WO2017164176A1 - ガスシールドアーク溶接用フラックス入りワイヤ - Google Patents

ガスシールドアーク溶接用フラックス入りワイヤ Download PDF

Info

Publication number
WO2017164176A1
WO2017164176A1 PCT/JP2017/011241 JP2017011241W WO2017164176A1 WO 2017164176 A1 WO2017164176 A1 WO 2017164176A1 JP 2017011241 W JP2017011241 W JP 2017011241W WO 2017164176 A1 WO2017164176 A1 WO 2017164176A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
wire
less
content
welding
Prior art date
Application number
PCT/JP2017/011241
Other languages
English (en)
French (fr)
Inventor
良昌 村西
浩之 川▲崎▼
武史 日▲高▼
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to SG11201808170WA priority Critical patent/SG11201808170WA/en
Publication of WO2017164176A1 publication Critical patent/WO2017164176A1/ja
Priority to PH12018502004A priority patent/PH12018502004A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Definitions

  • the present invention relates to a flux-cored wire for gas shielded arc welding.
  • Patent Document 1 discloses a titania-based flux-cored wire that can maintain good welding workability even at a high current and can form a good bead by vertical welding.
  • Patent Document 1 is a technique specialized in welding workability at a high current, it is not excellent in welding workability at a low current, and a lot of spatter is generated in short-circuit transfer welding at a low current. there's a possibility that.
  • Patent Document 2 Various technologies have been created so far for suppressing the occurrence of sputtering, and for example, disclosed in Patent Document 2.
  • the flux-cored wire according to Patent Document 2 suppresses the generation of spatter and has good welding workability in all positions.
  • the numerical value of the welding current is 260 A or more, and the specification assumes application to high-current welding. Therefore, similarly to the technique according to Patent Document 1, the technique according to Patent Document 2 cannot secure good welding workability at a low current.
  • a flux-cored wire for gas shielded arc welding can provide a weld metal that exhibits good mechanical properties as well as low diffusible hydrogen content, as well as good workability at high and low currents. Is also required.
  • the present invention provides a flux-cored wire for gas shielded arc welding that can obtain a weld metal having a low amount of diffusible hydrogen and good mechanical properties while maintaining good welding workability not only at a high current but also at a low current. It is an issue to provide.
  • the flux-cored wire for gas shielded arc welding is TiO 2 : 3.0 mass% or more and 8.0 mass% or less, C: 0.01 mass% or more and 0.10 mass% per the total mass of the wire.
  • at least one of Si and Si oxide 0.20% by mass to 1.70% by mass in total in terms of Si, ZrO 2 : 0.1% by mass to 1.0% by mass, Mn: 1.
  • B and B oxides Total of B conversion amount is 0.0003 mass% or more and 0.0300 mass% or less, Mg: less than 0.10 mass%, MgO: less than 0.10 mass%, Na conversion amount of Na compound other than NaF and K Total with K equivalent of compound: 0.
  • F equivalent amount of F compounds other than NaF 0.10 wt% or less, as well as a, the content of TiO 2 [TiO 2], when the content of Al and [Al], 5 .00 ⁇ [TiO 2 ] / [Al] ⁇ 70.00.
  • the flux-cored wire for gas shielded arc welding by specifying the value calculated by [TiO 2 ] / [Al] within a predetermined range, welding workability is improved not only at a high current but also at a low current. At the same time, the mechanical properties of the weld metal can be improved.
  • the NaF content within a predetermined range, the droplet transfer of the arc during welding is stabilized, not only improving the arc stability but also reducing the hydrogen partial pressure in the welding atmosphere, The amount of diffusible hydrogen in the metal can be reduced.
  • the flux-cored wire for gas shielded arc welding is Al 2 O 3 : 0.5 mass% or less, Ca: 0.10 mass% or less, Ti: 0.25 mass% or less, based on the total mass of the wire. , Ni: 4.00% by mass or less.
  • the contents of Al 2 O 3 , Ca, Ti, and Ni are specified to be equal to or less than predetermined values, respectively, so that the welding workability is improved and the weld metal machine The physical properties can be further improved.
  • the flux-cored wire for gas shielded arc welding according to the present invention can obtain a weld metal that exhibits good mechanical properties while having a low amount of diffusible hydrogen while maintaining good welding workability not only at a high current but also at a low current. it can.
  • the flux-cored wire for gas shielded arc welding according to the present embodiment (hereinafter referred to as “wire” as appropriate) is a wire used for gas shielded arc welding, and has a steel sheath filled with flux.
  • the wire which concerns on this embodiment consists of the steel outer shell which exhibits a cylindrical shape, and the flux with which the inner side of the steel outer shell is filled.
  • the wire may be either a seamless type without a seam in the steel outer shell or a seam type with a seam in the steel outer shell.
  • the wire may or may not be plated on the surface (outside of the steel skin).
  • the wire diameter (diameter) of the wire according to the present embodiment is not particularly limited, but may be 1.2 mm or more and 2.4 mm or less.
  • each component has a predetermined content with respect to the total mass of the wire, and the content of some components satisfies a predetermined relational expression.
  • the reason which specified content of each component of the wire which concerns on this embodiment is demonstrated.
  • Si when “Si” is simply indicated, it means one or more of “pure metal Si” and “alloy Si”. “Oxide” means one or more of “single oxide” and “composite oxide”. “Single oxide” means, for example, an oxide of Ti alone (TiO 2 ) if it is Ti, and “composite oxide” means a collection of a plurality of these single oxides, for example, It refers to both oxides containing a plurality of metal components such as Ti, Fe, and Mn.
  • TiO 2 plays an important role in supporting the weld metal.
  • the content of TiO 2 is less than 3.0% by mass, welding workability is deteriorated and a good bead shape and bead appearance cannot be secured.
  • the content of TiO 2 exceeds 8.0% by mass, the slag melting point becomes high, and the slag hardens quickly when weaving is performed by vertical improvement welding. As a result, a weld metal is formed along the carrying rod, resulting in a scaly (wave-like) bead and a good bead shape cannot be ensured.
  • the content of TiO 2 is 3.0% by mass or more and 8.0% by mass or less per the total mass of the wire.
  • the content of TiO 2 is preferably 4.0% by mass or more from the viewpoint of obtaining a better bead shape.
  • the content of TiO 2 is preferably 7.0% by mass or less from the viewpoint of obtaining a better bead shape.
  • C 0.01% by mass or more and 0.10% by mass or less
  • C is a component that exhibits the effect of improving the hardenability and toughness of the weld metal.
  • the C content is less than 0.01% by mass, the hardenability of the weld metal is insufficient, and it is difficult to ensure sufficient mechanical properties.
  • the C content exceeds 0.10 mass%, the arc is strongly blown and the base material is dug by arc force during welding, so that a good bead shape and bead appearance cannot be ensured. Therefore, the C content is 0.01% by mass or more and 0.10% by mass or less per total mass of the wire.
  • the C content is preferably 0.01% by mass or more and 0.08% by mass or less per total mass of the wire.
  • Si improves welding workability.
  • the total amount of Si and Si oxide in terms of Si is less than 0.20% by mass, welding workability is deteriorated and a good bead shape and bead appearance cannot be secured.
  • the total amount of Si and Si oxide in terms of Si exceeds 1.70% by mass, precipitation of grain boundary ferrite is promoted, and the toughness of the weld metal deteriorates. Therefore, the sum of Si and Si oxide in terms of Si is 0.20% by mass or more and 1.70% by mass or less per total mass of the wire.
  • the total amount of Si and Si oxide in terms of Si is preferably 0.30% by mass or more from the viewpoint of obtaining a better bead shape. Moreover, the total of Si conversion amount of Si and Si oxide is preferably 1.40% by mass or less from the viewpoint of suppressing deterioration of the toughness of the weld metal.
  • both Si and Si oxide exhibit the effect of improving the workability of welding, but strictly speaking, their actions are different. That is, Si improves the viscosity of the weld metal during welding and makes the weld metal difficult to sag.
  • the Si oxide covers the weld metal with slag and prevents the weld metal from dripping.
  • it does not specifically limit about each content of Si and Si oxide, When specifying each content temporarily, it is as follows.
  • Si improves welding workability by improving the viscosity of the weld metal and making the weld metal difficult to sag.
  • Si content is less than 0.10% by mass, the viscosity of the weld metal is lowered, and the bead shape may be deteriorated.
  • the Si content exceeds 1.00% by mass, the austenite grains become coarse in the weld metal, which may lead to deterioration of the toughness of the weld metal. Therefore, when prescribing the Si content, it is preferably 0.10% by mass or more and 1.00% by mass or less per the total mass of the wire.
  • Si 0.20 mass% or more is more preferable from a viewpoint made into a more favorable bead shape. Further, the Si content is more preferably 0.80% by mass or less from the viewpoint of suppressing deterioration of the toughness of the weld metal.
  • SiO 2 plays a role of supporting the weld metal as a slag forming agent.
  • the content of SiO 2 is less than 0.20% by mass, the amount of slag becomes insufficient, and there is a possibility that the bead hangs down.
  • the content of SiO 2 exceeds 1.50% by mass, the deoxidizing power of the flux is lowered, and the mechanical properties of the weld metal may be deteriorated. Therefore, when the content of SiO 2 is specified, the content is preferably 0.20% by mass or more and 1.50% by mass or less per total mass of the wire.
  • the content of SiO 2 from the viewpoint of a better bead shape, more preferably at least 0.40 mass%. Further, the content of SiO 2 is more preferably 1.30% by mass or less from the viewpoint of suppressing deterioration of the mechanical properties of the weld metal.
  • ZrO 2 plays the role of supporting the weld metal as a slag forming agent, like SiO 2 .
  • the slag melting point becomes low, the bead has a drooping shape, and a good bead appearance cannot be secured.
  • the content of ZrO 2 exceeds 1.0% by mass, the slag melting point becomes too high and a bead shape such as a convex shape is obtained, and a good bead appearance cannot be secured.
  • the content of ZrO 2 is 0.1% by mass or more and 1.0% by mass or less per total mass of the wire.
  • the content of ZrO 2 is preferably 0.2% by mass or more from the viewpoint of obtaining a better bead shape.
  • the content of ZrO 2 is preferably less than 0.6% by mass from the viewpoint of obtaining a better bead shape.
  • Mn is a component that exhibits the effect of improving the hardenability and toughness of the weld metal.
  • the Mn content is less than 1.3% by mass, the weld metal is not sufficiently quenched, and it is difficult to ensure sufficient mechanical properties.
  • the Mn content exceeds 3.5% by mass, the tensile strength of the weld metal becomes excessive and the toughness becomes insufficient. Therefore, the Mn content is 1.3% by mass or more and 3.5% by mass or less per the total mass of the wire.
  • the content of Mn is preferably 2.0% by mass or more from the viewpoint of improving the mechanical properties of the weld metal.
  • the Mn content is preferably 3.1% by mass or less from the viewpoint of suppressing deterioration of the toughness of the weld metal.
  • Mn metal powder metal powder such as Fe—Mn, Fe—Se—Si—Mn, or alloy powder is used, but in addition to these, Mn oxide may be added.
  • Al 0.10 mass% or more and 1.00 mass% or less
  • Al is a strong deoxidizing element and has a role of improving mechanical properties by improving the yield of a weld metal component having an affinity for oxygen.
  • Al is also effective as a denitrifying element, and has the effect of improving mechanical properties by lowering the yield of N in the weld metal.
  • the Al content is less than 0.10% by mass, the yield of the weld metal component having an affinity for oxygen is low, the denitrification effect is insufficient, and it is difficult to ensure sufficient mechanical properties.
  • the Al content exceeds 1.00% by mass, the yield of the weld metal component becomes excessive and the toughness deteriorates.
  • the Al content is 0.10% by mass or more and 1.00% by mass or less based on the total mass of the wire.
  • the content of Al is preferably less than 0.40% by mass from the viewpoint of suppressing deterioration of the toughness of the weld metal.
  • Na has a role of stabilizing the droplet transfer of the arc during welding, but excessive addition of Na deteriorates the moisture absorption resistance of the wire.
  • F exists as a fluorine compound in the flux and has the effect of reducing the hydrogen partial pressure in the welding atmosphere and reducing the amount of diffusible hydrogen in the weld metal, but excessive F generates fume during welding. The amount is increased and the arc droplet transfer in the low current region is deteriorated.
  • the content of NaF is 0.05% by mass or more and 0.60% by mass or less per total mass of the wire.
  • the content of NaF is preferably 0.15% by mass or more from the viewpoint of improving the stability of the arc, suppressing the amount of spatter generated, and suppressing the amount of diffusible hydrogen.
  • the content of NaF is preferably 0.40% by mass or less from the viewpoint of suppressing deterioration of moisture absorption resistance and suppressing generation of fume.
  • B and B oxides (B 2 O 3 ) are added to the flux to add B to the weld metal.
  • B has the effect of suppressing the formation of pro-eutectoid ferrite by segregating at the austenite grain boundaries, and is effective in improving the toughness of the weld metal.
  • the total amount of B and B oxide converted to B is less than 0.0003 mass%, most of B is fixed to nitride as BN, and there is no effect of suppressing the formation of proeutectoid ferrite, We cannot expect to improve the toughness of weld metal.
  • the total amount of B and B-converted B exceeds 0.0300% by mass, the strength of the weld metal is remarkably increased and the toughness is lowered. Therefore, the total of B and B oxide in terms of B is 0.0003 mass% or more and 0.0300 mass% or less per total mass of the wire. From the viewpoint of suppressing the deterioration of the toughness of the weld metal, the total amount of B and B-converted B is preferably 0.0015% by mass or more and 0.0300% by mass or less per the total mass of the wire.
  • Mg and MgO are components that may be contained as impurities from natural raw materials such as titanium oxide.
  • the Mg content is 0.10% by mass or more, the amount of spatter generated increases, and the moisture absorption resistance of the wire deteriorates by forming a compound with Na. Further, if the content of MgO is 0.10% by mass or more, the bead becomes convex and the appearance of the bead is deteriorated due to an increase in the slag viscosity. Hygroscopicity deteriorates. Accordingly, the Mg content is less than 0.10% by mass and may be 0% by mass with respect to the total mass of the wire. Further, the content of MgO is less than 0.10% by mass and may be 0% by mass with respect to the total mass of the wire.
  • Total of Na conversion amount of Na compound other than NaF and K conversion amount of K compound 0.20 mass% or less
  • Na and K have an effect of stabilizing the droplet transfer of the arc during welding, but this effect is borne by NaF.
  • excessive addition of Na and K deteriorates the moisture absorption resistance of the wire.
  • the total amount of Na compound other than NaF and Na compound of K compound exceeds 0.20% by mass, the moisture absorption resistance of the wire deteriorates and the diffusible hydrogen of the weld metal The amount increases. Therefore, the total of the Na equivalent amount of Na compounds other than NaF and the K equivalent amount of K compound is 0.20 mass% or less per the total mass of the wire.
  • Na conversion amount in Na compounds other than NaF, and K conversion amount in K compound either 0 mass% may be sufficient and both may be 0 mass%.
  • F conversion amount of F compound other than NaF 0.10% by mass or less
  • F exists as a fluorine compound in the flux and has the effect of reducing the hydrogen partial pressure in the welding atmosphere and reducing the amount of diffusible hydrogen in the weld metal. This effect is borne by NaF.
  • excessive addition of F increases the amount of fumes generated during welding. Specifically, when the F equivalent amount of the F compound other than NaF exceeds 0.10% by mass, not only the fume generation amount increases, but also the spatter generation amount increases and the arc stability deteriorates. Accordingly, the F equivalent amount of the F compound other than NaF is 0.10% by mass or less per wire total mass, and may be 0% by mass.
  • the value calculated by [TiO 2 ] / [Al] exceeds 70.00, the tensile strength and toughness of the weld metal are deteriorated due to insufficient deoxidation power of Al. Therefore, the value calculated by [TiO 2 ] / [Al] is 5.00 or more and 70.00 or less.
  • the value calculated by [TiO 2 ] / [Al] is preferably 7.00 or more and more preferably 14.00 or more from the viewpoint of improving the welding workability and the mechanical properties of the weld metal. preferable.
  • the value calculated by [TiO 2 ] / [Al] is preferably 60.00 or less, and more preferably 40.00 or less, from the viewpoint of improving the mechanical properties of the weld metal.
  • Wire according to the present embodiment as an optional component, the following components (Al 2 O 3, Ca, Ti, Ni) may contain.
  • Al 2 O 3 is a component necessary for bead formation as a slag forming agent, but this effect is borne by other slag forming agents.
  • the content of Al 2 O 3 is more than 0.5 mass%, spatter arc becomes unstable is likely to increase. Therefore, when Al 2 O 3 is contained in the wire, the content of Al 2 O 3 is 0.5% by mass or less per total mass of the wire.
  • the content of Al 2 O 3 is preferably as low as possible, and is preferably 0.4% by mass or less per total mass of the wire.
  • Ca 0.10% by mass or less
  • Ca is a component that may be contained as an impurity from natural raw materials such as titanium oxide. If the Ca content exceeds 0.10% by mass, the arc becomes unstable and the amount of spatter generated may increase. Therefore, when Ca is contained in the wire, the Ca content is 0.10% by mass or less per the total mass of the wire.
  • the content of Ca is preferably small, and is preferably 0.08% by mass or less per the total mass of the wire.
  • Ti 0.25% by mass or less
  • Ti is a component that improves the mechanical properties of the weld metal.
  • the Ti content exceeds 0.25% by mass, the weld metal may be significantly hardened and the toughness may be significantly deteriorated. Therefore, when Ti is contained in the wire, the Ti content is 0.25% by mass or less per the total mass of the wire.
  • the content of Ti is preferably 0.10% by mass or less from the viewpoint of suppressing deterioration of the toughness of the weld metal.
  • it is preferable that content of Ti is 0.04 mass% or more.
  • Ni 4.00 mass% or less
  • Ni has the effect of improving the mechanical properties of the weld metal.
  • the Ni content exceeds 4.00 mass%, the weld metal may become excessively strong. Therefore, when Ni is contained in the wire, the Ni content is 4.00% by mass or less per the total mass of the wire.
  • the Ni content is preferably 0.05% by mass or more and 3.85% by mass or less per total mass of the wire.
  • Fe is a main component of the wire.
  • the content of Fe is preferably 75.0% by mass or more and 92.0% by mass or less, more preferably 80.0% by mass or more based on the total mass of the wire in terms of the amount of welding and other component compositions. It is 90.0 mass% or less.
  • the balance of the wire according to the present embodiment is the above-described Fe and inevitable impurities.
  • Cu, Mo, and Cr can be further contained in the flux as further hardening agents for the weld metal, and MnO, FeO, and V 2 O 5 can be contained in small amounts as the slag forming agent. These elements do not affect the object of the present invention.
  • unavoidable impurities Cu, Mo, Cr and the like may each be contained in less than 0.1% by mass, and MnO, FeO, and V 2 O 5 each in less than 0.5% by mass. Exceeding these upper limits may result in excessive strength, deterioration in welding workability, or the like.
  • Wire production method Although it does not specifically limit as a manufacturing method of the wire which concerns on this embodiment, For example, it can manufacture with the method shown below. First, a steel strip constituting a steel outer shell is prepared, and this steel strip is formed by a forming roll while being sent in the longitudinal direction to form a U-shaped open tube. Next, the steel outer shell is filled with a flux containing various raw materials so as to have a predetermined chemical composition, and then processed so as to have a circular cross section. Thereafter, the wire is drawn by cold working to obtain a flux-cored wire having a wire diameter of 1.2 mm or more and 2.4 mm or less, for example.
  • any structure of a seamless wire in which a seam of a steel outer shell formed in the manufacturing process is welded and a wire that does not weld the seam and remains in a gap can be adopted.
  • the content of each component shown in Tables 1 and 2 is the content per total mass of the wire.
  • “T.Si” shown in Tables 1 and 2 indicates the sum of Si equivalents of Si and Si oxides
  • TB indicates the sum of B equivalents of B and B oxides
  • “” Indicates the total of Na converted amount of Na compound other than NaF and K converted amount of K compound
  • “F” indicates F converted amount of F compound other than NaF.
  • Bead shape As for the bead shape, welding was performed in two postures of horizontal fillet and vertical improvement under the three types of welding conditions [1] to [3] shown in Table 4, that is, a total of six types of welding. After carrying out the welding test, each formed weld was observed and visually evaluated. Specifically, “ ⁇ ” indicates that the bead shape of all the welds obtained in the six types of welding tests was smooth and good, and one of the welds obtained in the six types of weld tests. However, the case where the bead shape was defective such as a convex shape or a drooping shape was evaluated as “x”.
  • Bead appearance With regard to the bead appearance, welding was performed in two postures of horizontal fillet and vertical improvement under the three types of welding conditions [1] to [3] shown in Table 4, that is, a total of six types of welding. After carrying out the welding test, each formed weld was observed and visually evaluated. Specifically, “ ⁇ ” indicates that the weld appearance of all the welds obtained in the six types of welding tests was not wavy and good for each welded part obtained in the six types of welding tests. Any one of the beads with a bead appearance having a wave-like appearance was evaluated as “x”.
  • indicates that the amount of spatter generated was less than 2 g / min, and for one of the six types of welding tests, the amount of spatter generated was 2 g / min or more. Evaluated as “x”.
  • the fume generation amount was computed from the mass difference before and after the fume collection of the filter medium, this was repeated twice, and the average value was made into the fume generation amount.
  • all the fumes generated were less than 1.5 g / min. “ ⁇ ”, and at least one of the six types of welding tests produced fumes generated at 1.5 g / min or more. What was there was rated as “x”.
  • Tensile strength was evaluated as “ ⁇ ” for 500 to 600 MPa, “ ⁇ ” for 490 to 650 MPa (excluding those for 500 to 600 MPa), and “x” for less than 490 MPa or above 650 MPa.
  • the toughness was evaluated as “ ⁇ ” when the absorbed energy at ⁇ 20 ° C. was 80 J or more, “ ⁇ ” when 27 J or more and less than 80 J, and “X” when less than 27 J.
  • ⁇ ” or “ ⁇ ” was judged to be acceptable, and “x” was judged to be unacceptable.
  • diffusible hydrogen content The amount of diffusible hydrogen in the weld metal was evaluated by a method based on JIS Z 3118: 2007. As a result, those having a diffusible hydrogen amount ([H] d) of 8.0 mL / 100 g or less were evaluated as “ ⁇ ”, and those exceeding 8.0 mL / 100 g were evaluated as “X”.
  • the wire No. satisfying the invention specific matters of the present invention No. using J1 to J33.
  • J1 to J33 were also excellent in moisture absorption resistance.
  • No. 38 (wire No. H5) is a wire T.38. Since the Si content was less than the lower limit, the bead shape and bead appearance deteriorated.
  • No. 39 (wire No. H6) is a wire T.39. Since the Si content exceeded the upper limit value, the tensile strength slightly increased and the toughness decreased.
  • No. 40 (wire No. H7), the ZrO 2 content of the wire was less than the lower limit, so the bead shape and bead appearance deteriorated.
  • No. 41 (wire No. H8), since the ZrO 2 content of the wire exceeded the upper limit, scaly beads were generated, and the bead shape and bead appearance deteriorated.
  • No. 46 (wire No. H13), the NaF content of the wire was less than the lower limit value, so the arc stability deteriorated, the amount of spatter generated increased, and the amount of diffusible hydrogen increased.
  • No. 47 (wire No. H14), the content of NaF in the wire exceeded the upper limit, so the amount of fume generation increased and the moisture absorption resistance deteriorated.
  • No. 48 (wire No. H15) is the wire T.48. Since the content of B was less than the lower limit, the toughness was lowered.
  • No. 49 (wire No. H16) is a wire T.40. Since the B content exceeded the upper limit value, the tensile strength slightly increased and the toughness decreased.
  • the flux-cored wire for gas shielded arc welding according to the present invention can obtain a weld metal that exhibits good mechanical properties while having a low amount of diffusible hydrogen while maintaining good welding workability not only at a high current but also at a low current. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

ガスシールドアーク溶接用フラックス入りワイヤは、ワイヤ全質量あたり、TiO、C、Si及びSi酸化物の少なくとも一種(Si換算量)、ZrO、Mn、Al、NaF、B及びB酸化物の少なくとも一種(B換算量)、Mg、MgOをそれぞれ特定量含み、NaF以外のNa化合物のNa換算量とK化合物のK換算量との合計、NaF以外のF化合物のF換算量がそれぞれ特定範囲であるとともに、TiOの含有量を[TiO]、Alの含有量を[Al]とした場合、5.00≦[TiO]/[Al]≦70.00を満たす。

Description

ガスシールドアーク溶接用フラックス入りワイヤ
 本発明は、ガスシールドアーク溶接用フラックス入りワイヤに関する。
 従来から、溶接作業を高能率に行うために、フラックス入りワイヤを用いたガスシールドアーク溶接が様々な分野で行われている。
 例えば、特許文献1では、高電流でも良好な溶接作業性を保ち、立向上進溶接で良好なビードを形成することができるチタニア系のフラックス入りワイヤが開示されている。
 しかしながら、特許文献1に係る技術は、高電流での溶接作業性に特化した技術であることから、低電流での溶接作業性には優れず、低電流における短絡移行溶接ではスパッタが多く発生する可能性がある。
 このスパッタの発生を抑制する技術については、これまでにも様々な技術が創出されており、例えば、特許文献2に開示されている。
日本国特開2013-184204号公報 日本国特開2013-252551号公報
 特許文献2の記載によると、特許文献2に係るフラックス入りワイヤは、スパッタの発生を抑制し全姿勢での溶接作業性が良好である、とのことである。
 しかしながら、特許文献2に記載されている溶接条件を確認すると、溶接電流の数値は260A以上であり、高電流の溶接への適用を想定した仕様となっている。したがって、特許文献1に係る技術と同様、特許文献2に係る技術についても、低電流での良好な溶接作業性を確保できない。
 加えて、ガスシールドアーク溶接用フラックス入りワイヤには、高電流及び低電流での良好な溶接作業性だけでなく、拡散性水素量が少ないとともに良好な機械的性質を示す溶接金属が得られることも要求されている。
 そこで、本発明は、高電流だけでなく低電流でも良好な溶接作業性を保ちつつ、拡散性水素量が少ないとともに良好な機械的性質を示す溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを課題とする。
 すなわち、本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、ワイヤ全質量あたり、TiO:3.0質量%以上8.0質量%以下、C:0.01質量%以上0.10質量%以下、Si及びSi酸化物の少なくとも一種:Si換算量の合計で0.20質量%以上1.70質量%以下、ZrO:0.1質量%以上1.0質量%以下、Mn:1.3質量%以上3.5質量%以下、Al:0.10質量%以上1.00質量%以下、NaF:0.05質量%以上0.60質量%以下、B及びB酸化物の少なくとも一種:B換算量の合計で0.0003質量%以上0.0300質量%以下、Mg:0.10質量%未満、MgO:0.10質量%未満を含み、NaF以外のNa化合物のNa換算量とK化合物のK換算量との合計:0.20質量%以下、NaF以外のF化合物のF換算量:0.10質量%以下、であるとともに、TiOの含有量を[TiO]、Alの含有量を[Al]とした場合、5.00≦[TiO]/[Al]≦70.00を満たす構成である。
 このガスシールドアーク溶接用フラックス入りワイヤによれば、[TiO]/[Al]によって算出される値を所定範囲内に特定することで、高電流だけでなく低電流でも溶接作業性が向上するとともに、溶接金属の機械的性質を向上させることができる。また、NaFの含有量を所定範囲内に特定することで、溶接中のアークの溶滴移行が安定し、アーク安定性を向上させるだけでなく、溶接雰囲気下の水素分圧を減少させ、溶接金属中の拡散性水素量を低減させることができる。さらに、その他の各成分の含有量を所定範囲内又は所定値以下とすることにより、良好な溶接作業性をより確実なものとし、溶接金属の拡散性水素量の低減と機械的性質の向上という効果をより確実なものとすることができる。
 また、本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、ワイヤ全質量あたり、Al:0.5質量%以下、Ca:0.10質量%以下、Ti:0.25質量%以下、Ni:4.00質量%以下、であってもよい。
 このガスシールドアーク溶接用フラックス入りワイヤによれば、Al、Ca、Ti、Niの含有量をそれぞれ所定値以下に特定することで、溶接作業性をより良くするとともに、溶接金属の機械的性質をより向上させることができる。
 本発明のガスシールドアーク溶接用フラックス入りワイヤは、高電流だけでなく低電流でも良好な溶接作業性を保ちつつ、拡散性水素量が少ないとともに良好な機械的性質を示す溶接金属を得ることができる。
 以下、本発明を実施するための形態について、詳細に説明する。
 本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤ(以下、適宜「ワイヤ」という)は、ガスシールドアーク溶接に使用するワイヤであって、鋼製外皮内にフラックスが充填されたものである。
 詳細には、本実施形態に係るワイヤは、筒状を呈する鋼製外皮と、その鋼製外皮の内側に充填されるフラックスと、からなる。なお、ワイヤは、鋼製外皮に継目のないシームレスタイプ、鋼製外皮に継目のあるシームタイプのいずれの形態であってもよい。また、ワイヤは、表面(鋼製外皮の外側)にメッキなどが施されていても、施されていなくてもよい。
 なお、本実施形態に係るワイヤのワイヤ径(直径)は、特に限定されないが、1.2mm以上2.4mm以下であればよい。
 そして、本実施形態に係るワイヤは、ワイヤ全質量に対して各成分が所定の含有量となるとともに、一部の成分の含有量については、所定の関係式を満たす。
 以下、本実施形態に係るワイヤの各成分の含有量を特定した理由について説明する。
 なお、以下の説明において、例えば、単に「Si」と示す場合、「純金属Si」、「合金Si」のうち一種以上を意味する。
 また、「酸化物」とは、「単一酸化物」および「複合酸化物」のうちの一種以上を意味する。「単一酸化物」とは、例えば、TiならばTi単独の酸化物(TiO)をいい、「複合酸化物」とは、これらの単一酸化物が複数種類集合したものと、例えば、Ti、Fe、Mnといった複数の金属成分を含む酸化物との双方をいう。
[TiO:3.0質量%以上8.0質量%以下]
 TiOは、溶接金属を支える重要な役割を担っている。ただし、TiOの含有量が3.0質量%未満であると、溶接作業性が劣化し良好なビード形状及びビード外観を確保できない。一方、TiOの含有量が8.0質量%を超えると、スラグ融点が高くなり、立向上進溶接でウィービングを行った場合にスラグが早く固まる。これにより、その運棒に沿い溶接金属が形成され、うろこ状(波目状)のビードとなってしまうとともに、良好なビード形状を確保できない。
 したがって、TiOの含有量は、ワイヤ全質量あたり3.0質量%以上8.0質量%以下である。
 なお、TiOの含有量は、より良好なビード形状とする観点から、4.0質量%以上が好ましい。また、TiOの含有量は、より良好なビード形状とする観点から、7.0質量%以下が好ましい。
[C:0.01質量%以上0.10質量%以下]
 Cは、溶接金属の焼き入れ性と靭性を向上させる効果を発揮する成分である。ただし、Cの含有量が0.01質量%未満であると、溶接金属の焼き入れ性が不足し、十分な機械的性質の確保が困難となる。一方、Cの含有量が0.10質量%を超えると、アークの吹きつけが強く、溶接の際に母材をアーク力で掘ってしまうため、良好なビード形状及びビード外観を確保できない。
 したがって、C含有量は、ワイヤ全質量あたり0.01質量%以上0.10質量%以下である。溶接金属の靱性の劣化を抑制する観点から、C含有量は、ワイヤ全質量あたり0.01質量%以上0.08質量%以下であることが好ましい。
[Si及びSi酸化物の少なくとも一種:Si換算量の合計で0.20質量%以上1.70質量%以下]
 Siは、溶接作業性を向上させる。ただし、Si及びSi酸化物のSi換算量の合計が0.20質量%未満であると、溶接作業性が劣化し良好なビード形状及びビード外観を確保できない。一方、Si及びSi酸化物のSi換算量の合計が1.70質量%を超えると、粒界フェライト析出が促進され、溶接金属の靭性が劣化する。
 したがって、Si及びSi酸化物のSi換算量の合計は、ワイヤ全質量あたり0.20質量%以上1.70質量%以下である。
 なお、Si及びSi酸化物のSi換算量の合計は、より良好なビード形状とする観点から、0.30質量%以上が好ましい。また、Si及びSi酸化物のSi換算量の合計は、溶接金属の靱性の劣化を抑制する観点から、1.40質量%以下が好ましい。
 前記のとおり、Si、Si酸化物のどちらも溶接作業性を向上させる効果を発揮するが、厳密には作用が異なる。すなわち、Siは、溶接中に溶接金属の粘性を向上させ、溶接金属を垂れ難くする。一方、Si酸化物は、スラグで溶接金属を覆い、溶接金属の垂れを防ぐ。
 なお、Si、Si酸化物の其々の含有量については、特に限定されないものの、仮に其々の含有量を規定する場合は、以下のとおりである。
[Si:0.10質量%以上1.00質量%以下]
 Siは、溶接金属の粘性を向上させ溶接金属を垂れ難くすることにより、溶接作業性を向上させる。ただし、Siの含有量が0.10質量%未満であると、溶接金属の粘性が低下し、ビード形状が劣化する可能性がある。一方、Siの含有量が1.00質量%を超えると、溶接金属においてオーステナイト粒が粗大となり溶接金属の靱性の劣化を招く可能性がある。
 したがって、Siの含有量を規定する場合、ワイヤ全質量あたり0.10質量%以上1.00質量%以下が好ましい。
 なお、Siの含有量は、より良好なビード形状とする観点から、0.20質量%以上がより好ましい。また、Siの含有量は、溶接金属の靱性の劣化を抑制する観点から、0.80質量%以下がより好ましい。
[SiO:0.20質量%以上1.50質量%以下]
 SiOはスラグ形成剤として溶接金属を支える役割を担っている。ただし、SiOの含有量が0.20質量%未満であると、スラグ量が不十分となり、ビードが垂れた形状となる可能性がある。一方、SiOの含有量が1.50質量%を超えると、フラックスの脱酸力が低下し溶接金属の機械的性質が劣化する可能性がある。
 したがって、SiOの含有量を規定する場合、ワイヤ全質量あたり0.20質量%以上1.50質量%以下が好ましい。
 なお、SiOの含有量は、より良好なビード形状とする観点から、0.40質量%以上がより好ましい。また、SiOの含有量は、溶接金属の機械的性質の劣化を抑制する観点から、1.30質量%以下がより好ましい。
[ZrO:0.1質量%以上1.0質量%以下]
 ZrOは、SiOと同様、スラグ形成剤として溶接金属を支える役割を担っている。ただし、ZrOの含有量が0.1質量%未満であると、スラグ融点が低くなり、ビードは垂れた形状となるとともに、良好なビード外観を確保できない。一方、ZrOの含有量が1.0質量%を超えると、スラグ融点が高くなり過ぎて凸型のようなビード形状となるとともに、良好なビード外観を確保できない。
 したがって、ZrOの含有量は、ワイヤ全質量あたり0.1質量%以上1.0質量%以下である。
 なお、ZrOの含有量は、より良好なビード形状とする観点から、0.2質量%以上が好ましい。また、ZrOの含有量は、より良好なビード形状とする観点から、0.6質量%未満が好ましい。
[Mn:1.3質量%以上3.5質量%以下]
 Mnは、溶接金属の焼き入れ性と靭性を向上させる効果を発揮する成分である。ただし、Mnの含有量が1.3質量%未満であると、溶接金属の焼き入れ不足となり、十分な機械的性質の確保が困難となる。一方、Mnの含有量が3.5質量%を超えると、溶接金属の引張強さが過多となり、靭性不足となる。
 したがって、Mnの含有量は、ワイヤ全質量あたり1.3質量%以上3.5質量%以下である。
 なお、Mnの含有量は、溶接金属の機械的性質をより良好とする観点から、2.0質量%以上が好ましい。また、Mnの含有量は、溶接金属の靭性の劣化を抑制する観点から、3.1質量%以下が好ましい。
 Mn源としては、Mn金属粉、Fe-Mn、Fe-Se-Si-Mn等の金属粉、合金粉で投入するが、これらの他、Mn酸化物を加えてもよい。
[Al:0.10質量%以上1.00質量%以下]
 Alは、強力な脱酸元素であり、酸素と親和力のある溶接金属成分の歩留りを向上させることで機械的性質を向上させる役割がある。また、Alは、脱窒元素としても効果があり、溶接金属中のNの歩留まりを下げることで、機械的性質を向上させる効果がある。ただし、Alの含有量が0.10質量%未満であると、酸素と親和力のある溶接金属成分の歩留りが低く、脱窒効果も不十分であり、十分な機械的性質の確保が困難となる。一方、Alの含有量が1.00質量%を超えると、溶接金属成分の歩留りが過大となり靭性が劣化する。
 したがって、Alの含有量は、ワイヤ全質量あたり0.10質量%以上1.00質量%以下である。
 なお、Alの含有量は、溶接金属の靭性の劣化を抑制する観点から、0.40質量%未満が好ましい。
[NaF:0.05質量%以上0.60質量%以下]
 Naは、溶接中におけるアークの溶滴移行を安定化させる役割があるが、過剰なNaの添加はワイヤの耐吸湿性を劣化させる。一方、Fは、フラックス中にフッ素化合物として存在し、溶接雰囲気下の水素分圧を減少させ、溶接金属中の拡散性水素量を低下させる効果があるが、過剰なFは溶接時のヒューム発生量を増加させ、かつ、低電流領域でのアークの溶滴移行を劣化させる。
 しかし、NaFであれば溶接中におけるアークの溶滴移行を安定化(特に低電流領域において安定化)させる効果を発揮するとともに、フッ化物による拡散水素量低減の効果を両立することができる。ただし、NaFの含有量が0.05質量%未満であると、低電流領域での溶接中におけるアークの溶滴移行が不安定となり、スパッタ発生量が増加し、更には溶接金属の拡散性水素量が上昇する。一方、NaFの含有量が0.60質量%を超えると、ワイヤの耐吸湿性が劣化し、更にはヒューム発生量が増加する。
 したがって、NaFの含有量は、ワイヤ全質量あたり0.05質量%以上0.60質量%以下である。
 なお、NaFの含有量は、アークの安定性の向上、スパッタ発生量の抑制、拡散性水素量の抑制の観点から、0.15質量%以上が好ましい。また、NaFの含有量は、耐吸湿性の劣化の抑制、ヒューム発生量の抑制の観点から、0.40質量%以下が好ましい。
[B及びB酸化物の少なくとも一種:B換算量の合計で0.0003質量%以上0.0300質量%以下]
 B及びB酸化物(B)は、溶接金属にBを添加するためにフラックスに添加される。また、Bは、オーステナイト粒界に偏析することで初析フェライトの生成を抑制する効果があり、溶接金属の靭性改善に有効である。ただし、B及びB酸化物のB換算量の合計が0.0003質量%未満であると、大部分のBがBNとして窒化物に固定化され、初析フェライトの生成を抑制する効果が無く、溶接金属の靭性の向上が期待できない。一方、B及びB酸化物のB換算量の合計が0.0300質量%を超えると、溶接金属の強度が著しく増加し、靭性が低下する。
 したがって、B及びB酸化物のB換算量の合計は、ワイヤ全質量あたり0.0003質量%以上0.0300質量%以下である。溶接金属の靱性の劣化を抑制する観点から、B及びB酸化物のB換算量の合計は、ワイヤ全質量あたり0.0015質量%以上0.0300質量%以下であることが好ましい。
[Mg:0.10質量%未満、MgO:0.10質量%未満]
 Mg及びMgOは酸化チタン等の天然原料から不純物として含まれる可能性がある成分である。そして、Mgの含有量が0.10質量%以上であると、スパッタ発生量が増加するとともに、Naと化合物を形成することでワイヤの耐吸湿性が劣化する。また、MgOの含有量が0.10質量%以上であると、スラグ粘度が高くなることでビードが凸状となるとともにビード外観の不良が発生し、更に、Mgと同様の理由によりワイヤの耐吸湿性が劣化する。
 したがって、Mgの含有量は、ワイヤ全質量あたり0.10質量%未満であり、0質量%でもよい。また、MgOの含有量は、ワイヤ全質量あたり0.10質量%未満であり、0質量%でもよい。
[NaF以外のNa化合物のNa換算量とK化合物のK換算量との合計:0.20質量%以下]
 Na及びKは溶接中におけるアークの溶滴移行を安定化させる効果があるが、この効果はNaFが担っている。一方、過剰なNa及びKの添加はワイヤの耐吸湿性を劣化させる。具体的には、NaF以外のNa化合物のNa換算量とK化合物のK換算量との合計が0.20質量%を超えると、ワイヤの耐吸湿性が劣化するとともに、溶接金属の拡散性水素量が増加する。
 したがって、NaF以外のNa化合物のNa換算量とK化合物のK換算量との合計は、ワイヤ全質量あたり0.20質量%以下である。
 なお、NaF以外のNa化合物中のNa換算量およびK化合物中のK換算量は、いずれか一方が0質量%であってもよく、両方が0質量%であってもよい。
[NaF以外のF化合物のF換算量:0.10質量%以下]
 Fは、フラックス中にフッ素化合物として存在し、溶接雰囲気下の水素分圧を減少させ、溶接金属中の拡散性水素量を低下させる効果があるが、この効果はNaFが担っている。一方、過剰なFの添加は溶接中のヒューム発生量を増加させる。具体的には、NaF以外のF化合物のF換算量が0.10質量%を超えると、ヒューム発生量が増加するだけでなく、スパッタ発生量も増加し、アーク安定性も劣化する。
 したがって、NaF以外のF化合物のF換算量は、ワイヤ全質量あたり0.10質量%以下であり、0質量%でもよい。
[5.00≦[TiO]/[Al]≦70.00]
 TiOの含有量を[TiO]、Alの含有量を[Al]とした場合の[TiO]/[Al]は、溶接金属の機械的性質と良好な溶接作業性を両立させる重要な指標である。そして、この式によって算出される値を所定範囲内とすることにより、高電流のみならず低電流における短絡移行溶接においても良好な溶接作業性(特に、立向上進溶接)を保つことができる。ただし、[TiO]/[Al]によって算出される値が5.00未満であると、Alの脱酸力過大による溶接金属の引張強さの過大と靭性の劣化が発生し、更には立向上進溶接でビードが垂れ、ビード外観の不良も発生する。一方、[TiO]/[Al]によって算出される値が70.00を超えると、Alの脱酸力不足による溶接金属の引張強さと靭性の劣化が発生する。
 したがって、[TiO]/[Al]によって算出される値は、5.00以上70.00以下である。
 なお、[TiO]/[Al]によって算出される値は、溶接作業性と溶接金属の機械的性質をより良好なものとする観点から、7.00以上が好ましく、14.00以上がより好ましい。また、[TiO]/[Al]によって算出される値は、溶接金属の機械的性質をより良好なものとする観点から、60.00以下が好ましく、40.00以下がより好ましい。
 本実施形態に係るワイヤは、任意成分として、以下の成分(Al、Ca、Ti、Ni)を含有していてもよい。
[Al:0.5質量%以下]
 Alはスラグ形成剤としてビード形成に必要な成分であるが、この効果は他のスラグ形成剤が担っている。そして、Alの含有量が0.5質量%を超えると、アークが不安定となりスパッタ発生量が増加する可能性がある。
 したがって、Alをワイヤに含有させる場合、Alの含有量は、ワイヤ全質量あたり0.5質量%以下である。Alの含有量は少ない方が好ましく、ワイヤ全質量あたり0.4質量%以下であることが好ましい。
[Ca:0.10質量%以下]
 Caは、Mgと同様、酸化チタン等の天然原料から不純物として含まれる可能性がある成分である。そして、Caの含有量が0.10質量%を超えると、アークが不安定となりスパッタ発生量が増加する可能性がある。
 したがって、Caをワイヤに含有させる場合、Caの含有量は、ワイヤ全質量あたり0.10質量%以下である。Caの含有量は少ない方が好ましく、ワイヤ全質量あたり0.08質量%以下であることが好ましい。
[Ti:0.25質量%以下]
 Tiは、溶接金属の機械的性質を向上させる成分である。ただし、Tiの含有量が0.25質量%を超えると、溶接金属の著しい硬化を引き起こし、靱性の劣化が顕著となる可能性がある。したがって、Tiをワイヤに含有させる場合、Tiの含有量は、ワイヤ全質量あたり0.25質量%以下である。
 なお、Tiの含有量は、溶接金属の靱性の劣化を抑制する観点から、0.10質量%以下が好ましい。また、Tiの含有量は0.04質量%以上であることが好ましい。
[Ni:4.00質量%以下]
 Niは、溶接金属の機械的性質を向上させる効果がある。ただし、Niの含有量が4.00質量%を超えると、溶接金属は強度過多となる可能性がある。
 したがって、Niをワイヤに含有させる場合、Niの含有量は、ワイヤ全質量あたり4.00質量%以下である。溶接金属の靱性の劣化を抑制する観点から、Niの含有量は、ワイヤ全質量あたり0.05質量%以上3.85質量%以下であることが好ましい。
[Fe:75.0質量%以上92.0質量%以下]
 Feは、ワイヤの主要成分である。溶着量や、他の成分組成の関係から、Feの含有量は、ワイヤ全質量あたり75.0質量%以上92.0質量%以下であることが好ましく、より好ましくは、80.0質量%以上90.0質量%以下である。
[残部:Fe及び不可避的不純物]
 本実施形態に係るワイヤの残部は、前記したFe及び不可避的不純物である。そして、前記したワイヤの成分の他、フラックス中に、Cu、Mo、Crを溶接金属のさらなる硬化剤として、MnO、FeO、Vをスラグ形成剤として少量含有させることもできる。これらの元素は、本発明の目的には影響を及ぼさない。
 また、不可避的不純物として、Cu、Mo、Cr等が各々0.1質量%未満、MnO、FeO、Vが各々0.5質量%未満、含有してもよい。これらの上限を超えると、強度過剰や溶接作業性の劣化などを招くおそれがある。また、P、S等が各々0.030%以下、含有してもよい。これらの上限を超えると、高温割れや靱性低下を招くおそれがある。
 加えて、前記した含有量の上限値のみ規定している成分や任意成分については、積極的に添加してもよいが、不可避的不純物として含まれていてもよい。
 なお、前述した各元素が酸化物や窒化物として添加された場合は、本実施形態のフラックス入りワイヤの残部には、OやNも含まれる。
[その他:フラックス充填率]
 本実施形態に係るワイヤのフラック充填率(=フラックス質量/ワイヤ全質量×100)は、特に限定されない。ただし、フラックス充填率が10質量%未満であると、アークの安定性が悪くなるとともにスパッタ発生量が増加し、溶接作業性が劣化する可能性がある。一方、フラックス充填率が25質量%を超えると、ワイヤの断線が発生したり、フラックスの充填中に粉がこぼれ落ちたりする等、生産性が著しく劣化する可能性がある。
 したがって、フラックス充填率は、10質量%以上25質量%以下が好ましい。
 次に、本実施形態に係るワイヤの製造方法を説明する。
[ワイヤの製造方法]
 本実施形態に係るワイヤの製造方法としては、特に限定されるものではないが、例えば、以下に示す方法で製造することができる。
 まず、鋼製外皮を構成する鋼帯を準備し、この鋼帯を長手方向に送りながら成形ロールにより成形して、U字状のオープン管にする。次に、所定の化学組成となるように、各種原料を配合したフラックスを鋼製外皮に充填し、その後、断面が円形になるように加工する。その後、冷間加工により伸線し、例えば1.2mm以上2.4mm以下のワイヤ径のフラックス入りワイヤとする。なお、冷間加工途中に焼鈍を施してもよい。また、製造の過程で成形した鋼製外皮の合わせ目を溶接した継ぎ目が無いワイヤと、前記合わせ目を溶接せず隙間のまま残すワイヤのいずれの構造も採用することができる。
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。
[各種試験に使用するワイヤの製造方法]
 鋼帯を長手方向に送りながら成形ロールによりオープン管に成形した。次に、表1、2の化学組成となるようにフラックス中に金属、合金、Fe粉、各種原料を適宜、所定量添加した。次に、断面が円形になるように加工した後、加工したワイヤに対して冷間引き抜き加工を施しワイヤ径を約1.2mmとした。
 以上の製造方法によってフラックス入りワイヤを製造した。
 なお、表1、2に示す各成分の含有量はワイヤ全質量あたりの含有量である。また、表1、2に示す「T.Si」はSi及びSi酸化物のSi換算量の合計を示し、「T.B」はB及びB酸化物のB換算量の合計を示し、「Na+K」はNaF以外のNa化合物のNa換算量とK化合物のK換算量との合計を示し、「F」はNaF以外のF化合物のF換算量を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[溶接作業性]
(溶接条件)
 溶接作業性を確認するため、実施例及び比較例の各ワイヤを用いて、表3に示す組成の鋼板を母材とし、表4に示す条件にて溶接を行った。
 なお、表3に示す鋼板の成分組成における残部は、Fe及び不可避的不純物である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(アーク安定性)
 アーク安定性については、表4に示す〔1〕~〔3〕の3種の溶接条件について、其々、水平すみ肉・立向上進の2種の姿勢の溶接を実施、つまり、合計6種の溶接試験を実施した。そして、各溶接条件について、2種の姿勢でのアークが安定であったものを「〇」、1種の姿勢でのアークが安定かつ1種の姿勢でのアークがやや不安定であったもの、又は、2種の姿勢でのアークがやや不安定であったものを「△」、少なくとも1種の姿勢でのアークが不安定であったものを「×」と評価した。
 なお、アーク安定性については、「〇」又は「△」を合格と判断し、「×」を不合格と判断した。
(ビード形状)
 ビード形状については、表4に示す〔1〕~〔3〕の3種の溶接条件において、其々、水平すみ肉・立向上進の2種の姿勢の溶接を実施、つまり、合計6種の溶接試験を実施した後、形成した各溶接部を観察し、視覚的に評価した。具体的には、6種の溶接試験で得られた全ての溶接部のビード形状が平滑で良好であったものを「〇」、6種の溶接試験で得られた各溶接部のうち1つでもビード形状が凸状や垂れた形状等のような不良であったものを「×」と評価した。
(ビード外観)
 ビード外観については、表4に示す〔1〕~〔3〕の3種の溶接条件において、其々、水平すみ肉・立向上進の2種の姿勢の溶接を実施、つまり、合計6種の溶接試験を実施した後、形成した各溶接部を観察し、視覚的に評価した。具体的には、6種の溶接試験で得られた全ての溶接部のビード外観が波目状ではなく良好であったものを「〇」、6種の溶接試験で得られた各溶接部のうち1つでもビード外観が波目状等となり不良であったものを「×」と評価した。
(スパッタ発生量)
 スパッタ発生量については、表4に示す〔1〕~〔3〕の3種の溶接条件において、其々、水平すみ肉・立向上進の2種の姿勢の溶接を実施、つまり、合計6種の溶接試験を実施した後、各溶接試験の際に生じたスパッタの量に基づいて定量的に評価した。具体的には、WES2807:2000に準じて、スパッタを確保する捕集箱を設置した環境内で溶接を行った。アークタイムは60秒とし、溶接完了後、捕集箱のスパッタを採取し重量を計測し、これを2回繰り返し、平均値をスパッタ発生量とした。6種の溶接試験について全てのスパッタの発生量が2g/min未満であったものを「○」、6種の溶接試験のうち1つでもスパッタの発生量が2g/min以上であったものを「×」と評価した。
(ヒューム発生量)
 ヒューム発生量については、表4に示す〔1〕~〔3〕の3種の溶接条件において、其々、水平すみ肉・立向上進の2種の姿勢の溶接を実施、つまり、合計6種の溶接試験を実施した後、各溶接試験の際に生じたヒュームの量に基づいて定量的に評価した。具体的には、JIS Z 3930:2013に準じて、ヒューム発生量に影響を及ぼさない環境内で溶接を行った。アークタイムは60秒とし、溶接開始と同時にろ過材と装着したサンプラによる吸引を開始し、溶接完了後、30秒間の吸引を行った。そして、ろ過材のヒューム捕集前後の質量差からヒューム発生量を算出し、これを2回繰り返し、平均値をヒューム発生量とした。6種の溶接試験について全てのヒュームの発生量が1.5g/min未満であったものを「○」、6種の溶接試験のうち1つでもヒュームの発生量が1.5g/min以上であったものを「×」と評価した。
[溶接金属の評価]
(溶接条件)
 溶接金属の評価を行うため、実施例及び比較例の各ワイヤを用いて、表5に示す組成の鋼板を母材とし、表6に示す条件にて溶接を行った。
 なお、表5に示す鋼板の成分組成における残部は、Fe及び不可避的不純物である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(機械的性質)
 溶接金属の機械的性質は、JIS Z 3111:2005に規定される「溶着金属の引張及び衝撃試験方法」に準拠した引張試験及び衝撃試験により評価した。
 引張試験片は、溶接金属中央で板厚中央の位置から採取したA0号試験片を用いた。また、衝撃試験片は、溶接金属中央で板厚中央の位置から採取したVノッチ試験片を用いた。
 引張強さは、500~600MPaのものを「〇」、490~650MPa(500~600MPaのものは除く)を「△」、490MPa未満又は650MPaを超えるものを「×」と評価した。
 靭性は、-20℃での吸収エネルギーが80J以上のものを「〇」、27J以上80J未満のものを「△」、27J未満のものを「×」と評価した。
 なお、引張強さと靭性については、「〇」又は「△」を合格と判断し、「×」を不合格と判断した。
(拡散性水素量)
 溶接金属の拡散性水素量の評価は、JIS Z 3118:2007に準拠した方法により行った。
 その結果、拡散性水素量([H]d )が8.0mL/100g以下のものを「〇」、8.0mL/100g超のものを「×」とした。
[耐吸湿性]
 耐吸湿性の評価は、まず、製造したワイヤを3cmに切断した試料を3本用意し、110℃×1時間の試験前乾燥を施し、30℃×相対湿度80%RHの雰囲気で24時間吸湿させた。その後、ワイヤをアルゴン雰囲気中で750℃の加熱によって発生した水分量を計測した。吸湿後のワイヤの水分量が800ppm未満のものを「〇」、800ppm以上のものを「×」と評価した。
 以上の各種試験の結果を、下記表7、8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7に示すように、本発明の発明特定事項を満足するワイヤNo.J1~J33を用いたNo.1~33では、高電流だけでなく低電流でも良好な溶接作業性を保ちつつ、拡散性水素量が少ないとともに良好な機械的性質を示す溶接金属を得ることができた。
 加えて、本発明の発明特定事項を満足するワイヤNo.J1~J33は、耐吸湿性にも優れていた。
 一方、表8に示すように、No.34~57は、使用したワイヤNo.H1~H24が本発明の発明特定事項を満足しなかったことから、いずれかの評価項目において合格の結果が得られなかった。詳細には、以下のとおりである。
 No.34(ワイヤNo.H1)は、ワイヤのTiOの含有量が下限値未満であったため、ビード形状、ビード外観が劣化した。
 No.35(ワイヤNo.H2)は、ワイヤのTiOの含有量が上限値を超えていたため、うろこビードが発生し、ビード形状、ビード外観が劣化した。
 No.36(ワイヤNo.H3)は、ワイヤのCの含有量が下限値未満であったため、引張強さが低下し、靭性が低下した。
 No.37(ワイヤNo.H4)は、ワイヤのCの含有量が上限値を超えていたため、アーク力が強くなり、ビード形状、ビード外観が劣化した。
 No.38(ワイヤNo.H5)は、ワイヤのT.Siの含有量が下限値未満であったため、ビード形状、ビード外観が劣化した。
 No.39(ワイヤNo.H6)は、ワイヤのT.Siの含有量が上限値を超えていたため、引張強さが若干上昇し、靭性が低下した。
 No.40(ワイヤNo.H7)は、ワイヤのZrOの含有量が下限値未満であったため、ビード形状、ビード外観が劣化した。
 No.41(ワイヤNo.H8)は、ワイヤのZrOの含有量が上限値を超えていたため、うろこビードが発生し、ビード形状、ビード外観が劣化した。
 No.42(ワイヤNo.H9)は、ワイヤのMnの含有量が下限値未満であったため、引張強さが低下し、靭性が低下した。
 No.43(ワイヤNo.H10)は、ワイヤのMnの含有量が上限値を超えていたため、引張強さが上昇し、靭性が低下した。
 No.44(ワイヤNo.H11)は、ワイヤのAlの含有量が下限値未満であったため、引張強さが低下した。
 No.45(ワイヤNo.H12)は、ワイヤのAlの含有量が上限値を超えていたため、靭性が低下した。
 No.46(ワイヤNo.H13)は、ワイヤのNaFの含有量が下限値未満であったため、アーク安定性が劣化し、スパッタ発生量が増加し、拡散性水素量が増加した。
 No.47(ワイヤNo.H14)は、ワイヤのNaFの含有量が上限値を超えていたため、ヒューム発生量が増加し、耐吸湿性が劣化した。
 No.48(ワイヤNo.H15)は、ワイヤのT.Bの含有量が下限値未満であったため、靭性が低下した。
 No.49(ワイヤNo.H16)は、ワイヤのT.Bの含有量が上限値を超えていたため、引張強さが若干増加し、靭性が低下した。
 No.50(ワイヤNo.H17)及びNo.52(ワイヤNo.H19)は、ワイヤの[TiO]/[Al]によって算出される値が下限値未満であったため、ビード形状、ビード外観が劣化し、加えて、引張強さが若干上昇し、靭性が低下した。
 No.51(ワイヤNo.H18)及びNo.53(ワイヤNo.H20)は、ワイヤの[TiO]/[Al]によって算出される値が上限値を超えていたため、靭性が低下した。
 No.54(ワイヤNo.H21)は、ワイヤのMgの含有量が上限値を超えていたため、スパッタ発生量が増加し、耐吸湿性が劣化した。
 No.55(ワイヤNo.H22)は、ワイヤのMgOの含有量が上限値を超えていたため、ビード形状、ビード外観が劣化し、耐吸湿性が劣化した。
 No.56(ワイヤNo.H23)は、ワイヤのNa+Kの含有量が上限値を超えていたため、拡散性水素量が増加し、耐吸湿性が劣化した。
 No.57(ワイヤNo.H24)は、ワイヤのFの含有量が上限値を超えていたため、低電流域でのアーク安定性が劣化し、スパッタ発生量及びヒューム発生量が増加した。
 以上、本発明について実施の形態及び実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することが可能であることはいうまでもない。
 本出願は、2016年3月25日出願の日本特許出願(特願2016-062573)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のガスシールドアーク溶接用フラックス入りワイヤは、高電流だけでなく低電流でも良好な溶接作業性を保ちつつ、拡散性水素量が少ないとともに良好な機械的性質を示す溶接金属を得ることができる。

Claims (2)

  1.  ワイヤ全質量あたり、
     TiO:3.0質量%以上8.0質量%以下、
     C:0.01質量%以上0.10質量%以下、
     Si及びSi酸化物の少なくとも一種:Si換算量の合計で0.20質量%以上1.70質量%以下、
     ZrO:0.1質量%以上1.0質量%以下、
     Mn:1.3質量%以上3.5質量%以下、
     Al:0.10質量%以上1.00質量%以下、
     NaF:0.05質量%以上0.60質量%以下、
     B及びB酸化物の少なくとも一種:B換算量の合計で0.0003質量%以上0.0300質量%以下、
     Mg:0.10質量%未満、
     MgO:0.10質量%未満、
     を含み、
     NaF以外のNa化合物のNa換算量とK化合物のK換算量との合計:0.20質量%以下、
     NaF以外のF化合物のF換算量:0.10質量%以下、
     であるとともに、
     TiOの含有量を[TiO]、Alの含有量を[Al]とした場合、5.00≦[TiO]/[Al]≦70.00を満たすことを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
  2.  ワイヤ全質量あたり、
     Al:0.5質量%以下、
     Ca:0.10質量%以下、
     Ti:0.25質量%以下、
     Ni:4.00質量%以下、
     であることを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
PCT/JP2017/011241 2016-03-25 2017-03-21 ガスシールドアーク溶接用フラックス入りワイヤ WO2017164176A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201808170WA SG11201808170WA (en) 2016-03-25 2017-03-21 Wire containing flux for gas shield arc welding
PH12018502004A PH12018502004A1 (en) 2016-03-25 2018-09-18 Wire containing flux for gas shield arc welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-062573 2016-03-25
JP2016062573A JP6746337B2 (ja) 2016-03-25 2016-03-25 ガスシールドアーク溶接用フラックス入りワイヤ

Publications (1)

Publication Number Publication Date
WO2017164176A1 true WO2017164176A1 (ja) 2017-09-28

Family

ID=59900395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011241 WO2017164176A1 (ja) 2016-03-25 2017-03-21 ガスシールドアーク溶接用フラックス入りワイヤ

Country Status (5)

Country Link
JP (1) JP6746337B2 (ja)
MY (1) MY171940A (ja)
PH (1) PH12018502004A1 (ja)
SG (1) SG11201808170WA (ja)
WO (1) WO2017164176A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063657B2 (ja) * 2018-02-27 2022-05-09 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286089A (ja) * 1985-06-11 1986-12-16 Daido Steel Co Ltd ガスシ−ルドア−ク溶接方法
JP2013018012A (ja) * 2011-07-08 2013-01-31 Nippon Steel & Sumitomo Metal Corp 高張力鋼ガスシールドアーク溶接用フラックス入りワイヤ
JP2013151001A (ja) * 2012-01-25 2013-08-08 Nippon Steel & Sumikin Welding Co Ltd 耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP2013158777A (ja) * 2012-02-01 2013-08-19 Nippon Steel & Sumikin Welding Co Ltd ガスシールドアーク溶接用フラックス入りワイヤ
JP2013226577A (ja) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd 原油油槽鋼のガスシールドアーク溶接用フラックス入りワイヤ
JP2014113615A (ja) * 2012-12-10 2014-06-26 Nippon Steel & Sumikin Welding Co Ltd 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP2015217393A (ja) * 2014-05-14 2015-12-07 日鐵住金溶接工業株式会社 炭酸ガスシールドアーク溶接用フラックス入りワイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286089A (ja) * 1985-06-11 1986-12-16 Daido Steel Co Ltd ガスシ−ルドア−ク溶接方法
JP2013018012A (ja) * 2011-07-08 2013-01-31 Nippon Steel & Sumitomo Metal Corp 高張力鋼ガスシールドアーク溶接用フラックス入りワイヤ
JP2013151001A (ja) * 2012-01-25 2013-08-08 Nippon Steel & Sumikin Welding Co Ltd 耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP2013158777A (ja) * 2012-02-01 2013-08-19 Nippon Steel & Sumikin Welding Co Ltd ガスシールドアーク溶接用フラックス入りワイヤ
JP2013226577A (ja) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd 原油油槽鋼のガスシールドアーク溶接用フラックス入りワイヤ
JP2014113615A (ja) * 2012-12-10 2014-06-26 Nippon Steel & Sumikin Welding Co Ltd 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP2015217393A (ja) * 2014-05-14 2015-12-07 日鐵住金溶接工業株式会社 炭酸ガスシールドアーク溶接用フラックス入りワイヤ

Also Published As

Publication number Publication date
JP6746337B2 (ja) 2020-08-26
SG11201808170WA (en) 2018-10-30
PH12018502004B1 (en) 2019-07-01
JP2017170517A (ja) 2017-09-28
MY171940A (en) 2019-11-08
PH12018502004A1 (en) 2019-07-01

Similar Documents

Publication Publication Date Title
JP5387168B2 (ja) フラックス入り高張力鋼用溶接ワイヤ及びその製造方法
JP5768547B2 (ja) 高張力鋼ガスシールドアーク溶接用フラックス入りワイヤ
JP5359561B2 (ja) 高張力鋼用フラックス入りワイヤ
JP5387192B2 (ja) ガスシールド溶接用フラックス入りワイヤ
KR101970076B1 (ko) 가스 실드 아크 용접용 플럭스 코어드 와이어
JP5459083B2 (ja) 高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP6155810B2 (ja) ガスシールドアーク溶接用高Niフラックス入りワイヤ
JP5558406B2 (ja) 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
WO2020217963A1 (ja) Ni基合金フラックス入りワイヤ
JP5064928B2 (ja) 高強度鋼用のサブマージアーク溶接用フラックス入りワイヤ。
KR102156027B1 (ko) 플럭스 코어드 와이어
EP3511111A1 (en) Flux cored wire for gas shield arc welding and welding metal
WO2017164176A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP6746338B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2016060208A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
KR101370403B1 (ko) 코어드 와이어용 충진재 및 저희석률 오버레이 용접용 플럭스 코어드 와이어
WO2019082945A1 (ja) サブマージアーク溶接用フラックス入りワイヤ及びサブマージアーク溶接用材料
JP7323497B2 (ja) フラックス入りワイヤ
CN110193680B (zh) 气体保护电弧焊用药芯焊丝
JP6796986B2 (ja) フラックス入りワイヤ、及びガスシールドアーク溶接方法
CN116829299A (zh) 药芯焊丝
JP2003103399A (ja) 耐候性鋼溶接用フラックス入りワイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11201808170W

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770218

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770218

Country of ref document: EP

Kind code of ref document: A1