WO2017163366A1 - 走路推定方法及び走路推定装置 - Google Patents

走路推定方法及び走路推定装置 Download PDF

Info

Publication number
WO2017163366A1
WO2017163366A1 PCT/JP2016/059396 JP2016059396W WO2017163366A1 WO 2017163366 A1 WO2017163366 A1 WO 2017163366A1 JP 2016059396 W JP2016059396 W JP 2016059396W WO 2017163366 A1 WO2017163366 A1 WO 2017163366A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel
vehicle
locus
travel path
host vehicle
Prior art date
Application number
PCT/JP2016/059396
Other languages
English (en)
French (fr)
Inventor
宏寿 植田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CA3018659A priority Critical patent/CA3018659C/en
Priority to CN201680083902.3A priority patent/CN108883770B/zh
Priority to RU2018137210A priority patent/RU2689921C1/ru
Priority to MX2018011511A priority patent/MX2018011511A/es
Priority to JP2018506706A priority patent/JP6690703B2/ja
Priority to EP16895402.2A priority patent/EP3434545B1/en
Priority to PCT/JP2016/059396 priority patent/WO2017163366A1/ja
Priority to KR1020187029837A priority patent/KR101942230B1/ko
Priority to US16/087,268 priority patent/US10435019B2/en
Priority to BR112018069433-9A priority patent/BR112018069433B1/pt
Publication of WO2017163366A1 publication Critical patent/WO2017163366A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4044Direction of movement, e.g. backwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • the present invention relates to a runway estimation method and a runway estimation apparatus.
  • Patent Document 1 it is difficult to estimate the curve shape of the own lane from the running trajectory of surrounding vehicles traveling in a lane other than the own lane.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a travel path estimation method and a travel path estimation apparatus capable of estimating the travel path of the host vehicle from the travel trajectories of surrounding vehicles.
  • the traveling path of the surrounding vehicle is estimated by enlarging or reducing the traveling locus of the surrounding vehicle based on the turning direction and the lateral position of the surrounding vehicle.
  • the travel path of the host vehicle is estimated by enlarging or reducing the travel path of the surrounding vehicle, the travel path of the host vehicle is determined using the travel path of the surrounding vehicle traveling in a lane other than the host lane. Can be estimated.
  • FIG. 1 is a block diagram showing an overall configuration of a runway estimation apparatus 1a according to the first embodiment.
  • FIG. 2 is a flowchart for explaining an example of a runway estimation method using the runway estimation apparatus 1a shown in FIG.
  • FIG. 3 is an overhead view of the surrounding vehicles (82i, 82j) and their travel loci (83i, 83j) as viewed from above the host vehicle 81. 4, a plurality of loci points on the map (P 1, P 2, P 3, P 4, P 5, ⁇ ) and indicates the travel locus 83 M consisting of the approximate curve, the reference travel locus 83 M It is a bird's-eye view for demonstrating an example of the specific method which correct
  • FIG. 5A is an overhead view showing a situation in which the vehicle 81 cannot detect the position of the preceding vehicle 89 by the surrounding vehicle 82, and FIG. 5B appropriately estimates the curve shape 90 of the vehicle lane. It is an overhead view which shows a mode that cannot be performed.
  • FIG. 6 is a block diagram showing the overall configuration of the road estimator 1b according to the second embodiment.
  • FIG. 7 is a flowchart showing an example of a runway estimation method using the runway estimation device 1b shown in FIG.
  • FIG. 8 is an overhead view showing a case where it is determined that the host vehicle 81 passes the branch point 87 within a predetermined time.
  • FIG. 9 is a block diagram showing the overall configuration of the road estimation device 1c according to the third embodiment.
  • FIG. 10 is a flowchart showing an example of a runway estimation method using the runway estimation apparatus 1c shown in FIG.
  • FIG. 11 is an overhead view showing a case where the host vehicle 81 is determined to pass the intersection 88 within a predetermined time.
  • the travel path estimation device 1a estimates the travel path of the host vehicle from the positions of surrounding vehicles. “Ambient vehicles” are other vehicles that travel around the host vehicle and travel in the lane (adjacent lane) adjacent to the lane (own lane) in which the host vehicle travels, the lane further adjacent to the adjacent lane, etc. Indicates other vehicles to play.
  • the travel path estimation device 1a is a micro that executes a series of information calculation processes for estimating the travel path of the host vehicle from the position detection sensor 9 that detects the position of the surrounding vehicle and the position of the surrounding vehicle detected by the position detection sensor 9. And a computer 8. Both the position detection sensor 9 and the microcomputer 8 are mounted on the host vehicle, and are connected to each other by a cable for transmitting and receiving the positions of surrounding vehicles.
  • the position detection sensor 9 includes a radar, a laser radar, a laser range finder (LRF), and a camera, but the present invention is not limited to this, and other known methods may be used.
  • a means for obtaining depth information using a camera not only a stereo camera but also a monocular camera can be used.
  • the microcomputer 8 can be realized by using a general-purpose microcomputer including a CPU (Central Processing Unit), a memory, and an input / output unit.
  • the microcomputer 8 installs and executes in the microcomputer 8 a computer program (running path estimation program) for executing a series of information calculation processing for estimating the travel path of the host vehicle from the positions of surrounding vehicles.
  • the microcomputer 8 functions as an information arithmetic circuit (10, 20, 30, 40) that executes a series of information arithmetic processing.
  • achieves the runway estimation apparatus 1a by software is shown here, of course, the following information arithmetic circuits (10, 20, 30, 40) are not general purpose microcomputers, but dedicated ASICs etc. It is also possible to configure each as hardware.
  • each information calculation circuit (10, 20, 30, 40) realized by the microcomputer 8 may be configured by individual hardware.
  • the microcomputer 8 may also be used as an electronic control unit (ECU) used for other control related to the vehicle.
  • ECU electronice control unit
  • the microcomputer 8 functions as a position acquisition circuit 10, a travel locus calculation circuit 20, a lateral deviation amount calculation circuit 30, and a travel path estimation circuit 40.
  • the position acquisition circuit 10 acquires the positions of surrounding vehicles.
  • the position of the surrounding vehicle detected by the position detection sensor 9 may be acquired from the position detection sensor 9.
  • the travel locus calculation circuit 20 calculates the travel locus of the surrounding vehicles from the history of the positions of the surrounding vehicles acquired by the position acquisition circuit 10. That is, the travel locus calculation circuit 20 calculates the travel locus of the surrounding vehicles by connecting the positions of the surrounding vehicles detected at a plurality of consecutive times. For example, as shown in FIG. 4, the travel locus calculation circuit 20 has positions (P 1 , P 2 , P 3 , P 4 , P 5 ,...) Of surrounding vehicles detected every predetermined time. Is repeatedly plotted on the map in consideration of the moving direction and moving distance of the host vehicle during the predetermined time, and a plurality of positions (trajectory points: P 1 to P 5 ,...) Plotted on the map are curved. Approximate. The approximate curve 83 M forms a running path around the vehicle.
  • the lateral deviation amount calculation circuit 30 calculates the position of the traveling vehicle calculated by the traveling locus calculation circuit 20 with respect to the host vehicle and in the vehicle width direction (hereinafter referred to as “lateral position”).
  • lateral position For example, in a two-dimensional coordinate system in which the host vehicle is the origin, the vehicle longitudinal direction is the x axis, and the vehicle width direction is the y axis, the lateral position is the intersection of the travel locus and the y axis, that is, the y coordinate of the y intercept. Can show.
  • the lateral position will be described later with reference to FIG.
  • the lateral deviation amount calculation circuit 30 may determine the lane to which the travel locus belongs as the lateral position of the travel locus. For example, the lane marker attached to the road surface is detected using a camera or the like mounted on the host vehicle, and the position of the lane marker relative to the host vehicle is calculated. Then, from the position of the lane marker and the position of the travel locus, the lane in which the surrounding vehicle travels, that is, the lane to which the travel locus belongs (adjacent lane, lane further adjacent to the adjacent lane, etc.) is determined.
  • the lateral position of the travel locus determined to be an adjacent lane is, for example, 3 m, and the travel locus determined to be a lane further adjacent to the adjacent lane
  • the horizontal position may be 6 m.
  • the travel path estimation circuit 40 estimates the travel path of the host vehicle by enlarging or reducing the travel trajectory of the surrounding vehicle based on the turning direction of the surrounding vehicle and the lateral position calculated by the lateral deviation calculation circuit 30.
  • the traveling path estimation circuit 40 identifies the turning direction of the surrounding vehicle from the traveling locus of the surrounding vehicle calculated by the traveling locus calculation circuit 20. For example, if the travel locus is a right curve shape, the turning direction may be determined as the right direction, and if the travel locus is a left curve shape, the turning direction may be determined as the left direction.
  • the travel path estimation circuit 40 includes a reference travel path selection unit 40a, a reference travel path correction unit 40b, and a travel path determination unit 40c.
  • the reference travel locus selection unit 40a selects a reference travel locus (hereinafter referred to as “reference travel locus”) for estimating the travel path from the travel loci of a plurality of surrounding vehicles.
  • reference travel locus a reference travel locus
  • the position acquisition circuit 10 acquires the positions of a plurality of surrounding vehicles, a plurality of travel loci and lateral positions are also calculated.
  • the reference travel trajectory selection unit 40a selects a travel trajectory suitable for estimating the travel path based on the lateral position of the travel trajectory. The selection of the reference travel locus will be described later with reference to FIG.
  • the reference travel locus correction unit 40b corrects the reference travel locus selected by the reference travel locus selection unit 40a based on the turning direction of the surrounding vehicle and the lateral position of the reference travel locus. The correction of the reference travel locus will be described later with reference to FIG.
  • the travel path determination unit 40c sets the reference travel path corrected by the reference travel path correction unit 40b as the travel path of the host vehicle.
  • the position acquisition circuit 10 acquires the positions of a plurality of surrounding vehicles (82i, 82j), and the traveling locus calculation circuit 20 obtains the traveling locus (83i, 83j) of each surrounding vehicle (82i, 82j). calculate. Then, the lateral deviation amount calculation circuit 30 calculates each of the lateral positions (Di, Dj) of the travel locus (83i, 83j) relative to the host vehicle 81. As shown in FIG. 3, since the travel locus (83i, 83j) has a left curve shape, the travel path estimation circuit 40 determines that the turning direction of the surrounding vehicle is the left direction.
  • the reference traveling locus selection unit 40a selects a reference traveling locus from a plurality of traveling locus (83i, 83j) based on the lateral position (Di, Dj) of the traveling locus. Specifically, the reference travel locus selection unit 40a selects the travel locus (83i, 83j) of the surrounding vehicle closer to the host vehicle 81 than the predetermined reference distance as the reference travel locus. For example, when there are a plurality of surrounding vehicles, the absolute value of the lateral position (Di, Dj) is set to the first reference distance so as to be selected from the surrounding vehicles in the own lane and the adjacent lane among the plurality of traveling tracks. A travel locus (83i, 83j) smaller than (3m) is selected.
  • the “distance between the surrounding vehicles (82i, 82j) and the host vehicle 81” is a concept including not only the distance in the vehicle width direction but also the distance in the traveling direction.
  • the reference travel locus selection unit 40a may select the travel locus 83j having the smallest absolute value of the lateral position (Di, Dj) as the reference travel locus. In this case, the reference travel locus selection unit 40a does not consider the “distance between the surrounding vehicles (82i, 82j) and the host vehicle 81”. Further, the reference travel locus selection unit 40a may select a travel locus having the smallest “distance between the surrounding vehicles (82i, 82j) and the host vehicle 81” as the reference travel locus. In this case, the reference travel locus selection unit 40a does not consider “absolute value of the lateral position (Di, Dj)”.
  • the reference travel locus selection unit 40a selects the travel locus that belongs to the adjacent lane. A travel locus belonging to a lane further adjacent to the adjacent lane is not selected.
  • Reference travel locus correcting unit 40b based on the lateral position D M of the turning direction and the reference traveling locus 83 M around the vehicle, the reference traveling locus selection unit 40a will expand or contract the reference travel locus 83 M selected.
  • the reference travel locus correction unit 40b calculates a turning radius R and a turning center 84 at each locus point (P 1 to P 5 ,).
  • the coordinates of the turning radius R and the turning center 84 are calculated by the least square method or the like using the locus point P 3 to be calculated and the two front and rear points (P 2 , P 4 ).
  • the turning radius R and the turning center 84 are calculated in the same manner.
  • the reference traveling locus correction unit 40b expands each locus point (P 1 to P 5 ,%) From the turning radius R centered on the turning center 84 to the turning radius (R + D M ), or Reduce to turning radius (R ⁇ D M ). Reference travel locus correcting unit 40b, the expansion and contraction of the determination made based on the turning direction and the lateral position D M of the reference traveling locus 83 M.
  • the own vehicle 81 is set to the traveling locus 83i of the surrounding vehicle 82i.
  • the locus points (P 1 to P 5 ,...) Of the traveling locus 83i are expanded to the turning radius (R + Di) in the same manner as in FIG.
  • the reference travel locus correction unit 40b changes the distance (turning radius) from the turning center 84 to the locus points (P 1 to P 5 ,...) Without changing the turning center 84. If the own vehicle 81 is located outside the turning direction of the travel locus, the turning radius is increased, and if the own vehicle 81 is located inside, the turning radius is reduced. Then, the reference travel track correction unit 40b, to the enlarged or reduced trajectory point (P 3 '), again, by curve approximation, it is possible to correct the reference travel locus 83 M.
  • Reference travel locus correcting unit 40b increases the size enlarging or reducing the more lateral position D M around the vehicle 82 is away from the vehicle 81. That is, when the turning radius R is constant, as the absolute value of the lateral position D M is large, enlargement ratio and reduction ratio increases.
  • the travel path determination unit 40c determines the reference travel path 91 corrected by the reference travel path correction unit 40b as it is as the travel path of the host vehicle.
  • FIG. 2 An example of a runway estimation method using the runway estimation apparatus 1a shown in FIG. 1 will be described with reference to the flowchart of FIG.
  • an operation procedure of the microcomputer 8 in the travel path estimation apparatus 1a shown in FIG. 1 will be described.
  • the process shown in FIG. 2 is repeatedly executed at a predetermined cycle.
  • step S110 the position acquisition circuit 10 acquires the positions of surrounding vehicles.
  • the travel locus calculation circuit 20 uses the surrounding vehicle position history (trajectory points: P 1 to P 5 ,%) Acquired by the position acquisition circuit 10 to Is calculated (approximate curve 83 M ).
  • the lateral deviation calculation circuit 30 calculates the lateral position (Di, Dj) of the traveling locus (83i, 83j) calculated by the traveling locus calculation circuit 20 with respect to the host vehicle 81, as shown in FIG. .
  • the reference travel locus selection unit 40a selects a reference travel locus from a plurality of travel tracks (83i, 83j) based on the lateral position (Di, Dj) of the travel locus. Select. For example, the travel locus 83j of the surrounding vehicle 82j that is the travel locus (83i, 83j) in which the absolute value of the lateral position (Di, Dj) is smaller than the first reference distance (3m) and that is closest to the host vehicle 81 to select as a reference traveling locus 83 M.
  • the method of selecting the reference travel locus is not limited to this, and other methods described above may be used.
  • the reference travel locus selection unit 40a may select the travel locus of the surrounding vehicle as the reference travel locus. If there is no travel locus whose absolute value of the lateral position is smaller than the first reference distance, the processing may be interrupted and restarted from step S110, or the travel locus having the smallest absolute value of the lateral position may be resumed. You may select as a locus.
  • step S0150 the reference travel locus correction unit 40b calculates the turning radius R and the turning center 84 at each locus point (P 1 to P 5 ,%) As shown in FIG.
  • step S0160 as shown in FIG. 4, the reference traveling locus correction unit 40b moves each of the locus points (P 1 to P 5 ,%) From the turning radius R around the turning center 84 to the turning radius ( R + D M ) or reduced to the turning radius (R ⁇ D M ). The expansion and contraction of the determination made based on the turning direction and the lateral position of the reference travel locus 83 M. Then, the reference travel track correction unit 40b, for each locus point is enlarged or reduced (P 3 '), again, by curve approximation, to correct the reference travel locus 83 M.
  • the travel path determination unit 40c determines the reference travel path 91 corrected by the reference travel path correction unit 40b as it is as the travel path of the host vehicle.
  • step S0180 it is determined whether or not the ignition switch of the host vehicle 81 is turned off, and the above-described steps S110 to 170 are repeated at predetermined intervals until the vehicle is turned off. If it is turned off (YES in S180), the processing cycle described above ends.
  • the microcomputer 8 estimates the traveling path of the host vehicle 81 by enlarging or reducing the traveling locus (83i, 83j) of the surrounding vehicles (82i, 82j). Thereby, the travel path of the own vehicle 81 can be estimated using the travel locus (83i, 83j) of the surrounding vehicles (82i, 82j) traveling in the lane other than the own lane. For example, as shown in FIG. 5A, consider a situation in which the host vehicle 81 cannot detect the position of the preceding vehicle 89 by the surrounding vehicle 82 or the like. The curve shape of the travel locus (adjacent lane) of the surrounding vehicle 82 is different from the curve shape of the travel locus (own lane) of the preceding vehicle 89.
  • the curve shape 90 of the own lane cannot be estimated appropriately as shown in FIG. According to the first embodiment, even in the situation shown in FIG. 5A, the curve shape of the host vehicle 81 can be accurately estimated using the travel locus 83 of the surrounding vehicle 82 traveling in the adjacent lane or the like. .
  • the reference travel locus correction unit 40 b decreases the size of enlargement or reduction as the turning radius R of the travel locus 83 ⁇ / b> M increases. Thereby, a runway can be estimated appropriately according to the curve shape.
  • Reference travel locus correcting unit 40b as shown in FIG. 4, to increase the size enlarging or reducing the more lateral position D M around the vehicle 82 is away from the vehicle 81. Thereby, even when the lane in which the host vehicle 81 travels and the lane in which the surrounding vehicle 82 travels are different (the next lane or the next adjacent lane), the travel path can be estimated appropriately.
  • the microcomputer 8 estimates the travel path based on the travel trajectory (83i, 83j) of the surrounding vehicle that is closest to the host vehicle 81.
  • the travel path is estimated based on the travel trajectory 83j of the surrounding vehicle in the lane adjacent to the travel lane of the host vehicle 81. Thereby, a traveling path can be estimated appropriately from the highly accurate traveling locus 83j.
  • the travel path estimation device 1b acquires map information including at least road branch information, and if it is determined that the host vehicle 81 passes through a branch point, the travel path estimation device 1b does not estimate the travel path of the host vehicle.
  • the travel path determination unit 40c determines the reference travel path 91 corrected by the reference travel path correction unit 40b as the travel path of the host vehicle.
  • the runway estimation device 1 b further includes a map database 7. Both the map database 7 and the microcomputer 8 are mounted on the host vehicle 81 and are connected to each other by cables for transmitting and receiving map information including at least road branch information.
  • the microcomputer 8 further functions as a map acquisition circuit 50 as well as an information calculation circuit (10, 20, 30, 40).
  • the map acquisition circuit 50 acquires map information including at least road branch information from the map database 7.
  • FIG. 7 With reference to the flowchart of FIG. 7, an example of a runway estimation method using the runway estimation apparatus 1b shown in FIG. 6 will be described.
  • the operation procedure of the microcomputer 8 in the road estimation device 1b shown in FIG. 6 will be described.
  • the process shown in FIG. 7 is repeatedly executed at a predetermined cycle.
  • the flowchart of FIG. 7 further includes step S165 as compared to FIG. 2, and the content of step S170 is different.
  • the processing contents of steps S110 to S160 and S180 in FIG. 7 are the same as those in FIG.
  • step S160 the process proceeds to step S165, and the map acquisition circuit 50 acquires map information including at least road branch information from the map database 7. Specifically, the map acquisition circuit 50 reads map information including branch information of a road on which the host vehicle 81 travels from the map database 7.
  • the process proceeds to step S170, runway determiner 40c, the reference travel locus 91, the map information after correction, and the absolute value of the lateral position D M, estimates the lane of the vehicle.
  • the traveling path determination unit 40c determines whether or not the host vehicle 81 passes through the branch point within a predetermined time based on the map information. Specifically, as shown in FIG. 8, on the road on which the host vehicle 81 travels, the point at which the road branches into two or more roads (85, 86) within a predetermined distance ahead of the host vehicle 81 ( It is determined whether or not there is a branch point 87).
  • Runway determiner 40c is the absolute value of the lateral position D M of the reference traveling locus 83 M third reference distance (1.5 m) or above and the vehicle 81 passes the branch point 87 within a predetermined time If determined, the travel path of the host vehicle 81 is not estimated.
  • the runway determiner 40c is nearby vehicle traveling locus can be calculated is traveling lane other than the own lane (lateral position D M are separated third reference distance (1.5 m) or more)
  • trajectory 91 which the reference
  • runway determiner 40c is either the absolute value of the lateral position D M of the reference traveling locus 83 M is less than the third reference distance (1.5 m), or, the branch point vehicle 81 is within a predetermined time 87 If it is determined that the vehicle does not pass the vehicle, the reference travel locus 91 corrected by the reference travel locus correction unit 40b is set as the travel path of the host vehicle 81.
  • the travel path determination unit 40c is configured such that the surrounding vehicle whose travel locus can be calculated is traveling in the own lane (the lateral position DM is less than the third reference distance (1.5 m)), or the own vehicle 81 is When it is determined that the vehicle does not pass the branch point, the reference travel locus 91 corrected by the reference travel locus correction unit 40b is set as the travel path of the host vehicle 81.
  • the runway is not estimated. Therefore, as shown in FIG. 8, when the surrounding vehicle 82 leaves in the direction (road 86) different from the traveling path (road 85) of the own vehicle 81 at the branch point 87, it is prevented that an erroneous traveling path is estimated. it can.
  • the travel path determination unit 40c corrects the reference travel after correction. It is possible to prevent the locus 91 from being set as the traveling path of the host vehicle 81. As a result, it is possible to avoid estimating an incorrect runway.
  • the travel path determination unit 40c may determine the travel path determination based only on the presence or absence of the branch point 87 in step S170. For example, regardless of the lane position around the vehicle can be calculated travel locus, runway determiner 40c, when the vehicle 81 is determined to pass through the branch point 87 within a predetermined time is the reference running locus 83 M regardless of the lateral position D M, does not estimate the road of the host vehicle lane, it may be.
  • the travel path estimation device 1 c acquires at least travel route information of the host vehicle 81 on the map, and estimates the travel path based on the travel path 83 of the surrounding vehicle 82 similar to the travel route of the host vehicle 81. Only when it is determined that the reference travel path 91 corrected by the reference travel path correction unit 40b is similar to the travel route of the host vehicle 81, the travel path determination unit 40c uses the corrected reference travel path 91 as a reference. Determined as the vehicle's track.
  • the runway estimation device 1 c further includes a navigation device 6.
  • the navigation device 6, the map database 7, and the microcomputer 8 are all mounted on the host vehicle 81.
  • the navigation device 6 and the microcomputer 8 are connected to each other by a cable for transmitting and receiving traveling route information of the host vehicle 81.
  • the microcomputer 8 further functions as a route acquisition circuit 60 as well as an information arithmetic circuit (10, 20, 30, 40, 50).
  • the route acquisition circuit 60 acquires the travel route information of the host vehicle 81 from the navigation device 6.
  • the map acquisition circuit 50 acquires map information including road branch information, intersection information, and road shape information (including turning radius information).
  • FIG. 10 An example of a runway estimation method using the runway estimation device 1c shown in FIG. 9 will be described with reference to the flowchart of FIG. Here, the operation procedure of the microcomputer 8 in the road estimation device 1c shown in FIG. 9 will be described. The process shown in FIG. 10 is repeatedly executed at a predetermined cycle.
  • the flowchart of FIG. 10 further includes step S100 as compared to FIG. 7, and the content of step S170 is different.
  • the processing contents of steps S110 to S160 and S180 in FIG. 10 are the same as those in FIG.
  • step S100 the route acquisition circuit 60 acquires the travel route information of the host vehicle 81 from the navigation device 6. Then, it progresses to step S110.
  • step S170 the runway determiner 40c, the absolute value of the lateral position D M of the reference traveling locus 83 M is at the first reference distance or more, and, when the vehicle 81 is determined to pass through the branch point 87 Does not set the corrected reference travel locus 91 as the travel path of the host vehicle 81. This is the same as in the second embodiment.
  • the travel path determination unit 40c further determines whether or not the branch point 87 is an intersection 88 in step S170. Then, when the branch point 87 is the intersection 88, the traveling path determination unit 40c determines whether or not the reference traveling locus 91 corrected in step S160 is similar to the traveling route of the host vehicle 81 acquired in step S100. .
  • the runway determination part 40c correct
  • trajectory 91 is similar to the driving
  • the reference traveling locus 91 is set as the traveling path of the own lane.
  • the travel path determination unit 40c does not satisfy the following condition.
  • the corrected reference traveling locus 91 may not be set as the traveling path of the own lane. That is, the runway determiner 40c, the absolute value of the lateral position D M of the reference traveling locus 83 M is, the third state is the reference distance (1.5 m) or more of a predetermined time (e.g., 5 seconds), continued In this case, the corrected reference traveling locus 91 may not be set as the traveling path of the own lane.
  • the travel locus of the surrounding vehicle similar to the travel route of the own vehicle 81 is used, the travel of the surrounding vehicle traveling in parallel with the travel route of the own vehicle 81 is used.
  • the runway can be estimated appropriately from the trajectory.
  • step S170 the travel path determination unit 40c determines whether or not the reference travel locus 91 corrected in step S160 is similar to the travel route of the host vehicle 81 acquired in step S100. If they are not similar, the travel path determination unit 40c does not set the reference travel path 91 corrected by the reference travel path correction unit 40b as the travel path of the host vehicle. On the other hand, if they are similar, the travel path determination unit 40c sets the reference travel path 91 corrected by the reference travel path correction unit 40b as the travel path of the host vehicle.
  • step S170 the runway determiner 40c determines whether the absolute value of the lateral position D M is the first reference distance or more, whether the vehicle 81 has passed the branching point 87, and branch point 87 intersection Whether it is 88 or not is not judged. Step S165 (map reading) is also unnecessary.
  • the travel path estimation devices (1 a, 1 b, 1 c) may not include the position detection sensor 9.
  • the travel path estimation devices (1a to 1c) include a wireless communication device, and the position acquisition circuit 10 can acquire information indicating the positions of surrounding vehicles from the outside via the wireless communication network.
  • the travel path estimation devices (1a to 1c) may not include the map database 7 or the navigation device 6.
  • the map acquisition circuit 50 and the route acquisition circuit 60 can acquire map information and travel route information from the outside via a computer network.
  • the travel path estimation devices (1a to 1c) may not be mounted on the host vehicle 81.
  • it may be a back end (cloud itself) in a cloud computing model.
  • the host vehicle 81 as the front end is connected to the travel path estimation devices (1a to 1c) as the back end via a network such as the Internet.
  • the travel path estimation device (1a to 1c) acquires information indicating the position of the surrounding vehicle 82 from the surrounding vehicle 82 itself or the host vehicle 81 (detection result of the position detection sensor 9), estimates the travel path of the host vehicle 81, and estimates You may provide the runway to the own vehicle 81 via a network.
  • the processing circuit includes a programmed processing device such as a processing device including an electrical circuit.
  • Processing devices also include devices such as application specific integrated circuits (ASICs) and conventional circuit components arranged to perform the functions described in the embodiments.
  • ASICs application specific integrated circuits
  • 1a, 1b, 1c track estimating apparatus 10 position obtaining circuit 40 runway estimation circuit 81 vehicle 82,82i, 82j surrounding the vehicle 83,83i, 83j, 83 M running locus 87 branch points Di, Dj, D M lateral position P 1 ⁇ position R the turning radius of the P 5 around the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本発明の一態様は、周囲車両の位置を取得する位置取得回路と、周囲車両の位置の履歴による周囲車両の走行軌跡に基づいて自車両の走路を推定する走路推定回路とを用いた走路推定方法である。走路推定方法では、周囲車両の旋回方向および横位置に基づいて周囲車両の走行軌跡を拡大または縮小して自車両の走路を推定する。

Description

走路推定方法及び走路推定装置
 本発明は、走路推定方法及び走路推定装置に関するものである。
 従来から、先行車の走行軌跡を取得または算出し、先行車の走行軌跡から自車線のカーブ形状を推定し、ステアリングを制御する技術が知られている(特許文献1参照)。
特開2013-226973号公報
 しかし、特許文献1では、自車線以外の車線を走行する周囲車両の走行軌跡から、自車線のカーブ形状を推定することは難しい。
 本発明は、上記課題に鑑みて成されたものであり、その目的は、周囲車両の走行軌跡から自車両の走路を推定できる走路推定方法及び走路推定装置を提供することである。
 本発明の一態様は、周囲車両の旋回方向および横位置に基づいて周囲車両の走行軌跡を拡大または縮小して自車両の走路を推定する。
 本発明の一態様によれば、周囲車両の走行軌跡を拡大または縮小して自車両の走路を推定するので、自車線以外の車線を走行する周囲車両の走行軌跡を用いて自車両の走路を推定することができる。
図1は、第1実施形態に係わる走路推定装置1aの全体構成を示すブロック図である。 図2は、図1に示した走路推定装置1aを用いた走路推定方法の一例を説明するフローチャートである。 図3は、周囲車両(82i、82j)及びその走行軌跡(83i、83j)を自車両81の上方から見た俯瞰図である。 図4は、地図上の複数の軌跡点(P、P、P、P、P、・・・)とその近似曲線からなる走行軌跡83を示し、基準走行軌跡83を補正して自車両の走路を推定する具体的な方法の一例を説明するための俯瞰図である。 図5(a)は、周囲車両82によって自車両81が先行車89の位置を検出できない状況を示す俯瞰図であり、図5(b)は、自車線のカーブ形状90を適切に推定することができない様子を示す俯瞰図である。 図6は、第2実施形態に係わる走路推定装置1bの全体構成を示すブロック図である。 図7は、図6に示した走路推定装置1bを用いた走路推定方法の一例を示すフローチャートである。 図8は、自車両81が所定時間以内に分岐点87を通過すると判断される場合を示す俯瞰図である。 図9は、第3実施形態に係わる走路推定装置1cの全体構成を示すブロック図である。 図10は、図9に示した走路推定装置1cを用いた走路推定方法の一例を示すフローチャートである。 図11は、自車両81が所定時間以内に交差点88を通過すると判断される場合を示す俯瞰図である。
 (第1実施形態)
 次に、図面を参照して、実施形態を詳細に説明する。
 図1を参照して、第1実施形態に係わる走路推定装置1aの全体構成を説明する。走路推定装置1aは、周囲車両の位置から自車両の走路を推定する。「周囲車両」とは、自車両の周囲を走行する他車両であって、自車両が走行する車線(自車線)に隣接する車線(隣接車線)、隣接車線に更に隣接する車線など、を走行する他車両を示す。
 走路推定装置1aは、周囲車両の位置を検出する位置検出センサ9と、位置検出センサ9により検出された周囲車両の位置から自車両の走路を推定するための一連の情報演算処理を実行するマイクロコンピュータ8とを備える。位置検出センサ9及びマイクロコンピュータ8はいずれも自車両に搭載され、周囲車両の位置を送受信するためのケーブルで互いに接続されている。
 位置検出センサ9の具体例として、レーダー、レーザーレーダー、レーザレンジファインダ(LRF)、カメラが挙げられるが、これに限られることなく、他の既知の方法を用いても構わない。なお、カメラを用いて奥行き情報を得る手段として、ステレオカメラのみならず、単眼カメラを用いることも可能である。
 マイクロコンピュータ8は、CPU(中央処理装置)、メモリ、及び入出力部を備える汎用のマイクロコンピュータを用いて実現可能である。マイクロコンピュータ8は、周囲車両の位置から自車両の走路を推定するための一連の情報演算処理を実行するためのコンピュータプログラム(走路推定プログラム)を、マイクロコンピュータ8にインストールして実行する。これにより、マイクロコンピュータ8は、一連の情報演算処理を実行する情報演算回路(10、20、30、40)として機能する。なお、ここでは、ソフトウェアによって走路推定装置1aを実現する例を示すが、もちろん、以下に示す情報演算回路(10、20、30、40)を、汎用のマイクロコンピュータではなく、ASIC等の専用のハードウェアとしてそれぞれ構成することも可能である。また、マイクロコンピュータ8により実現される各情報演算回路(10、20、30、40)を個別のハードウェアにより構成してもよい。更に、マイクロコンピュータ8は、車両にかかわる他の制御に用いる電子制御ユニット(ECU)と兼用してもよい。
 マイクロコンピュータ8は、位置取得回路10、走行軌跡算出回路20、横偏差量算出回路30、走路推定回路40として機能する。
 位置取得回路10は、周囲車両の位置を取得する。位置検出センサ9が検出した周囲車両の位置を位置検出センサ9から取得すればよい。もちろん、無線通信網を介して外部から周囲車両の位置を示す情報を取得しても構わない。
 走行軌跡算出回路20は、位置取得回路10が取得した周囲車両の位置の履歴から、周囲車両の走行軌跡を算出する。つまり、走行軌跡算出回路20は、連続する複数の時刻において検出した周囲車両の位置をつなぎ合わせることにより、周囲車両の走行軌跡を算出する。例えば、走行軌跡算出回路20は、図4に示すように、所定時間毎に検出される周囲車両の自車両に対する位置(P、P、P、P、P、・・・)を、この所定時間における自車両の移動方向及び移動距離を考慮して地図上に繰り返しプロットし、地図上にプロットされた複数の位置(軌跡点:P~P、・・・)を曲線近似すればよい。この近似曲線83は周囲車両の走行軌跡を成す。
 横偏差量算出回路30は、走行軌跡算出回路20が算出した走行軌跡の自車両に対する位置であって、自車両の車幅方向の位置(以後「横位置」という。)を算出する。例えば、自車両を原点とし、車両前後方向をx軸とし、車幅方向をy軸とする2次元座標系において、横位置は、走行軌跡とy軸との交点、つまりy切片のy座標で示すことができる。横位置については、図3を参照して後述する。
 或いは、横偏差量算出回路30は、走行軌跡が属する車線を、走行軌跡の横位置として判定してもよい。例えば、自車両に搭載されたカメラ等を用いて路面に付されたレーンマーカを検出し、レーンマーカの自車両に対する位置を算出する。そして、レーンマーカの位置と走行軌跡の位置とから、周囲車両が走行する車線、つまり、走行軌跡が属する車線(隣接車線、隣接車線に更に隣接する車線など)を判定する。車線の幅は、道路区間で違いがあるため、実測値に変えて、例えば、隣接車線と判定された走行軌跡の横位置を例えば3mとし、隣接車線に更に隣接する車線と判定された走行軌跡の横位置を例えば6mとすればよい。
 走路推定回路40は、周囲車両の旋回方向および横偏差量算出回路30が算出した横位置に基づいて、周囲車両の走行軌跡を拡大または縮小して自車両の走路を推定する。なお、走路推定回路40は、周囲車両の旋回方向を、走行軌跡算出回路20が算出した周囲車両の走行軌跡から特定する。例えば、走行軌跡が右カーブ形状であれば、旋回方向は右方向と判断し、走行軌跡が左カーブ形状であれば、旋回方向は左方向と判断すればよい。
 走路推定回路40は、基準走行軌跡選択部40aと、基準走行軌跡補正部40bと、走路決定部40cとを備える。
 基準走行軌跡選択部40aは、複数の周囲車両の走行軌跡の中から、走路を推定する上で基準とする走行軌跡(以後、「基準走行軌跡」という。)を選択する。位置取得回路10が複数の周囲車両の位置を取得した場合、走行軌跡及び横位置の各々も複数算出される。この場合、基準走行軌跡選択部40aは、走行軌跡の横位置に基づいて、走路の推定に適した走行軌跡を選択する。基準走行軌跡の選択については、図3を参照して後述する。
 基準走行軌跡補正部40bは、周囲車両の旋回方向および基準走行軌跡の横位置に基づいて、基準走行軌跡選択部40aが選択した基準走行軌跡を補正する。基準走行軌跡の補正については、図4を参照して後述する。
 走路決定部40cは、基準走行軌跡補正部40bが補正した基準走行軌跡を、自車両の走路として設定する。
 図3を参照して、走行軌跡(83i、83j)の横位置(Di、Dj)および基準走行軌跡の選択方法を具体的に説明する。図3に示す例で、位置取得回路10は複数の周囲車両(82i、82j)の位置を取得し、走行軌跡算出回路20は各周囲車両(82i、82j)の走行軌跡(83i、83j)を算出する。そして、横偏差量算出回路30は走行軌跡(83i、83j)の自車両81に対する横位置(Di、Dj)の各々を算出する。なお、図3に示すように、走行軌跡(83i、83j)が左カーブ形状であるので、走路推定回路40は、周囲車両の旋回方向は左方向であると判断する。
 基準走行軌跡選択部40aは、走行軌跡の横位置(Di、Dj)に基づいて、複数の走行軌跡(83i、83j)の中から、基準走行軌跡を選択する。具体的には、基準走行軌跡選択部40aは、所定の基準距離よりも自車両81に近い周囲車両の走行軌跡(83i、83j)を基準走行軌跡として選択する。例えば、複数の周囲車両が存在する場合には、複数の走行軌跡のうち、自車線および隣接車線の周囲車両から選択するように、横位置(Di、Dj)の絶対値が第1の基準距離(3m)よりも小さい走行軌跡(83i、83j)を選択する。複数の走行軌跡(83i、83j)の横位置(Di、Dj)の絶対値が第1の基準距離(3m)未満である場合、これらの走行軌跡(83i、83j)のうち、周囲車両(82i、82j)と自車両81との距離が第2の基準距離未満である周囲車両の走行軌跡を選択する。ここで「周囲車両(82i、82j)と自車両81との距離」とは、車幅方向の距離のみならず進行方向の距離をも含む概念である。例えば、横位置(Di、Dj)の絶対値が第1の基準距離(3m)よりも小さい走行軌跡(83i、83j)の中で、自車両81に最も近い周囲車両82jの走行軌跡83jを、基準走行軌跡として選択する。
 または、基準走行軌跡選択部40aは、横位置(Di、Dj)の絶対値が最も小さい走行軌跡83jを、基準走行軌跡として選択しても構わない。この場合、基準走行軌跡選択部40aは、「周囲車両(82i、82j)と自車両81との距離」を考慮しない。更に、基準走行軌跡選択部40aは、「周囲車両(82i、82j)と自車両81との距離」が最も小さい走行軌跡を、基準走行軌跡として選択しても構わない。この場合、基準走行軌跡選択部40aは、「横位置(Di、Dj)の絶対値」を考慮しない。
 なお、走行軌跡の横位置として、走行軌跡が属する車線(隣接車線、隣接車線に更に隣接する車線など)を用いる場合、例えば、基準走行軌跡選択部40aは、隣接車線に属する走行軌跡を選択し、隣接車線に更に隣接する車線に属する走行軌跡は選択しない。
 図4を参照して、基準走行軌跡83を補正して自車両81の走路を推定する具体的な方法の一例を説明する。基準走行軌跡補正部40bは、周囲車両の旋回方向および基準走行軌跡83の横位置Dに基づいて、基準走行軌跡選択部40aが選択した基準走行軌跡83を拡大または縮小する。
 先ず、基準走行軌跡補正部40bは、各軌跡点(P~P、・・・)での旋回半径Rと旋回中心84を算出する。例えば、算出対象となる軌跡点Pと前後2点(P、P)とを用いて、最小二乗法等により旋回半径R及び旋回中心84の座標を算出する。各軌跡点(P~P、・・・)についても、同様にして旋回半径R及び旋回中心84を算出する。
 次に、基準走行軌跡補正部40bは、各軌跡点(P~P、・・・)を、旋回中心84を中心とする旋回半径Rから旋回半径(R+D)に拡大するか、或いは旋回半径(R-D)に縮小する。基準走行軌跡補正部40bは、拡大と縮小の判断を、基準走行軌跡83の旋回方向および横位置Dに基づいて行う。
 例えば、図3の走行軌跡83iのように、旋回方向が左方向であり、走行軌跡83iの自車両81に対する横位置Diが左側である場合、自車両81は、周囲車両82iの走行軌跡83iの旋回方向の外側に位置する。この場合、図4と同様にして、走行軌跡83iの各軌跡点(P~P、・・・)を旋回半径(R+Di)に拡大する。
 一方、図3の走行軌跡83jのように、旋回方向が左方向であり、走行軌跡83jの自車両81に対する横位置Djが右側である場合、自車両81は、周囲車両82jの走行軌跡83jの旋回方向の内側に位置する。この場合、図4とは逆に、走行軌跡83jの各軌跡点(P~P、・・・)を旋回半径(R-Dj)に縮小する。
 このように、基準走行軌跡補正部40bは、旋回中心84を変えずに、旋回中心84から軌跡点(P~P、・・・)までの距離(旋回半径)を変化させる。自車両81が走行軌跡の旋回方向の外側に位置すれば、旋回半径を拡大し、自車両81が内側に位置すれば、旋回半径を縮小する。そして、基準走行軌跡補正部40bは、拡大又は縮小された軌跡点(P’)に対して、再度、曲線近似することにより、基準走行軌跡83を補正することができる。
 基準走行軌跡補正部40bは、走行軌跡83の旋回半径Rが大きいほど、拡大または縮小する大きさを小さくする。つまり、横位置Dが一定である場合、旋回半径Rが大きいほど、拡大率(=(R+D)/R)及び縮小率(=(R-D)/R)は小さくなる。
 基準走行軌跡補正部40bは、周囲車両82の横位置Dが自車両81から離れているほど拡大または縮小する大きさを大きくする。つまり、旋回半径Rが一定である場合、横位置Dの絶対値が大きいほど、拡大率及び縮小率は大きくなる。
 第1実施形態において、走路決定部40cは、基準走行軌跡補正部40bが補正した基準走行軌跡91を、そのまま、自車両の走路として決定する。
 図2のフローチャートを参照して、図1に示した走路推定装置1aを用いた走路推定方法の一例を説明する。ここでは、図1に示した走路推定装置1aのうちマイクロコンピュータ8の動作手順を説明する。図2に示す処理は所定周期で繰り返し実行される。
 先ずステップS110において、位置取得回路10は、周囲車両の位置を取得する。
 ステップS0120に進み、走行軌跡算出回路20は、図4に示すように、位置取得回路10が取得した周囲車両の位置の履歴(軌跡点:P~P、・・・)から、周囲車両の走行軌跡(近似曲線83)を算出する。
 ステップS0130に進み、横偏差量算出回路30は、図3に示すように、走行軌跡算出回路20が算出した走行軌跡(83i、83j)の自車両81に対する横位置(Di、Dj)を算出する。
 ステップS0140に進み、基準走行軌跡選択部40aは、図3に示すように、走行軌跡の横位置(Di、Dj)に基づいて、複数の走行軌跡(83i、83j)の中から、基準走行軌跡を選択する。例えば、横位置(Di、Dj)の絶対値が第1の基準距離(3m)よりも小さい走行軌跡(83i、83j)であって、且つ、自車両81に最も近い周囲車両82jの走行軌跡83jを基準走行軌跡83として選択する。但し、基準走行軌跡の選択方法はこれに限らず、前述した他の方法を用いてもよい。なお、基準走行軌跡の選択は、ステップS110において複数の周囲車両の位置を取得した場合にのみ実施してもよい。1の周囲車両の位置のみを取得した場合には、基準走行軌跡選択部40aは、その周囲車両の走行軌跡を基準走行軌跡として選択すればよい。また、横位置の絶対値が第1の基準距離よりも小さい走行軌跡が無い場合、処理を中断してステップS110から再開してもよいし、横位置の絶対値が最も小さい走行軌跡を基準走行軌跡として選択してもよい。
 ステップS0150に進み、基準走行軌跡補正部40bは、図4に示すように、各軌跡点(P~P、・・・)での旋回半径Rと旋回中心84を算出する。
 ステップS0160に進み、基準走行軌跡補正部40bは、図4に示すように、各軌跡点(P~P、・・・)を、旋回中心84を中心とする旋回半径Rから旋回半径(R+D)に拡大するか、或いは旋回半径(R-D)に縮小する。拡大と縮小の判断を、基準走行軌跡83の旋回方向および横位置に基づいて行う。そして、基準走行軌跡補正部40bは、拡大又は縮小された各軌跡点(P’)に対して、再度、曲線近似することにより、基準走行軌跡83を補正する。
 ステップS0170に進み、走路決定部40cは、基準走行軌跡補正部40bが補正した基準走行軌跡91を、そのまま、自車両の走路として決定する。
 ステップS0180に進み、自車両81のイグニション・スイッチがターン・オフされたか否かを判断し、ターン・オフされるまで、上記したステップS110~ステップ170を、所定周期で繰り返し、実施する。ターン・オフされた場合(S180でYES)、上記した処理サイクルは終了する。
 以上説明したように、第1実施形態によれば、以下の作用効果が得られる。
 マイクロコンピュータ8は、周囲車両(82i、82j)の走行軌跡(83i、83j)を拡大または縮小して自車両81の走路を推定する。これにより、自車線以外の車線を走行する周囲車両(82i、82j)の走行軌跡(83i、83j)を用いて自車両81の走路を推定することができる。例えば、図5(a)に示すように、周囲車両82等によって自車両81が先行車89の位置を検出できない状況を考える。周囲車両82の走行軌跡(隣接車線)のカーブ形状は先行車89の走行軌跡(自車線)のカーブ形状と異なる。よって、先行車89の走行軌跡から自車両81の走路を推定する従来の方法を適用した場合、図5(b)に示すように、自車線のカーブ形状90を適切に推定することができない。第1実施形態によれば、図5(a)に示す状況においても、隣接車線等を走行する周囲車両82の走行軌跡83を用いて、自車両81のカーブ形状を精度良く推定することができる。
 基準走行軌跡補正部40bは、図4に示すように、走行軌跡83の旋回半径Rが大きいほど、拡大または縮小する大きさを小さくする。これにより、カーブ形状に合わせて適切に走路を推定することができる。
 基準走行軌跡補正部40bは、図4に示すように、周囲車両82の横位置Dが自車両81から離れているほど拡大または縮小する大きさを大きくする。これにより、自車両81が走行する車線と周囲車両82が走行する車線とが異なる場合(隣の車線か、隣の隣の車線か)でも適切に走路を推定することができる。
 マイクロコンピュータ8は、自車両81に対する周囲車両の距離が最も近い周囲車両の走行軌跡(83i、83j)に基づいて走路を推定する。周囲車両(82i、82j)の位置が自車両81に近いほど当該位置の検出精度は高くなる。そこで、自車両81に対する周囲車両の距離が最も近い周囲車両(82i、82j)の走行軌跡(83i、83j)に基づいて走路を推定するにより、精度の高い走行軌跡(83i、83j)から、適切に走路を推定することができる。
 また、自車両81の走行車線の隣接車線にいる周囲車両の走行軌跡83jに基づいて走路を推定する。これにより、精度の高い走行軌跡83jから、適切に走路を推定することができる。
 (第2実施形態)
 図6を参照して、第2実施形態に係わる走路推定装置1bの全体構成を説明する。走路推定装置1bは、少なくとも道路の分岐情報を含む地図情報を取得し、自車両81が分岐点を通過すると判断される場合には、自車両の走路を推定しない。走路決定部40cは、自車両81が分岐点を通過しないと判断される場合には、基準走行軌跡補正部40bが補正した基準走行軌跡91を、自車両の走路として決定する。
 図6に示すように、走路推定装置1bは、地図データベース7を更に備える。地図データベース7及びマイクロコンピュータ8はいずれも自車両81に搭載され、少なくとも道路の分岐情報を含む地図情報を送受信するためのケーブルで互いに接続されている。
 マイクロコンピュータ8は、情報演算回路(10、20、30、40)のみならず、地図取得回路50として更に機能する。地図取得回路50は、地図データベース7から、少なくとも道路の分岐情報を含む地図情報を取得する。
 その他の構成は、図1の走路推定装置1aと同じであり、説明を省略する。
 図7のフローチャートを参照して、図6に示した走路推定装置1bを用いた走路推定方法の一例を説明する。ここでは、図6に示した走路推定装置1bのうちマイクロコンピュータ8の動作手順を説明する。図7に示す処理は所定周期で繰り返し実行される。
 図7のフローチャートは、図2と比べて、ステップS165を更に備え、ステップS170の内容に違いがある。図7のステップS110~S160及びS180処理内容は、図2と同じであり、説明を省略する。
 ステップS160の後に、ステップS165に進み、地図取得回路50は、地図データベース7から、少なくとも道路の分岐情報を含む地図情報を取得する。具体的に、地図取得回路50は、自車両81が走行する道路の分岐情報を含む地図情報を地図データベース7から読み出す。
 ステップS170に進み、走路決定部40cは、補正後の基準走行軌跡91、地図情報、および横位置Dの絶対値から、自車両の走路を推定する。走路決定部40cは、地図情報に基づいて、自車両81が所定時間以内に分岐点を通過するか否かを判断する。詳細には、図8に示すように、自車両81が走行する道路上の、自車両81よりも前方へ所定距離以内に、当該道路が2以上の道路(85、86)に分岐するポイント(分岐点87)が有るか否かを判断する。走路決定部40cは、基準走行軌跡83の横位置Dの絶対値が第3の基準距離(1.5m)以上であり、且つ、自車両81が所定時間以内に分岐点87を通過すると判断される場合には、自車両81の走路を推定しない。換言すれば、走路決定部40cは、走行軌跡が算出可能な周囲車両が自車線以外の車線を走行しており(横位置Dが第3の基準距離(1.5m)以上離れており)、且つ、自車両81が分岐点87を通過すると判断される場合には、基準走行軌跡補正部40bが補正した基準走行軌跡91を、自車両81の走路として設定しない。一方、走路決定部40cは、基準走行軌跡83の横位置Dの絶対値が第3の基準距離(1.5m)未満であるか、又は、自車両81が所定時間以内に分岐点87を通過しないと判断される場合には、基準走行軌跡補正部40bが補正した基準走行軌跡91を、自車両81の走路として設定する。換言すれば、走路決定部40cは、走行軌跡が算出可能な周囲車両が自車線を走行しており(横位置DMが第3の基準距離(1.5m)未満)、又は、自車両81が分岐点を通過しないと判断される場合には、基準走行軌跡補正部40bが補正した基準走行軌跡91を、自車両81の走路として設定する。
 以上説明したように、第2実施形態によれば、自車両81が分岐点87を通過する場合には走路を推定しない。よって、図8に示すように、分岐点87で周囲車両82が自車両81の走路(道路85)と異なる方向(道路86)へ離脱するような場合に、誤った走路を推定することを防止できる。つまり、分岐点87を境に、周囲車両の走行軌跡83と、自車両の走路とが、異なる道路(85,86)に属することとなる場合には、走路決定部40cが補正後の基準走行軌跡91を、自車両81の走路として設定することを防止する。これにより、誤った走路を推定することを回避できる。
 なお、走路決定部40cは、ステップS170において、分岐点87の有無のみに基づいて、走路決定を判断してもよい。例えば、走行軌跡が算出可能な周囲車両の車線位置に関わらず、走路決定部40cは、自車両81が所定時間以内に分岐点87を通過すると判断される場合には、基準走行軌跡83の横位置Dに係わらず、自車線の走路を推定しない、としてもよい。
 (第3実施形態)
 図9を参照して、第3実施形態に係わる走路推定装置1cの全体構成を説明する。走路推定装置1cは、少なくとも地図上の自車両81の走行ルート情報を取得し、自車両81の走行ルートと類似した周囲車両82の走行軌跡83に基づいて走路を推定する。走路決定部40cは、基準走行軌跡補正部40bが補正した基準走行軌跡91が、自車両81の走行ルートに類似していると判断される場合に限り、補正後の基準走行軌跡91を、自車両の走路として決定する。
 図9に示すように、走路推定装置1cは、ナビゲーション装置6を更に備える。ナビゲーション装置6、地図データベース7及びマイクロコンピュータ8はいずれも自車両81に搭載されている。ナビゲーション装置6及びマイクロコンピュータ8は自車両81の走行ルート情報を送受信するためのケーブルで互いに接続されている。
 マイクロコンピュータ8は、情報演算回路(10、20、30、40、50)のみならず、ルート取得回路60として更に機能する。ルート取得回路60は、ナビゲーション装置6から、自車両81の走行ルート情報を取得する。更に、地図取得回路50は、道路の分岐情報、交差点情報、及び道路の形状情報(旋回半径情報を含む)を含む地図情報を取得する。
 その他の構成は、図6の走路推定装置1bと同じであり、説明を省略する。
 図10のフローチャートを参照して、図9に示した走路推定装置1cを用いた走路推定方法の一例を説明する。ここでは、図9に示した走路推定装置1cのうちマイクロコンピュータ8の動作手順を説明する。図10に示す処理は所定周期で繰り返し実行される。
 図10のフローチャートは、図7と比べて、ステップS100を更に備え、ステップS170の内容に違いがある。図10のステップS110~S160及びS180処理内容は、図7と同じであり、説明を省略する。
 ステップS100において、ルート取得回路60は、ナビゲーション装置6から、自車両81の走行ルート情報を取得する。その後、ステップS110に進む。
 ステップS170において、走路決定部40cは、基準走行軌跡83の横位置Dの絶対値が第1の基準距離以上であり、且つ、自車両81が分岐点87を通過すると判断される場合には、補正した基準走行軌跡91を自車両81の走路として設定しない。この点は、第2実施形態と同じである。
 第3実施形態では、更に、ステップS170において、走路決定部40cは、分岐点87が交差点88である否かを判断する。そして、走路決定部40cは、分岐点87が交差点88である場合、ステップS160で補正した基準走行軌跡91が、ステップS100で取得した自車両81の走行ルートに類似しているか否かを判断する。
 そして、走路決定部40cは、分岐点87が交差点88であり、且つ、補正後の基準走行軌跡91が自車両81の走行ルートに類似していると判断した場合には、ステップS160で補正した基準走行軌跡91を、自車線の走路として設定する。
 なお、分岐点87が交差点88であり、且つ、補正後の基準走行軌跡91が自車両81の走行ルートに類似していると判断した場合であっても、走路決定部40cは、次の条件が成立する場合には、補正した基準走行軌跡91を自車線の走路として設定しないようにしても良い。即ち、走路決定部40cは、基準走行軌跡83の横位置Dの絶対値が、第3の基準距離(1.5m)以上である状態が、所定時間(例えば、5秒)以上、継続した場合には、補正した基準走行軌跡91を自車線の走路として設定しないようにしても良い。
 以上説明したように、第3実施形態によれば、自車両81の走行ルートと類似した周囲車両の走行軌跡を用いるので、自車両81の走行ルートと平行して走行している周囲車両の走行軌跡によって適切に走路を推定することができる。
 なお、第3実施形態を第2実施形態に基づく実施例として説明したが、第1実施形態に基づいて実施してもよい。つまり、ステップS170において、走路決定部40cは、ステップS160で補正した基準走行軌跡91が、ステップS100で取得した自車両81の走行ルートに類似しているか否かを判断する。類似していない場合、走路決定部40cは、基準走行軌跡補正部40bが補正した基準走行軌跡91を、自車両の走路として設定しない。一方、類似している場合、走路決定部40cは、基準走行軌跡補正部40bが補正した基準走行軌跡91を、自車両の走路として設定する。
 ステップS170において、走路決定部40cは、横位置Dの絶対値が第1の基準距離以上であるか否か、自車両81が分岐点87を通過するか否か、及び分岐点87が交差点88であるか否かを、判断しない。ステップS165(地図読み出し)も不要である。
 なお、走路推定装置(1a、1b、1c)は、位置検出センサ9を備えていなくてもよい。この場合、例えば、走路推定装置(1a~1c)は、無線通信機を備え、位置取得回路10は、無線通信網を介して外部から周囲車両の位置を示す情報を取得することができる。同様に、走路推定装置(1a~1c)は、地図データベース7、又はナビゲーション装置6を備えていなくてもよい。この場合、例えば、地図取得回路50及びルート取得回路60は、コンピュータネットワークを介して外部から、地図情報及び走行ルート情報を取得することができる。
 更に、走路推定装置(1a~1c)は、自車両81に搭載されていなくてもよい。例えば、クラウドコンピューティング・モデルにおけるバックエンド(クラウドそのもの)であってもよい。フロントエンドである自車両81は、インターネットなどのネットワークを介して、バックエンドである走路推定装置(1a~1c)に接続されている。走路推定装置(1a~1c)は、周囲車両82の位置を示す情報を周囲車両82自身或いは自車両81(位置検出センサ9の検出結果)から取得して自車両81の走路を推定し、推定した走路を、ネットワークを介して自車両81へ提供してもよい。
 上述の各実施形態で示した各機能は、1又は複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理装置は、また、実施形態に記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や従来型の回路部品のような装置を含む。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 1a、1b、1c 走路推定装置
 10 位置取得回路
 40 走路推定回路
 81 自車両
 82、82i、82j 周囲車両
 83、83i、83j、83 走行軌跡
 87 分岐点
 Di、Dj、D 横位置
 P~P 周囲車両の位置
 R 旋回半径

Claims (8)

  1.  周囲車両の位置を取得する位置取得回路と、前記周囲車両の位置の履歴による前記周囲車両の走行軌跡に基づいて自車両の走路を推定する走路推定回路とを用いた走路推定方法において、
     前記周囲車両の旋回方向および横位置に基づいて前記周囲車両の走行軌跡を拡大または縮小して前記走路を推定することを特徴とする走路推定方法。
  2.  前記走行軌跡の旋回半径が大きいほど、拡大または縮小する大きさを小さくすることを特徴とする請求項1に記載の走路推定方法。
  3.  前記周囲車両の横位置が前記自車両から離れているほど拡大または縮小する大きさを大きくすることを特徴とする請求項1又は2に記載の走路推定方法。
  4.  前記自車両に対する周囲車両の距離が最も近い前記周囲車両の走行軌跡に基づいて前記走路を推定することを特徴とする請求項1~3のいずれか一項に記載の走路推定方法。
  5.  前記自車両の走行車線の隣接車線にいる前記周囲車両の走行軌跡に基づいて前記走路を推定することを特徴とする請求項1~4のいずれか一項に記載の走路推定方法。
  6.  少なくとも地図上の前記自車両の走行ルートを取得し、
     前記走行ルートと類似した前記周囲車両の走行軌跡に基づいて前記走路を推定することを特徴とする請求項1~5のいずれか一項に記載の走路推定方法。
  7.  少なくとも道路の分岐情報を含む地図情報を取得し、
     前記自車両が分岐点を通過すると判断される場合には、前記走路を推定しないことを特徴とする請求項1~6のいずれか一項に記載の走路推定方法。
  8.  周囲車両の位置を取得する位置取得回路と、
     前記周囲車両の位置の履歴による前記周囲車両の走行軌跡に基づいて自車両の走路を推定する走路推定回路と、を備え、
     前記走路推定回路は、前記周囲車両の旋回方向および横位置に基づいて前記周囲車両の走行軌跡を拡大または縮小して前記走路を推定することを特徴とする走路推定装置。
PCT/JP2016/059396 2016-03-24 2016-03-24 走路推定方法及び走路推定装置 WO2017163366A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA3018659A CA3018659C (en) 2016-03-24 2016-03-24 Course prediction method and course prediction device
CN201680083902.3A CN108883770B (zh) 2016-03-24 2016-03-24 行进路推定方法及行进路推定装置
RU2018137210A RU2689921C1 (ru) 2016-03-24 2016-03-24 Способ прогнозирования курса и устройство прогнозирования курса
MX2018011511A MX2018011511A (es) 2016-03-24 2016-03-24 Metodo de prediccion de curso y dispositivo de prediccion de curso.
JP2018506706A JP6690703B2 (ja) 2016-03-24 2016-03-24 走路推定方法及び走路推定装置
EP16895402.2A EP3434545B1 (en) 2016-03-24 2016-03-24 Course estimation method and course estimation device
PCT/JP2016/059396 WO2017163366A1 (ja) 2016-03-24 2016-03-24 走路推定方法及び走路推定装置
KR1020187029837A KR101942230B1 (ko) 2016-03-24 2016-03-24 주로 추정 방법 및 주로 추정 장치
US16/087,268 US10435019B2 (en) 2016-03-24 2016-03-24 Course prediction method and course prediction device
BR112018069433-9A BR112018069433B1 (pt) 2016-03-24 2016-03-24 Método de predição de curso e dispositivo de predição de curso

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059396 WO2017163366A1 (ja) 2016-03-24 2016-03-24 走路推定方法及び走路推定装置

Publications (1)

Publication Number Publication Date
WO2017163366A1 true WO2017163366A1 (ja) 2017-09-28

Family

ID=59900072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059396 WO2017163366A1 (ja) 2016-03-24 2016-03-24 走路推定方法及び走路推定装置

Country Status (10)

Country Link
US (1) US10435019B2 (ja)
EP (1) EP3434545B1 (ja)
JP (1) JP6690703B2 (ja)
KR (1) KR101942230B1 (ja)
CN (1) CN108883770B (ja)
BR (1) BR112018069433B1 (ja)
CA (1) CA3018659C (ja)
MX (1) MX2018011511A (ja)
RU (1) RU2689921C1 (ja)
WO (1) WO2017163366A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511997A (ja) * 2018-12-26 2021-05-13 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. 地図及び測位を必要としない自動運転車両のコーナネゴシエーション方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520863B2 (ja) * 2016-08-11 2019-05-29 株式会社デンソー 走行制御装置
JP6592423B2 (ja) * 2016-11-25 2019-10-16 株式会社デンソー 車両制御装置
US11167753B2 (en) * 2017-01-11 2021-11-09 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and vehicle control program
KR102215325B1 (ko) * 2017-02-28 2021-02-15 현대자동차주식회사 차량의 위치 추정 장치 및 방법과 이를 이용한 차량
KR102463720B1 (ko) * 2017-12-18 2022-11-07 현대자동차주식회사 차량의 경로 생성 시스템 및 방법
CN111301411B (zh) * 2018-12-10 2021-04-20 广州汽车集团股份有限公司 车辆的行驶控制方法和装置
KR20200130888A (ko) * 2019-05-07 2020-11-23 현대모비스 주식회사 복합정보 기반 scc시스템 제어 방법 및 장치
CN111561938A (zh) * 2020-05-28 2020-08-21 北京百度网讯科技有限公司 Ar导航方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003166A (ja) * 2004-06-16 2006-01-05 Denso Corp 走行路推定装置
JP2007137248A (ja) * 2005-11-17 2007-06-07 Toyota Motor Corp 走行支援装置及び走行支援システム
WO2010122639A1 (ja) * 2009-04-21 2010-10-28 トヨタ自動車株式会社 走行支援装置
JP2013226973A (ja) 2012-04-26 2013-11-07 Denso Corp 車両用挙動制御装置
JP2014123283A (ja) * 2012-12-21 2014-07-03 Nippon Soken Inc 走行経路生成装置
JP2015058920A (ja) * 2013-09-20 2015-03-30 トヨタ自動車株式会社 運転支援装置
JP2016027740A (ja) * 2015-09-18 2016-02-18 株式会社ニコン 撮像装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5941934A (en) * 1995-06-09 1999-08-24 Xanavi Informatics Corporation Current position calculating device
JP4059033B2 (ja) * 2002-08-12 2008-03-12 日産自動車株式会社 走行経路生成装置
DE102004028404A1 (de) * 2004-06-14 2006-01-19 Daimlerchrysler Ag Verfahren zur Schätzung des Verlaufs einer Fahrspur eines Kraftfahrzeuges
US8024112B2 (en) * 2005-09-29 2011-09-20 Microsoft Corporation Methods for predicting destinations from partial trajectories employing open-and closed-world modeling methods
JP5507243B2 (ja) * 2006-06-30 2014-05-28 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー 車両内の、およびその車両からの車両関連情報を送信するための方法、装置、コンピュータプログラム、および、コンピュータプログラムプロダクト
JP4525670B2 (ja) * 2006-11-20 2010-08-18 トヨタ自動車株式会社 走行制御計画生成システム
CN103917432B (zh) * 2011-11-08 2016-06-15 丰田自动车株式会社 车辆的行驶轨迹控制装置
CN202641689U (zh) * 2011-11-30 2013-01-02 富士重工业株式会社 车外监视装置及具有该车外监视装置的行驶控制装置
JP2013161113A (ja) 2012-02-01 2013-08-19 Toyota Motor Corp 走行車線認識装置
EP2637072B1 (en) * 2012-03-05 2017-10-11 Volvo Car Corporation Path following of a target vehicle
DE102012214206B4 (de) * 2012-08-09 2022-12-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Krümmungserkennung eines Fahrspurverlaufs während einer vollautomatischen Fahrzeugführung
JP6040945B2 (ja) * 2014-02-14 2016-12-07 株式会社デンソー 先行車選択装置
JP6369390B2 (ja) * 2015-05-19 2018-08-08 株式会社デンソー 車線合流判定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003166A (ja) * 2004-06-16 2006-01-05 Denso Corp 走行路推定装置
JP2007137248A (ja) * 2005-11-17 2007-06-07 Toyota Motor Corp 走行支援装置及び走行支援システム
WO2010122639A1 (ja) * 2009-04-21 2010-10-28 トヨタ自動車株式会社 走行支援装置
JP2013226973A (ja) 2012-04-26 2013-11-07 Denso Corp 車両用挙動制御装置
JP2014123283A (ja) * 2012-12-21 2014-07-03 Nippon Soken Inc 走行経路生成装置
JP2015058920A (ja) * 2013-09-20 2015-03-30 トヨタ自動車株式会社 運転支援装置
JP2016027740A (ja) * 2015-09-18 2016-02-18 株式会社ニコン 撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511997A (ja) * 2018-12-26 2021-05-13 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. 地図及び測位を必要としない自動運転車両のコーナネゴシエーション方法

Also Published As

Publication number Publication date
US20190100199A1 (en) 2019-04-04
KR20180123544A (ko) 2018-11-16
CN108883770B (zh) 2020-09-22
EP3434545A1 (en) 2019-01-30
CA3018659C (en) 2020-01-14
JPWO2017163366A1 (ja) 2019-02-14
MX2018011511A (es) 2019-01-10
CA3018659A1 (en) 2017-09-28
RU2689921C1 (ru) 2019-05-29
KR101942230B1 (ko) 2019-01-24
JP6690703B2 (ja) 2020-04-28
BR112018069433B1 (pt) 2023-01-17
EP3434545B1 (en) 2021-03-10
US10435019B2 (en) 2019-10-08
EP3434545A4 (en) 2019-09-04
BR112018069433A2 (pt) 2019-02-12
CN108883770A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2017163366A1 (ja) 走路推定方法及び走路推定装置
RU2645388C2 (ru) Устройство определения неправильного распознавания
JP6427908B2 (ja) 地図情報生成システム、方法およびプログラム
JP6616257B2 (ja) 位置推定装置
JP6838285B2 (ja) レーンマーカ認識装置、自車両位置推定装置
WO2021205193A1 (ja) 地図情報補正方法、運転支援方法及び地図情報補正装置
CN112673230B (zh) 行驶辅助方法及行驶辅助装置
WO2018062291A1 (ja) 他車線監視装置
EP3260878B1 (en) Moving object detection device, program, and recording medium
JP7418196B2 (ja) 走行軌跡推定方法及び走行軌跡推定装置
JP2023164553A (ja) 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体
JP2024038322A (ja) 測定装置、測定方法およびプログラム
JP6631226B2 (ja) 自車線情報推定装置
US20230105255A1 (en) Measurement device, measurement method and program
JP6819441B2 (ja) 物標位置推定方法及び物標位置推定装置
JP7151735B2 (ja) 走路推定方法及び走路推定装置
JP2019045341A (ja) 車両位置検出方法及び車両位置検出装置
JP2022146256A (ja) 走路推定方法及び走路推定装置
JP6986557B2 (ja) 測定装置、測定方法およびプログラム
JP2006113627A (ja) 車両用制御対象判定装置
JP2021004803A (ja) 走行レーン特定装置、及び走行レーン特定方法
JP2022083093A (ja) 走行支援方法及び走行支援装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018506706

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3018659

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011511

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029837

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018069433

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016895402

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016895402

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018069433

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180924