WO2017159512A1 - プラズマエッチング方法 - Google Patents

プラズマエッチング方法 Download PDF

Info

Publication number
WO2017159512A1
WO2017159512A1 PCT/JP2017/009332 JP2017009332W WO2017159512A1 WO 2017159512 A1 WO2017159512 A1 WO 2017159512A1 JP 2017009332 W JP2017009332 W JP 2017009332W WO 2017159512 A1 WO2017159512 A1 WO 2017159512A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
gas
etching
film
processed
Prior art date
Application number
PCT/JP2017/009332
Other languages
English (en)
French (fr)
Inventor
豪 松浦
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018505865A priority Critical patent/JPWO2017159512A1/ja
Priority to CN201780015381.2A priority patent/CN108780748B/zh
Priority to EP17766513.0A priority patent/EP3432346A4/en
Priority to KR1020187025390A priority patent/KR102411668B1/ko
Priority to US16/081,939 priority patent/US10629447B2/en
Publication of WO2017159512A1 publication Critical patent/WO2017159512A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • H01L21/30655Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a plasma etching method, and more particularly, to a plasma etching method using an ALE (Atomic Layer Etching) method.
  • ALE Automatic Layer Etching
  • plasma etching fluorocarbon, an inert gas, oxygen, or the like is used as a processing gas, and a high-frequency electric field is applied to these processing gases to cause glow discharge to generate plasma. Then, etching is performed by reacting the reactive species in the plasma with the substrate to be processed having an etching target.
  • plasma etching methods have been proposed in accordance with diversification of applications of semiconductor devices and increasing demand for finer etching patterns.
  • ALE atomic layer etching
  • a thin film is deposited on a substrate to be processed, or a material or a thin film on the surface of the substrate to be processed is etched.
  • deposition and etching of a thin film proceed substantially simultaneously.
  • Met the above-described ALE method
  • various processes are performed such that a deposition process for depositing a thin film on a substrate to be processed and an etching process for etching by causing a reactive species to collide with the substrate to be processed are performed as separate processes. Take control. Therefore, in the ALE method, it has been possible to realize the etching shape control at the atomic layer level as described above.
  • the thin film deposited in the deposition process may function as a protective film for protecting the substrate to be processed, or may function as an active film that contributes to etching of the substrate to be processed, depending on the components at the deposition site.
  • the substrate to be processed includes a processing target film to be etched to form a pattern and a non-processing target film to be left unetched. If a thin film is deposited on the non-processing target film, the thin film is etched. When the thin film is deposited on the film to be processed, the thin film functions as an active film in the etching process.
  • the ALE method has a problem that it takes a longer time to complete the processing than the conventional plasma etching method because the process is switched between the deposition process and the etching process.
  • it is conceivable to increase the etching rate in the etching process but this may cause the non-processing target film and the protective film to be left without etching to be etched. It was. If the non-processed film and the protective film are etched, it is difficult to sufficiently reduce the etching pattern and increase the accuracy.
  • Patent Document 1 a technique capable of suppressing etching of a non-processed object by using an inert gas excited to a metastable state (also referred to as “metastable gas”) has been proposed.
  • metalstable gas also referred to as “metastable gas”.
  • the apparatus described in Patent Document 1 prevents the plasma charged species from reaching the substrate to be processed by the separation plate structure that can prevent the movement of the plasma charged species generated by plasma excitation of the inert gas.
  • the substrate to be processed can be etched using a metastable gas.
  • an object of the present invention is to provide a plasma etching method by the ALE method, which can achieve both reduction in processing time and improvement in etching selectivity.
  • the present inventor has intensively studied for the purpose of solving the above problems. Then, the present inventor can achieve both reduction in processing time and improvement in etching selectivity by using a processing gas containing fluorine atoms and carbon atoms at a specific mass ratio in the plasma etching method according to the ALE method. The present invention was newly found and the present invention was completed.
  • the present invention aims to advantageously solve the above problems, and the plasma etching method of the present invention includes a step of placing a substrate to be processed in a processing container,
  • the first processing gas containing at least one kind of gas containing fluorine atoms and / or carbon atoms, and the first processing gas containing a rare gas as a main component and containing fluorine atoms and / or carbon atoms.
  • the atmosphere in the processing container contains the first and second processing gases
  • fluorine atoms are contained in the atmosphere on a mass basis. Including 2.4 to 3.1 times the number of carbon atoms.
  • the processing time is shortened and etching is selected. It is possible to achieve both improvement in the ratio.
  • “having a rare gas as a main component” means containing 99.00% by volume or more of a rare gas when the total volume of the second processing gas is 100% by volume.
  • the content mass of fluorine atoms and carbon atoms in the atmosphere containing the first and second process gases in the deposition step is measured, for example, according to JIS K 0123 for each process gas.
  • the obtained content mass is weighted according to the deposition ratio of each processing gas in the atmosphere, and the total fluorine atom weight and the total carbon atom weight in the atmosphere are respectively calculated, and the total fluorine atom weight is calculated by the total carbon atom weight. It can be obtained by dividing.
  • the “processing time” is the time required to perform each of the deposition process and the etching process once.
  • the first processing gas contains at least one fluorocarbon gas. If the first processing gas contains at least one kind of fluorocarbon gas, it is possible to achieve a better balance between shortening the processing time and improving the etching selectivity.
  • the at least one fluorocarbon gas is octafluorocyclopentene gas. If the first processing gas contains octafluorocyclopentene gas, it is possible to achieve both better reduction of processing time and improvement of etching selectivity.
  • the supply of the first processing gas into the processing container may be stopped when switching from the deposition step to the etching step.
  • the deposition process can be switched to the etching process.
  • a voltage to be applied to a region on the surface side of the substrate to be processed in which the thin film is not formed is applied to the same region in the deposition step.
  • the voltage can be increased from the applied voltage. It is also possible to switch from the deposition process to the etching process by increasing the voltage applied to such a region in the processing container more than the voltage applied to the region in the deposition process.
  • the ratio of the rare gas in the atmosphere is the atmosphere. It is preferable that it contains 10 volume parts or more and 10000 volume parts or less with respect to 100 volume parts of total gas containing the said fluorine atom and / or carbon atom in the inside. This is because the deposition process can be performed with high efficiency if the ratio of the rare gas is within such a range.
  • a peak-to-peak value of a voltage applied to a region of the substrate to be processed where the thin film is not formed is 1600 V or less in the etching step. This is because the etching process can be performed with high efficiency if the peak-to-peak value of the applied voltage is within such a range.
  • the substrate to be processed includes a non-processing target film and a processing target film, and an etching selection ratio of the processing target film to the non-processing target film is 3.5 or more. preferable. This is because the etching selectivity is good when the etching selectivity of the film to be processed with respect to the non-processed film is 3.5 or more.
  • the non-processing target film refers to an object that should remain without being etched in the etching process
  • the processing target film refers to an object to be etched in the etching process.
  • (A) is a figure explaining the modulation
  • (b) is a bias pulse method.
  • the plasma etching method of the present invention is not particularly limited and can be used in the manufacturing process of a semiconductor device.
  • the plasma etching method of the present invention includes a step (preparation step) of placing a substrate to be processed in a processing vessel, and a first vessel containing at least one gas containing fluorine atoms and / or carbon atoms in the processing vessel.
  • a processing gas and a second processing gas that is different from the first processing gas and contains a rare gas as a main component and can contain a fluorine atom and / or a carbon atom-containing gas are supplied, and the inside of the processing container is first.
  • the plasma etching method of the present invention is characterized in that the deposition process and the etching process are switched alternately.
  • the plasma etching method of the present invention in the deposition step, when the atmosphere in the processing container contains the first and second processing gases, the fluorine atoms in the atmosphere are 2.4 times the carbon atoms on a mass basis. More than 3.1 times is contained, It is characterized by the above-mentioned.
  • the atmosphere in the processing container containing the first and second processing gases in the deposition step satisfies such a condition, both the processing time can be shortened and the etching selectivity can be improved.
  • each process is explained in full detail.
  • the substrate to be processed is placed in the processing container.
  • the processing container is not particularly limited as long as it can be generally used in plasma etching, and for example, a processing container such as a dry etching chamber can be used.
  • the processing container includes a first gas supply port that supplies a first processing gas, a second gas supply port that supplies a second processing gas, an electrode configured to mount a substrate to be processed, and a processing container An exhaust port is formed so that the inside gas can be exhausted.
  • the processing vessel is not particularly limited, and is a general one such as a helicon wave type plasma generator, a high frequency induction type plasma generator, a parallel plate type plasma generator, a magnetron type plasma generator, or a microwave type plasma generator. Equipped with a simple plasma generator.
  • the plasma generator may be a parallel plate plasma generator, a high frequency induction plasma generator, or a microwave plasma generator. This is because plasma in a high density region can be easily generated.
  • the processing container includes at least one electrode disposed at any position in a region opposite to the processing surface side of the processing substrate with respect to the thickness direction of the processing substrate. By applying a predetermined voltage to at least one of the electrodes, etching is performed by causing ions to collide with the surface to be processed of the substrate to be processed.
  • the parallel plate type plasma generator includes an upper electrode for generating plasma in a processing container, and a lower electrode that is an electrode capable of generating an electric field in a region on the surface side of the substrate to be processed where a thin film is not formed.
  • the substrate to be processed is not particularly limited as long as it can be used in plasma etching, and can be any substrate.
  • the target substrate can include, for example, a glass substrate, a silicon single crystal wafer, and a gallium-arsenide substrate.
  • the substrate to be processed can include a silicon nitride film, a silicon oxide film, and / or an organic film formed as necessary on a silicon single crystal wafer.
  • the substrate to be processed can be a substrate provided with these processing objects and / or non-processing objects.
  • the temperature of the substrate to be processed is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 20 ° C. or higher, further preferably 0 ° C. or higher, and + 120 ° C. or lower. Preferably, it is set to + 100 ° C. or less, more preferably + 80 ° C. or less.
  • the temperature of the substrate to be processed can be controlled using, for example, a cooling gas such as helium gas and a cooling device.
  • the deposition step may include a first processing gas containing at least one gas containing fluorine atoms and / or carbon atoms, and a gas containing a rare gas as a main component and containing fluorine atoms and / or carbon atoms.
  • a second processing gas different from the first processing gas is supplied, and a thin film is formed on at least one surface of the substrate to be processed.
  • the first processing gas and the second processing gas are both supplied into the processing container, or the first processing gas is not supplied and the second processing gas is supplied into the processing container.
  • the pressure in the processing apparatus is preferably a predetermined pressure capable of generating plasma, for example, a pressure in the range of 1 Pa to 13 Pa.
  • “forming” a thin film is not particularly limited as long as a film covering at least a part of at least one surface of a substrate to be processed is formed.
  • the first processing gas These components are polymerized to form a polymer, and this polymer is deposited on the surface of the substrate to be processed to form a film.
  • the substrate to be processed is placed on, for example, a sample table provided in the processing container, and the “one side” of the substrate to be processed on which a thin film can be formed is a surface that is not in contact with the sample table. sell.
  • the thin film can be formed not only on one side of the substrate to be processed but also on any part of the substrate to be processed that is not in contact with the sample table or the like, for example, on the side surface of the substrate to be processed. Can be formed. Further, in this specification, “on at least one surface of the substrate to be processed” means that it is formed on at least one surface of the substrate to be processed as needed, in addition to forming a thin film directly on one surface of the substrate to be processed. This includes the case where a thin film is formed on the silicon nitride film, silicon oxide film, and / or organic film.
  • a thin film deposited on a non-process target such as a silicon film, a silicon nitride film, and an organic film functions as a protective film
  • a thin film deposited on a process target such as a silicon oxide film serves as an active film. Functions and causes a surface reaction with the silicon oxide film in the next step, contributing to etching.
  • the atmosphere containing the first and second processing gases in the deposition step includes fluorine atoms that are 2.4 times to 3.1 times the carbon atoms on a mass basis.
  • the processing gas supplied into the processing container other gases other than the first and second processing gases can be supplied.
  • the other gases include fluorine atoms and / or It is preferable not to contain a gas containing carbon atoms.
  • the gas containing the fluorine atom and / or the carbon atom in the other gas is the first processing gas in the present invention.
  • the gases containing the fluorine atom and / or the carbon atom in the other gas are the first processing gas in the present invention.
  • the content ratio of fluorine atoms and carbon atoms in the atmosphere in the processing vessel containing the first and second processing gases is reflected in the content ratio of fluorine atoms and carbon atoms in the thin film to be formed. Is done. And when a thin film contains many carbon atoms, the etching tolerance of a thin film improves. If the etching resistance becomes excessively high, the film to be processed may not be easily etched in the etching process. On the other hand, when the thin film contains many fluorine atoms, the etching resistance of the thin film is lowered, and the thin film is easily etched.
  • the non-process target film which should function as a protective film, is easily etched, the non-process target film is etched, resulting in a decrease in the etching selectivity. Furthermore, if the atmosphere containing the first and second processing gases contains a large amount of fluorine, the rate of plasma polymerization is reduced, the formation of the active film becomes insufficient, and etching proceeds in the deposition process. Based on these points, the present inventors use the atmosphere containing the first and second processing gases that satisfy the above conditions in the deposition step to efficiently form a thin film having appropriate etching resistance. I found it possible.
  • the polymerization rate of the thin film is reduced to a level lower than the etching rate, so that The etching selectivity of the film to be processed was maximized.
  • the “equivalent amount” is 50% when the total amount of the gas containing fluorine atoms and / or carbon atoms contained in the atmosphere including the first and second processing gases is 100 parts by volume. It is a blending amount of oxygen and nitrogen exceeding 300 parts by volume.
  • At least one gas containing fluorine atoms and / or carbon atoms can be used. More specifically, as the gas blended with the first and second process gases, one or a plurality of types of fluorocarbon gases in which the ratio of fluorine atoms to carbon atoms is within the above range may be used. A plurality of kinds of fluorocarbon gases whose carbon atom ratio is not within the above range may be used in combination, or a plurality of kinds of gases containing fluorine atoms or carbon atoms may be used in combination. May be.
  • the first processing gas contains fluorine atoms 2.4 times or more and 3.1 times or less of carbon atoms on a mass basis. More preferably, the first processing gas contains fluorine atoms 2.5 times or more and 3.0 times or less of carbon atoms on a mass basis.
  • the first processing gas contains at least one fluorocarbon gas.
  • fluorocarbon gas the content ratio of fluorine atom and carbon atom is within the above range (hereinafter also referred to as “first fluorocarbon gas”), and the content ratio of fluorine atom and carbon atom is not within the above range.
  • Fluorocarbon gas hereinafter referred to as “second fluorocarbon gas”).
  • the first fluorocarbon gas having a mass reference F / C ratio of 2.4 times or more and 3.1 times or less is not particularly limited, and is 1, 2, 3, 3, 4, 4, 5, 5- Molecular formula C 5 such as octafluoro-cyclopentene, octafluoro-1,4-pentadiene, octafluoro-1,3-pentadiene, 1,1,1,4,4,5,5,5-octafluoro-2-pentyne Compound represented by F 8 ; Compound represented by molecular formula C 5 HF 9 such as 1,1,1,3,4,4,5,5,5-nonafluoro-2-pentene; Compounds that can be represented by the molecular formula C 4 HF 7 such as 2,3,3,4-heptafluorocyclobutane and 1,1,1,3,4,4,4-heptafluoro-2-butene; 2,3,3,3-pentafluoropropene Compounds which can be represented by the molecular formula C
  • These compounds can be used individually by 1 type or in mixture of 2 or more types.
  • an octafluoro-cyclopentene compound that can be represented by the molecular formula C 5 F 8 is preferable, and 1,2,3,3,4,4,5,5-octafluoro-cyclopentene is particularly preferable.
  • the second fluorocarbon gas whose mass reference F / C ratio is not 2.4 times or more and 3.1 times or less is not particularly limited, but is tetrafluoromethane (CF 4 ); hexafluoroethane (C 2 F 6 ); octafluoropropane (C 3 F 8 ); fluoromethane (CH 3 F); difluoromethane (CH 2 F 2 ); trifluoromethane (CHF 3 ); and 1, 2, 3, 3 , 4, 4-hexafluoro-1-cyclobutene, 1,1,2,3,4,4-hexafluoro-1,3-butadiene, 1,1,1,4,4,4-hexafluoro-2-butyne, octa Molecular formula C 4 F such as fluorocyclobutane, 1,3,3,4,4,5,5-heptafluorocyclopentene, and 1,1,2,3,4,5,5-heptafluoro-1
  • Gas containing fluorine atoms or carbon atoms other than the fluorocarbon gas examples include sulfur hexafluoride, tetrachloromethane, and hydrocarbons. These compounds can be used individually by 1 type or in mixture of 2 or more types.
  • the second processing gas is a gas different from the first processing gas, is a gas mainly containing a rare gas, and may contain a gas containing fluorine atoms and / or carbon atoms.
  • the second processing gas needs to be 99.00% by volume or more of rare gas, preferably 99.02% by volume or more is rare gas, and 99.50% by volume or more is rare gas. More preferably, 100.00% by volume is a rare gas.
  • the above-described gases containing fluorine atoms and / or carbon atoms that is, the first and second fluorocarbon gases listed for the first gas
  • impurities that cannot be avoided are included. These can be impurities inevitably mixed in such as nitrogen, carbon, and water vapor.
  • a fluorocarbon gas and / or a fluorine atom or a carbon atom that can be used for forming a thin film is formed by using a second process gas containing a rare gas as a main component together with the first process gas.
  • the concentration of the contained gas in the processing container can be adjusted.
  • the rare gas is not particularly limited, and can be selected from helium, neon, argon, krypton, and xenon. These can be used individually by 1 type or in mixture of 2 or more types. It should be noted that the content ratio of the gas containing fluorine atoms and / or carbon atoms in the second processing gas needs to be a low ratio so as not to impair the effect of plasma etching according to the present invention.
  • the content ratio of the gas containing atoms and / or carbon atoms may be less than 0.08% by volume.
  • the first treatment gas contains a condition that the fluorine atom contains 2.4 to 3.1 times the carbon atom on a mass basis (hereinafter referred to as “condition”). A description will be made on the assumption that this is also satisfied.
  • the total amount of the “gas containing fluorine atoms and / or carbon atoms” is the first and second processing gases.
  • the total amount contained in the atmosphere containing The total amount can be determined by, for example, analyzing the atmosphere in the etching container directly by GC / MS or the like, or analyzing the gas of various gas sources to be supplied individually by GC / MS or the like, and supplying the gas from various gas sources. This can also be grasped by calculating the sum of the obtained components while weighting with the flow rate.
  • ⁇ Other gases Other gases that do not contain fluorine atoms and carbon atoms can be used in combination.
  • oxygen gas can be used in combination with the first and second processing gases described above.
  • nitrogen gas or the like it is possible to use a small amount of nitrogen gas or the like in the deposition step.
  • the gas blended with the first processing gas may be a gas composed of 100% by volume of the first fluorocarbon gas, or the first fluorocarbon gas, the second fluorocarbon gas, and / or fluorine.
  • a gas obtained by selecting a plurality of species from atoms or carbon atoms and mixing them at an appropriate ratio so as to satisfy the above condition A may be used.
  • the mixing ratio of the first processing gas and the second processing gas in the deposition step is based on 100 parts by volume of at least one gas containing fluorine atoms and / or carbon atoms contained in the first processing gas.
  • the ratio of the rare gas contained in the second processing gas is preferably 10 parts by volume or more, more preferably 20 parts by volume or more, further preferably 50 parts by volume or more, and 10000 parts by volume. Preferably, it is 9000 parts by volume or less, more preferably 8000 parts by volume or less, more preferably 5000 parts by volume or less, and even more preferably 3000 parts by volume or less. .
  • the deposition process speeds up the thin film excessively, and dust and the like are generated in the processing container. It can suppress that the inside of a processing container is contaminated. Moreover, it becomes possible to form a thin film efficiently in a deposition process by making the ratio of a noble gas below the said upper limit.
  • the mixing ratio of oxygen gas is 50 parts by volume or less when the total amount of gas containing fluorine atoms and / or carbon atoms contained in the first processing gas is 100 parts by volume. Preferably, it is 30 parts by volume or less. If the oxygen content of the atmosphere in the processing container in the deposition step is within such a range, the thin film formation rate can be in an appropriate range in the deposition step.
  • each gas described above is independently and normally filled and transported in a container such as a cylinder and connected to the processing container. Then, by opening a valve such as a cylinder, each gas is introduced into the processing container at a predetermined rate, and the deposition process can proceed.
  • ⁇ Lower electrode voltage> In the deposition process, plasma is generated by a general method such as glow discharge to cause a polymerization reaction between molecules contained in the atmosphere in the processing vessel, and a polymer is formed and deposited on the substrate to be processed. To form a film.
  • the upper electrode of the parallel plate type plasma generator is 60 MHz
  • the lower electrode is 2 MHz
  • the distance between these electrodes is 35 mm
  • the power supplied to the upper electrode is used to generate glow discharge or the like. Any necessary and sufficient power may be used, for example, 100 W or more and 2000 W or less.
  • the voltage applied to the lower electrode preferably has a peak-to-peak value of 2000 V or less, and more preferably 1600 V or less. Moreover, if the voltage applied with respect to a lower electrode in a deposition process is below the said upper limit, formation of each film
  • the inside of the processing container is set to an atmosphere containing at least a second processing gas, and the target substrate on which the thin film is formed is plasma-etched.
  • the target substrate on which the thin film is formed is plasma-etched.
  • the “selection ratio” in the etching process is high, these objects to be processed can be selectively etched.
  • the “selection ratio” is a value obtained by dividing the etching amount to be processed by the etching amount to be processed in the etching process.
  • the value of “selection ratio” increases as the etching amount of the non-processing object decreases and / or the etching amount of the processing object increases.
  • the value of “selection ratio” decreases as the etching amount of the non-processing object increases and / or the etching amount of the processing object decreases.
  • the etching amount of the non-processing object is zero.
  • division by zero is performed, which makes calculation impossible.
  • the etching amount of the non-process target can take a negative value. Therefore, in this specification, it is assumed that if the etching amount to be processed is zero or less, the etching selection ratio is very good and is infinite.
  • the etching selectivity of the processing target film to the non-processing target film is 3.5 or more.
  • the processing target film may be a silicon oxide film
  • the non-processing target film may be a silicon film, a silicon nitride film, an organic film, or the like.
  • the etching selection ratio is calculated for each of the plurality of types of non-processing target films, and the obtained etching selection ratios are calculated.
  • the smallest value is preferably 3.5 or more.
  • the “silicon film” refers to a film formed of single crystal silicon or polysilicon.
  • the “silicon oxide film” refers to a film formed of a silicon compound containing oxygen atoms such as SiO 2 , SiOC, and SiOCH.
  • the “silicon nitride film” refers to a film formed of a silicon compound containing nitrogen atoms such as Si 3 N 4 (SiN), SiCN, SiBCN, or the like.
  • the “organic film” refers to a film containing carbon as a main component. “Mainly containing carbon” means that the ratio of carbon contained in the material forming the film is more than 50% by mass. Specifically, carbon-based materials such as amorphous carbon, photoresist compositions, etc. Refers to the film formed by
  • the inside of the processing container is set to an atmosphere containing at least the second processing gas, and plasma is generated by a general method such as glow discharge as in the deposition process, which is the main component of the second processing gas.
  • a reactive species is generated from a rare gas, and the reactive species reacts with the active film formed on the substrate to be processed in the deposition process.
  • the upper electrode of the parallel plate type plasma generator is 60 MHz
  • the lower electrode is 2 MHz
  • the distance between these electrodes is 35 mm
  • the peak-to-peak value is preferably 1600 V or less.
  • an etching selectivity can be improved further by making this voltage below the said upper limit.
  • the voltage applied to the lower electrode is preferably set to the upper limit value or less.
  • a thin film of the substrate to be processed is formed. It is preferable that the voltage to be applied to the region on the non-surface side is set to the upper limit value or less.
  • the plasma etching method of the present invention is characterized in that the deposition process and the etching process are switched alternately. By stopping the supply of the first processing gas into the processing container, the deposition process can be switched to the etching process.
  • a switching mode is also referred to as “gas pulse method”.
  • the voltage applied to the lower electrode that is, the voltage applied to the region on the surface side where the thin film of the substrate to be processed is not formed is increased from the voltage in the deposition process, thereby switching from the deposition process to the etching process. be able to.
  • Such a switching mode is also referred to as a “bias pulse method”.
  • FIG. 1A is a schematic diagram for explaining process switching by the gas pulse method.
  • the horizontal axis represents the machining time (seconds)
  • the left vertical axis represents the supply amount of various gases (sccm)
  • the right vertical axis represents the voltage (V) applied to the lower electrode.
  • a gas consisting only of a rare gas and a first fluorocarbon gas is used as the first processing gas
  • a gas consisting only of the rare gas is used as the second processing gas.
  • the supply of the first and second process gases is started at a predetermined flow rate from the time t 0 (second) when the preparation process is completed and the deposition process is started.
  • supply of power necessary and sufficient to generate a glow discharge in the processing container to generate plasma in the processing container is started, and application of a predetermined voltage to the lower electrode is started ( Step a-0).
  • the supply of the first processing gas is stopped at time t a-1 (seconds) (step a-1).
  • the supply of the first processing gas is started again at time t a-2 (seconds) (step a-2). Steps (a-1) and (a-2) are repeated until the etching depth reaches a desired depth.
  • the steps (a-0) and (a-2) to which the first processing gas is supplied correspond to the above-described deposition process, and in this process, a thin film is formed on the substrate to be processed.
  • the above-mentioned step (a-1) in which the first processing gas is not supplied into the processing vessel and the inside of the processing vessel is filled with the second processing gas consisting essentially of the rare gas is the etching described above.
  • This is a process corresponding to the process, and the substrate to be processed is plasma etched in this process.
  • the atmosphere in the processing container can be changed in a pulse manner to switch between the deposition process and the etching process.
  • the atmosphere in the processing container in the etching step includes at least a second processing gas.
  • the supply of the first processing gas is stopped at time t a-1 (seconds). Therefore, as the etching process proceeds from the start of the etching process, the concentration of the first processing gas in the atmosphere in the processing container gradually decreases.
  • the lower limit value of the content ratio of the first processing gas in the atmosphere in the processing container in which the etching process is in progress is not particularly limited, and is, for example, 0% by volume or substantially 0% by volume. It is possible. In the present specification, “substantially 0% by volume” means that the first processing gas is not substantially contained in the processing container. Specifically, the first processing gas is contained in the processing container. It means that the concentration of the processing gas is less than 1.00%.
  • FIG. 1B is a schematic diagram for explaining the process switching by the bias pulse method, and the respective axes are the same as those in FIG.
  • Various gases will be described on the assumption that the same gases as in FIG.
  • supply of the first and second processing gases is started at a predetermined flow rate from time t 0 (seconds) when the preparation process is completed and the deposition process is started (step b-0).
  • the supply of power necessary and sufficient to generate plasma by generating glow discharge in the processing vessel is started to the upper electrode.
  • application of a voltage to the lower electrode is started at time t b-1 (seconds) (step b-1).
  • Step b-2 seconds
  • Step b-2 seconds
  • Steps (b-1) and (b-2) are repeated until the etching depth reaches a desired depth.
  • Steps (b-0) and (b-2) in which no voltage is applied to the lower electrode are steps corresponding to the above-described deposition step, and step (b-1) in which a voltage is applied to the lower electrode is described above.
  • This is a process corresponding to the etching process.
  • the voltage is not applied in steps (b-0) and (b-2), but as described above, in steps (b-0) and (b-2).
  • a voltage lower than that in step (b-1) may be applied to the lower electrode.
  • the atmosphere in the processing container is substantially constant throughout the deposition process and the etching process.
  • the above-described gas pulse method and bias pulse method may be combined. That is, the voltage applied to the lower electrode is not applied or reduced while the first processing gas is supplied, and the voltage applied to the lower electrode is stopped while the supply of the first processing gas is stopped. It can also be raised.
  • the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
  • the fluorine atom and carbon atom content ratio, film thickness, etching depth, and etching selectivity in the first process gas were measured / evaluated as follows.
  • the content ratio of fluorine atoms and carbon atoms in the first and second process gases is the theoretical value of the content ratio of fluorine atoms and carbon atoms in the used fluorocarbon gas (of the fluorine atoms in the compound). The value obtained by dividing the molar mass by the molar mass of carbon atoms).
  • the second processing gas does not contain a fluorine atom and a carbon atom and a single gas is used as the first processing gas as in the examples and comparative examples, the theoretical value is calculated in the processing container. This corresponds to the content ratio of fluorine atoms and carbon atoms in the atmosphere.
  • the deposition process time and the etching process time were varied, and a commercially available ellipsometry film thickness measuring device was used to obtain 1 to 3 points for each of the film to be processed and the film to be processed. The film thickness of was measured. From the measured values obtained, the time of the deposition process or the etching process was plotted on the horizontal axis, and the film thickness was plotted on the vertical axis, an approximate straight line was obtained, and the film thickness at each time was calculated.
  • each film thickness immediately after the deposition process and each film thickness immediately after passing through the etching process for a predetermined time are measured as described above, and each film on the substrate to be processed before performing various processes.
  • the value of each film thickness in the to-be-processed substrate after various treatments was subtracted from the film thickness value. The obtained difference value was used as the value of the etching depth at each time point.
  • the value of the etching depth is a “negative” value.
  • the film thickness is thicker than before various treatments. In other words, it means that a thin film is stacked on the substrate to be processed instead of etching.
  • the value of the etching depth is a “positive” value. In this case, it means that the substrate to be processed is etched.
  • the film formation rate and the etching rate of each film are calculated under evaluation conditions that are slightly larger than the scale generally targeted by the ALE method, and based on the obtained values,
  • the time required for the deposition process and the etching process, the etching depth of each film, and the etching selectivity were calculated and evaluated.
  • a deposition process was performed under the conditions described in the examples and comparative examples, to form a thin film having a thickness of 97 to 163 mm.
  • each film thickness ( ⁇ ) is measured according to the above-described method, Dividing by (seconds), the formation rate ( ⁇ / second) of each film was calculated (Table 2).
  • the etching depth ( ⁇ ) is measured by the above-described method, an approximate line is obtained from the plot of the etching depth and the etching time, and the slope of the approximate line is determined for each film. (Table 2).
  • the time t d required for the deposition process was calculated by dividing 5 mm by the formation rate of the active film (mm / sec). Further, assuming a desired etching depth (for example, 10 mm, 15 mm, and 20 mm) for the silicon oxide film that is the film to be processed, the etching depth (mm) is set as the etching rate of the silicon oxide film (mm / sec). It was calculated time t e it takes to etch step in dividing it.
  • Formula 1 (Silicon nitride film formation rate ( ⁇ / sec) ⁇ Time required for deposition step t d ) ⁇ (Silicon nitride film etch rate ( ⁇ / sec) ⁇ Etching step time t e )) The etching depth of the silicon nitride film was calculated.
  • Equation 2 (photoresist formation rate ( ⁇ / sec) ⁇ time required for deposition step t d ) ⁇ (photoresist etching rate ( ⁇ / sec)) ⁇ time required for etching step t e ) To calculate the etching depth of the photoresist.
  • the etching depth value of the silicon oxide film that is the processing target is set to the etching value of each film that is the non-processing target.
  • the etching selectivity was calculated by dividing by the depth value.
  • the etching depth value of each film to be processed is zero or less, that is, each film is not etched at all, or the thickness of each film after the etching process is thicker than before the etching process. If it is, the etching selectivity is evaluated as being infinite.
  • Example 1 ⁇ Device configuration> A processing vessel having a parallel plate type plasma generator was used.
  • the parallel plate type plasma generator has an upper electrode and a lower electrode on which the substrate to be processed is placed, and the distance between the lower surface of the upper electrode and the upper surface of the lower electrode was 35 mm.
  • the frequency of the upper electrode of the parallel plate type plasma generator was 60 MHz, and the frequency of the lower electrode was 2 MHz.
  • the lower electrode is provided with a cooling unit, and the cooling unit is configured to cool the lower electrode by bringing helium gas into contact with the lower electrode.
  • the cooling unit was configured in such a manner that helium gas did not flow out into the processing vessel.
  • a silicon substrate piece which is a substrate to be processed, formed by JSR Co., Ltd. and formed using “AR414” into a processing vessel having a parallel plate type plasma generator, and plasma etching is performed under the following plasma conditions. went.
  • the temperature of the cooling unit was set to 60 ° C., and the gas pressure of helium gas was 1000 Pa.
  • ⁇ Deposition process> 150 W of electric power was supplied to the upper electrode, and a voltage was applied to the lower electrode so that the peak-to-peak value (Vpp) was 100V.
  • 1,2,3,3,4,4,5,5-octafluoro-cyclopentene gas hereinafter also referred to as “C 5 F 8 gas” for simplicity
  • argon gas as the first process gas Supplied in a container.
  • the supply flow rates were 10 sccm for C 5 F 8 gas and 200 sccm for argon gas, respectively.
  • the inside of the processing container was an atmosphere in which 2000 parts by volume existed per 100 parts by volume of the C 5 F 8 gas.
  • the pressure in the processing container was 2.6 Pa.
  • the deposition step was carried out while maintaining the voltage and the first processing gas conditions for 10 seconds while the inside of the processing container was in a plasma state.
  • a thin film was formed on a silicon substrate piece as a substrate to be processed.
  • Such a thin film can function as a protective film or an active film in the next process (etching process).
  • the value of each film thickness in the substrate to be processed immediately after the deposition step was measured according to the method described above. The results are shown in Table 1.
  • ⁇ Etching process> The supply of C 5 F 8 gas was stopped 10 seconds after the supply of the first processing gas was started. The other conditions were maintained for a predetermined time, and the etching process was performed.
  • the value of each film thickness on the substrate to be processed when the etching time was 30 seconds, 90 seconds, and 150 seconds was measured according to the above-described method. The results are shown in Table 1.
  • Table 2 shows the results of calculating the formation rate and etching rate of each film from the values of the respective film thicknesses obtained as shown in Table 1, the time of the deposition process, and the time of the etching process.
  • Table 3-1 shows the time of the deposition process and the etching process assumed when the thickness of the active film formed in the deposition process is 5 mm and the etching depth of the silicon oxide film is 10 mm, and the total time thereof. The calculated processing time, the etching depth of each film, and the etching selectivity are shown.
  • Table 3-2 and Table 3-3 show the calculated values of the same items as in Table 3-1, when the etching depth of the silicon oxide film is changed to 15 mm and 20 mm, respectively.
  • Example 2 In Example 1, the peak-to-peak value (Vpp) of the voltage applied to the lower electrode was changed to 1600 V, the deposition process time was changed to 30 seconds, the etching time was changed to 30 seconds, 60 seconds. Plasma etching was performed in the same manner as in Example 1 except that the time was changed to seconds, 90 seconds, and 120 seconds. The results are shown in Table 1. Various calculated values obtained from the data shown in Table 1 are shown in Table 2 and Tables 3-1 to 3-3.
  • Example 3 (Comparative Example 3) Example 1 except that the first process gas was changed to 1,3,3,4,4,5,5-heptafluoro-cyclopentene (C 5 HF 7 ) and the deposition process time was changed to 4 seconds. Plasma etching was performed in the same manner as described above. The results are shown in Table 1. Various calculated values obtained from the data shown in Table 1 are shown in Table 2 and Tables 3-1 to 3-3.
  • Example 5 The deposition process was started in the same manner as in Example 1 except that the first processing gas was changed to octafluorocyclobutane (C 4 F 8 ). However, as shown in Tables 1 and 2, each film was not formed in the deposition process. Rather, the silicon oxide film, the silicon nitride film, and the photoresist progressed in the deposition process, and the etching could not be performed by the ALE method.
  • Comparative Example 6 The deposition process was started in the same manner as in Comparative Example 5 except that the peak-to-peak value (Vpp) of the voltage applied to the lower electrode was 1600 V. However, as shown in Tables 1 and 2, each film was not formed in the deposition process. Rather, the silicon oxide film, the silicon nitride film, and the photoresist progressed in the deposition process, and the etching could not be performed by the ALE method.
  • the deposition process and the etching process are alternately performed, and the fluorine atom is contained 2.4 times to 3.1 times the carbon atom by mass. It can be seen that the plasma etching method according to the present invention using 1 processing gas achieves both a reduction in processing time and an improvement in etching selectivity.
  • Example 1 and Comparative Example 1 having the same voltage applied to the lower electrode are compared, the processing time is slightly shorter in Example 1, but the silicon nitride film
  • the etching selectivity of the silicon oxide film, which is a film to be processed, with respect to a non-processed film such as a photoresist is sufficiently high, and both shortening of the processing time and improvement of the etching selection ratio are satisfactorily achieved.
  • the etching selectivity of the silicon oxide film to the photoresist was very good (“ ⁇ ” evaluation), but the selectivity to the silicon nitride film was the same as that of Example 1. Is 50 times or more superior to Comparative Example 1.
  • Example 1 the case where the etching depth is assumed to be 15 mm is considered by comparing Example 1 with Comparative Example 1.
  • the processing time is shorter in Example 1.
  • the etching selectivity ratio of the silicon oxide film to the photoresist is sufficiently high, but the etching selectivity ratio of the silicon oxide film to the silicon nitride film is as low as 1.6 in the comparative example 1, which is sufficient etching. The selectivity is not obtained.
  • the etching selectivity of the silicon oxide film to the silicon nitride film is sufficiently high as 7.7.
  • Table 3-3 the case where the etching depth is assumed to be 20 mm will be compared between Example 1 and Comparative Example 1.
  • the processing time is shorter in the first embodiment. Furthermore, the etching selectivity ratio of the silicon oxide film to the photoresist is sufficiently high, but the etching selectivity ratio of the silicon oxide film to the silicon nitride film is as low as 1.5 in the comparative example 1, which is sufficient etching. The selectivity is not obtained. On the other hand, in Example 1, the etching selectivity of the silicon oxide film to the silicon nitride film is sufficiently high at 5.3. A tendency similar to the above-described tendency is also observed in Example 2 and Comparative Examples 2, 4, and 6 in which the peak-to-peak value of the supply voltage to the lower electrode is (Vpp) 1600V.
  • Table 4 shows the results of performing a conventional plasma etching method in which various fluorocarbon gases used in Examples and Comparative Examples are not performed by switching between the deposition process and the etching process.
  • the results obtained when various similar gases are used in the plasma etching method according to the present invention are extracted from Table 3-1, and are also shown.
  • “assumed processing rate” is a value obtained by dividing the assumed etching depth of 10 mm by the assumed processing time shown in Table 3-1. .
  • the values of the power supplied to the upper electrode and the voltage applied to the lower electrode are different from those of Comparative Example 3. This is because the conventional plasma etching method is adjusted to a value for obtaining a good etching effect.
  • a photoresist reacts with fluorine radicals generated in fluorocarbon plasma, fluorine atoms in a fluorocarbon film deposited on the photoresist, and carbon atoms contained in the photoresist.
  • Etching proceeds as volatile CF 4 is generated and exhausted out of the system.
  • volatile SiF 4 is generated on the same principle, and etching proceeds. That is, if a high etching selectivity can be obtained for the photoresist in the present invention, a high etching selectivity can be expected for silicon as well.
  • the plasma etching method according to the present invention is not limited by a specific apparatus configuration and etching conditions.
  • the plasma etching method of the present invention is a plasma etching method in accordance with the ALE method, wherein the mass ratio of fluorine atoms and carbon atoms contained in the processing gas is within a specific range, thereby shortening the processing time and reducing the etching selectivity. As long as the improvement can be realized, it can be adopted in all apparatus configurations and etching conditions.
  • the present invention it is possible to provide a plasma etching method by the ALE method that can achieve both reduction in processing time and improvement in etching selectivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本発明のプラズマエッチング方法は、処理容器内を、フッ素原子及び/又は炭素原子を含有する少なくとも一種のガスを含む第1の処理ガス、並びに、希ガスを主成分とする第2の処理ガスを含む雰囲気とし薄膜を形成する堆積工程と、処理容器内を、少なくとも第2の処理ガスを含む雰囲気とし、被処理基板をプラズマエッチングするエッチング工程と、を含み、堆積工程とエッチング工程とを切り替えて交互に実施し、且つ、堆積工程において、処理容器内の雰囲気が第1及び第2の処理ガスを含む場合、該雰囲気中に質量基準でフッ素原子が炭素原子の2.4倍以上3.1倍以下含有されるようにすることを含む。

Description

プラズマエッチング方法
 本発明は、プラズマエッチング方法に関するものであり、特に、ALE(Atomic Layer Etching)法によるプラズマエッチング方法に関するものである。
 一般に、「プラズマエッチング」では、フルオロカーボンや不活性ガス、酸素などを処理ガスとして用い、これら処理ガスに高周波の電場を印加してグロー放電を起こし、プラズマを生じさせる。そして、プラズマ中の反応種とエッチング加工対象を備える被処理基板とを反応させて、エッチングを行う。近年、半導体デバイスの用途の多様化や、エッチングパターンの微細化に対する要求の高まりに伴い、様々なプラズマエッチング方法が提案されている。そのなかでも、オングストロームオーダーである原子層レベルでエッチング形状を制御可能である、原子層エッチング法(Atomic Layer Etching:以下、「ALE」とも称する)という技術が注目されている。
 ここで、プラズマエッチングでは、被処理基板上に薄膜が堆積され、あるいは被処理基板表面の素材または薄膜がエッチングされるが、薄膜の堆積とエッチングとが、実質的に同時進行することが一般的であった。一方、上述したALE法では、被処理基板上に薄膜を堆積させる堆積工程と、被処理基板に対して反応種を衝突させてエッチングするエッチング工程とを切り替えて別途の工程として実施するように各種制御を行う。従って、ALE法では、上述したような原子層レベルでのエッチング形状の制御を実現することが可能とされてきた。
 なお、堆積工程において堆積された薄膜は、堆積箇所の成分に応じて、被処理基板を保護する保護膜として機能する場合と、或いは被処理基板のエッチングに寄与する活性膜として機能する場合とがある。例えば、被処理基板は、エッチングされてパターンを形成すべき加工対象膜と、エッチングされずに残るべき非加工対象膜を備えるが、薄膜が非加工対象膜上に堆積すれば、かかる薄膜はエッチング工程にて保護膜として機能し、薄膜が加工対象膜上に堆積すれば、かかる薄膜はエッチング工程にて活性膜として機能する。
 ALE法では、堆積工程とエッチング工程との間で工程の切り替えを伴うため、従来のプラズマエッチング方法よりも加工を完了するために長い時間を要するという問題があった。ここで、加工時間の短縮のためには、エッチング工程でのエッチング速度を速めることも考えられるが、これにより、エッチングせずに残すべき非加工対象膜や保護膜もエッチングしてしまう虞があった。非加工対象膜や保護膜がエッチングされてしまえば、エッチングパターンを十分に微細化及び高精度化することが困難であった。
 そこで、従来、ALE法において、準安定状態に励起した不活性ガス(「準安定ガス」とも称されうる)を用いることで、非加工対象がエッチングされることを抑制可能な技術が提案されてきた(例えば、特許文献1参照)。特許文献1に記載の装置は、不活性ガスをプラズマ励起して生じさせたプラズマ荷電種の移動を防止することができる分離プレート構造により、被処理基板にプラズマ荷電種が到達することを予防しつつ、準安定ガスを用いて被処理基板をエッチングすることができる。
特開2014-522104号公報
 近年、エッチングパターンの微細化に対する要求が一層高まるとともに、かかる微細なエッチングパターンを効率良く製造することが求められている。ここで、微細なエッチングパターンを得るためには、エッチング工程において、活性膜や加工対象膜、及び加工対象膜の施された基板部分等の加工対象を、可能な限り選択的にエッチングすることが好ましい。すなわち、エッチング選択比の値が大きいことが好ましい。しかし、特許文献1に記載の装置では、製造時の効率性と、エッチング選択比とをバランスよく向上させる点において、改善の余地があった。
 そこで、本発明は、ALE法によるプラズマエッチング方法であって、加工時間の短縮と、エッチング選択比の向上とを両立可能な、プラズマエッチング方法を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、ALE法に従うプラズマエッチング方法において、特定の質量比率でフッ素原子及び炭素原子を含有する処理ガスを用いることで、加工時間の短縮とエッチング選択比の向上とを両立しうることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のプラズマエッチング方法は、処理容器内に被処理基板を載置する工程と、前記処理容器内に、フッ素原子及び/又は炭素原子を含有する少なくとも一種のガスを含む第1の処理ガス、並びに、希ガスを主成分とし、フッ素原子及び/又は炭素原子を含有するガスを含みうる、前記第1の処理ガスとは異なる第2の処理ガスを供給し、前記処理容器内を前記第1及び第2の処理ガスを含む雰囲気とし、前記被処理基板の少なくとも片面上に薄膜を形成させる堆積工程と、前記処理容器内を、少なくとも前記第2の処理ガスを含む雰囲気とし、前記薄膜を形成した前記被処理基板を、プラズマエッチングするエッチング工程と、を含み、前記堆積工程と前記エッチング工程とを切り替えて交互に実施し、且つ、前記堆積工程において、前記処理容器内の雰囲気が、前記第1及び第2の処理ガスを含む場合に、前記雰囲気中に質量基準でフッ素原子が炭素原子の2.4倍以上3.1倍以下含有されるようにすることを含む、ことを特徴とする。堆積工程とエッチング工程とを切り替えて実施するプラズマエッチング方法において、堆積工程中に、フッ素原子及び炭素原子の質量比が特定の範囲内となるように制御することで、加工時間の短縮とエッチング選択比の向上とを両立することができる。
 ここで、本発明において、「希ガスを主成分とする」とは、第2の処理ガスの全体積を100体積%とした場合に、希ガスを99.00体積%以上含有することをいう。
 また、本発明において、堆積工程おける、第1及び第2の処理ガスを含む雰囲気中のフッ素原子及び炭素原子の含有質量は、例えば、各処理ガスについてJIS K 0123に従って各原子の含有質量を測定し、得られた含有質量について雰囲気中における各処理ガスの堆積割合に応じて重みづけをして、雰囲気中における全フッ素原子量と全炭素原子量をそれぞれ算出して、全フッ素原子量を全炭素原子量で除することで、求めることができる。
 なお、本発明において、「加工時間」とは、堆積工程及びエッチング工程をそれぞれ一回行うために要する時間である。
 また、本発明のプラズマエッチング方法は、前記第1の処理ガスが、少なくとも一種のフルオロカーボンガスを含有することが好ましい。第1の処理ガスが少なくとも一種のフルオロカーボンガスを含有すれば、加工時間の短縮とエッチング選択比の向上とを一層良好に両立することができる。
 また、本発明のプラズマエッチング方法は、前記少なくとも一種のフルオロカーボンガスが、オクタフルオロシクロペンテンガスであることが好ましい。第1の処理ガスが、オクタフルオロシクロペンテンガスを含有すれば、加工時間の短縮とエッチング選択比の向上とを一層良好に両立することができる。
 また、本発明のプラズマエッチング方法では、前記堆積工程から前記エッチング工程への切り替えにあたり、前記処理容器内への前記第1の処理ガスの供給を停止してもよい。処理容器内への第1の処理ガスの供給を停止することによって、堆積工程からエッチング工程へ切り替えることができる。
 また、本発明のプラズマエッチング方法では、前記エッチング工程において、前記処理容器内の、前記被処理基板の前記薄膜を形成しない面側の領域に対して印加する電圧を前記堆積工程にて同領域に対して印加する電圧より増加させることができる。処理容器内においてかかる領域に対して印加する電圧を、堆積工程において同領域に対して印加する電圧よりも増加させることによっても、堆積工程からエッチング工程へ切り替えることができる。
 また、本発明のプラズマエッチング方法は、前記堆積工程にて、前記処理容器内の雰囲気が、前記第1及び第2の処理ガスを含む場合、前記雰囲気中における前記希ガスの比率が、前記雰囲気中における前記フッ素原子及び/又は炭素原子を含有するガスの総量100体積部に対して、10体積部以上10000体積部以下となるようにすることを含む、ことが好ましい。希ガスの比率がかかる範囲内であれば、堆積工程を高効率で実施することができるからである。
 また、本発明のプラズマエッチング方法は、前記エッチング工程において、前記被処理基板の前記薄膜を形成しない面側の領域に対して印加する電圧のピークツーピーク値が、1600V以下であることが好ましい。印加される電圧のピークツーピーク値がかかる範囲内であれば、エッチング工程を高効率で実施することができるからである。
 また、本発明のプラズマエッチング方法では、前記被処理基板は、非加工対象膜及び加工対象膜を備え、前記非加工対象膜に対する前記加工対象膜のエッチング選択比が3.5以上であることが好ましい。非加工対象膜に対する加工対象膜のエッチング選択比が3.5以上であれば、エッチング選択比が良好であるからである。
 本明細書において、非加工対象膜とは、エッチング工程においてエッチングされずに残存すべき対象を指し、加工対象膜とはエッチング工程においてエッチングされるべき対象を指す。
 本発明によれば、加工時間の短縮と、エッチング選択比の向上とを両立可能である。
(a)はガスパルス法により、(b)はバイアスパルス法により、堆積工程とエッチング工程とを切り替える際の各種ガス及び電圧の変調を説明する図である。
 以下、本発明の実施形態について詳細に説明する。ここで、本発明のプラズマエッチング方法は、特に限定されることなく、半導体デバイスの製造工程にて用いることができる。
(プラズマエッチング方法)
 本発明のプラズマエッチング方法は、処理容器内に被処理基板を載置する工程(準備工程)と、処理容器内に、フッ素原子及び/又は炭素原子を含有する少なくとも一種のガスを含む第1の処理ガス、並びに、第1の処理ガスとは異なる、希ガスを主成分とし、フッ素原子及び/又は炭素原子を含有するガスを含みうる第2の処理ガスを供給し、処理容器内を第1及び第2の処理ガスを含む雰囲気とし、被処理基板の少なくとも片面上に薄膜を形成する堆積工程と、処理容器内を、少なくとも第2の処理ガスを含む雰囲気とし、薄膜を形成した被処理基板を、プラズマエッチングするエッチング工程と、を含むことを特徴とする。さらに、本発明のプラズマエッチング方法は、堆積工程とエッチング工程とを切り替えて交互に実施することを特徴とする。また、本発明のプラズマエッチング方法は、堆積工程において、処理容器内の雰囲気が、第1及び第2の処理ガスを含む場合、かかる雰囲気中に質量基準でフッ素原子が炭素原子の2.4倍以上3.1倍以下含有されるようにすることを含む、ことを特徴とする。堆積工程における、第1及び第2の処理ガスを含む処理容器内の雰囲気がかかる条件を満たすようにすることで、加工時間の短縮と、エッチング選択比の向上とを両立することができる。
 以下、各工程について詳述する。
(準備工程)
 準備工程では、処理容器内に被処理基板を載置する。まず、準備工程では処理容器内を減圧して真空にすることが好ましい。処理容器としては、プラズマエッチングにおいて一般的に用いることが可能な処理容器であれば特に限定されることなく、例えば、ドライエッチングチャンバーのような処理容器を用いることができる。例えば、処理容器は、第1の処理ガスを供給する第1ガス供給口、第2の処理ガスを供給する第2ガス供給口、被処理基板を載置可能に構成された電極、及び処理容器内のガスを排気可能に形成された排気口を備える。さらに処理容器は、特に限定されることなく、ヘリコン波方式プラズマ発生装置、高周波誘導方式プラズマ発生装置、平行平板型プラズマ発生装置、マグネトロン方式プラズマ発生装置、又はマイクロ波方式プラズマ発生装置等の一般的なプラズマ発生装置を備える。好ましくは、プラズマ発生装置は、平行平板型プラズマ発生装置、高周波誘導方式プラズマ発生装置、又はマイクロ波方式プラズマ発生装置でありうる。高密度領域のプラズマを容易に発生させることができるからである。さらにまた、処理容器は被処理基板の厚み方向を基準として被処理基板の被処理表面側とは反対側の領域内の何れかの位置に配置された少なくとも一つの電極を備える。かかる少なくとも一つの電極に対して所定の電圧を印加することで、イオンを被処理基板の被処理表面に衝突させてエッチングを行う。
 以下、処理容器としては、平行平板型プラズマ発生装置を備えるドライエッチングチャンバーを用いたものとして説明する。平行平板型プラズマ発生装置は、処理容器内にプラズマを発生させるための上部電極と、被処理基板の薄膜を形成しない面側の領域にて電場を発生させうる電極である下部電極とを備える。また、被処理基板は、プラズマエッチングにて使用可能な基板であれば特に限定されることなく、あらゆる基板でありうる。被処理基板は、例えば、ガラス基板、シリコン単結晶ウエハー、及びガリウム-砒素基板を含みうる。そして、例えば、被処理基板は、シリコン単結晶ウエハー上に、必要に応じて形成された、シリコン窒化膜、シリコン酸化膜、及び/又は、有機膜を備えてなりうる。換言すると、被処理基板は、これらの加工対象及び/又は非加工対象を備える基板でありうる。
 さらに、準備工程において、被処理基板の温度を-50℃以上とすることが好ましく、-20℃以上とすることがより好ましく、0℃以上とすることがさらに好ましく、+120℃以下とすることが好ましく、+100℃以下とすることがより好ましく、+80℃以下とすることがさらに好ましい。被処理基板の温度は、例えば、ヘリウムガスなどの冷却ガス及び冷却装置を用いて制御することができる。
(堆積工程)
 堆積工程では、フッ素原子及び/又は炭素原子を含有する少なくとも一種のガスを含む第1の処理ガス、及び、希ガスを主成分とし、フッ素原子及び/又は炭素原子を含有するガスを含みうる、第1の処理ガスとは異なる第2の処理ガスを供給し、被処理基板の少なくとも片面上に薄膜を形成する。以下の工程において、第1及び第2の処理ガスを共に処理容器内に供給している間、或いは、第1の処理ガスは供給せず、第2の処理ガスを処理容器内に供給している間の、処理装置内の圧力は、プラズマ発生可能な所定の圧力、例えば、1Pa以上13Pa以下の範囲の圧力とすることが好ましい。
 ここで、本明細書において、薄膜を「形成する」とは、被処理基板の少なくとも片面上の少なくとも一部を覆う膜を形成する限りにおいて特に限定されることなく、例えば、第1の処理ガスの成分を重合させてポリマーを形成し、かかるポリマーを被処理基板の表面に堆積させて膜を形成することを指す。被処理基板は、例えば、処理容器内に設けられた試料台上に載置されており、薄膜が形成されうる被処理基板の「片面」はかかる試料台と接触していない側の面でありうる。なお、薄膜は、被処理基板の片面のみならず、試料台等と接触していない被処理基板の部分であればいかなる場所においても形成されることができ、例えば、被処理基板の側面にも形成されうる。また、本明細書において、「被処理基板の少なくとも片面上に」とは、被処理基板の片面に直接薄膜を形成する場合に加えて、被処理基板の少なくとも片面に必要に応じて形成されているシリコン窒化膜、シリコン酸化膜、及び/又は、有機膜の上に薄膜を形成する場合も含む。そして、シリコン膜、シリコン窒化膜、及び、有機膜等の非加工対象上に堆積された薄膜は、保護膜として機能し、シリコン酸化膜等の加工対象上に堆積された薄膜は、活性膜として機能して、次工程にてシリコン酸化膜との間に表面反応を生じ、エッチングに寄与する。
<処理ガス中におけるフッ素原子及び炭素原子の質量基準含有比率>
 ここで、上述したように、堆積工程における第1及び第2の処理ガスを含む雰囲気は、質量基準でフッ素原子を炭素原子の2.4倍以上3.1倍以下含有することを特徴とする。なお、後述するように、処理容器内に供給される処理ガスとして、第1及び第2の処理ガス以外のその他のガスを供給することができるが、かかるその他のガスは、フッ素原子及び/又は炭素原子を含有するガスを含有しないことが好ましい。その他のガスが、フッ素原子及び/又は炭素原子を含有するガスを含む場合には、その他のガス中における、フッ素原子及び/又は炭素原子を含有するガスは、本発明では、第1の処理ガスに含まれるものとして、第1及び第2の処理ガスを含む雰囲気中におけるフッ素原子及び炭素原子の各質量に加算する。
 通常、堆積工程にて、第1及び第2の処理ガスを含む処理容器内の雰囲気中におけるフッ素原子と炭素原子の含有比率は、形成される薄膜中におけるフッ素原子と炭素原子の含有比率に反映される。そして、薄膜が炭素原子を多く含んでいる場合、薄膜のエッチング耐性が向上する。エッチング耐性が過剰に高くなれば、エッチング工程にて加工対象膜がエッチングされにくくなる虞がある。一方、薄膜がフッ素原子を多く含んでいる場合、薄膜のエッチング耐性が低下し、薄膜がエッチングされやすくなる。保護膜として機能すべきである、非加工対象膜上に堆積された薄膜がエッチングされやすければ、非加工対象膜がエッチングされてしまい、結果的にエッチング選択比が低下する。さらに、第1及び第2の処理ガスを含む雰囲気中にフッ素が多いと、プラズマ重合の速度が低下し、活性膜の形成が不十分となり、堆積工程においてもエッチングが進行してしまう。本発明者らは、これらの点に基づいて、堆積工程にて、上記条件を満たす第1及び第2の処理ガスを含む雰囲気を用いることで、効率良く、適度なエッチング耐性を有する薄膜を形成可能であることを見出した。
 なお、従来のエッチング方法では、上述したように、被処理基板上への薄膜の堆積と、被処理基板表面のエッチングとが、一つの工程で生じる。このため、薄膜の形成速度がエッチング速度よりも早くなった場合には、活性膜として機能すべき薄膜が厚くなり、エッチングが進行しなくなることがある。そのため、従来のエッチング方法では、処理容器内に供給する処理ガスに酸素を添加することで、薄膜の形成速度を調節して、活性膜として機能すべき薄膜の厚みを調整することが一般的であった。酸素を添加することで、重合の前駆体となるCFx(x=1,2,3)はCOFという形で反応系から排出されるため、重合速度は低下する。従って、従来のエッチング方法では、処理容器内に供給する処理ガスに相当量の酸素や窒素を配合することで、薄膜の重合速度を、エッチング速度を下回る程度まで低下させて、非加工対象膜に対する加工対象膜のエッチング選択比が最大となるようにしていた。ここで、「相当量」とは、第1及び第2の処理ガス中を含む雰囲気中に含有されるフッ素原子及び/又は炭素原子を含有するガスの総量を100体積部とした場合に、50体積部超300体積部以下の酸素や窒素の配合量である。しかし、相当量の酸素を処理ガスに配合した場合、CFxは酸素との反応により系外に排気されることから、処理ガス中におけるフッ素原子と炭素原子の含有比率が堆積工程にて形成される薄膜の組成に直接反映されにくくなる。このため、従来のエッチング方法では、本発明のように、第1及び第2の処理ガスを含む雰囲気中におけるフッ素原子と炭素原子の含有比率を調節することによって、効率良く、適度なエッチング耐性を有する薄膜を形成することができなかった。
 第1及び第2の処理ガスを含む雰囲気中におけるフッ素原子と炭素原子の比率を上記範囲内に調節するために、フッ素原子及び/又は炭素原子を含有する少なくとも一種のガスを用いうる。より具体的には、第1及び第2の処理ガスに配合するガスとして、フッ素原子と炭素原子の比率が上記範囲内である一種又は複数種のフルオロカーボンガスを用いても良いし、フッ素原子と炭素原子の比率が上記範囲内ではない複数種のフルオロカーボンガスを混合して用いても良いし、フッ素原子又は炭素原子を含有するガスを複数種混合して用いても良いし、これらを併用しても良い。
<第1の処理ガス>
 好ましくは、第1の処理ガスが、質量基準でフッ素原子を炭素原子の2.4倍以上3.1倍以下含有する。さらに好ましくは、第1の処理ガスは、質量基準でフッ素原子を炭素原子の2.5倍以上3.0倍以下含有する。
[フルオロカーボンガス]
 好ましくは、上記第1の処理ガスは、少なくとも一種のフルオロカーボンガスを含有する。フルオロカーボンガスとしては、フッ素原子及び炭素原子の含有比率が上記範囲内であるフルオロカーボンガス(以下、「第1のフルオロカーボンガス」とも称する)、及びフッ素原子及び炭素原子の含有比率が上記範囲内ではないフルオロカーボンガス(以下、「第2のフルオロカーボンガス」)が挙げられる。
[[第1のフルオロカーボンガス]]
 質量基準F/C比が2.4倍以上3.1倍以下である第1のフルオロカーボンガスとしては、特に限定されることなく、1,2,3,3,4,4,5,5-オクタフルオロ-シクロペンテン、オクタフルオロ-1,4-ペンタジエン、オクタフルオロ-1,3-ペンタジエン、1,1,1,4,4,5,5,5-オクタフルオロ-2-ペンチンなどの分子式Cで表されうる化合物;1,1,1,3,4,4,5,5,5-ノナフルオロ-2-ペンテンなどの分子式CHFで表されうる化合物;1,1,2,2,3,3,4-ヘプタフルオロシクロブタン、及び1,1,1,3,4,4,4-ヘプタフルオロ-2-ブテンなどの分子式CHFで表されうる化合物、並びに、1,2,3,3,3-ペンタフルオロプロペンなどの分子式CHFで表されうる化合物が挙げられる。これらの化合物は1種単独で、或いは2種以上を混合して用いることができる。なかでも、分子式Cで表されうるオクタフルオロ-シクロペンテン化合物が好ましく、1,2,3,3,4,4,5,5-オクタフルオロ-シクロペンテンが特に好ましい。
[[第2のフルオロカーボンガス]]
 質量基準F/C比が2.4倍以上3.1倍以下ではない第2のフルオロカーボンガスとしては、特に限定されることなく、テトラフルオロメタン(CF);六フッ化エタン(C);八フッ化プロパン(C);フルオロメタン(CHF);ジフルオロメタン(CH);トリフルオロメタン(CHF);並びに、1,2,3,3,4,4-ヘキサフルオロ-1-シクロブテン、1,1,2,3,4,4-ヘキサフルオロ-1,3-ブタジエン、1,1,1,4,4,4-ヘキサフルオロ-2-ブチン、オクタフルオロシクロブタン、1,3,3,4,4,5,5-ヘプタフルオロシクロペンテン、及び1,1,2,3,4,5,5-ヘプタフルオロ-1,3-ペンタジエン等の分子式Cで表される化合物が挙げられる。これらの化合物は1種単独で、或いは2種以上を混合して用いることができる。
[フッ素原子又は炭素原子を含有するガス]
 フルオロカーボンガス以外のフッ素原子又は炭素原子を含有するガスとしては、例えば、六フッ化硫黄、テトラクロロメタン、炭化水素等が挙げられる。これらの化合物は1種単独で、或いは2種以上を混合して用いることができる。
<第2の処理ガス>
 第2の処理ガスは、第1の処理ガスとは異なるガスであり、希ガスを主成分とするガスであり、フッ素原子及び/又は炭素原子を含有するガスを含みうる。第2の処理ガスは、99.00体積%以上が希ガスである必要があり、99.02体積%以上が希ガスであることが好ましく、99.50体積%以上が希ガスであることがより好ましく、100.00体積%が希ガスであることがさらに好ましい。第2の処理ガスに含有されうる希ガス以外の成分としては、上述したフッ素原子及び/又は炭素原子を含有するガス、即ち、第1のガスについて列挙した第1及び第2のフルオロカーボンガスや、フッ素原子又は炭素原子を含有するガスの他には、不可避的に混入しうる不純物が挙げられる。これらは、窒素、炭素、及び水蒸気等の不可避的に混入する不純物でありうる。
 堆積工程において、第1の処理ガスに併せて希ガスを主成分とする第2の処理ガスを併用することで、薄膜の形成に用いられうるフルオロカーボンガス、及び/又は、フッ素原子又は炭素原子を含有するガスの処理容器内における濃度を調節することができる。希ガスは、特に限定されることなく、ヘリウム、ネオン、アルゴン、クリプトン、キセノンの中から選択することができる。これらは、1種単独で、或いは2種以上を混合して用いることができる。なお、第2の処理ガスにおけるフッ素原子及び/又は炭素原子を含有するガスの含有比率は、本発明によるプラズマエッチングの効果を損なわない程度に低い比率である必要があり、具体的には、フッ素原子及び/又は炭素原子を含有するガスの含有比率は0.08体積%未満でありうる。しかしながら、説明の明瞭のために、以下、各種ガスの混合比率に関しては、第2の処理ガスはフッ素原子及び/又は炭素原子を含有するガスを含まないものを仮定して説明する。即ち、以下の<混合比率>欄にかかる説明については、第1の処理ガスが、質量基準でフッ素原子を炭素原子の2.4倍以上3.1倍以下含有するという条件(以下、「条件A」とも称する)を満たすものと仮定して説明する。
 一方、第2の処理ガスがフッ素原子及び/又は炭素原子を含有するガスを含む場合には、「フッ素原子及び/又は炭素原子を含有するガス」の総量は、第1及び第2の処理ガスを含む雰囲気内に含有される総量となる。かかる総量は、例えば、エッチング処理容器内の雰囲気をGC/MS等により直接分析することによっても、供給する各種ガス源のガスを個々にGC/MS等により分析し、各種ガス源からの供給ガス流量で重みづけしつつ、得られた成分の総和を算出することによっても把握することができる。
<その他のガス>
 フッ素原子及び炭素原子を含有しない、その他のガスを併用することができる。例えば、堆積工程では、上述した第1及び第2の処理ガスに加えて、酸素ガスを併用することができる。さらに、本発明のプラズマエッチング方法の効果を損なわない限りにおいて、堆積工程にて少量の窒素ガス等を併用することも可能である。
<混合比率>
[第1の処理ガスにおける各種ガスの混合比率]
 第1の処理ガスに配合するガスは、上記第1のフルオロカーボンガス100体積%よりなるガスであってもよいし、或いは、上記第1のフルオロカーボンガス、第2のフルオロカーボンガス、及び/又は、フッ素原子又は炭素原子を含有するガスから複数種を選択して、上記条件Aを満たすようにそれらを適当な比率で混合したガスであっても良い。
[第1及び第2の処理ガスの混合比率]
 堆積工程における、第1の処理ガス及び第2の処理ガスの混合比率は、第1の処理ガスに含有されるフッ素原子及び/又は炭素原子を含有する少なくとも一種のガス100体積部に対して、第2の処理ガスに含有される希ガスの比率が、10体積部以上となることが好ましく、20体積部以上となることがより好ましく、50体積部以上となることがさらに好ましく、10000体積部以下となることが好ましく、9000体積部以下となることがより好ましく、8000体積部以下となることがさらに好ましく、5000体積部以下となることがより好ましく、3000体積部以下となることがさらに好ましい。希ガスの比率を上記下限値以上となるように第1及び第2の処理ガスを併用することで、堆積工程において、薄膜形成速度が過剰に早まり、処理容器内にて粉じん等が発生して処理容器内が汚染されることを抑制することができる。また、希ガスの比率を上記上限値以下とすることで、堆積工程にて効率的に薄膜を形成することが可能となる。
[その他のガスの混合比率]
 酸素ガスを用いる場合における酸素ガスの混合比率は、第1の処理ガス中に含まれるフッ素原子及び/又は炭素原子を含有するガスの総量を100体積部とした場合に、50体積部以下であることが好ましく、30体積部以下であることがより好ましい。堆積工程における処理容器内の雰囲気の酸素含有量がかかる範囲内であれば、堆積工程において薄膜形成速度を適度な範囲とすることができる。
 なお、上述した各種ガスは、それぞれ独立して、通常、ボンベ等の容器に充填されて運搬され、処理容器に対して接続されて設置される。そして、ボンベ等のバルブを開くことにより、各ガスが、処理容器内に所定割合で導入され、堆積工程を進行させることができる。
<下部電極電圧>
 堆積工程では、グロー放電等の一般的な方法によりプラズマを発生させて、処理容器内の雰囲気中に含まれる分子間にて重合反応が生じさせ、ポリマーを形成させて被処理基板上に堆積させて膜を形成する。平行平板型プラズマ発生装置の上部電極が60MHz、下部電極が2MHz、及びこれらの電極間の距離が35mmである場合には、上部電極に対して供給する電力は、グロー放電等を生じさせるために必要十分な電力であればよく、例えば、100W以上から2000W以下あればよい。一方、下部電極に対して印加する電圧は、ピークツーピーク値が2000V以下であることが好ましく、1600V以下であることがより好ましい。また、堆積工程において下部電極に対して印加する電圧が上記上限値以下であれば、各膜の形成を促進することができる。
(エッチング工程)
 エッチング工程では、処理容器内を、少なくとも第2の処理ガスを含む雰囲気とし、薄膜を形成した被処理基板を、プラズマエッチングする。ここで、微細なエッチングパターンを得るためには、エッチング工程において、活性膜や加工対象膜、及び加工対象膜の施された基板部分等の加工対象を、可能な限り選択的にエッチングすることが好ましい。エッチング工程での「選択比」が高ければ、これらの加工対象を選択的にエッチング可能である。本明細書において「選択比」とは、エッチング処理工程において、加工対象のエッチング量を非加工対象のエッチング量で除して得られる値である。非加工対象のエッチング量が少ない、及び/又は、加工対象のエッチング量が多いほど、「選択比」の値は大きくなる。反対に、非加工対象のエッチング量が多い、及び/又は、加工対象のエッチング量が少ないほど、「選択比」の値は小さくなる。ここで、理想的には、非加工対象のエッチング量はゼロである。この場合、「選択比」を算出するにあたり、ゼロ除算をすることとなり、算出不能となる。さらに、非加工対象上に保護膜が堆積して、エッチング処理工程を経てもかかる保護膜が基板上に残留している場合には、非加工対象のエッチング量は負の値もとりうる。そこで、本明細書では、非加工対象のエッチング量がゼロ以下であれば、エッチング選択比は非常に良好であったとし、無限大であったとする。
 好ましくは、本発明のプラズマエッチング方法は、非加工対象膜に対する加工対象膜のエッチング選択比が3.5以上である。加工対象膜はシリコン酸化膜であり、非加工対象膜は、シリコン膜、シリコン窒化膜、及び、有機膜などでありうる。一つの被処理基板が複数種の非加工対象膜を備える場合には、エッチング選択比は、複数種ある非加工対象膜のそれぞれに対してエッチング選択比を算出し、得られたエッチング選択比のうち最も小さい値が3.5以上であることが好ましい。なお、本明細書において、「シリコン膜」とは、単結晶シリコン又はポリシリコンにより形成される膜のことをいう。また、本明細書において、「シリコン酸化膜」とは、SiО、SiOC、SiOCH等の酸素原子を含有するシリコン化合物により形成される膜のことをいう。さらに、本明細書において、「シリコン窒化膜」とは、Si(SiN)、SiCN、SiBCN等の窒素原子を含有するシリコン化合物により形成される膜のことをいう。さらにまた、本明細書において、「有機膜」とは、炭素を主成分とする膜をいう。「炭素を主成分とする」とは膜を形成する材料に含まれる炭素の割合が50質量%超であることをいい、具体的にはアモルファスカーボン等の炭素系材料や、フォトレジスト組成物などにより形成される膜のことをいう。
 エッチング工程では、処理容器内を、少なくとも第2の処理ガスを含む雰囲気とし、堆積工程と同様にグロー放電等の一般的な方法によりプラズマを発生させて、第2の処理ガスの主成分である希ガスから反応種を発生させて、かかる反応種と堆積工程にて被処理基板上に形成された活性膜とを表面反応させる。なお、平行平板型プラズマ発生装置の上部電極が60MHz、下部電極が2MHz、及びこれらの電極間の距離が35mmである場合には、被処理基板を載置した下部電極に対して印加される電圧のピークツーピーク値が1600V以下であることが好ましい。また、かかる電圧を上記上限値以下とすることで、エッチング選択比を一層向上させることができるからである。なお、平行平板型プラズマ発生装置の場合には、下部電極に対して印加する電圧を上記上限値以下とすることが好ましいが、他のプラズマ発生装置の場合には、被処理基板の薄膜を形成しない面側の領域に対して印加する電圧を上記上限値以下とすることが好ましい。
(工程切り替え)
 本発明のプラズマエッチング方法は、堆積工程とエッチング工程とを切り替えて交互に実施することを特徴とする。処理容器内への第1の処理ガスの供給を停止することで、堆積工程からエッチング工程へ切り替えることができる。かかる切り替え態様を、「ガスパルス法」とも称する。または、下部電極に対して印加する電圧、即ち、被処理基板の薄膜を形成しない面側の領域に対して印加する電圧を、堆積工程における電圧より増加させることで、堆積工程からエッチング工程へ切り替えることができる。かかる切り替え態様を、「バイアスパルス法」とも称する。以下、図1を参照して、これら2つの態様について説明する。
<ガスパルス法>
 図1(a)は、ガスパルス法による工程切り替えを説明するための概略図である。横軸を加工時間(秒)、左側縦軸を各種ガスの供給量(sccm)、及び右側縦軸を下部電極に印加した電圧(V)として図示する。また、説明の明確化のために、第1の処理ガスとしては、希ガス及び第1のフルオロカーボンガスのみからなるガスを用い、第2の処理ガスとしては、希ガスのみからなるガスを用いたものとする。
 まず、準備工程を終えて堆積工程を開始したt(秒)の時点から、所定流量で第1及び第2の処理ガスの供給を開始する。さらに、上部電極に対して、処理容器内でグロー放電を生じさせてプラズマを生成するために必要十分な電力の供給を開始するとともに、下部電極に対して、所定の電圧の印加を開始する(ステップa-0)。そして、ta-1(秒)の時点で第1の処理ガスの供給を停止する(ステップa-1)。さらに、ta-2(秒)の時点で、再度第1の処理ガスの供給を開始する(ステップa-2)。エッチング深さが所望の深さとなるまで、ステップ(a-1)及びステップ(a-2)を繰り返す。第1の処理ガスが供給されている上記ステップ(a-0)及び(a-2)が上述した堆積工程に相当する工程であり、かかる工程において、被処理基板上に薄膜が形成されている。一方、第1の処理ガスが処理容器内に供給されず、実質的に希ガスのみからなる第2の処理ガスにて処理容器内が満たされている上記ステップ(a-1)が上述したエッチング工程に相当する工程であり、かかる工程において被処理基板がプラズマエッチングされる。このように、第1の処理ガスの供給状態をパルス的に変更することで、処理容器内の雰囲気をパルス的に変更して、堆積工程とエッチング工程を切り替えることができる。
 エッチング工程における処理容器内の雰囲気は、少なくとも第2の処理ガスを含む。ここで、ガスパルス法では、上述したように、ta-1(秒)の時点で第1の処理ガスの供給を停止する。従って、エッチング工程の開始時点から、エッチング工程が進行するに従って、処理容器内の雰囲気中における第1の処理ガスの濃度は徐々に低下する。エッチング工程が進行している処理容器内の雰囲気中での第1の処理ガスの含有比率の下限値は、特に制限されることなく、例えば、0体積%、或いは、実質的に0体積%でありうる。なお、本明細書において「実質的に0体積%」とは、処理容器内中に第1の処理ガスが実質的に含有されないことを意味し、具体的には処理容器内中における第1の処理ガスの濃度が1.00%未満であることを意味する。
<バイアスパルス法>
 図1(b)は、バイアスパルス法による工程切り替えを説明するための概略図であり、各軸は図1(a)と同様である。各種ガスも、図1(a)の場合と同様のガスを用いたとして説明する。まず、準備工程を終えて堆積工程を開始したt(秒)の時点から、所定流量で第1及び第2の処理ガスの供給を開始する(ステップb-0)。さらに、上部電極に対して、図1(a)の場合と同様に、処理容器内でグロー放電を生じさせてプラズマを生成するために必要十分な電力の供給を開始する。そして、tb-1(秒)の時点で下部電極への電圧の印加を開始する(ステップb-1)。さらに、tb-2(秒)の時点で、下部電極への電圧の印加を停止する(ステップb-2)。エッチング深さが所望の深さとなるまで、ステップ(b-1)及びステップ(b-2)を繰り返す。下部電極に電圧が印加されない上記ステップ(b-0)及び(b-2)が上述した堆積工程に相当する工程であり、下部電極に電圧が印加されている上記ステップ(b-1)が上述したエッチング工程に相当する工程である。なお、図1(b)では、ステップ(b-0)及び(b-2)で電圧を印加しないものとして図示したが、上述した通り、ステップ(b-0)及び(b-2)にて、下部電極に対して、ステップ(b-1)よりも低い電圧を印加しても良い。
 なお、バイアスパルス法では、堆積工程及びエッチング工程を通じて、処理容器内の雰囲気は略一定である。
 さらに、上述したガスパルス法とバイアスパルス法とは、複合して実施しても良い。即ち、第1の処理ガスを供給している間は下部電極に印加する電圧を印加しないか、或いは低減し、第1の処理ガスの供給を停止している間は下部電極に印加する電圧を上昇させることもできる。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。実施例および比較例において、第1の処理ガス中におけるフッ素原子及び炭素原子の含有比率、膜厚及びエッチング深さ、並びにエッチング選択比はそれぞれ以下のようにして測定/評価した。
<フッ素原子及び炭素原子の含有比率>
 実施例、比較例において、第1及び第2の処理ガス中におけるフッ素原子及び炭素原子の含有比率は、使用したフルオロカーボンガスについてフッ素原子及び炭素原子の含有比率の理論値(化合物中におけるフッ素原子のモル質量を炭素原子のモル質量で除した値)とした。なお、実施例、比較例のように、第2の処理ガスがフッ素原子及び炭素原子を含有せず、第1の処理ガスとして単独のガスを使用する場合には、かかる理論値が処理容器内の雰囲気中におけるフッ素原子及び炭素原子の含有比率に相当する。
<膜厚及びエッチング深さ>
[膜厚]
 実施例、比較例において、堆積工程の時間及びエッチング工程の時間を異ならせて、市販されているエリプソメトリー膜厚測定器を用いて、加工対象膜及び非加工対象膜について、それぞれ1~3点の膜厚を測定した。得られた測定値から、横軸に堆積工程又はエッチング工程の時間、縦軸に膜厚をプロットして、近似直線を得て、各時間における膜厚を算出した。
[エッチング深さ]
 実施例、比較例において、堆積工程直後の各膜厚、及び所定時間のエッチング工程を経た直後の各膜厚を上述のようにして測定して、各種処理を実施する前の被処理基板における各膜厚の値から、各種処理後の被処理基板における各膜厚の値をそれぞれ減じた。得られた差分値を、各時点におけるエッチング深さの値とした。なお、各種処理後の膜厚の値が各種処理前の膜厚の値よりも大きい場合には、エッチング深さの値は「負」の値となる。この場合は各種処理前よりも膜厚が厚くなっており、換言すれば、被処理基板上にて、エッチングではなく薄膜の積層が生じたことを意味する。反対に、各種処理後の膜厚の値が各種処理前の膜厚の値よりも小さい場合には、エッチング深さの値は「正」の値となる。この場合は、被処理基板がエッチングされたことを意味する。
<エッチング選択比>
 エッチング選択比は、実製品にて要求されるオングストロームオーダー(通常、20オングストローム未満)の構造を形成して評価することが理想的である。しかし、20オングストローム未満の構造を実際に測定してエッチング選択比を算出する際には、計測装置の測定精度の影響が過剰に大きくなり、エッチング選択比を正確に評価することができない虞がある。よって、本明細書では、ALE法にて一般的に目標とするスケールよりも若干サイズの大きい評価条件で、各膜の膜形成速度やエッチング速度を算出し、得られた値に基づいて、目標とするオングストロームオーダーの構造を形成した場合における、堆積工程及びエッチング工程に要する時間、各膜のエッチング深さ、及びエッチング選択比を算出して評価した。
[膜形成速度]
 具体的には、まず、実施例、比較例に記載した条件で堆積工程を実施し、厚さ97Å~163Åの薄膜を形成した。そして、堆積工程終了後エッチング工程を開始する前の時点(すなわち、エッチング時間0秒の時点)において、上記方法に従って各膜厚(Å)を測定し、得られた各膜厚を堆積工程の時間(秒)で除して、各膜の形成速度(Å/秒)を算出した(表2)。
[エッチング速度]
 また、エッチング工程開始後、いくつかの時点において、上述の方法によりエッチング深さ(Å)を測定し、エッチング深さとエッチング時間とのプロットから近似直線を得て、かかる近似直線の傾きを各膜のエッチング速度とした(表2)。
[エッチング深さ毎のエッチング選択比]
 そして、堆積工程で形成する活性膜の厚みを5Åとしたと仮定して、5Åを活性膜の形成速度(Å/秒)で除して堆積工程に要する時間tdを算出した。さらに、加工対象膜であるシリコン酸化膜について所望のエッチング深さ(例えば、10Å、15Å、及び20Å)を想定して、かかるエッチング深さ(Å)をシリコン酸化膜のエッチング速度(Å/秒)で除してエッチング工程に要する時間teを算出した。そして、式1:(シリコン窒化膜の形成速度(Å/秒)×堆積工程に要する時間td)-(シリコン窒化膜のエッチング速度(Å/秒)×エッチング工程に要する時間te)により、シリコン窒化膜のエッチング深さを算出した。フォトレジストについても同様に、式2:(フォトレジストの形成速度(Å/秒)×堆積工程に要する時間td)-(フォトレジストのエッチング速度(Å/秒)×エッチング工程に要する時間te)により、フォトレジストのエッチング深さを算出した。
 そして、算出された非加工対象である各膜のエッチング深さの値がゼロ超である場合には、加工対象であるシリコン酸化膜のエッチング深さの値を非加工対象である各膜のエッチング深さの値で除して、エッチング選択比を算出した。他方、非加工対象である各膜のエッチング深さの値がゼロ以下である場合、即ち、各膜が全くエッチングされないか、エッチング処理後の各膜の厚さが、エッチング処理前よりも厚くなっている場合には、エッチング選択比が無限大であったとして評価した。
(実施例1)
<装置構成>
 平行平板型プラズマ発生装置を有する処理容器を用いた。平行平板型プラズマ発生装置は、上部電極と、被処理基板を載置する下部電極とを有し、上部電極の下面と下部電極の上面との間隔は35mmであった。平行平板型プラズマ発生装置の上部電極の周波数は60MHzであり、下部電極の周波数は2MHzであった。また、下部電極は、冷却ユニットを備えており、かかる冷却ユニットは下部電極にヘリウムガスを接触させることにより下部電極を冷却するように構成されていた。なお、冷却ユニットはヘリウムガスが処理容器内部には流出しない態様で構成されていた。
<準備工程>
 加工対象膜であるシリコン酸化膜(SiO膜)、非加工対象膜であるシリコン窒化膜(SiN膜)及び、非加工対象膜であるArFエキシマレーザー用のフォトレジスト膜(表中「PR膜」と表記、JSR社製、「AR414」を用いて形成)を有する被処理基板であるシリコン基板片を、平行平板型プラズマ発生装置を有する処理容器内に導入し、下記プラズマ条件下でプラズマエッチングを行った。なお、冷却ユニットの温度は60℃に設定し、ヘリウムガスのガス圧力は1000Paとした。
<堆積工程>
 次に、上部電極に対して、150Wの電力を供給し、下部電極に対して、ピークツーピーク値(Vpp)が100Vとなるように電圧を印加した。第1の処理ガスとして、1,2,3,3,4,4,5,5-オクタフルオロ-シクロペンテンガス(以下、簡潔のために「Cガス」とも称する)及びアルゴンガスを処理容器内に供給した。供給流量は、それぞれ、Cガスを10sccm、アルゴンガスを200sccmとした。換言すると、処理容器内を、Cガス100体積部あたり、2000体積部が存在する雰囲気とした。処理容器内の圧力は、2.6Paとした。そして、上記電圧及び第1の処理ガスの条件を10秒間維持して、処理容器内をプラズマ状態として堆積工程を実施した。かかる堆積工程では被処理基板であるシリコン基板片上に薄膜を形成させた。なお、かかる薄膜は、次工程(エッチング工程)において保護膜或いは活性膜として機能しうる。堆積工程直後の被処理基板における各膜厚の値を上述の方法に従って測定した。結果を表1に示す。
<エッチング工程>
 第1の処理ガスの供給を開始してから10秒後にCガスの供給を停止した。そして、その他の条件は維持した状態を所定時間保持し、エッチング工程を実施した。エッチング時間を30秒、90秒、及び150秒とした場合の被処理基板における各膜厚の値を上述の方法に従って測定した。結果を表1に示す。
 さらに、表1に示すように得られた各膜厚の値、堆積工程の時間、及びエッチング工程の時間から、各膜の形成速度及びエッチング速度を算出した結果を表2に示す。また、表3-1に、堆積工程で形成する活性膜の厚みを5Å、シリコン酸化膜のエッチング深さを10Åとした場合に想定される、堆積工程及びエッチング工程の時間、及びこれらの合計時間である加工時間、各膜のエッチング深さ、並びに、エッチング選択比の計算値を示す。同様に、表3-2及び表3-3に、それぞれ、シリコン酸化膜のエッチング深さを15Å、20Åに変更した場合について、表3-1と同様の項目の計算値を示す。
(実施例2)
 実施例1において、下部電極に対して印加する電圧のピークツーピーク値(Vpp)を1600Vとなるように変更し、さらに、堆積工程の時間を30秒に変更し、エッチング時間を30秒、60秒、90秒、及び120秒に変更した以外は実施例1と同様にして、プラズマエッチングを行った。結果を表1に示す。また、表1に示すデータより得られる各種計算値を表2及び表3-1~3-3に示す。
(比較例1)
 第1の処理ガスを、1,1,2,3,4,4-ヘキサフルオロ-1,3-ブタジエン(C)に変更し、堆積工程の時間を6秒に変更したこと以外は、実施例1と同様にして、プラズマエッチングを行った。結果を表1に示す。また、表1に示すデータより得られる各種計算値を表2及び表3-1~3-3に示す。
(比較例2)
 下部電極に対して印加する電圧のピークツーピーク値(Vpp)が1600Vとなるようにし、堆積工程の時間を17秒とし、さらに、エッチング時間を30秒、60秒、90秒、及び120秒に変更した以外は、比較例1と同様にして、プラズマエッチングを行った。結果を表1に示す。また、表1に示すデータより得られる各種計算値を表2及び表3-1~3-3に示す。
(比較例3)
 第1の処理ガスを1,3,3,4,4,5,5-ヘプタフルオロ-シクロペンテン(CHF)に変更し、堆積工程の時間を4秒に変更した以外は、実施例1と同様にしてプラズマエッチングを行った。結果を表1に示す。また、表1に示すデータより得られる各種計算値を表2及び表3-1~3-3に示す。
(比較例4)
 下部電極に対して印加する電圧のピークツーピーク値(Vpp)が1600Vとなるようにし、堆積工程の時間を6秒に変更し、さらに、エッチング時間を30秒、60秒、90秒、及び120秒に変更した以外は、比較例3と同様にしてプラズマエッチングを行った。結果を表1に示す。また、表1に示すデータより得られる各種計算値を表2及び表3-1~3-3に示す。
(比較例5)
 第1の処理ガスをオクタフルオロシクロブタン(C)に変更したこと以外は、実施例1と同様にして、堆積工程を開始した。しかし、表1~2に示すように、堆積工程にて、各膜が形成されなかった。むしろ、堆積工程にて、シリコン酸化膜、シリコン窒化膜、及びフォトレジストのエッチングが進行し、ALE法でエッチングを行うことができなかった。
(比較例6)
 下部電極に対して印加する電圧のピークツーピーク値(Vpp)が1600Vとなるようにした対外は比較例5と同様にして、堆積工程を開始した。しかし、表1~2に示すように、堆積工程にて、各膜が形成されなかった。むしろ、堆積工程にて、シリコン酸化膜、シリコン窒化膜、及びフォトレジストのエッチングが進行し、ALE法でエッチングを行うことができなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (活性膜厚み:5Å、シリコン酸化膜エッチング深さ:10Åの場合)
Figure JPOXMLDOC01-appb-T000003
 (活性膜厚み:5Å、シリコン酸化膜エッチング深さ:15Åの場合)
Figure JPOXMLDOC01-appb-T000004
 (活性膜厚み:5Å、シリコン酸化膜エッチング深さ:20Åの場合)
Figure JPOXMLDOC01-appb-T000005
 表3-1~表3-3より、堆積工程とエッチング工程とを切り替えて交互に実施し、且つ、質量基準でフッ素原子が炭素原子の2.4倍以上3.1倍以下含有される第1の処理ガスを用いた、本発明によるプラズマエッチング方法では、加工時間の短縮とエッチング選択比の向上とが両立されていることがわかる。例えば、表3-1を参照して下部電極に対して印加した電圧が同じである実施例1と比較例1とを比べると、加工時間は実施例1の方が若干短いが、シリコン窒化膜及びフォトレジストのような非加工対象膜に対する、加工対象膜であるシリコン酸化膜のエッチング選択比が十分に高く、加工時間の短縮とエッチング選択比の向上とが良好に両立されている。さらに、実施例1及び比較例1では共に、フォトレジストに対するシリコン酸化膜のエッチング選択比は非常に良好(「∞」評価)であったが、シリコン窒化膜に対する選択比は、実施例1の方が比較例1よりも50倍以上優れていることが分かる。
 次に、表3-2を参照して、エッチング深さを15Åとしたと想定した場合について実施例1と比較例1とを比較して考察する。まず、加工時間は実施例1の方が短い。さらに、フォトレジストに対するシリコン酸化膜のエッチング選択比は共に十分に高い値となっているが、シリコン窒化膜に対するシリコン酸化膜のエッチング選択比は、比較例1では1.6と低く、十分なエッチング選択比が得られていない。一方、実施例1ではシリコン窒化膜に対するシリコン酸化膜のエッチング選択比は7.7と十分に高い。
 そして、表3-3を参照して、エッチング深さを20Åとしたと想定した場合について実施例1と比較例1とを比較して考察する。この場合も、加工時間は実施例1の方が短い。さらに、フォトレジストに対するシリコン酸化膜のエッチング選択比は共に十分に高い値となっているが、シリコン窒化膜に対するシリコン酸化膜のエッチング選択比は、比較例1では1.5と低く、十分なエッチング選択比が得られていない。一方、実施例1ではシリコン窒化膜に対するシリコン酸化膜のエッチング選択比は5.3と十分に高い。
 下部電極への供給電圧のピークツーピーク値が(Vpp)が1600Vである実施例2、比較例2、4、6についても、上述したような傾向と同様の傾向がみられる。
 また、表1~2に示すように、特に、質量基準でフッ素原子が炭素原子の3.16倍含有される第1の処理ガスを用いた比較例5及び6では、活性膜も保護膜も形成されなかった。これは、質量基準でフッ素原子が炭素原子の3.1倍超となる場合、堆積工程におけるプラズマ重合が進行しにくくなるため、ALEへの適用は困難であるためであると推察される。また、表1~2に示すように、質量基準でフッ素原子が炭素原子の2.21倍含有される第1の処理ガスを用いた比較例3では、活性膜と、シリコン窒化膜及びフォトレジストへの保護膜は形成されるが、エッチング工程ではエッチングがほぼ停止している。これは、第1の処理ガス中に含まれる炭素原子の比率が比較的高いため、形成された活性膜中の元素組成における炭素比率も高くなり、活性膜のエッチング耐性が上がったためであると推察される。
 次に、参考例として、実施例、比較例にて用いた各種フルオロカーボンガスを用いて、堆積工程とエッチング工程とを切り替えて実施しない従来のプラズマエッチング方法を実施した結果を表4に示す。なお、参考例の結果に併せて、本発明によるプラズマエッチング方法にて、同様の各種ガスを用いた場合の結果を、表3-1より抜粋して併せて示す。さらに、表4では、従来のプラズマエッチング方法によるエッチング速度との比較のために、「想定加工速度」として、表3-1に示した想定加工時間で想定エッチング深さ10Åを除した値を示す。
 なお、以下の参考例では、上部電極に対して供給した電力、及び下部電極に対して印加した電圧の値が、それぞれ比較例3と異なる。これは、従来のプラズマエッチング方法にて良好なエッチング効果を得るための値に調節したためである。
(参考例1)
 処理ガスとして、1,3,3,4,4,5,5-ヘプタフルオロ-シクロペンテン(CHF)ガス100体積部、希ガス2000体積部、及びエッチング速度が最大となる量の酸素ガス300体積部を添加し、上部電極に対して供給する電力を600Wとし、下部電極の電圧のピークツーピーク値(Vpp)は4700Vとし、堆積工程とエッチング工程とが同時に進行するようにして従来の一般的なエッチング方法を実施した。結果を表4に示す。
(参考例2)
 処理ガスとして1,1,2,3,4,4-ヘキサフルオロ-1,3-ブタジエン(C)ガス100体積部、希ガス2000体積部、及びエッチング速度が最大となる量の酸素ガス200体積部を添加し、下部電極に対して印加する電圧のピークツーピーク値(Vpp)が4700Vとなるようにし、堆積工程とエッチング工程とが同時に進行するようにして従来の一般的なエッチング方法を実施した。結果を表4に示す。
(参考例3)
 処理ガスとして1,2,3,3,4,4,5,5-オクタフルオロ-シクロペンテン(C)ガス100体積部、希ガス2000体積部、及びエッチング速度が最大となる量の酸素ガス150体積部を添加し、下部電極に対して印加する電圧のピークツーピーク値(Vpp)が4700Vとなるようにし、堆積工程とエッチング工程とが同時に進行するようにして従来の一般的なエッチング方法を実施した。結果を表4に示す。
(参考例4)
 処理ガスとしてオクタフルオロシクロブタン(C)ガス100体積部、希ガス2000体積部を添加し、下部電極に対して印加する電圧のピークツーピーク値(Vpp)が4700Vとなるようにし、堆積工程とエッチング工程とが同時に進行するようにして従来の一般的なエッチング方法を実施した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表4より、参考例1~4においては、第1の処理ガス中におけるフッ素原子及び炭素原子の比率(質量基準)とエッチング速度及びエッチング選択比との間に関係性はみられない。一方、右側欄に示したように、ALE法にてCガスを用いれば、高いエッチング選択比と早い加工速度とを両立することができる。
 ところで、一般にフルオロカーボンを処理ガスとして用いたプラズマエッチングにおいてフォトレジストは、フルオロカーボンプラズマ中で生成したフッ素ラジカルやフォトレジスト上に堆積したフルオロカーボン膜中のフッ素原子と、フォトレジストに含まれる炭素原子が反応し、揮発性のCFが生成し系外に排気されることでエッチングが進行する。一方で単結晶シリコンやポリシリコンも、全く同じ原理で揮発性のSiFが生成し、エッチングが進行する。即ち本発明においてフォトレジストに対して高いエッチング選択比を得ることができれば、シリコンに対しても同様に高いエッチング選択比を得ることが期待できる。
 以上、本発明について、例示的な実施形態及び実施例に基づいて説明してきた。しかしながら、本発明にかかるプラズマエッチング方法は、特定の装置構成及びエッチング条件によって制限されるものではない。本発明のプラズマエッチング方法は、ALE法に従うプラズマエッチング方法において、処理ガス中に含まれるフッ素原子及び炭素原子の質量比を特定の範囲内とすることで、加工時間の短縮と、エッチング選択比の向上を実現できる限りにおいて、あらゆる装置構成及びエッチング条件にて採用することができる。
 本発明によれば、加工時間の短縮と、エッチング選択比の向上とを両立可能なALE法によるプラズマエッチング方法を提供することができる。

Claims (8)

  1.  処理容器内に被処理基板を載置する工程と、
     前記処理容器内に、フッ素原子及び/又は炭素原子を含有する少なくとも一種のガスを含む第1の処理ガス、並びに、希ガスを主成分とし、フッ素原子及び/又は炭素原子を含有するガスを含みうる、前記第1の処理ガスとは異なる第2の処理ガスを供給し、前記処理容器内を前記第1及び第2の処理ガスを含む雰囲気とし、前記被処理基板の少なくとも片面上に薄膜を形成させる堆積工程と、
     前記処理容器内を、少なくとも前記第2の処理ガスを含む雰囲気とし、前記薄膜を形成した前記被処理基板を、プラズマエッチングするエッチング工程と、
    を含み、
     前記堆積工程と前記エッチング工程とを切り替えて交互に実施し、且つ
     前記堆積工程において、前記処理容器内の雰囲気が、前記第1及び第2の処理ガスを含む場合に、前記雰囲気中に質量基準でフッ素原子が炭素原子の2.4倍以上3.1倍以下含有されるようにすることを含む、
    プラズマエッチング方法。
  2.  前記第1の処理ガスが、少なくとも一種のフルオロカーボンガスを含有する、請求項1に記載のプラズマエッチング方法。
  3.  前記少なくとも一種のフルオロカーボンガスが、オクタフルオロシクロペンテンガスである、請求項2に記載のプラズマエッチング方法。
  4.  前記堆積工程から前記エッチング工程への切り替えにあたり、前記処理容器内への前記第1の処理ガスの供給を停止する、請求項1~3の何れかに記載のプラズマエッチング方法。
  5.  前記エッチング工程において、前記処理容器内の、前記被処理基板の前記薄膜を形成しない面側の領域に対して印加する電圧を前記堆積工程にて同領域に対して印加する電圧より増加させる、請求項1~4の何れかに記載のプラズマエッチング方法。
  6.  前記堆積工程にて、前記処理容器内の雰囲気が、前記第1及び第2の処理ガスを含む場合、前記雰囲気中における前記希ガスの比率が、前記雰囲気中における前記フッ素原子及び/又は炭素原子を含有するガスの総量100体積部に対して、10体積部以上10000体積部以下となるようにすることを含む、請求項1~5の何れかに記載のプラズマエッチング方法。
  7.  前記エッチング工程において、前記被処理基板の前記薄膜を形成しない面側の領域に対して印加する電圧のピークツーピーク値が、1600V以下である、請求項1~6の何れかに記載のプラズマエッチング方法。
  8.  前記被処理基板は、非加工対象膜及び加工対象膜を備え、前記非加工対象膜に対する前記加工対象膜のエッチング選択比が3.5以上である、請求項1~7の何れかに記載のプラズマエッチング方法。
     
PCT/JP2017/009332 2016-03-17 2017-03-08 プラズマエッチング方法 WO2017159512A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018505865A JPWO2017159512A1 (ja) 2016-03-17 2017-03-08 プラズマエッチング方法
CN201780015381.2A CN108780748B (zh) 2016-03-17 2017-03-08 等离子体蚀刻方法
EP17766513.0A EP3432346A4 (en) 2016-03-17 2017-03-08 plasma etching
KR1020187025390A KR102411668B1 (ko) 2016-03-17 2017-03-08 플라즈마 에칭 방법
US16/081,939 US10629447B2 (en) 2016-03-17 2017-03-08 Plasma etching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016054317 2016-03-17
JP2016-054317 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159512A1 true WO2017159512A1 (ja) 2017-09-21

Family

ID=59851953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009332 WO2017159512A1 (ja) 2016-03-17 2017-03-08 プラズマエッチング方法

Country Status (7)

Country Link
US (1) US10629447B2 (ja)
EP (1) EP3432346A4 (ja)
JP (1) JPWO2017159512A1 (ja)
KR (1) KR102411668B1 (ja)
CN (1) CN108780748B (ja)
TW (1) TWI719160B (ja)
WO (1) WO2017159512A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003483A1 (ja) * 2018-01-31 2019-01-03 株式会社日立ハイテクノロジーズ プラズマ処理方法、及びプラズマ処理装置
WO2020250751A1 (ja) * 2019-06-13 2020-12-17 東京エレクトロン株式会社 エッチング方法、及びエッチング装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6874778B2 (ja) * 2019-01-09 2021-05-19 ダイキン工業株式会社 シクロブタンの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219153A (ja) * 2009-03-13 2010-09-30 Fujifilm Corp 圧電素子及びその製造方法並びにインクジェットヘッド
JP2013510445A (ja) * 2009-11-09 2013-03-21 スリーエム イノベイティブ プロパティズ カンパニー 半導体の異方性エッチングプロセス
JP2014522104A (ja) 2011-07-20 2014-08-28 ラム リサーチ コーポレーション 不活性ガスから生成される準安定ガスを使用する原子層エッチング
JP2015032597A (ja) * 2013-07-31 2015-02-16 日本ゼオン株式会社 プラズマエッチング方法
JP2016027594A (ja) * 2014-07-01 2016-02-18 東京エレクトロン株式会社 被処理体を処理する方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241045C1 (de) 1992-12-05 1994-05-26 Bosch Gmbh Robert Verfahren zum anisotropen Ätzen von Silicium
DE10246063A1 (de) 2002-10-02 2004-04-22 Robert Bosch Gmbh Verfahren zum anisotropen Ätzen eines Siliziumsubstrates
JP2007012819A (ja) 2005-06-29 2007-01-18 Toshiba Corp ドライエッチング方法
US20110027999A1 (en) 2006-08-16 2011-02-03 Freescale Semiconductor, Inc. Etch method in the manufacture of an integrated circuit
JP4922718B2 (ja) * 2006-10-04 2012-04-25 株式会社日立ハイテクノロジーズ 絶縁膜ドライエッチング方法
US8524112B2 (en) 2007-12-21 2013-09-03 Solvay Fluor Gmbh Process for the production of microelectromechanical systems
US20090191711A1 (en) * 2008-01-30 2009-07-30 Ying Rui Hardmask open process with enhanced cd space shrink and reduction
JP2009188257A (ja) * 2008-02-07 2009-08-20 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置並びに記憶媒体
US8691698B2 (en) * 2012-02-08 2014-04-08 Lam Research Corporation Controlled gas mixing for smooth sidewall rapid alternating etch process
JP6141855B2 (ja) * 2012-09-18 2017-06-07 東京エレクトロン株式会社 プラズマエッチング方法及びプラズマエッチング装置
JP6207947B2 (ja) * 2013-09-24 2017-10-04 東京エレクトロン株式会社 被処理体をプラズマ処理する方法
JP6315809B2 (ja) * 2014-08-28 2018-04-25 東京エレクトロン株式会社 エッチング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219153A (ja) * 2009-03-13 2010-09-30 Fujifilm Corp 圧電素子及びその製造方法並びにインクジェットヘッド
JP2013510445A (ja) * 2009-11-09 2013-03-21 スリーエム イノベイティブ プロパティズ カンパニー 半導体の異方性エッチングプロセス
JP2014522104A (ja) 2011-07-20 2014-08-28 ラム リサーチ コーポレーション 不活性ガスから生成される準安定ガスを使用する原子層エッチング
JP2015032597A (ja) * 2013-07-31 2015-02-16 日本ゼオン株式会社 プラズマエッチング方法
JP2016027594A (ja) * 2014-07-01 2016-02-18 東京エレクトロン株式会社 被処理体を処理する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432346A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003483A1 (ja) * 2018-01-31 2019-01-03 株式会社日立ハイテクノロジーズ プラズマ処理方法、及びプラズマ処理装置
JPWO2019003483A1 (ja) * 2018-01-31 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理方法、及びプラズマ処理装置
US10971369B2 (en) 2018-01-31 2021-04-06 Hitachi High-Tech Corporation Plasma processing method and plasma processing apparatus
WO2020250751A1 (ja) * 2019-06-13 2020-12-17 東京エレクトロン株式会社 エッチング方法、及びエッチング装置
JPWO2020250751A1 (ja) * 2019-06-13 2020-12-17
JP7160291B2 (ja) 2019-06-13 2022-10-25 東京エレクトロン株式会社 エッチング方法、及びエッチング装置

Also Published As

Publication number Publication date
CN108780748B (zh) 2023-02-17
JPWO2017159512A1 (ja) 2019-01-24
TWI719160B (zh) 2021-02-21
KR20180123668A (ko) 2018-11-19
EP3432346A4 (en) 2019-10-16
KR102411668B1 (ko) 2022-06-20
EP3432346A1 (en) 2019-01-23
US20190096689A1 (en) 2019-03-28
TW201801178A (zh) 2018-01-01
CN108780748A (zh) 2018-11-09
US10629447B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
US11152223B2 (en) Fluorocarbon molecules for high aspect ratio oxide etch
JP6696429B2 (ja) プラズマエッチング方法
WO2017026197A1 (ja) ドライエッチング方法
JP6568822B2 (ja) エッチング方法
JP2012238891A (ja) ドライエッチングガスおよびドライエッチング方法
KR100874813B1 (ko) 드라이 에칭 가스 및 드라이 에칭 방법
US11251051B2 (en) Dry etching method
WO2017159512A1 (ja) プラズマエッチング方法
CN110832623B (zh) 蚀刻方法和等离子体蚀刻材料
WO2017159511A1 (ja) プラズマエッチング方法
WO2018037799A1 (ja) プラズマエッチング方法
CN111696863B (zh) 硅介质材料刻蚀方法
JP2017050413A (ja) プラズマエッチング方法
JP6569578B2 (ja) プラズマエッチング方法
US10497580B2 (en) Plasma etching method
JP2018032667A (ja) プラズマエッチング方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505865

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187025390

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766513

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766513

Country of ref document: EP

Effective date: 20181017

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766513

Country of ref document: EP

Kind code of ref document: A1