WO2017164703A1 - 도전재 분산액 및 이를 이용하여 제조한 이차전지 - Google Patents

도전재 분산액 및 이를 이용하여 제조한 이차전지 Download PDF

Info

Publication number
WO2017164703A1
WO2017164703A1 PCT/KR2017/003222 KR2017003222W WO2017164703A1 WO 2017164703 A1 WO2017164703 A1 WO 2017164703A1 KR 2017003222 W KR2017003222 W KR 2017003222W WO 2017164703 A1 WO2017164703 A1 WO 2017164703A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
dispersion
carbon nanotubes
electrode
weight
Prior art date
Application number
PCT/KR2017/003222
Other languages
English (en)
French (fr)
Inventor
김예린
조기연
유정근
김제영
최상훈
설종헌
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780003314.9A priority Critical patent/CN108140841B/zh
Priority to US15/759,677 priority patent/US11108050B2/en
Priority to PL17770673T priority patent/PL3333946T3/pl
Priority to EP17770673.6A priority patent/EP3333946B1/en
Priority to JP2018516054A priority patent/JP6719759B2/ja
Priority claimed from KR1020170037748A external-priority patent/KR102320010B1/ko
Publication of WO2017164703A1 publication Critical patent/WO2017164703A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery manufactured by using a conductive material dispersion, a method for preparing the conductive material dispersion, and the conductive material dispersion, which have excellent dispersibility and low powder resistance properties, which are useful for the production of high power electrodes.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • an electrode for a high capacity lithium secondary battery research is being actively conducted on a method for improving an electrode density to produce an electrode having a higher energy density per unit volume.
  • the high-density electrode is formed by molding electrode active material particles having a size of several micrometers to several tens of micrometers by a high pressure press, so that the particles are deformed, the space between the particles is reduced, and electrolyte permeability is easily degraded.
  • the electrically conductive material which has the outstanding electrical conductivity and strength at the time of manufacturing an electrode is used.
  • the conductive material is dispersed between the compressed electrode active material to maintain micropores between the active material particles, thereby easily penetrating the electrolyte, and to reduce the resistance in the electrode with excellent conductivity.
  • the use of carbon nanotubes, which are fibrous carbon-based conductive materials, which can further reduce electrode resistance by forming an electrically conductive path in the electrode is increasing.
  • Carbon nanotubes which are a kind of fine carbon fibers, are tubular carbons having a diameter of 1 ⁇ m or less, and are expected to be applied to various fields due to their high conductivity, tensile strength and heat resistance due to their specific structure.
  • carbon nanotubes have limited use due to their low solubility and dispersibility.
  • the carbon nanotubes were predispersed in the dispersion medium, and then the composition for forming the electrode was used.
  • carbon nanotubes do not achieve a stable dispersion state in the dispersion medium due to strong van der Waals attraction between each other, there is a problem that agglomeration phenomenon occurs.
  • the first problem to be solved by the present invention is to provide a conductive material dispersion having a good dispersibility and low powder resistance properties useful in the production of high-power electrodes and a method of manufacturing the same.
  • the second problem to be solved by the present invention is to provide a composition for forming an electrode of a secondary battery comprising the conductive material dispersion.
  • a third problem to be solved by the present invention is to provide a secondary battery electrode, a lithium secondary battery, a battery module and a battery pack manufactured using the conductive material dispersion.
  • a conductive material comprising a bundle-type carbon nanotubes; Dispersants including hydrogenated nitrile rubbers; And a dispersion medium, wherein the complex has a complex modulus (Complex (shear) modulus,
  • @ 1Hz complex modulus
  • the complex elastic modulus (
  • composition for forming an electrode of a secondary battery comprising the conductive material dispersion, the electrode active material and a binder.
  • a secondary battery electrode and a lithium secondary battery manufactured using the composition for forming an electrode.
  • the conductive material dispersion according to the present invention carbon nanotubes having excellent conductivity as the conductive material are optimally dispersed, thereby reducing powder resistance of the composition for forming an electrode when applied to manufacturing the electrode, thereby improving output characteristics of the electrode. Accordingly, the conductive material dispersion is useful for the production of electrodes in batteries that require high output characteristics such as automobile batteries.
  • FIG. 1 is a graph illustrating the change in shear viscosity according to the shear rate of the conductive material dispersions prepared in Examples 1 and 2 and Comparative Examples 1 to 4 in Experimental Example 1.
  • FIG. 1 is a graph illustrating the change in shear viscosity according to the shear rate of the conductive material dispersions prepared in Examples 1 and 2 and Comparative Examples 1 to 4 in Experimental Example 1.
  • FIG. 2 is a graph illustrating the phase angle and the complex elastic modulus of the conductive material dispersions prepared in Examples 1 and 2 and Comparative Examples 1 to 4 in Experimental Example 2.
  • FIG. 2 is a graph illustrating the phase angle and the complex elastic modulus of the conductive material dispersions prepared in Examples 1 and 2 and Comparative Examples 1 to 4 in Experimental Example 2.
  • FIG. 3 is a graph illustrating changes in powder resistance according to press densities of the electrode forming compositions prepared in Examples 1 and 2 and Comparative Examples 1 to 3 in Experimental Example 3, respectively.
  • non-bundle type a plurality of carbon nanotube units are bundled in a bundle form in which the axes in the longitudinal direction of the unit are arranged side by side in substantially the same orientation refers to the difference shape.
  • non-bundle type entangled type
  • entangled type carbon nanotube unit
  • a dispersion is prepared by predispersing carbon nanotubes in a dispersion medium in order to increase dispersibility, and then, a composition for forming an electrode and an electrode are prepared using the same. Doing. Accordingly, in order to improve the characteristics of the electrode and the battery, in particular, the output characteristics of the battery, a conductive material dispersion having a viscosity and a dispersibility suitable for the electrode forming composition should be used. And be measurable.
  • the conductive material dispersion degree in the conventional conductive material dispersion was evaluated by particle size distribution through particle size analysis (PSA) measurement.
  • PSD particle size analysis
  • the particle size varies depending on the measurement angle, so that it is difficult to evaluate the dispersibility in the dispersion.
  • linear carbon nanotubes are over-dispersed, there exists a possibility that a contact resistance may increase and the output characteristic of a battery may fall significantly.
  • @ 1Hz) of the conductive material dispersion during electrode production using a conductive material containing bundle-type carbon nanotubes is controlled.
  • a conductive material dispersion having a dispersibility and a viscosity characteristic of a conductive material, which is advantageous for forming an electrode having high output characteristics, is provided.
  • Conductive material including bundled carbon nanotubes
  • the complex modulus of elasticity (
  • the complex elastic modulus or the complex shear modulus of the conductive material dispersion is an amount representing dynamic viscoelasticity, and means a magnitude of elastic energy accumulated in the material, and becomes smaller as it changes from a solid to a liquid state.
  • the complex elastic modulus of the electrically conductive material dispersion in the present invention can be measured using a viscosity meter, specifically, a rheometer.
  • shear rate 10 -3 in units of 1 / s when the frequency is 1Hz Shear viscosity can be measured by measuring the force generated to turn the rotor by setting the range up to 10 3 .
  • the conductive material dispersion according to an embodiment of the present invention has a complex modulus of elasticity (
  • the complex of the conductive material dispersion Elastic modulus may be more specifically 50Pa to 350Pa.
  • the conductive material dispersion according to an embodiment of the present invention has a shear viscosity of 2 Pa ⁇ s to 20 Pa ⁇ s when the shear rate is 1 / 6.3 s when measured using a rheometer It may be.
  • the conductive material dispersion may have a shear viscosity of 3.0 Pa ⁇ s to 15 Pa ⁇ s.
  • the physical properties of the conductive material dispersion as described above can be implemented through the control of the kind, physical properties and mixing ratio of the conductive material, the dispersant and the dispersion medium constituting it.
  • the carbon nanotubes may have different physical properties depending on the crystallinity and structure and shape of the units constituting the carbon nanotubes, and the structure and shape of the secondary particles made of the units. Accordingly, by controlling any one or two or more of the above factors, it is possible to have the physical properties required according to the use of the carbon nanotubes.
  • the conductive material includes bundled carbon nanotubes.
  • the carbon nanotubes are secondary structures formed by gathering carbon nanotube units in whole or in part in bundles.
  • the carbon nanotube units have a graphite sheet having a nano-size diameter cylinder, and sp 2 Has a bonding structure.
  • the graphite surface may exhibit characteristics of a conductor or a semiconductor depending on the angle and structure of the surface.
  • Carbon nanotube units are single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotubes (MWCNTs). walled carbon nanotube), the thinner the wall thickness, the lower the resistance.
  • the carbon nanotubes may include any one or two or more of carbon nanotube units of a single wall, a double wall and a multi-wall.
  • the pore diameter of the electrode may also increase greatly, thereby decreasing the electrode density.
  • the diameter of the carbon nanotube unit is too small, dispersion is difficult, and thus, the manufacturing processability of the dispersion is lowered, and the dispersed carbon nanotube unit or the carbon nanotube is buried in the space between the electrode active material particles, and sufficient pores are hardly formed. .
  • the average strand diameter of the carbon nanotube units in the carbon nanotubes usable in the present invention may be 30 nm or less, when considering the effect of improving the dispersibility of the conductive material and reducing the resistance in the electrode by controlling the diameter of the unit,
  • the average strand diameter of the carbon nanotube units may be 10 nm to 20 nm.
  • the longer the length of the carbon nanotube unit can improve the electrical conductivity, strength and electrolyte storage retention of the electrode. If the length of the carbon nanotube unit is short, it is difficult to form the conductive paths efficiently, and thus the electrical conductivity may be lowered. On the other hand, if the length of the carbon nanotube unit is too long, there is a fear that the dispersibility is lowered. Accordingly, the length of the unit in the carbon nanotubes usable in the present invention may be 1 ⁇ m to 200 ⁇ m.
  • the carbon nanotube unit has a length (length of long axis passing through the center of the unit) and a diameter (length of the unit passing through the center of the unit and perpendicular to the long axis).
  • the aspect ratio defined as the ratio of the length of the short axis, may be 5 to 50,000, and more specifically 10 to 20,000.
  • the strand diameter and length of the carbon nanotube unit can be measured by using a field emission scanning electron microscope.
  • the carbon nanotubes including the carbon nanotube unit as described above may have a ratio (TD / BD ratio) of the true density (TD) and the bulk density (BD) is 70 to 120.
  • the internal structure of the carbon nanotubes can be predicted from the ratio of true density (TD) and bulk density (BD).
  • TD true density
  • BD bulk density
  • the TD / BD ratio of the carbon nanotubes usable in the present invention may be more specifically 70 to 100.
  • the true density of the carbon nanotubes usable in the present invention may be 1800 kg / m 3 to 2200 kg / m 3 under the conditions satisfying the TD / BD ratio.
  • the carbon nanotubes may have a bulk density of 10 kg / m 3 to 50 kg / m 3 .
  • the bulk density in the above range it is possible to improve the conductivity and dispersibility of the carbon nanotubes.
  • the bulk density of the carbon nanotubes may be determined according to Equation 1 below.
  • the carbon nanotubes have a high BET specific surface area because of the small diameter of the unit as described above and a large TD / BD ratio, thereby exhibiting excellent dispersibility.
  • the BET specific surface area of the carbon nanotubes usable in the present invention may be 180 m 2 / g to 300 m 2 / g, and more specifically 230 m 2 / g to 300 m 2 / g.
  • the specific surface area of the carbon nanotubes is measured by the BET method, and specifically, it can be calculated from the nitrogen gas adsorption amount under the liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan. have.
  • the carbon nanotubes have a maximum peak intensity (IG) of a G band at 1580 ⁇ 50 cm -1 obtained by Raman spectroscopy using a laser of 514 nm wavelength.
  • the average value of the ratio (ID / IG) of the maximum peak intensity (ID) of the D band at 1360 ⁇ 50 cm ⁇ 1 to) may be 0.7 to 1.2.
  • Raman analysis is a method for analyzing the structure of carbon nanotubes and is useful for analyzing the surface state of carbon nanotubes.
  • the peak present in the region near the wavenumber of 1570 cm ⁇ 1 to 1580 cm ⁇ 1 in the Raman spectrum of the carbon nanotubes is called a G band, which represents a sp2 bond of the carbon nanotubes, indicating a carbon crystal without structural defects.
  • the peak in the region near the wave number 1350cm -1 to 1360cm -1 of the Raman spectrum is called D-band, which is a peak indicating sp3 bond of carbon nanotubes, and the spontaneous bond formed by sp2 bond is broken to become sp3 bond. If it increases.
  • This D band is increased when the disorder, defect or amorphous present in the carbon nanotubes is generated, so the maximum peak intensity of the D band relative to the maximum peak intensity (IG) of the G band ( ID / IG may be calculated to quantitatively evaluate the degree of disorder to defect generation.
  • the G band of the Raman spectrum for the carbon nanotubes may be a peak present in the wavenumber 1580 ⁇ 50 cm -1 region, more specifically in the 1575 cm -1 to 1600 cm -1 region, and the D band is the wavenumber Peaks in the 1360 ⁇ 50 cm ⁇ 1 region, more specifically in the 1340 cm ⁇ 1 to 1360 cm ⁇ 1 region.
  • the wave range for the G band and the D band corresponds to a range that can be shifted according to the laser light source used in the Raman analysis.
  • the Raman value used in the present invention is not particularly limited, but may be measured at a laser wavelength of 514 nm using DXR Raman Microscope (Thermo Electron Scientific Instruments LLC).
  • the BET specific surface area is increased and the secondary structure of the bundle structure is increased. With the shape, the crystallinity of the CNTs is good and the average value of ID / IG is obtained.
  • the carbon nanotubes may include 50 ppm or less, more specifically 5 ppm or less, of metal elements derived from a main catalyst or cocatalyst such as Co, Mo, V, or Cr used in the manufacturing process.
  • metal elements derived from a main catalyst or cocatalyst such as Co, Mo, V, or Cr used in the manufacturing process.
  • the content of metal impurities remaining in the carbon nanotubes can be analyzed using an inductively coupled plasma (ICP).
  • ICP inductively coupled plasma
  • the carbon nanotubes may not contain Fe.
  • the carbon nanotubes have excellent electrical conductivity.
  • the volume resistance may be 0.01 Pa ⁇ cm or less, and more specifically 0.0001 Pa ⁇ cm to 0.009 Pa ⁇ cm. .
  • the volume resistivity of the carbon nanotubes was measured by filling the carbon nanotubes with an insulating mold having a diameter of 1 mm and pressing them to measure the surface current and voltage with four probes, and applying a correction coefficient to the pressure of 62 MPa. The volume resistance value at the time was computed.
  • Such carbon nanotubes may be obtained commercially or used directly.
  • the method may be manufactured using a conventional method such as an arc discharge method, a laser evaporation method or a chemical vapor deposition method, and the aforementioned physical properties may be controlled by controlling the type of catalyst, heat treatment temperature, and impurity removal method in the manufacturing process. Can be implemented.
  • the carbon nanotubes are prepared by contacting a supported catalyst having a metal catalyst supported on a spherical ⁇ -alumina support under heating with a carbon source to produce carbon nanotubes, and According to the present invention may optionally be prepared by a manufacturing method comprising the step of removing metal impurities in the carbon nanotubes.
  • the supported catalyst is introduced into a horizontal fixed bed reactor or a fluidized bed reactor, and at a temperature above the thermal decomposition temperature of the gaseous carbon source to below the melting point of the supported metal catalyst.
  • Carbon source Or by injecting a mixed gas of the carbon source, a reducing gas (for example, hydrogen) and a carrier gas (for example, nitrogen, etc.) to grow the carbon nanotubes by chemical vapor phase synthesis through decomposition of the carbon source.
  • a reducing gas for example, hydrogen
  • a carrier gas for example, nitrogen, etc.
  • the production of the carbon nanotubes may be specifically carried out at a temperature of less than 500 °C 800 °C, more specifically at 550 °C to 700 °C.
  • a temperature of less than 500 °C 800 °C more specifically at 550 °C to 700 °C.
  • dispersibility may be further improved due to the decrease in bulk density.
  • a heat source for the heat treatment induction heating, radiant heat, laser, IR, microwave, plasma, surface plasmon heating and the like can be used.
  • carbon may be supplied to the carbon source and may be used without particular limitation as long as it can exist in the gas phase at a temperature of 300 ° C. or higher.
  • it may be a carbon-based compound having 6 or less carbon atoms, more specifically carbon monoxide, methane, ethyl, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, Benzene, toluene, and the like, and any one or a mixture of two or more thereof may be used.
  • a cooling process for more regularly aligning the arrangement of the carbon nanotubes may optionally be further performed.
  • the cooling process may be performed using natural cooling or a cooler according to the removal of the heat source.
  • the supported catalyst used for the production of the conductive material is a metal catalyst supported on a spherical ⁇ -alumina support.
  • ⁇ -alumina has a very low porosity compared with ⁇ -alumina, and thus has low utility as a catalyst support.
  • the calcination temperature at which the supported catalyst is formed it is possible to increase the diameter by reducing the specific surface area while suppressing the generation of amorphous carbon when synthesizing carbon nanotubes.
  • the bulk density of carbon nanotubes can be reduced to improve dispersibility.
  • the ⁇ -alumina usable as a support in the present invention may have an average particle diameter (D 50 ) of 20 ⁇ m to 200 ⁇ m and a BET specific surface area of 1 m 2 / g to 50 m 2 / g.
  • the ⁇ -alumina may have a very low porosity, specifically, a porosity of 0.001 cm 3 / g to 0.1 cm 3 / g.
  • the supported catalyst comprising the spherical ⁇ -alumina as a support may be prepared by baking the metal catalyst on the spherical ⁇ -alumina support. Specifically, the supported catalyst is carried out by adding and mixing the spherical ⁇ -alumina support to a metal catalyst precursor solution prepared by dissolving the precursor of the metal catalyst in water, followed by calcining at a temperature of 700 ° C. or lower. Can be.
  • the metal catalyst supported on the support serves to help the carbon components present in the gaseous carbon source combine with each other to form a six-membered ring structure.
  • a main catalyst such as iron, nickel or cobalt may be used alone, or the main catalyst may be used in the form of a main catalyst-catalyst complex catalyst together with a promoter such as molybdenum, vanadium or chromium.
  • the complex catalyst may be FeCO, CoMo, CoV, FeCoMo, FeMoV, FeV or FeCoMoV, etc. Any one or a mixture of two or more thereof may be used.
  • the cocatalyst may be used in an amount of 0.01 mol to 1 mol, more specifically 0.05 mol to 0.5 mol with respect to 1 mol of the main catalyst.
  • a metal salt or metal oxide soluble in water may be used as a precursor of the metal catalyst, and specifically, any one selected from Fe, Ni, Co, Mo, V, Cr, and the like may be used. It may be a metal salt, metal oxide or metal halide containing one or more metal elements.
  • the precursor of the metal catalyst may be used in an aqueous solution dissolved in water, in which case, the concentration of the metal catalyst precursor in the aqueous solution may be appropriately adjusted in consideration of the impregnation efficiency.
  • the concentration of the metal catalyst precursor in the aqueous solution may be 0.1 g / ml to 0.6 g / ml.
  • the content of the spherical ⁇ -alumina support mixed with the metal catalyst precursor may be appropriately determined in consideration of the content of the support in the supported catalyst to be finally prepared.
  • an acid may optionally be further used during support addition and mixing in the metal catalyst precursor solution for bulk density control of the carbon nanotubes.
  • the metal catalyst precursor solution may be used in an amount corresponding to 3 to 40 mol, more specifically, 5 to 30 mol of the metal catalyst with respect to 1 mol of the acid.
  • the acid may specifically be citric acid and the like, and any one or a mixture of two or more thereof may be used.
  • the mixing process of the metal catalyst precursor solution and the spherical ⁇ -alumina support may be performed according to a conventional method, specifically, it may be carried out by rotating or stirring at 45 °C to 100 °C temperature.
  • the metal catalyst precursor and the support may be mixed in consideration of the content of the metal catalyst supported on the finally prepared supported catalyst.
  • the supported amount of the metal catalyst in the supported catalyst increases, the bulk density of the carbon nanotubes produced using the supported catalyst tends to increase.
  • the metal catalyst may be mixed to be supported in an amount of 5% by weight to 30% by weight based on the total weight of the supported catalyst.
  • a drying process may be optionally further performed prior to the firing process.
  • the drying process may be performed according to a conventional method, specifically, may be carried out by rotary evaporation under vacuum at a temperature of 40 °C to 100 °C for 3 minutes to 1 hour.
  • firing is performed on the mixture of the metal catalyst precursor and the support prepared in the above manner.
  • the firing can be carried out under air or inert atmosphere at temperatures of up to 700 ° C, specifically from 400 ° C to 700 ° C.
  • a preliminary firing process may be optionally further performed at a temperature of 250 ° C. to 400 ° C. after the drying process and before the firing process.
  • the metal impurity removal process may be performed according to a conventional method such as washing, acid treatment.
  • the bundle-type carbon nanotubes prepared according to the manufacturing method as described above may exhibit excellent dispersibility and conductivity when preparing a conductive solution.
  • the dispersant may be a nitrile-based rubber hydrogenated in part or in whole, specifically, the repeating unit of the conjugated diene-derived structure, of the hydrogenated conjugated diene-derived structure Hydrogenated nitrile rubber comprising repeating units and repeating units of ⁇ , ⁇ -unsaturated nitrile derived structures.
  • the hydrogenated nitrile rubber may further include an additional comonomer copolymerizable.
  • the polymerization reaction process and the hydrogenation process may be performed according to a conventional method.
  • ⁇ , ⁇ -unsaturated nitrile that can be used in the production of the hydrogenated nitrile rubber include acrylonitrile or methacrylonitrile, and one or a mixture of two or more thereof may be used.
  • gum specifically contains conjugated diene of 4-6 carbon atoms, such as 1, 3- butadiene, isoprene, and 2, 3- methyl butadiene, Any of these One or more than one mixture may be used.
  • copolymerizable comonomers which may optionally be used include, for example, aromatic vinyl monomers (for example, styrene, ⁇ -methylstyrene, vinylpyridine, fluoroethyl vinyl ether, etc.), ⁇ , ⁇ -unsaturated carboxylic acids.
  • esters or amides of ⁇ , ⁇ -unsaturated carboxylic acids eg methyl (meth) acrylate, ethyl (meth) acrylate, n-dodecyl (meth) acrylate, methoxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, or polyethylene glycol (meth) acrylate
  • anhydrides of ⁇ , ⁇ -unsaturated dicarboxylic acids (For example, maleic anhydride, itaconic anhydride, citraconic anhydride, etc.), but is not limited thereto.
  • a repeating unit having an ⁇ , ⁇ -unsaturated nitrile derived structure, a repeating unit having a conjugated diene derived structure, a hydrogenated conjugated diene derived structural unit and optionally other copolymerizable copolymers The content ratio of repeating units of the monomer-derived structure may vary within a wide range, and in each case the sum of the structural units adds up to 100% by weight.
  • the hydrogenated nitrile rubber may be used to form a repeating unit having a structure of the ⁇ , ⁇ -unsaturated nitrile-derived structure with respect to the total weight of rubber. 10 wt% to 60 wt%, specifically 20 wt% to 60 wt%.
  • the ⁇ , ⁇ -unsaturated nitrile structure-containing repeating unit is included in the above content range, the dispersibility of the carbon nanotubes can be increased, and even if the amount of the carbon nanotubes is small, high conductivity can be given.
  • the hydrogenated nitrile rubber may include a repeating unit of the hydrogenated conjugated diene-derived structure in an amount of 1% by weight to 15% by weight, more specifically 5% by weight to 15% by weight relative to the total weight of rubber. have.
  • the miscibility with respect to the dispersion medium can be increased to increase the dispersibility of the carbon nanotubes.
  • the content ratio may vary depending on the type and nature of the comonomers, but specifically, the content of the repeating unit of the comonomer-derived structure is hydrogenated.
  • the total weight of the nitrile-based rubber may be 20% by weight or less, more specifically 1% by weight to 10% by weight.
  • the hydrogenated nitrile rubber includes a repeating unit of the acrylonitrile-derived structure of Formula 1, a repeating unit of the butadiene-derived structure of Formula 2, and a repeating unit of the hydrogenated butadiene-derived structure of Formula 3 Acrylonitrile-butadiene rubber (H-NBR).
  • the content of the acrylonitrile-derived structural unit of Formula 1 may be 10% to 60% by weight, more specifically 20% to 60% by weight.
  • the content of the hydrogenated butadiene-derived structural unit of formula 3 may be 1% by weight to 15% by weight, more specifically 5% by weight to 15% by weight.
  • the hydrogenated nitrile rubber may have a weight average molecular weight of 10,000 g / mol to 700,000 g / mol, more specifically 10,000 g / mol to 300,000 g / mol.
  • the hydrogenated nitrile rubber may have a polydispersity index PDI (ratio of Mw / Mn, Mw is weight average molecular weight and Mn is number average molecular weight) in the range of 2.0 to 6.0, specifically, 2.0 to 4.0. Can be.
  • PDI ratio of Mw / Mn, Mw is weight average molecular weight and Mn is number average molecular weight
  • the carbon black can be uniformly dispersed in the dispersion medium.
  • the weight average molecular weight and the number average molecular weight of the hydrogenated nitrile rubber are polystyrene reduced molecular weights analyzed by gel permeation chromatography (GPC).
  • the dispersion medium is dimethylformamide (DMF), diethyl formamide, dimethyl acetamide (DMAc), N-methyl pyrrolidone (NMP), or the like.
  • Amide polar organic solvents Methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl Alcohols such as 2-propanol (tert-butanol), pentanol, hexanol, heptanol or octanol; Glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, or hexylene glycol; Polyhydric alcohols such as glycerin, trimetholpropane, pentaerythritol, or sorbitol; Ethylene glycol mono methyl ether, diethylene glycol mono methyl ether, triethylene glyco
  • the dispersant may be included in 1 to 50 parts by weight, more specifically 10 to 50 parts by weight based on 100 parts by weight of carbon nanotubes for uniform dispersion of the carbon nanotubes in the dispersion. If the content of the dispersant is less than 1 part by weight, it is difficult to uniformly disperse the carbon nanotubes in the dispersion. If the content of the dispersant is more than 50 parts by weight, the viscosity of the dispersion may increase, leading to a decrease in processability.
  • the carbon nanotubes may be included in an amount of 1 wt% to 30 wt%, more specifically 1 wt% to 5 wt%, based on the total weight of the conductive material dispersion.
  • the carbon nanotubes When the carbon nanotubes are included in the content of the above range, it can exhibit a good balance of electronic conductivity and dispersibility.
  • the content of the carbon nanotubes out of the range of less than 1% by weight for example, when forming the electrode of a lithium secondary battery, the composition for forming an electrode includes a large amount of organic solvent, as a result of the increase in the pores in the electrode, the active material The battery capacity may be lowered by lowering the filling rate. In addition, the drying time for removing the organic solvent may be long.
  • the content of the carbon nanotubes exceeds 30% by weight, there is a fear that the mixed dispersibility of the carbon black is lowered.
  • the conductive material dispersion according to an embodiment of the present invention may include 1 part by weight to 50 parts by weight of the dispersant, and 200 parts by weight to 9900 parts by weight of the dispersion medium based on 100 parts by weight of the carbon nanotubes.
  • Carbon nanotubes can be uniformly dispersed in the dispersion medium in the above range. When included in the above mixing ratio, it can exhibit a more improved effect.
  • the conductive material dispersion according to an embodiment of the present invention may further include a dispersion stabilizer for increasing the dispersion stability.
  • the dispersion stabilizer may prevent the agglomeration of the carbon nanotubes by adsorbing the surface of the carbon black to exhibit a lapping effect surrounding the carbon nanotubes. Accordingly, as the dispersion stabilizer, it may be preferable to have excellent affinity for carbon nanotubes and excellent compatibility for the dispersant and the dispersion medium.
  • the dispersion stabilizer may be a fluorine-based polymer such as polyvinylidene fluoride, polyvinylpyrrolidone, any one or more of these Mixtures can be used.
  • the dispersion stabilizer may be a weight average molecular weight of 20,000g / mol to 5,000,000g / mol. If the molecular weight of the dispersion stabilizer is too small, less than 20,000 g / mol, it is difficult to exhibit a sufficient lapping effect on the carbon nanotubes, and if the molecular weight is too large, exceeding 5,000,000 g / mol, the molecular motion of the dispersion stabilizer in the dispersion medium is lowered. As a result, it is difficult to sufficiently wrap the carbon nanotubes. More specifically, the dispersion stabilizer may have a weight average molecular weight of 70,000 g / mol to 2,000,000 g / mol.
  • the dispersion stabilizer may be used in 1 part by weight to 10 parts by weight with respect to 100 parts by weight of carbon nanotubes. If the content of the dispersion stabilizer is too low compared to the content of the carbon nanotubes, it is difficult to obtain a sufficient lapping effect, and as a result, there is a fear that aggregation of the carbon nanotubes occurs.
  • the conductive material dispersion according to an embodiment of the present invention having the configuration as described above has a complex modulus of elasticity (
  • G complex modulus of elasticity
  • @ 1Hz may be produced by a manufacturing method including milling such that 20 Pa to 500 Pa.
  • the type and the amount of the carbon nanotube and the conductive material, the dispersant, and the dispersion medium including the same are the same as described above.
  • the cavitation dispersion treatment may be performed to increase the mixing property of the carbon nanotubes and the dispersion medium, or the dispersibility of the carbon nanotubes in the dispersion medium.
  • the cavitation dispersion treatment is a dispersion treatment method using a shock wave generated by the rupture of the vacuum bubbles generated in water when high energy is applied to the liquid, and can be dispersed without damaging the properties of the carbon nanotubes by the above method.
  • the cavitation dispersion treatment may be performed by ultrasonic wave, jet mill, or shear dispersion treatment.
  • the dispersion treatment process may be appropriately performed according to the amount of carbon nanotubes and the type of dispersant. Specifically, when the ultrasonic treatment is performed, the frequency is in the range of 10 kHz to 150 kHz, the amplitude is in the range of 5 ⁇ m to 100 ⁇ m, and the irradiation time may be 1 minute to 300 minutes. As an ultrasonic generator for performing the ultrasonic treatment process, for example, an ultrasonic homogenizer may be used. In addition, when the jet mill treatment is performed, the pressure may be 20 MPa to 250 MPa, and may be performed one or more times, specifically, two or more times. Moreover, a high pressure wet jet mill etc. can be used as said jet mill dispersion apparatus.
  • the temperature in the cavitation dispersion treatment process is not particularly limited, but may be performed at a temperature at which there is no fear of change in viscosity of the dispersion due to evaporation of the dispersion medium. Specifically, the temperature may be performed at a temperature of 50 ° C. or lower, more specifically 15 ° C. to 50 ° C.
  • milling may be performed by a method such as a ball mill, a bead mill, or a basket mill. More specifically, it may be performed by a milling method using a bead mill.
  • the size of the bead mill may be appropriately determined according to the type and amount of the conductive material, and the type of dispersant, specifically, the average diameter of the bead mill may be 0.5mm to 2mm.
  • the milling process may be performed under conditions such that the complex elastic modulus of the conductive material dispersion satisfies the above conditions, and specifically, may be performed for 90 minutes to 120 minutes.
  • a dispersion stabilizer may optionally be further used in the preparation of the dispersion, and the dispersion stabilizer may be added together during the mixing process of the dispersion.
  • the manufacturing method of the conductive material dispersion according to an embodiment of the present invention may further include a dispersion stabilizer addition process. The type and the amount of the dispersion stabilizer are the same as described above.
  • a dispersion in which carbon nanotubes are uniformly dispersed in a dispersion medium may be prepared.
  • the carbon nanotubes and the dispersant in the form of a carbon nanotube-dispersant composite wherein the dispersant is introduced through a physical or chemical bond to the surface of the carbon nanotubes It may be distributed to include.
  • the composite may have a distribution in which D 99 of the particle size distribution is 50 ⁇ m or less, more specifically 20 ⁇ m to 50 ⁇ m.
  • the particle size distribution D 99 of the complex may be defined as the particle size based on 99% of the particle size distribution.
  • the particle size distribution D 99 of the complex may be measured using, for example, a laser diffraction method. More specifically, a commercially available laser diffraction particle size measuring apparatus is dispersed after dispersing the complex in a solvent. (For example, Microtrac MT 3000), the ultrasonic wave of about 28 kHz is irradiated with an output of 60 W, and the average particle diameter (D 99 ) based on 99% of the particle size distribution in the measuring device can be calculated.
  • the content of solids including the complex may be 1.0 wt% to 5.0 wt% with respect to the total weight of the dispersion.
  • the conductive material dispersion according to the exemplary embodiment of the present invention may exhibit excellent conductive material dispersibility despite having a higher solid content than in the related art.
  • the conductive material dispersion according to the present invention may exhibit more excellent electrical, thermal, and mechanical properties by uniform dispersion of carbon nanotubes, and workability is also improved by maintaining low viscosity, thereby enabling application and practical use in various fields.
  • the conductive material dispersion may be used for the production of a secondary battery electrode.
  • the electrode active material is a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound), specifically, cobalt and manganese. It may be a positive electrode active material of a lithium transition metal oxide including a transition metal and lithium, such as nickel or aluminum.
  • the positive electrode active material is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (where, 0 ⁇ z ⁇ 2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- Y Co Y O 2 (here, 0 ⁇ Y ⁇ 1) and the like, lithium-manganese-cobalt-based oxide (eg, LiCo 1-Y Mn Y O 2 (here, 0 ⁇ Y ⁇ 1), LiMn 2 - z Co z O 4 (here,
  • Vaginal materials Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or an anode active material such as a composite including the metallic compound and a carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used. In addition, a metal lithium thin film may be used as the anode active material. As the carbon material, both low crystalline carbon and high crystalline carbon can be used.
  • the electrode active material may be included in an amount of 70% by weight to 99.5% by weight based on the total weight of the composition for forming an electrode, based on the solid content. If the content of the electrode active material is less than 70% by weight, there is a fear of lowering the capacity, and when the content of the electrode active material exceeds 99.5% by weight, the relative content of the binder and the conductive material is reduced, there is a concern such as lowering the adhesion to the electrode current collector, lowering the conductivity.
  • composition for forming an electrode may further include a binder to improve adhesion between the electrode active material particles and adhesion between the electrode active material and the current collector.
  • the binder is specifically polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene Butadiene rubber (SBR), fluorine rubber, or various copolymers thereof, and the like, and one or more of these may be used.
  • the binder may be included in an amount of 1% to 30% by weight based on the total weight of the electrode forming composition.
  • the electrode forming composition may further include a solvent for mixing and dispersing the electrode active material, a binder, and the like.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent may be sufficient to dissolve or disperse the electrode active material and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity during application of the electrode.
  • the electrode according to an embodiment of the present invention manufactured using the composition for forming an electrode may be a positive electrode or a negative electrode, and more specifically, may be an anode.
  • an electrochemical device including the electrode is provided.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery may specifically include a positive electrode, a negative electrode disposed to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and at least one of the positive electrode and the negative electrode may include an electrode including the conductive material dispersion. It may be prepared by the composition for.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular to the ion movement of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% by weight to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the electrode manufactured using the conductive material dispersion according to the present invention may stably exhibit excellent discharge capacity, output characteristics, and capacity retention rate due to the uniform dispersion of the conductive material in the electrode.
  • portable devices such as a mobile telephone, a notebook computer, a digital camera, and the electric vehicle field
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Citric acid was added so that Co was 23 mol per 1 mol of citric acid, the weight of the resulting mixture was measured, and aged by stirring for 5 minutes in a 60 ° C. thermostat to sufficiently support the graphitized catalyst metal precursor. While maintaining the temperature, the aged mixture was vacuum dried while rotating at 80 rpm, and the weight after drying was measured to determine the amount of moisture removed (weight after drying: about 14.1 wt%). The resulting dry reaction product was calcined at 700 ° C. for 4 hours to prepare a supported catalyst.
  • Example 1 Except not performing bead milling in Example 1, the carbon nanotube dispersion was prepared in the same manner as in Example 1.
  • a carbon nanotube dispersion was prepared in the same manner as in Example 1, except that bead milling was performed in Example 1 for 30 minutes.
  • a carbon nanotube dispersion was prepared in the same manner as in Example 1, except that bead milling was performed for 60 minutes in Example 1.
  • volume resistivity The carbon nanotube powder was filled and pressurized into an insulating mold with a diameter of 1 mm and the surface current and voltage were measured by four probes. The volumetric resistance value was calculated when the pressure was 62 MPa by applying a correction factor. It was.
  • Example 1 Comparative Example 4 Secondary structure shape Bundled Entangle Average strand diameter (nm) 15 15 IG / ID ratio Average 0.95-1.04 1.0 Volume resistance ( ⁇ cm, @ 62MPa) 0.00817 0.0273 BET specific surface area (m 2 / g) 249 197 Bulk Density (kg / m 3 ) 23 53
  • the conductive material dispersions of Examples 1 and 2 exhibited a lower shear viscosity than that of Comparative Examples 2 and 3. From this, it can be seen that carbon nanotubes are uniformly dispersed in the conductive material dispersions of Examples 1-2.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Solid content in the dispersion (% by weight) 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 D 99 ( ⁇ m) 31 19 157 106 78 55

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명에서는 번들형(bundle-type) 탄소 나노튜브를 포함하는 도전재; 수소화된 니트릴계 고무를 포함하는 분산제; 및 분산매를 포함하며, 레오미터 측정시 주파수가 1Hz일 때 복소탄성율(|G*| @1Hz)이 20Pa 내지 500Pa인 도전재 분산액 및 이를 이용하여 제조한 이차전지를 제공한다. 상기 도전재 분산액은 제어된 복소탄성율을 가짐으로써 우수한 분산성 및 분체 저항 특성을 나타내고, 그 결과 전지의 출력 특성을 크게 향상시킬 수 있다.

Description

도전재 분산액 및 이를 이용하여 제조한 이차전지
관련출원과의 상호인용
본 출원은 2016년 3월 24일자 한국특허출원 제2016-0035560호 및 2017년 3월 24일자 한국특허출원 제2017-0037748호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 우수한 분산성 및 낮은 분체 저항 특성을 가져 고출력용 전극의 제조에 유용한 도전재 분산액, 상기 도전재 분산액의 제조방법 및 상기 도전재 분산액을 이용하여 제조한 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. 또, 이 같은 고용량 리튬 이차전지용 전극으로서, 전극 밀도를 향상시켜 단위 체적 당 에너지 밀도가 더 높은 전극을 제조하기 위한 방법에 대해 연구가 활발히 진행되고 있다.
일반적으로, 고밀도 전극은 수 ㎛ 내지 수십 ㎛의 크기를 갖는 전극 활물질 입자를 고압 프레스에 의해 성형하여 형성되므로, 입자들이 변형되고, 입자들 사이에 공간이 감소되며, 전해액 침투성이 저하되기 쉽다.
이 같은 문제를 해결하기 위해, 전극의 제조시 우수한 전기전도성과 강도를 갖는 도전재를 사용하고 있다. 전극 제조시 도전재를 사용할 경우 상기 도전재가 압축된 전극 활물질 사이에 분산됨으로써 활물질 입자들 사이에 미세기공을 유지하여 전해액의 침투가 용이하며, 우수한 전도성으로 전극내 저항을 감소시킬 수 있다. 이와 같은 도전재 중에서도 전극내 전기적 도전 경로를 형성함으로써 전극 저항을 더욱 감소시킬 수 있는 섬유형 탄소계 도전재인 탄소 나노튜브의 사용이 증가하고 있다.
미세 탄소섬유의 일종인 탄소 나노튜브는 직경 1μm 이하 굵기의 튜브형 탄소로서, 그 특이적 구조에 기인한 높은 도전성, 인장 강도 및 내열성 등으로 인해 다양한 분야로의 적용 및 실용화가 기대되고 있다. 그러나, 이와 같은 탄소 나노튜브의 유용성에도 불구하고, 탄소 나노튜브는 낮은 용해성과 분산성으로 인해 그 사용에 한계가 있다. 이에 탄소 나노튜브를 이용한 전극 제조시, 탄소 나노튜브를 분산매에 선분산시킨 후 전극 형성용 조성물을 제조하여 사용하였다. 그러나, 탄소 나노튜브는 서로 간의 강한 반데르발스 인력에 의해 분산매 중에 안정적인 분산 상태를 이루지 못하고 응집 현상이 일어나는 문제가 있다.
이러한 문제점을 해결하기 위하여 다양한 시도가 있어 왔다. 구체적으로 초음파 처리 등의 기계적 분산 처리를 통해 탄소 나노튜브를 분산매 중에 분산시키는 방법이 제안된 바 있다. 그러나, 이 방법의 경우 초음파를 조사하고 있는 동안은 분산성이 우수하지만, 초음파 조사가 종료되면 탄소 나노튜브의 응집이 시작되어 탄소 나노튜브의 농도가 높아지면서 응집해 버리는 문제가 있다. 또, 다양한 분산제를 이용하여 탄소 나노튜브를 분산 안정화하는 방법이 제안되고 있다. 그러나, 이들 방법 역시 미세 탄소섬유를 분산매 중에 고농도로 분산시킬 경우, 점도 상승으로 인해 취급이 어렵게 되는 문제가 있다.
이에 따라, 도전성의 저하없이 전극내 탄소 나노튜브의 분산성을 향상시킬 수 있는 방법 및 이를 이용하여 전극 제조에 유용한 탄소 나노튜브 분산액을 제조하는 방법의 개발이 필요하다.
본 발명이 해결하고자 하는 제1 과제는 우수한 분산성 및 낮은 분체 저항 특성을 가져 고출력용 전극의 제조에 유용한 도전재 분산액 및 그 제조방법을 제공하는 것이다.
본 발명이 해결하고자 하는 제2 과제는 상기 도전재 분산액을 포함하는 이차전지의 전극 형성용 조성물을 제공하는 것이다.
또, 본 발명이 해결하고자 하는 제3 과제는, 상기 도전재 분산액을 이용하여 제조한 이차전지용 전극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 번들형(bundle-type) 탄소 나노튜브를 포함하는 도전재; 수소화된 니트릴계 고무를 포함하는 분산제; 및 분산매를 포함하며, 레오미터 측정시 주파수가 1Hz일때 복소탄성율(Complex(shear) modulus, |G*| @1Hz)가 20Pa 내지 500Pa인 것인 도전재 분산액을 제공한다.
본 발명의 다른 일 실시예에 따르면, 번들형 탄소 나노튜브를 포함하는 도전재, 수소화된 니트릴계 고무를 포함하는 분산제 및 분산매를 혼합 후, 레오미터 측정시 주파수가 1Hz일때 복소탄성율(|G*| @1Hz)가 20Pa 내지 500Pa이 되도록 밀링하는 단계를 포함하는, 상기한 도전재 분산액의 제조방법을 제공한다.
또, 본 발명의 다른 일 실시예에 따르면, 상기한 도전재 분산액, 전극활물질 및 바인더를 포함하는 이차전지의 전극 형성용 조성물을 제공하는 것이다.
본 발명의 또 다른 일 실시예에 따르면, 상기 전극 형성용 조성물을 이용하여 제조한 이차전지용 전극 및 리튬 이차전지를 제공한다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 도전재 분산액은, 도전재로서 우수한 전도성을 갖는 탄소 나노튜브가 최적 분산됨으로써, 전극 제조에 적용시 전극 형성용 조성물의 분체 저항을 감소시켜 전극의 출력 특성을 향상시킬 수 있다. 이에 따라 상기 도전재 분산액은 자동차용 전지 등과 같이 고출력 특성이 요구되는 전지에서의 전극 제조에 유용하다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 실험예 1에 있어서, 실시예 1, 2 및 비교예 1 내지 4에서 제조한 도전재 분산액의 전단율에 따른 전단 점성률의 변화를 관찰한 그래프이다.
도 2는 실험예 2에 있어서, 실시예 1, 2 및 비교예 1 내지 4에서 제조한 도전재 분산액의 위상각 및 복소탄성율을 관찰한 그래프이다.
도 3은 실험예 3에서 실시예 1, 2 및 비교예 1 내지 3에서의 도전재 분산액을 각각 이용하여 제조한 전극 형성용 조성물의 프레스 밀도에 따른 분체저항의 변화를 관찰한 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용하는 용어 '번들형 (bundle type)'이란 달리 언급되지 않는 한, 복수 개의 탄소 나노튜브 단위체가 단위체 길이 방향의 축이 실질적으로 동일한 배향으로 나란하게 배열된 다발(bundle) 형태의 2차 형상을 지칭한다. 또 '비번들형(non-bundle type) 또는 인탱글(entangled type)'이란 탄소 나노튜브 단위체가 다발 혹은 로프 형태와 같은 일정한 형상이 없이 뒤엉켜 있는 형태를 의미한다.
통상 탄소 나노튜브를 포함하는 도전재를 이용하여 이차전지용 전극의 제조시, 분산성을 높이기 위하여 분산매 중에 탄소 나노튜브를 선분산시켜 분산액을 제조한 후, 이를 이용하여 전극 형성용 조성물 및 전극을 제조하고 있다. 이에 따라 전극 및 전지의 특성, 특히 전지의 출력 특성 개선을 위해서는 전극 형성용 조성물에 적합한 점도 및 분산성을 갖는 도전재 분산액을 사용하여야 하며, 이를 위해서는 도전재 분산액 중의 도전재 분산도를 용이하게 평가 및 측정할 수 있어야 한다.
종래 도전재 분산액 중의 도전재 분산도는 입도 분석기(particle size analysis, PSA) 측정을 통한 입도 분포로 평가하였다. 그러나, 번들형 탄소 나노튜브와 같이 선형의 탄소 나노튜브의 경우 그 측정 각도에 따라 입도가 달라지기 때문에, 분산액 중의 분산성 평가가 어렵다. 또, 선형의 탄소 나노튜브는 과분산되었을 경우, 접촉 저항이 증가하여 전지의 출력 특성이 크게 저하될 우려가 있다.
이에 대해 본 발명에서는 번들형(bundle-type) 탄소 나노튜브를 포함하는 도전재를 이용하여 전극 제조시, 도전재 분산액의 복소탄성율(Complex(shear) modulus, |G*| @1Hz)의 제어를 통해 고출력 특성의 전극 형성에 유리한 도전재의 분산성과 점도 특성을 갖는 도전재 분산액을 제공한다.
즉, 본 발명의 일 실시예에 따른 도전재 분산액은,
번들형 탄소 나노튜브를 포함하는 도전재;
수소화된 니트릴계 고무를 분산제; 및
분산매를 포함하며,
레오미터(rheometer) 측정시 주파수 1Hz일때, 복소탄성율(|G*| @1Hz)이 20Pa 내지 500Pa이다.
본 발명에 있어서, 도전재 분산액의 복소탄성율 또는 복소 전단 탄성율은 동적 점탄성을 나타내는 양으로서, 물질에 축적되는 탄성 에너지의 크기를 의미하며, 고체에서 액체 상태로 변해갈수록 작아진다. 본 발명에서의 도전재 분산액의 복소탄성율은 점도 측정기, 구체적으로는 레오미터를 이용하여 측정할 수 있다. 보다 구체적으로는, 레오미터의 원형 회전판 사이의 거리를 일정하게 설정한 후, 해당 간격에 채워지는 부피에 해당하는 도전재 분산액을 넣고, 주파수가 1Hz일때 전단속도를 1/s 단위로 10-3 에서 103 범위까지 설정하여 회전판을 돌리는데 발생하는 힘을 측정하여 전단점성율(shear viscosity)값을 측정할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 도전재 분산액은 레오미터 측정시 주파수가 1Hz일 때 복소탄성율(|G*| @1Hz)이 20Pa 내지 500Pa이다. 도전재 분산액의 복소탄성율이 20Pa 미만이면 분산액의 점도가 지나치게 낮고, 분산성이 저하되기 때문에 전극 형성이 용이하지 않고, 또 복소탄성율이 500Pa를 초과하면 분산액의 점도가 높아져 제조 공정에서 압력 증가에 의해 취급이 어려울 뿐만 아니라 전극 형성용 조성물의 제조시 높은 점탄성을 갖기 때문에 고형분 감소로 인해 생산성이 저하될 우려가 있다. 도전재 분산액의 복소탄성율 제어에 따른 도전재 분산액의 분산성 향상, 그리고 더 나아가 이를 이용하여 제조한 전극의 분체 저항 감소 및 전지 출력 특성의 개선 효과의 현저함을 고려할 때, 상기 도전재 분산액의 복소탄성율은 보다 구체적으로 50Pa 내지 350Pa일 수 있다.
또, 본 발명의 일 실시예에 따른 도전재 분산액은 레오미터를 이용하여 측정시 전단속도(shear rate)가 1/6.3s일 때 전단점성율(shear viscosity)이 2Pa·s 내지 20Pa·s인 것일 수 있다. 상기한 바와 같이 종래에 비해 낮은 전단점성율을 가짐으로써, 전극 제조를 위한 적용시 보다 우수한 분산 특성을 나타낼 수 있다. 보다 구체적으로, 상기 도전재 분산액은 전단점성율이 3.0Pa·s 내지 15Pa·s일 수 있다.
상기와 같은 도전재 분산액의 물성적 특징은 이를 구성하는 도전재, 분산제 및 분산매의 종류, 물성 및 혼합비의 제어를 통해 구현될 수 있다.
또, 탄소 나노튜브는 탄소 나노튜브를 구성하는 단위체의 결정성과 구조 및 형태, 상기 단위체로 이루어진 2차 입자의 구조와 형태 등에 따라 물성이 달라질 수 있다. 이에 따라 상기한 요인들 중 어느 하나 또는 둘 이상을 조합적으로 제어함으로써, 탄소 나노튜브의 용도에 따라 요구되는 물성을 갖도록 할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 도전재 분산액에 있어서, 도전재는 번들형 탄소 나노튜브를 포함한다.
상기 탄소 나노튜브는 탄소 나노튜브 단위체가 전체 또는 부분적으로 번들형을 이루도록 집합되어 형성된 2차 구조물로서, 상기 탄소 나노튜브 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2 결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 탄소 나노튜브 단위체는 벽을 이루고 있는 결합수에 따라서 단일벽 탄소 나노튜브(SWCNT, single-walled carbon nanotube), 이중벽 탄소 나노튜브(DWCNT, doublewalled carbon nanotube) 및 다중벽 탄소 나노튜브(MWCNT, multi-walled carbon nanotube)로 분류될 수 있으며, 벽 두께가 얇을수록 저항이 낮다.
이에 따라 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서, 상기 탄소 나노튜브는 단일벽, 이중벽 및 다중벽의 탄소 나노튜브 단위체 중 어느 하나 또는 둘 이상을 포함할 수 있다.
또, 이차전지용 도전재로서 탄소 나노튜브 단위체의 직경이 지나치게 크면, 전극의 기공 직경 또한 크게 증가하게 되어 전극밀도가 저하될 수 있다. 또, 탄소 나노튜브 단위체의 직경이 지나치게 작으면, 분산이 어려워 분산액 제조 공정성이 저하되고, 분산된 탄소 나노튜브 단위체 또는 탄소 나노튜브가 전극활물질 입자 사이의 공간에 매몰되어, 충분한 기공이 형성되기 어렵다. 이에 따라, 본 발명에서 사용가능한 탄소 나노튜브에 있어서의 탄소 나노튜브 단위체의 평균 가닥 직경은 30nm 이하일 수 있으며, 단위체의 직경 제어에 따른 도전재의 분산성 향상 및 전극 내 저항 감소 효과를 고려할 때, 상기 탄소 나노튜브 단위체의 평균 가닥 직경은 10nm 내지 20nm일 수 있다.
또, 탄소 나노튜브 단위체의 길이가 길수록 전극의 전기전도성, 강도 및 전해액 보관유지성이 향상될 수 있다. 만약 탄소 나노튜브 단위체의 길이가 짧으면 효율적으로 도전성 패스를 형성하기 어렵기 때문에 전기전도성이 저하될 우려가 있다. 반면, 탄소 나노튜브 단위체의 길이가 지나치게 길면 분산성이 저하될 우려가 있다. 이에 따라, 본 발명에서 사용가능한 탄소 나노튜브에 있어서의 단위체의 길이는 1㎛ 내지 200㎛일 수 있다. 또, 상기한 탄소 나노튜브 단위체의 직경을 고려할 때, 상기 탄소 나노튜브 단위체는 탄소 나노튜브 단위체의 길이(단위체의 중심을 지나는 장축의 길이)와 직경(단위체의 중심을 지나며, 상기 장축에 수직하는 단축의 길이)의 비로 정의되는 종횡비가 5 내지 50,000일 수 있으며, 보다 구체적으로는 10 내지 20,000일 수 있다.
본 발명에 있어서, 탄소 나노튜브 단위체의 가닥 직경 및 길이는 전계 방사형 주사전자 현미경을 이용하여 측정할 수 있다.
한편, 상기와 같은 탄소 나노튜브 단위체를 포함하는 탄소 나노튜브는 진밀도(TD)와 벌크밀도(BD)의 비(TD/BD 비)가 70 내지 120인 것일 수 있다.
본 발명에 있어서, 진밀도(TD)와 벌크밀도(BD)의 비로부터 탄소 나노튜브의 내부 구조를 예측할 수 있는데, TD/BD 비가 지나치게 크면 탄소 나노튜브 내 단위체의 함량이 낮기 때문에 전지의 용량 특성이 저하될 우려가 있고, 또 TD/BD 비가 지나치게 작으면 탄소 나노튜브의 분산성이 저하될 우려가 있다. 벌크밀도와 진밀도의 비 제어에 따른 개선 효과의 현저함을 고려할 때, 본 발명에서 사용가능한 탄소 나노튜브의 TD/BD 비는 보다 구체적으로 70 내지 100일 수 있다. 또, 본 발명에서 사용가능한 상기 탄소 나노튜브의 진밀도는 상기한 TD/BD 비를 충족하는 조건 하에서 1800 kg/m3 내지 2200 kg/m3일 수 있다.
또, 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서, 상기 탄소 나노튜브는 벌크밀도가 10 kg/m3 내지 50 kg/m3인 것일 수 있다. 상기한 범위의 벌크 밀도를 가짐으로써 탄소 나노튜브의 전도성 및 분산성을 개선시킬 수 있다.
본 발명에 있어서, 탄소 나노튜브의 벌크 밀도는 하기 수학식 1에 따라 결정될 수 있다.
[수학식 1]
벌크 밀도(kg/m3)=탄소 나노튜브 중량(kg)/탄소 나노튜브 부피(m3)
또, 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서, 상기 탄소 나노튜브는 그 단위체의 직경이 앞서 설명한 바와 같이 작고, TD/BD 비가 크기 때문에 높은 BET 비표면적을 갖져 우수한 분산성을 나타낼 수 있다. 구체적으로 본 발명에서 사용가능한 상기 탄소 나노튜브의 BET 비표면적은 180 m2/g 내지 300 m2/g일 수 있으며, 보다 구체적으로는 230 m2/g 내지 300 m2/g일 수 있다. 본 발명에 있어서, 탄소 나노튜브의 비표면적은 BET 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서, 상기 탄소 나노튜브는 514nm 파장의 레이저를 이용한 라만 분광 분석법에 의해 얻어진 1580 ± 50 cm-1 에서의 G 밴드의 최대 피크 강도(IG)에 대한 1360 ± 50 cm-1 에서의 D 밴드의 최대 피크 강도(ID)의 비(ID/IG)의 평균값이 0.7 내지 1.2인 것일 수 있다.
라만 분석법은 탄소 나노튜브의 구조를 분석하는 방법으로서, 탄소 나노튜브의 표면 상태 분석에 유용한 방법이다. 탄소 나노튜브의 라만 스펙트럼 중 파수 1570cm-1~1580cm-1 부근의 영역에 존재하는 피크를 G 밴드라고 하며, 이는 탄소 나노튜브의 sp2 결합을 나타내는 피크로서, 구조결함이 없는 탄소 결정을 나타내는 것이다. 한편, 라만 스펙트럼 중 파수 1350cm-1~1360cm-1 부근의 영역에 존재하는 피크를 D밴드라고 하며, 이는 탄소 나노튜브의 sp3 결합을 나타내는 피크로서, sp2결합으로 이루어진 원자 결합이 끊어져 sp3 결합이 되는 경우 증가한다. 이와 같은 D밴드는 상기 탄소 나노튜브 내에 존재하는 무질서(disorder) 내지 결함(defect), 또는 비정질이 생성될 경우 증가하게 되므로, G 밴드의 최대 피크 강도(IG)에 대한 D 밴드의 최대 피크 강도(ID)의 비(ID/IG)를 계산하여 무질서(disorder) 내지 결함(defect)의 생성 정도를 정량적으로 평가할 수 있다.
본 발명에 있어서 탄소 나노튜브에 대한 라만 스펙트럼의 G 밴드는 파수 1580 ± 50 cm-1 영역, 보다 구체적으로는 1575 cm-1 내지 1600 cm-1 영역에 존재하는 피크일 수 있고, D 밴드는 파수 1360 ± 50 cm-1 영역, 보다 구체적으로는 1340 cm-1 내지 1360 cm-1 영역에 존재하는 피크일 수 있다. 상기 G 밴드 및 D 밴드에 대한 파수 범위는 라만 분석법에 사용한 레이저 광원에 따라 시프트 될 수 있는 범위에 해당하는 것이다. 본 발명에서 사용하는 라만값은 특별히 제한되는 것은 아니지만, DXR Raman Microscope(Thermo Electron Scientific Instruments LLC)을 이용하여 레이저 파장 514nm 에서 측정할 수 있다.
통상 G 밴드 피크 적분치와 D 밴드 피크 적분치의 비율이 클 수록 비정질 카본이 다량 함유되어 있거나 CNT의 결정성이 불량함을 의미하는 것이나, 본 발명에서는 BET 비표면적이 증가하고 번들형 구조의 2차 형상을 가짐에 따라 CNT의 결정성이 양호하면서도 상기와 같은 ID/IG의 평균값을 갖게 된다.
또, 상기 탄소 나노튜브는 제조과정에서 사용된 Co, Mo, V, 또는 Cr 등과 같은 주 촉매 또는 조촉매 유래의 금속 원소를 50ppm 이하, 보다 구체적으로는 5ppm 이하의 함량으로 포함할 수 있다. 이와 같이, 탄소 나노튜브내 잔류하는 불순물로서의 금속 함량을 현저히 감소시킴으로써 전극내 부반응에 대한 우려없이 보다 우수한 전도성을 나타낼 수 있다. 본 발명에 있어서, 탄소 나노튜브내 잔류하는 금속 불순물의 함량은 고주파 유도 결합 플라즈마(inductively coupled plasma, ICP)를 이용하여 분석할 수 있다. 또, 상기 탄소 나노튜브는 Fe를 포함하지 않을 수도 있다.
또, 상기 탄소 나노튜브는 우수한 전기전도성을 갖는 것으로, 구체적으로는 압력이 62 MPa일 때, 체적 저항이 0.01Ω·cm 이하, 보다 구체적으로는 0.0001 Ω·cm 내지 0.009 Ω·cm 인 것일 수 있다.
본 발명에 있어서, 탄소 나노튜브의 체적 저항은 탄소 나노튜브를 직경이 1mm인 절연 몰드에 충진하고 가압하여 표면의 전류와 전압을 4개의 탐침으로 측정하였고, 보정계수를 적용하여 압력이 62 MPa일 때의 부피 저항값을 산출하였다.
상기와 같은 탄소 나노튜브는 상업적으로 입수하여 사용될 수도 있고, 또는 직접 제조하여 사용될 수도 있다. 제조할 경우, 아크방전법, 레이저 증발법 또는 화학기상 증착법 등의 통상의 방법을 이용하여 제조될 수 있으며, 제조 과정에서의 촉매의 종류, 열처리 온도 및 불순물 제거 방법 등의 제어를 통해 상기한 물성을 구현할 수 있다.
구체적으로, 화학적 기상 합성법에 따라 제조할 경우, 상기 탄소 나노튜브는 구형의 α-알루미나 지지체에 금속 촉매가 담지된 담지 촉매를 탄소 공급원과 가열하에 접촉시켜 탄소 나노튜브를 제조하는 단계, 및 필요에 따라 선택적으로 탄소 나노튜브내 금속 불순물을 제거하는 단계를 포함하는 제조방법에 의해 제조될 수 있다.
상기 화학적 기상 합성법에 따른 탄소 나노튜브의 제조는, 보다 구체적으로 상기 담지 촉매를 수평 고정층 반응기 또는 유동층 반응기 내에 투입하고, 상기 기상 탄소 공급원의 열분해 온도 이상 내지 상기 담지된 금속 촉매의 융점 이하의 온도에서 탄소 공급원; 또는 상기 탄소 공급원과 환원가스(예를 들면 수소 등) 및 운반가스(예를 들면 질소 등)의 혼합가스를 주입하여 탄소 공급원의 분해를 통해 화학적 기상 합성법으로 탄소 나노튜브를 성장시킴으로써 수행될 수 있다. 상기와 같은 화학적 기상 합성법에 의해 제조되는 탄소 나노튜브는 결정의 성장방향이 튜브축과 거의 평행하고, 튜브 길이 방향으로 흑연 구조의 결정성이 높다. 그 결과, 단위체의 직경이 작고, 전기전도성 및 강도가 높다.
또, 상기 탄소 나노튜브의 제조는 구체적으로는 500℃ 이상 800℃ 미만의 온도, 보다 구체적으로는 550℃ 내지 700℃에서 수행될 수 있다. 상기 반응온도 범위내에서는 비결정성 탄소의 발생을 최소화하면서 생성되는 탄소 나노튜브의 벌크 크기를 그대로 유지하면서 중량이 낮아지므로, 벌크밀도 감소에 따른 분산성이 더욱 향상될 수 있다. 상기 열처리를 위한 열원으로서는 유도 가열(induction heating), 복사열, 레이저, IR, 마이크로파, 플라즈마, 표면 플라즈몬 가열 등이 이용될 수 있다.
또, 상기 탄소 공급원으로는 탄소를 공급할 수 있으며, 300℃ 이상의 온도에서 기상으로 존재할 수 있는 것이라면 특별한 제한없이 사용가능하다. 구체적으로 탄소수 6 이하의 탄소계 화합물일 수 있으며, 보다 구체적으는 일산화탄소, 메탄, 에틸, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠 또는 톨루엔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기와 같은 열처리에 의해 탄소 나노튜브를 성장시킨 후, 탄소 나노튜브의 배열을 보다 규칙적으로 정렬하기 위한 냉각공정이 선택적으로 더 수행될 수 있다. 상기 냉각공정은 구체적으로 열원의 제거에 따른 자연냉각 또는 냉각기 등을 이용하여 수행될 수 있다.
한편, 상기 도전재의 제조에 사용되는 담지 촉매는, 구형의 α-알루미나 지지체에에 금속 촉매가 담지된 것이다.
α-알루미나는 γ-알루미나에 비해 다공성이 매우 낮아 촉매 지지체로서의 활용성이 매우 낮다. 그러나, 담지촉매가 형성되는 소성 온도를 제어함으로써, 이를 이용하여 탄소 나노튜브 합성시 비결정성 탄소의 발생을 억제하면서도 비표면적을 감소시켜 직경을 증가시킬 수 있다. 동시에 탄소 나노튜브의 벌크 밀도를 감소시켜 분산성을 개선할 수 있다.
구체적으로 본 발명에서 지지체로서 사용가능한 상기 α-알루미나는 평균 입경(D50)이 20㎛ 내지 200㎛이고, 1 m2/g 내지 50 m2/g의 BET 비표면적을 갖는 것일 수 있다. 또, 상기 α-알루미나는 표면이 매끄러워 매우 낮은 기공도, 구체적으로는 0.001 cm3/g 내지 0.1 cm3/g의 기공도를 갖는 것일 수 있다.
한편, 상기한 구형의 α-알루미나를 지지체로 포함하는 상기 담지 촉매는, 상기한 구형의 α-알루미나 지지체에 금속 촉매의 담지 후 소성함으로써 제조될 수 있다. 구체적으로는, 상기 담지 촉매는 상기한 금속 촉매의 전구체를 물 중에 용해시켜 제조한 금속 촉매 전구체 용액에, 상기 구형의 α-알루미나 지지체를 첨가하여 혼합한 후, 700℃ 이하의 온도에서 소성 시킴으로써 수행될 수 있다.
상기 지지체에 담지되는 금속 촉매는 기상 탄소 공급원에 존재하는 탄소 성분들이 서로 결합하여 6원환 구조를 형성하도록 도와주는 역할을 한다. 상기 금속 촉매로는 철, 니켈 또는 코발트 등의 주촉매가 단독으로 사용될 수도 있고, 또는 상기 주촉매가 몰리브덴, 바나듐 또는 크롬 등의 조촉매와 함께 주촉매-조촉매 복합촉매의 형태로 사용될 수도 있다. 구체적으로 상기 복합촉매는 FeCO, CoMo, CoV, FeCoMo, FeMoV, FeV 또는 FeCoMoV 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 조촉매는 주촉매 1몰에 대하여 0.01몰 내지 1몰, 보다 구체적으로는 0.05몰 내지 0.5몰의 양으로 사용될 수도 있다.
상기 담지 촉매의 제조에 있어서, 상기한 금속 촉매의 전구체로는 물에 용해 가능한 금속염 또는 금속 산화물 등이 사용될 수 있으며, 구체적으로는, Fe, Ni, Co, Mo, V, Cr 및 중에서 선택되는 어느 하나 또는 둘 이상의 금속원소를 포함하는 금속염, 금속산화물 또는 금속할로겐화물일 수 있다. 보다 구체적으로는 Fe(NO3)2·9H2O, Co(NO3)2·6H2O, Co2(CO)8, [Co2(CO)6(t-BuC=CH)], Cu(OAc)2, Ni(NO3)2·6H2O, (NH4)6Mo7O24·4H2O, Mo(CO)6, (NH4)MoS4 및 NH4VO3로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 금속 촉매의 전구체는 물에 용해된 수용액 상태로 사용될 수 있으며, 이때, 함침 효율 등을 고려하여 수용액 중의 금속 촉매 전구체의 농도가 적절히 조절될 수 있다. 구체적으로, 수용액 중에서의 금속 촉매 전구체의 농도는 0.1 g/ml 내지 0.6 g/ml일 수 있다.
또, 상기 금속 촉매 전구체와 혼합되는 상기 구형의 α-알루미나 지지체의 함량을 최종 제조되는 담지 촉매에서의 지지체의 함량을 고려하여 적절히 결정될 수 있다.
또, 탄소 나노튜브의 벌크 밀도 제어를 위해 상기 금속 촉매 전구체 용액 중에 지지체 첨가 및 혼합시 산이 선택적으로 더 사용될 수 있다. 이와 같이 산이 더 첨가될 경우 상기 금속 촉매 전구체 용액은 산 1 몰에 대해 금속 촉매 3몰 내지 40몰, 보다 구체적으로는 5몰 내지 30몰에 해당하는 함량으로 사용될 수 있다. 상기 산은 구체적으로 시트르산 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
한편, 상기한 금속 촉매 전구체 용액과 상기 구형의 α-알루미나 지지체의 혼합 공정은 통상의 방법에 따라 수행될 수 있으며, 구체적으로는 45℃ 내지 100℃ 온도 하에서 회전 또는 교반에 의해 수행될 수 있다.
또, 상기 혼합시 최종 제조되는 담지 촉매에서 담지되는 금속 촉매의 함량을 고려하여 금속 촉매 전구체와 지지체를 혼합할 수 있다. 담지 촉매에 있어서 금속 촉매의 담지량이 증가할수록, 담지 촉매를 이용하여 제조되는 탄소 나노튜브의 벌크밀도가 증가하는 경향이 있다. 이에 따라 제조되는 탄소 나노튜브의 벌크밀도를 고려하여, 최종 제조되는 담지 촉매 총 중량에 대하여 금속 촉매가 5중량% 내지 30중량%의 양으로 담지될 수 있도록 혼합할 수 있다.
또, 상기 금속 촉매 전구체 용액과 상기 구형의 α-알루미나 지지체의 혼합 후, 소성 공정에 앞서 건조 공정이 선택적으로 더 수행될 수 있다. 상기 건조 공정은 통상의 방법에 따라 수행될 수 있으며, 구체적으로는 40℃ 내지 100℃ 온도에서 진공 하에 3분 내지 1시간 동안 회전 증발시킴으로써 수행될 수도 있다.
이어서, 상기한 방법으로 준비된 금속 촉매 전구체 및 지지체의 혼합물에 대해 소성이 수행된다. 상기 소성은 700℃ 이하, 구체적으로는 400℃ 내지 700℃의 온도에서 공기 또는 불활성 대기하에 수행될 수 있다.
또, 상기한 건조 공정 후, 그리고 소성 공정 전에 250℃ 내지 400℃의 온도에서 예비 소성 공정이 선택적으로 더 수행될 수 있다.
이때, 반응의 효율성을 고려할 때 상기 예비 소성 직전에, 상기 금속 촉매 전구체 및 지지체의 혼합물 중 최대 50%를 상기 α-알루미나 지지체에 함침시켜 사용하고, 상기 예비 소성 직후 잔부의 상기 혼합물을 상기 α-알루미나 지지체에 함침시켜 사용할 수 있다.
한편, 본 발명의 일 실시예에 따른 도전재의 제조방법에 있어서, 상기 금속불순물 제거 공정은 세척, 산처리 등의 통상의 방법에 따라 수행될 수 있다.
상기와 같은 제조방법에 따라 제조된 번들형 탄소 나노튜브는 도전액 제조시 우수한 분산성과 전도성을 나타낼 수 있다. 또 고순도로, 전극 내 전도성을 높여 전지 적용시 전지 성능, 특히 전지의 출력 특성을 향상시킬 수 있다.
한편, 본 발명의 일 실시예에 따른 도전재 분산액에 있어서, 상기 분산제는 부분 또는 전체로 수소화된 니트릴계 고무일 수 있으며, 구체적으로는 공액디엔 유래 구조의 반복단위, 수소화된 공액디엔 유래 구조의 반복단위 및 α,β-불포화 니트릴 유래 구조의 반복단위를 포함하는 수소화된 니트릴계 고무일 수 있다. 이때 상기 수소화된 니트릴계 고무는 공중합 가능한 추가의 공단량체를 선택적으로 더 포함할 수 있다.
상기 수소화 니트릴계 고무는 구체적으로 α,β-불포화 니트릴, 공액 디엔 및 선택적으로 기타 공중합 가능한 공단량체를 공중합시킨 후, 공중합체 내 C=C 이중결합을 수소화시킴으로써 제조될 수 있다. 이때 상기 중합 반응 공정 및 수소화 공정은 통상의 방법에 따라 수행될 수 있다.
상기 수소화된 니트릴계 고무의 제조시 사용가능한 α,β-불포화 니트릴로는 구체적으로 아크릴로니트릴 또는 메타크릴로니트릴 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 수소화된 니트릴계 고무의 제조시 사용가능한 공액디엔 으로는 구체적으로 1,3-부타디엔, 이소프렌, 2,3-메틸부타디엔 등의 탄소수 4∼6의 공액디엔 을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 선택적으로 사용가능한 기타 공중합가능한 공단량체로는 구체적으로 방향족 비닐 단량체(예를 들면, 스티렌, α-메틸스티렌, 비닐피리딘, 플루오로에틸 비닐 에테르 등), α,β-불포화 카르복실산(예를 들면, 아크릴산, 메타크릴산, 말레산, 푸마르산, 등), α,β-불포화 카르복실산의 에스테르 또는 아미드(예를 들면, 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, n-도데실 (메트)아크릴레이트, 메톡시메틸 (메트)아크릴레이트, 히드록시에틸 (메트)아크릴레이트, 또는 폴리에틸렌 글리콜 (메트)아크릴레이트 등), α,β-불포화 디카르복실산의 무수물(예를 들면, 말레산 무수물, 이타콘산 무수물, 시트라콘산 무수물 등)을 들 수 있으나, 이에 한정되는 것은 아니다.
상기와 같은 방법에 따라 제조된 수소화된 니트릴계 고무에 있어서, α,β-불포화 니트릴 유래 구조의 반복단위, 공액디엔 유래 구조의 반복단위, 수소화된 공액디엔 유래 구조단위 및 선택적으로 기타 공중합 가능한 공단량체 유래 구조의 반복단위의 함량비는 넓은 범위 내에서 다양할 수 있으며, 각 경우에 있어서 상기 구조단위들의 총 합은 100중량%가 된다.
구체적으로, 탄소 나노튜브에 대한 분산성 향상 및 분산매와의 혼화성을 고려할 때, 상기 수소화된 니트릴계 고무는 고무 총 중량에 대해 상기 α,β-불포화 니트릴 유래 구조의 반복단위(repeating unit)를 10중량% 내지 60중량%, 구체적으로는 20중량% 내지 60중량%로 포함할 수 있다. 상기한 함량 범위로 α,β-불포화 니트릴 구조 함유 반복단위를 포함할 경우, 탄소 나노튜브의 분산성을 높일 수 있어, 탄소 나노튜브의 첨가량이 적더라도 높은 도전성을 부여할 수 있다.
본 발명에 있어서, 수소화된 니트릴계 고무 내 α,β-불포화 니트릴 유래 구조의 반복단위의 함량은, α,β-불포화 니트릴에서 유래하는 구조의 반복단위의 고무 전체에 대한 중량 비율로, 당해 함량의 측정은, JIS K 6364의 밀 오븐법에 따라서, 발생한 질소량을 측정하고 아크릴로니트릴 분자량으로부터 그의 결합량을 환산하여, 정량되는 값의 중앙값이다.
또, 상기 수소화된 니트릴계 고무는 고무 총 중량에 대해 상기 수소화된 공액디엔 유래 구조의 반복단위를 1중량% 내지 15중량%, 보다 구체적으로는 5중량% 내지 15중량%의 함량으로 포함할 수 있다. 상기한 함량 범위로 포함할 때, 분산매에 대한 혼화성이 증가되어 탄소 나노튜브의 분산성을 높일 수 있다.
또, 상기 수소화된 니트릴계 고무가 추가의 기타 공중합 가능한 공단량체를 더 포함할 경우, 공단량체의 종류 및 성질에 따라 함량 비가 달라질 수 있지만, 구체적으로 상기 공단량체 유래 구조의 반복단위의 함량은 수소화된 니트릴계 고무 총 중량에 대하여 20중량% 이하, 보다 구체적으로는 1중량% 내지 10중량%일 수 있다.
보다 더 구체적으로, 상기 수소화된 니트릴계 고무는 하기 화학식 1의 아크릴로니트릴 유래 구조의 반복단위, 하기 화학식 2의 부타디엔 유래 구조의 반복단위 그리고 하기 화학식 3의 수소화된 부타디엔 유래 구조의 반복단위를 포함하는 아크릴로니트릴-부타디엔 고무(H-NBR)일 수 있다. 이때, 하기 화학식 1의 아크릴로니트릴 유래 구조단위의 함량은 10중량% 내지 60중량%, 보다 구체적으로는 20중량% 내지 60중량%일 수 있다. 또, 하기 화학식 3의 수소화된 부타디엔 유래 구조단위의 함량은 1중량% 내지 15중량%, 보다 구체적으로는 5중량% 내지 15중량%일 수 있다.
[화학식 1]
Figure PCTKR2017003222-appb-I000001
[화학식 2]
Figure PCTKR2017003222-appb-I000002
[화학식 3]
Figure PCTKR2017003222-appb-I000003
또, 상기 수소화된 니트릴계 고무는 중량평균 분자량이 10,000g/mol 내지 700,000g/mol, 보다 구체적으로는 10,000g/mol 내지 300,000g/mol인 것일 수 있다. 또, 상기 수소화된 니트릴계 고무는 2.0 내지 6.0의 범위, 구체적으로는 2.0 내지 4.0 범위의 다분산지수 PDI(Mw/Mn의 비, Mw는 중량평균 분자량이고 Mn은 수평균 분자량임)을 갖는 것일 수 있다. 상기 수소화된 니트릴계 고무가 상기한 범위의 중량평균 분자량 및 다분산 지수를 가질 때, 카본블랙을 분산매 중에 균일하게 분산시킬 수 있다. 본 발명에 있어서, 상기 수소화된 니트릴계 고무의 중량평균 분자량 및 수평균 분자량은 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량이다.
한편, 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서, 상기 분산매는 디메틸포름아미드(DMF), 디에틸 포름아미드, 디메틸 아세트아미드(DMAc), N-메틸 피롤리돈(NMP) 등의 아미드계 극성 유기 용매; 메탄올, 에탄올, 1-프로판올, 2-프로판올(이소프로필 알코올), 1-부탄올(n-부탄올), 2-메틸-1-프로판올(이소부탄올), 2-부탄올(sec-부탄올), 1-메틸-2-프로판올(tert-부탄올), 펜탄올, 헥사놀, 헵탄올 또는 옥탄올 등의 알코올류; 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,3-부탄디올, 1,5-펜탄디올, 또는 헥실렌글리콜 등의 글리콜류; 글리세린, 트리메티롤프로판, 펜타에리트리톨, 또는 소르비톨 등의 다가 알코올류; 에틸렌글리콜모노 메틸에테르, 디에틸렌글리콜모노 메틸에테르, 트리에틸렌글리콜 모노 메틸에테르, 테트라 에틸렌글리콜모노 메틸에테르, 에틸렌글리콜모노 에틸에테르, 디에틸렌글리콜모노 에틸에테르, 트리에틸렌글리콜 모노 에틸에테르, 테트라 에틸렌글리콜모노 에틸에테르, 에틸렌글리콜모노 부틸 에테르, 디에틸렌글리콜모노 부틸 에테르, 트리에틸렌글리콜 모노 부틸 에테르, 또는 테트라 에틸렌글리콜모노 부틸 에테르 등의 글리콜 에테르류; 아세톤, 메틸 에틸 케톤, 메틸프로필 케톤, 또는 사이클로펜타논 등의 케톤류; 초산에틸, γ-부틸 락톤, 및 ε-프로피오락톤 등의 에스테르류 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로, 상기 탄소나노튜브 및 분산제에 대한 분산성 향상 효과를 고려할 때 상기 분산매는 아미드계 극성 유기용매일 수 있다.
상기와 같은 구성을 갖는 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서, 상기한 분산제, 카본블랙 및 분산매의 함량은 분산액의 용도에 따라 적절히 결정될 수 있다.
구체적으로, 분산액 중의 탄소 나노튜브의 균일 분산을 위해 상기 분산제는 탄소 나노튜브 100중량부에 대하여 1중량부로 내지 50중량부, 보다 구체적으로 10중량부 내지 50중량부로 포함될 수 있다. 분산제의 함량이 1중량부 미만이면 분산액 중 탄소 나노튜브의 균일 분산이 어렵고, 50중량부를 초과하면 분산액의 점도 증가로 가공성 저하 등의 우려가 있다.
또, 상기 탄소 나노튜브는 도전재 분산액 총 중량에 대하여 1중량% 내지 30중량%, 보다 구체적으로 1중량% 내지 5중량%로 포함될 수 있다. 탄소 나노튜브가 상기 범위의 함량으로 포함될 때 전자 전도성과 분산성을 발란스 좋게 나타낼 수 있다. 만약 탄소 나노튜브의 함량이 상기 범위를 벗어나 1중량% 미만일 경우, 일례로 리튬 이차전지의 전극 제조시 전극 형성용 조성물이 다량의 유기용제를 포함하게 되고, 그 결과 전극내 공극이 증가하고, 활물질 충전율이 저하됨으로써 전지 용량이 저하될 수 있다. 또, 유기용제 제거를 위한 건조시간이 길어질 수 있다. 또, 탄소 나노튜브의 함량이 30중량%를 초과할 경우, 카본블랙의 혼합 분산성이 저하될 우려가 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 상기 도전재 분산액은 상기 탄소 나노튜브 100중량부에 대하여 상기 분산제 1중량부 내지 50중량부, 그리고 상기 분산매 200중량부 내지 9900중량부를 포함할 수 있다. 상기 범위에서 탄소 나노튜브를 분산매에 균일하게 분산시킬 수 있다. 상기한 혼합비로 포함될 때, 보다 개선된 효과를 나타낼 수 있다.
또, 본 발명의 일 실시예에 따른 상기 도전재 분산액은 분산액 안정성을 높이기 위한 분산 안정화제를 더 포함할 수 있다.
상기 분산 안정화제는 카본블랙의 표면에 흡착해 탄소 나노튜브를 둘러싸는 랩핑 효과를 나타냄으로써 탄소 나노튜브의 응집을 방지할 수 있다. 이에 따라 상기 분산 안정화제로는 탄소 나노튜브에 대한 친화성이 우수한 동시에, 분산제 및 분산매에 대한 혼화성이 우수한 것이 바람직할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서, 상기 분산 안정화제는 폴리비닐리덴 플루오라이드, 또는 폴리비닐피롤리돈 등의 불소계 고분자일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 분산 안정화제는 중량평균 분자량이 20,000g/mol 내지 5,000,000g/mol인 것일 수 있다. 분산 안정화제의 분자량이 20,000g/mol 미만으로 지나치게 작으면, 탄소 나노튜브에 대해 충분한 랩핑 효과를 나타내기 어렵고, 또 분자량이 5,000,000g/mol를 초과하여 지나치게 크면 분산매 중 분산 안정화제의 분자 운동 저하로, 탄소 나노튜브를 충분히 랩핑하기 어렵다. 보다 구체적으로 상기 분산 안정화제는 중량평균 분자량이 70,000g/mol 내지 2,000,000g/mol인 것일 수 있다.
또, 상기 분산 안정화제는 탄소 나노튜브 100중량부에 대하여 1중량부 내지 10중량부로 사용될 수 있다. 탄소 나노튜브의 함량에 비해 분산 안정화제의 함량이 지나치게 낮으면, 충분한 랩핑 효과를 얻기 어렵고, 그 결과 탄소 나노튜브끼리의 응집이 발생할 우려가 있다.
상기와 같은 구성을 갖는 본 발명의 일 실시예에 따른 도전재 분산액은, 번들형 탄소 나노튜브를 포함하는 도전재, 분산제 및 분산매를 혼합 후, 레오미터 측정시 주파수가 1Hz일때 복소탄성율(|G*| @1Hz)이 20Pa 내지 500Pa이 되도록 밀링하는 단계를 포함하는 제조방법에 의해 제조될 수 있다. 이때 탄소 나노튜브 및 이를 포함하는 도전재, 분산제 및 분산매의 종류 및 사용량은 앞서 설명한 바와 동일하다.
상기 도전재, 분산제 및 분산매의 혼합은 통상의 방법에 따라 수행될 수 있다. 구체적으로는 탄소 나노튜브와 분산매의 혼합성, 또는 분산매 중 탄소 나노튜브의 분산성을 높이기 위하여 캐비테이션 분산 처리가 수행될 수도 있다. 상기 캐비테이션 분산 처리는 액체에 고에너지를 인가했을 때 물에 생긴 진공 기포가 파열되는 것에 의해 생긴 충격파를 이용한 분산 처리방법으로서, 상기 방법에 의해 탄소 나노튜브의 특성을 손상시키는 일 없이 분산시킬 수 있다. 구체적으로 상기 캐비테이션 분산 처리는 초음파, 제트 밀, 또는 전단 분산 처리에 의해 수행될 수 있다.
상기 분산처리 공정은 탄소 나노튜브의 양 및 분산제의 종류에 따라 적절히 수행될 수 있다. 구체적으로는 초음파 처리를 수행할 경우, 주파수 10kHz 내지 150kHz의 범위이며, 진폭은 5㎛ 내지 100㎛의 범위이며, 조사 시간은 1분 내지 300분일 수 있다. 상기 초음파 처리 공정 수행을 위한 초음파 발생 장치로서는, 예를 들면 초음파 호모지나이저 등을 이용할 수 있다. 또, 제트 밀 처리를 수행할 경우, 압력은 20MPa 내지 250MPa일 수 있으며, 1회 이상, 구체적으로는 2회 이상 복수 회 수행될 수 있다. 또, 상기 제트 밀 분산 장치로는 고압 습식 제트 밀 등을 이용할 수 있다.
상기 캐비테이션 분산 처리 공정시 온도는 특별히 한정되지 않으나, 분산매의 증발에 의한 분산액의 점도 변화의 우려가 없는 온도 하에서 수행될 수 있다. 구체적으로는 50℃ 이하, 보다 구체적으로는 15℃ 내지 50℃의 온도에서 수행될 수 있다.
또, 본 발명의 일 실시예에 따른 도전재 분산액의 제조에 있어서, 밀링은 볼 밀(ball mill), 비드 밀(bead mill), 또는 바스켓 밀(basket mill) 등의 방법에 의해 수행될 수 있으며, 보다 구체적으로는 비드 밀을 이용한 밀링 방법에 의해 수행될 수 있다. 이때 비드 밀의 크기는 도전재의 종류와 양, 그리고 분산제의 종류에 따라 적절히 결정될 수 있으며, 구체적으로는 상기 비드 밀의 평균 직경은 0.5mm 내지 2mm일 수 있다.
상기 밀링 공정은 도전재 분산액의 복소탄성율이 상기한 조건을 충족하도록 하는 조건으로 수행될 수 있으며, 구체적으로는 90분 내지 120분 동안 수행될 수 있다.
또, 상기 분산액의 제조시 분산 안정화제가 선택적으로 더 사용될 수 있으며, 상기 분산 안정화제는 상기 분산제의 혼합 공정시에 함께 첨가될 수 있다. 이 경우 본 발명의 일 실시예에 따른 도전재 분산액의 제조방법은 분산 안정화제 첨가 공정을 더 포함할 수 있다. 상기 분산 안정화제의 종류 및 사용량은 앞서 설명한 바와 동일하다.
상기와 같은 제조방법에 따라 분산매 중에 탄소 나노튜브가 균일 분산된 분산액이 제조될 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서, 상기 탄소 나노튜브와 분산제는, 분산제가 탄소 나노튜브의 표면에 물리적 또는 화학적 결합을 통해 도입된 탄소 나노튜브-분산제 복합체의 형태로 분산되어 포함될 수 있다.
보다 구체적으로, 상기 도전재 분산액 내에서 상기 복합체는 입도분포의 D99가 50㎛ 이하, 보다 구체적으로는 20㎛ 내지 50㎛인 분포를 나타낼 수 있다.
상기 복합체의 입도 분포 D99은 입경 분포의 99% 기준에서의 입경으로 정의할 수 있다. 또 상기 복합체의 입도분포 D99는 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있으며, 보다 구체적으로는, 상기 복합체를 용매에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 99% 기준에서의 평균 입경(D99)을 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 도전재 분산액에 있어서 상기한 복합체를 포함한 고형분의 함량은 분산액 총 중량에 대하여 1.0중량% 내지 5.0중량%일 수 있다. 이와 같이 본 발명의 일 실시예에 따른 도전재 분산액은 종래에 비해 높은 고형분의 함량을 가짐에도 불구하고 우수한 도전재 분산성을 나타낼 수 있다.
이와 같이 본 발명에 따른 도전재 분산액은 탄소 나노튜브의 균일 분산으로 보다 우수한 전기적, 열적, 기계적 특성을 나타낼 수 있고, 또 저점도 유지로 작업성 또한 향상되어 다양한 분야에서의 적용 및 실용화가 가능하다. 구체적으로 상기 도전재 분산액은 이차전지용 전극의 제조에 이용될 수 있다.
이에 따라 본 발명의 또 다른 일 실시예에 따르면, 전극활물질과 함께 상기한 도전재 분산액을 포함하는 이차전지용 전극 형성용 조성물 및 이를 이용하여 제조된 전극을 제공한다.
상기 전극 형성용 조성물에 있어서, 전극활물질은 통상 이차전지의 양극 또는 음극 활물질로서 사용되는 것일 수 있다.
구체적으로는 상기 전극 형성용 조성물이 양극 형성용일 경우, 상기 전극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 전이금속과 리튬을 포함하는 리튬전이금속 산화물의 양극 활물질일 수 있다.
보다 구체적으로, 상기 양극활물질은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - YCoYO2(여기에서, 0<Y<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-YMnYO2(여기에서, 0<Y<1), LiMn2 - zCozO4(여기에서, 0<Z<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NiPCoQMnR)O2(여기에서, 0<P<1, 0<Q<1, 0<R<1, P+Q+R=1) 또는 Li(NiPCoQMnR)O4(여기에서, 0<P<2, 0<Q<2, 0<R<2, P+Q+R=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(NiPCoQMnRMS)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, P, Q, R 및 S는 각각 독립적인 원소들의 원자분율로서, 0<P<1, 0<Q<1, 0<R<1, 0<S<1, P+Q+R+S=1이다) 등) 등을 들 수 있다. 또, 상기 리튬전이금속산화물은 텅스텐(W) 등에 의해 도핑될 수도 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 양극활물질은 LiCoO2, LiMnO2, LiNiO2, 리튬니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, LiNi0 . 5Mn0 . 3Co0 . 2O2, 또는 LiNi0.8Mn0.1Co0.1O2 등), 또는 리튬니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등) 등일 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 양극활물질은 LiNi0 . 6Mn0 . 2Co0 . 2O2, LiNi0 . 5Mn0 . 3Co0 . 2O2, LiNi0.7Mn0.15Co0.15O2 또는 LiNi0 . 8Mn0 . 1Co0 . 1O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 전극 형성용 조성물이 음극 형성용일 경우, 상기 전극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등의 음극활물질일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기한 전극활물질은 고형분 함량을 기준으로 전극 형성용 조성물 총 중량에 대하여 70중량% 내지 99.5중량%로 포함될 수 있다. 전극활물질의 함량이 70중량% 미만이면 용량 저하의 우려가 있고, 99.5중량%를 초과할 경우 바인더 및 도전재의 상대적인 함량 감소로 전극 집전체에 대한 접착력 저하, 도전성 저하 등의 우려가 있다.
또, 상기 전극 형성용 조성물은 전극 활물질 입자들 간의 부착 및 전극 활물질과 집전체와의 접착력을 향상을 위해 바인더를 더 포함할 수 있다.
상기 바인더는 구체적으로 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 전극 형성용 조성물 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.
또, 상기 전극 형성용 조성물은 상기한 전극 활물질, 바인더 등의 혼합 및 분산을 위해 용매를 더 포함할 수 있다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 전극 활물질 및 바인더를 용해 또는 분산시키고, 이후 전극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
한편, 상기한 전극 형성용 조성물을 이용하여 제조되는 본 발명의 일 실시예에 따른 전극은, 양극 또는 음극일 수 있으며, 보다 구체적으로는 양극일 수 있다.
상기 전극은 상기한 전극 형성용 조성물을 이용하여 전극 활물질층을 형성하는 것을 제외하고는 통상의 방법에 따라 제조될 수 있다. 구체적으로, 상기 전극은 상기한 전극 형성용 조성물을 집전체에 도포하고 건조하거나, 또는 상기 전극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 집전체 상에 라미네이션함으로써 제조될 수 있다.
상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 전극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극 및 음극 중 적어도 하나는 상기 도전재 분산액을 포함하는 전극 형성용 조성물에 의해 제조된 것일 수 있다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 도전재 분산액을 이용하여 제조된 전극을 포함하는 리튬 이차전지는 전극 내 도전재의 균일 분산으로 인해 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타낼 수 있다. 그 결과, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[제조예 1: 탄소나노튜브의 제조]
Co와 V의 전구체 물질로서 Co(NO3)2·6H2O와 NH4VO3(Co/V, 10:1몰비) 2,424 g을 물 2,000 ml에 투입하여 얻은 맑은 수용액을 플라스크 A에 준비하였다. 이와 별도로, 알루미늄계 지지체 전구체로서 수산화알루미늄(Al(OH)3)을 500℃에서 4시간 동안 1차 소성하여 얻어진 α-알루미나 지지체 2,000 g을 플라스크 B에 준비하였다. 상기 α-알루미나 지지체 2,000 g을 몰 기준으로, 100몰로 환산하고, 상기 알루미나 지지체 100 몰에 대하여, Co/V(10:1 몰비)가 30몰이 되도록 플라스크 B에 상기 플라스크 A 용액 4,424g을 첨가하였다.
시트르산 1몰에 대하여 Co가 23몰이 되도록 시트르산을 첨가한 뒤, 결과로 수득된 혼합물의 중량을 측정하고, 그래파이트화 촉매 금속 전구체를 충분히 담지시키기 위하여 60℃ 항온조에서 5분간 교반하여 숙성시켰다. 상기 온도를 유지하면서 숙성된 혼합물을 80rpm으로 회전시키며 진공 건조시키고, 건조 후 중량을 측정하여 수분 제거량을 측정하였다(건조 후 중량: 약 14.1중량%). 결과로 수득된 건조 반응물을 700℃에서 4시간 동안 2차 소성시켜 담지 촉매를 제조하였다.
상기에서 제조한 탄소 나노튜브 합성용 담지 촉매를 이용하여 실험실 규모의 고정층 반응기에서 탄소 나노튜브 합성을 수행하였다. 구체적으로 상기에서 제조된 탄소 나노튜브 합성용 담지 촉매를 직경 55㎜의 내경을 갖는 석영관의 중앙부에 장착한 후 질소 분위기에서 670℃까지 승온시킨 다음 유지시키고, 질소와 수소, 및 에틸렌 가스의 혼합 부피비를 1:1:1의 동일 비율로 180ml/min로 흘리면서 1시간 동안 반응시켜 번들형 탄소 나노튜브를 합성하였다.
[ 실시예 1: 도전재 분산액의 제조]
N-메틸피롤리돈(NMP) 용매 97.6중량부에 번들형 CNT(평균 가닥 직경= 15nm) 2중량부 및 부분 수소화된 아크릴로니트릴부타디엔계 고무(α,β-아크릴로니트릴 유래 구조의 반복단위 함량: 54중량%, 수소화된 부타디엔 유래 구조의 반복단위의 함량: 9중량%, 중량평균 분자량: 260,000g/mol, 다분산지수(PDI)=2.9) 0.4중량부를 첨가하고 균질혼합기(VMA LC55, Impeller/3000rpm)를 이용하여 1시간 동안 혼합하였다. 결과의 혼합물에 대해 네취 비드 밀(NETZSCH Mini-cer, 비드 평균직경: 1mm, 3000rpm 속도)를 이용하여 90분 동안 밀링하여 수행하여 탄소 나노튜브 분산액을 수득하였다.
[실시예 2: 도전재 분산액의 제조]
상기 실시예 1에서 비드 밀링을 120분 동안 수행하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 탄소 나노튜브 분산액을 제조하였다.
[비교예 1: 도전재 분산액의 제조]
상기 실시예 1에서 비드 밀링을 수행하지 않은 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 탄소 나노튜브 분산액을 제조하였다.
[비교예 2: 도전재 분산액의 제조]
상기 실시예 1에서 비드 밀링을 30분 동안 수행하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 탄소 나노튜브 분산액을 제조하였다.
[비교예 3: 도전재 분산액의 제조]
상기 실시예 1에서 비드 밀링을 60분 동안 수행하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 탄소 나노튜브 분산액을 제조하였다.
[ 비교예 4: 도전재 분산액의 제조]
상기 실시예 1에서 번들형 CNT 대신에 인탱글 타입의 CNT(FT9110, Cnano사제, 평균 가닥 직경=15nm)를 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 탄소나노튜브 분산액을 제조하였다.
[ 실험예 1]
상기 실시예 1 및 비교예 4에서 사용한 도전재에 대해 하기와 같은 방법으로, 탄소 나노튜브의 입도, 순도, BET 비표면적, 벌크 밀도, 진밀도, 2차 구조 형상, 직경 및 금속 불순물의 함량을 각각 측정하고, 그 결과를 하기 표 1에 나타내었다.
1) 2차 구조 형상 및 입도: 주사전자 현미경을 이용하여 CNT의 입도 및 2차 구조의 형상을 관찰하였다.
2) 단위체 직경: SEM 및 BET를 이용하여 측정하였다.
3) 결정화도(IG/ID비): 514nm 파장의 레이저를 이용한 라만 분광 분석법에 의해 얻어진 1575cm-1 내지 1600cm-1에서의 G 밴드의 최대 피크 강도(IG)에 대한 1340cm-1 내지 1360cm-1에서의 D 밴드의 최대 피크 강도(ID)의 비(ID/IG)로부터 평균값을 구하였다.
4) 체적 저항: 탄소 나노튜브 파우더를 직경이 1mm인 절연 몰드에 충진하고 가압하여 표면의 전류와 전압을 4개의 탐침으로 측정하였고, 보정계수를 적용하여 압력이 62MPa일 때의 부피 저항값을 산출하였다.
5) BET 비표면적: BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출하였다.
6) 벌크밀도: 무게를 알고 있는 25ml 용기에 탄소 나노튜브를 채우고 무게를 측정한 후 밀도를 환산하는 방법으로 측정하였다.
실시예 1 비교예4
2차구조 형상 번들형 인탱글
평균 가닥 직경(nm) 15 15
IG/ID 비 평균 0.95~1.04 1.0
체적 저항(Ω·cm, @62MPa) 0.00817 0.0273
BET 비표면적(m2/g) 249 197
벌크밀도 (kg/m3) 23 53
[ 실험예 2]
상기 실시예 1~2 및 비교예 1~4에서 제조한 각각의 도전재 분산액에 대해 복소탄성율 및 점도 등의 유변물성을 측정하였다.
복소탄성율 및 점도를 측정하기 위하여, 점도 측정장비로서 레오미터(RHEOMETER)(모델명: AR시리즈, 제조사: TA INSTRUMENTS)의 원형 회전판 사이의 거리를 일정하게 설정한 후, 해당 간격에 채워지는 부피에 해당하는 도전재 분산액을 각각 넣고 전단속도를 1/s 단위로 10-3 에서 103 범위까지 설정하여 회전판을 돌리는데 발생하는 힘을 측정하여, 복소탄성율을 측정하였다. 또, 전단속도 1/6.3s일 때의 전단점성율을 측정하였다. 그 결과를 하기 표 2 및 도 1, 2에 나타내었다.
복소탄성율(Pa) 전단점성율(@1/6.3s, 전단속도)(Pa·s)
비교예1 2191 4.8
비교예2 1131 13.8
비교예3 864 10.3
비교예4 15 0.98
실시예1 291 8.1
실시예2 244 7.3
측정 동안에 전체적으로 전단 유동화(shear thining) 현상이 관찰되었다.
비교예 1~3은 전단율 증가에 따른 전단점성율 그래프에서 변곡선이 발생하였으나, 실시예 1 및 2의 경우 직선의 형태를 보이며 기울기가 작아졌다. 비교예 1~3에서의 변곡선은 점탄성을 보이는 분산액에서의 분산이 충분히 이루어지지 않아 국부적인 입자 뭉침이 발생하였기 때문이다.
일반적으로 점탄성 물질에서는 가하는 응력의 정도에 따라 탄성이 달라지며, 기울기가 작아진다는 의미는 응력이 증가하여도 탄성의 변화가 거의 없음을 의미한다. 즉 분산 상태가 좋을수록 탄성율의 척도인 복소탄성율 값이 감소하였다.
복소탄성율 값은 분산시간이 증가할수록 감소하였으며, 비교예 1~3 대비 실시예 1~2의 분산액이 큰폭으로 감소하였다. 구체적으로 전단율 증가에 따른 전단점성율 그래프에서 변곡선이 발생하지 않을 때의 복소 전단율 값은 300Pa 이하였다.
또, 실시예 1 및 2의 도전재 분산액은 비교예 2 및 3에 비해 낮은 전단점성율을 나타내었다. 이로부터 실시예 1~2의 도전재 분산액에 탄소 나노튜브가 균일하게 분산됨을 알 수 있다.
[ 실험예 3]
상기 실시예 1, 2 및 비교예 1~4에서 제조한 탄소 나노튜브 분산액에 대하여 입도 분포 및 고형분 함량을 각각 측정하였다. 그 결과를 하기 표 3에 나타내었다.
입도분포: 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 99% 기준에서의 평균 입경 D99 를 각각 산출하였다.
실시예1 실시예2 비교예1 비교예2 비교예3 비교예4
분산액중 고형분 함량(중량%) 2.4 2.4 2.4 2.4 2.4 2.4
D99(㎛) 31 19 157 106 78 55
실시예 1 및 2의 탄소나노튜브 분산액 중의 탄소나노튜브-분산제 복합체의 입도분포가 비교예 1 내지 3에 비해 더 낮은 값을 나타내었다.
[ 제조예 2: 양극 및 리튬 이차전지의 제조]
상기 실시예 1, 2 및 비교예 1~3에서 제조한 탄소나노튜브 분산액을 각각 이용하여 리튬 이차전지용 양극 및 리튬 이차전지를 제조하였다.
상세하게는, 상기 실시예 1에서 제조한 탄소나노튜브 분산액에 양극활물질로서 LiNi0 . 6Mn0 . 2Co0 . 2O2 및 PVdF 바인더를 탄소나노튜브 100중량부에 대하여 각각 9700중량부 및 200중량부로 첨가한 후 혼합하여 양극 형성용 조성물(점도: 5000mPa·s)을 제조하였다. 제조한 양극 형성용 조성물을 630 mg/25cm2의 로딩량으로 알루미늄 집전체에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
또, 음극활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[ 실험예 4]
상기 실시예 1~2 및 비교예 1~3의 도전재 분산액을 이용하여 제조한 전극 형성용 조성물에 대해 분체 저항을 측정하였다. 그 결과를 도전재 분산액의 복소탄성율 결과와 함께 하기 표 4 및 도 3에 각각 나타내었다.
상기 분체저항은 제조한 각각의 전극 형성용 조성물을 건조 후 그라인딩(grinding)하고, 분체 저항 측정기(HPRM-A2, 한테크사제)를 이용하여 62MPa의 조건에서 측정하였다.
복소탄성율(Pa) 분체저항@62MPa(Ω·cm)
비교예1 2191 200.7
비교예2 1131 104.8
비교예3 864 90.6
실시예1 291 26.2
실시예2 244 21.9
측정 결과, 실시예 1~2에서 사용한 도전재 분산액은 0.5g/cc 내지 1.6g/cc의 분체밀도에서 체적저항이 0.01 ohm·cm 내지 0.04 ohm·cm로, 동일 분체밀도 구간에서의 비교예 1~3에 비해 낮은 체적 저항값을 나타내었다. 또, 도전재 분산액의 복소탄성율 감소폭과 유사한 폭으로 분체의 저항이 감소함을 확인하였다, 이로부터 실시예 1~2의 도전재 분산액이 비교예 1~3에 비해 전지의 출력 특성을 크게 향상시킬 수 있음을 예상할 수 있다.

Claims (22)

  1. 번들형 탄소 나노튜브를 포함하는 도전재;
    수소화된 니트릴계 고무를 포함하는 분산제; 및
    분산매를 포함하며,
    레오미터 측정시 주파수가 1Hz일때 복소탄성율(|G*| @1Hz)이 20Pa 내지 500Pa인 것인 도전재 분산액.
  2. 제1항에 있어서,
    레오미터를 이용하여 측정시 전단속도가 1/6.3s일 때 전단점성율이 2Pa·s 내지 20Pa·s인 것인 도전재 분산액.
  3. 제1항에 있어서,
    상기 탄소 나노튜브는 평균 가닥 직경이 30nm 이하인 탄소 나노튜브 단위체를 포함하는 것인 도전재 분산액.
  4. 제1항에 있어서,
    상기 탄소 나노튜브는 514nm 파장의 레이저를 이용한 라만 분광 분석법에 의해 얻어진 1580 ± 50 cm-1 에서의 G 밴드의 최대 피크 강도에 대한 1360 ± 50 cm-1 에서의 D 밴드의 최대 피크 강도의 비의 평균값이 0.7 내지 1.2인 것인 도전재 분산액.
  5. 제1항에 있어서,
    상기 탄소 나노튜브는 압력이 62MPa일 때, 체적 저항이 0.01Ω·cm 이하인 것인 도전재 분산액.
  6. 제1항에 있어서,
    상기 탄소 나노튜브는 BET 비표면적이 180 m2/g 내지 300 m2/g이고, 벌크밀도가 10 kg/m3 내지 50 kg/m3인 것인 도전재 분산액.
  7. 제1항에 있어서,
    상기 탄소 나노튜브는 도전재 분산액 총 중량에 대하여 1중량% 내지 5중량%로 포함되는 것인 도전재 분산액.
  8. 제1항에 있어서,
    상기 수소화된 니트릴계 고무는 고무 총 중량에 대해 수소화된 공액디엔 유래 구조의 반복단위를 1중량% 내지 15중량% 포함하는 것인 도전재 분산액.
  9. 제1항에 있어서,
    상기 수소화된 니트릴계 고무는 고무 총 중량에 대해 α,β-불포화 니트릴 유래 구조의 반복단위를 10중량% 내지 60중량%로 포함하는 것인 도전재 분산액.
  10. 제1항에 있어서,
    상기 수소화된 니트릴계 고무는, 고무 총 중량에 대해, 수소화된 부타디엔 유래 구조의 반복단위를 1중량% 내지 15중량% 및 아크릴로니트릴 유래 구조의 반복단위를 10중량% 내지 60중량%로 포함하는 수소화된 아크릴로니트릴부타디엔계 고무인 것인 도전재 분산액.
  11. 제1항에 있어서,
    상기 수소화된 니트릴계 고무는 중량평균 분자량이 10,000g/mol 내지 700,000g/mol이고, 다분산지수가 2.0 내지 6.0인 것인 도전재 분산액.
  12. 제1항에 있어서,
    상기 분산제는 탄소 나노튜브 100중량부에 대하여 10중량부 내지 50중량부로 포함되는 것인 도전재 분산액.
  13. 제1항에 있어서,
    상기 분산제는 탄소 나노튜브의 표면에 도입되어 탄소 나노튜브-분산제 복합체를 형성하고,
    상기 탄소 나노튜브-분산제 복합체는 입도분포의 D99가 50㎛ 이하이며, 분산액 총 중량에 대하여 1중량% 내지 5중량%의 함량으로 포함되는 것인 도전재 분산액.
  14. 제1항에 있어서,
    상기 분산매는 아미드계 유기 용매인 것인 도전재 분산액.
  15. 번들형 탄소 나노튜브를 포함하는 도전재, 수소화된 니트릴계 고무를 포함하는 분산제 및 분산매를 혼합 후, 레오미터 측정시 주파수가 1Hz일때 복소탄성율(|G*| @1Hz)이 20Pa 내지 500Pa이 되도록 밀링하는 단계를 포함하는 도전재 분산액의 제조방법.
  16. 제15항에 있어서,
    상기 밀링은 비드 밀에 의해 수행되는 것인 도전재 분산액의 제조방법.
  17. 제15항에 있어서,
    상기 밀링은 평균 직경 0.5mm 내지 2mm의 비드 밀을 이용하여 90분 내지 120분 동안 수행되는 것인 도전재 분산액의 제조방법.
  18. 전극 활물질;
    바인더; 및
    제1항 내지 제14항 중 어느 한 항에 따른 도전재 분산액을 포함하는 이차전지의 전극 형성용 조성물.
  19. 제18항에 따른 전극 형성용 조성물을 이용하여 제조된 이차전지용 전극.
  20. 제19항에 있어서,
    상기 전극이 양극인 것인 이차전지용 전극.
  21. 제20항에 있어서,
    상기 양극은 양극활물질을 500 mg/25cm2 내지 1000 mg/25cm2의 로딩량으로 포함하는 것인 이차전지용 전극.
  22. 양극; 음극; 세퍼레이터 및 전해질을 포함하며,
    상기 양극 및 음극 중 적어도 하나는 제19항에 따른 전극인 것인 리튬 이차전지.
PCT/KR2017/003222 2016-03-24 2017-03-24 도전재 분산액 및 이를 이용하여 제조한 이차전지 WO2017164703A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780003314.9A CN108140841B (zh) 2016-03-24 2017-03-24 导电材料分散液和使用其制造的二次电池
US15/759,677 US11108050B2 (en) 2016-03-24 2017-03-24 Conductive material dispersed liquid and secondary battery manufactured using the same
PL17770673T PL3333946T3 (pl) 2016-03-24 2017-03-24 Dyspersja przewodnika i akumulator wytworzony z jej użyciem
EP17770673.6A EP3333946B1 (en) 2016-03-24 2017-03-24 Conductor dispersion and secondary battery manufactured using same
JP2018516054A JP6719759B2 (ja) 2016-03-24 2017-03-24 導電材分散液およびこれを用いて製造した二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160035560 2016-03-24
KR10-2016-0035560 2016-03-24
KR10-2017-0037748 2017-03-24
KR1020170037748A KR102320010B1 (ko) 2016-03-24 2017-03-24 도전재 분산액 및 이를 이용하여 제조한 이차전지

Publications (1)

Publication Number Publication Date
WO2017164703A1 true WO2017164703A1 (ko) 2017-09-28

Family

ID=59900573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003222 WO2017164703A1 (ko) 2016-03-24 2017-03-24 도전재 분산액 및 이를 이용하여 제조한 이차전지

Country Status (1)

Country Link
WO (1) WO2017164703A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111542950A (zh) * 2018-02-19 2020-08-14 株式会社Lg化学 正极和包括所述正极的二次电池
EP3783697A4 (en) * 2018-03-29 2021-12-29 Nissan Chemical Corporation Composition for forming undercoat layer of energy storage device
US20230275234A1 (en) * 2020-08-31 2023-08-31 Zeon Corporation Conductive material dispersion liquid for electrochemical device, slurry for electrochemical device electrode, electrode for electrochemical device, and electrochemical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090054677A (ko) * 2007-11-27 2009-06-01 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR20130139711A (ko) * 2012-06-13 2013-12-23 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
KR20150067049A (ko) * 2013-12-09 2015-06-17 삼성에스디아이 주식회사 리튬 이차 전지용 도전 조성물, 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
KR20150122653A (ko) * 2013-02-22 2015-11-02 바이엘 머티리얼사이언스 아게 탄소 나노튜브-함유 분산액 및 전극의 제조에서의 그의 용도
KR20150135090A (ko) * 2014-05-22 2015-12-02 주식회사 엘지화학 탄소 나노 튜브의 제조 방법과, 탄소 나노 튜브의 분산 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090054677A (ko) * 2007-11-27 2009-06-01 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR20130139711A (ko) * 2012-06-13 2013-12-23 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
KR20150122653A (ko) * 2013-02-22 2015-11-02 바이엘 머티리얼사이언스 아게 탄소 나노튜브-함유 분산액 및 전극의 제조에서의 그의 용도
KR20150067049A (ko) * 2013-12-09 2015-06-17 삼성에스디아이 주식회사 리튬 이차 전지용 도전 조성물, 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
KR20150135090A (ko) * 2014-05-22 2015-12-02 주식회사 엘지화학 탄소 나노 튜브의 제조 방법과, 탄소 나노 튜브의 분산 조성물

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111542950A (zh) * 2018-02-19 2020-08-14 株式会社Lg化学 正极和包括所述正极的二次电池
EP3716365A4 (en) * 2018-02-19 2021-01-13 Lg Chem, Ltd. CATHODE AND SECONDARY BATTERY INCLUDING IT
EP3783697A4 (en) * 2018-03-29 2021-12-29 Nissan Chemical Corporation Composition for forming undercoat layer of energy storage device
US20230275234A1 (en) * 2020-08-31 2023-08-31 Zeon Corporation Conductive material dispersion liquid for electrochemical device, slurry for electrochemical device electrode, electrode for electrochemical device, and electrochemical device
US11831020B2 (en) * 2020-08-31 2023-11-28 Zeon Corporation Conductive material dispersion liquid for electrochemical device, slurry for electrochemical device electrode, electrode for electrochemical device, and electrochemical device

Similar Documents

Publication Publication Date Title
WO2017074124A1 (ko) 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
WO2017099481A1 (ko) 이차전지용 양극 및 이를 포함하는 이차전지
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2021066560A1 (ko) 양극 및 이를 포함하는 이차 전지
WO2020184938A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021215830A1 (ko) 음극 및 이를 포함하는 이차 전지
WO2021066494A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2016200223A1 (ko) 양극 합제 및 이를 포함하는 이차전지
WO2022086289A1 (ko) 음극 및 이를 포함하는 이차 전지
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2023282684A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2017164703A1 (ko) 도전재 분산액 및 이를 이용하여 제조한 이차전지
WO2017095151A1 (ko) 이차전지용 양극 및 이를 포함하는 이차전지
WO2017099358A1 (ko) 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
WO2019147093A1 (ko) 도전재, 이를 포함하는 전극 형성용 슬러리, 전극 및 이를 이용하여 제조되는 리튬 이차 전지
WO2020040545A1 (ko) 도전재 분산액, 이를 이용하여 제조된 전극 및 리튬 이차전지
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2021066495A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2021215768A1 (ko) 실리콘-탄소 복합 음극 활물질, 상기 실리콘-탄소 복합 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2022197125A1 (ko) 이차 전지용 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 상기 양극을 포함하는 이차 전지
WO2019103526A1 (ko) 이차전지용 양극 슬러리 조성물, 이를 이용하여 제조된 이차전지용 양극 및 이차전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2017164701A1 (ko) 이차전지의 양극 형성용 조성물 및 이를 이용하여 제조한 이차전지용 양극 및 이차전지
WO2023018187A1 (en) Negative electrode active material, negative electrode including same, secondary battery including same and method for preparing negative electrode active material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017770673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018516054

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE