IAB node2、IAB node1以及UE可以为图5中的对应的网元。
302”’,CU向DU发送消息#1。
CU可以通过有线接口向DU发送IAB2-associated F1AP消息(即该消息#1),其中,IAB2-associated F1AP消息中包括IAB2 RRC消息。具体的,CU可以对IAB2 RRC消息进行封装生成IAB2-associated F1AP消息后发送到DU。
CU可以通过IAB2对应的GTP隧道向DU发送F1AP消息(即消息#1),该GTP隧道中携带包括IAB1-associated F1AP消息或UE-associated F1AP消息中的至少一个F1AP消息。
具体的,CU可以对IAB1 RRC消息进行封装生成IAB1-associated F1AP消息。CU还可以对UE RRC消息进行封装生成UE-associated F1AP消息。CU将IAB1-associated F1AP消息或UE-associated F1AP消息中的至少一个消息携带在IAB2对应的GTP隧道中发送给DU。
这样,DU可以根据有线接口上的不同承载,确定不同承载上传输的消息类型。
304”’,DU向IAB node2发送消息#2。
作为一个可选的实施例,当DU通过有线接口获取到IAB2-associated F1AP消息时,将该IAB2-associated F1AP消息解封装以提取该IAB2 RRC消息,并将该IAB2 RRC消息映射到IAB2 SRB1或者IAB2 SRB2中发送给IAB node2。此时,该IAB2 RRC消息即为 该消息#2。
作为另一个可选的实施例,当DU通过IAB2的GTP隧道获取到F1AP时,将该该F1AP消息映射到Un2接口对应的IAB2 DRB中发送给IAB2。此时,该F1AP消息即为该消息#2。
可选的,如果IAB2 DRB上除了发送F1AP消息之外,还可以发送用户面数据时,则DU还需要向IAB2发送一个指示信息,用于指示在IAB2 DRB上发送的数据类型,该数据类型可以是F1AP消息,也可以是用户面数据。
可选的,DU还可以向IAB node2发送一个指示信息,该指示信息用于指示IAB node2是否需要对该F1AP消息进行处理。在一些可能的实现方式中,该指示信息可以携带在Un2接口的RLC头字段中,或者在Un2接口的适配层中。
因此,本申请实施例中,通过在GTP隧道中发送F1AP消息,实现DU对控制面信令进行承载映射。
306”’,IAB node2向IAB node1发送消息#3。
作为一个可选的实施例,当IAB node2从Un2接口中的IAB2 SRB1上接收到消息时,则可以确定该消息即为IAB2 RRC消息,此时可以直接将该消息送到RRC层进行处理。
作为一个可选的实施例,当IAB2 DRB专门用于传输F1AP消息时,如果IAB node2从Un2接口中的IAB2 DRB上接收到数据时,则可以确定该消息即为F1AP消息。或者,IAB2可以结合指示信息,确定IAB2 DRB上传输的消息为F1AP消息。
此时,作为一种可选的实施例,IAB2可以结合该F1AP消息的路由信息来决定该F1AP消息是否需要自己处理。具体而言,当该F1AP消息的路由信息表示该F1AP消息的目标路由节点为IAB1时,即表示该F1AP消息需要IAB node2处理,则IAB2对该F1AP消息进行解封装,当获知该F1AP消息中携带的是IAB1 RRC消息时,将该IAB1 RRC消息通过Un1接口中的IAB1 SRB1发送给IAB node1,此时该IAB1 RRC消息即为消息#3。
当该F1AP消息的路由信息表示该F1AP消息的目标路由节点为不是与IAB node2连接的下一跳节点时,例如当目标路由节点为UE时,即表示该F1AP消息不需要IAB node2处理,此时,IAB node2将该F1AP消息映射到Un1接口中的对应的IAB1 DRB中发送到IAB node1,此时该F1AP消息即为消息#3。
作为另一种可选的实施例,IAB node2可以结合DU向IAB2发送的指示信息,来确定该IAB2 RB上的F1AP消息是否需要自己处理。具体而言,当根据该指示信息,确定该F1AP消息需要IAB node2进行处理时,IAB node2将该F1AP消息进行解封装,当获知该F1AP消息中携带的是IAB1 RRC消息时,将该IAB1 RRC消息映射到Un1接口中的IAB1 SRB1发送给IAB node1,此时该IAB1 RRC消息即为消息#3。
当根据该指示信息,确定该F1AP消息不需要IAB node2进行处理时,IAB2该F1AP消息映射到Un1接口中对应的IAB1 DRB发送到IAB node1,此时该F1AP消息即为消息#3。
可选的,如果IAB1 DRB上除了发送F1AP消息之外,还可以发送用户面数据时,则IAB node2在该IAB1 DRB上发送F1AP消息时,还需要向IAB node1发送一个指示信息,用于指示在IAB1 DRB上发送的数据类型,该数据类型可以是F1AP消息,也可以是用户面数据。
308”’,IAB node1向UE发送消息#4。
作为一个可选的实施例,当IAB node1从Un1接口中的IAB1 SRB1上接收到消息时,则可以确定该消息即为IAB1 RRC消息,此时可以直接将该消息送到RRC层进行处理。
作为一个可选的实施例,当IAB1 DRB仅用于传输F1AP消息时,如果IAB node1从Un1接口中的IAB1 DRB上接收到数据,则可以确定该消息即为F1AP消息。或者,IAB1可以结合指示信息,确定IAB1 DRB上传输的消息为F1AP消息。
具体而言,IAB node1对该F1AP消息进行解封装,当获知该F1AP消息中携带的是UE RRC消息时,将该UE RRC消息映射到Uu接口中的UE SRB1发送给UE,此时该UE RRC消息即为消息#4。
因此,本申请实施例中,通过DRB上传输F1AP消息,实现对控制面信令进行承载映射。
下面将结合图3中的310至316,针对上行链路(UL)对本申请实施例的数据处理的方法进行具体描述。在一种可能的实现方式中,310至316可以应用于图5所示的系统中,此时可以将图3中的310至316分别记为310”’至316”’,即下文中310”’至316”’中的CU、DU、IAB node2、IAB node1以及UE可以为图5中的对应的网元。
310”’,UE向IAB node1发送消息#5。
具体的,UE生成UE RRC消息,并通过Uu接口中的UE SRB1,将该UE RRC消息发送给IAB1。此时,该UE RRC消息即为消息#5。
312”’,IAB node1向IAB node2发送消息#6。
作为一个可选的实施例,IAB node1可以生成IAB1 RRC消息,并通过Un1接口中的IAB1 SRB1将该IAB1 RRC消息发送给IAB node2,此时该IAB1 RRC消息为消息#6。
作为一个可选的实施例,当IAB node1通过Uu接口中的UE SRB1接收到UE RRC消息时,将该UE RRC消息进行封装,生成UE-associated F1AP消息,并将该UE-associated F1AP消息映射到Un1接口中的IAB1 DRB中发送给IAB2,此时该UE-associated F1AP即为消息#6。
314”’,IAB node2向DU发消息#7。
作为一个可选的实施例,IAB node2可以生成IAB2 RRC消息,并通过Un2接口中的IAB2 SRB1将该IAB1 RRC消息发送给DU,此时,该IAB1 RRC消息为消息#7。
作为一个可选的实施例,当IAB node2通过Un1接口中的IAB1 SRB1接收到IAB1RRC消息时,将该IAB1 RRC消息进行封装,生成IAB1-associated F1AP消息,并将该IAB1-associated F1AP消息映射到Un2接口中的IAB2 DRB发送给DU,此时该IAB-associated F1AP即为消息#7。
作为一个可选的实施例,当IAB node2通过Un1接口中的IAB1 DRB接收到UE-associated F1AP消息时,可以直接将该UE-associated F1AP消息映射到IAB2 DRB上发送给DU,此时该UE-associated F1AP消息即为消息#7。
316”’,DU向CU发送消息#8。
作为一个可选的实施例,DU对从IAB2 SRB1上接收到的IAB2 RRC消息进行封装,生成IAB2-associated F1AP消息,并将该IAB2-associated F1AP消息通过有线接口发送到CU。此时,该IAB2-associated F1AP即为消息#8。
作为一个可选实施例,DU可以通过与IAB2 DRB一一映射的GTP隧道来携带IAB1 associated F1AP消息或UE-associated F1AP消息中的至少一个消息通过有线接口发送到CU。此时,该IAB2-associated F1AP即为消息#8。
此时,CU可以确定从与IAB2对等的F1AP层收到的是IAB2-associated F1AP消息,而从与IAB2 DRB一一映射的GTP隧道中收到的是F1AP消息,并根据IP层的IP地址,或者节点标识来对GTP隧道中收到的不同F1AP消息进行不同处理。
具体的,CU对IAB2-associated F1AP消息进行解封装,当获知该F1AP消息中携带的是IAB2 RRC消息时,将该IAB2 RRC消息发送到与IAB2对等的RRC层进行处理。
当CU从与IAB2 DRB对应的GTP隧道中收到F1AP消息时,CU可以根据IP层携的IP地址,或者该GTP隧道头字段中携带的节点标识,确定该F1AP消息的消息类型,该消息类型可以是UE-associated F1AP消息,也可以是IAB1-associated F1AP消息。当CU确定为UE-associated F1AP消息时,将该UE-associated F1AP消息发到与UE对等的F1AP层进行处理,进一步的,与UE对等的F1AP层对UE-associated F1AP消息进行解封装获得UE RRC消息。当CU确定为IAB1-associated F1AP消息时,将该IAB1-associated F1AP消息发到与IAB1对等的F1AP层进行处理。进一步的,与IAB1对等的F1AP层对IAB1-associated F1AP消息进行解封装获得IAB1 RRC消息。
可选的,DU可以向CU发送的上述节点标识,还可以携带在GTP层之上的适配层中。
因此,本申请实施例中,通过在SRB1上传输RRC消息,在DRB上传输F1AP消息,以及在GTP隧道中传输F1AP消息,实现对控制面信令进行承载映射和处理。
本申请实施例中,不同于LTE的承载映射,NR采用更细粒度的业务质量(Quality Of Service,QoS)机制,即基于flow粒度的承载映射。具体而言,对于直接附着在IAB Donor下的UE,对应的承载建立及承载映射包括将该UE的一个QoS flow在Uu接口上映射到UE与DU之间的一个DRB中传输,在DU和CU之间映射到一个GTP隧道中传输,其中,该GTP隧道与该UE在Uu接口的DRB一一映射。
对于图1中所示的场景,当系统中包括IAB Donor、IAB node1、IABnode2和UE时,UE的用户面数据传输不需要经过任何IAB node的UPF。具体而言,本申请实施例中,IAB node之间的接口,例如Un接口(比如Un1接口、Un2接口)以及IAB node与UE之间的Uu接口上都会建立DRB承载,并且,每个IABnode可以根据各接口之间的DRB承载的映射关系,或者根据DRB承载对应的QoS参数,或者根据UE业务流所属的QoS参数,对用户面数据进行承载映射。这里,QoS参数可以包括业务流对应的时延、和/或丢包率、和/或流保证比特率GFBR(Guaranteed Flow Bit Rate)、和/或流最大比特率(Maximum Flow Bit Rate)等与业务流质量相关的信息。
总的来说,本申请实施例中,在下行方向,IAB node1和IAB node2都可以根据其上一跳节点发送的路由信息或者节点指示信息,来获知该F1AP消息是否需要自己处理,如果需要自己处理,则送到F1AP层处理,否则根据路由信息将该F1AP消息路由到下一跳节点。在Un接口上,如果F1AP消息和UE数据复用在一个DRB上,则下一跳节点还需要从上一跳节点获取类型指示信息,用于指示该DRB上传输的是F1AP消息和/或数据。
下面,结合具体的实施例,详细描述本申请实施例的数据处理的方法。应注意,以下仅仅是为了帮助本领域技术人员理解和实现本申请的实施例,而非限制本申请实施例的范 围。本领域技术人员可以根据这里给出的例子进行等价变换或修改,这样的变换或修改仍然应落入本申请实施例的范围内。
图6示出了本申请一个用户面数据在各接口的承载映射和处理的具体的实施例。这里,IAB Donor、IAB node2、IAB node1以及UE可以参见上文中的描述,这里不再赘述。
应理解,图6示出了数据处理的方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图6中的各个操作的变形。此外,图6中的各个步骤可以按照与图6呈现的不同的顺序来执行,并且有可能并非要执行图6中的全部操作。
601,UE的会话管理功能(Session Management Function,SMF)向UE的接入和移动性管理功能(Access and Mobility Management Function,AMF)发送N11消息,该N11消息中包括UE请求建立会话的标识(PDU session ID)、PDU会话中包含的业务流的标识业务流标识(QoS Flow Identifier,QFI)以及QoS参数(profile)等,本申请实施例对此不作具体限定。
602,UE的AMF向IAB Donor中的CU发送N2消息。N2消息中包括会话标识(PDU session ID)、QFI以及QoS profile等,本申请实施例对此不作具体限定。
603,IAB Donor中的CU根据从AMF获取的UE业务流QoS信息,为该UE业务流分配一个DRB ID,并触发UE和IAB node1中的DU建立该DRB ID对应的DRB承载。即:IAB Donor中的CU向IAB node1中的DU发送UE-associated F1AP消息,该UE-associated F1AP消息中包括UE的RRC重配置消息。这里,该RRC重配置消息中包括会话标识(session ID)、DRB ID等信息等,本申请实施例对此不作限定。
具体的,CU向IAB node1发送UE-associated F1AP消息可以参见上文中的描述,为避免重复,这里不再赘述。
604,IAB node1中的DU从603中的UE-associated F1AP消息中提取出RRC重配置消息,并将该RRC重配置消息发送给UE。
具体的,IAB node1向UE发送RRC消息可以参见上文中的描述,为避免重复,这里不再赘述。
对应的,UE接收IAB node1发送的RRC重配置消息,并根据该RRC重配置消息中的会话标识(session ID)、DRB ID等信息,建立该DRB ID对应的UE DRB承载。
可选的,605,UE接入网络后,IAB Donor中的CU可以根据获取到的UE的业务流QoS信息,触发Un接口上IAB节点用户面承载的建立/更新。
或者,本申请实施例中,在IAB node1和IAB node2接入网络时,可以在Un接口预先为UE所有的业务流建立对应的DRB承载。
606,CU向DU发送IAB2-associated F1AP消息,该IAB2-associated F1AP消息是UE上下文修改请求(UE context Modification Request)。
607,DU向CU发送IAB2-associated F1AP消息作为对606中收到消息的响应,该响应消息是UE上下文修改响应(UE context Modification Response)。
经过步骤606和607的处理,在DU和CU之间为UE的业务流建立了一个对应的GTP隧道。
608,CU向DU发送IAB2-associated F1AP消息,该IAB2-associated F1AP中包括IAB node2的RRC重配置消息。这里,该RRC重配置消息用于为UE的业务流在UE与IAB  node1中DU之间建立对应的UE DRB。该UE DRB与CU和DU之间建立的GTP隧道一一映射。具体的,CU向IAB node2发送IAB2-associated F1AP消息可以参见上文中的描述,为避免重复,这里不再赘述。
609,DU从608中的IAB2-associated F1AP消息中提取出RRC重配置消息,并向IAB node2的MT发送该RRC重配置消息。具体的,DU向IAB node2发送RRC消息可以参见上文中的描述,为避免重复,这里不再赘述。
此时,IAB node2根据该RRC重配置消息,在Un2接口为UE的业务流建立对应的IAB2 DRB。
610,CU向IAB node2中的DU发送IAB1-associated F1AP消息,该IAB1-associated F1AP中包括IAB node1的RRC重配置消息。这里,该RRC重配置消息用于为UE的业务流在IAB node1和IAB node2之间建立对应的IAB1 DRB。具体的,CU向IAB node1发送F1AP消息可以参见上文中的描述,为避免重复,这里不再赘述。
611,IAB node2中的DU从610中的IAB1-associated F1AP消息中提取出RRC重配置消息,并向IAB node1的MT发送该RRC重配置消息。具体的,IAB node2向IAB node1发送RRC消息可以参见上文中的描述,为避免重复,这里不再赘述。
这时,IAB node1根据该RRC重配置消息,在Un1接口上为UE的业务流建立对应的IAB1 DRB。
可选的,本申请实施例中,CU可以针对各个接口链路进行统一的QoS映射管理。在一种可能的实现方式中,可以通过以下612和613,CU将各个接口的承载映射关系发送给IAB node1和IAB node2。在另一种可能的实现方式中,可以通过612’,CU只将各个接口的承载映射关系发送给IAB node2。
612,CU向IAB node2中的DU发送IAB1-associated F1AP消息,该IAB1-associated F1AP消息中包括Un1接口的IAB1 DRB与Un2接口的IAB2 DRB之间的映射关系。例如,Un1接口存在IAB1 DRB1和IAB1 DRB2,Un2接口存在IAB2 DRB1和IAB2 DRB2,CU确定Un1接口IAB1 DRB和Un2接口IAB2 DRB之间的映射关系,如果确定IAB1 DRB1和IAB2 DRB1一一映射,IAB1 DRB1和IAB2 DRB2一一映射,则CU将这两个映射关系都发给IAB node2。如果确定IAB1 DRB1和IAB1DRB2均与IAB2 DRB1映射,或者,IAB1 DRB1和IAB1 DRB2均与IAB2 DRB2映射,或者,IAB2 DRB1和IAB2 DRB2均与IAB1 DRB1映射,或者,IAB2 DRB1和IAB2 DRB2均与IAB1 DRB2映射,则CU将确定的映射关系发送到IAB node2。
以上述一一映射为例,对于DL而言,IAB node2将从IAB2 DRB1上接收到的数据包映射到IAB1 DRB1上传输,将从IAB2 DRB2上接收到的数据包映射到IAB1 DRB2上传输。对于UL而言,IAB node2将从IAB1 DRB1上接收到的数据包映射到IAB2 DRB1上传输,将从IAB1 DRB2上接收到的数据包映射到IAB2 DRB2上传输。
具体的,CU向IAB node2的DU发送IAB1-associated F1AP消息可以参见上文中的描述,为避免重复,这里不再赘述。
613,CU向IAB node1中的DU发送UE-associated F1AP消息,该UE-associated F1AP消息中包括UE DRB与IAB1 DRB的映射关系。Uu接口上的UE DRB和Un1接口上的IAB1 DRB之间的映射关系如612中描述一致,可以是一一映射,也可以是多对一或者一对多 的映射,这里不再赘述。
具体的,CU向IAB node1中的DU发送UE-associated F1AP消息可以参见上文中的描述,为避免重复,这里不再赘述。
这时,对于DL而言,当CU将UE的业务流映射一个GTP隧道中发送给DU时,DU可以根据IAB2 DRB和GTP隧道的映射关系,将UE的业务流映射到Un2接口对应的IAB2 DRB中发送给IAB node2。
然后,IAB node2可以根据接收到的IAB1 DRB和IAB2 DRB的映射关系,将Un2接口的IAB2DRB上的UE业务流映射到Un1接口的IAB1 DRB上发送给IAB node1。
然后,IAB node1根据接收到的IAB1 DRB和UE DRB的映射关系,将Un1接口的IAB1 DRB上的UE业务映射到Uu接口对应的UE DRB上发送给UE。
同理,对于UL而言,IAB node1、IAB node2可以根据不同接口的DRB之间的映射关系进行用户面承载映射,DU可以根据IAB2 DRB与GTP隧道的对应关系在CU和DU之间进行用户面承载的映射,最终将UE业务发送给CU。
612’,CU向IAB node2中的DU发送F1AP消息,该F1AP消息中包括IAB1 DRB与IAB2 DRB之间的映射关系,以及UE DRB与IAB1 DRB之间的映射关系。
这时,在发送用户面数据时,IAB node2可以根据UE DRB与IAB1 DRB之间的映射关系,确定IAB node1需要将IAB1 DRB上传输的用户数据映射到的UE DRB。然后,IAB node2可以向IAB node1发送指示信息,用于指示IAB node1进行用户面承载的映射,具体的,该指示信息可以是UE DRB的标识DRB ID,使得IAB node1根据该指示信息,将从IAB1 DRB上接收的用户数据映射到对应的UE DRB上。
这时,对于下行而言,当CU将UE的业务流映射到对应的GTP隧道中发送给DU,DU可以根据IAB2 DRB与CU和DU之间GTP隧道的映射关系,将UE的业务流映射到IAB2 DRB中发送给IAB node2。
然后,IAB node2可以根据接收到的IAB1 DRB和IAB2 DRB之间的映射关系,将IAB2DRB上的UE业务映射到IAB1 DRB上发送给IAB node1。并且,IAB node2根据接收到的IAB1 DRB和UE DRB之间的映射关系,确定IAB node1在从IAB1 DRB上接收到该UE业务流后,需要将该UE业务流映射到的UE DRB,并向IAB node1发送用于指示该UE DRB的指示信息。作为一例,该指示信息可以携带在适配层(adaptation layer)中。
IAB node1通过IAB1 DRB接收到该UE业务流,并且接收到该指示信息后,可以将该UE业务流映射到对应的UE DRB上发送给UE。
同理,对于UL而言,IAB node1可以根据反射(reflective)的方式进行UL映射,IAB node2可以根据IAB1 DRB与IAB2 DRB之间的映射关系,DU可以根据IAB2 DRB与GTP隧道的对应关系,最终将UE业务发送给CU。
因此,本申请实施例中,通过CU对各个接口链路进行统一的QoS映射管理,可以实现对用户面数据进行承载映射。
图7示出了本申请一个用户面数据在各接口的承载映射的具体的实施例。这里,IAB Donor、IAB node2、IAB node1以及UE可以参见上文中的描述,这里不再赘述。
应理解,图7示出了数据处理的方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图7中的各个操作的变形。此外,图7中的各个步骤 可以按照与图7呈现的不同的顺序来执行,并且有可能并非要执行图7中的全部操作。
701,UE的SMF向UE的AMF发送N11消息。具体的,701可以参见601中的描述,为避免重复,这里不再赘述。
702,UE的AMF向IAB Donor中的CU发送N2消息。具体的,702可以参见602中的描述,为避免重复,这里不再赘述。
703,IAB Donor中的CU向IAB Donor中的DU发送IAB2-associated F1AP消息,该IAB2-associated F1AP消息可以是UE上下文修改请求(UE context Modification Request)。具体的,703可以参见上文中606的描述,为避免重复,这里不再赘述
704,DU接收到703中的IAB2-associated F1AP消息后,向CU发送IAB2-associated F1AP消息,该IAB2-associated F1AP消息可以是上下文修改响应(UE context Modification Response)。具体的,704可以参见上文中607的描述,为避免重复,这里不再赘述。
此时,DU为UE业务流在CU和DU之间建立对应的GTP隧道。
705,IAB Donor中的CU向IAB Donor中的DU发送IAB2-associated F1AP消息,该IAB2-associated F1AP消息中包括IAB node2的RRC重配置消息。具体的,705可以参见上文中608中的描述,为避免重复,这里不再赘述。
706,DU从705中的IAB2-associated F1AP消息中提取出RRC重配置消息,并向IAB node2的MT发送该RRC重配置消息。具体的,DU向IAB node2发送RRC消息可以参见上文中的描述,为避免重复,这里不再赘述。
此时,IAB node2根据该RRC重配置消息,在Un2接口建立与GTP隧道一一映射的IAB2 DRB。
这样,通过701至706,可以建立IAB2 DRB以及与IAB2 DRB对应的GTP隧道。
707,SMF向AMF发送N11消息。
708,AMF向IAB Donor中的CU发送N2消息,以请求CU建立PDU会话。
709,IAB Donor中的CU向IAB node2中的DU发送IAB1-associated F1AP消息,该IAB1-associated F1AP消息可以是UE上下文修改请求(UE context Modification Request)。具体的,上下文修改请求中包括IAB2 DRB和其对应的QoS profile信息,以及IAB1 DRB和其对应的QoS profile信息。其中,QoS profile信息包括:5G QoS标识5QI、GFBR、MFBR等。
710,IAB node2根据709中获得的信息,确定IAB2 DRB和IAB1 DRB的映射关系。此时,由IAB节点执行每个IAB的承载映射。
711,IAB node2中的DU向IAB Donor中的CU发送UE上下文修改响应(UE context Modification Response)。
712,CU向IAB node2发送IAB2-associated F1AP消息,该IAB2-associated F1AP消息中包括IAB node1的RRC重配置消息。具体的,712可以参见610中的描述,为避免重复,这里不再赘述,
713,IAB node2中的DU从712中的IAB2-associated F1AP消息中提取出RRC重配置消息,并向IAB node1的MT发送该RRC重配置消息。具体的,713可以参见611中的描述,为避免重复,这里不再赘述。
这时,IAB node1根据该RRC重配置消息,建立IAB1 DRB。
714,UE的SMF向UE的AMF发送N11消息。
715,UE的AMF向IAB宿主(Donor)中的CU发送N2消息。
716,IAB Donor中的CU向IAB node1中的DU发送UE-associated F1AP消息,该UE-associated F1AP消息可以是UE上下文修改请求(UE context Modification Request)。具体的,上下文修改请求中包括IAB1 DRB和其对应的QoS profile信息,以及UE DRB和其对应的QoS profile信息。
717,IAB node1根据716中获得的信息,确定IAB1 DRB和UE DRB的映射关系。此时,由IAB节点执行每个IAB的承载映射。
718,IAB node1中的DU向IAB Donor中的CU发送UE上下文修改响应(UE context Modification Response)。
719,CU向IAB node1中的DU发送UE-associated F1AP消息,该UE-associated F1AP消息中包括UE的RRC重配置消息。具体的,719可以参见603中的描述,为避免重复,这里不再赘述,
720,IAB node1中的DU从719中的UE-associated F1AP消息中提取出RRC重配置消息,并向UE发送该RRC重配置消息。具体的,713可以参见604中的描述,为避免重复,这里不再赘述。
这时,UE根据该RRC重配置消息,建立UEDRB。
总的来说,对于DL而言,当CU将UE的业务流映射到对应的GTP隧道中发送给DU时,DU可以根据IAB2 DRB和GTP隧道的映射关系,将UE的业务流映射到IAB2 DRB中发送给IAB node2。
然后,IAB node2可以根据接收到的IAB1 DRB和IAB2 DRB的映射关系,将IAB2DRB上的UE业务映射到IAB1 DRB上发送给IAB node1。
然后,IAB node1根据接收到的IAB1 DRB和UE DRB的映射关系,将IAB1 DRB上的UE业务映射到UE DRB上发送给UE。
同理,对于UL而言,IAB node1、IAB node2可以根据DRB之间的映射关系,DU可以根据IAB2 DRB与GTP隧道的对应关系,最终将UE业务发送给CU。
在一些可能的实现方式中,本申请实施例中可以不执行图7中所示的步骤710和717,并且还可以执行图8中所示801至804。具体的,UE入网后建立对应的业务承载,CU将UE的QFI和QoS profile的关系分别发送到IAB node1和IAB node2,具体流程如下:
801,IAB Donor中的CU可以向IAB node2中的DU发送IAB1-associated F1AP消息,该IAB1-associated F1AP消息可以是UE上下文修改请求(UE context Modification Request)。具体的,上下文修改请求中包括UE业务的QFI与QoS profile的对应关系。
802,对DL而言,IAB node2根据IAB1 DRB和其对应的QoS profile信息,以及UE业务的QFI与QoS profile的对应关系,确定UE QFI与IAB1 DRB的对应关系。对UL而言,IAB node2根据IAB2 DRB和其对应的QoS profile信息,以及UE业务的QFI与QoS profile的对应关系,确定UE QFI与IAB2 DRB的对应关系。
803,IAB Donor中的CU可以向IAB node1中的DU发送UE-associated F1AP消息,该UE-associated F1AP消息可以是UE上下文修改请求(UE context Modification Request)。具体的,上下文修改请求中包括UE业务的QFI与QoS profile的对应关系。
802,对DL而言,IAB node1根据UE DRB和其对应的QoS profile信息,以及UE业务的QFI与QoS profile的对应关系,确定UE QFI与UE DRB的对应关系。对UL而言,IAB node1根据IAB1 DRB和其对应的QoS profile信息,以及UE业务的QFI与QoS profile的对应关系,确定UE QFI与IAB1 DRB的对应关系。在一些可能的实现方式中,UE业务的QFI与QoS profile的对应关系也可以固化,即可以保存在IAB node1和IAB node2中。
因此,本申请实施例中,通过IAB节点对各个接口链路进行分布式承载映射管理,可以实现对用户面数据进行承载映射。
图9所示的方案是在图7所示方案基础上进行了优化,即在Un接口采用一一对应的映射方法,例如:将Uu接口的UE DRB1固定映射到Un1接口的IAB1 DRB1上,将Uu接口的UE DRB2固定映射到Un1接口的IAB1 DRB2上。同时,将Uu接口的UE DRB1固定映射到Un2接口的IAB2 DRB1上,将Uu接口的UE DRB2固定映射到Un2接口的IAB2 DRB2上。可以理解,各接口上DRB和各接口的逻辑信道(logical channels,LCH)是一一对应的,则UE DRB和Un接口DRB之间的映射也可以是Uu接口上UE的逻辑信道与Un接口上IAB的逻辑信道固定一一映射。进一步的,Un接口上,还可以对不同UE的业务流进行汇聚,汇聚在一个IAB节点的承载上。
如图9所示,UE1在Uu接口存在2个业务流,被分别映射到Uu接口的UE1 DRB1和UE1 DRB2上,其中,UE1 DRB1对应UE1的逻辑信道LCH1,UE1 DRB2对应UE1的逻辑信道LCH2,LCH1使用LCID(LCH identifier,LCID)1来标识,LCH2使用LCID2来标识。
UE2在Uu接口存在3个业务流,被分别映射到Uu接口的UE2 DRB1、UE2 DRB2和UE2 DRB3上,其中,UE2 DRB1对应UE2的逻辑信道LCH1,UE2 DRB2对应UE2的逻辑信道LCH2,UE2 DRB3对应UE2的逻辑信道LCH3,LCH1使用LCID1来标识,LCH2使用LCID2来标识,LCH3使用LCID3来标识。
在Un接口上,IAB节点建立了3个用户面承载,IAB DRB1、IAB DRB2和IABDRB3,其中,IAB DRB1对应IAB的逻辑信道LCH1,IAB DRB2对应IAB的逻辑信道LCH2,IAB DRB3对应IAB的逻辑信道LCH3,LCH1使用LCID1来标识,LCH2使用LCID2来标识,LCH3使用LCID3来标识。
因此,本申请实施例中,在UE业务流传输过程中进行承载映射时,采用一对一固定映射方式,即将UE1 LCID1和UE2 LCID1上传输的业务流均映射到IAB LCID1上传输,将UE1 LCID2和UE2 LCID2上传输的业务流均映射到IAB LCID2上传输,将UE2 LCID3上传输的业务流均映射到IAB LCID3上传输,通过这种固定映射的方式,从而节省了大量的信令开销。
图10示出了本申请实施例提供的接入回程一体化IAB系统中数据处理的装置1000的示意性框图。所述IAB系统包括集中式单元CU,分布式单元DU,第一IAB节点和第二IAB节点。该装置1000包括处理单元1010、发送单元1020和接收单元1030。
作为一例,该装置1000可以为CU。
本申请一个实施例中,当装置1000为CU时,处理单元1010,用于生成下行F1AP消息,所述下行F1AP消息包含的消息为以下之一或组合:终端设备的F1AP消息,第一 IAB节点的F1AP消息和第二IAB节点的RRC消息;发送单元1020,用于向所述DU发送所述下行F1AP消息,并指示所述下行F1AP消息中所包含的消息的消息类型为以下之一:RRC消息类型,F1AP消息类型,RRC消息类型和F1AP消息类型。
在一种可能的实现方式中,发送单元1020还用于向所述DU发送指示信息,所述指示信息指示所述消息类型;其中,所述指示信息携带在所述下行F1AP消息中或者携带在所述CU与所述DU之间的F1接口上的对等的适配层中。
在一种可能的实现方式中,发送单元1020具体用于将所述下行F1AP消息携带在特定于所述消息类型的GTP隧道中发送给DU,用来指示DU该特定GTP隧道中传输的是下行F1AP消息。
本申请另一个实施例中,当装置1000为CU时,接收单元1030用于接收所述DU发送的上行F1AP消息,其中所述上行F1AP消息包含的消息为以下之一或组合:终端设备的F1AP消息,第一IAB节点的F1AP消息,第二IAB节点的RRC消息;所述接收单元1030还用于接收所述DU发送的指示信息,所述指示信息指示所述上行F1AP消息中所包含的消息的消息类型为以下之一:RRC消息类型,F1AP消息类型,RRC消息类型和F1AP消息类型。
一种可能的实现方式中,所述指示信息携带在所述上行F1AP消息中或所述CU与所述DU之间F1接口上对等的适配层。
一种可能的实现方式中,当所述上行F1AP消息中所包含消息的消息类型为RRC消息类型时,所述处理单元1010获取所述第二IAB节点的RRC消息,并通过与所述第二IAB节点对等的RRC层进行处理。
一种可能的实现方式中,当所述上行F1AP消息所包含消息的消息类型为F1AP消息类型时,所述处理单元1010获取所述上行F1AP消息中所包含的F1AP消息,并确定所述上行F1AP消息所包含的F1AP消息为所述终端设备的F1AP消息或所述第一IAB节点的F1AP消息。
一种可能的实现方式中,若所述上行F1AP消息所包含的F1AP消息为所述终端设备的F1AP消息,所述处理单元1010通过与所述终端设备对等的F1AP层处理所述终端设备的F1AP消息;或者,若所述上行F1AP消息所包含的F1AP消息为所述第一IAB节点的F1AP消息,所述处理单元1010通过与所述第一IAB节点对等的F1AP层处理所述第一IAB节点的F1AP消息。
作为另一例,装置1000为第二IAB节点。
本申请一个实施例,当装置1000为第二IAB节点时,接收单元1030,用于接收DU发送的下行消息,当所述下行消息承载在第二IAB节点和所述DU之间的信令无线承载时,所述第二IAB节点还接收所述DU发送的指示信息,所述指示信息指示所述下行消息的消息类型为RRC消息类型或F1AP消息类型;
处理单元1010用于根据收到的下行消息,判断所述下行消息是否属于所述第二IAB节点,如果属于所述第二IAB节点,则由第二IAB节点处理,否则将收到的下行消息进一步路由到下一跳节点处理。
本申请另一个实施例,当装置1000为第二IAB节点时,发送单元1020用于向DU发送上行消息;
如果所述上行消息承载在第二IAB节点和所述DU之间的信令无线承载上,所述第二IAB节点指示所述DU所述上行消息的消息类型为RRC消息类型或F1AP消息类型。
本申请另一个实施例,当装置1000为CU时,处理单元1010用于确定根据业务数据的QoS参数,确定空口上数据无线承载DRB与第一接口上DRB的映射关系,所述第一接口上DRB与第二接口上DRB的映射关系,其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口,所述第二接口为所述第二IAB节点与所述DU之间的接口;
发送单元1020,用于向第一IAB节点通知空口上DRB与第一接口上DRB的映射关系,并向第二IAB节点通知所述第一接口上DRB与第二接口上DRB的映射关系。
本申请另一个实施例,当装置1000为CU时,处理单元1010用于确定根据业务数据的QoS参数,确定空口上数据无线承载DRB与第一接口上DRB的映射关系,所述第一接口上DRB与第二接口上DRB的映射关系,其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口,所述第二接口为所述第二IAB节点与所述DU之间的接口;
发送单元1020用于向第二IAB节点通知空口上DRB与第一接口上DRB的映射关系和所述第一接口上DRB与第二接口上DRB的映射关系。
本申请另一个实施例,当装置1000为第一IAB节点时,接收单元1030用于从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及空口上DRB和所述DRB对应的QoS参数;
处理单元1010用于根据第一接口上DRB对应的QoS参数和空口上DRB对应的QoS参数,确定空口上DRB与第一接口上DRB的映射关系;
其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
本申请另一个实施例,当装置1000为第二IAB节点时,接收单元1030用于从所述CU接收第一接口上数据无线承载DRB和所述DRB对应的QoS参数,以及第二接口上DRB和所述DRB对应的QoS参数;
处理单元1010用于根据第一接口上数据无线承载DRB对应的QoS参数和第二接口上DRB对应的QoS参数,确定第一接口上DRB与第二接口上DRB的映射关系。
其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。所述第二接口为所述第二IAB节点与所述DU之间的接口。
本申请另一个实施例,当装置1000为第二IAB节点时,接收单元1030用于从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
处理单元1010用于根据第一接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与第一接口上DRB的映射关系。
其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
本申请另一个实施例,当装置1000为第一IAB节点时,接收单元1030用于从所述CU接收空口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
处理单元1010用于根据空口上DRB对应的QoS参数和所述终端业务标识对应的QoS 参数,确定所述业务标识对应的终端业务与所述空口上DRB的映射关系。
本申请另一个实施例,当装置1000为第二IAB节点时,接收单元1030用于从所述CU接收第二接口上DRB和所述DRB对应的QoS参数的映射关系,以及终端的业务标识和所述业务标识对应的业务QoS参数;
处理单元1010用于根据第二接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与第二接口上DRB的映射关系。
其中,所述第二接口为所述第二IAB节点与所述DU之间的接口。
本申请另一个实施例,当装置1000为第一IAB节点时,接收单元1030用于第一IAB节点从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
处理单元1010用于根据第一接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与所述第一接口上DRB的映射关系。
其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
应注意,本发明实施例中,处理单元1010可以由处理器实现、发送单元1020和接收单元1030可以由收发器实现。如图11所示,数据处理的装置1100可以包括处理器1110、存储器1120和通信接口1130。其中,存储器1120可以用于存储处理器1110执行的指令或代码等。当该指令或代码被执行时,该处理器1110用于执行上述方法实施例提供的方法,处理器1110还用于控制通信接口1130与外界进行通信。
在实现过程中,上述方法的各步骤可以通过处理器1110中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1120,处理器1110读取存储器1120中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,图10所示的数据处理的装置1000或图11所示的数据处理的装置1100能够实现前述方法实施例中CU对应的各个过程,具体的,该数据处理的装置1000或数据处理的装置1100可以参见上文中对CU的描述,为避免重复,这里不再赘述。
还应理解,图10所示的数据处理的装置1000或图11所示的数据处理的装置1100能够实现前述方法实施例中第一IAB节点对应的各个过程,具体的,该数据处理的装置1000或数据处理的装置1100可以参见上文中对第一IAB节点的描述,为避免重复,这里不再赘述。
还应理解,图10所示的数据处理的装置1000或图11所示的数据处理的装置1100能够实现前述方法实施例中第二IAB节点对应的各个过程,具体的,该数据处理的装置1000或数据处理的装置1100可以参见上文中对第二IAB节点的描述,为避免重复,这里不再赘述。
还应理解,图10所示的数据处理的装置1000或图11所示的数据处理的装置1100能够实现前述方法实施例中DU对应的各个过程,具体的,该数据处理的装置1000或数据处理的装置1100可以参见上文中对DU的描述,为避免重复,这里不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的 先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例还提供了一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述方法实施例提供的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述方法实施例提供的方法。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU,分布式单元DU,第一IAB节点和第二IAB节点,所述方法包括:
    所述CU生成下行F1AP消息,所述下行F1AP消息包含的消息为以下之一或组合:终端设备的F1AP消息,第一IAB节点的F1AP消息和第二IAB节点的RRC消息;
    所述CU向所述DU发送所述下行F1AP消息,并指示所述下行F1AP消息中所包含的消息的消息类型为以下之一:RRC消息类型,F1AP消息类型,RRC消息类型和F1AP消息类型。
  2. 根据权利要求1所述的方法,其特征在于,
    所述CU指示所述下行F1AP消息所包含的消息的消息类型,包括:
    所述CU向所述DU发送指示信息,所述指示信息指示所述消息类型;其中,所述指示信息携带在所述下行F1AP消息中或者携带在所述CU与所述DU之间的F1接口上的对等的适配层中。
  3. 根据权利要求1所述的方法,其特征在于,
    所述CU将所述下行F1AP消息携带在特定于所述F1AP消息类型的GTP隧道中发送给DU,用来指示DU所述GTP隧道中传输的是下行F1AP消息。
  4. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU,分布式单元DU,第一IAB节点和第二IAB节点,所述方法包括:
    所述CU接收所述DU发送的上行F1AP消息,其中所述上行F1AP消息包含的消息为以下之一或组合:终端设备的F1AP消息,第一IAB节点的F1AP消息,第二IAB节点的RRC消息;
    所述CU接收所述DU发送的指示信息,所述指示信息指示所述上行F1AP消息中所包含的消息的消息类型为以下之一:RRC消息类型,F1AP消息类型,RRC消息类型和F1AP消息类型。
  5. 根据权利要求1所述的方法,其特征在于,所述指示信息携带在所述上行F1AP消息中或所述CU与所述DU之间F1接口上对等的适配层。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    当所述上行F1AP消息中所包含消息的消息类型为RRC消息类型时,所述CU获取所述第二IAB节点的RRC消息,并通过与所述第二IAB节点对等的RRC层进行处理。
  7. 根据权利要求4-6任意一项所述的方法,其特征在于,所述方法还包括:
    当所述上行F1AP消息所包含消息的消息类型为F1AP消息类型时,所述CU获取所述上行F1AP消息中所包含的F1AP消息,并确定所述上行F1AP消息所包含的F1AP消息为所述终端设备的F1AP消息或所述第一IAB节点的F1AP消息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    若所述上行F1AP消息所包含的F1AP消息为所述终端设备的F1AP消息,所述CU通过与所述终端设备对等的F1AP层处理所述终端设备的F1AP消息;或者,
    若所述上行F1AP消息所包含的F1AP消息为所述第一IAB节点的F1AP消息,所述 CU通过与所述第一IAB节点对等的F1AP层处理所述第一IAB节点的F1AP消息。
  9. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    第二IAB节点接收所述DU发送的下行消息,当所述下行消息承载在所述第二IAB节点和所述DU之间的信令无线承载时,所述第二IAB节点还接收所述DU发送的指示信息,所述指示信息指示所述下行消息的消息类型为RRC消息类型和/或F1AP消息类型;
    第二IAB节点根据收到的下行消息,判断所述下行消息是否属于所述第二IAB节点,如果属于所述第二IAB节点,则由第二IAB节点处理,否则将收到的下行消息路由到下一跳节点处理。
  10. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    所述第二IAB节点向所述DU发送上行消息;
    如果所述上行消息承载在所述第二IAB节点和所述DU之间的信令无线承载上,所述第二IAB节点指示所述DU所述上行消息的消息类型为RRC消息类型和/或F1AP消息类型。
  11. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    所述CU确定根据业务数据的QoS参数,确定空口上数据无线承载DRB与第一接口上DRB的映射关系,所述第一接口上DRB与第二接口上DRB的映射关系,其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口,所述第二接口为所述第二IAB节点与所述DU之间的接口;
    所述CU向第一IAB节点通知空口上DRB与第一接口上DRB的映射关系,并向第二IAB节点通知所述第一接口上DRB与第二接口上DRB的映射关系。
  12. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    所述CU确定根据业务数据的QoS参数,确定空口上数据无线承载DRB与第一接口上DRB的映射关系,所述第一接口上DRB与第二接口上DRB的映射关系,其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口,所述第二接口为所述第二IAB节点与所述DU之间的接口;
    所述CU向第二IAB节点通知空口上DRB与第一接口上DRB的映射关系和所述第一接口上DRB与第二接口上DRB的映射关系。
  13. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    所述第一IAB节点从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及空口上DRB和所述DRB对应的QoS参数;
    所述第一IAB节点根据第一接口上DRB对应的QoS参数和空口上DRB对应的QoS参数,确定空口上DRB与第一接口上DRB的映射关系;
    其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
  14. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集 中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    所述第二IAB节点从所述CU接收第一接口上数据无线承载DRB和所述DRB对应的QoS参数,以及第二接口上DRB和所述DRB对应的QoS参数;
    所述第二IAB节点根据第一接口上数据无线承载DRB对应的QoS参数和第二接口上DRB对应的QoS参数,确定第一接口上DRB与第二接口上DRB的映射关系;
    其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口;所述第二接口为所述第二IAB节点与所述DU之间的接口。
  15. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    第二IAB节点从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
    所述第二IAB节点根据第一接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与第一接口上DRB的映射关系;
    其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
  16. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    第一IAB节点从所述CU接收空口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
    所述第一IAB节点根据空口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与所述空口上DRB的映射关系。
  17. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    第二IAB节点从所述CU接收第二接口上DRB和所述DRB对应的QoS参数的映射关系,以及终端的业务标识和所述业务标识对应的业务QoS参数;
    所述第二IAB节点根据第二接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与第二接口上DRB的映射关系;
    其中,所述第二接口为所述第二IAB节点与所述DU之间的接口。
  18. 一种接入回程一体化IAB系统中数据处理的方法,其特征在于,所述系统包括集中式单元CU和分布式单元DU、第一IAB节点和第二IAB节点,所述方法包括:
    第一IAB节点从所述CU接收第一接口上DRB和所述DRB对应的QoS参数,以及终端的业务标识和所述业务标识对应的业务QoS参数;
    所述第一IAB节点根据第一接口上DRB对应的QoS参数和所述终端业务标识对应的QoS参数,确定所述业务标识对应的终端业务与所述第一接口上DRB的映射关系;
    其中,所述第一接口为所述第一IAB节点与所述第二IAB节点之间的接口。
  19. 一种数据处理的装置,其特征在于,包括处理电路和存储电路,所述存储电路中存储指令,所述指令被调用时实现如权利要求1-18中任一项所述的方法。
  20. 一种计算机存储介质,包括指令代码,所述指令代码用于实现如权利要求1-18中任一项所述的方法。
PCT/CN2019/086456 2018-05-11 2019-05-10 数据处理的方法和设备 WO2019214729A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19799483.3A EP3790336A4 (en) 2018-05-11 2019-05-10 DATA PROCESSING PROCESS AND DEVICE
US17/094,823 US11553540B2 (en) 2018-05-11 2020-11-11 Data processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450350.6A CN110475351A (zh) 2018-05-11 2018-05-11 数据处理的方法和设备
CN201810450350.6 2018-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/094,823 Continuation US11553540B2 (en) 2018-05-11 2020-11-11 Data processing method and device

Publications (1)

Publication Number Publication Date
WO2019214729A1 true WO2019214729A1 (zh) 2019-11-14

Family

ID=68466689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086456 WO2019214729A1 (zh) 2018-05-11 2019-05-10 数据处理的方法和设备

Country Status (4)

Country Link
US (1) US11553540B2 (zh)
EP (1) EP3790336A4 (zh)
CN (1) CN110475351A (zh)
WO (1) WO2019214729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220086821A1 (en) * 2019-03-27 2022-03-17 Ofinno, Llc Cell Configuration

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636644B (zh) * 2018-06-21 2023-03-07 中兴通讯股份有限公司 信息传输方法及装置
CN110798902B (zh) * 2018-08-03 2021-09-28 普天信息技术有限公司 一种无线承载处理方法
US11297669B2 (en) * 2018-11-02 2022-04-05 Samsung Electronics Co., Ltd. Method for transmitting control signaling in relay network, configuration method and device
WO2020167186A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) A central unit (cu), a distributed unit (du) and methods therein for forwarding of data in an integrated access backhaul (iab) network
CN114258731A (zh) * 2019-08-15 2022-03-29 瑞典爱立信有限公司 集成接入回程(iab)网络中的入口与出口回程rlc信道之间的映射
WO2021087924A1 (zh) * 2019-11-07 2021-05-14 华为技术有限公司 一种通信方法及装置
WO2021179146A1 (en) * 2020-03-09 2021-09-16 Nec Corporation Methods, devices, and medium for communication
WO2022006907A1 (zh) * 2020-07-10 2022-01-13 华为技术有限公司 通信方法及装置
CN114071771A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种逻辑信道lch的配置的方法、通信装置和通信系统
CN116210250A (zh) * 2020-09-30 2023-06-02 华为技术有限公司 一种数据传输方法及装置
KR20230070483A (ko) * 2020-10-21 2023-05-23 후지쯔 가부시끼가이샤 Iab-노드 마이그레이션 방법 및 장치
JP2023547161A (ja) * 2020-10-22 2023-11-09 アップル インコーポレイテッド Iabネットワークにおけるレイテンシ低減のためのマルチホップ構成のシステム及び方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010693A1 (ko) * 2015-05-15 2017-01-19 주식회사 케이티 단말의 무선연결 구성방법 및 그 장치
CN107852363A (zh) * 2015-06-30 2018-03-27 高通股份有限公司 对通信网络中的网络路由域的管理
CN107872876A (zh) * 2016-09-23 2018-04-03 华为技术有限公司 消息的发送方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10856323B2 (en) 2016-05-10 2020-12-01 Lg Electronics Inc. Method for receiving data in wireless communication system, and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010693A1 (ko) * 2015-05-15 2017-01-19 주식회사 케이티 단말의 무선연결 구성방법 및 그 장치
CN107852363A (zh) * 2015-06-30 2018-03-27 高通股份有限公司 对通信网络中的网络路由域的管理
CN107872876A (zh) * 2016-09-23 2018-04-03 华为技术有限公司 消息的发送方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Transmission of RRC Message Via CU -DU Interface", 3GPP TSG-RAN WG3 MEETING #95 R3-170405, 7 February 2017 (2017-02-07), XP051224253 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220086821A1 (en) * 2019-03-27 2022-03-17 Ofinno, Llc Cell Configuration
US11800521B2 (en) * 2019-03-27 2023-10-24 Ofinno, Llc Cell configuration

Also Published As

Publication number Publication date
US20210068177A1 (en) 2021-03-04
CN110475351A (zh) 2019-11-19
EP3790336A4 (en) 2021-09-08
EP3790336A1 (en) 2021-03-10
US11553540B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2019214729A1 (zh) 数据处理的方法和设备
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US11109263B2 (en) Data transmission method and data transmission apparatus
US11770865B2 (en) Relay communication method and relay communications apparatus and system
US10412650B2 (en) Data transmission method, apparatus and system
WO2019242747A1 (zh) 数据包的发送、接收方法及装置和数据包的传输系统
WO2017166138A1 (zh) 中继传输的方法和装置
KR20190133031A (ko) 통신 방법 및 장치
WO2017166142A1 (zh) 用于中继传输的方法和装置以及中继终端设备
US11368990B2 (en) Data transmission method and device for determining a radio bearer for handover
KR20180034632A (ko) Gtp-u 다운링크 패킷 전송 방법 및 장치
WO2011018002A1 (zh) 一种传输承载的中继方法、装置和通信系统
WO2018127018A1 (zh) 多链接通信方法、设备和终端
WO2017166139A1 (zh) 中继传输的方法和装置
WO2018228371A1 (zh) 通信方法和装置以及无线接入网络
WO2015100548A1 (zh) 小数据包的传输方法、基站和用户设备
WO2018170747A1 (zh) 一种通信方法及装置
JP2023513651A (ja) サービス品質(QoS)パラメータの構成方法及び関連装置
JP7301849B2 (ja) 中継伝送方法及び中継ノード
TW202013936A (zh) 無線通訊方法和通訊設備
WO2018145292A1 (zh) 通信方法、装置和系统
WO2017193402A1 (zh) 一种数据传输方法、装置及系统
WO2019136933A1 (zh) 中继传输的方法和中继节点
WO2019153295A1 (zh) 移动通信系统、方法及装置
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019799483

Country of ref document: EP

Effective date: 20201202