WO2017164163A1 - 鞍乗型車両 - Google Patents

鞍乗型車両 Download PDF

Info

Publication number
WO2017164163A1
WO2017164163A1 PCT/JP2017/011197 JP2017011197W WO2017164163A1 WO 2017164163 A1 WO2017164163 A1 WO 2017164163A1 JP 2017011197 W JP2017011197 W JP 2017011197W WO 2017164163 A1 WO2017164163 A1 WO 2017164163A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
upstream
catalyst
exhaust gas
exhaust
Prior art date
Application number
PCT/JP2017/011197
Other languages
English (en)
French (fr)
Inventor
敬一 品田
昌登 西垣
貴比古 原
原田 久
和義 水野
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to BR112018069353A priority Critical patent/BR112018069353A2/pt
Priority to EP17770205.7A priority patent/EP3418520A4/en
Priority to TW106109616A priority patent/TW201740015A/zh
Publication of WO2017164163A1 publication Critical patent/WO2017164163A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/30Tubes with restrictions, i.e. venturi or the like, e.g. for sucking air or measuring mass flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/04Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for motorcycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a saddle riding type vehicle.
  • a straddle type vehicle equipped with a catalyst.
  • the catalyst has a base material and a catalyst layer containing a noble metal.
  • the catalyst is a noble metal and purifies exhaust gas discharged from the combustion chamber of the engine body.
  • the saddle riding type vehicle is desired to improve the purification performance of exhaust gas. Therefore, a straddle-type vehicle has been proposed in which the catalyst is arranged near the combustion chamber of the engine body in order to improve exhaust gas purification performance (Patent Document 1).
  • the catalyst is arranged near the combustion chamber of the engine body, so that the exhaust gas reaches the catalyst with a high temperature. For this reason, the purification performance of the exhaust gas by the catalyst can be improved.
  • the inventors of the present application have tested a saddle-ride type vehicle in which the catalyst is disposed near the combustion chamber of the engine body under various operating conditions. As a result, it has been found that there are straddle-type vehicles in which the exhaust gas purification performance is remarkably lowered with the lapse of operation time, and straddle-type vehicles in which the exhaust gas purification performance is not so lowered.
  • An object of the present invention is to provide a straddle-type vehicle capable of suppressing variation in exhaust gas purification performance.
  • the inventors of the present application tested a saddle-ride type vehicle in which the catalyst is arranged near the combustion chamber of the engine body under various operating conditions. As a result, it has been found that there are straddle-type vehicles in which the exhaust gas purification performance is remarkably reduced with the passage of operating time and straddle-type vehicles in which the exhaust gas purification performance is less likely to be reduced. Therefore, the inventors of the present application examined in detail the cause of the variation in the exhaust gas purification performance of the saddle-ride type vehicle. The inventors of the present application have found that the cause of the variation in the exhaust gas purification performance of the saddle riding type vehicle is due to the specific configuration and use state of the saddle riding type vehicle.
  • the oil used in the saddle riding type vehicle has a different standard from the oil used in automobiles (four-wheeled vehicles).
  • the oil contains additives.
  • the oil additive is, for example, a wear-resistant additive and is a compound such as zinc, phosphorus, sulfur, calcium, and the like.
  • the oil used with a saddle-ride type vehicle has much content of phosphorus compounds (for example, ZnDTP, ZnDDP, etc.) compared with the oil used with a motor vehicle.
  • the crankcase portion is lubricated with a common oil.
  • the phosphorus compound contained in the oil is decomposed by heat in the combustion chamber, and the exhaust gas containing a large amount of phosphorus flows into the catalyst.
  • phosphorus contained in exhaust gas chemically or / and physically adheres to the catalyst. And phosphorus produces
  • the temperature of the exhaust gas flowing into the catalyst becomes high, and phosphorus adhering to the catalyst tends to generate a glassy compound. And it becomes difficult for exhaust gas to reach the noble metal contained in the catalyst layer, and the function of the catalyst is lowered. Therefore, the exhaust gas purification performance of the saddle riding type vehicle is reduced.
  • one of the unique configurations of the saddle riding type vehicle that causes variation in the exhaust gas purification performance of the saddle riding type vehicle is the amount of oil used per displacement of the saddle riding type vehicle.
  • the saddle riding type vehicle uses a larger amount of oil per displacement than an automobile. Therefore, the saddle riding type vehicle has more phosphorus contained in the exhaust gas per displacement than the automobile.
  • phosphorus is attached to the saddle riding type vehicle up to a position downstream of the flow direction of the exhaust gas of the catalyst as compared with the automobile.
  • One of the unique usage states of the saddle riding type vehicle that causes variations in the exhaust gas purification performance of the saddle riding type vehicle is the time for traveling with the throttle valve opening being almost fully open.
  • a straddle-type vehicle travels longer when the throttle valve is almost fully open compared to an automobile.
  • the temperature of the wall surface of the engine body becomes relatively high and the amount of oil decomposed in the combustion chamber is relatively large Become. If the time during which the straddle-type vehicle travels in a state where the opening degree of the throttle valve is almost fully opened, phosphorus contained in the exhaust gas increases.
  • the exhaust gas purification performance of the straddle-type vehicle is significantly reduced.
  • the temperature of the wall surface of the engine body is relatively low, and the amount of oil decomposed in the combustion chamber is small. Relatively less.
  • the time when the straddle-type vehicle is traveling with the throttle valve opening being substantially fully open is short, phosphorus contained in the exhaust gas is reduced. Therefore, if the time during which the saddle riding type vehicle is traveling with the throttle valve opening being almost fully open, the exhaust gas purification performance of the saddle riding type vehicle is unlikely to deteriorate.
  • the exhaust gas purification performance of the saddle riding type vehicle varies depending on whether the saddle riding type vehicle travels for a long time or short time with the throttle valve opening being wide open.
  • the inventors of the present application suppress the adhesion of phosphorus contained in a large amount of exhaust gas to the catalyst layer when the straddle-type vehicle travels for a long time with the throttle valve being opened at a fully open state. It was found that the variation in the exhaust gas purification performance of the saddle riding type vehicle can be suppressed.
  • the inventors of the present application have applied a catalyst layer to an engine unit having an upstream catalyst in order to suppress a decrease in exhaust gas purification performance of a saddle-ride type vehicle that has traveled for a long time with the throttle valve opening being almost fully opened. It has been found that a phosphorus adhesion reducing portion for reducing the adhesion of phosphorus to the surface may be provided.
  • the upstream catalyst is a catalyst arranged at the most upstream in the exhaust gas flow direction among one or a plurality of catalysts arranged in the exhaust passage portion of the saddle riding type vehicle.
  • the phosphorus adhesion reducing portion includes at least one of a phosphorus capturing layer or a phosphorus capturing structure.
  • the phosphorus trapping layer is disposed between the combustion chamber in the exhaust passage and the catalyst layer of the upstream catalyst.
  • the phosphorus capturing layer is applied to the inner surface of the exhaust passage portion.
  • the phosphorus capturing layer has a function of capturing phosphorus by chemically reacting with phosphorus, or a function of capturing phosphorus by forming a rough surface.
  • the catalyst layer has a noble metal that purifies the exhaust gas. That is, the upstream catalyst purifies the exhaust gas at the most upstream in the flow direction of the exhaust gas.
  • the exhaust passage portion has a bent portion between the combustion chamber and the upstream catalyst. Since the exhaust gas has a high flow velocity, phosphorus easily collides with a bent portion of the exhaust passage portion.
  • phosphorus tends to adhere to the bent part of the exhaust passage part.
  • acquisition layer is arrange
  • the phosphorus capturing layer chemically reacts with phosphorus contained in the exhaust gas.
  • the phosphorus trapping layer adheres to a surface where phosphorus contained in the exhaust gas is formed with a rough surface. Therefore, the phosphorus capturing layer can capture phosphorus and suppress phosphorus from adhering to the surface of the upstream catalyst layer.
  • the phosphorus capture structure is positioned closer to the combustion chamber than the upstream catalyst in the exhaust passage.
  • the phosphorus capturing structure has a function of capturing phosphorus by reducing the flow rate of exhaust gas.
  • the catalyst layer has a noble metal that purifies the exhaust gas. That is, the upstream catalyst purifies the exhaust gas at the most upstream in the flow direction of the exhaust gas.
  • exhaust gas has a high flow rate
  • phosphorus tends to adhere to a structure that reduces the flow rate of the exhaust passage.
  • the phosphorus capturing structure is disposed closer to the combustion chamber than the upstream catalyst in the exhaust passage portion.
  • the phosphorus capturing structure reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas. Therefore, the phosphorus capturing layer can capture phosphorus and suppress phosphorus from adhering to the surface of the upstream catalyst layer.
  • the saddle riding type vehicle is a saddle riding type vehicle on which an engine unit is mounted, and the engine unit includes an engine body including a cylinder portion having a combustion chamber, and an atmosphere.
  • a phosphorus adhesion reducing section that includes at least one of the phosphorus capturing structures and reduces the adhesion of phosphorus to the catalyst layer.
  • the saddle riding type vehicle is mounted with the engine unit.
  • the engine unit includes an engine main body, an exhaust passage portion, an upstream catalyst, an oxygen sensor, and a phosphorus adhesion reducing portion.
  • the engine body includes a cylinder portion having a combustion chamber.
  • the exhaust passage section has a discharge port for discharging exhaust gas to the atmosphere.
  • the exhaust passage portion flows exhaust gas from the combustion chamber to the discharge port.
  • the upstream catalyst is disposed in the exhaust passage portion.
  • the upstream catalyst is a catalyst that is most upstream in the exhaust gas flow direction in the exhaust passage portion.
  • the upstream catalyst has a catalyst layer.
  • the catalyst layer contains a noble metal that purifies the exhaust gas.
  • the upstream oxygen detection member is disposed between the combustion chamber of the exhaust passage portion and the upstream catalyst.
  • the upstream oxygen detection member detects the oxygen concentration of the exhaust gas.
  • the phosphorus adhesion reducing unit reduces adhesion of phosphorus to the catalyst layer.
  • the phosphorus adhesion reducing portion includes at least one of (A) a phosphorus capture layer or (B) a phosphorus capture structure.
  • (A) The phosphorus trapping layer is disposed between the combustion chamber of the exhaust passage portion and the upstream catalyst. That is, the phosphorus trapping layer is disposed upstream of the upstream catalyst in the exhaust gas flow direction. Further, the phosphorus trapping layer is applied to the inner surface of the exhaust passage portion.
  • the phosphorus capturing layer is composed of a phosphorus reactive substance that chemically reacts with phosphorus and has a function of capturing phosphorus.
  • the phosphorus capturing layer has a function of capturing phosphorus by forming the surface with a rough surface.
  • the exhaust passage portion has a bent portion between the combustion chamber and the upstream catalyst. Since the exhaust gas has a high flow velocity, the exhaust gas easily collides with a bent portion of the exhaust passage portion. Then, phosphorus easily adheres to the bent portion of the exhaust passage portion.
  • the phosphorus trapping layer is disposed between the combustion chamber of the exhaust passage portion and the upstream catalyst.
  • the phosphorus capturing layer includes a phosphorus reactant that chemically reacts with phosphorus contained in the exhaust gas. Phosphorus contained in the exhaust gas passing through the phosphorus trapping layer chemically reacts with the phosphorus reactant.
  • the phosphorus reactive substance is, for example, a substance that adsorbs phosphorus.
  • phosphorus contained in the exhaust gas is adsorbed by the chemical reaction of phosphorus in the exhaust gas with the phosphorus reactant.
  • the phosphorus reactive substance can capture phosphorus by chemically reacting with phosphorus contained in the exhaust gas passing through the phosphorus capturing layer.
  • the surface of the phosphorus capturing layer is formed with a rough surface to which phosphorus contained in the exhaust gas is attached. Therefore, the phosphorus capturing layer can capture phosphorus and suppress the adhesion of phosphorus to the catalyst layer of the upstream catalyst.
  • the phosphorus capturing structure is disposed between the combustion chamber of the exhaust passage portion and the upstream catalyst.
  • the phosphorus capturing structure is disposed upstream of the upstream catalyst in the exhaust gas flow direction.
  • the phosphorus capturing structure has a function of capturing phosphorus by reducing the flow rate of exhaust gas. Further, since the exhaust gas has a high flow rate, the flow rate of the exhaust gas can be reduced by arranging a structure in the exhaust passage portion. Phosphorus tends to adhere to the structure that reduces the flow rate of the exhaust gas.
  • the path length from the combustion chamber to the phosphorus capture structure is shorter than the path length from the phosphorus capture structure to the upstream catalyst. That is, the phosphorus capturing structure is disposed at a position close to the combustion chamber.
  • the phosphorus capturing structure reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas. Therefore, the phosphorus capturing structure can capture phosphorus and suppress the adhesion of phosphorus to the catalyst layer of the upstream catalyst. Thereby, the dispersion
  • At least a part of the phosphorus trapping layer is disposed in a bent portion of the exhaust passage portion.
  • the phosphorus capturing layer is disposed in the bent portion of the exhaust passage portion. Phosphorous is likely to adhere to the bent portion of the exhaust passage portion.
  • acquisition layer is arrange
  • the phosphorus capturing layer can attach more phosphorus contained in the exhaust gas to the surface formed with a rough surface. Therefore, the phosphorus capturing layer can capture more phosphorus and further suppress phosphorus from adhering to the surface of the catalyst layer of the upstream catalyst. Thereby, the dispersion
  • the phosphorus capturing structure has a function of capturing phosphorus by providing at least a phosphorus reactive substance that chemically reacts with phosphorus on the surface, or And a phosphorus capturing structure layer having a rough surface and a function of capturing phosphorus.
  • the phosphorus capturing structure has the phosphorus capturing structure layer.
  • the phosphorus capturing structure layer has a function of capturing phosphorus by providing a phosphorus reactive substance that chemically reacts with phosphorus on at least the surface.
  • the phosphorus capturing structure layer has a function of capturing phosphorus by having a rough surface.
  • the phosphorus capturing structure layer chemically reacts with phosphorus contained in the exhaust gas.
  • the phosphorus capturing structure layer causes phosphorus contained in the exhaust gas to adhere to the rough surface.
  • the phosphorus capturing structure reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas.
  • the phosphorus trapping structure layer adheres phosphorus contained in the exhaust gas by chemically reacting with phosphorus. Therefore, the phosphorus capturing structure layer can capture more phosphorus and further suppress phosphorus from adhering to the surface of the catalyst layer of the upstream catalyst. Thereby, the dispersion
  • the phosphorus reactant is selected from U, Mn, Sn, Ti, Fe, Zr, Ce, Al, Y, Zn, La, and Mg. It is a metal oxide having at least one.
  • the phosphorus reactant is a metal oxide having at least one selected from U, Mn, Sn, Ti, Fe, Zr, Ce, Al, Y, Zn, La, and Mg.
  • These phosphorus reactants are metal oxides having an isoelectric point greater than 3. It is considered that the phosphorus compound in the exhaust gas exists as phosphoric acid having an isoelectric point near 1. Since the metal oxide having an isoelectric point greater than 3 has a large difference in isoelectric point between the phosphorus compound and the metal oxide, the phosphorus compound is easily adsorbed by the metal oxide.
  • These phosphorus reactants can adsorb phosphorus by the action of the isoelectricity of the metal oxide. That is, these phosphorus reactants can suppress the phosphorus contained in the exhaust gas from adhering to the catalyst layer. Thereby, the dispersion
  • the phosphorus reactive material is a metal oxide having at least one selected from Ba, Sr, Ca, La, Pr, Na, and Zr. It is characterized by that.
  • the phosphorus reactant is a metal oxide having at least one selected from Ba, Sr, Ca, La, Pr, Na, and Zr.
  • These phosphorus-reactive substances are substances that are highly reactive with phosphorus. Therefore, the phosphorus reactant can capture more phosphorus contained in the exhaust gas passing through the upstream catalyst. That is, these phosphorus reactants can suppress the phosphorus contained in the exhaust gas from adhering to the catalyst layer. Thereby, the dispersion
  • the phosphorus capturing structure has a porous structure having a large number of holes penetrating in the exhaust gas flow direction.
  • the straddle-type vehicle according to any one of 1 to 5.
  • the phosphorus capturing structure is configured with a porous structure.
  • the porous structure has a large number of holes penetrating in the exhaust gas flow direction.
  • the porous structure is, for example, a honeycomb structure. Exhaust gas that passes through the exhaust passage collides with a wall that forms a large number of holes. That is, the phosphorus capturing structure reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas. Therefore, the phosphorus capturing structure can capture phosphorus and suppress the adhesion of phosphorus to the surface of the catalyst layer of the upstream catalyst.
  • the engine unit is an engine unit that is designated to use oil having a phosphorus compound content greater than 0.08 mass%. To do.
  • the engine unit of the saddle riding type vehicle is designated to use oil having a higher content of phosphorus compound than the engine unit of the automobile. That is, the straddle-type vehicle emits exhaust gas containing more phosphorus than an automobile.
  • the phosphorus adhesion reducing unit reduces adhesion of phosphorus to the catalyst layer. That is, the phosphorus trapping layer and the phosphorus trapping structure, which are phosphorus adhesion reducing portions, capture phosphorus and suppress phosphorus from adhering to the catalyst layer of the upstream catalyst.
  • emits the exhaust gas containing much phosphorus compared with a motor vehicle can be suppressed.
  • the engine unit further includes a transmission portion, and the oil for lubricating the engine main body portion and the oil for lubricating the transmission portion are common oil. It is characterized by being.
  • the engine unit further includes a transmission unit.
  • the oil for lubricating the engine body and the oil for lubricating the transmission are common oils.
  • the oil that lubricates the engine body and the oil that lubricates the transmission are often not common oils. That is, the saddle-ride type vehicle uses a larger amount of oil per displacement than an automobile. And a saddle-ride type vehicle has more phosphorus content in the exhaust gas per displacement than an automobile.
  • the phosphorus adhesion reducing unit reduces adhesion of phosphorus to the catalyst layer.
  • the phosphorus trapping layer and the phosphorus trapping structure which are phosphorus adhesion reducing portions, capture phosphorus and suppress phosphorus from adhering to the catalyst layer of the upstream catalyst. Therefore, it is possible to suppress variations in the exhaust gas purification performance of the saddle riding type vehicle in which the content of phosphorus contained in the exhaust gas per displacement is larger than that of an automobile.
  • the engine unit further includes a clutch portion, and the oil that lubricates the engine body portion and the oil that lubricates the clutch portion are common oil. It is characterized by being.
  • the saddle riding type vehicle has a clutch portion so that it can move even when the engine is stopped, unlike an automobile.
  • the oil that lubricates the engine main body and the oil that lubricates the clutch are often common oil.
  • a saddle-ride type vehicle does not use oil with a slippery clutch.
  • Oil with a low phosphorus compound content is an oil in which the clutch portion is slippery.
  • Oils with a low phosphorus compound content used in automobiles are not used in saddle riding type vehicles. That is, the engine unit of the saddle riding type vehicle uses oil having a higher content of phosphorus compound than the engine unit of the automobile.
  • the straddle-type vehicle emits exhaust gas containing more phosphorus than an automobile.
  • the phosphorus adhesion reducing unit reduces adhesion of phosphorus to the catalyst layer. That is, the phosphorus trapping layer and the phosphorus trapping structure, which are phosphorus adhesion reducing portions, capture phosphorus and suppress phosphorus from adhering to the catalyst layer of the upstream catalyst. Thereby, the dispersion
  • the engine unit is a natural air-cooled engine unit.
  • the natural air-cooled engine unit has a high combustion chamber temperature. That is, the natural air-cooled engine unit decomposes more phosphorus compounds contained in the oil in the combustion chamber than the forced air-cooled engine unit and the water-cooled engine unit.
  • the natural air-cooled engine unit emits more exhaust gas containing phosphorus than the forced air-cooled engine unit or the water-cooled engine unit.
  • the phosphorus adhesion reducing unit reduces adhesion of phosphorus to the catalyst layer. That is, the phosphorus trapping layer and the phosphorus trapping structure, which are phosphorus adhesion reducing portions, capture phosphorus and suppress phosphorus from adhering to the catalyst layer of the upstream catalyst. Thereby, even if it is a straddle type vehicle which has a natural air cooling type engine unit, the dispersion
  • the oil in the saddle riding type vehicle, is an oil having an evaporation temperature higher than a wall surface temperature of the engine main body.
  • the detection element of the upstream oxygen detection member includes a catalyst layer for an upstream oxygen detection member that contains noble metal and purifies the exhaust gas, and the upstream The oxygen detection member is disposed between the phosphorus adhesion reducing portion of the exhaust passage portion and the upstream catalyst.
  • the upstream oxygen detection member has the detection element.
  • the detection element of the upstream oxygen detection member has an upstream oxygen detection member catalyst layer.
  • the catalyst layer for the upstream oxygen detection member purifies the exhaust gas.
  • the catalyst layer for the upstream oxygen detection member contains a noble metal such as Pt—Rh having a high ability to burn hydrogen in the exhaust gas. That is, the upstream oxygen detection member catalyst layer purifies hydrogen in the exhaust gas.
  • the upstream oxygen detection member catalyst layer is provided on the detection element of the upstream oxygen detection member in order to suppress the influence of hydrogen.
  • the effects of hydrogen are the following events. Since hydrogen has a low molecular weight and a very high diffusion rate, it easily reaches the detection element of the upstream oxygen detection member.
  • Hydrogen equilibration reaction occurs at the electrode of the detection element, and the output shifts. And the upstream oxygen detection member catalyst layer also adheres to phosphorus in the same manner as the catalyst layer. And the detection accuracy of an upstream oxygen detection member falls by vitrification of phosphorus.
  • the upstream oxygen detection member is disposed between the phosphorus adhesion reducing portion of the exhaust passage portion and the upstream catalyst.
  • the phosphorus adhesion reducing unit captures phosphorus contained in the exhaust gas. Therefore, the amount of phosphorus reaching the upstream oxygen detection member catalyst layer of the upstream oxygen detection member can be reduced. Therefore, the detection accuracy of the upstream oxygen detection member is improved.
  • the engine unit is provided at a position between the upstream catalyst and the discharge port of the exhaust passage portion, and the oxygen concentration of the exhaust gas And a downstream oxygen detecting member for detecting the above.
  • the engine unit includes the downstream oxygen detection member.
  • the downstream oxygen detection member is provided at a position between the upstream catalyst and the discharge port of the exhaust passage portion.
  • the downstream oxygen detection member detects the oxygen concentration of the exhaust gas.
  • the engine unit can be controlled based on the oxygen concentration of the exhaust gas detected by the downstream oxygen detection member. Further, it is possible to detect deterioration of the exhaust gas purification performance of the saddle riding type vehicle based on the oxygen concentration of the exhaust gas detected by the downstream oxygen detection member. And the dispersion
  • the upstream oxygen detection member has a path length from the combustion chamber to the upstream oxygen detection member that extends from the upstream oxygen detection member to the upstream catalyst. It is arranged at a position longer than the path length.
  • the upstream oxygen detection member is disposed at a position where the path length from the combustion chamber to the upstream oxygen detection member is longer than the path length from the upstream oxygen detection member to the upstream catalyst.
  • the upstream oxygen detection member is disposed between the combustion chamber of the exhaust passage portion and the upstream catalyst. Further, the upstream oxygen detection member is disposed upstream of the upstream catalyst in the exhaust passage portion in the exhaust gas flow direction. The upstream oxygen detection member is disposed at a position closer to the upstream catalyst than the combustion chamber.
  • the upstream oxygen detection member When the upstream oxygen detection member is disposed closer to the upstream catalyst than the combustion chamber, the upstream oxygen detection member is disposed upstream of the upstream oxygen detection member as compared with the case where the upstream oxygen detection member is disposed closer to the combustion chamber than the upstream catalyst.
  • the surface area of the reduced phosphorus adhesion portion is increased.
  • positioned upstream from an upstream oxygen detection member can reduce the quantity of the phosphorus which reaches
  • the exhaust passage portion is formed in the cylinder portion, the cylinder exhaust passage portion connected to the combustion chamber, and the muffler having the discharge port
  • an exhaust pipe connected to the cylinder exhaust passage portion and the silencer and the upstream oxygen detection member has a path length from the upstream end of the exhaust pipe to the upstream oxygen detection member. It is arranged at a position longer than the path length from the oxygen detection member to the upstream catalyst.
  • the exhaust passage portion has a cylinder exhaust passage portion, a silencer, and an exhaust pipe.
  • the cylinder exhaust passage portion is formed in a cylinder having a combustion chamber.
  • the cylinder exhaust passage is connected to the combustion chamber.
  • the silencer has a discharge port.
  • the exhaust pipe is connected to the cylinder exhaust passage and the silencer.
  • the upstream oxygen detection member is disposed at a position where the path length from the upstream end of the exhaust pipe to the upstream oxygen detection member is longer than the path length from the upstream oxygen detection member to the upstream catalyst.
  • the upstream oxygen detection member is disposed between the combustion chamber of the exhaust passage portion and the upstream catalyst. Further, the upstream oxygen detection member is disposed upstream of the upstream catalyst in the exhaust passage portion in the exhaust gas flow direction.
  • the upstream oxygen detection member is disposed at a position closer to the upstream catalyst than the upstream end of the exhaust pipe.
  • the upstream oxygen detection member is compared with a case where the upstream oxygen detection member is disposed closer to the upstream end of the exhaust pipe than the upstream catalyst.
  • the surface area of the phosphorus adhesion reducing portion arranged upstream from the detection member is increased.
  • positioned upstream from an upstream oxygen detection member can reduce the quantity of the phosphorus which reaches
  • the engine body includes a crankshaft having a central axis along the left-right direction of the vehicle, and when the vehicle is viewed in the left-right direction, at least a part of the catalyst layer is formed of the crankshaft. Is disposed in front of a straight line passing through the central axis and parallel to the vertical direction.
  • a straight line that passes through the center axis of the crankshaft and is parallel to the vertical direction is defined as a straight line L1.
  • the exhaust pipe is connected to the front surface of the engine body.
  • the catalyst layer is disposed in front of the straight line L1. Therefore, compared with the case where the whole catalyst layer is arrange
  • the engine body includes a crankshaft having a central axis along the left-right direction of the vehicle, the cylinder portion has a cylinder hole that forms a part of the combustion chamber,
  • the catalyst layer is disposed in front of the straight vehicle in the front-rear direction perpendicular to the center axis of the cylinder hole and passing through the center axis of the crankshaft.
  • a straight line perpendicular to the center axis of the cylinder hole and passing through the center axis of the crankshaft is defined as a straight line L2.
  • the exhaust pipe is connected to the front surface of the engine body.
  • at least a part of the catalyst layer is disposed in front of the straight line L2. Therefore, compared with the case where the whole catalyst layer is arrange
  • the straddle-type vehicle of the present invention is not limited to a motorcycle.
  • the straddle-type vehicle of the present invention refers to all vehicles that ride in a state in which a rider straddles a saddle.
  • the straddle-type vehicle of the present invention includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
  • motorcycles included in saddle riding type vehicles include scooters, motorbikes, mopeds, and the like.
  • the engine body of the engine unit includes a cylinder portion having a combustion chamber” does not limit that the engine unit is a single cylinder engine.
  • the engine unit of the present invention may be a single cylinder engine or a multi-cylinder engine.
  • the combustion chamber defined in claim 1 is defined as a first combustion chamber.
  • the engine unit of the present invention may have one or more second combustion chambers in addition to the first combustion chamber.
  • the engine unit of the present invention is a multi-cylinder engine.
  • the number of combustion chambers is not particularly limited.
  • the second combustion chamber may or may not be able to replace the combustion chamber of the present invention. When there are a plurality of second combustion chambers, it may be possible to replace only some of the second combustion chambers with the combustion chambers of the present invention. When there are a plurality of second combustion chambers, it may be possible to replace all the second combustion chambers with the combustion chambers of the present invention.
  • the cooling method of the engine unit may be a natural air cooling method.
  • the engine unit may be cooled by forced air cooling.
  • the cooling method of the engine unit may be a water cooling type.
  • the oxygen detection member is, for example, an oxygen sensor. It may be one that detects whether the acid oxygen concentration is above or below a predetermined value, or it may be one that detects the value of the oxygen concentration linearly.
  • the passage means a wall or the like that surrounds and forms a path.
  • a route means a space through which an object passes.
  • the intake passage portion means a wall body or the like that surrounds the intake path and forms the intake path.
  • the intake path means a space through which air passes.
  • the exhaust passage portion means a wall body that surrounds the exhaust path and forms the exhaust path.
  • the exhaust path means a space through which exhaust gas passes.
  • the upstream end of a certain part is the end located at the most upstream in the flow direction of the exhaust gas of the certain part.
  • the downstream end of a certain part is an end located on the most downstream side in the flow direction of the exhaust gas of a certain part.
  • the upstream end of the phosphorus chemical reaction unit is the end located at the most upstream in the exhaust gas flow direction of the entire phosphorus chemical reaction unit.
  • the upstream end of the catalyst layer is the end located at the most upstream in the exhaust gas flow direction of the entire catalyst layer.
  • the downstream end of the phosphorus chemical reaction portion is the end located on the most downstream side in the exhaust gas flow direction of the entire phosphorus chemical reaction portion.
  • the downstream end of the catalyst layer is the end located on the most downstream side in the exhaust gas flow direction of the entire catalyst layer.
  • the end portion of a part means a portion obtained by combining the end of the part and its vicinity.
  • the radial direction of B is the radial direction of B passing through A.
  • the case where the radial direction of B is used in the description of A is, for example, “A is along the radial direction of B” or “A is pressed in the radial direction of B”.
  • the inclination angle of the straight line A with respect to the straight line B means the smaller one of the angles formed by the straight line A and the straight line B. This definition applies not only to “straight line” but also to “direction”.
  • the direction along the A direction is not limited to the direction parallel to the A direction.
  • the direction along the A direction includes a direction inclined with respect to the A direction in a range of ⁇ 45 °.
  • the straight line along the A direction is not limited to a straight line parallel to the A direction.
  • the straight line along the A direction includes a straight line inclined within a range of ⁇ 45 ° with respect to the A direction.
  • the A direction does not indicate a specific direction.
  • the A direction can be replaced with a horizontal direction or a front-rear direction.
  • a and B being arranged in the X direction indicates the following state. Even when A and B are viewed from any direction perpendicular to the X direction, both A and B are on an arbitrary straight line indicating the X direction. In this specification, A and B being arranged in the X direction when viewed from the Y direction indicates the following state. When A and B are viewed from the Y direction, both A and B are on an arbitrary straight line indicating the X direction. When A and B are viewed from the W direction different from the Y direction, A and B may not be aligned in the X direction. In the above two definitions, A and B may be in contact with each other. A and B may be separated from each other. C may exist between A and B.
  • a being ahead of B indicates the following state.
  • A is in front of a plane passing through the foremost end of B and orthogonal to the front-rear direction.
  • a and B may be aligned in the front-rear direction or may not be aligned.
  • the same definition is applied to expressions that A is behind B, A is above or below B, and A is on the right or left side of B.
  • a being before B indicates the following state. In this state, A is ahead of B and A and B are aligned in the front-rear direction. The same definition applies to expressions where A is behind B, A is above or below B, and A is on the right or left of B.
  • a in front of B when viewed in the X direction which is different from the front-rear direction, refers to the following state. In this state, A is ahead of B and A and B are aligned in the front-rear direction when viewed in the X direction. When A and B are viewed from a Y direction different from the X direction, A and B may not be aligned in the X direction. Note that the same definition applies to expressions in which A is behind B, A is above or below B, and A is to the right or left of B when viewed in the X direction.
  • the terms mounted, connected, coupled, and supported are used in a broad sense. Specifically, it includes not only direct attachment, connection, coupling and support, but also indirect attachment, connection, coupling and support. Further, connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
  • the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”.
  • a configuration described as “preferable” has at least the above-described effect obtained by the configuration according to one aspect of the present invention.
  • the term “may” is non-exclusive. “May” means “may be, but is not limited to”.
  • the configuration described as “may” at least exhibits the above-described effect obtained by the configuration according to one aspect of the present invention.
  • the present invention does not limit the combination of the above-described configurations according to other aspects of the present invention.
  • the present invention is not limited to the details of the arrangement and arrangement of components set forth in the following description or illustrated in the drawings.
  • the present invention is also possible in embodiments other than those described below.
  • the present invention is also possible in embodiments in which various modifications are made to the embodiments described later. Further, the present invention can be implemented by appropriately combining the modifications described later.
  • FIG. 1 is a side view of a motorcycle according to a first embodiment.
  • FIG. 2 is a plan view of the engine unit of the motorcycle of FIG. 1, partially showing a cross section.
  • Fig. 2 is a schematic diagram showing an engine unit of the motorcycle shown in Fig. 1.
  • FIG. 2 is a control block diagram of the motorcycle of FIG. 1.
  • 2A and 2B are views showing an engine unit exhaust passage portion, a phosphorus adhesion reducing portion, and an oxygen sensor in FIG. 1, in which FIG. 1A is a partial cross-sectional view, and FIG. It is a figure which shows the oxygen sensor of FIG. 1, (a) is a partial cross section figure of an oxygen sensor, (b) is a partial cross section figure which shows the front-end
  • FIG. 1 is a side view of a motorcycle according to a first embodiment.
  • FIG. 2 is a plan view of the engine unit of the motorcycle of FIG. 1, partially showing a cross section.
  • Fig. 2
  • FIG. 2 is a diagram showing the upstream catalyst of FIG. 1, (a) is a schematic diagram showing the structure of each layer of the upstream catalyst, and (b) is a partial cross-sectional view orthogonal to the flow direction of exhaust gas of the upstream catalyst.
  • 2A and 2B are diagrams showing a modification of the upstream catalyst in FIG. 1.
  • FIG. 2A is a schematic diagram showing the structure of each layer of the upstream catalyst, and
  • FIG. 2B is a partial cross-sectional view orthogonal to the flow direction of exhaust gas in the upstream catalyst. .
  • FIG. 4 is a view showing an exhaust passage portion, a phosphorus adhesion reducing portion, and an oxygen sensor of an engine unit of a motorcycle according to a second embodiment, where (a) is a partial cross-sectional view and (b) is a cross-sectional view taken along line X2-X2 of (a).
  • FIG. It is a schematic diagram which shows the exhaust passage part of the engine unit of 2nd Embodiment, a phosphorus adhesion reduction part, an oxygen sensor, and an upstream catalyst.
  • the saddle riding type vehicle 1 is equipped with an engine unit 11.
  • the engine unit 11 includes an engine body 20, an exhaust passage portion 43, an upstream catalyst 46, an upstream oxygen sensor 92f, and a phosphorus adhesion reducing portion 44.
  • the engine body 20 has a combustion chamber 36.
  • the exhaust passage 43 has a discharge port 42e that discharges exhaust gas to the atmosphere.
  • the exhaust passage portion 43 flows exhaust gas from the combustion chamber 36 to the discharge port 42e.
  • the exhaust passage portion 43 includes a first bent portion 43 a and a second bent portion 43 b between the combustion chamber 36 and the upstream catalyst 46.
  • the upstream catalyst 46 is the most upstream catalyst in the exhaust gas flow direction in the exhaust passage portion 43.
  • the upstream catalyst 46 has a catalyst layer 49.
  • the catalyst layer 49 includes a noble metal that purifies the exhaust gas.
  • the upstream oxygen sensor 92f is disposed between the combustion chamber 36 of the exhaust passage 43 and the upstream catalyst 46.
  • the upstream oxygen sensor 92f detects the oxygen concentration of the exhaust gas.
  • the phosphorus adhesion reducing part 44 includes at least one of a phosphorus capturing layer 44a and a phosphorus capturing structure 44b.
  • the phosphorus trapping layer 44 a is disposed between the combustion chamber 36 and the upstream catalyst 46 in the exhaust passage portion 43.
  • the phosphorus capturing layer 44a is made of a phosphorus reactive substance that chemically reacts with phosphorus and has a function of capturing phosphorus.
  • the phosphorus capturing layer 44a is formed of a rough surface having a function of capturing phosphorus on the surface.
  • the phosphorus capturing layer 44 a is applied to the inner surface of the exhaust passage portion 43.
  • the phosphorus capturing structure 44 b is disposed between the combustion chamber 36 and the upstream catalyst 46 in the exhaust passage 43.
  • the phosphorus capturing structure 44b has a function of capturing phosphorus by reducing the flow rate of exhaust gas.
  • the phosphorus capture structure 44b is disposed at a position where the path length from the combustion chamber 36 to the phosphorus capture structure 44b is shorter than the path length from the phosphorus capture structure 44b to the upstream catalyst 46.
  • the saddle riding type vehicle 1 of the present embodiment has the following characteristics.
  • the upstream catalyst 46 is disposed at a position closest to the combustion chamber 36.
  • the time required to activate the upstream catalyst 46 can be shortened. Therefore, the exhaust gas purification performance of the saddle riding type vehicle 1 can be improved.
  • the phosphorus adhesion reducing unit 44 reduces the adhesion of phosphorus to the catalyst layer 49.
  • the phosphorus adhesion reducing portion 44 includes at least one of (A) a phosphorus capturing layer 44a and (B) a phosphorus capturing structure 44b.
  • the phosphorus trapping layer 44a is disposed between the combustion chamber 36 and the upstream catalyst 46 of the exhaust passage 43. That is, the phosphorus capturing layer 44a is disposed upstream of the upstream catalyst 46 in the exhaust gas flow direction.
  • the phosphorus capturing layer 44 a is applied to the inner surface of the exhaust passage portion 43.
  • the phosphorus capturing layer 44a is made of a phosphorus reactive substance that chemically reacts with phosphorus and has a function of capturing phosphorus.
  • the phosphorus capturing layer 44a is formed of a rough surface having a function of capturing phosphorus and has a function of capturing phosphorus.
  • the exhaust passage 43 includes a first bent portion 43 a and a second bent portion 43 b between the combustion chamber 36 and the upstream catalyst 46. Since the exhaust gas has a high flow rate, the exhaust gas easily collides with the first bent portion 43 a and the second bent portion 43 b of the exhaust passage portion 43. The first bent portion 43a and the second bent portion 43b of the exhaust passage portion 43 are liable to adhere phosphorus.
  • the phosphorus capture layer 44 a is disposed between the combustion chamber 36 and the upstream catalyst 46 in the exhaust passage portion 43.
  • the phosphorus capturing layer 44a contains a phosphorus reactant that chemically reacts with phosphorus contained in the exhaust gas.
  • the phosphorus reactive substance is, for example, a substance that adsorbs phosphorus.
  • phosphorus contained in the exhaust gas is adsorbed by the chemical reaction of phosphorus in the exhaust gas with the phosphorus reactant.
  • the phosphorus reactant can capture phosphorus by chemically reacting with phosphorus contained in the exhaust gas passing through the phosphorus capturing layer 44a.
  • the surface of the phosphorus capturing layer 44a is formed with a rough surface to which phosphorus contained in the exhaust gas is attached. Therefore, the phosphorus capturing layer 44 a can capture phosphorus and suppress the phosphorus from adhering to the catalyst layer 49 of the upstream catalyst 46.
  • the phosphorus capturing structure 44b is disposed between the combustion chamber 36 and the upstream catalyst 46 of the exhaust passage portion 43. That is, the phosphorus capturing structure 44b is disposed upstream of the upstream catalyst 46 in the exhaust gas flow direction.
  • the phosphorus capturing structure 44b has a function of capturing phosphorus by reducing the flow rate of exhaust gas. Further, since the exhaust gas has a high flow rate, the flow rate of the exhaust gas can be reduced by arranging a structure in the exhaust passage portion 43. Phosphorus tends to adhere to the structure that reduces the flow rate of the exhaust gas.
  • the path length from the combustion chamber 36 to the phosphorus capturing structure 44b is shorter than the path length from the phosphorus capturing structure 44b to the upstream catalyst 46.
  • the phosphorus capturing structure 44 b is disposed at a position close to the combustion chamber 36.
  • the phosphorus capturing structure 44b reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas. Therefore, the phosphorus capturing structure 44 b can capture phosphorus and suppress phosphorus from adhering to the catalyst layer 49 of the upstream catalyst 46.
  • the saddle riding type vehicle 1 of the embodiment of the present invention is a motorcycle
  • the description of the same part as the above-described embodiment of the present invention is omitted.
  • the specific examples of the embodiments of the present invention include all the embodiments of the present invention described above.
  • the front-rear direction is a vehicle front-rear direction viewed from a rider seated on a seat 9 (described later) of the motorcycle 1
  • the left-right direction is a vehicle viewed from a rider seated on the seat 9. It is the left-right direction.
  • the vehicle left-right direction is the same as the vehicle width direction.
  • the arrow F, arrow B, arrow U, arrow D, arrow L, and arrow R in the figure of this embodiment represent the front, back, upper, lower, left, and right, respectively.
  • FIG. 1 is a side view of the motorcycle according to the first embodiment.
  • FIG. 2 is a plan view of the engine unit of the motorcycle shown in FIG.
  • FIG. 3 is a schematic diagram showing an engine unit of the motorcycle shown in FIG.
  • the motorcycle 1 of the first embodiment is a so-called sports type motorcycle.
  • the engine unit of this embodiment may be applied to an on-road type motorcycle or an off-road type motorcycle.
  • the motorcycle 1 includes a front wheel 2, a rear wheel 3, and a body frame 4.
  • the vehicle body frame 4 has a head pipe 4a.
  • the vehicle body frame 4 is disposed along the front-rear direction.
  • the number of front wheels 2 is one, but two or more.
  • the head pipe 4 a is disposed at the front portion of the vehicle body frame 4.
  • a steering shaft (not shown) is rotatably inserted into the head pipe 4a.
  • a handle unit 5 is provided on the upper portion of the steering shaft.
  • the handle unit 5 has a handle bar 12.
  • Grips 13 are provided at both ends of one handle bar 12.
  • a display device 14 is arranged in the vicinity of the handle unit 5. The display device 14 displays vehicle speed, engine speed, various warnings, and the like.
  • a pair of left and right front forks 6 are supported at the bottom of the steering shaft.
  • the front wheel 2 is rotatably supported at the lower end of the front fork 6.
  • the front fork 6 is configured to absorb an impact in the vertical direction.
  • a pair of swing arms 7 are swingably supported on the body frame 4.
  • the rear end portion of the swing arm 7 supports the rear wheel 3.
  • a rear suspension 8 is attached to each swing arm 7.
  • One end of the rear suspension 8 is attached to a position behind the swing center of the swing arm 7.
  • the rear suspension 8 is configured to absorb an impact in the vertical direction.
  • the vehicle body frame 4 supports the seat 9 and the fuel tank 10.
  • the fuel tank 10 is disposed in front of the seat 9.
  • the vehicle body frame 4 supports the engine unit 11.
  • the engine unit 11 may be directly connected to the vehicle body frame 4 or indirectly connected thereto.
  • the engine unit 11 is disposed below the fuel tank 10.
  • the engine unit 11 is disposed behind the front wheel 2 and in front of the rear wheel 3 when viewed in the left-right direction.
  • the vehicle body frame 4 supports a battery (not shown).
  • the battery supplies electric power to electronic devices such as an ECU (Electronic Control Unit) 90 (see FIG. 4) that controls the engine unit 11 and various sensors.
  • ECU Electronic Control Unit
  • the engine unit 11 is a natural air-cooled engine unit.
  • the engine unit 11 is a single cylinder engine.
  • the engine unit 11 is a 4-stroke engine.
  • a 4-stroke engine is an engine that repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke.
  • the engine unit 11 includes an engine body 20, an exhaust device 40, and a power transmission unit 60 (see FIG. 2).
  • the exhaust device 40 includes an exhaust passage portion 43, a phosphorus adhesion reduction portion 44 (see FIG. 3), and a catalyst (upstream catalyst) 46.
  • the engine unit 11 has an upstream oxygen sensor (upstream oxygen detection member) 92f. Further, the engine unit 11 has an intake device 50 (see FIG. 3).
  • the upstream catalyst 46 is the most upstream catalyst in the exhaust gas flow direction in the exhaust passage portion 43.
  • the engine body 20 includes a crankcase portion 21, a cylinder portion 28, a generator 29, and a starter motor (not shown).
  • the cylinder portion 28 includes a cylinder body 22, a cylinder head 23, and a head cover 24.
  • the crankcase portion 21 includes a crankcase 21a, a crankshaft 34, and an oil pan (not shown).
  • the crankcase 21a and the oil pan may be integrally formed.
  • the crankcase 21a accommodates a power transmission unit 60, a generator 29, and a starter motor.
  • a crankshaft 34 is accommodated in the crankcase 21a.
  • the crankshaft 34 is rotatably supported by the crankcase portion 21.
  • a center line Cr of the crankshaft 34 is referred to as a crankshaft line Cr.
  • the crank axis Cr is along the left-right direction. More specifically, the crank axis Cr is parallel to the left-right direction.
  • a generator 29 is attached to the left end of the crankshaft 34.
  • the power transmission unit 60 is accommodated in the crankcase 21a.
  • the power transmission unit 60 is connected to the right end portion of the crankshaft 34. In FIG. 2, only some of the components of the power transmission unit 60 are indicated by broken lines.
  • the power transmission unit 60 includes a transmission unit 61 and a clutch unit 62.
  • the transmission unit 61 is a stepped transmission that includes a main shaft 63 and a drive shaft 64.
  • the crankshaft 34 and the main shaft 63 are connected via a clutch portion 62.
  • the clutch unit 62 switches between a state in which power can be transmitted from the crankshaft 34 to the main shaft 63 and a state in which it is disconnected.
  • the main shaft 63 has a plurality of transmission gears 63a.
  • the drive shaft 64 has a plurality of transmission gears 64a.
  • the transmission gear 63a and the transmission gear 64a are selected as a pair of gears so as to have a predetermined transmission ratio.
  • the selected pair of gears are meshed so that power can be transmitted from the main shaft 63 to the drive shaft 64. Any one of the gears other than the selected pair of gears is idle with respect to the main shaft 63 or the drive shaft 64. That is, power is transmitted from the main shaft 63 to the drive shaft 64 only by the selected pair of transmission gears.
  • the transmission gear 63a and the transmission gear 64a are power transmission mechanisms.
  • the left end portion of the drive shaft 64 protrudes outside from the crankcase 21a.
  • a sprocket 67 is provided at the left end of the drive shaft 64.
  • a chain 68 is wound around a sprocket 67 of the drive shaft 64 and a sprocket (not shown) of the rear wheel 3. Power is transmitted from the drive shaft 64 to the rear wheel 3 by the chain 68.
  • Oil is stored in the oil pan.
  • the crankcase portion 21 has an oil pump (not shown) that sucks up the oil stored in the oil pan. The oil sucked up by the oil pump lubricates the crankcase portion 21.
  • the crankcase portion 21 communicates with a chain chamber 33b of a cylinder body 22 and a chain chamber 33a of a cylinder head 23, which will be described later.
  • the oil circulates in the chain chamber 33 b of the cylinder body 22 and the chain chamber 33 a of the cylinder head 23.
  • oil lubricates the valve operating mechanism 30 mentioned later accommodated in the cylinder head 23 which the cylinder part 28 has.
  • a part of the engine body 20 and a part of the transmission part 61 are accommodated in the crankcase part 21.
  • a part of the engine body 20 is lubricated with oil.
  • a part of the transmission unit 61 is lubricated with oil. That is, the oil that lubricates the engine body 20 and the oil that lubricates the transmission unit 61 are common oils.
  • a part of the engine body 20 and the clutch part 62 are accommodated in the crankcase part 21.
  • a part of the engine body 20 is lubricated with oil.
  • the clutch part 62 is lubricated with oil. That is, the oil that lubricates the engine body 20 and the oil that lubricates the clutch portion 62 are common oils.
  • the oil that lubricates the engine body 20 is preferably oil having an evaporation temperature higher than the wall surface temperature of the engine body 20.
  • the cylinder portion 28 includes the cylinder body 22, the cylinder head 23, and the head cover 24.
  • the cylinder body 22 is attached to the upper end portion of the crankcase portion 21.
  • the cylinder head 23 is attached to the upper end portion of the cylinder body 22.
  • the head cover 24 is attached to the upper end portion of the cylinder head 23.
  • a fin portion 25 is formed on the surface of the cylinder body 22.
  • the fin portion 25 is formed on substantially the entire circumference of the cylinder body 22.
  • a fin portion 26 is formed on the surface of the cylinder head 23.
  • the fin portion 26 is formed on substantially the entire circumference of the cylinder head 23.
  • the fin portions 25 and 26 are constituted by a plurality of fins.
  • the fin portions 25 and 26 dissipate heat generated in the engine body 20.
  • the cylinder body 22 has a cylinder hole 22a.
  • a piston 35 is accommodated in the cylinder hole 22a so as to be able to reciprocate.
  • the piston 35 is connected to the crankshaft 34 via a connecting rod 35a.
  • the center line of the cylinder hole 22a is referred to as a cylinder axis Cy.
  • the cylinder axis Cy is along the vertical direction.
  • the cylinder axis Cy is inclined in the front-rear direction with respect to the up-down direction.
  • the cylinder axis Cy is inclined such that the cylinder portion 28 is inclined forward. That is, the cylinder axis Cy is inclined so as to go forward as it goes upward.
  • the tilt angle of the cylinder axis Cy with respect to the vertical direction is defined as a tilt angle ⁇ cy.
  • the inclination angle ⁇ cy is not less than 0 degrees and not more than 45 degrees.
  • the inclination angle ⁇ cy is not limited to the angle shown in FIG.
  • a combustion chamber 36 is formed in the cylinder portion 28.
  • Each combustion chamber 36 is formed by the lower surface of the cylinder head 23, the cylinder hole 22 a, and the upper surface of the piston 35.
  • the combustion chamber 36 may have a configuration including a main combustion chamber and a sub-combustion chamber connected to the main combustion chamber.
  • a straight line passing through the crank axis Cr and parallel to the up-down direction is defined as a straight line La1.
  • the combustion chamber 36 is disposed in front of the straight line La1 when the motorcycle 1 is viewed in the left-right direction. That is, when the motorcycle 1 is viewed in the left-right direction, the combustion chamber 36 is disposed in front of the crank axis Cr.
  • a cylinder intake passage portion 37 and a cylinder exhaust passage portion 38 are formed in the cylinder head 23.
  • path part means the structure which forms a path
  • the path means a space through which gas or the like passes.
  • an intake port 37a and an exhaust port 38a are formed in a wall portion forming the combustion chamber 36.
  • the number of intake ports 37a and exhaust ports 38a provided for one combustion chamber 36 is one.
  • the number of intake ports 37a provided for one combustion chamber 36 may be two or more. For example, when two intake ports 37a are provided for one combustion chamber 36, the cylinder intake passage portion 37 is formed in a bifurcated shape.
  • the number of exhaust ports 38a provided for one combustion chamber 36 may be two or more.
  • the cylinder exhaust passage portion 38 is formed in a bifurcated shape.
  • An intake port 37 b is formed on the outer surface behind the cylinder head 23.
  • An exhaust port 38 b is formed on the outer surface in front of the cylinder head 23.
  • the cylinder intake passage portion 37 is formed from the intake port 37a to the intake port 37b.
  • the number of intake ports 37b and exhaust ports 38b provided for one combustion chamber 36 is one.
  • the number of intake ports 37b provided for one combustion chamber 36 may be two or more.
  • the number of exhaust ports 38b provided for one combustion chamber 36 may be two or more.
  • the cylinder exhaust passage portion 38 is formed from the exhaust port 38a to the exhaust port 38b.
  • the air supplied to the combustion chamber 36 passes through the cylinder intake passage portion 37. Exhaust gas discharged from the combustion chamber 36 passes through the cylinder exhaust passage portion 38.
  • the cylinder intake passage portion 37 is provided with an intake valve V1.
  • An exhaust valve V ⁇ b> 2 is disposed in the cylinder exhaust passage portion 38.
  • the intake port 37a is opened and closed by driving the intake valve V1.
  • the exhaust port 38a is opened and closed by driving the exhaust valve V2.
  • An intake passage portion 51 described later is connected to the intake port 37 b of the cylinder intake passage portion 37.
  • An exhaust pipe 41 described later is connected to the exhaust port 38 b of the cylinder exhaust passage 38.
  • a valve mechanism 30 is accommodated in the cylinder head 23.
  • the valve mechanism 30 opens and closes the intake valve V1 and the exhaust valve V2.
  • the valve mechanism 30 includes a cam shaft 31.
  • the cam shaft 31 is disposed along the left-right direction.
  • the cam shaft 31 is rotatably supported by the cylinder head 23.
  • the cylinder head 23 is provided with a chain chamber 33a.
  • the cylinder body 22 is provided with a chain chamber 33b.
  • the chain chamber 33a of the cylinder head 23 and the chain chamber 33b of the cylinder body 22 communicate with each other.
  • the left end portion of the cam shaft 31 is disposed in the chain chamber 33b.
  • the sprocket 32 is provided at the left end portion of the cam shaft 31.
  • a sprocket is provided at the left end portion of the crankshaft 34.
  • a timing chain (not shown) is wound around the sprocket 32 and the sprocket of the crankshaft 34.
  • the timing chain is disposed in the chain chamber 33 a of the cylinder head 23 and the chain chamber 33 b of the cylinder body 22.
  • the timing chain transmits the rotation of the crankshaft 34 to the valve mechanism 30.
  • the camshaft 31 rotates.
  • the intake valve V1 and the exhaust valve V2 are opened and closed.
  • the engine body 20 has an engine rotation speed sensor 92a and an engine temperature sensor 92c (see FIG. 4).
  • the engine rotation speed sensor 92a detects the rotation speed of the crankshaft 34, that is, the engine rotation speed.
  • the engine temperature sensor 92c detects the temperature of the engine body 20 (the temperature of the cylinder body 22).
  • the intake device 50 of the motorcycle 1 of the first embodiment will be described.
  • the upstream means upstream in the air flow direction.
  • the downstream means downstream in the air flow direction.
  • the intake device 50 has an intake passage portion 51.
  • the intake passage 51 has an air inlet 51a that faces the atmosphere.
  • the air inlet 51 a is formed at the upstream end of the intake passage 51.
  • the intake passage 51 is provided with an air cleaner 52 for purifying air.
  • the downstream end of the intake passage portion 51 is connected to an intake port 37 b formed on the rear surface of the cylinder head 23.
  • the air inlet 51a sucks air from the atmosphere.
  • the air that has flowed into the intake passage 51 from the air inlet 51 a is supplied to the engine body 20.
  • an injector 94 is disposed in the intake passage 51.
  • the injector 94 injects fuel into the air in the intake passage portion 51.
  • the injector 94 is connected to a fuel tank (not shown) via a fuel hose (not shown).
  • a fuel pump 95 (see FIG. 4) is disposed inside the fuel tank. The fuel pump 95 pumps the fuel in the fuel tank to the fuel hose.
  • a throttle valve 54 is arranged in the intake passage 51.
  • the opening degree of the throttle valve 54 is changed by the rider operating the accelerator grip (not shown).
  • the intake passage 51 is provided with a throttle opening sensor (throttle position sensor) 92b, an intake pressure sensor 92d, and an intake air temperature sensor 92e.
  • the throttle opening sensor 92b outputs a signal representing the throttle opening by detecting the position of the throttle valve 54.
  • the throttle opening is the opening of the throttle valve 54.
  • the intake pressure sensor 92d detects the internal pressure of the intake passage 51.
  • the intake air temperature sensor 92e detects the temperature of the air in the intake passage portion 51.
  • the exhaust device 40 of the motorcycle 1 according to the first embodiment will be described.
  • the upstream means upstream in the flow direction of exhaust gas.
  • the downstream means downstream in the flow direction of the exhaust gas.
  • the exhaust device 40 includes an exhaust passage portion 43, a phosphorus adhesion reducing portion 44, and a catalyst 46. That is, the engine unit 11 includes the exhaust passage portion 43, the phosphorus adhesion reducing portion 44, and the catalyst 46.
  • the exhaust passage portion 43 includes the above-described cylinder exhaust passage portion 38, the exhaust pipe 41, the silencer 42, and the casing 47.
  • the silencer 42 has a discharge port 42e facing the atmosphere.
  • the exhaust passage portion 43 is a structure that forms a space through which exhaust gas flows from the combustion chamber 36 to the discharge port 42e.
  • the exhaust pipe 41 has an upstream exhaust pipe 41a and a downstream exhaust pipe 41b.
  • the upstream exhaust pipe 41 a is disposed upstream of the casing 47.
  • the downstream exhaust pipe 41 b is disposed downstream from the casing 47.
  • the upstream end portion of the upstream exhaust pipe 41 a is connected to the cylinder exhaust passage portion 38.
  • the upstream end portion of the upstream exhaust pipe 41a may be inserted into the cylinder exhaust passage portion 38.
  • Exhaust gas flows into the upstream end of the upstream exhaust pipe 41a.
  • the downstream end of the downstream exhaust pipe 41 b is inserted into the silencer 42 and disposed in the silencer 42.
  • the upstream exhaust pipe 41a and the downstream exhaust pipe 41b are drawn in a straight line for simplification, but the upstream exhaust pipe 41a and the downstream exhaust pipe 41b are not in a straight line.
  • the exhaust passage portion 43 includes a first bent portion 43 a and a second bent portion 43 b between the combustion chamber 36 and the upstream catalyst 46.
  • An upstream oxygen sensor 92 f is disposed between the combustion chamber 36 and the upstream catalyst 46 in the exhaust passage portion 43.
  • an upstream oxygen sensor 92f is disposed in the upstream exhaust pipe 41a.
  • the upstream oxygen sensor 92f is disposed upstream of the upstream catalyst 46 described later in the exhaust passage portion 43.
  • the path length from the combustion chamber 36 to the upstream end of the exhaust pipe 41 is L11.
  • the path length from the upstream end of the exhaust pipe 41 to the upstream oxygen sensor 92f is L12.
  • the path length from the upstream end of the exhaust pipe 41 to the downstream end of the exhaust pipe 41 is L13.
  • the path length from the downstream end of the exhaust pipe 41 to the upstream catalyst 46 is L14.
  • the upstream oxygen sensor 92f is disposed at a position where the path length L11 + L12 from the combustion chamber 36 to the upstream oxygen sensor 92f is longer than the path length L13 + L14 from the upstream oxygen sensor 92f to the upstream catalyst 46. That is, the upstream oxygen sensor 92 f is disposed at a position closer to the upstream catalyst 46 than the combustion chamber 36.
  • the upstream oxygen sensor 92f is arranged at a position where the path length L12 from the exhaust pipe 41 to the upstream oxygen sensor 92f is longer than the path length L13 + L14 from the upstream oxygen sensor 92f to the upstream catalyst 46. That is, the upstream oxygen sensor 92f is disposed at a position closer to the upstream catalyst 46 than the upstream end of the upstream exhaust pipe 41a. Further, the upstream oxygen sensor 92f has a path length L12 from the upstream end of the upstream exhaust pipe 41a to the upstream oxygen sensor 92f, and a path length L13 from the upstream oxygen sensor 92f to the downstream end of the upstream exhaust pipe 41a. It is arranged at a longer position.
  • the upstream oxygen sensor 92f is disposed at a position closer to the downstream end than the upstream end of the upstream exhaust pipe 41a.
  • the upstream oxygen sensor 92 f detects the oxygen concentration of the exhaust gas that passes through the upstream exhaust pipe 41 a of the exhaust passage portion 43.
  • FIG. 6A is a partial cross-sectional view of the oxygen sensor.
  • FIG. 6B is a partial cross-sectional view showing the tip of the detection element.
  • the upstream oxygen sensor 92f includes a detection element 81 therein.
  • the detection element 81 is inserted through the housing 80 and fixed.
  • the detection element 81 is disposed in the cover 82.
  • the detection element 81 is protected by a cover 82.
  • the cover 82 is provided with a passage port (not shown) through which the exhaust gas passes. As shown in FIG.
  • the detection element 81 includes a solid electrolyte body 83, an inner electrode 84, an outer electrode 85, and an oxygen sensor catalyst layer (oxygen detection member catalyst layer) 86.
  • the solid electrolyte body 83 is formed in a bottomed cylindrical shape.
  • the inner electrode 84 and the outer electrode 85 are a pair of electrodes.
  • the pair of electrodes 84 and 85 are provided on both surfaces of the solid electrolyte body 83.
  • An inner electrode 84 is coated on the inner surface of the solid electrolyte body 83.
  • An outer electrode 85 is coated on the outer surface of the solid electrolyte body 83.
  • An oxygen sensor catalyst layer 86 is laminated on the outer surface of the outer electrode 85.
  • the oxygen sensor catalyst layer 86 a noble metal alloy such as Pt—Rh having a high ability to burn hydrogen is used.
  • the oxygen sensor catalyst layer 86 can suppress the influence of hydrogen.
  • the detection element 81 is formed with an air chamber 87 for introducing air.
  • the atmospheric chamber 87 is formed inside the inner electrode 84.
  • the inner electrode 84 is exposed to the atmosphere.
  • the atmosphere is a reference gas.
  • the outer electrode 85 is exposed to exhaust gas.
  • the upstream oxygen sensor 92f is arranged at a position closer to the downstream end than the upstream end of the upstream exhaust pipe 41a. That is, the distance from the upstream oxygen sensor 92f to the upstream end of the upstream exhaust pipe 41a is longer than the distance from the upstream oxygen sensor 92f to the downstream end of the upstream exhaust pipe 41a.
  • the upstream oxygen sensor 92f may be a linear A / F sensor.
  • the linear A / F sensor outputs a linear detection signal corresponding to the oxygen concentration of the exhaust gas.
  • the linear A / F sensor continuously detects a change in oxygen concentration in the exhaust gas.
  • the linear A / F sensor may also have an oxygen sensor catalyst layer.
  • the silencer 42 is configured to suppress pulsating waves of exhaust gas. Thereby, the silencer 42 can reduce the volume of the sound (exhaust sound) generated by the exhaust gas.
  • a plurality of expansion chambers and a plurality of pipes communicating the expansion chambers are provided in the silencer 42.
  • the downstream end of the downstream exhaust pipe 41 b is disposed in the expansion chamber of the silencer 42.
  • the downstream end of the downstream exhaust pipe 41 b may be connected to the upstream end of the silencer 42.
  • a discharge port 42e is provided at the downstream end of the silencer 42.
  • the exhaust gas that has passed through the silencer 42 is discharged to the atmosphere from the discharge port 42e.
  • the discharge port 42e is located behind the crank axis Cr.
  • the silencer 42 is supported by the vehicle body frame 4 via the connection member 42c.
  • the silencer 42 may be supported by the engine body 20.
  • FIG. 5A is a partial cross-sectional view of the exhaust passage portion, the phosphorus adhesion reducing portion, and the oxygen sensor of the engine unit of FIG.
  • FIG. 5B is a cross-sectional view taken along the line X1-X1 in FIG.
  • the engine unit 11 has a phosphorus adhesion reducing portion 44.
  • the phosphorus adhesion reducing portion 44 is disposed between the combustion chamber 36 and the upstream catalyst 46 in the exhaust passage portion 43.
  • the phosphorus adhesion reducing unit 44 is disposed in the upstream exhaust pipe 41a.
  • the phosphorus adhesion reducing part 44 is arranged over the entire circumference of the inner surface of the upstream exhaust pipe 41a.
  • the phosphorus adhesion reducing part 44 is a phosphorus capturing layer.
  • the phosphorus capturing layer 44 is made of a phosphorus reactive material and has a function of capturing phosphorus.
  • the phosphorus reactive substance is a substance that chemically reacts with phosphorus contained in the exhaust gas. More specifically, as shown in FIG. 5B, the phosphorus trapping layer 44 is formed by applying a phosphorus reactant to the inner surface of the upstream exhaust pipe 41a. That is, the phosphorus capturing layer 44 is provided by being laminated on the inner surface of the upstream exhaust pipe 41a. A part of the phosphorus capturing layer 44 is disposed in the first bent portion 43 a of the exhaust passage portion 43.
  • the phosphorus capturing layer 44 has a rougher surface than the inner surface of the upstream exhaust pipe 41a. That is, the surface area of the phosphorus capturing layer 44 is larger than the surface area of the inner surface of the upstream exhaust pipe 41a. Thus, the phosphorus capture layer 44 increases the surface area in contact with the exhaust gas. And the phosphorus capture
  • the phosphorus reactive substance a phosphorus adsorbing substance that adsorbs phosphorus by chemically reacting with phosphorus contained in exhaust gas is used.
  • the phosphorus reactant is, for example, a metal oxide having an isoelectric point greater than 3. More specifically, the phosphorus reactant is a metal oxide having at least one selected from U, Mn, Sn, Ti, Fe, Zr, Ce, Al, Y, Zn, La, and Mg.
  • the phosphorus compound in the exhaust gas exists as phosphoric acid having an isoelectric point near 1.
  • a metal oxide having an isoelectric point greater than 3 has a large difference in isoelectric point between the phosphorus compound and the metal oxide, and thus the phosphorus compound is easily adsorbed by the metal oxide. That is, these phosphorus reactants adsorb phosphorus by the action of the isoelectric value of the metal oxide.
  • the phosphorus reactive substance may be a substance having high reactivity with phosphorus.
  • the phosphorus reactant may be a metal oxide having at least one selected from Ba, Sr, Ca, La, Pr, Na, and Zr.
  • the phosphorus capturing layer 44 may be formed of a phosphorus reactant and a carrier.
  • the carrier attaches a phosphorus reactant.
  • a porous body made of an inorganic oxide such as silica, alumina or titania compound is used.
  • the carrier a material having excellent heat resistance and fire resistance is preferably used.
  • the phosphorus capture layer 44 may be mortar, plaster, or fire resistant coating formed using a phosphorus reactant. Mortar, plaster, or fireproof coating is excellent in heat resistance.
  • the casing 47 is included in the exhaust passage portion 43.
  • the upstream end of the casing 47 is connected to the upstream exhaust pipe 41a.
  • the downstream end of the casing 47 is connected to the downstream exhaust pipe 41b.
  • the casing 47 is formed in a cylindrical shape.
  • the casing 47 includes a catalyst arrangement passage portion 47b, an upstream passage portion 47a, and a downstream passage portion 47c.
  • a catalyst 46 is arranged in the catalyst arrangement passage portion 47b.
  • the upstream end and the downstream end of the catalyst arrangement passage portion 47 b are at the same positions as the upstream end and the downstream end of the catalyst 46, respectively.
  • the same position here is a meaning including the position of the vicinity.
  • the area of the cross section perpendicular to the flow direction of the exhaust gas in the catalyst arrangement passage portion 47b is substantially constant in the flow direction of the exhaust gas.
  • the upstream passage portion 47a is connected to the upstream end of the catalyst arrangement passage portion 47b.
  • the downstream passage portion 47c is connected to the downstream end of the catalyst arrangement passage portion 47b.
  • the upstream passage 47a is at least partially tapered.
  • the tapered portion has an inner diameter that increases toward the downstream.
  • the downstream passage portion 47c is at least partially tapered.
  • the tapered portion has an inner diameter that decreases toward the downstream.
  • the area of the cross section orthogonal to the flow direction of the exhaust gas in the catalyst arrangement passage portion 47b is defined as S1.
  • the area of the cross section orthogonal to the flow direction of the exhaust gas in the exhaust pipe 41 is S2.
  • Area S2 is smaller than area S1.
  • the upstream catalyst 46 is fixed inside the catalyst arrangement passage portion 47b. That is, the upstream catalyst 46 is disposed in the exhaust passage portion 43.
  • the exhaust gas is purified by passing through the upstream catalyst 46.
  • the upstream catalyst 46 is in an inactive state and does not exhibit purification performance.
  • the upstream catalyst 46 becomes active and exhibits purification performance.
  • the upstream catalyst 46 is the most upstream catalyst in the exhaust gas flow direction.
  • the upstream catalyst 46 can also be said to be a front catalyst disposed at the foremost position in the exhaust passage 43 disposed in the front-rear direction when the motorcycle 1 is viewed in the left-right direction. All exhaust gas discharged from the exhaust port 38 a of the combustion chamber 36 passes through the upstream catalyst 46.
  • the upstream catalyst 46 is a so-called three-way catalyst.
  • the three-way catalyst is removed by oxidizing or reducing three substances of hydrocarbon, carbon monoxide, and nitrogen oxide contained in the exhaust gas.
  • the three-way catalyst is one type of redox catalyst.
  • FIG. 7A is a schematic view showing the structure of each layer of the upstream catalyst.
  • FIG. 7B is a partial cross-sectional view orthogonal to the flow direction of the exhaust gas in the upstream catalyst.
  • FIG. 8 is a view showing a modification of the upstream catalyst 46.
  • FIG. 8A is a schematic view showing the structure of each layer of the upstream catalyst.
  • FIG. 8B is a partial cross-sectional view orthogonal to the flow direction of the exhaust gas in the upstream catalyst.
  • FIG. 16 is a schematic partial cross-sectional view of an upstream catalyst showing an example of a catalyst layer.
  • the upstream catalyst 46 has a base material 48 and a catalyst layer 49.
  • the base material 48 is a metal base material.
  • the substrate 48 is preferably made of a heat resistant material.
  • the base material 48 is a porous structure.
  • the porous structure has a large number of holes penetrating in the exhaust gas flow direction.
  • the base material 48 includes a metal corrugated plate 48a and a metal flat plate 48b.
  • the corrugated plate 48a and the flat plate 48b are metal foils having a thickness of several tens of ⁇ m using a heat-resistant alloy.
  • the base material 48 is formed in a cylindrical shape by alternately winding and corrugating the corrugated plates 48a and the flat plates 48b.
  • the base material 48 is inserted into the cylindrical catalyst arrangement passage portion 47b.
  • a large number of cells 46 a partitioned by corrugated plates 48 a and flat plates 48 b are formed on the base material 48.
  • the cell 46a is a hole.
  • the shape of the cross section orthogonal to the longitudinal direction of the cell 46a is a substantially triangular shape having apexes at three portions where the corrugated plate 48a and the flat plate 48b abut.
  • the upstream catalyst 46 is arranged in the catalyst arrangement passage portion 47b so that the longitudinal direction of the cell 46a is along the flow direction of the exhaust gas.
  • the cell 46a penetrates from upstream to downstream in the exhaust gas flow direction. The exhaust gas flowing into the upstream catalyst 46 passes through the cell 46a.
  • the catalyst layer 49 is provided by being laminated on the surface of the base material 48. That is, the catalyst layer 49 is provided by being laminated on the surface of the cell 46a formed by the corrugated plate 48a and the flat plate 48b.
  • FIG. 16A is a schematic partial cross-sectional view of the upstream catalyst 46 showing an example of the catalyst layer 49.
  • the structure of the catalyst layer 49 is not restricted to the structure shown to Fig.16 (a).
  • the catalyst layer 49 has a noble metal layer 49b composed of a carrier 49a and a noble metal 49b.
  • the carrier 49 a is provided between the noble metal layer 49 b and the base material 48.
  • the carrier 49 a is provided for attaching the noble metal 49 b to the base material 48.
  • the carrier 49a is made of, for example, an inorganic oxide such as silica, alumina, or titania compound.
  • the carrier 49a may contain a substance having an action of purifying exhaust gas.
  • the support 49a does not contain a noble metal.
  • the carrier 49a is formed on the surface of the cell 46a by, for example, a coating method called wash coat. Wash coat, for example, porous ⁇ ?
  • a carrier 49a made of an alumina layer is formed.
  • the noble metal layer 49b is formed dispersed on the surface of the carrier 49a. Examples of the noble metal 49b include platinum, palladium, rhodium, ruthenium, gold, silver, osmium, iridium and the like.
  • the noble metal 49b is attached to the carrier 49a.
  • the noble metal 49b may be included in the catalyst layer 49 in the form of a noble metal alloy.
  • the noble metal 49b may be directly attached to the carrier 49a, or may be attached to the carrier 49a via a substance other than the noble metal.
  • the noble metal 49b may be chemically bonded to the carrier 49a.
  • the noble metal 49b hardly blocks the micropores of the carrier 49a.
  • the catalyst layer 49 is formed as follows, for example. Specifically, for example, after the carrier 49a is formed on the substrate 48, a solution containing the noble metal 49b is applied to the surface of the carrier 49a.
  • the base material 48 on which the carrier 49a is formed is immersed in a solution containing the noble metal 49b.
  • the catalyst layer 49 may be formed by immersing the noble metal 49b in the surface layer of the carrier 49a.
  • the noble metal 49b of the noble metal layer 49b purifies the exhaust gas. That is, the exhaust gas contacts with the noble metal layer 49b and is purified when passing through the cell 46a. More specifically, the reaction between the catalyst layer 49 and the exhaust gas proceeds not only at the interface between the exhaust gas and the catalyst layer 49 but also inside the catalyst layer 49.
  • the catalyst layer 49 is formed with a constant thickness (for example, a thickness of about 5 to 30 ⁇ m) in order to utilize the reaction that proceeds in the inside thereof. That is, the catalyst layer 49 includes the noble metal 49b.
  • the upstream catalyst 46 may include a base material 48 and a catalyst layer 49.
  • FIG. 16B is a schematic partial cross-sectional view of the upstream catalyst 46 showing an example of the catalyst layer 49.
  • the configuration of the catalyst layer 49 is not limited to the configuration shown in FIG.
  • the carrier 49 a is provided for attaching a noble metal to the base material 48.
  • the catalyst layer 49 is provided by being laminated on the surface of the base material 48.
  • the carrier 49 a is provided for attaching the noble metal 49 b dispersed therein to the base material 48.
  • the catalyst layer 49 has a structure in which the noble metal 49b is dispersed inside and on the surface of the carrier 49a.
  • the catalyst layer 49 may be formed by immersing the base material 48 in a solution containing the material constituting the carrier 49a and the noble metal 49b.
  • the noble metal 49b may exist not only inside the carrier 49a but also on the surface of the catalyst layer 49.
  • the noble metal 49b in the catalyst layer 49 purifies the exhaust gas.
  • the catalyst layer 49 may have a structure in which the noble metal 49b is dispersed only inside the carrier 49a. That is, the noble metal 49b may not be disposed on the surface of the carrier 49a.
  • L is the maximum length of the upstream catalyst 46 in the exhaust gas flow direction.
  • D be the maximum length of the upstream catalyst 46 in the direction orthogonal to the flow direction of the exhaust gas.
  • the length D is the maximum width in the direction perpendicular to the flow direction of the exhaust gas of the upstream catalyst 46.
  • the length L of the upstream catalyst 46 is longer than the length D of the upstream catalyst 46.
  • the shape of the cross section orthogonal to the flow direction of the exhaust gas of the upstream catalyst 46 is, for example, a circular shape.
  • the shape of the cross section orthogonal to the flow direction of the exhaust gas of the upstream catalyst 46 may be an elliptical shape in which the horizontal length is longer than the vertical length.
  • the upstream catalyst 46 is disposed below the engine body 20, the distance between the ground and the upstream catalyst 46 can be secured. Further, even when the upstream catalyst 46 is disposed in front of the engine body 20, the distance between the front wheel 2 and the upstream catalyst 46 can be ensured. And the enlargement of a straddle-type vehicle can be suppressed. Note that the length L of the upstream catalyst 46 does not have to be longer than the length D of the upstream catalyst 46.
  • the upstream catalyst 46 is below the engine body 20 when the motorcycle 1 is viewed in the left-right direction.
  • the upstream catalyst 46 is disposed across the straight line La1 when the motorcycle 1 is viewed in the left-right direction.
  • a part of the upstream catalyst 46 is disposed in front of the crank axis Cr when the motorcycle 1 is viewed in the left-right direction.
  • the upstream catalyst 46 is disposed in front (downward) of the cylinder axis Cy.
  • a part of the upstream catalyst 46 is disposed behind the crank axis Cr when the motorcycle 1 is viewed in the left-right direction.
  • the entire upstream catalyst 46 may be disposed in front of the crank axis Cr.
  • the upstream catalyst 46 may be disposed in front of the engine body 20 when the motorcycle 1 is viewed in the left-right direction.
  • at least a part of the upstream catalyst 46 is preferably disposed in front of the crank axis Cr.
  • the upstream catalyst 46 is disposed closer to the combustion chamber 36.
  • the time required for activating the upstream catalyst 46 can be further shortened.
  • the entire upstream catalyst 46 may be disposed behind the crank axis Cr when the motorcycle 1 is viewed in the left-right direction.
  • the upstream catalyst 46 may be disposed rearward (upward) from the cylinder axis Cy.
  • a straight line La2 is a straight line orthogonal to the cylinder axis Cy and passing through the crank axis Cr when the motorcycle 1 is viewed in the left-right direction.
  • the upstream catalyst 46 is disposed behind (downward) the straight line La2.
  • the upstream catalyst 46 may be disposed in front (upward) of the straight line La2. In this case, the upstream catalyst 46 is disposed at a position closer to the combustion chamber 36. Further, the time required for activating the upstream catalyst 46 can be further shortened.
  • FIG. 4 is a control block diagram of the motorcycle according to the first embodiment.
  • the engine unit 11 includes an engine speed sensor 92a, a throttle opening sensor 92b (throttle position sensor), an engine temperature sensor 92c (see FIG. 4), an intake pressure sensor 92d, an intake temperature sensor 92e, and an upstream It has an oxygen sensor 92f.
  • the engine rotation speed sensor 92a detects the rotation speed of the crankshaft 34, that is, the engine rotation speed.
  • the throttle opening sensor 92b detects the opening of the throttle valve 54 by detecting the position of the throttle valve 54.
  • the opening degree of the throttle valve 54 is referred to as a throttle opening degree.
  • the engine temperature sensor 92 c detects the temperature of the engine body 20.
  • the intake pressure sensor 92d detects the pressure in the intake passage 51).
  • the intake air temperature sensor 92e detects the temperature of the air in the intake passage portion 51.
  • the upstream oxygen sensor 92 f detects the oxygen concentration of the exhaust gas that passes through the exhaust passage portion 43.
  • the engine unit 11 includes an ECU 90 that controls the engine body 20, as shown in FIG.
  • the ECU 90 is connected to various sensors such as an engine rotation speed sensor 92a, an engine temperature sensor 92c, a throttle opening sensor 92b, an intake pressure sensor 92d, an intake air temperature sensor 92e, an upstream oxygen sensor 92f, and a vehicle speed sensor.
  • the ECU 90 is connected to an ignition coil 93, an injector 94, a fuel pump 95, a display device 14 (see FIG. 1), and the like.
  • the ECU 90 includes a control unit 91a and an operation instruction unit 91b.
  • the operation instruction unit 91b includes an ignition drive circuit 91c, an injector drive circuit 91d, and a pump drive circuit 91e.
  • the ignition driving circuit 91c, the injector driving circuit 91d, and the pump driving circuit 91e drive the ignition coil 93, the injector 94, and the fuel pump 95, respectively, in response to a signal from the control unit 91a.
  • the fuel pump 95 is connected to the injector 94 via a fuel hose.
  • fuel in a fuel tank (not shown) is pumped to the injector 94.
  • the control unit 91a is, for example, a microcomputer.
  • the controller 91a controls the ignition drive circuit 91c, the injector drive circuit 91d, and the pump drive circuit 91e based on the signal from the upstream oxygen sensor 92f and the signal from the engine rotation speed sensor 92a.
  • the controller 91a controls the ignition drive circuit 91c to control the ignition timing.
  • the controller 91a controls the fuel injection amount by controlling the injector drive circuit 91d and the pump drive circuit 91e.
  • the air-fuel ratio of the air-fuel mixture in the combustion chamber 36 is preferably the stoichiometric air-fuel ratio (stoichiometry).
  • the controller 91a increases or decreases the fuel injection amount as necessary.
  • the controller 91a calculates the basic fuel injection amount based on signals from the engine speed sensor 92a, the throttle opening sensor 92b, the engine temperature sensor 92c, and the intake pressure sensor 92d. Specifically, the intake air amount is calculated using a map in which the intake air amount is associated with the throttle opening and the engine rotational speed, and a map in which the intake air amount is associated with the intake pressure and the engine rotational speed. Ask. Then, based on the intake air amount obtained from the map, the basic fuel injection amount that can achieve the target air-fuel ratio is determined. When the throttle opening is small, a map in which the intake air amount is associated with the intake pressure and the engine speed is used. On the other hand, when the throttle opening is large, a map in which the intake air amount is associated with the throttle opening and the engine speed is used.
  • the control unit 91a calculates a feedback correction value for correcting the basic fuel injection amount based on the signal from the upstream oxygen sensor 92f. Specifically, first, based on the signal from the upstream oxygen sensor 92f, it is determined whether the air-fuel mixture is lean or rich. Note that rich means that the fuel is excessive with respect to the stoichiometric air-fuel ratio. Lean means a state where air is excessive with respect to the stoichiometric air-fuel ratio. When determining that the air-fuel mixture is lean, the control unit 91a calculates a feedback correction value so that the next fuel injection amount increases. On the other hand, when determining that the air-fuel mixture is rich, the control unit 91a obtains a feedback correction value so that the next fuel injection amount is reduced.
  • control unit 91a calculates a correction value for correcting the basic fuel injection amount based on the engine temperature, the outside air temperature, the outside air pressure, and the like. Furthermore, the control unit 91a calculates a correction value according to the transient characteristics during acceleration and deceleration.
  • the controller 91a calculates the fuel injection amount based on the basic fuel injection amount and a correction value such as a feedback correction value. Based on the fuel injection amount thus determined, the fuel pump 95 and the injector 94 are driven. In this way, the ECU 90 processes the signal of the upstream oxygen sensor 92f. Further, the ECU 90 performs combustion control based on a signal from the upstream oxygen sensor 92f.
  • the configuration of the motorcycle 1 according to the first embodiment has been described above.
  • the motorcycle 1 of the first embodiment has the following features.
  • the motorcycle 1 is equipped with an engine unit 11.
  • the engine unit 11 includes an engine body 20, an exhaust passage portion 43, an upstream catalyst 46, an upstream oxygen sensor 92f, and a phosphorus adhesion reducing portion 44.
  • the engine body 20 includes a cylinder portion 28 having a combustion chamber 36.
  • the exhaust passage 43 has a discharge port 42e that discharges exhaust gas to the atmosphere.
  • the exhaust passage portion 43 flows exhaust gas from the combustion chamber 36 to the discharge port 42e.
  • the upstream catalyst 46 is the most upstream catalyst in the exhaust gas flow direction in the exhaust passage portion 43.
  • the upstream catalyst 46 has a catalyst layer 49.
  • the catalyst layer 49 includes a noble metal that purifies the exhaust gas. That is, the upstream catalyst 46 is disposed at a position close to the combustion chamber 36. Therefore, the time required for activating the upstream catalyst 46 can be shortened.
  • the upstream oxygen sensor 92f is disposed between the combustion chamber 36 of the exhaust passage 43 and the upstream catalyst 46.
  • the upstream oxygen sensor 92f detects the oxygen concentration of the exhaust gas.
  • the phosphorus adhesion reducing unit 44 reduces the adhesion of phosphorus to the catalyst layer 49.
  • the phosphorus adhesion reducing unit 44 includes a phosphorus capturing layer 44.
  • the phosphorus capture layer 44 is disposed in the upstream exhaust pipe 41 a between the combustion chamber 36 and the catalyst layer 49 of the exhaust passage portion 43. That is, the phosphorus capturing layer 44 is disposed upstream of the upstream catalyst 46 in the exhaust gas flow direction.
  • the phosphorus adhesion reducing unit 44 is not the upstream oxygen sensor 92f.
  • the phosphorus capturing layer 44 a is applied to the inner surface of the exhaust passage portion 43.
  • the phosphorus capturing layer 44 is composed of a phosphorus reactive substance that chemically reacts with phosphorus and has a function of capturing phosphorus.
  • the exhaust passage 43 includes a first bent portion 43 a and a second bent portion 43 b between the combustion chamber 36 and the upstream catalyst 46. Since the exhaust gas has a high flow rate, the exhaust gas easily collides with the first bent portion 43 a and the second bent portion 43 b of the exhaust passage portion 43. The first bent portion 43a and the second bent portion 43b of the exhaust passage portion 43 are liable to adhere phosphorus.
  • the phosphorus capturing layer 44 is disposed between the combustion chamber 36 and the upstream catalyst 46 in the exhaust passage portion 43.
  • the phosphorus capturing layer 44 includes a phosphorus reactant that chemically reacts with phosphorus contained in the exhaust gas. Phosphorus contained in the exhaust gas passing through the phosphorus trapping layer 44 chemically reacts with the phosphorus reactant.
  • the phosphorus reactive substance is, for example, a substance that adsorbs phosphorus. In this case, phosphorus contained in the exhaust gas is adsorbed by the chemical reaction of phosphorus in the exhaust gas with the phosphorus reactant.
  • the phosphorus reactant can capture phosphorus by chemically reacting with phosphorus contained in the exhaust gas passing through the phosphorus capturing layer 44. Therefore, the phosphorus capturing layer 44 can capture phosphorus and suppress phosphorus from adhering to the catalyst layer 49 of the upstream catalyst 46.
  • Part of the phosphorus capturing layer 44 is disposed on the first bent portion 43 a and the second bent portion 43 b of the exhaust passage portion 43.
  • the first bent portion 43a and the second bent portion 43b of the exhaust passage portion 43 are liable to adhere phosphorus.
  • the phosphorus capturing layer 44 is disposed on the first bent portion 43 a and the second bent portion 43 b of the exhaust passage portion 43. Therefore, the phosphorus capturing layer 44 can chemically react with more phosphorus contained in the exhaust gas. Therefore, the phosphorus capturing layer 44 can capture more phosphorus and further suppress the phosphorus from adhering to the surface of the catalyst layer 49 of the upstream catalyst 46. Thereby, the dispersion
  • the phosphorus reactant is a metal oxide having at least one selected from U, Mn, Sn, Ti, Fe, Zr, Ce, Al, Y, Zn, La, and Mg. These phosphorus reactants are metal oxides having an isoelectric point greater than 3. It is considered that the phosphorus compound in the exhaust gas exists as phosphoric acid having an isoelectric point near 1. Since the metal oxide having an isoelectric point greater than 3 has a large difference in isoelectric point between the phosphorus compound and the metal oxide, the phosphorus compound is easily adsorbed by the metal oxide. These phosphorus reactants can adsorb phosphorus by the action of the isoelectricity of the metal oxide. That is, these phosphorus reactants can suppress the phosphorus contained in the exhaust gas from adhering to the catalyst layer 49. Thereby, the dispersion
  • the phosphorus reactant is a metal oxide having at least one selected from Ba, Sr, Ca, La, Pr, Na, and Zr. These phosphorus reactive substances are substances having high reactivity with phosphorus. Therefore, the phosphorus reactant can capture more phosphorus contained in the exhaust gas that passes through the upstream catalyst 46. That is, these phosphorus reactants can suppress the phosphorus contained in the exhaust gas from adhering to the catalyst layer 49. Thereby, the dispersion
  • Engine unit 11 is an engine unit in which the use of oil having a phosphorus compound content greater than 0.08 mass% is specified.
  • the engine unit of the saddle-ride type vehicle is designated to use oil having a higher phosphorus compound content than the engine unit of the four-wheeled vehicle. That is, the engine unit 11 of the motorcycle 1 that is a saddle-ride type vehicle emits exhaust gas containing a larger amount of phosphorus than four-wheeled vehicles.
  • the phosphorus adhesion reducing unit 44 reduces the adhesion of phosphorus to the catalyst layer 49. That is, the phosphorus capturing layer that is the phosphorus adhesion reducing unit 44 captures phosphorus and suppresses the adhesion of phosphorus to the catalyst layer 49 of the upstream catalyst 46. As a result, it is possible to suppress variations in the exhaust gas purification performance of the motorcycle 1 that discharges exhaust gas containing a large amount of phosphorus compared to a four-wheeled vehicle.
  • the engine unit 11 further includes a transmission unit 61.
  • the oil that lubricates the engine body 20 and the oil that lubricates the transmission unit 61 are common oils.
  • the oil that lubricates the engine body and the oil that lubricates the transmission are often common oils.
  • the oil that lubricates the engine body and the oil that lubricates the transmission part are often not common oils. That is, the motorcycle 1 which is a saddle-ride type vehicle uses a larger amount of oil per displacement than an automobile.
  • the motorcycle 1 that is a straddle-type vehicle has a higher phosphorus content in the exhaust gas per displacement than an automobile.
  • the transmission unit 61 transmits power using transmission gears 63a and 64a which are power transmission mechanisms.
  • the oil that lubricates the transmission unit 61 requires a large amount of phosphorus compound as an additive.
  • the oil that lubricates the engine body 20 contains a large amount of phosphorus compounds. Therefore, the engine unit 11 discharges exhaust gas containing a large amount of phosphorus. Therefore, it is possible to suppress variation in the exhaust gas purification performance of the motorcycle 1 in which the content of phosphorus contained in the exhaust gas per exhaust amount is larger than that of an automobile.
  • the engine unit 11 further includes a clutch part 62.
  • the oil that lubricates the engine body 20 and the oil that lubricates the clutch part 62 are common oils.
  • the motorcycle 1 that is a saddle-ride type vehicle has a clutch portion 62 so that the motorcycle 1 can move even when the engine is stopped. Further, in the saddle riding type vehicle, the oil that lubricates the engine body and the oil that lubricates the clutch portion are often common oil.
  • the motorcycle 1 that is a saddle-ride type vehicle does not use oil in which the clutch portion 62 is slippery. Oils with a low phosphorus compound content are often oils in which the clutch part is slippery.
  • Oil with a low phosphorus compound content used in automobiles is not used in the motorcycle 1 that is a saddle-ride type vehicle. That is, the engine unit 11 of the motorcycle 1 that is a saddle-ride type vehicle uses oil having a higher phosphorus compound content than the engine unit of the automobile. That is, the motorcycle 1 which is a saddle-ride type vehicle emits exhaust gas containing a larger amount of phosphorus than an automobile.
  • the phosphorus adhesion reducing unit 44 reduces the adhesion of phosphorus to the catalyst layer 49. That is, the phosphorus capturing layer 44 that is the phosphorus adhesion reducing unit 44 captures phosphorus and suppresses the adhesion of phosphorus to the catalyst layer 49 of the upstream catalyst 46. As a result, it is possible to suppress variations in the exhaust gas purification performance of the motorcycle 1 that exhausts exhaust gas containing a large amount of phosphorus compared to an automobile.
  • the engine unit 11 is a natural air-cooled engine unit.
  • the natural air-cooled engine unit 11 has a high temperature in the combustion chamber 36.
  • the natural air-cooled engine unit 11 decomposes more phosphorus compounds in the oil in the combustion chamber 36 than the forced air-cooled engine unit and the water-cooled engine unit.
  • the natural air-cooled engine unit emits more exhaust gas containing phosphorus than the forced air-cooled engine unit or the water-cooled engine unit.
  • the phosphorus adhesion reducing unit 44 reduces the adhesion of phosphorus to the catalyst layer 49. That is, the phosphorus capturing layer that is the phosphorus adhesion reducing unit 44 captures phosphorus and suppresses the adhesion of phosphorus to the catalyst layer 49 of the upstream catalyst 46. Thereby, even in the motorcycle 1 having the natural air-cooled engine unit 11, variation in exhaust gas purification performance can be suppressed.
  • the oil that lubricates the engine body 20 is an oil having an evaporation temperature higher than the wall surface temperature of the engine body 20.
  • the amount of the phosphorus compound contained in the oil that lubricates the engine body 20 is decomposed in the combustion chamber 36 can be suppressed.
  • the amount of phosphorus contained in the exhaust gas can be suppressed. Thereby, the dispersion
  • the upstream oxygen sensor 92f has a detection element 81.
  • the detection element of the upstream oxygen sensor 92f includes an oxygen sensor catalyst layer 86.
  • the oxygen sensor catalyst layer 86 purifies the exhaust gas.
  • the oxygen sensor catalyst layer 86 includes a noble metal such as Pt—Rh having a high ability to burn hydrogen in the exhaust gas. That is, the oxygen sensor catalyst layer 86 purifies hydrogen in the exhaust gas.
  • the oxygen sensor catalyst layer 86 is provided on the detection element 81 of the upstream oxygen sensor 92f in order to suppress the influence of hydrogen.
  • the effects of hydrogen are the following events. Since hydrogen has a low molecular weight and a very high diffusion rate, it easily reaches the detection element 81 of the upstream oxygen sensor 92f.
  • Hydrogen equilibration reaction occurs at the electrode of the detection element 81, and the output shifts.
  • phosphorus adheres to the oxygen sensor catalyst layer 86 as well.
  • detection accuracy of the upstream oxygen sensor 92f falls by vitrification of phosphorus.
  • the upstream oxygen sensor 92 f is disposed between the phosphorus adhesion reducing portion 44 of the exhaust passage portion 43 and the upstream catalyst 46.
  • the phosphorus adhesion reducing unit 44 captures phosphorus contained in the exhaust gas. Therefore, the amount of phosphorus reaching the oxygen sensor catalyst layer 86 of the upstream oxygen sensor 92f can be reduced. Therefore, the detection accuracy of the upstream oxygen sensor 92f is improved.
  • the upstream oxygen sensor 92f is disposed at a position where the path length from the combustion chamber 36 to the upstream oxygen sensor 92f is longer than the path length from the upstream oxygen sensor 92f to the upstream catalyst 46. That is, the upstream oxygen sensor 92 f is disposed at a position closer to the upstream catalyst 46 than the combustion chamber 36.
  • the upstream oxygen sensor 92f is disposed at a position where the path length from the exhaust pipe 41 to the upstream oxygen sensor 92f is longer than the path length from the upstream oxygen sensor 92f to the upstream catalyst 46. That is, the upstream oxygen sensor 92f is disposed at a position closer to the upstream catalyst 46 than the upstream end of the upstream exhaust pipe 41a.
  • the upstream oxygen sensor 92f has a longer path length from the upstream end of the upstream exhaust pipe 41a to the upstream oxygen sensor 92f than a path length from the upstream oxygen sensor 92f to the downstream end of the upstream exhaust pipe 41a. Placed in position.
  • the upstream oxygen sensor 92f is disposed at a position closer to the downstream end than the upstream end of the upstream exhaust pipe 41a.
  • the phosphorus adhesion reducing unit 44 disposed upstream of the upstream oxygen sensor 92f captures phosphorus contained in the exhaust gas before passing through the upstream oxygen sensor 92f.
  • the upstream oxygen sensor 92f When the upstream oxygen sensor 92f is disposed at a position closer to the upstream catalyst 46 than the combustion chamber 36, the upstream oxygen sensor 92f is compared with a case where the upstream oxygen sensor 92f is disposed closer to the upstream catalyst 46 than the combustion chamber 36.
  • the surface area of the phosphorus adhesion reducing portion 44 disposed upstream of the surface increases.
  • the upstream oxygen sensor 92f is disposed at a position closer to the upstream catalyst 46 than the upstream end of the exhaust pipe 41, the upstream oxygen sensor 92f is disposed at a position closer to the upstream end of the exhaust pipe 41 than the upstream catalyst 46.
  • the surface area of the phosphorus adhesion reducing portion 44 disposed upstream of the upstream oxygen sensor 92f is increased.
  • the upstream oxygen sensor 92f is disposed closer to the downstream end than the upstream end of the upstream exhaust pipe 41a, the upstream oxygen sensor 92f is disposed closer to the upstream end than the downstream end of the upstream exhaust pipe 41a.
  • the surface area of the phosphorus adhesion reducing portion 44 disposed upstream of the upstream oxygen sensor 92f is increased.
  • positioned upstream from the upstream oxygen sensor 92f can reduce the quantity of the phosphorus which reaches
  • FIG. 9A is a partial cross-sectional view showing an exhaust passage portion, a phosphorus adhesion reducing portion, and an oxygen sensor of the engine unit of the motorcycle according to the second embodiment.
  • FIG. 9B is a cross-sectional view taken along the line X2-X2 of FIG. FIG.
  • FIG. 10 is a schematic diagram showing an exhaust passage portion, a phosphorus adhesion reducing portion, an oxygen sensor, and an upstream catalyst of the engine unit of the second embodiment.
  • the engine unit of the motorcycle according to the second embodiment is different from the engine unit 11 of the motorcycle according to the first embodiment in the configuration of the phosphorus adhesion reducing unit.
  • the configuration other than the phosphorus adhesion reducing unit is the same as that of the engine unit 11 of the motorcycle according to the first embodiment.
  • the engine unit of the present embodiment has five phosphorus adhesion reducing portions 144.
  • the five phosphorus adhesion reducing portions 144 are disposed in the upstream exhaust pipe 41a. That is, the five phosphorus adhesion reducing portions 144 are arranged between the combustion chamber 36 and the upstream catalyst 46 of the exhaust passage portion 43.
  • the path length from the combustion chamber 36 to the upstream end of the exhaust pipe 41 is L21.
  • a path length from the upstream end of the exhaust pipe 41 to the most downstream phosphorus capturing structure 144 in the exhaust gas flow direction is L22.
  • the path length from the most downstream phosphorus capturing structure 144 in the exhaust gas flow direction to the upstream catalyst 46 is L23.
  • the most downstream phosphorus trapping structure 144 in the exhaust gas flow direction has a path length L21 + L22 from the combustion chamber 36 to the most downstream phosphorus trap structure 144 in the exhaust gas flow direction. It is arranged at a position shorter than the path length L23 from the body 144 to the upstream catalyst 46. That is, the five phosphorus capture structures 144 are arranged at positions where the path length from the combustion chamber 36 to the phosphorus capture structure 144 is shorter than the path length from the phosphorus capture structure 144 to the upstream catalyst 46.
  • the phosphorus adhesion reducing unit 144 shown in FIG. 9 is a phosphorus capturing structure.
  • the phosphorus capturing structure 144 has a function of capturing phosphorus by reducing the flow rate of exhaust gas.
  • the phosphorus capturing structure 144 is also a surface area increasing portion that increases the surface area of the exhaust passage portion 43.
  • the phosphorus capturing structure 144 is also a resistance portion that provides resistance to the exhaust gas that passes through the exhaust passage portion 43. More specifically, the phosphorus capturing structure 144 is a plurality of semicircular plate-like members that are disposed on the inner side of the upstream exhaust pipe 41a by welding or the like. The phosphorus capturing structure 144 is disposed at a position closer to the upstream end than the downstream end of the upstream exhaust pipe 41a.
  • the phosphorus capturing structure 144 is disposed along a direction that intersects the flow direction of the exhaust gas in the exhaust passage portion 43.
  • the phosphorus capturing structure 144 is arranged along a direction perpendicular to the flow direction of the exhaust gas in the exhaust passage portion 43.
  • the exhaust gas that passes through the exhaust passage portion 43 collides with the phosphorus capturing structure 144.
  • the phosphorus capturing structure 144 has a large surface area of the upstream exhaust pipe 41a where the phosphorus capturing structure 144 is disposed.
  • the upstream exhaust pipe 41a in which the phosphorus capturing structure 144 is disposed has a larger surface area in contact with the exhaust gas than the upstream exhaust pipe 41a in which the phosphorus capturing structure 144 is not disposed.
  • the phosphorus capture structure 144 increases the surface area in contact with the exhaust gas.
  • the flow rate of the exhaust gas can be lowered by arranging the phosphorus capturing structure 144 in the exhaust passage portion 43. Phosphorus tends to adhere to the phosphorus capturing structure 144 that reduces the flow rate of the exhaust gas.
  • the phosphorus capturing structure 144 can capture phosphorus contained in the exhaust gas that has come into contact therewith.
  • the phosphorus capture structure 144 preferably has a phosphorus capture structure layer 144a on the surface of which a phosphorus reactive substance is formed.
  • the phosphorus capturing structure layer 144a is preferably formed of a phosphorus reactant and a carrier.
  • the phosphorus-reactive substance is a substance that chemically reacts with phosphorus.
  • the phosphorus capturing structure 144 has a function of capturing phosphorus. Thereby, the phosphorus capturing structure 144 can capture more phosphorus from the exhaust gas.
  • acquisition structure 144 is comprised with five plate-shaped members in the example of FIG. 9, it is not restricted to it.
  • the phosphorus capturing structure 144 may be one plate-like member, less than five plate-like members, or more than five plate-like members.
  • acquisition structure 144 is arrange
  • acquisition structure 144 is a semicircular plate-shaped member in the example of FIG. 9, it is not restricted to it.
  • the phosphorus capturing structure 144 may be a plate-shaped member having a ring shape, a spiral shape, or other various shapes. Further, the phosphorus capturing structure 144 may be a cylindrical member arranged in the upstream exhaust pipe 41a.
  • the upstream oxygen sensor 92f is disposed in the upstream exhaust pipe 41a. That is, the upstream oxygen sensor 92 f is disposed in the exhaust passage portion 43. The upstream oxygen sensor 92 f is disposed upstream of the catalyst 46 in the exhaust passage portion 43. The upstream oxygen sensor 92 f is disposed downstream of the phosphorus capturing structure 144 in the exhaust passage portion 43. That is, the upstream oxygen sensor 92 f is disposed between the phosphorus capturing structure 144 and the upstream catalyst 46 in the exhaust passage portion 43.
  • the motorcycle according to the second embodiment has the same effects as those described in the first embodiment with respect to the same configuration as that of the first embodiment. Furthermore, the motorcycle according to the second embodiment has the following characteristics.
  • the phosphorus capturing structure 144 is disposed between the combustion chamber 36 of the exhaust passage 43 and the upstream catalyst 46. That is, the phosphorus capturing structure 144 is disposed upstream of the upstream catalyst 46 in the exhaust gas flow direction.
  • the phosphorus capturing structure 144 has a function of capturing phosphorus by reducing the flow rate of exhaust gas. Further, since the exhaust gas has a high flow rate, the flow rate of the exhaust gas can be reduced by arranging a structure in the exhaust passage portion 43. Phosphorus tends to adhere to the structure that reduces the flow rate of the exhaust gas.
  • the path length from the combustion chamber 36 to the phosphorus capturing structure 144 is shorter than the path length from the phosphorus capturing structure 144 to the upstream catalyst 46.
  • the phosphorus capturing structure 144 is disposed at a position close to the combustion chamber 36.
  • the phosphorus capturing structure 144 reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas. Therefore, the phosphorus capturing structure 144 can capture phosphorus and prevent phosphorus from adhering to the catalyst layer 49 of the upstream catalyst 46. Thereby, the dispersion
  • the phosphorus capturing structure 144 has a phosphorus capturing structure layer 144a.
  • the phosphorus capturing structure layer 144a has a function of capturing phosphorus by forming a phosphorus reactive substance that chemically reacts with phosphorus on at least the surface.
  • the phosphorus capturing structure layer 144a chemically reacts with phosphorus contained in the exhaust gas.
  • the phosphorus capturing structure 144 reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas.
  • the phosphorus capturing structure layer 144a attaches phosphorus contained in the exhaust gas by chemically reacting with phosphorus.
  • the phosphorus capturing structure layer 144a can capture more phosphorus and further suppress the adhesion of phosphorus to the surface of the catalyst layer 49 of the upstream catalyst 46. Thereby, the dispersion
  • FIG. 11A is a partial cross-sectional view showing an exhaust passage portion, a phosphorus adhesion reducing portion, and an oxygen sensor of an engine unit of a motorcycle according to a third embodiment.
  • FIG. 11B is a cross-sectional view taken along the line X3-X3 in FIG. In FIG. 11A, the description of the second bent portion 43b is omitted.
  • the engine unit of the motorcycle according to the third embodiment is different from the engine unit 11 of the motorcycle according to the first embodiment in the configuration of the phosphorus capturing layer.
  • the configuration other than the phosphorus capturing layer is the same as that of the engine unit 11 of the motorcycle according to the first embodiment.
  • the phosphorus capturing layer 44 is disposed over the entire inner circumference of the upstream exhaust pipe 41a. However, the phosphorus capturing layer may be disposed on a part of the inner surface of the upstream exhaust pipe 41a in the circumferential direction.
  • acquisition layer 444 is arrange
  • the phosphorus capturing layer 444 is disposed between the combustion chamber of the exhaust passage portion 43 and the upstream catalyst 46. Part of the phosphorus capturing layer 444 is disposed in the first bent portion 43 a and the second bent portion 43 b of the exhaust passage portion 43.
  • the phosphorus capturing layer 444 is composed of a phosphorus reactive substance that chemically reacts with phosphorus and has a function of capturing phosphorus.
  • the phosphorus reactive substance is, for example, a substance that adsorbs phosphorus. In this case, phosphorus contained in the exhaust gas is adsorbed by the chemical reaction of phosphorus in the exhaust gas with the phosphorus reactant.
  • the motorcycle of the third embodiment has the same effects as those described in the first embodiment with respect to the same configuration as that of the first embodiment. Furthermore, the motorcycle according to the third embodiment has the following characteristics.
  • the exhaust gas Since the exhaust gas has a high flow rate, the exhaust gas easily collides with the first bent portion 43a and the second bent portion 43b of the exhaust passage portion 43.
  • the first bent portion 43a and the second bent portion 43b of the exhaust passage portion 43 are liable to adhere phosphorus.
  • a part of the phosphorus capturing layer 444 is disposed in the first bent portion 43 a and the second bent portion 43 b of the exhaust passage portion 43.
  • the phosphorus capturing layer 44 includes a phosphorus reactant that chemically reacts with phosphorus contained in the exhaust gas. Phosphorus contained in the exhaust gas passing through the phosphorus trapping layer 444 chemically reacts with the phosphorus reactant.
  • the phosphorus reactant can capture phosphorus by chemically reacting with phosphorus contained in the exhaust gas passing through the phosphorus capture layer 444. Therefore, the phosphorus capturing layer 444 can capture phosphorus and suppress the phosphorus from adhering to the catalyst layer 49 of the upstream catalyst 46.
  • FIG. 12A is a partial cross-sectional view showing an exhaust passage portion, a phosphorus adhesion reducing portion, and an oxygen sensor of an engine unit of a motorcycle according to a fourth embodiment.
  • FIG. 12B is a cross-sectional view taken along the line X4-X4 of FIG. In FIG. 12A, the description of the second bent portion 43b is omitted.
  • FIG. 12B is a partial cross-sectional view showing an exhaust passage portion, a phosphorus adhesion reducing portion, and an oxygen sensor of an engine unit of a motorcycle according to a fourth embodiment.
  • FIG. 12B is a cross-sectional view taken along the line X4-X4 of FIG. In FIG. 12A, the description of the second bent portion 43b is omitted.
  • FIG. 12A is a partial cross-sectional view showing an exhaust passage portion, a phosphorus adhesion reducing portion, and an oxygen sensor of an engine unit of a motorcycle according to a fourth embodiment.
  • FIG. 12B
  • FIG. 13 is a schematic diagram illustrating an exhaust passage portion, a phosphorus adhesion reduction portion, an oxygen sensor, and an upstream catalyst of an engine unit according to the fourth embodiment.
  • the engine unit of the motorcycle according to the fourth embodiment is different from the engine unit 11 of the motorcycle according to the first embodiment in the configuration of the phosphorus capturing structure.
  • the configuration other than the phosphorus capturing structure is the same as the engine unit 11 of the motorcycle according to the second embodiment.
  • the phosphorus capturing structure 144 is formed from a plurality of semicircular plate members disposed in the upstream exhaust pipe 41a.
  • the phosphorus capturing structure 544 is a porous structure. In the direction perpendicular to the flow direction of the exhaust gas, the outer diameter of the phosphorus capturing structure 544 is substantially the same as the inner diameter of the exhaust passage portion 43.
  • the phosphorus capturing structure 544 is disposed between the combustion chamber 36 and the upstream catalyst 46 in the exhaust passage portion 43.
  • the phosphorus capturing structure 544 is a porous structure.
  • a plurality of cells are formed in a cross section in a direction orthogonal to the flow direction of the exhaust gas.
  • the plurality of cells of the phosphorus capturing structure 544 penetrate from the upstream to the downstream in the flow direction of the exhaust gas.
  • the maximum width of the cross section in the direction orthogonal to the flow direction of the exhaust gas in the cell of the phosphorus capturing structure 544 is sufficiently smaller than the length in the flow direction of the exhaust gas.
  • the phosphorus capturing structure 544 is disposed by being bonded to the inner peripheral surface of the upstream exhaust pipe 41a by welding or the like. As shown in FIG. 13, the path length from the combustion chamber 36 to the upstream end of the exhaust pipe 41 is L51.
  • the path length from the phosphorus capturing structure 544 to the upstream catalyst 46 is L52.
  • the path length from the upstream end of the exhaust pipe 41 to the phosphorus capturing structure 544 is zero.
  • the phosphorus capture structure 544 is disposed at a position where the path length L51 from the combustion chamber 36 to the phosphorus capture structure 544 is shorter than the path length L52 from the phosphorus capture structure 544 to the upstream catalyst 46.
  • the phosphorus capturing structure 544 is also a resistance portion that provides resistance to the exhaust gas that passes through the exhaust passage portion 43.
  • the phosphorus capturing structure 544 is disposed upstream of the upstream exhaust pipe 41a in the exhaust gas flow direction.
  • the exhaust gas that passes through the exhaust passage portion 43 passes through a plurality of cells of the phosphorus capturing structure 544.
  • the surface area of the phosphorus capturing structure 544 is the sum of the surface areas of a plurality of cells. Therefore, the upstream exhaust pipe 41a in which the phosphorus capturing structure 544 is disposed has a larger surface area in contact with the exhaust gas than the upstream exhaust pipe 41a in which the phosphorus capturing structure 544 is not disposed.
  • the phosphorus capture structure 544 increases the surface area in contact with the exhaust gas.
  • the exhaust gas has a high flow rate, the flow rate of the exhaust gas can be reduced by arranging the phosphorus capturing structure 544 in the exhaust passage portion 43. Phosphorus tends to adhere to the phosphorus capturing structure 544 that reduces the flow rate of the exhaust gas.
  • the phosphorus capturing structure 544 can capture phosphorus contained in the contacted exhaust gas.
  • the phosphorus capturing structure 544 preferably has a phosphorus capturing structure layer 544a on the surface of which a phosphorus reactive substance is formed.
  • the phosphorus capturing structure layer 544a is preferably formed of a phosphorus reactant and a carrier.
  • the phosphorus-reactive substance is a substance that chemically reacts with phosphorus.
  • the phosphorus capturing structure 544 has a function of capturing phosphorus. Thereby, the phosphorus capturing structure 544 can capture more phosphorus from the exhaust gas.
  • the upstream oxygen sensor 92f is disposed downstream of the phosphorus capturing structure 544 of the upstream exhaust pipe 41a. That is, the upstream oxygen sensor 92f is disposed between the phosphorus capturing structure 544 and the upstream catalyst 46. That is, the phosphorus capturing structure 544 captures phosphorus contained in the exhaust gas before passing through the upstream oxygen sensor. Therefore, the amount of phosphorus reaching the upstream oxygen sensor 92f can be reduced. Therefore, phosphorus adhering to the upstream oxygen sensor 92f can be reduced. And the detection accuracy of the upstream oxygen sensor 92f can be improved.
  • the motorcycle according to the second embodiment has the same effects as those described in the first embodiment with respect to the same configuration as that of the first embodiment. Furthermore, the motorcycle according to the second embodiment has the following characteristics.
  • the phosphorus capturing structure 544 is disposed between the combustion chamber 36 of the exhaust passage 43 and the upstream catalyst 46. That is, the phosphorus capturing structure 544 is disposed upstream of the upstream catalyst 46 in the exhaust gas flow direction.
  • the phosphorus capturing structure 544 has a function of capturing phosphorus by reducing the flow rate of exhaust gas. Further, since the exhaust gas has a high flow rate, the flow rate of the exhaust gas can be reduced by arranging a structure in the exhaust passage portion 43. Phosphorus tends to adhere to the structure that reduces the flow rate of the exhaust gas.
  • a path length L51 from the combustion chamber 36 to the phosphorus capturing structure 544 is shorter than a path length L52 from the phosphorus capturing structure 544 to the upstream catalyst 46.
  • the phosphorus capturing structure 544 is disposed at a position close to the combustion chamber 36.
  • the phosphorus capturing structure 544 reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas. Therefore, the phosphorus capturing structure 544 can capture phosphorus and suppress phosphorus from adhering to the catalyst layer 49 of the upstream catalyst 46. Thereby, the dispersion
  • the phosphorus capturing structure 544 has a phosphorus capturing structure layer 544a.
  • the phosphorus capturing structure layer 144a has a function of capturing phosphorus by forming a phosphorus reactive substance that chemically reacts with phosphorus on at least the surface.
  • the phosphorus capturing structure layer 544a chemically reacts with phosphorus contained in the exhaust gas.
  • the phosphorus capturing structure 544 reduces the flow rate of the exhaust gas and adheres phosphorus contained in the exhaust gas.
  • the phosphorus capturing structure layer 544a attaches phosphorus contained in the exhaust gas by chemically reacting with phosphorus.
  • the phosphorus capturing structure layer 544a can capture more phosphorus and further suppress the phosphorus from adhering to the surface of the catalyst layer 49 of the upstream catalyst 46. Thereby, the dispersion
  • the engine unit has only one upstream catalyst.
  • the engine unit may have a plurality of catalysts.
  • the plurality of catalysts are disposed in the exhaust passage portion.
  • the exhaust gas is purified by a plurality of catalysts. Therefore, the exhaust gas purification performance by the catalyst can be further improved.
  • FIGS. 14A and 14B are schematic views showing modifications of the exhaust passage portion, the phosphorus adhesion reducing portion, the oxygen sensor, and the catalyst of the engine unit.
  • symbol is attached
  • the engine unit has two catalysts.
  • the two catalysts are catalyst 646 and catalyst 46.
  • the catalyst 646 and the catalyst 46 are disposed in the exhaust passage portion 43.
  • the catalyst 646 is disposed in the upstream exhaust pipe 41a.
  • the catalyst 646 is the most upstream catalyst in the exhaust gas flow direction. Therefore, the catalyst 646 is the upstream catalyst in the present invention.
  • the catalyst 646 is referred to as an upstream catalyst 646.
  • the upstream catalyst 646 is formed in a cylindrical shape and is disposed on the inner surface of the upstream exhaust pipe 41a.
  • the upstream catalyst 646 is a so-called three-way catalyst.
  • the upstream catalyst 646 has a cylindrical base material disposed on the inner surface side of the upstream exhaust pipe 41a, and a cylindrical catalyst layer laminated on the surface of the base material.
  • a phosphorus capturing layer 644 which is a phosphorus adhesion reducing portion is disposed.
  • the phosphorus trapping layer 644 is disposed over the entire inner surface of the upstream exhaust pipe 41a from the upstream end of the upstream exhaust pipe 41a to the upstream end of the upstream catalyst 646.
  • the phosphorus capturing layer 644 is a chemical reaction part in which a phosphorus reactive substance that chemically reacts with phosphorus contained in the exhaust gas is provided.
  • the phosphorus trapping layer 644 is formed in a layer shape by applying a phosphorus reactant to the inner peripheral surface of the upstream exhaust pipe 41a.
  • the phosphorus capturing layer 644 includes a phosphorus reactant that chemically reacts with phosphorus contained in the exhaust gas. Phosphorus contained in the exhaust gas passing through the phosphorus capturing layer 644 chemically reacts with the phosphorus reactant.
  • the phosphorus reactive substance can capture phosphorus by chemically reacting with phosphorus contained in the exhaust gas passing through the phosphorus capturing layer 644. Therefore, the phosphorus capturing layer 644 can capture phosphorus and suppress phosphorus from adhering to the catalyst layer of the upstream catalyst 646.
  • the upstream oxygen sensor 92f is disposed in the upstream exhaust pipe 41a.
  • the upstream oxygen sensor 92 f is disposed upstream of the upstream catalyst 646 in the exhaust passage portion 43.
  • the upstream oxygen sensor 92f is preferably disposed at a position where the path length from the upstream oxygen sensor 92f to the upstream end of the exhaust pipe 41 is longer than the path length from the upstream oxygen sensor 92f to the upstream catalyst 646. That is, the upstream oxygen sensor 92f is preferably disposed at a position closer to the upstream catalyst 646 than the upstream end of the upstream exhaust pipe 41a.
  • the phosphorus capturing layer 644 disposed upstream of the upstream oxygen sensor 92f captures phosphorus contained in the exhaust gas before passing through the upstream oxygen sensor 92f.
  • the upstream oxygen sensor 92f is disposed closer to the upstream catalyst 646 than the upstream end of the upstream exhaust pipe 41a than the upstream catalyst 646.
  • the surface area of the phosphorus capturing layer 644 disposed upstream of the upstream oxygen sensor 92f increases.
  • the upstream oxygen sensor 92f may be disposed at a position where the path length from the upstream oxygen sensor 92f to the upstream end of the upstream exhaust pipe 41a is longer than the path length from the upstream oxygen sensor 92f to the downstream end of the upstream exhaust pipe 41a. Good.
  • the upstream oxygen sensor 92f may be disposed at a position where the path length from the upstream oxygen sensor 92f to the combustion chamber 36 is longer than the path length from the upstream oxygen sensor 92f to the upstream catalyst 46.
  • the engine unit has two catalysts.
  • the two catalysts are catalyst 46 and catalyst 746.
  • the catalyst 46 and the catalyst 746 are disposed in the exhaust passage portion 743.
  • the exhaust passage portion 743 includes a cylinder exhaust passage portion 38, a first exhaust pipe 741a, a second exhaust pipe 741b, a third exhaust pipe 741c, a first casing 47, and a second casing 747.
  • the exhaust pipe 741 includes a first exhaust pipe 741a, a second exhaust pipe 741b, and a third exhaust pipe 741c.
  • the upstream end portion of the first exhaust pipe 741a is connected to the cylinder exhaust passage portion 38.
  • the upstream end of the first casing 47 is connected to the first exhaust pipe 741a.
  • the downstream end of the first casing 47 is connected to the second exhaust pipe 741b.
  • the upstream end of the second casing 747 is connected to the second exhaust pipe 741b.
  • the downstream end of the second casing 747 is connected to the third exhaust pipe 741c.
  • the downstream end of the third exhaust pipe 741 c is inserted into the silencer 42.
  • the catalyst 46 is disposed in the first casing 47.
  • the catalyst 746 is disposed in the second casing 747.
  • the catalyst 46 has a catalyst layer 49 (see FIG. 7) that purifies the exhaust gas at the most upstream in the flow direction of the exhaust gas. Therefore, the catalyst 46 is an upstream catalyst in the present invention.
  • the catalyst 46 is referred to as an upstream catalyst 46.
  • the structure of the 1st casing 47 and the 2nd casing 747 is the same as that of the structure of the 1st casing 47 of 1st Embodiment, The description is abbreviate
  • the configurations of the upstream catalyst 46 and the catalyst 746 are the same as the configuration of the catalyst 46 of the first embodiment, and the description thereof is omitted.
  • a phosphorus capture layer 744 is disposed between the combustion chamber 36 of the first exhaust pipe 741a and the upstream catalyst 46.
  • the phosphorus capturing layer 744 is disposed over the entire inner surface of the first exhaust pipe 741a.
  • the phosphorus capturing layer 744 is a chemical reaction part in which a phosphorus reactive substance that chemically reacts with phosphorus contained in the exhaust gas is provided.
  • the phosphorus trapping layer 744 is formed in a layer shape by applying a phosphorus reactant to the inner peripheral surface of the first exhaust pipe 741a.
  • the phosphorus capturing layer 744 includes a phosphorus reactant that chemically reacts with phosphorus contained in the exhaust gas.
  • Phosphorus contained in the exhaust gas passing through the phosphorus trapping layer 744 chemically reacts with the phosphorus reactant.
  • the phosphorus reactant can capture phosphorus by chemically reacting with phosphorus contained in the exhaust gas passing through the phosphorus capturing layer 744. Therefore, the phosphorus capturing layer 744 can capture phosphorus and suppress phosphorus from adhering to the catalyst layer of the upstream catalyst 646.
  • the upstream oxygen sensor 92f is disposed in the first exhaust pipe 741a of the exhaust passage portion 743.
  • the upstream oxygen sensor 92f is disposed upstream of the upstream catalyst 46 in the exhaust passage portion 743. Further, the upstream oxygen sensor 92f is preferably arranged at a position closer to the downstream end than the upstream end of the first exhaust pipe 741a. That is, the distance from the upstream oxygen sensor 92f to the upstream end of the first exhaust pipe 741a is preferably longer than the distance from the upstream oxygen sensor 92f to the downstream end of the first exhaust pipe 741a.
  • the phosphorus capturing layer 744 disposed upstream of the upstream oxygen sensor 92f captures phosphorus contained in the exhaust gas before passing through the upstream oxygen sensor 92f.
  • the upstream oxygen sensor 92f When the upstream oxygen sensor 92f is disposed closer to the downstream end of the first exhaust pipe 741a than the upstream end of the first exhaust pipe 741a, the upstream oxygen sensor 92f is connected to the first exhaust pipe 741a from the downstream end of the first exhaust pipe 741a.
  • the surface area of the phosphorus trapping layer 744 disposed upstream of the upstream oxygen sensor 92f is increased as compared with the case where the phosphorous capturing layer 744 is disposed upstream of the upstream oxygen sensor 92f. Further, the phosphorus capturing layer 744 disposed upstream of the upstream oxygen sensor 92f can reduce the amount of phosphorus reaching the oxygen sensor catalyst layer 86 of the upstream oxygen sensor 92f.
  • the upstream oxygen sensor 92f may be arranged at a position where the path length from the upstream oxygen sensor 92f to the upstream end of the first exhaust pipe 741a is longer than the path length from the upstream oxygen sensor 92f to the upstream catalyst 46.
  • the upstream oxygen sensor 92f may be disposed at a position where the path length from the upstream oxygen sensor 92f to the combustion chamber 36 is longer than the path length from the upstream oxygen sensor 92f to the upstream catalyst 46.
  • the catalyst may have a configuration in which a plurality of catalyst pieces are arranged close to each other.
  • Each catalyst piece has a substrate and a catalyst layer.
  • the proximity means a state in which the separation distance between the catalyst pieces is shorter than the length of each catalyst piece in the exhaust gas flow direction.
  • the composition of the base material of the plurality of catalyst pieces may be one type or a plurality of types.
  • the noble metal used for the catalyst layers of the plurality of catalyst pieces may be one kind or plural kinds.
  • the composition of the carrier used for the catalyst layer may be one type or a plurality of types.
  • the phosphorus adhesion reducing portion is arranged in the upstream exhaust pipe 41a.
  • the phosphorus adhesion reducing portion may be disposed in at least one of the cylinder exhaust passage portion and the upstream exhaust pipe.
  • the phosphorus adhesion reducing portion may be disposed between the combustion chamber of the exhaust passage portion and the upstream catalyst.
  • the casing and the exhaust pipe are joined after being formed separately.
  • the casing and the exhaust pipe may be integrally formed.
  • the phosphorus trapping layer is composed of a phosphorus reactive substance that chemically reacts with phosphorus and has a function of trapping phosphorus.
  • the phosphorus capturing layer may be formed of a rough surface having a function of capturing phosphorus and have a function of capturing phosphorus.
  • the surface of the phosphorus capturing layer is roughened by, for example, applying a substance other than the phosphorus reactive substance to the inner surface of the exhaust passage portion.
  • acquisition layer can adhere more phosphorus contained in waste gas to the surface formed in the rough surface.
  • the phosphorus capturing structure layer has a function of capturing phosphorus by forming a phosphorus reactive substance that chemically reacts with phosphorus on at least the surface.
  • the phosphorus capturing structure layer may have a function of capturing phosphorus with a rough surface.
  • the surface of the phosphorus capturing structure layer is formed into a rough surface by, for example, applying a substance other than the phosphorus reactant to the inner surface of the exhaust passage portion.
  • acquisition structure body layer can adhere the phosphorus contained in waste gas to the surface formed in the rough surface.
  • the phosphorus adhesion reducing portion may include both a phosphorus capturing layer and a phosphorus adhesion reducing portion.
  • the shape of the exhaust pipe is not limited to the illustrated shape.
  • the internal structure of the silencer is not limited to the illustrated structure.
  • the upstream catalyst and the silencer are arranged on the right side of the center of the saddle riding type vehicle in the left-right direction.
  • the upstream catalyst may be arranged in the left-right direction center of the saddle riding type vehicle or on the left side of the left-right direction center.
  • the silencer may be arranged to the left of the center in the left-right direction of the saddle riding type vehicle.
  • the center in the left-right direction of the saddle-ride type vehicle is a position of a straight line passing through the center in the left-right direction of the front wheel and the center in the left-right direction of the rear wheel as viewed in the vertical direction.
  • a part of the exhaust passage portion is located below the crank axis Cr.
  • a part of the exhaust passage portion may be located above the crank axis Cr.
  • the catalyst is a three-way catalyst.
  • the catalyst may not be a three-way catalyst.
  • the catalyst may be a catalyst that removes any one or two of hydrocarbon, carbon monoxide, and nitrogen oxide.
  • the upstream catalyst may not be a redox catalyst.
  • the upstream catalyst may be an oxidation catalyst or a reduction catalyst that removes harmful substances only by either oxidation or reduction.
  • An example of a reduction catalyst is a catalyst that removes nitrogen oxides by a reduction reaction.
  • the substrate on which the catalyst layer is laminated may be a ceramic substrate.
  • the base material on which the catalyst layer is laminated is a porous structure.
  • the pores of the porous structure may be triangular, quadrangular, or hexagonal.
  • the porous structure may be a honeycomb structure.
  • the arrangement position of the catalyst is not limited to the illustrated position.
  • the entire upstream catalyst 46 is disposed in front of the crank axis Cr.
  • the upstream catalyst 46 is disposed below the engine body 20 when the motorcycle 1 is viewed in the left-right direction.
  • at least a part of the upstream catalyst may be disposed in front of the crank axis Cr.
  • the upstream catalyst may be disposed in front of the engine body when the straddle-type vehicle is viewed in the left-right direction.
  • at least a part of the upstream catalyst may be disposed behind the crank axis Cr.
  • the upstream catalyst 46 may be disposed behind the engine body 20 when the motorcycle 1 is viewed in the left-right direction. Thereby, when it arrange
  • the arrangement position of the upstream oxygen detection member is not limited to the position shown in each figure.
  • the upstream oxygen detection member may be disposed at any position upstream of the upstream catalyst in the exhaust passage portion in the exhaust gas flow direction.
  • the engine unit may further include a downstream oxygen detection member.
  • the downstream oxygen detection member is provided at a position between the catalyst layer and the discharge port of the exhaust passage portion.
  • the downstream oxygen detection member is arranged at any position downstream of the upstream catalyst in the exhaust passage portion in the exhaust gas flow direction.
  • the downstream oxygen detection member detects the oxygen concentration of the exhaust gas.
  • the engine unit can be controlled based on the oxygen concentration of the exhaust gas detected by the downstream oxygen detection member.
  • the upstream oxygen detection member and the downstream oxygen detection member may be arranged one by one upstream and downstream of the upstream catalyst in the exhaust passage portion.
  • the upstream oxygen sensor detection member and the downstream oxygen detection member may incorporate a heater.
  • the detection elements of the upstream oxygen sensor detection member and the downstream oxygen detection member can detect the oxygen concentration when activated by being heated to a high temperature. For this reason, when the upstream oxygen detection member and the downstream oxygen detection member incorporate a heater, the detection of the oxygen concentration can be accelerated by heating the detection element with the heater when the engine is driven.
  • the gas flowing through the exhaust passage when the engine is driven is only the exhaust gas discharged from the combustion chamber.
  • a known configuration is adopted as a specific configuration of the secondary air supply mechanism.
  • the secondary air supply mechanism may be configured to forcibly supply air to the exhaust passage portion by an air pump. Further, the secondary air supply mechanism may be configured to draw air into the exhaust passage portion by a negative pressure in the exhaust passage portion.
  • the secondary air supply mechanism includes a reed valve that opens and closes in response to pressure pulsation caused by exhaust gas.
  • the upstream oxygen detection member may be arranged upstream or downstream of the position where the air in the exhaust passage portion flows.
  • an injector is used to supply fuel to the combustion chamber.
  • the fuel supply device that supplies fuel to the combustion chamber is not limited to the injector.
  • a fuel supply device that supplies fuel to the combustion chamber by negative pressure may be provided.
  • only one exhaust port is provided for one combustion chamber.
  • a plurality of exhaust ports may be provided for one combustion chamber.
  • the exhaust paths connected to the plurality of exhaust ports gather upstream from the silencer.
  • the exhaust paths connected to the plurality of exhaust ports are preferably gathered at the cylinder portion.
  • the exhaust path here is a path from the combustion chamber to the discharge port facing the atmosphere.
  • the combustion chamber may have a main combustion chamber and a sub-combustion chamber connected to the main combustion chamber.
  • one combustion chamber is formed by the main combustion chamber and the sub-combustion chamber.
  • crankcase part and the cylinder part are separate bodies.
  • the crankcase portion and the cylinder portion may be integrally formed.
  • the cylinder body, the cylinder head, and the head cover are separate bodies.
  • any two or three of the cylinder body, the cylinder head, and the head cover may be integrally formed.
  • the engine body is a natural air-cooled engine.
  • the engine body may be a forced air-cooled engine.
  • the natural air-cooled engine emits exhaust gas containing more phosphorus than the forced water-cooled engine.
  • the engine body may be a water-cooled engine. Note that the air-cooled engine emits exhaust gas containing more phosphorus than the water-cooled engine.
  • the engine unit is a single cylinder engine.
  • the engine unit may be a multi-cylinder engine.
  • the engine unit is a 4-stroke engine.
  • the engine unit may be a two-stroke engine unit.
  • a sports type motorcycle is exemplified as the saddle riding type vehicle. That is, the transmission unit is a stepped transmission.
  • the saddle riding type vehicle may be a scooter type motorcycle. That is, the transmission unit may be a continuously variable transmission.
  • the transmission part is not accommodated in the crankcase.
  • the engine body is housed in the crankcase.
  • the oil that lubricates the engine body and the oil that lubricates the transmission section may be common oil.
  • the oil that lubricates the engine body and the oil that lubricates the transmission part may not be common oil.
  • a motorcycle is exemplified as the saddle riding type vehicle.
  • the saddle riding type vehicle of the present invention is not limited to a motorcycle.
  • the present invention may be applied to lean vehicles other than motorcycles.
  • a lean vehicle is a vehicle having a vehicle body frame that leans to the right of the vehicle when turning right and leans to the left of the vehicle when turning left.
  • the present invention may be applied to a straddle-type vehicle other than a motorcycle.
  • the saddle riding type vehicle refers to all vehicles that ride in a state in which an occupant straddles a saddle.
  • the saddle riding type vehicle to which the present invention is applied includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
  • ATV All Terrain Vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

排ガスの浄化性能のばらつきを抑制することができる鞍乗型車両を提供する。 鞍乗型車両1に搭載されるエンジンユニットは、燃焼室36を有するエンジン本体20と、燃焼室36から放出口42eまで排ガスを流す排気通路部43と、排気通路部43において排ガスの流れ方向の最も上流の触媒である上流触媒46と、酸素検出部材92fと、リン付着低減部44を備える。リン付着低減部44および酸素検出部材92fは、燃焼室36から上流触媒までの間の排気通路部43内に配置される。上流触媒46の触媒層49は、貴金属を含み、排ガスを浄化する。リン付着低減部44は、リン捕捉層44aまたはリン捕捉構造体44bの少なくともいずれか一方を含み、触媒層49へのリンの付着を低減させる。

Description

鞍乗型車両
 本発明は、鞍乗型車両に関する。
 従来、触媒を備えた鞍乗型車両がある。触媒は、基材と、貴金属を含む触媒層とを有する。触媒は、貴金属で、エンジン本体の燃焼室から排出された排ガスを浄化する。鞍乗型車両は、排ガスの浄化性能を向上させることが望まれている。触媒は、そこで、排ガスの浄化性能を向上させるために、触媒をエンジン本体の燃焼室の近くに配置した鞍乗型車両が提案されている(特許文献1)。
特開2014-137001号公報
 特許文献1の鞍乗型車両のように、触媒をエンジン本体の燃焼室の近くに配置することで、排ガスが高温のまま触媒に到達する。このため、触媒による排ガスの浄化性能を向上することができる。しかしながら、本願発明者らは、様々な運転条件で、触媒をエンジン本体の燃焼室の近くに配置した鞍乗型車両の試験を行った。その結果、運転時間の経過とともに、排ガスの浄化性能が著しく低下する鞍乗型車両と、排ガスの浄化性能がそれほど低下しない鞍乗型車両が存在することが分かった。
 本発明は、排ガスの浄化性能のばらつきを抑制することができる鞍乗型車両を提供することを目的とする。
 本願発明者らは、様々な運転条件で、触媒をエンジン本体の燃焼室の近くに配置した鞍乗型車両の試験を行った。その結果、運転時間の経過とともに、排ガスの浄化性能が著しく低下する鞍乗型車両と、排ガスの浄化性能が低下しにくい鞍乗型車両が存在することが分かった。そこで、本願発明者らは、鞍乗型車両の排ガスの浄化性能のばらつきの原因を詳細に検討した。そして、本願発明者らは、鞍乗型車両の排ガスの浄化性能のばらつきの原因は、鞍乗型車両の特有の構成や使用状態によるものであることがわかった。
 鞍乗型車両の排ガスの浄化性能のばらつきの原因となる鞍乗型車両の特有の構成の1つは、鞍乗型車両で使用されるオイルの規格である。鞍乗型車両で使用されるオイルは、自動車(四輪車)で使用されるオイルと規格が異なる。オイルには、添加物が含まれる。オイルの添加物は、例えば、耐摩耗性の添加物であり、亜鉛、リン、硫黄、カルシウム等の化合物である。そして、鞍乗型車両で使用されるオイルは、自動車で使用されるオイルに比べて、リン化合物(例えば、ZnDTP、ZnDDP等)の含有量が多い。鞍乗型車両において、クランクケース部は共通のオイルで潤滑される。クランク軸を駆動させるピストンや、動弁機構により駆動される吸気弁及び排気弁等から、燃焼室内にオイルが入る。そして、鞍乗型車両では、オイルに含まれるリン化合物が燃焼室で熱により分解されて、多くのリンが含まれる排ガスが触媒に流入する。鞍乗型車両では、排ガスに含まれるリンが触媒に化学的または/および物理的に付着する。そして、リンがガラス状の化合物を生成して触媒層の表面を覆い、触媒層の内部への排ガスの拡散を阻害する。さらに、触媒を燃焼室の近くに配置したレイアウトでは、触媒に流入する排ガスの温度が高くなり、触媒に付着するリンがガラス状の化合物を生成しやすい。そして、触媒層に含まれる貴金属に排ガスが到達しにくくなり、触媒の機能が低下する。よって、鞍乗型車両は、排ガスの浄化性能が低下する。
 また、鞍乗型車両の排ガスの浄化性能のばらつきの原因となる鞍乗型車両の特有の構成の1つは、鞍乗型車両の排気量あたりのオイルの使用量である。鞍乗型車両は、自動車に比べて、排気量あたりのオイルの使用量が多い。そのため、鞍乗型車両は、自動車に比べて、排気量あたりの排ガスに含まれるリンが多い。そして、鞍乗型車両は、自動車に比べて、触媒の排ガスの流れ方向のより下流の位置までリンが付着する。
 鞍乗型車両の排ガスの浄化性能のばらつきの原因となる鞍乗型車両の特有の使用状態の1つは、スロットルバルブの開度がほぼ全開の状態で走行する時間である。鞍乗型車両は、自動車に比べて、スロットルバルブの開度がほぼ全開の状態で走行する時間が長い。スロットルバルブの開度がほぼ全開の状態で鞍乗型車両が走行する時間が長いときは、エンジン本体部の壁面の温度が比較的高くなり、燃焼室で分解されるオイルの量が比較的多くなる。そして、スロットルバルブの開度がほぼ全開の状態で鞍乗型車両が走行する時間が長いと、排ガスに含まれるリンが多くなる。よって、スロットルバルブの開度がほぼ全開の状態で鞍乗型車両が走行する時間が長いと、鞍乗型車両の排ガスの浄化性能が著しく低下する。一方、スロットルバルブの開度がほぼ全開の状態で鞍乗型車両が走行している時間が短いときは、エンジン本体部の壁面の温度が比較的低く、燃焼室で分解されるオイルの量が比較的少なくなる。そして、スロットルバルブの開度がほぼ全開の状態で鞍乗型車両が走行している時間が短いときは、排ガスに含まれるリンが少なくなる。よって、スロットルバルブの開度がほぼ全開の状態で鞍乗型車両が走行している時間が短いと、鞍乗型車両の排ガスの浄化性能が低下しにくい。つまり、スロットルバルブの開度を大きく開けた状態で鞍乗型車両が走行する時間が長いか短いかで、鞍乗型車両の排ガスの浄化性能のばらつきが生じることがわかった。そして、本願発明者らは、スロットルバルブの開度をほぼ全開の使用状態で鞍乗型車両が長時間走行した場合に、排ガス中に多く含まれるリンが触媒層に付着することを抑えることで、鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができることがわかった。
 そこで、本願発明者らは、スロットルバルブの開度をほぼ全開の使用状態で長時間走行した鞍乗型車両の排ガスの浄化性能の低下を抑えるために、上流触媒を有するエンジンユニットに、触媒層へのリンの付着を低減させるリン付着低減部を設ければよいことに気付いた。上流触媒とは、鞍乗型車両の排気通路部に配置される1つまたは複数の触媒のうちの、排ガスの流れ方向の最も上流に配置される触媒のことである。リン付着低減部は、リン捕捉層またはリン捕捉構造体の少なくともいずれか一方を含む。
 リン捕捉層は、排気通路部の燃焼室と上流触媒の触媒層の間に配置される。リン捕捉層は、排気通路部の内面に塗布される。リン捕捉層は、リンと化学反応してリンを捕捉する機能、または、表面が粗面で形成されてリンを捕捉する機能を有する。触媒層は、排ガスを浄化する貴金属を有する。つまり、上流触媒は、排ガスの流れ方向の最も上流で排ガスを浄化する。また、排気通路部には、燃焼室から上流触媒の間に曲り部がある。排ガスは流速が早いため、排気通路部の曲り部にリンが衝突しやすい。そして、排気通路部の曲り部にリンが付着しやすい。そして、リン捕捉層を、排気通路部の燃焼室と触媒層との間に配置させる。リン捕捉層は、排ガスに含まれるリンと化学反応する。または、リン捕捉層は、排ガスに含まれるリンが粗面で形成された表面に付着する。そのため、リン捕捉層は、リンを捕捉して、上流触媒の触媒層の表面にリンが付着することを抑制できる。
 リン捕捉構造体は、排気通路部の上流触媒より燃焼室に近い位置にされる。リン捕捉構造体は、排ガスの流速を低減させて、リンを捕捉する機能を有する。触媒層は、排ガスを浄化する貴金属を有する。つまり、上流触媒は、排ガスの流れ方向の最も上流で排ガスを浄化する。また、排ガスは流速が早いため、排気通路部の流速を低減する構造体にリンが付着しやすい。そして、リン捕捉構造体を排気通路部の上流触媒より燃焼室に近い位置に配置させる。リン捕捉構造体は、排ガスの流量を低減させて、排ガスに含まれるリンを付着させる。そのため、リン捕捉層は、リンを捕捉して、上流触媒の触媒層の表面にリンが付着することを抑制できる。
 つまり、上記2つのいずれかの技術思想を適用すれば、スロットルバルブの開度を大きく開けた使用状態で長時間走行した鞍乗型車両でも、排ガス中に多く含まれるリンが上流触媒に付着することを抑えることができる。そして、鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明のひとつの観点の構成によると、鞍乗型車両は、エンジンユニットが搭載された鞍乗型車両であって、前記エンジンユニットは、燃焼室を有するシリンダ部を備えるエンジン本体と、大気に排ガスを放出する放出口を有し、前記燃焼室から前記放出口まで排ガスを流す排気通路部と、前記排気通路部において前記排ガスの流れ方向の最も上流の触媒であって、前記排ガスを浄化する貴金属を含んだ触媒層を有する上流触媒と、前記排気通路部の前記燃焼室と前記上流触媒の間に配置され、前記排ガスの酸素濃度を検出する上流酸素検出部材と、(A)前記排気通路部の前記燃焼室と前記上流触媒の間に配置され、リンと化学反応するリン反応物質で構成されてリンを捕捉する機能を持つか、または、表面が粗面で形成されてリンを捕捉する機能を持つ、前記排気通路部の内面に塗布されたリン捕捉層、または、(B)前記排気通路部の前記燃焼室と前記上流触媒の間に配置され、排ガスの流速を低減させてリンを捕捉する機能を持つリン捕捉構造体であって、前記燃焼室から前記リン捕捉構造体までの経路長が前記リン捕捉構造体から前記上流触媒までの経路長よりも短くなる位置に配置される前記リン捕捉構造体の少なくともいずれか一方を含み、前記触媒層へのリンの付着を低減させるリン付着低減部と、を備えることを特徴とする。
 この構成によると、鞍乗型車両は、エンジンユニットが搭載される。エンジンユニットは、エンジン本体と、排気通路部と、上流触媒と、酸素センサと、リン付着低減部と、を備える。エンジン本体は、燃焼室を有するシリンダ部を備える。排気通路部は、大気に排ガスを放出する放出口を有する。排気通路部は、燃焼室から放出口まで排ガスを流す。
 上流触媒は、排気通路部に配置される。上流触媒は、排気通路部において排ガスの流れ方向の最も上流にある触媒である。上流触媒は、触媒層を有する。触媒層は、排ガスを浄化する貴金属を含む。
 上流酸素検出部材は、排気通路部の燃焼室と上流触媒の間に配置される。上流酸素検出部材は、排ガスの酸素濃度を検出する。
リン付着低減部は、触媒層へのリンの付着を低減させる。リン付着低減部は、(A)リン捕捉層、または、(B)リン捕捉構造体の少なくともいずれか一方を含む。
 (A)リン捕捉層は、排気通路部の燃焼室と上流触媒の間に配置される。つまり、リン捕捉層は、排ガスの流れ方向の上流触媒の上流に配置される。また、リン捕捉層は、排気通路部の内面に塗布される。そして、リン捕捉層は、リンと化学反応するリン反応物質で構成されてリンを捕捉する機能を持つ。または、リン捕捉層は、表面が粗面で形成されてリンを捕捉する機能を持つ。また、排気通路部には、燃焼室から上流触媒の間に曲り部がある。排ガスは流速が早いため、排気通路部の曲り部に排ガスが衝突しやすい。そして、排気通路部の曲り部は、リンが付着しやすい。そして、リン捕捉層は、排気通路部の燃焼室と上流触媒との間に配置される。リン捕捉層は、排ガスに含まれるリンと化学反応するリン反応物質を含む。リン捕捉層を通過する排ガスに含まれるリンは、リン反応物質と化学反応する。リン反応物質は、例えば、リンを吸着する物質である。この場合、排ガス中のリンがリン反応物質と化学反応することにより排ガスに含まれるリンが吸着される。リン反応物質は、リン捕捉層を通過する排ガスに含まれるリンと化学反応することにより、リンを捕捉することができる。または、リン捕捉層の表面は、排ガスに含まれるリンを付着させる粗面で形成されている。そのため、リン捕捉層は、リンを捕捉して、上流触媒の触媒層にリンが付着することを抑制できる。
 (B)リン捕捉構造体は、排気通路部の燃焼室と上流触媒の間に配置される。つまり、リン捕捉構造体は、排ガスの流れ方向の上流触媒の上流に配置される。リン捕捉構造体は、排ガスの流速を低減させてリンを捕捉する機能を持つ。また、排ガスは流速が速いので、排気通路部に構造体を配置すると、排ガスの流速を低下することができる。排ガスの流速を低下させる構造体には、リンが付着しやすい。燃焼室からリン捕捉構造体までの経路長は、リン捕捉構造体から上流触媒までの経路長よりも短い。つまり、リン捕捉構造体は、燃焼室に近い位置に配置される。リン捕捉構造体は、排ガスの流速を低減させて、排ガスに含まれるリンを付着させる。そのため、リン捕捉構造体は、リンを捕捉して、上流触媒の触媒層にリンが付着することを抑制できる。
 これにより、鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記リン捕捉層は、少なくとも一部が、前記排気通路部の曲り部に配置されることを特徴とする。
 この構成によると、リン捕捉層は、少なくとも一部が、排気通路部の曲り部に配置される。排気通路部の曲り部は、リンが付着しやすい。そして、リン捕捉層は、排気通路部の曲り部に配置される。そのため、リン捕捉層は、排ガスに含まれるより多くのリンと化学反応することができる。または、リン捕捉層は、排ガスに含まれるより多くのリンを粗面で形成された表面に付着させることができる。そのため、リン捕捉層は、より多くのリンを捕捉して、上流触媒の触媒層の表面にリンが付着することを更に抑制できる。これにより、鞍乗型車両の排ガスの浄化性能のばらつきを更に抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記リン捕捉構造体は、少なくとも表面にリンと化学反応するリン反応物質が設けられてリンを捕捉する機能を持つか、または、表面が粗面で形成されリンを捕捉する機能を持つリン捕捉構造体層を有することを特徴とする。
 この構成によると、リン捕捉構造体は、リン捕捉構造体層を有する。リン捕捉構造体層は、少なくとも表面にリンと化学反応するリン反応物質が設けられてリンを捕捉する機能を持つ。または、リン捕捉構造体層は、表面が粗面で形成されてリンを捕捉する機能を持つ。リン捕捉構造体層は、排ガスに含まれるリンと化学反応させる。または、リン捕捉構造体層は、排ガスに含まれるリンを粗面で形成された表面に付着させる。ここで、リン捕捉構造体は、排ガスの流量を低減させて、排ガスに含まれるリンを付着させる。さらに、リン捕捉構造体層は、リンと化学反応することにより、排ガスに含まれるリンを付着させる。そのため、リン捕捉構造体層は、より多くのリンを捕捉して、上流触媒の触媒層の表面にリンが付着することを更に抑制できる。これにより、鞍乗型車両の排ガスの浄化性能のばらつきを更に抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記リン反応物質は、U、Mn、Sn、Ti、Fe、Zr、Ce、Al、Y、Zn、La、Mgから選ばれる少なくとも一つを有する金属酸化物であることを特徴とする。
 この構成によると、リン反応物質は、U、Mn、Sn、Ti、Fe、Zr、Ce、Al、Y、Zn、La、Mgから選ばれる少なくとも一つを有する金属酸化物である。これらのリン反応物質は、等電点が3より大きい金属酸化物である。排ガス中のリン化合物は、等電点が1付近のリン酸として存在していると考えられている。等電点が3より大きい金属酸化物は、リン化合物と金属酸化物との等電点の差が大きいため、リン化合物は金属酸化物に吸着されやすくなる。これらのリン反応物質は、金属酸化物の等電価の作用により、リンを吸着させることができる。つまり、これらのリン反応物質は、排ガス中に多く含まれるリンが触媒層に付着することを抑えることができる。これにより、鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記リン反応物質は、Ba、Sr、Ca、La、Pr、Na、Zrから選ばれる少なくとも一つを有する金属酸化物であることを特徴とする。
 この構成によると、リン反応物質は、Ba、Sr、Ca、La、Pr、Na、Zrから選ばれる少なくとも一つを有する金属酸化物である。これらのリン反応物質は、リン反応物質は、リンとの反応性が高い物質である。よって、リン反応物質は、上流触媒を通過する排ガスに含まれるリンをより捕捉することができる。つまり、これらのリン反応物質は、排ガス中に多く含まれるリンが触媒層に付着することを抑えることができる。これにより、鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記リン捕捉構造体は、排ガス流れ方向に貫通する多数の孔を有する多孔構造で構成されることを特徴とする請求項1~5のいずれか一項に記載の鞍乗型車両。
 この構成によると、リン捕捉構造体は、多孔構造で構成される。多孔構造は、排ガス流れ方向に貫通する多数の孔を有する。多孔構造は、例えばハニカム構造である。排気通路部を通過する排ガスは、多数の孔を形成する壁部に衝突する。つまり、リン捕捉構造体は、排ガスの流速を低減させて、排ガスに含まれるリンを付着させる。そのため、リン捕捉構造体は、リンを捕捉して、上流触媒の触媒層の表面にリンが付着することを抑制できる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記エンジンユニットは、リン化合物の含有量が0.08mass%より大きいオイルの使用が指定されるエンジンユニットであることを特徴とする。
 この構成によると、鞍乗型車両のエンジンユニットは、自動車のエンジンユニットに比べて、リン化合物の含有量が多いオイルの使用が指定される。つまり、鞍乗型車両は、自動車に比べて、リンが多く含まれる排ガスを排出する。リン付着低減部は、触媒層へのリンの付着を低減させる。つまり、リン付着低減部であるリン捕捉層とリン捕捉構造体は、リンを捕捉して、上流触媒の触媒層にリンが付着することを抑制する。これにより、自動車に比べて、リンが多く含まれる排ガスを排出する鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記エンジンユニットは、トランスミッション部を更に備え、前記エンジン本体部を潤滑するオイル及び前記トランスミッション部を潤滑するオイルが、共通のオイルであることを特徴とする。
 この構成によると、エンジンユニットは、トランスミッション部を更に備える。鞍乗型車両は、エンジン本体部を潤滑するオイル及びトランスミッション部を潤滑するオイルが、共通のオイルである。一方、自動車は、エンジン本体部を潤滑するオイル及びトランスミッション部を潤滑するオイルが、共通のオイルではない場合が多い。つまり、鞍乗型車両は、自動車と比較して、排気量当たりのオイルの使用量が多い。そして、鞍乗型車両は、自動車と比較して、排気量当たりの排ガスに含まれるリンの含有量が多くなる。ここで、リン付着低減部は、触媒層へのリンの付着を低減させる。つまり、リン付着低減部であるリン捕捉層とリン捕捉構造体は、リンを捕捉して、上流触媒の触媒層にリンが付着することを抑制する。そのため、自動車と比較して、排気量当たりの排ガスに含まれるリンの含有量が多い鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記エンジンユニットは、クラッチ部を更に備え、前記エンジン本体部を潤滑するオイル及び前記クラッチ部を潤滑するオイルが、共通のオイルであることを特徴とする。
 この構成によると、鞍乗型車両は、自動車と異なり、エンジン停止時にも移動ができるように、クラッチ部を有する。また、鞍乗型車両は、エンジン本体部を潤滑するオイル及びクラッチ部を潤滑するオイルが、共通のオイルである場合が多い。鞍乗型車両は、自動車と異なり、クラッチ部が滑りやすいオイルは使用されない。リン化合物の含有量が少ないオイルは、クラッチ部が滑りやすいオイルである。自動車で使用されるリン化合物の含有量が少ないオイルは、鞍乗型車両では使用されない。つまり、鞍乗型車両のエンジンユニットは、自動車のエンジンユニットに比べて、リン化合物の含有量が多いオイルが使用される。つまり、鞍乗型車両は、自動車に比べて、リンが多く含まれる排ガスを排出する。リン付着低減部は、触媒層へのリンの付着を低減させる。つまり、リン付着低減部であるリン捕捉層とリン捕捉構造体は、リンを捕捉して、上流触媒の触媒層にリンが付着することを抑制する。これにより、自動車に比べて、リンが多く含まれる排ガスを排出する鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記エンジンユニットは、自然空冷式のエンジンユニットであることを特徴とする。
 この構成によると、自然空冷式のエンジンユニットは、燃焼室の温度が高い。つまり、自然空冷式のエンジンユニットは、強制空冷式のエンジンユニットや水冷式のエンジンユニットと比べて、オイルに含まれるリン化合物が燃焼室で多く分解される。そして、自然空冷式のエンジンユニットは、強制空冷式のエンジンユニットや水冷式のエンジンユニットと比べて、多くのリンが含まれる排ガスが排出される。リン付着低減部は、触媒層へのリンの付着を低減させる。つまり、リン付着低減部であるリン捕捉層とリン捕捉構造体は、リンを捕捉して、上流触媒の触媒層にリンが付着することを抑制する。これにより、自然空冷式のエンジンユニットを有する鞍乗型車両であっても、排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記オイルは、前記エンジン本体部の壁面温度よりも蒸発温度が高いオイルであることを特徴とする。
 この構成によると、オイルに含まれるリン化合物が燃焼室で分解する量を抑えることができる。そして、排ガスに含まれるリンの量を抑制することができる。これにより、鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記上流酸素検出部材の検出素子は、貴金属を含み、前記排ガスを浄化する上流酸素検出部材用触媒層を有し、前記上流酸素検出部材は、前記排気通路部の前記リン付着低減部と前記上流触媒の間に配置されることを特徴とする。
 この構成によると、上流酸素検出部材は、検出素子を有する。そして、上流酸素検出部材の検出素子は、上流酸素検出部材用触媒層を有する。上流酸素検出部材用触媒層は、排ガスを浄化する。上流酸素検出部材用触媒層は、排ガス中の水素を燃焼させる能力の高いPt-Rh等の貴金属を含む。つまり、上流酸素検出部材用触媒層は、排ガス中の水素を浄化する。上流酸素検出部材用触媒層は、水素による影響を抑制するため、上流酸素検出部材の検出素子に設けられる。水素による影響とは、以下の事象である。水素は分子量が小さく、拡散速度が非常に速いため、上流酸素検出部材の検出素子に到達しやすい。検出素子の電極で水素の平衡化反応が発生し、出力がシフトしてしまう。そして、上流酸素検出部材用触媒層も、触媒層と同様に、リンが付着する。そして、リンのガラス化が生じることにより、上流酸素検出部材の検出精度が低下する。上流酸素検出部材は、排気通路部のリン付着低減部と上流触媒の間に配置される。リン付着低減部は、排ガスに含まれるリンを捕捉する。そのため、上流酸素検出部材の上流酸素検出部材用触媒層に到達するリンの量を低減することができる。よって、上流酸素検出部材の検出精度が向上する。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記エンジンユニットは、前記排気通路部の前記上流触媒と前記放出口との間の位置に設けられて、前記排ガスの酸素濃度を検出する下流酸素検出部材を備えることを特徴とする。
 この構成によると、エンジンユニットは、下流酸素検出部材を備える。下流酸素検出部材は、排気通路部の上流触媒と放出口の間の位置に設けられる。下流酸素検出部材は、排ガスの酸素濃度を検出する。下流酸素検出部材で検出した排ガスの酸素濃度に基づいて、エンジンユニットを制御することができる。また、下流酸素検出部材で検出した排ガスの酸素濃度に基づいて、鞍乗型車両の排ガスの浄化性能の劣化を検出することができる。そして、鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記上流酸素検出部材は、前記燃焼室から前記上流酸素検出部材までの経路長が前記上流酸素検出部材から前記上流触媒までの経路長よりも長くなる位置に配置されることを特徴とする。
 この構成によると、上流酸素検出部材は、燃焼室から上流酸素検出部材までの経路長が上流酸素検出部材から上流触媒までの経路長よりも長くなる位置に配置される。ここで、上流酸素検出部材は、排気通路部の燃焼室と上流触媒の間に配置される。また、上流酸素検出部材は、排気通路部の上流触媒よりも排ガスの流れ方向の上流に配置される。そして、上流酸素検出部材は、燃焼室より上流触媒に近い位置に配置される。上流酸素検出部材より上流に配置されたリン付着低減部は、上流酸素検出部材を通過する前の排ガスに含まれるリンを捕捉する。上流酸素検出部材が燃焼室より上流触媒に近い位置に配置されると、上流酸素検出部材が上流触媒より燃焼室に近い位置に配置される場合と比較して、上流酸素検出部材より上流に配置されるリン付着低減部の表面積が多くなる。そして、上流酸素検出部材より上流に配置されたリン付着低減部は、上流酸素検出部材に到達するリンの量を低減することができる。よって、上流酸素検出部材に付着するリンを低減できる。そして、上流酸素検出部材の検出精度が向上する。
 本発明の他の観点の構成によると、前記鞍乗型車両において、前記排気通路部は、前記シリンダ部内に形成され、前記燃焼室と接続されたシリンダ排気通路部と、前記放出口を有する消音器と、前記シリンダ排気通路部および前記消音器と接続された排気管と、を有し、前記上流酸素検出部材は、前記排気管の上流端から前記上流酸素検出部材までの経路長が前記上流酸素検出部材から前記上流触媒までの経路長よりも長くなる位置に配置されることを特徴とする。
 この構成によると、排気通路部は、シリンダ排気通路部と、消音器と、排気管を有する。シリンダ排気通路部は、燃焼室を有するシリンダ内に形成される。シリンダ排気通路部は、燃焼室と接続される。消音器は、放出口を有する。排気管は、シリンダ排気通路部および消音器と接続される。上流酸素検出部材は、排気管の上流端から上流酸素検出部材までの経路長が上流酸素検出部材から上流触媒までの経路長よりも長くなる位置に配置される。ここで、上流酸素検出部材は、排気通路部の燃焼室と上流触媒の間に配置される。また、上流酸素検出部材は、排気通路部の上流触媒よりも排ガスの流れ方向の上流に配置される。そして、上流酸素検出部材は、排気管の上流端より上流触媒に近い位置に配置される。上流酸素検出部材より上流に配置されたリン付着低減部は、上流酸素検出部材を通過する前の排ガスに含まれるリンを捕捉する。上流酸素検出部材が排気管の上流端より上流触媒に近い位置に配置されると、上流酸素検出部材が上流触媒より排気管の上流端に近い位置に配置される場合と比較して、上流酸素検出部材より上流に配置されるリン付着低減部の表面積が多くなる。そして、上流酸素検出部材より上流に配置されたリン付着低減部は、上流酸素検出部材に到達するリンの量を低減することができる。よって、上流酸素検出部材に付着するリンを低減できる。そして、上流酸素検出部材の検出精度が向上する。
 本発明の他の観点によると、前記エンジン本体は、車両の左右方向に沿った中心軸線を有するクランク軸を含み、車両を左右方向に見て、前記触媒層の少なくとも一部は、前記クランク軸の前記中心軸線を通り且つ上下方向に平行な直線の前方に配置される。
 車両を左右方向に見て、クランク軸の中心軸線を通り且つ上下方向に平行な直線を、直線L1とする。一般的に、排気管はエンジン本体の前面に接続される。車両を左右方向に見て、触媒層の少なくとも一部は、この直線L1の前方に配置される。そのため、触媒層全体が直線L1の後方に配置される場合に比べて、触媒層は、燃焼室に近い位置に配置される。よって、触媒層の熱劣化を防止しつつ、触媒層の活性化に要する時間を短縮できる。
 本発明の他の観点によると、前記エンジン本体は、車両の左右方向に沿った中心軸線を有するクランク軸を含み、前記シリンダ部は、前記燃焼室の一部を形成するシリンダ孔を有し、車両を左右方向に見て、前記触媒層の少なくとも一部は、前記シリンダ孔の中心軸線に直交し且つ前記クランク軸の前記中心軸線を通る直線の車両の前後方向の前方に配置される。
 車両を左右方向に見て、シリンダ孔の中心軸線に直交し且つクランク軸の中心軸線を通る直線を、直線L2とする。一般的に、排気管はエンジン本体の前面に接続される。車両を左右方向に見て、触媒層の少なくとも一部は、この直線L2の前方に配置される。そのため、触媒層全体が直線L2の後方に配置される場合に比べて、触媒層は、燃焼室に近い位置に配置される。そのため、触媒層を、燃焼室に近い位置に配置できる。よって、触媒層の熱劣化を防止しつつ、触媒層の活性化に要する時間を短縮できる。
 本発明の鞍乗型車両は、自動二輪車に限定されるものではない。なお、本発明の鞍乗型車両とは、ライダーが鞍にまたがるような状態で乗車する車両全般を指している。本発明の鞍乗型車両は、自動二輪車、三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))、水上バイク、スノーモービル等を含む。鞍乗型車両に含まれる自動二輪車は、スクータ、原動機付き自転車、モペット等を含む。
 本発明において、「エンジンユニットのエンジン本体が、燃焼室を有するシリンダ部を備える」とは、エンジンユニットが単気筒エンジンであることを限定するものではない。本発明のエンジンユニットは、単気筒エンジンであっても、多気筒エンジンであってもよい。請求項1で規定された燃焼室を、第1の燃焼室とする。本発明のエンジンユニットは、第1の燃焼室に加えて、1つまたは複数の第2の燃焼室を有していてもよい。この場合、本発明のエンジンユニットは、多気筒エンジンである。燃焼室の数は特に限定されない。第2の燃焼室は、本発明の燃焼室に置き換えることが可能であってもよく、可能でなくてもよい。第2の燃焼室が複数の場合、一部の第2の燃焼室だけが、本発明の燃焼室に置き換えることが可能であってもよい。第2の燃焼室が複数の場合、全ての第2の燃焼室が、本発明の燃焼室に置き換えることが可能であってもよい。
 本発明において、エンジンユニットの冷却方式は、自然空冷式であってもよい。エンジンユニットの冷却方式は、強制空冷式であってもよい。エンジンユニットの冷却方式は、水冷式であってもよい。
 本発明において、酸素検出部材は、例えば酸素センサである。酸酸素濃度が所定の値より上か下かだけを検出するものであってもよく、酸素濃度の値をリニアに検出するものであってもよい。
 本発明において、通路部とは、経路を囲んで経路を形成する壁体等を意味する。また、経路とは対象が通過する空間を意味する。吸気通路部とは、吸気経路を囲んで吸気経路を形成する壁体等を意味する。吸気経路とは、空気が通過する空間を意味する。排気通路部とは、排気経路を囲んで排気経路を形成する壁体等を意味する。排気経路とは、排ガスが通過する空間を意味する。
 本発明において、ある部品の上流端は、ある部品の排ガスの流れ方向の最も上流に位置する端のことである。また、ある部品の下流端は、ある部品の排ガスの流れ方向の最も下流に位置する端のことである。
 本明細書において、リン化学反応部の上流端は、リン化学反応部全体の排ガスの流れ方向の最も上流に位置する端のことである。触媒層の上流端は、触媒層全体の排ガスの流れ方向の最も上流に位置する端のことである。また、リン化学反応部の下流端は、リン化学反応部全体の排ガスの流れ方向の最も下流に位置する端のことである。また、触媒層の下流端は、触媒層全体の排ガスの流れ方向の最も下流に位置する端のことである。
 本明細書において、ある部品の端部とは、部品の端とその近傍部とを合わせた部分を意味する。
 本明細書において、Aの説明においてBの径方向を用いる場合、Bの径方向とは、Aを通るBの径方向のことである。Aの説明においてBの径方向を用いる場合とは、例えば、「AがBの径方向に沿っている」や「AがBの径方向に押圧される」等である。
 本明細書において、特に限定しない限り、直線Aの直線Bに対する傾斜角度とは、直線Aと直線Bのなす角度のうち、小さい方の角度を意味する。この定義は、「直線」に限らず「方向」にも適用される。
 本明細書において、A方向に沿った方向とは、A方向と平行な方向に限らない。A方向に沿った方向とは、A方向に対して±45°の範囲で傾斜している方向を含む。本発明において、A方向に沿った直線とは、A方向と平行な直線に限らない。A方向に沿った直線とは、A方向に対して±45°の範囲で傾斜している直線を含む。なお、A方向は、特定の方向を指すものではない。A方向を、水平方向や前後方向に置き換えることができる。
 本明細書において、AとBがX方向に並ぶとは、以下の状態を示す。X方向に垂直ないずれの方向からAとBを見た場合であっても、AとBの両方がX方向を示す任意の直線上にある状態である。
 また、本明細書において、Y方向から見てAとBがX方向に並ぶとは、以下の状態を示す。Y方向からAとBを見たときに、AとBの両方がX方向を示す任意の直線上にある状態である。Y方向とは異なるW方向からAとBを見たとき、AとBがX方向に並んでいなくてもよい。
 なお、上述の2つの定義において、AとBは、接触していてもよい。また、AとBは、離れていてもよい。AとBの間に、Cが存在していてもよい。
 本明細書において、AがBより前方にあるとは、以下の状態を指す。Aが、Bの最前端を通り前後方向に直交する平面の前方にある状態である。AとBは、前後方向に並んでいてもよく、並んでいなくてもよい。なお、AがBより後方にある、AがBより上方または下方にある、AがBより右方または左方にあるという表現にも、同様の定義が適用される。
 本明細書において、AがBの前にあるとは、以下の状態を指す。AがBより前方にあり、且つ、AとBが前後方向に並んでいる状態である。なお、AがBの後ろにある、AがBの上または下にある、AがBの右または左にあるという表現にも、同様の定義が適用される。
 本明細書において、前後方向と異なる方向であるX方向に見て、AがBの前にあるとは、以下の状態を指す。AがBより前方にあり、且つ、X方向に見て、AとBが前後方向に並んでいる状態である。X方向とは異なるY方向からAとBを見たとき、AとBがX方向に並んでいなくてもよい。なお、X方向に見て、AがBの後ろにある、AがBの上または下にある、AがBの右または左にあるという表現にも、同様の定義が適用される。
 本発明において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、本発明のひとつの観点による構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限定されるものではない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、本発明のひとつの観点による構成により得られる上記効果を奏する。
 本発明では、上述した本発明の他の観点による構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する変形例を適宜組み合わせて実施することができる。
 本発明によれば、排ガスの浄化性能のばらつきを抑制することができる鞍乗型車両を提供することができる。
第1実施形態の自動二輪車の側面図である。 図1の自動二輪車のエンジンユニットの平面図であって、一部を断面で表示した図である。 図1の自動二輪車のエンジンユニットを示す模式図である。 図1の自動二輪車の制御ブロック図である。 図1のエンジンユニット排気通路部とリン付着低減部と酸素センサを示す図であり、(a)は部分断面図であり、(b)は(a)のX1-X1断面図である。 図1の酸素センサを示す図であり、(a)は酸素センサの一部断面図であり、(b)は検出素子の先端部を示す一部断面図である。 図1の上流触媒を示す図であり(a)は上流触媒の各層の構造を示す概略図であり、(b)は上流触媒の排ガスの流れ方向に直交する一部断面図である。 図1の上流触媒の変形例を示す図であり(a)は上流触媒の各層の構造を示す概略図であり、(b)は上流触媒の排ガスの流れ方向に直交する一部断面図である。 第2実施形態の自動二輪車のエンジンユニットの排気通路部とリン付着低減部と酸素センサを示す図であり、(a)は部分断面図であり、(b)は(a)のX2-X2断面図である。 第2実施形態のエンジンユニットの排気通路部とリン付着低減部と酸素センサと上流触媒を示す模式図である。 第3実施形態のエンジンユニットの排気通路部とリン付着低減部と酸素センサを示す図であり、(a)は部分断面図であり、(b)は(a)のX3-X3断面図である。 第4実施形態のエンジンユニットの排気通路部とリン付着低減部と酸素センサを示す図であり、(a)は部分断面図であり、(b)は(a)のX4-X4断面図である。 第4実施形態のエンジンユニットの排気通路部とリン付着低減部と酸素センサと上流触媒を示す模式図である。 エンジンユニットの排気通路部とリン付着低減部と酸素センサと触媒の変形例を示す模式図である。 本実施形態の鞍乗型車両を示す模式図である。 本実施形態の触媒層の一例を示す上流触媒の模式的な部分断面図である。
 まず、本発明の実施形態について、図15に基づいて説明する。
 鞍乗型車両1は、エンジンユニット11が搭載される。エンジンユニット11は、エンジン本体20と、排気通路部43と、上流触媒46と、上流酸素センサ92fと、リン付着低減部44と、を備える。エンジン本体20は、燃焼室36を有する。
 排気通路部43は、大気に排ガスを放出する放出口42eを有する。排気通路部43は、燃焼室36から放出口42eまで排ガスを流す。排気通路部43は、燃焼室36から上流触媒46の間に第1曲り部43aおよび第2曲り部43bを有する。
 上流触媒46は、排気通路部43において排ガスの流れ方向の最も上流の触媒である。上流触媒46は、触媒層49を有する。触媒層49は、排ガスを浄化する貴金属を含む。
 上流酸素センサ92fは、排気通路部43の燃焼室36と上流触媒46の間に配置される。上流酸素センサ92fは、排ガスの酸素濃度を検出する。
 リン付着低減部44は、リン捕捉層44aまたはリン捕捉構造体44bの少なくともいずれか一方を含む。
 リン捕捉層44aは、排気通路部43の燃焼室36と上流触媒46の間に配置される。リン捕捉層44aは、リンと化学反応するリン反応物質で構成されて、リンを捕捉する機能を持つ。または、リン捕捉層44aは、表面がリンを捕捉する機能を持つ粗面で形成されている。リン捕捉層44aは、排気通路部43の内面に塗布される。
 リン捕捉構造体44bは、排気通路部43の燃焼室36と上流触媒46の間に配置される。リン捕捉構造体44bは、排ガスの流速を低減させてリンを捕捉する機能を持つ。リン捕捉構造体44bは、燃焼室36からリン捕捉構造体44bまでの経路長が、リン捕捉構造体44bから上流触媒46までの経路長よりも短くなるような位置に配置される。
 本実施形態の鞍乗型車両1は、以下の特徴を有する。
 上流触媒46は、燃焼室36に最も近い位置に配置される。そして、上流触媒46の活性化に要する時間を短縮できる。従って、鞍乗型車両1の排ガスの浄化性能を向上させることができる。
 リン付着低減部44は、触媒層49へのリンの付着を低減させる。リン付着低減部44は、(A)リン捕捉層44a、または、(B)リン捕捉構造体44bの少なくともいずれか一方を含む。
 (A)リン捕捉層44aは、排気通路部43の燃焼室36と上流触媒46の間に配置される。つまり、リン捕捉層44aは、排ガスの流れ方向の上流触媒46の上流に配置される。また、リン捕捉層44aは、排気通路部43の内面に塗布される。そして、リン捕捉層44aは、リンと化学反応するリン反応物質で構成されてリンを捕捉する機能を持つ。または、リン捕捉層44aは、表面がリンを捕捉する機能を持つ粗面で形成されてリンを捕捉する機能を持つ。また、排気通路部43には、燃焼室36から上流触媒46の間に第1曲り部43aおよび第2曲り部43bがある。排ガスは流速が早いため、排気通路部43の第1曲り部43aおよび第2曲り部43bに排ガスが衝突しやすい。そして、排気通路部43の第1曲り部43aおよび第2曲り部43bは、リンが付着しやすい。そして、リン捕捉層44aは、排気通路部43の燃焼室36と上流触媒46との間に配置される。リン捕捉層44aは、排ガスに含まれるリンと化学反応するリン反応物質を含む。リン捕捉層44aを通過する排ガスに含まれるリンは、リン反応物質と化学反応する。リン反応物質は、例えば、リンを吸着する物質である。この場合、排ガス中のリンがリン反応物質と化学反応することにより排ガスに含まれるリンが吸着される。リン反応物質は、リン捕捉層44aを通過する排ガスに含まれるリンと化学反応することにより、リンを捕捉することができる。または、リン捕捉層44aの表面は、排ガスに含まれるリンを付着させる粗面で形成されている。そのため、リン捕捉層44aは、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制できる。
 (B)リン捕捉構造体44bは、排気通路部43の燃焼室36と上流触媒46の間に配置される。つまり、リン捕捉構造体44bは、排ガスの流れ方向の上流触媒46の上流に配置される。リン捕捉構造体44bは、排ガスの流速を低減させてリンを捕捉する機能を持つ。また、排ガスは流速が速いので、排気通路部43に構造体を配置すると、排ガスの流速を低下することができる。排ガスの流速を低下させる構造体には、リンが付着しやすい。燃焼室36からリン捕捉構造体44bまでの経路長は、リン捕捉構造体44bから上流触媒46までの経路長よりも短い。つまり、リン捕捉構造体44bは、燃焼室36に近い位置に配置される。リン捕捉構造体44bは、排ガスの流速を低減させて、排ガスに含まれるリンを付着させる。そのため、リン捕捉構造体44bは、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制できる。
 これにより、鞍乗型車両1の排ガスの浄化性能のばらつきを抑えることができる。
(本発明の実施形態の具体例)
 次に、上述した本発明の実施形態の具体例について、説明する。ここでは、本発明の実施形態の鞍乗型車両1が、自動二輪車である場合を例に挙げて説明する。なお、以下の説明では、上述した本発明の実施形態と同じ部位についての説明は省略する。基本的に、本発明の実施形態の具体例は、上述した本発明の実施形態を全て包含している。以下の説明において、前後方向とは、自動二輪車1の後述するシート9に着座したライダーから見た車両前後方向のことであり、左右方向とは、シート9に着座したライダーから見たときの車両左右方向のことである。車両左右方向は、車幅方向と同じである。なお、本実施形態の図中の矢印F、矢印B、矢印U、矢印D、矢印L、矢印Rは、それぞれ、前方、後方、上方、下方、左方、右方を表している。
(第1実施形態)
 [自動二輪車の全体構成]
 本発明の実施形態の第1の具体例である第1実施形態について、図1~図7および図15を参照しつつ、説明する。まず、本発明の第1実施形態に係る自動二輪車の全体構成について、説明する。図1は、第1実施形態の自動二輪車の側面図である。図2は、図1の自動二輪車のエンジンユニットの平面図であって、一部を断面で表示した図である。図3は、図1の自動二輪車のエンジンユニットを示す模式図である。
 第1実施形態の自動二輪車1は、いわゆるスポーツタイプの自動二輪車である。なお、本実施形態のエンジンユニットは、オンロード型のモーターサイクルに適用してもよく、オフロード型のモーターサイクルに適用してもよい。図1に示すように、自動二輪車1は、前輪2と、後輪3と、車体フレーム4を備えている。車体フレーム4は、ヘッドパイプ4aを有する。車体フレーム4は、前後方向に沿って配置される。図1では、前輪2は1つであるが、2つ以上でもよい。図1では、後輪3は1つであるが、2つ以上でもよい。
 ヘッドパイプ4aは、車体フレーム4の前部に配置される。ヘッドパイプ4aには、ステアリングシャフト(図示せず)が回転自在に挿入されている。ステアリングシャフトの上部にはハンドルユニット5が設けられている。ハンドルユニット5は、ハンドルバー12を有する。1本のハンドルバー12の両端には、グリップ13が設けられている。ハンドルユニット5の近傍には、表示装置14が配置されている。表示装置14には、車速、エンジン回転速度、各種の警告などが表示される。
 ステアリングシャフトの下部には、左右一対のフロントフォーク6が支持されている。フロントフォーク6の下端部は、前輪2が回転自在に支持されている。フロントフォーク6は、上下方向の衝撃を吸収するように構成される。車体フレーム4には、一対のスイングアーム7が揺動可能に支持されている。スイングアーム7の後端部は、後輪3を支持している。各スイングアーム7には、リアサスペンション8が取り付けられている。リアサスペンション8の一端部は、スイングアーム7の揺動中心より後方の位置に取り付けられる。リアサスペンション8は、上下方向の衝撃を吸収するように構成される。
 車体フレーム4は、シート9及び燃料タンク10を支持する。燃料タンク10は、シート9の前方に配置されている。車体フレーム4は、エンジンユニット11を支持する。エンジンユニット11は、車体フレーム4に直接連結されていても、間接的に連結されていてもよい。エンジンユニット11は、燃料タンク10の下方に配置されている。左右方向に見て、エンジンユニット11は、前輪2の後方で、且つ、後輪3の前方に配置される。車体フレーム4は、バッテリ(図示せず)を支持する。バッテリは、エンジンユニット11を制御するECU(Electronic Control Unit)90(図4参照)や各種センサなどの電子機器に電力を供給する。
[エンジンユニットの構成]
 エンジンユニット11は、自然空冷式のエンジンユニットである。エンジンユニット11は、単気筒エンジンである。エンジンユニット11は、4ストローク式のエンジンである。4ストローク式のエンジンとは、吸気行程、圧縮行程、燃焼行程(膨張行程)、及び排気行程を繰り返すエンジンである。エンジンユニット11は、エンジン本体20と、排気装置40と、動力伝達部60(図2参照)と、を有する。排気装置40は、排気通路部43と、リン付着低減部44(図3参照)と、触媒(上流触媒)46と、を有する。また、エンジンユニット11は、上流酸素センサ(上流酸素検出部材)92fを有する。また、エンジンユニット11は、吸気装置50(図3参照)を有する。上流触媒46は、排気通路部43において排ガスの流れ方向の最も上流の触媒である。
[エンジン本体の構成]
 エンジン本体20は、クランクケース部21と、シリンダ部28と、発電機29と、スタータモータ(図示せず)と、を有する。シリンダ部28は、 シリンダボディ22と、シリンダヘッド23と、ヘッドカバー24とを有する。図2に示すように、クランクケース部21は、クランクケース21aと、クランク軸34と、オイルパン(図示せず)を有する。クランクケース21aとオイルパンは一体成型されてよい。クランクケース21aには、動力伝達部60と、発電機29と、スタータモータが収容される。また、クランクケース21aには、クランク軸34が収容される。クランク軸34は、クランクケース部21に回転可能に支持されている。クランク軸34の中心線Crを、クランク軸線Crという。クランク軸線Crは、左右方向に沿っている。より詳細には、クランク軸線Crは、左右方向と平行である。クランク軸34の左端部には、発電機29が取り付けられる。
 クランクケース21aには、動力伝達部60が収容されている。動力伝達部60は、クランク軸34の右端部に連結されている。なお、図2では、動力伝達部60の一部の構成部品のみを破線で表示している。動力伝達部60は、トランスミッション部61と、クラッチ部62とを有する。トランスミッション部61は、メイン軸63及びドライブ軸64により構成される有段変速機である。クランク軸34とメイン軸63は、クラッチ部62を介して接続されている。クラッチ部62は、クランク軸34からメイン軸63に動力を伝達可能に接続する状態と、切断する状態とを切り換える。
 メイン軸63は、複数の変速ギヤ63aを有する。ドライブ軸64は、複数の変速ギヤ64aを有する。変速ギヤ63aおよび変速ギヤ64aは、所定の変速比になるように、一対のギヤが選択される。選択された一対のギヤは、メイン軸63からドライブ軸64へ動力を伝達可能に噛み合わされる。選択された一対のギヤ以外は、いずれか一方がメイン軸63またはドライブ軸64に対して空転状態である。つまり、選択された一対の変速ギヤのみにより、メイン軸63からドライブ軸64へ動力が伝達される。変速ギヤ63aおよび変速ギヤ64aは、動力伝達機構である。
 ドライブ軸64の左端部は、クランクケース21aから外部に突出している。ドライブ軸64の左端部には、スプロケット67が設けられている。ドライブ軸64のスプロケット67と後輪3のスプロケット(図示せず)に、チェーン68が巻き掛けられている。チェーン68により、ドライブ軸64から後輪3に動力が伝達される。
 オイルパンには、オイルが貯留される。オイルは、リン化合物の含有量が0.08mass%より大きいオイルの使用が指定される。クランクケース部21は、オイルパンに貯留されたオイルを吸い上げるオイルポンプ(図示せず)を有する。オイルポンプで吸い上げられたオイルは、クランクケース部21内を潤滑する。また、クランクケース部21は、後述するシリンダボディ22のチェーン室33b及びシリンダヘッド23のチェーン室33aと連通する。オイルは、シリンダボディ22のチェーン室33b及びシリンダヘッド23のチェーン室33a内を循環する。そして、オイルは、シリンダ部28が有するシリンダヘッド23に収容された後述する動弁機構30を潤滑する。エンジン本体20の一部と、トランスミッション部61の一部は、クランクケース部21内に収容される。エンジン本体20の一部は、オイルで潤滑される。トランスミッション部61の一部は、オイルで潤滑される。つまり、エンジン本体20を潤滑するオイルと、トランスミッション部61を潤滑するオイルは、共通のオイルである。エンジン本体20の一部と、クラッチ部62は、クランクケース部21内に収容される。エンジン本体20の一部は、オイルで潤滑される。クラッチ部62は、オイルで潤滑される。つまり、エンジン本体20を潤滑するオイルと、クラッチ部62を潤滑するオイルは、共通のオイルである。なお、エンジン本体20を潤滑するオイルは、エンジン本体20の壁面温度よりも蒸発温度が高いオイルであることが好ましい。
 上述の通り、シリンダ部28は、シリンダボディ22と、シリンダヘッド23と、ヘッドカバー24とを有する。シリンダボディ22は、クランクケース部21の上端部に取り付けられる。シリンダヘッド23は、シリンダボディ22の上端部に取り付けられる。ヘッドカバー24は、シリンダヘッド23の上端部に取り付けられる。シリンダボディ22の表面には、フィン部25が形成される。フィン部25は、シリンダボディ22のほぼ全周に形成されている。シリンダヘッド23の表面には、フィン部26が形成される。フィン部26は、シリンダヘッド23のほぼ全周に形成されている。フィン部25、26は、複数のフィンで構成されている。フィン部25、26は、エンジン本体20で発生した熱を放熱させる。
 シリンダボディ22には、シリンダ孔22aが形成されている。シリンダ孔22a内には、ピストン35が往復移動可能に収容されている。ピストン35はコンロッド35aを介してクランク軸34に連結されている。以下、シリンダ孔22aの中心線を、シリンダ軸線Cyと称する。図1に示すように、シリンダ軸線Cyは、上下方向に沿っている。自動二輪車1を左右方向に見て、シリンダ軸線Cyは、上下方向に対して前後方向に傾斜している。シリンダ軸線Cyは、シリンダ部28が前傾するように傾斜している。つまり、シリンダ軸線Cyは、上方に向かうほど前方に向かうように傾斜している。自動二輪車1を左右方向に見て、シリンダ軸線Cyの上下方向に対する傾斜角度を傾斜角度θcyとする。傾斜角度θcyは0度以上45度以下である。傾斜角度θcyは図1に示す角度に限定されない。
 図2に示すように、シリンダ部28には、燃焼室36が形成される。各燃焼室36は、シリンダヘッド23の下面と、シリンダ孔22aと、ピストン35の上面によって形成される。なお、燃焼室36は、主燃焼室と、主燃焼室につながる副燃焼室とを有する構成であってもよい。図1に示すように、自動二輪車1を左右方向に見て、クランク軸線Crを通り、上下方向と平行な直線を、直線La1とする。自動二輪車1を左右方向に見て、燃焼室36は、直線La1の前方に配置される。つまり、自動二輪車1を左右方向に見て、燃焼室36は、クランク軸線Crよりも前方に配置される。
 図3に示すように、シリンダヘッド23には、シリンダ吸気通路部37と、シリンダ排気通路部38が形成される。なお、本明細書において、通路部とは、経路を形成する構造物を意味する。経路とは、ガスなどが通過する空間を意味する。シリンダヘッド23において、燃焼室36を形成する壁部には、吸気ポート37aおよび排気ポート38aが形成される。1つの燃焼室36に対して設けられる吸気ポート37aおよび排気ポート38aの数は、1つである。1つの燃焼室36に対して設けられる吸気ポート37aの数は2つ以上であってもよい。例えば、1つの燃焼室36に対して2つの吸気ポート37aが設けられる場合、シリンダ吸気通路部37は二股状に形成される。1つの燃焼室36に対して設けられる排気ポート38aの数は2つ以上であってもよい。例えば、1つの燃焼室36に対して2つの排気ポート38aが設けられる場合、シリンダ排気通路部38は二股状に形成される。シリンダヘッド23の後ろの外面には、吸気口37bが形成される。シリンダヘッド23の前の外面には、排気口38bが形成される。シリンダ吸気通路部37は、吸気ポート37aから吸気口37bまで形成される。1つの燃焼室36に対して設けられる吸気口37b及び排気口38bの数は、1つである。1つの燃焼室36に対して設けられる吸気口37bの数は2つ以上であってもよい。1つの燃焼室36に対して設けられる排気口38bの数は2つ以上であってもよい。シリンダ排気通路部38は、排気ポート38aから排気口38bまで形成される。燃焼室36に供給される空気は、シリンダ吸気通路部37内を通過する。燃焼室36から排出される排ガスは、シリンダ排気通路部38を通過する。
 シリンダ吸気通路部37には吸気弁V1が配置される。シリンダ排気通路部38には排気弁V2が配置される。吸気ポート37aは、吸気弁V1の駆動により開閉される。排気ポート38aは、排気弁V2の駆動により開閉される。シリンダ吸気通路部37の吸気口37bには後述する吸気通路部51が接続される。シリンダ排気通路部38の排気口38bには後述する排気管41が接続される。
 図2に示すように、シリンダヘッド23には、動弁機構30が収容されている。動弁機構30は、吸気弁V1および排気弁V2を開閉駆動させる。動弁機構30は、カム軸31を含んでいる。カム軸31は、左右方向に沿って配置される。カム軸31は、シリンダヘッド23に回転可能に支持されている。シリンダヘッド23には、チェーン室33aが設けられる。シリンダボディ22には、チェーン室33bが設けられる。シリンダヘッド23のチェーン室33aとシリンダボディ22のチェーン室33bは連通している。カム軸31の左端部は、チェーン室33bに配置される。スプロケット32は、カム軸31の左端部に設けられる。また、図示しないが、クランク軸34の左端部にスプロケットが設けられる。スプロケット32と、クランク軸34のスプロケットには、タイミングチェーン(図示せず)が巻き掛けられる。タイミングチェーンは、シリンダヘッド23のチェーン室33aとシリンダボディ22のチェーン室33b内に配置される。タイミングチェーンは、クランク軸34の回転を動弁機構30に伝える。クランク軸34の回転に伴って、カム軸31は回転する。カム軸31が回転することで、吸気弁V1および排気弁V2は開閉駆動される。
 図3に示すように、エンジン本体20は、エンジン回転速度センサ92aと、エンジン温度センサ92c(図4参照)と、を有する。エンジン回転速度センサ92aは、クランク軸34の回転速度、即ち、エンジン回転速度を検出する。エンジン温度センサ92cは、エンジン本体20の温度(シリンダボディ22の温度)を検出する。
[吸気装置の構成]
 以下、第1実施形態の自動二輪車1の吸気装置50について説明する。本明細書の吸気装置50の説明において、上流とは、空気の流れ方向の上流のことである。また、下流とは、空気の流れ方向の下流のことである。
 図3に示すように、吸気装置50は、吸気通路部51を有する。吸気通路部51は、大気に面する大気吸入口51aを有する。大気吸入口51aは、吸気通路部51の上流端に形成される。吸気通路部51には、空気を浄化するエアクリーナ52が設けられる。吸気通路部51の下流端は、シリンダヘッド23の後面に形成された吸気口37bに接続される。大気吸入口51aは大気から空気を吸入する。大気吸入口51aから吸気通路部51に流入した空気は、エンジン本体20に供給される。
 吸気通路部51には、インジェクタ94が配置されている。インジェクタ94は、吸気通路部51内の空気に対して燃料を噴射する。インジェクタ94は、燃料ホース(図示せず)を介して燃料タンク(図示せず)に接続されている。燃料タンクの内部には、燃料ポンプ95(図4参照)が配置されている。燃料ポンプ95は、燃料タンク内の燃料を燃料ホースへ圧送する。
 吸気通路部51内には、スロットルバルブ54が配置される。スロットルバルブ54の開度は、ライダーがアクセルグリップ(図示せず)を回す操作をすることで変更される。
 吸気通路部51には、スロットル開度センサ(スロットルポジションセンサ)92bと、吸気圧センサ92dと、吸気温センサ92eが設けられる。スロットル開度センサ92bは、スロットルバルブ54の位置を検出することにより、スロットル開度を表す信号を出力する。スロットル開度とは、スロットルバルブ54の開度である。吸気圧センサ92dは、吸気通路部51の内部圧力を検出する。吸気温センサ92eは、吸気通路部51内の空気の温度を検出する。
[排気装置の構成]
 以下、第1実施形態の自動二輪車1の排気装置40について説明する。本明細書の排気装置40の説明において、上流とは、排ガスの流れ方向の上流のことである。また、下流とは、排ガスの流れ方向の下流のことである。
 図1及び図3に示すように、排気装置40は、排気通路部43と、リン付着低減部44と、触媒46と、を有する。つまり、エンジンユニット11は、排気通路部43と、リン付着低減部44と、触媒46と、を有する。排気通路部43は、前述のシリンダ排気通路部38と、排気管41と、消音器42と、ケーシング47を有する。消音器42は、大気に面する放出口42eを有する。排気通路部43は、燃焼室36から放出口42eに至るまで、排ガスを流す空間を形成する構造物である。
 排気管41は、上流排気管41aと下流排気管41bを有する。上流排気管41aは、ケーシング47より上流に配置される。下流排気管41bは、ケーシング47より下流に配置される。上流排気管41aの上流端部は、シリンダ排気通路部38に接続される。なお、上流排気管41aの上流端部は、シリンダ排気通路部38の中に挿入されて配置されても良い。上流排気管41aの上流端には、排ガスが流入する。下流排気管41bの下流端部は、消音器42に挿入されて、消音器42内に配置される。なお、図3では、簡略化のために上流排気管41aと下流排気管41bを一直線状に描いているが、上流排気管41aと下流排気管41bは一直線状ではない。
 排気通路部43には、燃焼室36から上流触媒46の間に第1曲り部43aおよび第2曲り部43bがある。排気通路部43の燃焼室36から上流触媒46の間には、上流酸素センサ92fが配置される。具体的には、上流排気管41aには、上流酸素センサ92fが配置される。上流酸素センサ92fは、排気通路部43の後述する上流触媒46より上流に配置される。また、図3に示すように、燃焼室36から排気管41の上流端までの経路長をL11とする。排気管41の上流端から上流酸素センサ92fまでの経路長をL12とする。排気管41の上流端から排気管41の下流端までの経路長をL13とする。排気管41の下流端から上流触媒46までの経路長をL14とする。上流酸素センサ92fは、燃焼室36から上流酸素センサ92fまでの経路長L11+L12が、上流酸素センサ92fから上流触媒46までの経路長L13+L14より長い位置に配置される。つまり、上流酸素センサ92fは、燃焼室36より上流触媒46に近い位置に配置される。また、上流酸素センサ92fは、排気管41から上流酸素センサ92fまでの経路長L12が、上流酸素センサ92fから上流触媒46までの経路長L13+L14より長い位置に配置される。つまり、上流酸素センサ92fは、上流排気管41aの上流端より上流触媒46に近い位置に配置される。更に、上流酸素センサ92fは、上流酸素センサ92fは、上流排気管41aの上流端から上流酸素センサ92fまでの経路長L12が、上流酸素センサ92fから上流排気管41aの下流端までの経路長L13より長い位置に配置される。つまり、上流酸素センサ92fは、上流排気管41aの上流端より下流端に近い位置に配置される。上流酸素センサ92fは、排気通路部43の上流排気管41aを通過する排ガスの酸素濃度を検出する。
 上流酸素センサ92fの構成の一例を図6に基づいて説明する。図6(a)は、酸素センサの一部断面図である。図6(b)は検出素子の先端部を示す一部断面図である。図6(a)に示すように、上流酸素センサ92fは、検出素子81を内蔵している。検出素子81は、ハウジング80に挿通されて、固定される。検出素子81は、カバー82内に配置される。検出素子81は、カバー82によって保護される。カバー82には、排ガスを通過させる通過口(図示せず)が設けられている。図6(b)に示すように、検出素子81は、固体電解質体83と、内側電極84と、外側電極85と、酸素センサ用触媒層(酸素検出部材用触媒層)86を備える。固体電解質体83は、有底の円筒状に形成される。内側電極84及び外側電極85は、一対の電極である。一対の電極84、85は、固体電解質体83の両面に設けられる。固体電解質体83の内表面には、内側電極84が被覆される。固体電解質体83の外表面には、外側電極85が被覆される。外側電極85の外表面は、酸素センサ用触媒層86が積層される。酸素センサ用触媒層86には、水素を燃焼させる能力の高いPt-Rh等の貴金属合金が用いられる。酸素センサ用触媒層86は、水素による影響を抑制することができる。検出素子81には、大気を導入する大気室87が形成される。大気室87は、内側電極84の内側に形成される。内側電極84は、大気に曝される。大気は基準ガスである。外側電極85は、排ガスに曝される。図3及び図5に示すように、上流酸素センサ92fは、上流排気管41aの上流端より下流端に近い位置に配置される。つまり、上流酸素センサ92fから上流排気管41aの上流端までの距離は、上流酸素センサ92fから上流排気管41aの下流端までの距離より長い。
 なお、上流酸素センサ92fは、リニアA/Fセンサであってもよい。リニアA/Fセンサは、排ガスの酸素濃度に応じたリニアな検出信号を出力する。言い換えると、リニアA/Fセンサは、排ガス中の酸素濃度の変化を連続的に検出する。リニアA/Fセンサも、上流酸素センサ92fと同様に、酸素センサ用触媒層を有しても良い。
 消音器42には、下流排気管41bの下流端部から排出された排ガスが流入する。消音器42は、排ガスの脈動波を抑制するように構成されている。それにより、消音器42は、排ガスによって生じる音(排気音)の音量を低減できる。消音器42内には、複数の膨張室と、膨張室同士を連通する複数のパイプが設けられている。下流排気管41bの下流端は、消音器42の膨張室内に配置されている。なお、下流排気管41bの下流端は、消音器42の上流端に接続されても良い。消音器42の下流端には、放出口42eが設けられている。消音器42を通過した排ガスは、放出口42eから大気へ放出される。図2に示すように、放出口42eは、クランク軸線Crよりも後方に位置する。消音器42は、接続部材42cを介して車体フレーム4に支持される。なお、消音器42は、エンジン本体20に支持されていてもよい。
 次に、エンジンユニット11のリン付着低減部44について、図3及び図5に基づいて説明する。図5(a)は、図1のエンジンユニットの排気通路部とリン付着低減部と酸素センサの部分断面図である。図5(b)は、図5(a)のX1-X1断面図である。
 図3及び図5(a)に示すように、エンジンユニット11は、リン付着低減部44を有する。なお、図5(a)では、第2曲り部43bの記載は省略している。リン付着低減部44は、排気通路部43の燃焼室36と上流触媒46との間に配置される。具体的には、リン付着低減部44は、上流排気管41a内に配置されている。リン付着低減部44は、上流排気管41aの内面の全周に亘って配置される。リン付着低減部44は、リン捕捉層である。リン捕捉層44は、リン反応物質で構成されて、リンを捕捉する機能を持つ。リン反応物質は、排ガスに含まれるリンと化学反応する物質である。より詳細には、図5(b)に示すように、リン捕捉層44は、リン反応物質が上流排気管41aの内面に塗布されて形成される。つまり、リン捕捉層44は、上流排気管41aの内面に積層して設けられる。リン捕捉層44の一部は、排気通路部43の第1曲り部43aに配置される。リン捕捉層44は、表面粗さが上流排気管41aの内面よりも粗い。つまり、リン捕捉層44の表面積は、上流排気管41aの内面の表面積よりも大きい。よって、リン捕捉層44は、排ガスと接触する表面積を増大させる。そして、リン捕捉層44は、接触した排ガスに含まれるリンを捕捉することができる。
 リン反応物質として、排ガスに含まれるリンと化学反応することにより、リンを吸着する物質であるリン吸着物質を用いる。リン反応物質は、例えば、等電点が3より大きい金属酸化物である。より具体的には、リン反応物質は、U、Mn、Sn、Ti、Fe、Zr、Ce、Al、Y、Zn、La、Mgから選ばれる少なくとも一つを有する金属酸化物である。ここで、排ガス中のリン化合物は、等電点が1付近のリン酸として存在していると考えられている。従って、等電点が3より大きい金属酸化物は、リン化合物と金属酸化物との等電点の差が大きいため、リン化合物は金属酸化物に吸着されやすくなる。つまり、これらのリン反応物質は、金属酸化物の等電価の作用により、リンを吸着させる。また、リン反応物質は、リンとの反応性が高い物質であってもよい。具体的には、リン反応物質は、Ba、Sr、Ca、La、Pr、Na、Zrから選ばれる少なくとも一つを有する金属酸化物であっても良い。
 なお、リン捕捉層44は、リン反応物質と担体で形成されても良い。担体は、リン反応物質を付着させる。担体は、シリカやアルミナ、チタニア化合物などの無機酸化物からなる多孔質体が用いられる。担体は、耐熱性、耐火性に優れている物質が用いられることが好ましい。更に、担体は、担持している物質のシンタリングを防止できるアパタイト型複合酸化物が用いられることが好ましい。例えば、リン捕捉層44は、リン反応物質を用いて形成された、モルタル、漆喰、または、耐火被覆材であって良い。モルタル、漆喰、または、耐火被覆材は、耐熱性に優れている。
 次に、図3に基づいて、上流触媒46の構成について説明する。図3に示すように、ケーシング47は、排気通路部43に含まれる。ケーシング47の上流端は、上流排気管41aに接続される。ケーシング47の下流端は、下流排気管41bに接続されている。ケーシング47は、筒状に形成される。
 ケーシング47は、触媒配置通路部47bと、上流通路部47aと、下流通路部47cとを有する。触媒配置通路部47b内には、触媒46が配置される。排ガスの流れ方向において、触媒配置通路部47bの上流端および下流端は、触媒46の上流端および下流端とそれぞれ同じ位置である。なお、ここでいう同じ位置とは、近傍の位置を含む意味である。触媒配置通路部47bの排ガスの流れ方向に直交する断面の面積は、排ガスの流れ方向においてほぼ一定である。上流通路部47aは、触媒配置通路部47bの上流端に接続されている。下流通路部47cは、触媒配置通路部47bの下流端に接続されている。
 上流通路部47aは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が大きくなっている。下流通路部47cは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が小さくなっている。触媒配置通路部47bの排ガスの流れ方向に直交する断面の面積をS1とする。排気管41の排ガスの流れ方向に直交する断面の面積をS2とする。面積S2は、面積S1よりも小さい。
 上流触媒46は、触媒配置通路部47bの内部に固定されている。つまり、上流触媒46は、排気通路部43内に配置される。排ガスは、上流触媒46を通過することで浄化される。上流触媒46の温度が所定の温度よりも低い場合、上流触媒46は不活性状態であって浄化性能を発揮しない。上流触媒46の温度が所定の活性温度以上の場合に、上流触媒46は活性状態となって浄化性能を発揮する。上流触媒46は、排ガスの流れ方向の最も上流の触媒である。上流触媒46は、自動二輪車1を左右方向に見て、前後方向に配置される排気通路部43の中で最も前方に配置される前触媒ともいえる。燃焼室36の排気ポート38aから排出された全ての排ガスは、上流触媒46を通過する。
 上流触媒46は、いわゆる三元触媒である。三元触媒とは、排ガスに含まれる炭化水素、一酸化炭素、および窒素酸化物の3物質を酸化または還元することで除去する。三元触媒は、酸化還元触媒の1種である。
 上流触媒46について、図7、図8および図16に基づいて、より詳細に説明する。図7(a)は上流触媒の各層の構造を示す概略図である。図7(b)は上流触媒の排ガスの流れ方向に直交する一部断面図である。図8は、上流触媒46の変形例を示す図である。図8(a)は上流触媒の各層の構造を示す概略図である。図8(b)は上流触媒の排ガスの流れ方向に直交する一部断面図である。図16は触媒層の一例を示す上流触媒の模式的な部分断面図である。
 図7(a)、(b)に示すように、上流触媒46は、基材48と、触媒層49とを有する。基材48は、金属製の基材である。基材48は、耐熱性材料からなることが好ましい。基材48は、多孔構造体である。多孔構造体は、排ガスの流れ方向に貫通する多数の孔を有する。具体的には、基材48は、金属製の波板48aと金属製の平板48bを有する。例えば、波板48a及び平板48bは、耐熱合金を用いた厚み数十μmの金属箔である。基材48は、波板48aと平板48bを交互に重ねて巻回することで、円筒形に形成される。基材48は、円筒形の触媒配置通路部47bに挿入される。基材48には、波板48aと平板48bとで仕切られた多数のセル46aが形成される。セル46aは、孔である。セル46aの長手方向に直交する断面の形状は、波板48aと平板48bとが当接する3か所の部分を頂点とする略三角形の形状である。上流触媒46は、セル46aの長手方向が排ガスの流れ方向に沿うように、触媒配置通路部47b内に配置される。セル46aは、排ガスの流れ方向の上流から下流まで貫通している。上流触媒46に流入した排ガスは、セル46aを通過する。
 触媒層49は、基材48の表面に積層して設けられる。つまり、触媒層49は、波板48aと平板48bで形成されるセル46aの表面に積層して設けられる。図16(a)は、触媒層49の一例を示す上流触媒46の模式的な部分断面図である。なお、触媒層49の構成は図16(a)に示す構成に限らない。触媒層49は、担体49aと貴金属49bからなる貴金属層49bを有する。担体49aは、貴金属層49bと基材48の間に設けられる。担体49aは、基材48に貴金属49bを付着させるために設けられている。担体49aは、例えば、シリカ、アルミナ、チタニア化合物などの無機酸化物で形成される。担体49aは、排ガスを浄化する作用を有する物質を含んでいてもよい。担体49aは、貴金属を含まない。担体49aは、例えば、ウォッシュコートと呼ばれる塗装法によって、セル46aの表面に形成される。ウォッシュコートにより、例えば、ポーラスなγ?アルミナ層からなる担体49aが形成される。貴金属層49bは、担体49aの表面に分散して形成される。貴金属49bとしては、例えば、プラチナ、パラジウム、ロジウム、ルテニウム、金、銀、オスミウム、イリジウムなどが挙げられる。これらの貴金属は、炭化水素、一酸化炭素、および窒素酸化物のいずれか除去する。貴金属49bは、担体49aに付着している。貴金属49bは、貴金属合金の形態で触媒層49に含まれていてもよい。貴金属49bは、担体49aに直接付着していてもよく、貴金属以外の物質を介して担体49aに付着していてもよい。貴金属49bは、担体49aと化学的に結合していてもよい。貴金属49bは、担体49aの微細孔をほとんど塞がない。触媒層49は、例えば、以下のように形成される。具体的には、例えば、基材48に担体49aを形成した後、担体49aの表面に貴金属49bを含む溶液を塗布する。または、担体49aが形成された基材48を、貴金属49bを含む溶液に浸漬する。そのようにして、担体49aの表面層に貴金属49bを浸み込ませて、触媒層49を形成してもよい。貴金属層49bの貴金属49bが、排ガスを浄化する。つまり、排ガスは、セル46aを通過する際に、貴金属層49bと接触して浄化される。より詳細には、触媒層49と排ガスとの反応は、排ガスと触媒層49との界面のみならず、触媒層49の内部においても進行する。触媒層49は、その内部で進行する上記反応を活用するため、一定の厚さ(例えば、5~30μm程度の厚さ)で形成される。つまり、触媒層49は、貴金属49bを含む。
 または、図8(a)、(b)に示すように、上流触媒46は、基材48と、触媒層49とを有して良い。図16(b)は、触媒層49の一例を示す上流触媒46の模式的な部分断面図である。なお、触媒層49の構成は図16(b)に示す構成に限らない。担体49aは、基材48に貴金属を付着させるために設けられている。触媒層49は、基材48の表面に積層して設けられる。担体49aは、その内部に分散された貴金属49bを基材48に付着させるために設けられている。図16(b)の例では、触媒層49は、担体49aの内部と表面に貴金属49bが分散された構造を有する。具体的には、例えば、担体49aを構成する材料と貴金属49bとを含む溶液に、基材48を浸漬させることで、触媒層49を形成してもよい。なお、この場合、貴金属49bは担体49aの内部だけでなく、触媒層49の表面上にも存在してもよい。触媒層49内の貴金属49bが、排ガスを浄化する。なお、触媒層49は、担体49aの内部のみに貴金属49bが分散された構造を有してよい。つまり、担体49aの表面上に貴金属49bが配置されていなくてもよい。
 図3に示すように、上流触媒46の排ガスの流れ方向の最大の長さをLとする。上流触媒46の排ガスの流れ方向に直交する方向の最大の長さをDとする。長さDは、上流触媒46の排ガスの流れ方向に直交する方向の最大幅である。上流触媒46の長さLは、上流触媒46の長さDより長い。上流触媒46の排ガスの流れ方向に直交する断面の形状は、例えば円形状である。なお、上流触媒46の排ガスの流れ方向に直交する断面の形状は、上下方向長さよりも左右方向長さが長い楕円形状であってもよい。これにより、エンジン本体20の下方に、上流触媒46を配置した場合であっても、地面と上流触媒46との間の距離を確保することができる。また、エンジン本体20の前方に、上流触媒46を配置した場合であっても、前輪2と上流触媒46との間の距離を確保することができる。そして、鞍乗型車両の大型化を抑制することができる。なお、上流触媒46の長さLは、上流触媒46の長さDより長くなくて良い。
 図1に示すように、自動二輪車1を左右方向に見て、上流触媒46は、エンジン本体20の下方にある。自動二輪車1を左右方向に見て、上流触媒46は、直線La1を跨いで配置される。自動二輪車1を左右方向に見て、上流触媒46の一部は、クランク軸線Crよりも前方に配置される。また、自動二輪車1を左右方向から見て、上流触媒46は、シリンダ軸線Cyの前方(下方)に配置される。自動二輪車1を左右方向に見て、上流触媒46の一部は、クランク軸線Crよりも後方に配置される。上流触媒46全体が、クランク軸線Crよりも前方に配置されてもよい。つまり、自動二輪車1を左右方向に見て、上流触媒46は、エンジン本体20の前方に配置されてもよい。自動二輪車1を左右方向に見て、上流触媒46の少なくとも一部は、クランク軸線Crよりも前方に配置されることが好ましい。これにより、上流触媒46は、燃焼室36により近い位置に配置される。そして、上流触媒46の活性化に要する時間をより短縮できる。なお、自動二輪車1を左右方向に見て、上流触媒46全体は、クランク軸線Crの後方に配置されても良い。また、自動二輪車1を左右方向に見て、上流触媒46は、シリンダ軸線Cyよりも後方(上方)に配置されても良い。自動二輪車1を左右方向に見て、シリンダ軸線Cyに直交し、且つ、クランク軸線Crを通る直線を、直線La2とする。自動二輪車1を左右方向から見て、上流触媒46は、直線La2の後方(下方)に配置される。また、自動二輪車1を左右方向から見て、上流触媒46は、直線La2の前方(上方)に配置されても良い。この場合、上流触媒46は、燃焼室36に更に近い位置に配置される。そして、上流触媒46の活性化に要する時間を更に短縮できる。
[エンジンユニットの制御]
 次に、第1実施形態のエンジンユニット11の制御の一例について説明する。図4は、第1実施形態の自動二輪車の制御ブロック図である。
 エンジンユニット11は、図3に示すように、エンジン回転速度センサ92a、スロットル開度センサ92b(スロットルポジションセンサ)、エンジン温度センサ92c(図4参照)、吸気圧センサ92d、吸気温センサ92e、上流酸素センサ92fを有する。エンジン回転速度センサ92aは、クランク軸34の回転速度、即ち、エンジン回転速度を検出する。スロットル開度センサ92bは、スロットルバルブ54の位置を検出することにより、スロットルバルブ54の開度を検出する。以下、スロットルバルブ54の開度を、スロットル開度という。エンジン温度センサ92cは、エンジン本体20の温度を検出する。吸気圧センサ92dは、吸気通路部51内の圧力)を検出する。吸気温センサ92eは、吸気通路部51内の空気の温度を検出する。上流酸素センサ92fは、排気通路部43を通過する排ガスの酸素濃度を検出する。
 エンジンユニット11は、図4に示すように、エンジン本体20の制御を行うECU90を備えている。ECU90は、エンジン回転速度センサ92a、エンジン温度センサ92c、スロットル開度センサ92b、吸気圧センサ92d、吸気温センサ92e、上流酸素センサ92f、車速センサ等の各種センサと接続されている。また、ECU90は、イグニッションコイル93、インジェクタ94、燃料ポンプ95、表示装置14(図1参照)等と接続されている。ECU90は、制御部91aと、作動指示部91bとを有する。作動指示部91bは、イグニッション駆動回路91cと、インジェクタ駆動回路91dと、ポンプ駆動回路91eとを備えている。
 イグニッション駆動回路91c、インジェクタ駆動回路91d、および、ポンプ駆動回路91eは、制御部91aからの信号を受けて、イグニッションコイル93、インジェクタ94、燃料ポンプ95をそれぞれ駆動する。イグニッションコイル93が駆動されると、点火プラグで火花放電が生じて混合ガスが点火される。燃料ポンプ95は、燃料ホースを介してインジェクタ94に接続されている。燃料ポンプ95が駆動されると、燃料タンク(図示せず)内の燃料がインジェクタ94へ圧送される。
 制御部91aは、例えばマイクロコンピュータである。制御部91aは、上流酸素センサ92fの信号、エンジン回転速度センサ92a等の信号に基づいて、イグニッション駆動回路91c、インジェクタ駆動回路91d、および、ポンプ駆動回路91eを制御する。制御部91aは、イグニッション駆動回路91cを制御することで、点火のタイミングを制御する。制御部91aは、インジェクタ駆動回路91dおよびポンプ駆動回路91eを制御することで、燃料噴射量を制御する。
 燃焼効率と、後述する触媒46の浄化効率を高めるには、燃焼室36内の混合気の空燃比は、理論空燃比(ストイキオメトリ)であることが好ましい。制御部91aは、必要に応じて、燃料噴射量を増減させる。
 以下、制御部91aによる燃料噴射量の制御(燃焼制御)の一例について説明する。
 制御部91aは、まず、エンジン回転速度センサ92a、スロットル開度センサ92b、エンジン温度センサ92c、吸気圧センサ92dの信号に基づいて、基本燃料噴射量を算出する。具体的には、スロットル開度およびエンジン回転速度に対して吸入空気量を対応付けたマップと、吸気圧およびエンジン回転速度に対して吸入空気量を対応付けたマップを用いて、吸入空気量を求める。そして、マップから求められた吸入空気量に基づいて、目標空燃比を達成できる基本燃料噴射量を決定する。スロットル開度が小さい場合には、吸気圧およびエンジン回転速度に対して吸入空気量を対応付けたマップを使用する。一方、スロットル開度が大きい場合には、スロットル開度およびエンジン回転速度に対して吸入空気量を対応付けたマップを使用する。
 また、制御部91aは、上流酸素センサ92fの信号に基づいて、基本燃料噴射量を補正するためのフィードバック補正値を算出する。具体的には、まず、上流酸素センサ92fの信号に基づいて、混合気がリーンであるかリッチであるかを判定する。なお、リッチとは、理論空燃比に対して燃料が過剰な状態をいう。リーンとは、理論空燃比に対して空気が過剰な状態をいう。制御部91aは、混合気がリーンであると判定すると、次回の燃料噴射量が増えるようにフィードバック補正値を算出する。一方、制御部91aは、混合気がリッチであると判定すると、次回の燃料噴射量が減るようにフィードバック補正値を求める。
 また、制御部91aは、エンジン温度、外気温度、外気圧等に基づいて、基本燃料噴射量を補正するための補正値を算出する。さらに、制御部91aは、加速時及び減速時の過渡特性に応じた補正値を算出する。
 制御部91aは、基本燃料噴射量と、フィードバック補正値などの補正値に基づいて、燃料噴射量を算出する。こうして求められた燃料噴射量に基づいて、燃料ポンプ95およびインジェクタ94が駆動される。このように、ECU90は、上流酸素センサ92fの信号を処理する。また、ECU90は、上流酸素センサ92fの信号に基づいて、燃焼制御を行う。
 以上、第1実施形態の自動二輪車1の構成について説明した。第1実施形態の自動二輪車1は以下の特徴を有する。
 自動二輪車1は、エンジンユニット11が搭載される。エンジンユニット11は、エンジン本体20、排気通路部43、上流触媒46、上流酸素センサ92f、及び、リン付着低減部44を有する。エンジン本体20は、燃焼室36を有するシリンダ部28を備える。排気通路部43は、大気に排ガスを放出する放出口42eを有する。排気通路部43は、燃焼室36から放出口42eまで排ガスを流す。上流触媒46は、排気通路部43において排ガスの流れ方向の最も上流にある触媒である。上流触媒46は、触媒層49を有する。触媒層49は、排ガスを浄化する貴金属を含む。つまり、上流触媒46は、燃焼室36に近い位置に配置される。従って、上流触媒46の活性化に要する時間を短縮できる。
 上流酸素センサ92fは、排気通路部43の燃焼室36と上流触媒46の間に配置される。上流酸素センサ92fは、排ガスの酸素濃度を検出する。リン付着低減部44は、触媒層49へのリンの付着を低減させる。リン付着低減部44は、リン捕捉層44を含む。リン捕捉層44は、排気通路部43の燃焼室36と触媒層49の間の上流排気管41aに配置される。つまり、リン捕捉層44は、排ガスの流れ方向の上流触媒46の上流に配置される。なお、リン付着低減部44は、上流酸素センサ92fではない。また、リン捕捉層44aは、排気通路部43の内面に塗布される。そして、リン捕捉層44は、リンと化学反応するリン反応物質で構成されてリンを捕捉する機能を持つ。また、排気通路部43には、燃焼室36から上流触媒46の間に第1曲り部43aおよび第2曲り部43bがある。排ガスは流速が早いため、排気通路部43の第1曲り部43aおよび第2曲り部43bに排ガスが衝突しやすい。そして、排気通路部43の第1曲り部43aおよび第2曲り部43bは、リンが付着しやすい。そして、リン捕捉層44は、排気通路部43の燃焼室36と上流触媒46との間に配置される。リン捕捉層44は、排ガスに含まれるリンと化学反応するリン反応物質を含む。リン捕捉層44を通過する排ガスに含まれるリンは、リン反応物質と化学反応する。リン反応物質は、例えば、リンを吸着する物質である。この場合、排ガス中のリンがリン反応物質と化学反応することにより排ガスに含まれるリンが吸着される。リン反応物質は、リン捕捉層44を通過する排ガスに含まれるリンと化学反応することにより、リンを捕捉することができる。そのため、リン捕捉層44は、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制できる。
 リン捕捉層44は、一部が、排気通路部43の第1曲り部43aおよび第2曲り部43bに配置される。排気通路部43の第1曲り部43aおよび第2曲り部43bは、リンが付着しやすい。そして、リン捕捉層44は、排気通路部43の第1曲り部43aおよび第2曲り部43bに配置される。そのため、リン捕捉層44は、排ガスに含まれるより多くのリンと化学反応することができる。そのため、リン捕捉層44は、より多くのリンを捕捉して、上流触媒46の触媒層49の表面にリンが付着することを更に抑制できる。これにより、自動二輪車1の排ガスの浄化性能のばらつきを更に抑えることができる。
 リン反応物質は、U、Mn、Sn、Ti、Fe、Zr、Ce、Al、Y、Zn、La、Mgから選ばれる少なくとも一つを有する金属酸化物である。これらのリン反応物質は、等電点が3より大きい金属酸化物である。排ガス中のリン化合物は、等電点が1付近のリン酸として存在していると考えられている。等電点が3より大きい金属酸化物は、リン化合物と金属酸化物との等電点の差が大きいため、リン化合物は金属酸化物に吸着されやすくなる。これらのリン反応物質は、金属酸化物の等電価の作用により、リンを吸着させることができる。つまり、これらのリン反応物質は、排ガス中に多く含まれるリンが触媒層49に付着することを抑えることができる。これにより、自動二輪車1の排ガスの浄化性能のばらつきを抑えることができる。
 また、リン反応物質は、Ba、Sr、Ca、La、Pr、Na、Zrから選ばれる少なくとも一つを有する金属酸化物である。これらのリン反応物質は、リンとの反応性が高い物質である。よって、リン反応物質は、上流触媒46を通過する排ガスに含まれるリンをより捕捉することができる。つまり、これらのリン反応物質は、排ガス中に多く含まれるリンが触媒層49に付着することを抑えることができる。これにより、自動二輪車1の排ガスの浄化性能のばらつきを抑えることができる。
 エンジンユニット11は、リン化合物の含有量が0.08mass%より大きいオイルの使用が指定されるエンジンユニットである。鞍乗型車両のエンジンユニットは、四輪車のエンジンユニットに比べて、リン化合物の含有量が多いオイルの使用が指定される。つまり、鞍乗型車両である自動二輪車1のエンジンユニット11は、四輪に比べて、リンが多く含まれる排ガスを排出する。リン付着低減部44は、触媒層49へのリンの付着を低減させる。つまり、リン付着低減部44であるリン捕捉層は、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制する。これにより、四輪車に比べて、リンが多く含まれる排ガスを排出する自動二輪車1の排ガスの浄化性能のばらつきを抑えることができる。
 エンジンユニット11は、トランスミッション部61を更に備える。また、エンジン本体20を潤滑するオイル及びトランスミッション部61を潤滑するオイルが、共通のオイルである。鞍乗型車両は、エンジン本体を潤滑するオイル及びトランスミッション部を潤滑するオイルが、共通のオイルである場合が多い。一方、自動車は、エンジン本体を潤滑するオイル及びトランスミッション部を潤滑するオイルが、共通のオイルではない場合が多い。つまり、鞍乗型車両である自動二輪車1は、自動車と比較して、排気量当たりのオイルの使用量が多い。そして、鞍乗型車両である自動二輪車1は、自動車と比較して、排気量当たりの排ガスに含まれるリンの含有量が多くなる。更に、トランスミッション部61は、動力伝達機構である変速ギヤ63a、64aを用いて動力を伝達する。変速ギヤ63a、64aの磨耗を防ぐために、トランスミッション部61を潤滑するオイルには、添加剤として、リン化合物が多く必要となる。つまり、エンジン本体20を潤滑するオイルにも、リン化合物が多く含まれる。従って、エンジンユニット11は、リンが多く含まれる排ガスを排出する。そのため、自動車と比較して、排気量当たりの排ガスに含まれるリンの含有量が多い自動二輪車1の排ガスの浄化性能のばらつきを抑えることができる。
 エンジンユニット11は、クラッチ部62を更に備える。そして、エンジン本体20を潤滑するオイル及びクラッチ部62を潤滑するオイルが、共通のオイルである。鞍乗型車両である自動二輪車1は、自動車と異なり、エンジン停止時にも移動ができるように、クラッチ部62を有する。また、鞍乗型車両は、エンジン本体を潤滑するオイル及びクラッチ部を潤滑するオイルが、共通のオイルである場合が多い。鞍乗型車両である自動二輪車1は、自動車と異なり、クラッチ部62が滑りやすいオイルは使用されない。リン化合物の含有量が少ないオイルは、クラッチ部が滑りやすいオイルである場合が多い。自動車で使用されるリン化合物の含有量が少ないオイルは、鞍乗型車両である自動二輪車1では使用されない。つまり、鞍乗型車両である自動二輪車1のエンジンユニット11は、自動車のエンジンユニットに比べて、リン化合物の含有量が多いオイルが使用される。つまり、鞍乗型車両である自動二輪車1は、自動車に比べて、リンが多く含まれる排ガスを排出する。リン付着低減部44は、触媒層49へのリンの付着を低減させる。つまり、リン付着低減部44であるリン捕捉層44は、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制する。これにより、自動車に比べて、リンが多く含まれる排ガスを排出する自動二輪車1の排ガスの浄化性能のばらつきを抑えることができる。
 エンジンユニット11は、自然空冷式のエンジンユニットである。自然空冷式のエンジンユニット11は、燃焼室36の温度が高い。つまり、自然空冷式のエンジンユニット11は、強制空冷式のエンジンユニットや水冷式のエンジンユニットと比べて、オイルに含まれるリン化合物が燃焼室36で多く分解される。そして、自然空冷式のエンジンユニットは、強制空冷式のエンジンユニットや水冷式のエンジンユニットと比べて、多くのリンが含まれる排ガスが排出される。リン付着低減部44は、触媒層49へのリンの付着を低減させる。つまり、リン付着低減部44であるリン捕捉層は、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制する。これにより、自然空冷式のエンジンユニット11を有する自動二輪車1であっても、排ガスの浄化性能のばらつきを抑えることができる。
 エンジン本体20を潤滑するオイルは、エンジン本体20の壁面温度よりも蒸発温度が高いオイルである。エンジン本体20を潤滑するオイルに含まれるリン化合物が燃焼室36で分解する量を抑えることができる。そして、排ガスに含まれるリンの量を抑制することができる。これにより、自動二輪車1の排ガスの浄化性能のばらつきを抑えることができる。
 上流酸素センサ92fは、検出素子81を有する。そして、上流酸素センサ92fの検出素子は、酸素センサ用触媒層86を有する。酸素センサ用触媒層86は、排ガスを浄化する。酸素センサ用触媒層86は、排ガス中の水素を燃焼させる能力の高いPt-Rh等の貴金属を含む。つまり、酸素センサ用触媒層86は、排ガス中の水素を浄化する。酸素センサ用触媒層86は、水素による影響を抑制するため、上流酸素センサ92fの検出素子81に設けられる。水素による影響とは、以下の事象である。水素は分子量が小さく、拡散速度が非常に速いため、上流酸素センサ92fの検出素子81に到達しやすい。検出素子81の電極で水素の平衡化反応が発生し、出力がシフトしてしまう。そして、酸素センサ用触媒層86も、触媒層49と同様に、リンが付着する。そして、リンのガラス化が生じることにより、上流酸素センサ92fの検出精度が低下する。上流酸素センサ92fは、排気通路部43のリン付着低減部44と上流触媒46の間に配置される。リン付着低減部44は、排ガスに含まれるリンを捕捉する。そのため、上流酸素センサ92fの酸素センサ用触媒層86に到達するリンの量を低減することができる。よって、上流酸素センサ92fの検出精度が向上する。
 上流酸素センサ92fは、燃焼室36から上流酸素センサ92fまでの経路長が、上流酸素センサ92fから上流触媒46までの経路長より長い位置に配置される。つまり、上流酸素センサ92fは、燃焼室36より上流触媒46に近い位置に配置される。また、上流酸素センサ92fは、上流酸素センサ92fは、排気管41から上流酸素センサ92fまでの経路長が、上流酸素センサ92fから上流触媒46までの経路長より長い位置に配置される。つまり、上流酸素センサ92fは、上流排気管41aの上流端より上流触媒46に近い位置に配置される。更に、上流酸素センサ92fは、上流酸素センサ92fは、上流排気管41aの上流端から上流酸素センサ92fまでの経路長が、上流酸素センサ92fから上流排気管41aの下流端までの経路長より長い位置に配置される。上流酸素センサ92fは、上流排気管41aの上流端より下流端に近い位置に配置される。上流酸素センサ92fより上流に配置されたリン付着低減部44は、上流酸素センサ92fを通過する前の排ガスに含まれるリンを捕捉する。上流酸素センサ92fが燃焼室36より上流触媒46に近い位置に配置されると、上流酸素センサ92fが燃焼室36より上流触媒46に近い位置に配置される場合と比較して、上流酸素センサ92fの上流に配置されるリン付着低減部44の表面積が多くなる。また、上流酸素センサ92fが排気管41の上流端より上流触媒46に近い位置に配置されると、上流酸素センサ92fが上流触媒46より排気管41の上流端に近い位置に配置される場合と比較して、上流酸素センサ92fの上流に配置されるリン付着低減部44の表面積がより多くなる。上流酸素センサ92fが上流排気管41aの上流端より下流端に近い位置に配置されると、上流酸素センサ92fが上流排気管41aの下流端より上流端に近い位置に配置される場合と比較して、上流酸素センサ92fの上流に配置されるリン付着低減部44の表面積がより多くなる。そして、上流酸素センサ92fより上流に配置されたリン付着低減部44は、上流酸素センサ92fに到達するリンの量を低減することができる。よって、上流酸素センサ92fに付着するリンを低減できる。そして、上流酸素センサ92fの検出精度が向上する。
(第2実施形態)
 次に、本発明の実施形態の第2の具体例である第2実施形態に係る自動二輪車について、図9および図10に基づいて、説明する。但し、上記第1実施形態と同様の構成を有するものについては、同じ符号を用いてその説明を省略する。図9(a)は、第2実施形態の自動二輪車のエンジンユニットの排気通路部とリン付着低減部と酸素センサを示す部分断面図である。図9(b)は図9(a)のX2-X2断面図である。図10は、第2実施形態のエンジンユニットの排気通路部とリン付着低減部と酸素センサと上流触媒を示す模式図である。第2実施形態に係る自動二輪車のエンジンユニットは、第1実施形態に係る自動二輪車のエンジンユニット11と、リン付着低減部の構成が異なる。リン付着低減部以外の構成は、第1実施形態に係る自動二輪車のエンジンユニット11と同じである。
 図9に示すように、本実施形態のエンジンユニットは、5つのリン付着低減部144を有する。なお、図9(a)では、第2曲り部43bの記載を省略している。5つのリン付着低減部144は、上流排気管41a内に配置されている。つまり、5つのリン付着低減部144は、排気通路部43の燃焼室36と上流触媒46の間に配置されている。図10に示すように、燃焼室36から排気管41の上流端までの経路長をL21とする。排気管41の上流端から排ガスの流れ方向の最も下流のリン捕捉構造体144までの経路長をL22とする。排ガスの流れ方向の最も下流のリン捕捉構造体144から上流触媒46までの経路長をL23とする。排ガスの流れ方向の最も下流のリン捕捉構造体144は、燃焼室36から排ガスの流れ方向の最も下流のリン捕捉構造体144までの経路長L21+L22が、排ガスの流れ方向の最も下流のリン捕捉構造体144から上流触媒46までの経路長L23よりも短い位置に配置される。つまり、5つのリン捕捉構造体144は、燃焼室36からリン捕捉構造体144までの経路長が、リン捕捉構造体144から上流触媒46までの経路長よりも短い位置に配置される。図9に示すリン付着低減部144は、リン捕捉構造体である。リン捕捉構造体144は、排ガスの流速を低減させてリンを捕捉する機能を持つ。リン捕捉構造体144は、排気通路部43の表面積を増大させる表面積増大部でもある。また、リン捕捉構造体144は、排気通路部43を通過する排ガスに対して抵抗を与える抵抗部でもある。より詳細には、リン捕捉構造体144は、上流排気管41aの内側に溶接などで接着されて配置された複数の半円形の板状部材である。リン捕捉構造体144は、上流排気管41aの下流端より上流端に近い位置に配置される。また、リン捕捉構造体144は、排気通路部43の排ガスの流れ方向に交差する方向に沿って配置される。図9に示す例では、リン捕捉構造体144は、排気通路部43の排ガスの流れ方向に垂直となる方向に沿って配置される。排気通路部43を通過する排ガスは、リン捕捉構造体144に衝突する。また、リン捕捉構造体144は、リン捕捉構造体144が配置される上流排気管41aの表面積を大きい。つまり、リン捕捉構造体144が配置された上流排気管41aは、リン捕捉構造体144が配置されない上流排気管41aと比較して、排ガスと接触する表面積が大きい。よって、リン捕捉構造体144は、排ガスと接触する表面積を増大させる。そして、排ガスは流速が速いので、排気通路部43にリン捕捉構造体144を配置すると、排ガスの流速を低下することができる。排ガスの流速を低下させるリン捕捉構造体144には、リンが付着しやすい。リン捕捉構造体144は、接触した排ガスに含まれるリンを捕捉することができる。
 リン捕捉構造体144は、その表面にリン反応物質が形成されたリン捕捉構造体層144aを有することが好ましい。リン捕捉構造体層144aは、リン反応物質と担体で形成されることが好ましい。リン反応物質は、上述の通り、リンと化学反応する物質である。リン捕捉構造体144は、リンを捕捉する機能を有する。これにより、リン捕捉構造体144は、排ガスからリンをより多く捕捉することができる。
 なお、リン捕捉構造体144は、図9の例では、5つの板状部材で構成されるが、それに限らない。リン捕捉構造体144は、1つの板状部材であっても良いし、5つより少ない板状部材であっても良いし、5つより多い板状部材であっても良い。また、リン捕捉構造体144は、上流排気管41aの下流端より上流端に近い位置に配置されているが、それに限らない。リン捕捉構造体144は、燃焼室36からリン捕捉構造体144までの経路長が、リン捕捉構造体144から上流触媒46までの経路長よりも短い位置であれば、上流排気管41aのいずれの位置にも配置することができる。また、リン捕捉構造体144は、図9の例では、半円形の板状部材であるが、それに限らない。リン捕捉構造体144は、リング形状、螺旋形状、その他の様々な形状の板状部材であっても良い。また、リン捕捉構造体144は、上流排気管41a内に配置された円筒状の部材であってもよい。
 上流酸素センサ92fは、上流排気管41aに配置される。つまり、上流酸素センサ92fは、排気通路部43に配置される。上流酸素センサ92fは、排気通路部43の触媒46より上流に配置される。上流酸素センサ92fは、排気通路部43のリン捕捉構造体144より下流に配置される。つまり、上流酸素センサ92fは、排気通路部43のリン捕捉構造体144と上流触媒46の間に配置される。
 以上、第2実施形態の自動二輪車は、第1実施形態と同様の構成については、第1実施形態で述べた効果と同様の効果を奏する。さらに、第2実施形態の自動二輪車は、以下の特徴を有する。
 リン捕捉構造体144は、排気通路部43の燃焼室36と上流触媒46の間に配置される。つまり、リン捕捉構造体144は、排ガスの流れ方向の上流触媒46の上流に配置される。リン捕捉構造体144は、排ガスの流速を低減させてリンを捕捉する機能を持つ。また、排ガスは流速が速いので、排気通路部43に構造体を配置すると、排ガスの流速を低下することができる。排ガスの流速を低下させる構造体には、リンが付着しやすい。燃焼室36からリン捕捉構造体144までの経路長は、リン捕捉構造体144から上流触媒46までの経路長よりも短い。つまり、リン捕捉構造体144は、燃焼室36に近い位置に配置される。リン捕捉構造体144は、排ガスの流速を低減させて、排ガスに含まれるリンを付着させる。そのため、リン捕捉構造体144は、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制できる。これにより、自動二輪車1の排ガスの浄化性能のばらつきを抑えることができる。
 また、リン捕捉構造体144は、リン捕捉構造体層144aを有する。リン捕捉構造体層144aは、少なくとも表面にリンと化学反応するリン反応物質が形成されてリンを捕捉する機能を持つ。リン捕捉構造体層144aは、排ガスに含まれるリンと化学反応させる。ここで、リン捕捉構造体144は、排ガスの流量を低減させて、排ガスに含まれるリンを付着させる。さらに、リン捕捉構造体層144aは、リンと化学反応することにより、排ガスに含まれるリンを付着させる。そのため、リン捕捉構造体層144aは、より多くのリンを捕捉して、上流触媒46の触媒層49の表面にリンが付着することを更に抑制できる。これにより、自動二輪車1の排ガスの浄化性能のばらつきを更に抑えることができる。
(第3実施形態)
 次に、本発明の実施形態の第3の具体例である第3実施形態に係る自動二輪車について、図11に基づいて、説明する。但し、上記第1実施形態と同様の構成を有するものについては、同じ符号を用いてその説明を省略する。図11(a)は、第3実施形態の自動二輪車のエンジンユニットの排気通路部とリン付着低減部と酸素センサを示す部分断面図である。図11(b)は図11(a)のX3-X3断面図である。なお、図11(a)では、第2曲り部43bの記載を省略している。第3実施形態に係る自動二輪車のエンジンユニットは、第1実施形態に係る自動二輪車のエンジンユニット11と、リン捕捉層の構成が異なる。リン捕捉層以外の構成は、第1実施形態に係る自動二輪車のエンジンユニット11と同じである。
 上記第1実施形態において、リン捕捉層44は、上流排気管41aの内面の全周に亘って配置されている。しかし、リン捕捉層は、上流排気管41aの内面の周方向の一部分に配置されてもよい。第3実施形態では、図11(a)及び図11(b)に示すように、リン捕捉層444は、上流排気管41aの内面の半周に亘って配置される。リン捕捉層444は、排気通路部43の燃焼室と上流触媒46の間に配置される。リン捕捉層444の一部は、排気通路部43の第1曲り部43aおよび第2曲り部43bに配置される。そして、リン捕捉層444は、リンと化学反応するリン反応物質で構成されてリンを捕捉する機能を持つ。リン反応物質は、例えば、リンを吸着する物質である。この場合、排ガス中のリンがリン反応物質と化学反応することにより排ガスに含まれるリンが吸着される。
 以上、第3実施形態の自動二輪車は、第1実施形態と同様の構成については、第1実施形態で述べた効果と同様の効果を奏する。さらに、第3実施形態の自動二輪車は、以下の特徴を有する。
 排ガスは流速が早いため、排気通路部43の第1曲り部43aおよび第2曲り部43bに排ガスが衝突しやすい。そして、排気通路部43の第1曲り部43aおよび第2曲り部43bは、リンが付着しやすい。そして、リン捕捉層444の一部は、排気通路部43の第1曲り部43aおよび第2曲り部43bに配置される。リン捕捉層44は、排ガスに含まれるリンと化学反応するリン反応物質を含む。リン捕捉層444を通過する排ガスに含まれるリンは、リン反応物質と化学反応する。リン反応物質は、リン捕捉層444を通過する排ガスに含まれるリンと化学反応することにより、リンを捕捉することができる。そのため、リン捕捉層444は、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制できる。
(第4実施形態)
 次に、本発明の実施形態の第4の具体例である第4実施形態に係る自動二輪車について、図12及び図13に基づいて、説明する。但し、上記第2実施形態と同様の構成を有するものについては、同じ符号を用いてその説明を省略する。図12(a)は、第4実施形態の自動二輪車のエンジンユニットの排気通路部とリン付着低減部と酸素センサを示す部分断面図である。図12(b)は図12(a)のX4-X4断面図である。なお、図12(a)では、第2曲り部43bの記載を省略している。図13は、第4実施形態のエンジンユニットの排気通路部とリン付着低減部と酸素センサと上流触媒を示す模式図である。第4実施形態に係る自動二輪車のエンジンユニットは、第1実施形態に係る自動二輪車のエンジンユニット11と、リン捕捉構造体の構成が異なる。リン捕捉構造体以外の構成は、第2実施形態に係る自動二輪車のエンジンユニット11と同じである。
 上記第2実施形態において、リン捕捉構造体144は、上流排気管41a内に配置された半円状の複数の板材から形成されている。しかし、図12(a)及び図12(b)に示すように、リン捕捉構造体544は、多孔構造体である。排ガスの流れ方向に直交する方向において、リン捕捉構造体544の外径は、排気通路部43の内径とほぼ同じである。リン捕捉構造体544は、排気通路部43の燃焼室36と上流触媒46の間に配置される。リン捕捉構造体544は、多孔構造体である。リン捕捉構造体544は、排ガスの流れ方向に直交する方向の断面に複数のセルが形成される。リン捕捉構造体544の複数のセルは、排ガスの流れ方向の上流から下流まで貫通している。リン捕捉構造体544のセルの排ガスの流れ方向に直交する方向の断面の最大幅は、排ガスの流れ方向の長さより十分に小さい。リン捕捉構造体544は、上流排気管41a内周面に溶接などで接着されて配置される。図13に示すように、燃焼室36から排気管41の上流端までの経路長をL51とする。リン捕捉構造体544から上流触媒46までの経路長をL52とする。排気管41の上流端からリン捕捉構造体544までの経路長は0である。リン捕捉構造体544は、燃焼室36からリン捕捉構造体544までの経路長L51が、リン捕捉構造体544から上流触媒46までの経路長L52よりも短い位置に配置される。リン捕捉構造体544は、排気通路部43を通過する排ガスに対して抵抗を与える抵抗部でもある。リン捕捉構造体544は、上流排気管41aの排ガスの流れ方向の上流に配置される。排気通路部43を通過する排ガスは、リン捕捉構造体544の複数のセルを通過する。また、リン捕捉構造体544の表面積は、複数のセルの表面積の合計となる。従って、リン捕捉構造体544が配置された上流排気管41aは、リン捕捉構造体544が配置されない上流排気管41aと比較して、排ガスと接触する表面積が大きい。よって、リン捕捉構造体544は、排ガスと接触する表面積を増大させる。そして、排ガスは流速が速いので、排気通路部43にリン捕捉構造体544を配置すると、排ガスの流速を低下することができる。排ガスの流速を低下させるリン捕捉構造体544には、リンが付着しやすい。リン捕捉構造体544は、接触した排ガスに含まれるリンを捕捉することができる。
 リン捕捉構造体544は、その表面にリン反応物質が形成されたリン捕捉構造体層544aを有することが好ましい。リン捕捉構造体層544aは、リン反応物質と担体で形成されることが好ましい。リン反応物質は、上述の通り、リンと化学反応する物質である。リン捕捉構造体544は、リンを捕捉する機能を有する。これにより、リン捕捉構造体544は、排ガスからリンをより多く捕捉することができる。
 上流酸素センサ92fは、上流排気管41aのリン捕捉構造体544より下流に配置される。つまり、上流酸素センサ92fは、リン捕捉構造体544と上流触媒46の間に配置される。つまり、リン捕捉構造体544は、上流酸素センサを通過する前の排ガスに含まれるリンを捕捉する。そのため、上流酸素センサ92fに到達するリンの量を低減することができる。よって、上流酸素センサ92fに付着するリンを低減できる。そして、上流酸素センサ92fの検出精度を向上できる。
 以上、第2実施形態の自動二輪車は、第1実施形態と同様の構成については、第1実施形態で述べた効果と同様の効果を奏する。さらに、第2実施形態の自動二輪車は、以下の特徴を有する。
 リン捕捉構造体544は、排気通路部43の燃焼室36と上流触媒46の間に配置される。つまり、リン捕捉構造体544は、排ガスの流れ方向の上流触媒46の上流に配置される。リン捕捉構造体544は、排ガスの流速を低減させてリンを捕捉する機能を持つ。また、排ガスは流速が速いので、排気通路部43に構造体を配置すると、排ガスの流速を低下することができる。排ガスの流速を低下させる構造体には、リンが付着しやすい。燃焼室36からリン捕捉構造体544までの経路長L51は、リン捕捉構造体544から上流触媒46までの経路長L52よりも短い。つまり、リン捕捉構造体544は、燃焼室36に近い位置に配置される。リン捕捉構造体544は、排ガスの流速を低減させて、排ガスに含まれるリンを付着させる。そのため、リン捕捉構造体544は、リンを捕捉して、上流触媒46の触媒層49にリンが付着することを抑制できる。これにより、自動二輪車1の排ガスの浄化性能のばらつきを抑えることができる。
 また、リン捕捉構造体544は、リン捕捉構造体層544aを有する。リン捕捉構造体層144aは、少なくとも表面にリンと化学反応するリン反応物質が形成されてリンを捕捉する機能を持つ。リン捕捉構造体層544aは、排ガスに含まれるリンと化学反応させる。ここで、リン捕捉構造体544は、排ガスの流量を低減させて、排ガスに含まれるリンを付着させる。さらに、リン捕捉構造体層544aは、リンと化学反応することにより、排ガスに含まれるリンを付着させる。そのため、リン捕捉構造体層544aは、より多くのリンを捕捉して、上流触媒46の触媒層49の表面にリンが付着することを更に抑制できる。これにより、自動二輪車1の排ガスの浄化性能のばらつきを更に抑えることができる。
 以上、本発明の好適な実施の形態について説明したが、本発明は上記実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。また、後述する変更例は適宜組み合わせて実施することができる。
 上記実施形態において、エンジンユニットが有する触媒は、1つの上流触媒のみである。しかし、エンジンユニットは、複数の触媒を有して良い。複数の触媒は、排気通路部内に配置される。排気通路部内に、複数の触媒を配置することにより、以下の効果が得られる。排ガスは、複数の触媒で浄化される。したがって、触媒による排ガスの浄化性能をより向上させることができる。図14に基づいて、触媒を複数有するエンジンユニットの変形例について説明する。図14(a)及び(b)は、エンジンユニットの排気通路部とリン付着低減部と酸素センサと触媒の変形例を示す模式図である。なお、第1実施形態と同じ部材については、同じ符号を付して、その説明を省略する。
 図14(a)では、エンジンユニットは、2つの触媒を有する。2つの触媒は、触媒646と触媒46である。触媒646及び触媒46は、排気通路部43内に配置されている。触媒646は、上流排気管41a内に配置される。触媒646は、排ガスの流れ方向の最も上流の触媒である。従って、触媒646が、本発明における上流触媒である。以下、この変形例において、触媒646を、上流触媒646と記載する。上流触媒646は、円筒状に形成されて、上流排気管41aの内面に配置される。なお、上流触媒646は、いわゆる三元触媒である。上流触媒646は、上流排気管41aの内面側に配置された円筒状の基材と、この基材の表面に積層された円筒状の触媒層とを有する。
 上流排気管41a内には、リン付着低減部であるリン捕捉層644が配置されている。リン捕捉層644は、上流排気管41aの上流端から上流触媒646の上流端までの間の、上流排気管41aの内面の全周に亘って配置される。リン捕捉層644は、排ガスに含まれるリンと化学反応するリン反応物質が設けられる化学反応部である。リン捕捉層644は、リン反応物質が上流排気管41aの内周面に塗布されて、層状に形成される。リン捕捉層644は、排ガスに含まれるリンと化学反応するリン反応物質を含む。リン捕捉層644を通過する排ガスに含まれるリンは、リン反応物質と化学反応する。リン反応物質は、リン捕捉層644を通過する排ガスに含まれるリンと化学反応することにより、リンを捕捉することができる。そのため、リン捕捉層644は、リンを捕捉して、上流触媒646の触媒層にリンが付着することを抑制できる。
 上流酸素センサ92fは、上流排気管41aに配置される。上流酸素センサ92fは、排気通路部43の上流触媒646よりも上流に配置される。上流酸素センサ92fは、上流酸素センサ92fから排気管41の上流端までの経路長が、上流酸素センサ92fから上流触媒646までの経路長より長い位置に配置されることが好ましい。つまり、上流酸素センサ92fは、上流排気管41aの上流端より上流触媒646に近い位置に配置されることが好ましい。上流酸素センサ92fより上流に配置されたリン捕捉層644は、上流酸素センサ92fを通過する前の排ガスに含まれるリンを捕捉する。上流酸素センサ92fが上流排気管41aの上流端より上流触媒646に近い位置に配置されると、上流酸素センサ92fが上流触媒646より上流排気管41aの上流端に近い位置に配置される場合と比較して、上流酸素センサ92fより上流に配置されるリン捕捉層644の表面積が多くなる。そして、上流酸素センサ92fより上流に配置されたリン捕捉層644は、上流酸素センサ92fに到達するリンの量を低減することができる。よって、上流酸素センサ92fに付着するリンを低減できる。従って、上流酸素センサ92fの検出精度が向上する。なお、上流酸素センサ92fは、上流酸素センサ92fから上流排気管41aの上流端までの経路長が、上流酸素センサ92fから上流排気管41aの下流端までの経路長より長い位置に配置されてもよい。また、上流酸素センサ92fは、上流酸素センサ92fから燃焼室36までの経路長が、上流酸素センサ92fから上流触媒46までの経路長より長い位置に配置されてもよい。
 図14(b)では、エンジンユニットは、2つの触媒を有する。2つの触媒は、触媒46と触媒746である。触媒46及び触媒746は、排気通路部743に配置されている。排気通路部743は、シリンダ排気通路部38と、第1排気管741aと、第2排気管741bと、第3排気管741cと、第1ケーシング47と、第2ケーシング747と、を備える。排気管741は、第1排気管741aと、第2排気管741bと、第3排気管741cを含む。第1排気管741aの上流端部は、シリンダ排気通路部38に接続される。第1ケーシング47の上流端は、第1排気管741aに接続される。第1ケーシング47の下流端は、第2排気管741bに接続される。第2ケーシング747の上流端は、第2排気管741bに接続される。第2ケーシング747の下流端は、第3排気管741cに接続される。第3排気管741cの下流端部は、消音器42内に挿入される。触媒46は、第1ケーシング47内に配置される。触媒746は、第2ケーシング747内に配置される。触媒46は、排ガスの流れ方向の最も上流で排ガスを浄化する触媒層49(図7参照)を有する。従って、触媒46が、本発明における上流触媒である。以下、この変形例において、触媒46を上流触媒46と記載する。第1ケーシング47及び第2ケーシング747の構成は、第1実施形態の第1ケーシング47の構成と同様であり、その説明を省略する。上流触媒46及び触媒746の構成は、第1実施形態の触媒46の構成と同様であり、その説明を省略する。
 第1排気管741aの燃焼室36と上流触媒46との間には、リン捕捉層744が配置されている。リン捕捉層744は、第1排気管741aの内面の全周に亘って配置される。リン捕捉層744は、排ガスに含まれるリンと化学反応するリン反応物質が設けられる化学反応部である。リン捕捉層744は、リン反応物質が第1排気管741aの内周面に塗布されて、層状に形成される。リン捕捉層744は、排ガスに含まれるリンと化学反応するリン反応物質を含む。リン捕捉層744を通過する排ガスに含まれるリンは、リン反応物質と化学反応する。リン反応物質は、リン捕捉層744を通過する排ガスに含まれるリンと化学反応することにより、リンを捕捉することができる。そのため、リン捕捉層744は、リンを捕捉して、上流触媒646の触媒層にリンが付着することを抑制できる。
 上流酸素センサ92fは、排気通路部743の第1排気管741aに配置される。上流酸素センサ92fは、排気通路部743の上流触媒46よりも上流に配置される。また、上流酸素センサ92fは、第1排気管741aの上流端より下流端に近い位置に配置されることが好ましい。つまり、上流酸素センサ92fから第1排気管741aの上流端までの距離は、上流酸素センサ92fから第1排気管741aの下流端までの距離より長いことが好ましい。上流酸素センサ92fより上流に配置されたリン捕捉層744は、上流酸素センサ92fを通過する前の排ガスに含まれるリンを捕捉する。上流酸素センサ92fが第1排気管741aの上流端より第1排気管741aの下流端に近い位置に配置されると、上流酸素センサ92fが第1排気管741aの下流端より第1排気管741aの上流端に近い位置に配置される場合と比較して、上流酸素センサ92fより上流に配置されるリン捕捉層744の表面積が多くなる。そして、上流酸素センサ92fより上流に配置されたリン捕捉層744は、上流酸素センサ92fの酸素センサ用触媒層86に到達するリンの量を低減することができる。よって、上流酸素センサ92fに付着するリンを低減できる。従って、上流酸素センサ92fの検出精度が向上する。なお、上流酸素センサ92fは、上流酸素センサ92fから第1排気管741aの上流端までの経路長が、上流酸素センサ92fから上流触媒46までの経路長より長い位置に配置されてもよい。また、上流酸素センサ92fは、上流酸素センサ92fから燃焼室36までの経路長が、上流酸素センサ92fから上流触媒46までの経路長より長い位置に配置されてもよい。
 本発明において、触媒は、複数の触媒ピースが近接して配置された構成としてもよい。各触媒ピースは、基材と触媒層を有する。ここで、近接とは、各触媒ピースの排ガスの流れ方向の長さよりも、触媒ピース同士の離間距離が短い状態のことである。複数の触媒ピースの基材の組成は、一種類でも、複数種類でもよい。複数の触媒ピースの触媒層に用いられる貴金属は、一種類でも、複数種類でもよい。触媒層に用いられる担体の組成は、一種類でも、複数種類でもよい。
 上記実施形態において、リン付着低減部は、上流排気管41a内に配置されている。しかし、本発明において、リン付着低減部は、シリンダ排気通路部内及び上流排気管内の少なくともいずれか一方に配置されて良い。つまり、リン付着低減部は、排気通路部の燃焼室から上流触媒までの間に配置されていれば良い。
 上記実施形態において、ケーシングと、排気管とは、別々に形成された後に接合されている。しかし、ケーシングと、排気管とは、一体成形されていてもよい。
 上記実施形態において、リン捕捉層は、リンと化学反応するリン反応物質で構成されてリンを捕捉する機能を持つ。しかしながら、本発明において、リン捕捉層は、表面がリンを捕捉する機能を持つ粗面で形成されてリンを捕捉する機能を持っても良い。この場合、リン捕捉層は、例えば、リン反応物質以外の物質を、排気通路部の内面に塗布することにより、表面を粗面に形成する。そして、リン捕捉層は、排ガスに含まれるより多くのリンを、粗面で形成された表面に付着させることができる。
 上記実施形態において、リン捕捉構造体層は、少なくとも表面にリンと化学反応するリン反応物質が形成されてリンを捕捉する機能を持つ。しかしながら、本発明において、リン捕捉構造体層は、表面が粗面で形成されてリンを捕捉する機能を持っても良い。この場合、リン捕捉構造体層は、例えば、リン反応物質以外の物質を、排気通路部の内面に塗布することにより、表面を粗面に形成する。そして、リン捕捉構造体層は、排ガスに含まれるリンを粗面で形成された表面に付着させることができる。
 本発明において、リン付着低減部は、リン捕捉層とリン付着低減部の両方を含んでよい。
 本発明において、排気管の形状は、図示した形状に限定されない。また、消音器の内部構造は、図示した構造に限定されない。
 上記実施形態において、上流触媒及び消音器は、鞍乗型車両の左右方向中央より右方に配置されている。しかし、本発明において、上流触媒は、鞍乗型車両の左右方向中央または左右方向中央より左方に配置されていてもよい。また、消音器は、鞍乗型車両の左右方向中央より左方に配置されていてもよい。なお、鞍乗型車両の左右方向中央とは、上下方向から見て、前輪の左右方向中央と後輪の左右方向中央を通る直線の位置である。
 上記実施形態において、排気通路部は、その一部が、クランク軸線Crの下方に位置している。しかし、本発明において、排気通路部は、その一部が、クランク軸線Crの上方に位置していてもよい。
 上記実施形態において、触媒は、三元触媒である。しかし、本発明において、触媒は、三元触媒でなくてもよい。本発明において、触媒は、炭化水素、一酸化炭素、および窒素酸化物のいずれか1つまたは2つを除去する触媒であってもよい。また、本発明において、上流触媒は、酸化還元触媒でなくてもよい。本発明において、上流触媒は、酸化または還元のいずれか一方だけで有害物質を除去する酸化触媒または還元触媒であってもよい。還元触媒の一例として、窒素酸化物を還元反応によって除去する触媒がある。
 本発明において、触媒層が積層される基材は、セラミック製の基材であってもよい。
 本発明において、触媒層が積層される基材は、多孔構造体である。多孔構造体が有する孔は、三角形、四角形、または、六角形であってよい。例えば、多孔構造体は、ハニカム構造体であってもよい。
 本発明において、触媒の配置位置は、図示された位置に限定されない。例えば、上記第1実施形態において、上流触媒46は、全体が、クランク軸線Crよりも前方に配置されている。また、上流触媒46は、自動二輪車1を左右方向に見て、エンジン本体20の下方に配置されている。しかし、本発明において、上流触媒は、少なくとも一部が、クランク軸線Crよりも前方に配置されてもよい。また、本発明において、上流触媒は、鞍乗型車両を左右方向に見て、エンジン本体の前方に配置されてもよい。更に、本発明において、上流触媒の少なくとも一部は、クランク軸線Crよりも後方に配置されてもよい。また、上流触媒46は、自動二輪車1を左右方向に見て、エンジン本体20の後方に配置されていてもよい。これにより、クランク軸線Crよりも前方に配置すると、上流触媒に流入する排ガスの温度が高すぎる場合に、上流触媒がシンタリングを起こしてしまうことを防止することができる。
 上記実施形態において、上流酸素検出部材の配置位置は、各図に示された位置に限定されない。例えば、本発明において、上流酸素検出部材は、排気通路部の上流触媒より排ガスの流れ方向の上流のいずれの位置に配置されてもよい。また、本発明において、エンジンユニットは、下流酸素検出部材を更に備えてよい。下流酸素検出部材は、排気通路部の触媒層と放出口との間の位置に設けられる。言い換えると、下流酸素検出部材は、排気通路部の上流触媒より排ガスの流れ方向の下流のいずれかの位置に配置される。下流酸素検出部材は、排ガスの酸素濃度を検出する。下流酸素検出部材で検出した排ガスの酸素濃度に基づいて、エンジンユニットを制御することができる。また、下流酸素検出部材で検出した排ガスの酸素濃度に基づいて、鞍乗型車両の排ガスの浄化性能の劣化を検出することができる。そして、鞍乗型車両の排ガスの浄化性能のばらつきを抑えることができる。つまり、本発明において、上流酸素検出部材および下流酸素検出部材は、排気通路部において、上流触媒の上流と下流にそれぞれ1つずつ配置されても良い。
 本発明において、上流酸素センサ検出部材および下流酸素検出部材は、ヒータを内蔵していてもよい。上流酸素センサ検出部材および下流酸素検出部材の検出素子は、高温に加熱されて活性化状態となったときに、酸素濃度を検知できる。そのため、上流酸素検出部材および下流酸素検出部材がヒータを内蔵していると、エンジン駆動時にヒータにより検出素子を加熱することで、酸素濃度の検出の開始を早めることができる。
 上記実施形態において、エンジン駆動時に排気通路部を流れるガスは、燃焼室から排出された排ガスだけである。しかし、本発明において、排気通路部に空気を供給する二次空気供給機構を備えていてもよい。二次空気供給機構の具体的な構成は、公知の構成が採用される。二次空気供給機構は、エアポンプによって強制的に排気通路部に空気を供給する構成であってもよい。また、二次空気供給機構は、排気通路部内の負圧によって空気を排気通路部に引き込む構成であってもよい。この場合、二次空気供給機構は、排ガスによる圧力脈動に応じて開閉するリード弁を備える。二次空気供給機構を設ける場合、上流酸素検出部材の配置位置は、排気通路部内の空気が流入する位置よりも上流に設けても下流に設けてもよい。
 上記実施形態において、燃焼室に燃料を供給するために、インジェクタが用いられている。本発明において、燃焼室に燃料を供給する燃料供給装置は、インジェクタに限らない。例えば、負圧により燃焼室に燃料を供給する燃料供給装置を設けてもよい。
 上記実施形態において、1つの燃焼室に対して、排気ポートは1つだけ設けられている。しかし、本発明において、1つの燃焼室に対して複数の排気ポートが設けられていてもよい。例えば、可変バルブ機構を備える場合がこの変形例に該当する。複数の排気ポートに接続される排気経路は、消音器よりも上流で集合する。複数の排気ポートに接続される排気経路は、シリンダ部において集合することが好ましい。ここでの排気経路とは、燃焼室から、大気に面する放出口に至る経路である。
 本発明において、燃焼室は、主燃焼室と、主燃焼室につながる副燃焼室とを有する構成であってもよい。この場合、主燃焼室と副燃焼室とによって、1つの燃焼室が形成される。
 上記実施形態において、クランクケース部と、シリンダ部とは、別体である。しかし、本発明において、クランクケース部とシリンダ部とは、一体成形されていてもよい。また、上記実施形態において、シリンダボディと、シリンダヘッドと、ヘッドカバーとは、別体である。しかし、本発明において、シリンダボディと、シリンダヘッドと、ヘッドカバーのいずれか2つまたは3つが一体成形されていてもよい。
 上記実施形態において、エンジン本体は、自然空冷式のエンジンである。しかし、本発明において、エンジン本体は、強制空冷式のエンジンであって良い。なお、自然空冷式のエンジンは、強制水冷式のエンジンと比較して、リンがより多く含まれる排ガスを排出する。また、本発明において、エンジン本体は、水冷式のエンジンであって良い。なお、空冷式のエンジンは、水冷式のエンジンと比較して、リンがより多く含まれる排ガスを排出する。
 上記実施形態において、エンジンユニットは、単気筒エンジンである。しかし、本発明において、エンジンユニットは、複数気筒のエンジンであってもよい。また、エンジンユニットは、4ストロークエンジンである。しかし、エンジンユニットは、2ストロークのエンジンユニットであってもよい。
 上記実施形態では、鞍乗型車両として、スポーツタイプの自動二輪車を例示した。つまり、トランスミッション部は、有段変速機である。しかしながら、本発明において、鞍乗型車両は、スクータタイプの自動二輪車であってもよい。つまり、トランスミッション部は、無段変速機であってもよい。この場合、トランスミッション部はクランクケース内に収容されない。エンジン本体はクランクケース内に収容される。エンジン本体を潤滑するオイルと、トランスミッション部を潤滑するオイルとは、共通のオイルであってもよい。エンジン本体を潤滑するオイルと、トランスミッション部を潤滑するオイルとは、共通のオイルでなくてよい。
 上記実施形態では、鞍乗型車両として、自動二輪車を例示した。しかし、本発明の鞍乗型車両は、自動二輪車に限らない。本発明は、自動二輪車以外のリーン車両に適用してもよい。リーン車両とは、右旋回時に車両の右方に傾斜し、左旋回時に車両の左方に傾斜する車体フレームを有する車両である。また、本発明は、自動二輪車以外の鞍乗型車両に適用してもよい。なお、鞍乗型車両とは、乗員が鞍にまたがるような状態で乗車する車両全般を指す。本発明が適用される鞍乗型車両には、自動二輪車、三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))、水上バイク、スノーモービル等が含まれる。
1 鞍乗型車両、自動二輪車
11 エンジンユニット
20 エンジン本体
28 シリンダ部
36 燃焼室
42e 放出口
43、343、743、843 排気通路部
44、144、444、544、644、744 リン付着低減部
46、646、746 触媒(上流触媒)
48 基材
49、249 触媒層
61 トランスミッション部
62 クラッチ部
92f 上流酸素センサ(上流酸素検出部材)

Claims (15)

  1.  エンジンユニットが搭載された鞍乗型車両であって、
     前記エンジンユニットは、
     燃焼室を有するシリンダ部を備えるエンジン本体と、
     大気に排ガスを放出する放出口を有し、前記燃焼室から前記放出口まで排ガスを流す排気通路部と、
     前記排気通路部において前記排ガスの流れ方向の最も上流の触媒であって、前記排ガスを浄化する貴金属を含んだ触媒層を有する上流触媒と、
     前記排気通路部の前記燃焼室と前記上流触媒の間に配置され、前記排ガスの酸素濃度を検出する上流酸素検出部材と、
     (A)前記排気通路部の前記燃焼室と前記上流触媒の間に配置され、リンと化学反応するリン反応物質で構成されてリンを捕捉する機能を持つか、または、表面が粗面で形成されてリンを捕捉する機能を持つ、前記排気通路部の内面に塗布されたリン捕捉層、または、(B)前記排気通路部の前記燃焼室と前記上流触媒の間に配置され、排ガスの流速を低減させてリンを捕捉する機能を持つリン捕捉構造体であって、前記燃焼室から前記リン捕捉構造体までの経路長が前記リン捕捉構造体から前記上流触媒までの経路長よりも短くなる位置に配置される前記リン捕捉構造体の少なくともいずれか一方を含み、前記触媒層へのリンの付着を低減させるリン付着低減部と、を備えることを特徴とする鞍乗型車両。
  2.  前記リン捕捉層は、少なくとも一部が、前記排気通路部の曲り部に配置されることを特徴とする請求項1に記載の鞍乗型車両。
  3.  前記リン捕捉構造体は、少なくとも表面にリンと化学反応するリン反応物質が設けられてリンを捕捉する機能を持つか、または、表面が粗面で形成されリンを捕捉する機能を持つリン捕捉構造体層を有することを特徴とする請求項1または2に記載の鞍乗型車両。
  4.  前記リン反応物質は、U、Mn、Sn、Ti、Fe、Zr、Ce、Al、Y、Zn、La、Mgから選ばれる少なくとも一つを有する金属酸化物であることを特徴とする請求項1~3のいずれか一項に記載の鞍乗型車両。
  5.  前記リン反応物質は、Ba、Sr、Ca、La、Pr、Na、Zrから選ばれる少なくとも一つを有する金属酸化物であることを特徴とする請求項1~3のいずれか一項に記載の鞍乗型車両。
  6.  前記リン捕捉構造体は、排ガス流れ方向に貫通する多数の孔を有する多孔構造で構成されることを特徴とする請求項1~5のいずれか一項に記載の鞍乗型車両。
  7.  前記エンジンユニットは、リン化合物の含有量が0.08mass%より大きいオイルの使用が指定されるエンジンユニットであることを特徴とする請求項1~6のいずれか一項に記載の鞍乗型車両。
  8.  前記エンジンユニットは、トランスミッション部を更に備え、
     前記エンジン本体部を潤滑するオイル及び前記トランスミッション部を潤滑するオイルが、共通のオイルであることを特徴とする請求項1~7のいずれか一項に記載の鞍乗型車両。
  9.  前記エンジンユニットは、クラッチ部を更に備え、
     前記エンジン本体部を潤滑するオイル及び前記クラッチ部を潤滑するオイルが、共通のオイルであることを特徴とする請求項1~8のいずれか一項に記載の鞍乗型車両。
  10.  前記エンジンユニットは、自然空冷式のエンジンユニットであることを特徴とする請求項1~9のいずれか一項に記載の鞍乗型車両。
  11.  前記オイルは、前記エンジン本体部の壁面温度よりも蒸発温度が高いオイルであることを特徴とする請求項1~10のいずれか一項に記載の鞍乗型車両。
  12.  前記上流酸素検出部材の検出素子は、貴金属を含み、前記排ガスを浄化する上流酸素検出部材用触媒層を有し、
     前記上流酸素検出部材は、前記排気通路部の前記リン付着低減部と前記上流触媒の間に配置されることを特徴とする請求項1~11のいずれか一項に記載の鞍乗型車両。
  13.  前記エンジンユニットは、前記排気通路部の前記上流触媒と前記放出口との間の位置に設けられて、前記排ガスの酸素濃度を検出する下流酸素検出部材を備えることを特徴とする請求項1~12のいずれか一項に記載の鞍乗型車両。
  14.  前記上流酸素検出部材は、前記燃焼室から前記上流酸素検出部材までの経路長が前記上流酸素検出部材から前記上流触媒までの経路長よりも長くなる位置に配置されることを特徴とする請求項1~13のいずれか一項に記載の鞍乗型車両。
  15.  前記排気通路部は、
     前記シリンダ部内に形成され、前記燃焼室と接続されたシリンダ排気通路部と、
     前記放出口を有する消音器と、
     前記シリンダ排気通路部および前記消音器と接続された排気管と、を有し、
     前記上流酸素検出部材は、前記排気管の上流端から前記上流酸素検出部材までの経路長が前記上流酸素検出部材から前記上流触媒までの経路長よりも長くなる位置に配置されることを特徴とする請求項1~13のいずれか一項に記載の鞍乗型車両。
PCT/JP2017/011197 2016-03-22 2017-03-21 鞍乗型車両 WO2017164163A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112018069353A BR112018069353A2 (pt) 2016-03-22 2017-03-21 veículo do tipo para montar
EP17770205.7A EP3418520A4 (en) 2016-03-22 2017-03-21 TYPE VEHICLE TO BE PROVIDED
TW106109616A TW201740015A (zh) 2016-03-22 2017-03-22 跨坐型車輛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016057501 2016-03-22
JP2016-057501 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017164163A1 true WO2017164163A1 (ja) 2017-09-28

Family

ID=59899478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011197 WO2017164163A1 (ja) 2016-03-22 2017-03-21 鞍乗型車両

Country Status (4)

Country Link
EP (1) EP3418520A4 (ja)
BR (1) BR112018069353A2 (ja)
TW (1) TW201740015A (ja)
WO (1) WO2017164163A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106351A (en) * 1979-02-07 1980-08-15 Toyota Motor Corp Anti-poisoning catalyzation oxygen sensor
JPS6129823U (ja) * 1984-07-26 1986-02-22 トヨタ自動車株式会社 自動車排気ガス浄化用モノリス触媒
JPS6357315U (ja) * 1986-10-02 1988-04-16
JPH03229913A (ja) * 1989-12-02 1991-10-11 Degussa Ag 内燃機関の排気ガスの接触清浄化装置
JPH03254836A (ja) * 1990-01-12 1991-11-13 Ngk Spark Plug Co Ltd 被毒防止体、被毒防止層付触媒及び排気ガス浄化装置
JP2005030325A (ja) * 2003-07-08 2005-02-03 Kawasaki Heavy Ind Ltd 自動二輪車用エンジン、及び該エンジンを搭載した自動二輪車
JP2009191797A (ja) * 2008-02-15 2009-08-27 Nippon Oil Corp 排出ガス浄化システム
JP2010051836A (ja) * 2008-08-26 2010-03-11 Babcock Hitachi Kk 窒素酸化物浄化触媒及び窒素酸化物除去方法
JP2014137001A (ja) 2013-01-16 2014-07-28 Honda Motor Co Ltd 鞍乗型車両の排気装置
JP2015188881A (ja) * 2014-03-31 2015-11-02 エヌ・イーケムキャット株式会社 リン捕集材およびそれを用いた自動車排気ガス浄化触媒

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161722B2 (ja) * 2003-01-28 2008-10-08 マツダ株式会社 自動車用触媒
US7749472B2 (en) * 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
US20110225956A1 (en) * 2008-11-26 2011-09-22 Tomohiro Nishi Exhaust purification apparatus for internal combustion engine
WO2013022958A1 (en) * 2011-08-10 2013-02-14 Clean Diesel Technologies, Inc. Palladium solid solution castalyst and methods of making
JP6167818B2 (ja) * 2013-09-30 2017-07-26 マツダ株式会社 排気ガス浄化用触媒

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106351A (en) * 1979-02-07 1980-08-15 Toyota Motor Corp Anti-poisoning catalyzation oxygen sensor
JPS6129823U (ja) * 1984-07-26 1986-02-22 トヨタ自動車株式会社 自動車排気ガス浄化用モノリス触媒
JPS6357315U (ja) * 1986-10-02 1988-04-16
JPH03229913A (ja) * 1989-12-02 1991-10-11 Degussa Ag 内燃機関の排気ガスの接触清浄化装置
JPH03254836A (ja) * 1990-01-12 1991-11-13 Ngk Spark Plug Co Ltd 被毒防止体、被毒防止層付触媒及び排気ガス浄化装置
JP2005030325A (ja) * 2003-07-08 2005-02-03 Kawasaki Heavy Ind Ltd 自動二輪車用エンジン、及び該エンジンを搭載した自動二輪車
JP2009191797A (ja) * 2008-02-15 2009-08-27 Nippon Oil Corp 排出ガス浄化システム
JP2010051836A (ja) * 2008-08-26 2010-03-11 Babcock Hitachi Kk 窒素酸化物浄化触媒及び窒素酸化物除去方法
JP2014137001A (ja) 2013-01-16 2014-07-28 Honda Motor Co Ltd 鞍乗型車両の排気装置
JP2015188881A (ja) * 2014-03-31 2015-11-02 エヌ・イーケムキャット株式会社 リン捕集材およびそれを用いた自動車排気ガス浄化触媒

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418520A4
TAKASHI KANAMORI: "Jidosha Buhin no Saishin Carbon-kei Coating Gijutsu", KIKAI TO KOGU, vol. 48, no. 10, 1 October 2004 (2004-10-01), pages 46 - 50 *

Also Published As

Publication number Publication date
EP3418520A1 (en) 2018-12-26
TW201740015A (zh) 2017-11-16
EP3418520A4 (en) 2019-01-23
BR112018069353A2 (pt) 2019-01-22

Similar Documents

Publication Publication Date Title
JP6348180B2 (ja) ビークルおよびv型多気筒4ストロークエンジンユニット
WO2016098901A1 (ja) 鞍乗型車両
WO2016002956A1 (ja) ビークルおよびv型多気筒4ストロークエンジンユニット
US10677151B2 (en) Straddled vehicle
WO2016002952A1 (ja) 鞍乗型車両および単気筒4ストロークエンジンユニット
WO2016002958A1 (ja) 鞍乗型車両
TWI700429B (zh) 跨坐型車輛及單缸四衝程引擎單元
WO2017164166A1 (ja) 鞍乗型車両
WO2016002953A1 (ja) 鞍乗型車両
WO2017164163A1 (ja) 鞍乗型車両
JP2018155218A (ja) 鞍乗型車両
TW201734296A (zh) 跨坐型車輛
WO2016002957A1 (ja) 鞍乗型車両、及び、単気筒4ストロークエンジンユニット
EP3252288A1 (en) Engine unit
WO2016002954A1 (ja) 鞍乗型車両
WO2016002951A1 (ja) ビークルおよび単気筒4ストロークエンジンユニット
TWI625458B (zh) Straddle type vehicle
JP2010196633A (ja) 鞍乗り型車両の吸気装置構造
EP3239504B1 (en) Engine unit
TWI798684B (zh) 跨坐型車輛
JP2016118205A (ja) 鞍乗型車両
WO2020162002A1 (ja) 鞍乗型車両
JP2019199865A (ja) 鞍乗型車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017770205

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017770205

Country of ref document: EP

Effective date: 20180921

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018069353

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018069353

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180921

NENP Non-entry into the national phase

Ref country code: JP