WO2017163770A1 - ベーンポンプ - Google Patents

ベーンポンプ Download PDF

Info

Publication number
WO2017163770A1
WO2017163770A1 PCT/JP2017/007490 JP2017007490W WO2017163770A1 WO 2017163770 A1 WO2017163770 A1 WO 2017163770A1 JP 2017007490 W JP2017007490 W JP 2017007490W WO 2017163770 A1 WO2017163770 A1 WO 2017163770A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
vane
chamber
rotor
vane pump
Prior art date
Application number
PCT/JP2017/007490
Other languages
English (en)
French (fr)
Inventor
諭 池田
謙 中牟田
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Priority to CN201780018866.7A priority Critical patent/CN109072915B/zh
Priority to EP17769815.6A priority patent/EP3434901B1/en
Priority to US16/086,386 priority patent/US11035363B2/en
Publication of WO2017163770A1 publication Critical patent/WO2017163770A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/92Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid

Definitions

  • the present invention relates to a vane pump driven by a vehicle engine, for example.
  • the vane pump includes a rotor, a vane, and a housing.
  • the housing includes a housing main body having a recess and a cover for sealing the recess.
  • a pump chamber is defined inside the housing.
  • the rotor and the vane are rotatably accommodated in the pump chamber.
  • An oil film is formed on the sliding interface between the one axial end surface (thrust surface) of the rotor and the inner surface of the cover. When the oil film is interrupted, the rotor and the inner surface of the cover easily come into sliding contact. For this reason, the rotor and the cover are easily worn.
  • Patent Document 1 discloses a vane pump with a plurality of urging portions (coil springs).
  • the plurality of urging portions urge the rotor in a direction in which the thrust surface is separated from the inner surface of the cover (a direction in which the sliding interface is expanded). For this reason, according to the vane pump of the same literature, it becomes difficult for a rotor and a cover to slidably contact.
  • Patent Document 2 discloses a vane pump with a pair of oil grooves.
  • the first oil groove is formed on the inner surface of the cover.
  • the second oil groove is formed on the bottom surface of the recess of the housing body.
  • the pair of oil grooves are disposed diagonally to each other. Even if the rotor tilts in the pump chamber, the corner portion on one end side (thrust surface side) in the axial direction of the rotor can escape into the first oil groove. Similarly, the corner portion on the other axial end side of the rotor can escape into the second oil groove.
  • an object of the present invention is to provide a vane pump that can suppress an increase in the number of parts and easily secure a sealing property of a sliding interface.
  • a vane pump of the present invention includes a housing having a pump chamber, a cylindrical peripheral wall portion having a pair of vane holding grooves that are accommodated in the pump chamber and face each other in the diametrical direction, and an inner side of the peripheral wall portion.
  • a vane pump comprising: a rotor having an oil chamber that is divided into two and storing lubricating oil; and a vane that is held in the pair of vane holding grooves and moves across the oil chamber in a diametrical direction, At least one of the inner surface of the housing and the end surface of the peripheral wall portion defining a sliding interface with the inner surface has an oil groove for the lubricating oil.
  • At least one of the inner surface of the housing and the end surface of the peripheral wall portion of the rotor is provided with an oil groove.
  • the oil groove communicates directly or indirectly with the oil chamber of the rotor. For this reason, the lubricating oil in the oil chamber of the rotor flows directly or indirectly into the oil groove. Therefore, according to the vane pump of the present invention, an oil film is easily formed at the sliding interface between the inner surface and the end surface. Therefore, it is easy to ensure the sealing property of the sliding interface. Moreover, it is easy to protect the sliding interface from the thrust load. Further, according to the vane pump of the present invention, it is not necessary to additionally arrange members such as the urging portion and the sliding member of Patent Document 1 in order to ensure the sealing property of the sliding interface. For this reason, the increase in the number of parts can be suppressed.
  • FIG. 1 is a radial cross-sectional view of the vane pump of the first embodiment.
  • FIG. 2 is a cross-sectional view in the II-II direction of FIG.
  • FIG. 3 is a radial sectional view of the vane pump.
  • 4 is a cross-sectional view in the IV-IV direction of FIG.
  • FIG. 5 is an enlarged view in the frame V of FIG.
  • FIG. 6 is a radial cross-sectional view of the vane pump of the second embodiment.
  • Fig.7 (a) is an axial sectional view of the vicinity of the sliding interface of the vane pump of the other embodiment (part 1).
  • FIG.7 (b) is an axial sectional view of the vicinity of the sliding interface of the vane pump of the other embodiment (part 2).
  • FIG.7 (c) is an axial sectional view of the vicinity of the sliding interface of the vane pump of the other embodiment (part 3).
  • FIG.7 (d) is an axial sectional view of the vicinity of the sliding interface of the vane pump of the other embodiment (part 4).
  • FIG. 8: is radial direction sectional drawing of the vane pump of other embodiment (the 5).
  • FIG. 1 shows a cross-sectional view in the II-II direction of FIG.
  • FIG. 3 shows a radial sectional view of the vane pump.
  • FIG. 4 shows a cross-sectional view in the IV-IV direction of FIG. Note that FIG. 1 corresponds to the II-direction cross section of FIG. FIG. 3 corresponds to a cross section in the III-III direction of FIG.
  • the vane pump 1 is a negative pressure source of a booster of a brake device.
  • the vane pump 1 is rotationally driven by a camshaft (not shown).
  • the vane pump 1 includes a housing 2, a rotor 3, and a vane 4.
  • the housing 2 is fixed to a side surface of the engine (not shown).
  • the housing 2 includes a housing body 20, a cover 21, and a pump chamber C.
  • the rear surface of the cover 21 is included in the concept of “inner surface of the housing” of the present invention.
  • the housing body 20 has a bottomed elliptical cylindrical shape that opens to the front side.
  • the housing body 20 includes a peripheral wall part 200 and a bottom wall part 201.
  • the peripheral wall 200 has an elliptical cylindrical shape.
  • the peripheral wall portion 200 includes an intake hole 200a.
  • the intake hole 200a penetrates the peripheral wall portion 200 in the vertical direction.
  • the intake hole 200a is connected to a booster of a brake device via an intake passage (not shown) with a check valve.
  • the bottom wall portion 201 seals the opening on the rear side of the peripheral wall portion 200.
  • the bottom wall portion 201 includes a through hole 201a, an exhaust hole 201d, and an oil groove P3.
  • the through hole 201a penetrates the bottom wall 201 in the front-rear direction (axial direction).
  • the oil groove P3 is recessed at the upper end of the inner peripheral surface of the through hole 201a.
  • the oil groove P3 extends in the front-rear direction.
  • the exhaust hole 201d penetrates the bottom wall portion 201 in the front-rear direction.
  • the exhaust hole 201d is disposed near the front end of the pump chamber C in the rotation direction of the vane 4.
  • the exhaust hole 201d can be opened and closed by a reed valve (not shown).
  • the cover 21 seals the opening on the front side of the housing body 20.
  • the cover 21 is fixed to the housing body 20 by a plurality of bolts 90 and a plurality of nuts (not shown).
  • An O-ring 92 is interposed between the cover 21 and the housing body 20.
  • the pump chamber C is partitioned inside the housing 2. As viewed from the front side, the pump chamber C has an elliptical shape.
  • the pump chamber C communicates with the booster of the brake device through the intake hole 200a and the intake passage.
  • the pump chamber C communicates with the outside (engine room) of the vane pump 1 through the exhaust hole 201d and a reed valve.
  • the rotor 3 can rotate together with the camshaft.
  • the rotor 3 includes a rotor main body 30, a connecting convex portion 31, and an oil chamber A.
  • the rotor body 30 has a bottomed true cylindrical shape that opens to the front side.
  • the rotor body 30 includes a peripheral wall portion 300 and a bottom wall portion 301.
  • the peripheral wall 300 has a true cylindrical shape.
  • the peripheral wall portion 300 is accommodated in the pump chamber C.
  • the front end surface of the peripheral wall portion 300 is included in the concept of the “end surface of the peripheral wall portion” of the present invention.
  • the peripheral wall portion 300 includes a pair of vane holding grooves 300a and a plurality of oil grooves 300b. The pair of vane holding grooves 300a penetrates the peripheral wall portion 300 in the diameter direction.
  • the plurality of oil grooves 300 b are recessed in the front end surface of the peripheral wall portion 300. When viewed from the front side, the plurality of oil grooves 300b are radially arranged with a predetermined angle from the radial center of the rotor 3. Each of the plurality of oil grooves 300 b extends in the radial direction with respect to the radial center of the rotor 3.
  • the cross-sectional shape of the oil groove 300b (the cross-sectional shape in the direction orthogonal to the extending direction) is C-shaped.
  • the groove depth of the oil groove 300b is about 100 ⁇ m.
  • the groove width of the oil groove 300b is about 100 ⁇ m.
  • FIG. 5 shows an enlarged view in the frame V of FIG. As shown in FIG. 5, a sliding interface B is defined between the rear surface of the cover 21 and the front end surface of the peripheral wall portion 300.
  • the gap width in the front-rear direction of the sliding interface B is about 50 ⁇ m.
  • An oil film F
  • the bottom wall portion 301 seals the opening on the rear side of the peripheral wall portion 300.
  • the bottom wall portion 301 is accommodated in the through hole 201a.
  • the bottom wall portion 301 includes an oil hole P2.
  • the oil hole P2 penetrates the bottom wall portion 301 in the diameter direction. As shown in FIG. 2, the oil hole P2 can communicate with the oil groove P3 only at a predetermined rotation angle.
  • the connecting convex part 31 is connected to the rear side of the bottom wall part 301.
  • the connecting convex portion 31 extends in the diameter direction of the bottom wall portion 301.
  • the connection convex part 31 is equipped with the accommodation recessed part 310 and the oil hole P1.
  • the housing recess 310 is recessed in the rear end surface of the connecting projection 31.
  • the oil hole P1 extends in the front-rear direction.
  • the oil hole P1 communicates the accommodating recess 310 with the oil hole P2.
  • the connection convex part 31 and the camshaft are connected by a coupling (not shown) and an oil supply joint (not shown).
  • the coupling transmits a rotational force from the camshaft to the rotor 3.
  • the oil supply joint supplies lubricating oil from the camshaft to the rotor 3 (specifically, the accommodation recess 310).
  • the oil chamber A is partitioned inside the rotor 3. As viewed from the front side, the oil chamber A has a perfect circular shape. The oil chamber A is divided into a pair of semicircular shapes by the vanes 4. The oil chamber A communicates with the pump chamber C via a pair of vane holding grooves 300a and a sliding interface B (including a plurality of oil grooves 300b).
  • the vane 4 can rotate together with the rotor 3 and the camshaft.
  • the vane 4 includes a vane body 40 and a pair of caps 41.
  • the vane body 40 has a rectangular plate shape.
  • the vane body 40 is accommodated in the pump chamber C.
  • the vane body 40 can reciprocate in the diameter direction of the rotor 3 along the pair of vane holding grooves 300a.
  • the vane body 40 can divide the pump chamber C into a plurality of working chambers C1 to C3 according to the rotation angle.
  • a gap P4 is defined between the rear end surface of the vane body 40 and the bottom wall portion 301.
  • the pair of caps 41 are disposed at both ends of the vane body 40 in the diameter direction.
  • the cap 41 can protrude radially outward with respect to the vane body 40.
  • the cap 41 is in sliding contact with the inner peripheral surface of the peripheral wall portion 200.
  • the oil groove 300b includes an upstream end (inner diameter end) 300b1 and a downstream end (outer diameter end) 300b2.
  • the upstream end 300b1 of the oil groove 300b is included in the concept of “one end of the oil groove” of the present invention.
  • the downstream end 300b2 of the oil groove 300b is included in the concept of “the other end of the oil groove” of the present invention.
  • the lubricating oil O in the oil chamber A is supplied to the oil groove 300b via the upstream end 300b1.
  • the lubricating oil O in the oil groove 300b is supplied to the sliding interface B.
  • the supplied lubricating oil O spreads over the entire sliding interface B as the rotor 3 rotates.
  • an oil film F is formed on the sliding interface B.
  • the lubricating oil O after the formation of the oil film F is discharged to the pump chamber C through the downstream end 300b2.
  • the oil film F is continuously and fluidly formed on the sliding interface B by the lubricating oil O in the oil groove 300b.
  • the volumes of the plurality of working chambers C1 to C3 change.
  • the working chambers C1 to C3 suck air from the booster through the intake hole 200a.
  • the sucked air is exhausted from the working chambers C1 to C3 to the outside through the exhaust hole 201d.
  • the front end surface of the peripheral wall portion 300 of the rotor 3 includes an oil groove 300 b.
  • the oil groove 300 b communicates directly with the oil chamber A of the rotor 3.
  • the lubricating oil O in the oil chamber A flows directly into the oil groove 300b. Therefore, according to the vane pump 1 of the present embodiment, the oil film F is easily formed on the sliding interface B. Therefore, it is easy to ensure the sealing property of the sliding interface B. Moreover, it is easy to protect the sliding interface B from the thrust load. For this reason, the front end surface of the peripheral wall part 300 and the rear surface of the cover 21 are not easily worn.
  • the oil groove 300b extends in the radial direction (direction intersecting the circumferential direction). For this reason, the lubricating oil O can be made to flow in the radial direction of the sliding interface B. Further, the lubricating oil O can be spread in the circumferential direction of the sliding interface B by the rotation of the rotor 3. Therefore, the oil film F can be formed on the entire surface of the sliding interface B.
  • the clearance width (refer FIG. 5) of the sliding interface B in the front-back direction is very small. Therefore, the lubricating oil O hardly flows into the sliding interface B from the oil chamber A.
  • the lubricating oil O flows into the oil chamber A one after another via the oil passage P shown in FIG. For this reason, as shown in FIG. 4, the lubricating oil O tends to accumulate in the oil chamber A. Therefore, the oil chamber A tends to be at a high pressure relative to the pump chamber C in combination with the lubricating oil O being an incompressible fluid.
  • the lubricating oil O in the oil chamber A flows into the pump chamber C through the sliding interface B in a large amount at a time in order to release the pressure. Further, as the lubricating oil O flows, the pressure in the oil chamber A varies greatly. For this reason, the rotor 3 becomes easy to move in the front-rear direction by the gap width in the front-rear direction of the sliding interface B as the pressure in the oil chamber A varies.
  • the oil groove 300b is disposed on the front end surface of the peripheral wall portion 300 of the rotor 3.
  • An upstream end 300b1 of the oil groove 300b opens into the oil chamber A.
  • the lubricating oil O tends to flow into the sliding interface B from the oil chamber A.
  • the downstream end 300b2 of the oil groove 300b opens into the pump chamber C.
  • the lubricating oil O tends to flow into the pump chamber C from the sliding interface B. Therefore, the oil chamber A is less likely to be at a higher pressure than the pump chamber C.
  • the pressure in the oil chamber A does not vary greatly. Therefore, the gap width in the front-rear direction of the sliding interface B is easily stabilized. That is, the rotor 3 is difficult to move in the front-rear direction.
  • downstream end 300b2 of the oil groove 300b is open to the pump chamber C. For this reason, even when the lubricating oil O is excessively supplied to the sliding interface B, the excessive lubricating oil O can be discharged from the sliding interface B to the pump chamber C.
  • the oil groove 300 b is recessed in the front end surface of the peripheral wall portion 300 of the rotor 3. For this reason, the plate
  • the vane pump 1 according to the present embodiment and the vane pump according to the first embodiment have the same functions and effects with respect to parts having the same configuration. Further, according to the vane pump 1 of the present embodiment, the rotation direction of the rotor 3 and the extending direction of the oil groove 300c coincide with each other. For this reason, it is easy to form an oil film at the sliding interface. Like the vane pump 1 of the present embodiment, the oil groove 300c may not be in direct communication with the oil chamber A and the pump chamber C.
  • FIG. 7 (a) shows an axial sectional view of the vicinity of the sliding interface of the vane pump of the other embodiment (part 1).
  • FIG. 7B shows an axial sectional view of the vicinity of the sliding interface of the vane pump of the other embodiment (part 2).
  • FIG. 7C shows an axial sectional view of the vicinity of the sliding interface of the vane pump of the other embodiment (part 3).
  • FIG. 7D shows an axial sectional view of the vicinity of the sliding interface of the vane pump of the other embodiment (No. 4).
  • part corresponding to FIG. 5 it shows with the same code
  • the oil groove 300d may be formed so that the groove depth of the oil groove 300d becomes shallower from the upstream end 300d1 toward the downstream end 300d2. In this way, the lubricating oil O is unlikely to flow backward from the pump chamber C to the oil chamber A.
  • the oil groove 300e may be formed so that the groove depth of the oil groove 300e changes in a sawtooth shape.
  • the inclination angle of the inclined surface a10 facing the oil chamber A of the arbitrary sawtooth portion with respect to the radial plane a0 is ⁇ 1
  • the inclination angle of the inclined surface a20 of the arbitrary sawtooth portion with respect to the pump chamber C with respect to the radial plane a0 is ⁇ 2.
  • the inclination angle ⁇ 1 ⁇ the inclination angle ⁇ 2.
  • the lubricating oil O is unlikely to flow backward from the pump chamber C to the oil chamber A.
  • the oil groove 300f may be arranged by forming a chamfered portion on the radially inner edge of the front end surface of the peripheral wall portion 300.
  • the oil groove 300 f extends in an endless annular shape in the circumferential direction with respect to the radial center of the rotor 3.
  • the oil groove 300f is arranged, the lubricating oil O is easily introduced into the sliding interface B. Further, the gap width in the front-rear direction of the sliding interface B is easily stabilized.
  • the oil groove 300 g may be arranged by forming a chamfered portion on the radially outer edge of the front end surface of the peripheral wall portion 300.
  • the oil groove 300 g extends in an endless annular shape in the circumferential direction with respect to the radial center of the rotor 3.
  • the oil groove 300g is arranged, the lubricating oil O is easily discharged from the sliding interface B. Further, the gap width in the front-rear direction of the sliding interface B is easily stabilized.
  • the oil groove 300f and the oil groove 300g may be disposed on the front end surface of the peripheral wall portion 300. In this case, it is better to make the groove depth of the oil groove 300f larger than the groove depth of the oil groove 300g. In this way, the lubricating oil O is easily introduced into the sliding interface B. In addition, the lubricating oil O is easily discharged from the sliding interface B. Further, the gap width in the front-rear direction of the sliding interface B is easily stabilized.
  • FIG. 8 shows a radial cross-sectional view of a vane pump of another embodiment (No. 5).
  • a lattice-like oil groove 300 h may be provided in the front end face of the peripheral wall portion 300.
  • the lubricating oil O is easily introduced into the sliding interface B.
  • the lubricating oil O is easily discharged from the sliding interface B. Further, the gap width in the front-rear direction of the sliding interface B is easily stabilized.
  • the number of oil grooves 300b to 300h, the extending shape, the groove length, the groove depth, and the groove width are not particularly limited.
  • the upstream end 300b1 of the oil groove 300b shown in FIG. Similarly, the downstream end 300b2 may not open to the pump chamber C.
  • the oil grooves 300c, 300f, and 300g shown in FIGS. 6, 7C, and 7D do not have to be continuous in an endless ring shape when viewed from the front side.
  • a partial arc shape C shape
  • the groove depth and groove width may not be constant over the entire length of the oil grooves 300b to 300h.
  • the cross-sectional shape of the oil grooves 300b to 300h is not particularly limited.
  • the chamfered portion for forming the oil grooves 300f and 300g shown in FIGS. 7C and 7D is not particularly limited.
  • a flat chamfering shape or a round chamfering shape may be used as indicated by dotted lines a2, b2, a3, and b3.
  • the oil grooves 300b to 300h may be disposed on the rear surface of the cover 21 (the portion that defines the sliding interface B). Even in this case, the gap width in the front-rear direction of the sliding interface B tends to be stable. In addition, the oil grooves 300b to 300h may be arranged on both the front end surface of the peripheral wall portion 300 and the rear surface of the cover 21. Even in this case, the gap width in the front-rear direction of the sliding interface B tends to be stable.
  • an uneven shape for example, a taper land shape, a dimple shape, a satin pattern, etc. may be imparted to at least one of the front end surface of the peripheral wall portion 300 and the rear surface of the cover 21. Even in this case, the gap width in the front-rear direction of the sliding interface B tends to be stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

部品点数の増加を抑制可能で、摺動界面のシール性を確保しやすいベーンポンプを提供することを課題とする。 ベーンポンプ(1)は、ポンプ室(C)を有するハウジング(2)と、ポンプ室(C)に収容され直径方向に対向する一対のベーン保持溝(300a)を有する筒状の周壁部(300)と、周壁部(300)の内側に区画され潤滑油(O)が貯留される油室(A)と、を有するロータ(3)と、一対のベーン保持溝(300a)に保持され、油室(A)を直径方向に横切って移動するベーン(4)と、を備える。ハウジング(2)の内面、および内面との間に摺動界面(B)を区画する周壁部(300)の端面のうち少なくとも一方は、潤滑油(O)用の油溝(300b~300h)を有する。

Description

ベーンポンプ
 本発明は、例えば車両のエンジンにより駆動されるベーンポンプに関する。
 ベーンポンプは、ロータとベーンとハウジングとを備えている。ハウジングは、凹部を有するハウジング本体と、凹部を封止するカバーと、を備えている。ハウジングの内部には、ポンプ室が区画されている。ロータおよびベーンは、ポンプ室に、回転可能に収容されている。ロータの軸方向一端面(スラスト面)とカバーの内面との間の摺動界面には、油膜が形成されている。油膜が途切れると、ロータとカバーの内面とが摺接しやすくなる。このため、ロータやカバーが摩耗しやすくなる。
 この点、特許文献1には、複数の付勢部(コイルばね)付きのベーンポンプが開示されている。複数の付勢部は、カバーの内面からスラスト面が離れる方向(摺動界面が拡がる方向)に、ロータを付勢している。このため、同文献のベーンポンプによると、ロータとカバーとが摺接しにくくなる。
 また、特許文献2には、一対の油溝付きのベーンポンプが開示されている。第一の油溝は、カバーの内面に形成されている。第二の油溝は、ハウジング本体の凹部の底面に形成されている。径方向外側から見て、一対の油溝は、互いに対角位置に配置されている。ポンプ室においてロータが傾動しても、ロータの軸方向一端側(スラスト面側)の角部は、第一の油溝に逃げ込むことができる。同様に、ロータの軸方向他端側の角部は、第二の油溝に逃げ込むことができる。このため、同文献のベーンポンプによると、ロータとハウジング(カバー、ハウジング本体)とが片当たりしにくくなる。したがって、ロータ傾動時における、スラスト面やカバーの内面の局所的な摩耗を抑制することができる。
特開2008-231954号公報 特開2004-263690号公報
 しかしながら、特許文献1のベーンポンプの場合、付勢部が必要な分だけ、部品点数が増加してしまう。また、複数の付勢部は、ハウジング本体の凹部の底面に固定されている。一方、ロータは回転している。このため、複数の付勢部とロータとの間に、別途、摺動部材を介装する必要がある。この点においても、同文献のベーンポンプの場合、部品点数が増加してしまう。
 一方、特許文献2のベーンポンプによると、付勢部は不要である。このため、部品点数が増加しない。ところが、特許文献2のベーンポンプの場合、一対の油溝の溝深さの分だけ、ロータの傾動量が、さらに大きくなるおそれがある。このため、摺動界面のシール性が低下するおそれがある。そこで、本発明は、部品点数の増加を抑制可能で、摺動界面のシール性を確保しやすいベーンポンプを提供することを目的とする。
 上記課題を解決するため、本発明のベーンポンプは、ポンプ室を有するハウジングと、前記ポンプ室に収容され直径方向に対向する一対のベーン保持溝を有する筒状の周壁部と、前記周壁部の内側に区画され潤滑油が貯留される油室と、を有するロータと、一対の前記ベーン保持溝に保持され、前記油室を直径方向に横切って移動するベーンと、を備えるベーンポンプであって、前記ハウジングの内面、および前記内面との間に摺動界面を区画する前記周壁部の端面のうち少なくとも一方は、前記潤滑油用の油溝を有することを特徴とする。
 ハウジングの内面、およびロータの周壁部の端面のうち少なくとも一方は、油溝を備えている。油溝は、ロータの油室と、直接あるいは間接的に連通している。このため、油溝には、ロータの油室の潤滑油が、直接あるいは間接的に流れ込む。したがって、本発明のベーンポンプによると、内面と端面との間の摺動界面に、油膜が形成されやすくなる。よって、摺動界面のシール性を確保しやすい。また、スラスト荷重から、摺動界面を保護しやすい。また、本発明のベーンポンプによると、摺動界面のシール性を確保するために、特許文献1の付勢部、摺動部材のような部材を、追加配置する必要がない。このため、部品点数の増加を抑制することができる。
図1は、第一実施形態のベーンポンプの径方向断面図である。 図2は、図1のII-II方向断面図である。 図3は、同ベーンポンプの径方向断面図である。 図4は、図3のIV-IV方向断面図である。 図5は、図4の枠V内の拡大図である。 図6は、第二実施形態のベーンポンプの径方向断面図である。 図7(a)は、その他の実施形態(その1)のベーンポンプの摺動界面付近の軸方向断面図である。図7(b)は、その他の実施形態(その2)のベーンポンプの摺動界面付近の軸方向断面図である。図7(c)は、その他の実施形態(その3)のベーンポンプの摺動界面付近の軸方向断面図である。図7(d)は、その他の実施形態(その4)のベーンポンプの摺動界面付近の軸方向断面図である。 図8は、その他の実施形態(その5)のベーンポンプの径方向断面図である。
 以下、本発明のベーンポンプの実施の形態について説明する。
 <第一実施形態>
 [ベーンポンプの構成]
 まず、本実施形態のベーンポンプの構成について説明する。図1に、本実施形態のベーンポンプの径方向断面図を示す。図2に、図1のII-II方向断面図を示す。図3に、同ベーンポンプの径方向断面図を示す。図4に、図3のIV-IV方向断面図を示す。なお、図1は、図2のI-I方向断面に対応している。また、図3は、図4のIII-III方向断面に対応している。図1、図2に示すベーンポンプ1に対して、図3、図4に示すベーンポンプ1は、ロータ3およびベーン4が、90°だけ回転(進行)している。ベーンポンプ1は、ブレーキ装置の倍力装置の負圧源である。ベーンポンプ1は、カムシャフト(図略)により回転駆動される。図1~図4に示すように、ベーンポンプ1は、ハウジング2と、ロータ3と、ベーン4と、を備えている。
 (ハウジング2)
 ハウジング2は、エンジン(図略)の側面に固定されている。ハウジング2は、ハウジング本体20と、カバー21と、ポンプ室Cと、を備えている。カバー21の後面は、本発明の「ハウジングの内面」の概念に含まれる。
 ハウジング本体20は、前側に開口する有底楕円筒状を呈している。ハウジング本体20は、周壁部200と底壁部201とを備えている。周壁部200は、楕円筒状を呈している。周壁部200は、吸気孔200aを備えている。吸気孔200aは、周壁部200を上下方向に貫通している。吸気孔200aは、逆止弁付きの吸気通路(図略)を介して、ブレーキ装置の倍力装置に連結されている。底壁部201は、周壁部200の後側の開口を封止している。底壁部201は、貫通孔201aと、排気孔201dと、油溝P3と、を備えている。貫通孔201aは、底壁部201を前後方向(軸方向)に貫通している。油溝P3は、貫通孔201aの内周面の上端に凹設されている。油溝P3は、前後方向に延在している。排気孔201dは、底壁部201を前後方向に貫通している。排気孔201dは、ポンプ室Cの、ベーン4の回転方向前端付近に配置されている。排気孔201dは、リードバルブ(図略)により、開閉可能である。
 カバー21は、ハウジング本体20の前側の開口を封止している。複数のボルト90および複数のナット(図略)により、カバー21は、ハウジング本体20に固定されている。カバー21とハウジング本体20との間には、Oリング92が介装されている。
 ポンプ室Cは、ハウジング2の内部に区画されている。前側から見て、ポンプ室Cは、楕円形状を呈している。ポンプ室Cは、吸気孔200a、吸気通路を介して、ブレーキ装置の倍力装置に連通している。また、ポンプ室Cは、排気孔201d、リードバルブを介して、ベーンポンプ1の外部(エンジンルーム)に連通している。
 (ロータ3)
 ロータ3は、カムシャフトと共に、回転可能である。ロータ3は、ロータ本体30と、連結凸部31と、油室Aと、を備えている。ロータ本体30は、前側に開口する有底真円筒状を呈している。ロータ本体30は、周壁部300と底壁部301とを備えている。周壁部300は、真円筒状を呈している。周壁部300は、ポンプ室Cに収容されている。周壁部300の前端面は、本発明の「周壁部の端面」の概念に含まれる。周壁部300は、一対のベーン保持溝300aと、複数の油溝300bと、を備えている。一対のベーン保持溝300aは、周壁部300を直径方向に貫通している。
 複数の油溝300bは、周壁部300の前端面に凹設されている。前側から見て、複数の油溝300bは、ロータ3の径方向中心に対して、所定角度ずつ離間して、放射状に配置されている。複数の油溝300bは、各々、ロータ3の径方向中心に対して、径方向に延在している。油溝300bの横断面形状(延在方向に対して直交する方向の断面形状)は、C字状を呈している。油溝300bの溝深さは、100μm程度である。また、油溝300bの溝幅は、100μm程度である。図5に、図4の枠V内の拡大図を示す。図5に示すように、カバー21の後面と、周壁部300の前端面と、の間には、摺動界面Bが区画されている。摺動界面Bの前後方向の隙間幅は、50μm程度である。当該隙間には、油膜Fが形成されている。
 図2、図4に示すように、底壁部301は、周壁部300の後側の開口を封止している。底壁部301は、貫通孔201aに収容されている。底壁部301は、油孔P2を備えている。油孔P2は、底壁部301を直径方向に貫通している。図2に示すように、油孔P2は、所定の回転角度に限って、油溝P3に連通可能である。
 連結凸部31は、底壁部301の後側に連なっている。連結凸部31は、底壁部301の直径方向に延在している。連結凸部31は、収容凹部310と油孔P1とを備えている。収容凹部310は、連結凸部31の後端面に凹設されている。油孔P1は、前後方向に延在している。油孔P1は、収容凹部310と油孔P2とを連通している。連結凸部31とカムシャフトとは、カップリング(図略)および給油ジョイント(図略)により、連結されている。カップリングは、カムシャフトからロータ3に、回転力を伝達している。給油ジョイントは、カムシャフトからロータ3(具体的には収容凹部310)に、潤滑油を供給している。
 油室Aは、ロータ3の内部に区画されている。前側から見て、油室Aは、真円形状を呈している。油室Aは、ベーン4により、一対の半円形状に分断されている。油室Aは、一対のベーン保持溝300a、摺動界面B(複数の油溝300bを含む)を介して、ポンプ室Cに連通している。
 (ベーン4)
 ベーン4は、ロータ3およびカムシャフトと共に、回転可能である。ベーン4は、ベーン本体40と、一対のキャップ41と、を備えている。ベーン本体40は、矩形板状を呈している。ベーン本体40は、ポンプ室Cに収容されている。ベーン本体40は、一対のベーン保持溝300aに沿って、ロータ3の直径方向に往復動可能である。ベーン本体40は、回転角度に応じて、ポンプ室Cを複数の作動室C1~C3に区画可能である。ベーン本体40の後端面と底壁部301との間には、隙間P4が区画されている。
 一対のキャップ41は、ベーン本体40の直径方向両端に配置されている。キャップ41は、ベーン本体40に対して、径方向外側に突出可能である。キャップ41は、周壁部200の内周面に摺接している。
 [ベーンポンプの動き]
 次に、本実施形態のベーンポンプの動きについて説明する。図2に示すように、ベーンポンプ1駆動時(ロータ3、ベーン4回転時)においては、所定の回転角度に限って、油孔P2が油溝P3に連通する。この際、カムシャフトと油室Aとの間に、油路Pが確保される。油路Pは、上流側から下流側に向かって、油孔P1、P2、油溝P3、隙間P4を備えている。潤滑油Oは、油路Pを経由して、カムシャフトから油室Aに導入される。潤滑油Oは、油室Aに貯留される。なお、油室Aにおける潤滑油Oの貯留量、貯留状態等は、特に限定しない。
 図5に示すように、油溝300bは、上流端(内径端)300b1と、下流端(外径端)300b2と、を備えている。油溝300bの上流端300b1は、本発明の「油溝の一端」の概念に含まれる。油溝300bの下流端300b2は、本発明の「油溝の他端」の概念に含まれる。油室Aの潤滑油Oは、上流端300b1を介して、油溝300bに供給される。油溝300bの潤滑油Oは、摺動界面Bに供給される。供給された潤滑油Oは、ロータ3の回転に伴って、摺動界面Bの全面に行き渡る。このため、摺動界面Bに油膜Fが形成される。油膜F形成後の潤滑油Oは、下流端300b2を介して、ポンプ室Cに排出される。このように、摺動界面Bには、油溝300bの潤滑油Oにより、連続的かつ流動的に、油膜Fが形成される。
 図1、図3に示すように、ベーン4の回転に伴って、複数の作動室C1~C3の容積は、拡縮変化する。当該容積変化に伴って、吸気孔200aを介して、作動室C1~C3は、倍力装置から、空気を吸引する。吸引された空気は、排気孔201dを介して、作動室C1~C3から外部に排気される。
 [ベーンポンプの作用効果]
 次に、本実施形態のベーンポンプの作用効果について説明する。図4、図5に示すように、ロータ3の周壁部300の前端面は、油溝300bを備えている。油溝300bは、ロータ3の油室Aと、直接、連通している。このため、油溝300bには、油室Aの潤滑油Oが、直接、流れ込む。したがって、本実施形態のベーンポンプ1によると、摺動界面Bに、油膜Fが形成されやすくなる。よって、摺動界面Bのシール性を確保しやすい。また、スラスト荷重から、摺動界面Bを保護しやすい。このため、周壁部300の前端面やカバー21の後面が、摩耗しにくい。また、本実施形態のベーンポンプ1によると、摺動界面Bのシール性を確保するために、特許文献1の付勢部、摺動部材のような部材を、追加配置する必要がない。このため、部品点数の増加を抑制することができる。
 また、図4、図5に示すように、油溝300bは、径方向(周方向に対して交差する方向)に延在している。このため、摺動界面Bの径方向に、潤滑油Oを流動させることができる。また、ロータ3の回転により、摺動界面Bの周方向に、潤滑油Oを行き渡らせることができる。したがって、摺動界面Bの全面に、油膜Fを形成することができる。
 また、摺動界面Bには、油膜Fを形成する必要がある。このため、摺動界面Bの前後方向の隙間幅(図5参照)は微小である。したがって、潤滑油Oは、油室Aから摺動界面Bに流れ込みにくい。一方、油室Aには、図2に示す油路Pを介して、次々と潤滑油Oが流れ込む。このため、図4に示すように、油室Aには、潤滑油Oが溜まりやすい。よって、潤滑油Oが非圧縮性流体であることとも相俟って、油室Aは、ポンプ室Cに対して、高圧になりやすい。油室Aが高圧になると、圧力を逃がすために、油室Aの潤滑油Oは、一度にかつ大量に、摺動界面Bを介して、ポンプ室Cに流れ込む。また、潤滑油Oの流動に伴い、油室Aの圧力は、大きく変動する。このため、油室Aの圧力変動に伴って、摺動界面Bの前後方向の隙間幅の分だけ、ロータ3が前後方向に動きやすくなる。
 なお、当該課題は、「ロータ3の油室Aに潤滑油Oが溜まりやすいこと」に起因している。このため、特許文献1に開示されているタイプのベーンポンプ(ロータの径方向内側にシャフトが挿通されており、ロータ内部に油室を有しないベーンポンプ)には、起こり得ない課題である。
 この点、本実施形態のベーンポンプ1によると、ロータ3の周壁部300の前端面に、油溝300bが配置されている。油溝300bの上流端300b1は、油室Aに開口している。このため、潤滑油Oは、油室Aから摺動界面Bに流れ込みやすい。また、油溝300bの下流端300b2は、ポンプ室Cに開口している。このため、潤滑油Oは、摺動界面Bからポンプ室Cに流れ込みやすい。したがって、油室Aは、ポンプ室Cに対して、高圧になりにくい。また、潤滑油Oが流動しても、油室Aの圧力は、大きく変動しない。よって、摺動界面Bの前後方向の隙間幅が安定しやすい。すなわち、ロータ3が前後方向に動きにくい。
 また、油溝300bの下流端300b2は、ポンプ室Cに開口している。このため、摺動界面Bに潤滑油Oが過剰供給される場合であっても、過剰分の潤滑油Oを、摺動界面Bからポンプ室Cに、排出することができる。
 また、油溝300bは、ロータ3の周壁部300の前端面に凹設されている。このため、油溝300bをカバー21の後面に凹設する場合と比較して、カバー21の前後方向の板厚を、薄肉化することができる。したがって、カバー21、延いてはベーンポンプ1を小型化することができる。
 <第二実施形態>
 本実施形態のベーンポンプと、第一実施形態のベーンポンプとの相違点は、油溝が、径方向ではなく周方向に延在している点である。ここでは、相違点についてのみ説明する。図6に、本実施形態のベーンポンプの径方向断面図を示す。なお、図1と対応する部位については、同じ符号で示す。図6に示すように、前側から見て、複数の油溝300cは、ロータ3の径方向中心に対して、同心円状に配置されている。複数の油溝300cは、各々、ロータ3の径方向中心に対して、周方向に無端環状に延在している。複数の油溝300c同士は、摺動界面を介して、間接的に連通している。また、複数の油溝300cは、摺動界面を介して、油室Aおよびポンプ室Cと、間接的に連通している。
 本実施形態のベーンポンプ1と、第一実施形態のベーンポンプとは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態のベーンポンプ1によると、ロータ3の回転方向と、油溝300cの延在方向と、が一致している。このため、摺動界面に油膜を形成しやすい。本実施形態のベーンポンプ1のように、油溝300cは、油室Aおよびポンプ室Cと、直接、連通していなくてもよい。
 <その他>
 以上、本発明のベーンポンプの実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
 図7(a)に、その他の実施形態(その1)のベーンポンプの摺動界面付近の軸方向断面図を示す。図7(b)に、その他の実施形態(その2)のベーンポンプの摺動界面付近の軸方向断面図を示す。図7(c)に、その他の実施形態(その3)のベーンポンプの摺動界面付近の軸方向断面図を示す。図7(d)に、その他の実施形態(その4)のベーンポンプの摺動界面付近の軸方向断面図を示す。なお、図5と対応する部位については、同じ符号で示す。
 図7(a)に示すように、油溝300dの溝深さが上流端300d1から下流端300d2に向かって浅くなるように、油溝300dを形成してもよい。こうすると、ポンプ室Cから油室Aに、潤滑油Oが逆流しにくい。
 図7(b)に示すように、油溝300eの溝深さが鋸歯状に変化するように、油溝300eを形成してもよい。また、径方向平面a0に対する、任意の鋸歯部分の油室A向きの斜面a10の傾斜角度をθ1、径方向平面a0に対する、任意の鋸歯部分のポンプ室C向きの斜面a20の傾斜角度をθ2とした場合、傾斜角度θ1<傾斜角度θ2としてもよい。こうすると、ポンプ室Cから油室Aに、潤滑油Oが逆流しにくい。
 図7(c)に示すように、周壁部300の前端面の径方向内縁に面取部を形成することにより、油溝300fを配置してもよい。油溝300fは、ロータ3の径方向中心に対して、周方向に無端環状に延在している。油溝300fを配置すると、摺動界面Bに潤滑油Oが導入されやすい。また、摺動界面Bの前後方向の隙間幅が安定しやすい。
 図7(d)に示すように、周壁部300の前端面の径方向外縁に面取部を形成することにより、油溝300gを配置してもよい。油溝300gは、ロータ3の径方向中心に対して、周方向に無端環状に延在している。油溝300gを配置すると、摺動界面Bから潤滑油Oが排出されやすい。また、摺動界面Bの前後方向の隙間幅が安定しやすい。
 また、周壁部300の前端面に、油溝300fおよび油溝300gを配置してもよい。この場合は、油溝300fの溝深さを、油溝300gの溝深さよりも、大きくする方がよい。こうすると、摺動界面Bに潤滑油Oが導入されやすい。並びに、摺動界面Bから潤滑油Oが排出されやすい。また、摺動界面Bの前後方向の隙間幅が安定しやすい。
 図8に、その他の実施形態(その5)のベーンポンプの径方向断面図を示す。なお、図1と対応する部位については、同じ符号で示す。図8に示すように、周壁部300の前端面に、格子状の油溝300hを凹設してもよい。こうすると、摺動界面Bに潤滑油Oが導入されやすい。並びに、摺動界面Bから潤滑油Oが排出されやすい。また、摺動界面Bの前後方向の隙間幅が安定しやすい。
 油溝300b~300hの配置数、延在形状、溝長さ、溝深さ、溝幅は特に限定しない。例えば、図5に示す油溝300bの上流端300b1は、油室Aに開口していなくてもよい。同様に、下流端300b2は、ポンプ室Cに開口していなくてもよい。また、図6、図7(c)、図7(d)に示す油溝300c、300f、300gは、前側から見て、無端環状に連なっていなくてもよい。例えば、部分弧状(C字状)であってもよい。また、油溝300b~300hの全長に亘って、溝深さ、溝幅は一定でなくてもよい。また、油溝300b~300hの横断面形状は特に限定しない。例えば、C字状、U字状、V字状、W字状などであってもよい。図7(c)、図7(d)に示す、油溝300f、300g形成用の面取部の形状は特に限定しない。平面取状、または点線a2、b2、a3、b3で示すように、丸面取状(凹面取状、凸面取状)でもよい。
 油溝300b~300hを、カバー21の後面(摺動界面Bを区画する部分)に配置してもよい。この場合であっても、摺動界面Bの前後方向の隙間幅が安定しやすい。また、油溝300b~300hを、周壁部300の前端面およびカバー21の後面の双方に、配置してもよい。この場合であっても、摺動界面Bの前後方向の隙間幅が安定しやすい。
 また、周壁部300の前端面、およびカバー21の後面のうち少なくとも一方に、凹凸形状(例えば、テーパランド形状、ディンプル形状、梨地模様など)を付与してもよい。この場合であっても、摺動界面Bの前後方向の隙間幅が安定しやすい。
 1:ベーンポンプ、2:ハウジング、20:ハウジング本体、200:周壁部、200a:吸気孔、201:底壁部、201a:貫通孔、201d:排気孔、21:カバー、3:ロータ、30:ロータ本体、300:周壁部、300a:ベーン保持溝、300b~300h:油溝、300b1:上流端、300b2:下流端、300d1:上流端、300d2:下流端、301:底壁部、31:連結凸部、310:収容凹部、4:ベーン、40:ベーン本体、41:キャップ、90:ボルト、92:Oリング、A:油室、B:摺動界面、C:ポンプ室、C1~C3:作動室、F:油膜、O:潤滑油、P:油路、P1:油孔、P2:油孔、P3:油溝、P4:隙間、a0:径方向平面、a10:斜面、a20:斜面、θ1:傾斜角度、θ2;傾斜角度。

Claims (5)

  1.  ポンプ室を有するハウジングと、
     前記ポンプ室に収容され直径方向に対向する一対のベーン保持溝を有する筒状の周壁部と、前記周壁部の内側に区画され潤滑油が貯留される油室と、を有するロータと、
     一対の前記ベーン保持溝に保持され、前記油室を直径方向に横切って移動するベーンと、
    を備えるベーンポンプであって、
     前記ハウジングの内面、および前記内面との間に摺動界面を区画する前記周壁部の端面のうち少なくとも一方は、前記潤滑油用の油溝を有することを特徴とするベーンポンプ。
  2.  前記油溝は、周方向に対して交差する方向に延在する請求項1に記載のベーンポンプ。
  3.  前記油溝の一端は、前記油室に開口する請求項2に記載のベーンポンプ。
  4.  前記油溝の他端は、前記ポンプ室に開口する請求項3に記載のベーンポンプ。
  5.  前記油溝は、周方向に延在する請求項1に記載のベーンポンプ。
PCT/JP2017/007490 2016-03-24 2017-02-27 ベーンポンプ WO2017163770A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780018866.7A CN109072915B (zh) 2016-03-24 2017-02-27 叶轮泵
EP17769815.6A EP3434901B1 (en) 2016-03-24 2017-02-27 Vane pump
US16/086,386 US11035363B2 (en) 2016-03-24 2017-02-27 Vane pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016059822A JP6382877B2 (ja) 2016-03-24 2016-03-24 ベーンポンプ
JP2016-059822 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163770A1 true WO2017163770A1 (ja) 2017-09-28

Family

ID=59901155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007490 WO2017163770A1 (ja) 2016-03-24 2017-02-27 ベーンポンプ

Country Status (5)

Country Link
US (1) US11035363B2 (ja)
EP (1) EP3434901B1 (ja)
JP (1) JP6382877B2 (ja)
CN (1) CN109072915B (ja)
WO (1) WO2017163770A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436198B2 (en) * 2014-12-22 2019-10-08 Padmini Vna Mechatronics Pvt. Ltd. Low power consuming module for a vacuum pump
US11713716B2 (en) 2021-08-16 2023-08-01 Hamilton Sundstrand Corporation Gear and bearing indents to induce fluid film
US11662026B2 (en) 2021-08-16 2023-05-30 Hamilton Sandstrand Corporation Seal with surface indents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872504U (ja) * 1971-12-13 1973-09-11
WO2004036046A1 (ja) * 2002-10-15 2004-04-29 Mitsubishi Denki Kabushiki Kaisha ベーン式真空ポンプ
JP2004263690A (ja) * 2003-02-13 2004-09-24 Aisan Ind Co Ltd ベーン式バキュームポンプ
EP2151542A2 (de) * 2008-08-04 2010-02-10 Schwäbische Hüttenwerke Automotive GmbH Rotationskolbenpumpe mit Taschen für Schmiermittel

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319721B2 (ja) 1971-12-29 1978-06-22
US3877851A (en) * 1973-02-16 1975-04-15 Sanpei Komiya Rotary compressor with integrally connected, diametrically aligned vanes
JPH0647991B2 (ja) * 1986-05-15 1994-06-22 三菱電機株式会社 スクロ−ル圧縮機
JPH1068393A (ja) * 1996-08-28 1998-03-10 Mikuni Corp バキュームポンプ
JP2000073975A (ja) * 1998-09-01 2000-03-07 Sanwa Seiki Co Ltd 真空ポンプ
US20040190804A1 (en) * 2003-03-26 2004-09-30 Baker Hughes Incorporated Diamond bearing with cooling/lubrication channels
JP4733356B2 (ja) * 2004-03-10 2011-07-27 トヨタ自動車株式会社 気体用ベーンポンプおよびその運転方法
JP3874300B2 (ja) * 2005-02-16 2007-01-31 大豊工業株式会社 ベーンポンプ
US7878777B2 (en) * 2006-08-25 2011-02-01 Denso Corporation Scroll compressor having grooved thrust bearing
JP2008231954A (ja) 2007-03-16 2008-10-02 Matsushita Electric Works Ltd ベーンポンプ
DE102010028061A1 (de) * 2010-04-22 2011-10-27 Robert Bosch Gmbh Flügelzellenpumpe
JP5589532B2 (ja) * 2010-04-27 2014-09-17 大豊工業株式会社 ベーンポンプ
JP5366884B2 (ja) * 2010-05-21 2013-12-11 三菱電機株式会社 ベーンロータリー型圧縮機
JP5767959B2 (ja) * 2011-12-22 2015-08-26 大豊工業株式会社 摺動部材
JP6210859B2 (ja) * 2013-11-22 2017-10-11 三桜工業株式会社 負圧ポンプ及びシリンダヘッドカバー
JP6225045B2 (ja) 2014-02-21 2017-11-01 大豊工業株式会社 ロータおよびロータリー型流体機械
JP6406605B2 (ja) * 2014-10-03 2018-10-17 大豊工業株式会社 バキュームポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872504U (ja) * 1971-12-13 1973-09-11
WO2004036046A1 (ja) * 2002-10-15 2004-04-29 Mitsubishi Denki Kabushiki Kaisha ベーン式真空ポンプ
JP2004263690A (ja) * 2003-02-13 2004-09-24 Aisan Ind Co Ltd ベーン式バキュームポンプ
EP2151542A2 (de) * 2008-08-04 2010-02-10 Schwäbische Hüttenwerke Automotive GmbH Rotationskolbenpumpe mit Taschen für Schmiermittel

Also Published As

Publication number Publication date
US11035363B2 (en) 2021-06-15
EP3434901A4 (en) 2019-04-10
US20190101117A1 (en) 2019-04-04
EP3434901B1 (en) 2019-11-06
CN109072915B (zh) 2020-07-07
JP2017172472A (ja) 2017-09-28
CN109072915A (zh) 2018-12-21
JP6382877B2 (ja) 2018-08-29
EP3434901A1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
CA2897520C (en) Variable displacement pump with multiple pressure chambers
WO2017163770A1 (ja) ベーンポンプ
US10550840B2 (en) Vane pump device
JP5396364B2 (ja) 可変容量形ベーンポンプ
US20150252802A1 (en) Variable displacement vane pump
US8690557B2 (en) Variable displacement vane pump
JP2016121608A (ja) 可変容量ポンプ
JP2011032892A (ja) トロコイド式回転ポンプ
WO2018084105A1 (ja) ベーンポンプ
JP2000018151A (ja) アキシャルプランジャ型油圧機器
JP5243316B2 (ja) 可変容量型ベーンポンプ
WO2023042530A1 (ja) オイルポンプ
JP5149226B2 (ja) 可変容量形ベーンポンプ
JP2018141430A (ja) ベーン型圧縮機
WO2016181428A1 (ja) 圧縮性流体用ベーンポンプ
JP6614571B2 (ja) 可変容量ポンプ
JP2018135828A (ja) 可変容量型オイルポンプ
JP2017206962A (ja) ポンプ
JP7005238B2 (ja) ポンプ装置
JP2020153350A (ja) 内接ギヤポンプ
JP2019100206A (ja) ベーンポンプ
JPH05126065A (ja) 可変容量型ベーンポンプ
WO2017221567A1 (ja) リードバルブおよびベーンポンプ
JP2017089407A (ja) ベーンポンプ
JP2019105179A (ja) ベーンポンプ

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017769815

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769815

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769815

Country of ref document: EP

Kind code of ref document: A1