WO2017158943A1 - パターニング装置及び有機エレクトロルミネッセンス素子の製造方法 - Google Patents

パターニング装置及び有機エレクトロルミネッセンス素子の製造方法 Download PDF

Info

Publication number
WO2017158943A1
WO2017158943A1 PCT/JP2016/085369 JP2016085369W WO2017158943A1 WO 2017158943 A1 WO2017158943 A1 WO 2017158943A1 JP 2016085369 W JP2016085369 W JP 2016085369W WO 2017158943 A1 WO2017158943 A1 WO 2017158943A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mask
organic
light irradiation
irradiance
Prior art date
Application number
PCT/JP2016/085369
Other languages
English (en)
French (fr)
Inventor
新藤 博之
尚裕 奥村
森川 雅弘
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018505246A priority Critical patent/JPWO2017158943A1/ja
Publication of WO2017158943A1 publication Critical patent/WO2017158943A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure

Definitions

  • the present invention relates to a patterning apparatus and a method for manufacturing an organic electroluminescence element. More specifically, the present invention relates to a patterning apparatus and the like that can significantly reduce the patterning time of an organic electroluminescence element.
  • organic electroluminescence (hereinafter also referred to as “organic EL”) element is irradiated with ultraviolet rays (UV), the luminous efficiency of the irradiated region is reduced and patterning can be performed (for example, Patent Document 1). reference.).
  • This phenomenon has reciprocity failure characteristics, and it is known that the higher the irradiation power density (irradiance) is, the faster the reaction is, even with the same integrated light quantity. Therefore, when patterning an organic EL element, the patterning time can be significantly shortened when the irradiance is set high, and as a result, the tact time can be shortened and productivity can be improved.
  • the irradiation light be as close to parallel light as possible. Therefore, a light irradiation device having high irradiance with substantially parallel light is desired.
  • the irradiation light is substantially parallel light (about a collimation half angle of about 2 °) because it is a surface light source. ) Requires a large number of beam shaping optical components and a large amount of light vignetting occurs, making it difficult to increase the irradiance as shown in Patent Document 2.
  • Patent Document 3 describes a very high irradiance of 6 W / cm 2 , but since the collimation half angle is not controlled, it is estimated that the collimation half angle is about 80 ° of the LED radiation angle and can be used for patterning. There was no problem.
  • Patent Document 4 describes an example in which the collimation half angle is 14 ° and the irradiance is increased to 0.6 W / cm 2, but the irradiance is still insufficient for patterning the organic EL element. Patent Document 4 does not describe a technique for further increasing the irradiance.
  • the present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide a patterning apparatus and a method for manufacturing an organic electroluminescent element that can significantly reduce the patterning time of the organic electroluminescent element. .
  • the present inventor can achieve a high irradiance of 4 W / cm 2 or more if the collimation half angle is allowed to 45 ° in the process of studying the cause of the above-mentioned problems.
  • the present inventors have found that a patterning apparatus and a method for manufacturing an organic electroluminescence element that can significantly reduce the patterning time of the luminescence element can be provided. That is, the said subject which concerns on this invention is solved by the following means.
  • a patterning apparatus for forming a light emission pattern by irradiating light through a mask to an organic electroluminescence element, A light irradiating unit that irradiates light having a wavelength of 100 to 410 nm with an irradiance of 1 W / cm 2 or more; The irradiance of light within the wavelength range in the light irradiation area is within a range of ⁇ 10% with respect to the average value of the irradiance in the light irradiation area, The patterning apparatus according to claim 1, wherein a collimation half angle of light within the wavelength range in the light irradiation area is 45 ° or less.
  • a pattern forming body mounting table on which the organic electroluminescence element is mounted 2.
  • the patterned object mounting table is as follows. A cooling water is introduced from one side of the pattern forming body mounting table, and a plurality of water channels are provided to flow the cooling water in one direction through the pattern forming body mounting table and discharge the cooling water to the other.
  • the patterning device according to item.
  • the irradiated light be as close to parallel light as possible, but it is difficult to make parallel light while increasing the irradiance.
  • the light emission pattern of the organic EL element is visually appealing, and submicron resolution is not required as in a semiconductor. Therefore, the present inventor can form a light emission pattern with a sufficiently high resolution while achieving a high irradiance of 2 W / cm 2 or more by shifting the irradiation light from the parallel light and allowing the collimation half angle to 30 °. I thought.
  • Schematic diagram of organic EL sheet Schematic diagram of mask Schematic diagram of an example of light irradiation area
  • Schematic which shows an example of the cooling function of a to-be-patterned body mounting base 1 is an overall configuration diagram of an example of a patterning apparatus of the present invention (X-axis direction perspective view).
  • FIG. 1 is an overall configuration diagram of an example of a patterning apparatus of the present invention (Y-axis direction perspective view). Operation flow diagram of an example of patterning method of the present invention
  • FIG. 1 is an overall configuration diagram of an example of a patterning apparatus of the present invention (Y-axis direction perspective view).
  • Operation flow diagram of an example of patterning method of the present invention Cross-sectional view of an example of an organic EL element Explanatory drawing which shows irradiance distribution in the edge part vicinity of a mask light shielding film
  • a graph showing the irradiance distribution near the edge of the mask light-shielding film The graph which shows the characteristic with respect to the integrated irradiation time of the luminance ratio of the organic EL element which concerns on an Example
  • the patterning apparatus of the present invention is a patterning apparatus that forms a light emission pattern by irradiating light through a mask to an organic electroluminescence element, and irradiances light having a wavelength in the range of 100 to 410 nm to 1 W / cm 2 or more.
  • the light irradiance of irradiating light in the light irradiation area within the range of the wavelength in the light irradiation area is within ⁇ 10% of the average value of the irradiance in the light irradiation area,
  • the collimation half angle of the light within the wavelength range in the light irradiation area is 45 ° or less.
  • a pattern forming body mounting table on which the organic electroluminescence element is mounted is provided, and the pattern forming body mounting table has a cooling function. Thereby, the influence of the heat accompanying the case where it is set as high irradiance can be reduced.
  • the pattern forming body mounting table introduces cooling water from one of the pattern forming body mounting tables, and the cooling water is unidirectionally passed through the pattern forming body mounting table. It is preferable to provide a plurality of water channels that flow and discharge to the other. Thereby, the influence of the heat accompanying the case where it is set as high irradiance can be reduced.
  • a mask holding mechanism for holding the mask by an elastic force of an elastic body.
  • the present invention it is preferable to provide a gas flow generation unit that blows gas onto the mask. Thereby, the influence of the heat accompanying the case where it is set as high irradiance can be reduced.
  • the patterning apparatus of the present invention can be suitably employed in a method for manufacturing an organic electroluminescent element that manufactures an organic electroluminescent element having a light emitting pattern.
  • the present invention can be suitably used in a method for manufacturing an organic electroluminescence device, wherein the edge portion of the light emission pattern has a luminance distribution within a range of 10 to 300 ⁇ m.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the patterning apparatus of the present invention is a patterning apparatus that forms a light emission pattern by irradiating light through a mask to an organic electroluminescence element, and irradiances light having a wavelength in the range of 100 to 410 nm to 1 W / cm 2 or more.
  • the light irradiance of irradiating light in the light irradiation area within the range of the wavelength in the light irradiation area is within ⁇ 10% of the average value of the irradiance in the light irradiation area,
  • the collimation half angle of the light within the wavelength range in the light irradiation area is 45 ° or less.
  • FIG. 1A is a schematic diagram of an organic EL sheet.
  • a plurality of organic EL elements 12 are formed on the organic EL sheet 11, and organic EL sheet alignment marks 13 are formed at four corners. This alignment mark is used for alignment of a film formation mask when forming an electrode or an organic layer in the manufacture of an organic EL element.
  • FIG. 1B is a schematic diagram of a mask.
  • a predetermined light irradiation pattern 15 (character A in the example in the figure) is formed on the mask 14 at a position corresponding to each organic EL element 12, and a mask alignment mark corresponding to the position of the alignment mark 13 on the organic EL sheet 11 is formed. 16 is formed.
  • the blackened portion shields the ultraviolet rays by the light shielding film.
  • the organic EL element 12 is irradiated with ultraviolet light in a light emitting area other than the letter A and does not emit light, and only the letter A emits light as the organic EL element 12.
  • the mask base material is preferably quartz glass or heat-resistant glass (for example, Tempax Float (registered trademark) manufactured by Schott), and the light-shielding film is preferably a chromium film or a chromium oxide film having a low ultraviolet absorption rate.
  • the organic EL sheet 11 is cut for each organic EL element 12 after the patterning is completed. Each individual organic EL element thus cut is used to be individually loaded into a display device or the like.
  • FIG. 2 is a schematic diagram showing a light irradiation area.
  • the dotted line portion in the figure is a plurality of light irradiation areas, and in the case of FIG. 2, the case where it is divided into four light irradiation areas (P1 to P4) is illustrated.
  • a case where light irradiation is performed by rotating around these four light irradiation areas with one pulse light irradiation will be exemplified. First, one pulse of light is irradiated in the light irradiation area P1, and then one pulse of light is irradiated in the light irradiation area P2. Subsequently, the light irradiation areas P3 and P4 are each irradiated with one pulse light.
  • the one-pulse light irradiation is sequentially repeated such that the light irradiation area P1 is again irradiated with one pulse light.
  • a waiting time can be provided before the light irradiation area P1 is again irradiated with light.
  • the light irradiation area P1 is cooled by this waiting time. In this case, heat accumulation in the mask and the organic EL sheet can be suppressed.
  • the number of light irradiation areas to be divided is not particularly limited, but is preferably 9 or less, and preferably 4 or less from the viewpoint of shortening the tact time.
  • a circular pattern of the light irradiation area for example, a case of repeating (light irradiation area P1 ⁇ light irradiation area P2 ⁇ light irradiation area P1 ⁇ light irradiation area P2) can be cited, but light is emitted again in at least one light irradiation area. Any irradiation pattern may be used as long as irradiation is performed. For example, there may be a light irradiation area where no additional light irradiation is performed, such as (light irradiation area P1 ⁇ light irradiation area P2 ⁇ light irradiation area P1).
  • the order of light irradiation may be different from the order of light irradiation in the first round.
  • the ultraviolet absorption rate of an organic layer has distribution within a sheet
  • a light irradiation unit including a plurality of light sources, a step moving unit that changes a relative position between the position of the light irradiation unit and the pattern forming body mounting table, and an integrated light amount in each of the plurality of light irradiation areas,
  • a control unit that controls the light irradiation unit so as to be a predetermined amount in the light irradiation area of the plurality of light irradiation areas, wherein the step moving unit is configured to emit pulsed light in at least one of the plurality of light irradiation areas (A).
  • the light irradiation part or the pattern forming body is placed at a position where pulse light irradiation is performed in at least one light irradiation area (B) of the light irradiation areas other than the light irradiation area (A). , And after irradiating the light irradiation area (B) with the pulsed light, the light irradiating part or the pattern forming body mounting table is moved to a position where the light irradiation area (A) is again irradiated with the pulsed light.
  • a patterning device for an organic EL element which is a step moving unit is preferable.
  • the patterning device 31 is a mask for irradiating the organic EL sheet 11 by patterning the light irradiation unit 32 including the light source unit 300, the cover 39, and the gas flow generation unit 40, and the irradiation light 38 from the light irradiation unit 32. 14 and a pattern forming body mounting table 43.
  • the light source unit 300 includes a light source 35 that emits ultraviolet light (for example, a UV-LED having a wavelength of 365 nm or 385 nm) and a light source substrate 34 in which the light source 35 is arranged two-dimensionally (planar). A driving current is supplied to 35.
  • the light source unit 300 further includes a heat radiating plate 33 that releases heat generated by the light source 35 to the outside, and prevents a decrease in light emission efficiency of the light source 35. More preferably, a cooling pipe is provided inside the heat radiating plate 33 and the cooling water is circulated to cool the light source 35 with water.
  • the divergent light emitted from the light source unit 300 is used as the irradiation light 38 shaped into a light beam having a predetermined divergence angle by the lens array 37.
  • the lens array 37 is fixed to the light source unit 300 by the lens array support 36.
  • the irradiation light 38 is confined by a cover 39 whose inner surface is a reflection surface to prevent the light amount from decreasing, and the organic EL sheet 11 is irradiated with light with a uniform light amount through the mask 14 to form a light emission pattern.
  • the light emitted from the light source 35 is preferably ultraviolet light that has a fast deactivation reaction rate of the organic functional layer due to light irradiation from the viewpoint of reducing the tact time.
  • the emitted light is preferably pulsed light.
  • the pulsed light irradiation performed in one light irradiation step is irradiation with one pulsed light. It is preferable that If necessary, multi-pulse light irradiation may be performed with a turn-off time between a plurality of pulse light irradiations.
  • the gap 42 between the lower end of the cover 39 and the mask 14 should be as narrow as possible, and preferably about 5 mm. If it is this space
  • the light source 35 LED is irradiated with pulsed light by being controlled by a light source control unit, which will be described later, to be turned on and off, and to have an irradiation output and irradiation time at the time of lighting.
  • the organic EL sheet 11 is placed on the pattern forming body placing table 43, and the mask 14 is adjusted to a predetermined relative position with the organic EL sheet 11 and placed on the sheet.
  • the organic EL sheet 11 is preferably fixed by adsorption.
  • the pattern forming body mounting table 43 shown in FIG. 3 has a water channel 44b provided therein as a cooling function to be described later, and cools heat generated in the mask 14 and the organic EL sheet by ultraviolet irradiation.
  • a gas blows out from the gas flow generation unit 40 to cool the surface of the mask 14.
  • the light irradiation unit 32 irradiates the first light irradiation area P ⁇ b> 1 of the organic EL sheet 11 with the pulsed light
  • the light irradiation unit 32 and the pattern forming body mounting table 43 move stepwise. Then, the next light irradiation area P2 is irradiated with pulsed light.
  • Such a patterning device 31 is preferable because it can prevent deformation of the mask 14 due to heat and deterioration of performance (for example, color balance) due to heat of the organic EL sheet 11, and can perform accurate patterning. Further, the time tact for patterning can be shortened, and the productivity can be further improved.
  • a pattern forming body mounting table for mounting an organic EL sheet provided with a plurality of organic EL elements, and a plurality of light sources for irradiating a plurality of light irradiation areas of the organic EL sheet
  • an organic EL sheet patterning device comprising a control unit for controlling the plurality of light sources, wherein the positions of the plurality of light sources are fixed, and the plurality of light irradiation areas are any of the plurality of light sources.
  • the control unit controls a plurality of light sources to irradiate pulse light in at least one light irradiation area (A), and then, the light irradiation area other than the light irradiation area (A). After irradiating pulsed light in at least one light irradiation area (B), irradiating pulsed light in the light irradiation area (B), irradiating the light irradiation area (A) again with pulsed light. Align, accumulated light quantity of a plurality of light irradiation area is preferably a respective patterning apparatus of the organic EL element and controls the light source so that the predetermined amount in the transmission area.
  • FIG. 4 is a perspective view of another example (second embodiment) of the light irradiation unit in the patterning apparatus of the present invention.
  • a plurality of light sources 35 (LEDs) more than the number of light sources in the first embodiment are two-dimensionally arranged, and an irradiation area of light emitted from the entire light irradiation unit 32 is the organic EL element 12 in the organic EL sheet 11. It is an area that can cover the entire area where the. That is, when all the light sources 35 are turned on, the light irradiation area covers all the light irradiation areas P1, P2, P3, and P4 in FIG.
  • the light sources 35 can be controlled for each group.
  • the first light irradiation step only the LED light sources of the first group are turned on, and the irradiation light 38 that irradiates the light irradiation area P1 in FIG. 2 is emitted. . Thereafter, in the next light irradiation step, irradiation light 38 for irradiating the light irradiation area P2 in FIG. 2 is emitted. In this way, by turning on each group and irradiating around light, it is possible to eliminate the movement time of the light irradiation unit in the first embodiment of the patterning apparatus, and to reduce the tact time. In the example shown in FIG.
  • the light sources 35 in one light irradiation unit 32 are sequentially turned on, but a plurality of (for example, four) light irradiation units 32 in the first embodiment of the patterning device described above are arranged, Each light irradiation unit 32 may be caused to emit light sequentially in accordance with light irradiation in each light irradiation area (P1 to P4).
  • a mask has a role which changes the light quantity irradiated to an organic EL element.
  • the mask has a two-layer configuration (not shown) of a glass substrate and a light shielding film, and is mounted on the mask holding mechanism 200 so that the light shielding film is on the mask frame 202 side.
  • a mask having a negative pattern on a glass substrate can be prepared using a known material that can change the amount of transmitted UV light, but the UV absorption rate is particularly compared to a quartz substrate with a low linear expansion coefficient.
  • a low-chromium light-shielding film provided with a pattern is preferable in that thermal deformation can be suppressed.
  • the “pattern” means a design (pattern or pattern in the figure), characters, images, etc. displayed by the organic EL element. “Patterning” refers to providing these pattern display functions.
  • the “light emission pattern” refers to light emitted from an organic EL element that emits light with varying light emission intensity (luminance) depending on the position of the light emitting surface, based on a predetermined design (pattern or pattern in the figure), characters, images, etc. A source having a function of displaying a predetermined design (design or pattern in the figure), characters, images, etc. formed (applied) in advance on the organic EL element to emit light.
  • the organic EL sheet is placed on a pattern forming body placing table having a cooling function, the mask is positioned at a predetermined relative position with the organic EL element, and is placed in close contact with the element. It is preferable. This is because the cooling effect of the mask light-shielding film serving as a heat source can be enhanced by light irradiation. Specifically, it is preferable that the mask light-shielding film is in close contact with the organic EL element.
  • Glass substrate As a glass substrate, it does not specifically limit as a raw material, for example, the well-known glass raw material used for optics and a board
  • substrate can be used. Specifically, glass ceramics such as aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, crystallized glass, phosphate glass or lanthanum glass Etc.
  • glass ceramics such as aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, crystallized glass, phosphate glass or lanthanum glass Etc.
  • Quartz glass or heat-resistant glass can be preferably used.
  • the thickness of the mask is not particularly limited, but a mask having a thickness of 3 to 10 mm can be used.
  • the patterning apparatus of the present invention preferably includes a mask holding mechanism that holds the mask by an elastic force of an elastic body. Thereby, even if a mask expand
  • FIG. 5 is a schematic view of the mask holding mechanism and the mask as viewed from the light irradiation unit side.
  • the mask holding mechanism 200 according to the present invention includes an elastic body 204 provided on each side of a rectangular mask frame 202 having an opening at the center and disposed opposite to each other. And fixing means 206 for fixing the body 204.
  • the elastic body 204 is placed on the mask frame 202 and presses and fixes the mask 14 from the side by making surface contact with the mask 14.
  • the fixing means 206 is fixed to the mask frame 202.
  • the elastic body 204 is fixed in contact with the fixing means 206 at the surface opposite to the surface in contact with the mask 14 and the upper surface of the elastic body 204.
  • the mask 14 is disposed on the mask frame 202 so as to contact each elastic body 204.
  • the elastic body 204 is preferably fixed in surface contact with the mask 14.
  • the shape of the elastic body 204 is not particularly limited.
  • the elastic body 204 when the mask is expanded by light irradiation, the elastic body 204 is a spherical viscoelastic body that presses and fixes the mask by point contact or surface contact. Also good. By fixing with the elastic body, it is possible to prevent the mask from cracking starting from the contact portion.
  • the mask holding mechanism 200 can hold the mask 14 with a predetermined pressure, it can be a movable mask holding mechanism with an arbitrary side of the mask frame 202 as a rotation axis. .
  • the mask can be swung to be retracted from the organic EL element, and the organic EL element or the like to be patterned can be easily carried in and out.
  • the elastic body 204 (and the fixing means 206) are arranged to face each side of the mask frame 202 in two or more pairs.
  • the number of installed elastic bodies 204 can be appropriately adjusted according to the size of the mask 14, that is, the length of each side of the mask frame 202.
  • the mask holding mechanism 200 can be movable as described above, at least a pair of mask detachment prevention restricting plates 208 are disposed to face each other on a pair of opposing sides of the mask frame 202. It is preferable to make it. At this time, the rotation axis is one side of the mask frame 202.
  • Mask frame As a material of the mask frame according to the present invention, a conventionally known material can be used. For example, aluminum can be used.
  • the material constituting the elastic body is not particularly limited, but is preferably a viscoelastic body.
  • fluorine rubber chlorobrene rubber, nitrile rubber, ethylene
  • examples of the rubber include propylene rubber, silicone rubber, butyl rubber, and urethane rubber.
  • fluororubber is preferable because of its high durability against ultraviolet rays.
  • the hardness of the viscoelastic body is preferably in the range of A50 to A80. If the hardness of the viscoelastic body is A50 or more, the thermal expansion of the mask can be effectively prevented, and if it is A80 or less, the mask holding mechanism can be prevented from being displaced by its own weight when the mask holding mechanism is movable. Can do.
  • the hardness of the viscoelastic body is a value measured according to JIS K 6253.
  • the contact area between the viscoelastic body and the mask is preferably 104.5 mm 2 or more, whereby the mask can be stably fixed.
  • the pressure with respect to the mask of the viscoelastic body in the said contact part exists in the range of 430000 +/- 56000N / m ⁇ 2 >. If the pressure is within the range, thermal expansion and displacement of the mask can be prevented.
  • the amount of deviation in the plane direction of the mask is preferably 50 ⁇ m or less.
  • the fixing means is fixed to the mask frame with screws or the like.
  • the material of the fixing means is not particularly limited, and for example, aluminum can be used.
  • the light irradiation unit irradiates light having a wavelength in the range of 100 to 410 nm (hereinafter also referred to as “ultraviolet rays” or “irradiation light”) with an irradiance of 1 W / cm 2 or more.
  • a light source that emits ultraviolet rays is attached to the light irradiation unit.
  • the light source is not particularly limited as long as it is a light source that emits a desired amount of ultraviolet light.
  • Ultraviolet light in the wavelength region can be used.
  • the integrated dose for patterning depends on the layer structure, film thickness, size, and the like of the organic EL element, but irradiation with an integrated light amount of 200 to 5000 J / cm 2 is highly productive, This is preferable from the viewpoint of accurate patterning. Further, it is preferable that one pulse of ultraviolet irradiation time is in the range of 1 to 300 seconds.
  • the light irradiation unit will be further described with a specific example.
  • the light irradiation unit for example, UV-LEDs having a wavelength of 385 nm are used as the light source, these are arranged two-dimensionally, and the diverging light emitted from the LEDs is shaped to have a predetermined collimation half angle by the lens array.
  • the light emitted from each lens of the lens array is overlapped on the irradiation surface, and as a result, a wide irradiation area can be obtained and a uniform illuminance distribution can be obtained.
  • LED turns on and off the irradiation output at the time of lighting and the irradiation time are controlled by a controller (not shown), and emits pulsed light.
  • a controller not shown
  • the light irradiation unit irradiates light having a wavelength in the range of 100 to 410 nm with an irradiance of 1 W / cm 2 or more.
  • the irradiance in order to perform high-speed patterning with a high irradiance, the irradiance must be 2 W / cm 2 or more.
  • 4 W / cm 2 or more is more preferable.
  • a light irradiation area of 5000 cm 2 or more and an irradiance of 4 W / cm 2 are preferable in that the tact time of patterning can be greatly shortened and the number of pick-ups can be increased. As a result, productivity can be remarkably improved.
  • the irradiance of light having a wavelength in the range of 100 to 410 nm in the light irradiation area is relative to the average value of the irradiance in the light irradiation area (desired region where light is actually irradiated). It is within the range of ⁇ 10%.
  • the irradiance of light within the wavelength range in the light irradiation area (hereinafter also simply referred to as “irradiance”) is ⁇ 10% of the average value of the irradiance in the light irradiation area. Is within the range.
  • the irradiance can be measured with a known measuring instrument. For example, when the wavelength range is 300 to 410 nm, the UV integrated light meter “C9536-02” and the sensor head “H9958-02” (manufactured by Hamamatsu Photonics) Can be measured by measuring at intervals of 1 to 10 mm in the vertical and horizontal directions of the light irradiation area. From the irradiance distribution in the light irradiation area measured as described above, the average of the irradiance of light within the wavelength range according to the present invention in the light irradiation area can be calculated.
  • the collimation half angle of the light within the range of 100 to 410 nm in the light irradiation area is 45 ° or less.
  • the collimation half-angle refers to the maximum angle ⁇ among the angles ⁇ formed by the perpendicular R to the mask and the irradiation light L shown in FIG.
  • the collimation half angle can be adjusted by shaping divergent light emitted from the light source unit with a lens or the like.
  • a lens array 37 as shown in FIG. 3 can be used, but is not limited to this.
  • a compound parabola shown in FIG. A condensing mirror 37a such as a surface concentrator may be used.
  • a compound parabolic concentrator is preferable because the component cost can be reduced.
  • a rod-shaped cylindrical lens 37b or a rod lens as shown in FIGS. 7A and 7B is arranged in each column of the LED array, and then a rod-shaped cylindrical lens or a rod lens is arranged in an orthogonal direction to collimate in a two-dimensional direction. Angle shaping may be performed.
  • FIG. 7A and 7B are schematic views showing an example of the arrangement of the rod-shaped cylindrical lenses
  • FIG. 7A is a schematic view showing a cross section orthogonal to the X direction
  • FIG. 7B is a cross section orthogonal to the Y direction.
  • FIG. This is preferable because it is sufficient to adjust the optical axis in only one direction, and the adjustment man-hour can be suppressed.
  • the method for measuring the collimation half angle is not particularly limited, and a known method can be used. An example of a specific measurement method is shown below.
  • the pattern forming body mounting table is retracted from the light irradiation unit, the pinhole is disposed at the same height as the surface on which the organic EL sheet of the pattern forming body mounting table is mounted, and irradiation light is irradiated to the pinhole To do.
  • the light beam that has passed through the pinhole is observed with a CCD camera, and the radius r of the light beam is measured.
  • the collimation half angle can be calculated as tan ⁇ 1 (r / D).
  • the diameter of the pinhole is preferably ⁇ 0.5 mm or less.
  • the light irradiation area refers to a desired region where light is actually irradiated in the patterned body (organic EL sheet) according to the present invention.
  • the area of the light irradiation area is not particularly limited, but is preferably 5000 cm 2 or more. The reason for this is as follows.
  • the width of the roll is generally about 1 m.
  • this is cut into a length of about 600 mm in the roll winding direction to form a sheet having a plurality of organic EL elements in a planar shape, and the plurality of organic EL elements are collectively irradiated with light. It is preferable to do.
  • a plurality of organic EL elements are arranged in an area of 90 cm ⁇ 54 cm on the inner side.
  • light can be irradiated to one organic EL sheet within a total of 9 steps and 10 steps of 3 steps in the x direction and 3 steps in the y direction.
  • the light irradiation area By setting the light irradiation area in such a large area, light irradiation in the state of the organic EL sheet can be performed, and a plurality of organic EL elements can be patterned at a time, thereby improving the throughput.
  • Such a large-area light irradiation area can be realized, for example, by increasing the number of LEDs and expanding the light emission area of the light source unit.
  • the patterning apparatus of the present invention also has a cooling function. It is preferable. As a result, even if the total amount of light emitted once is very high, heat generation of the light shielding film of the mask can be suppressed.
  • the above-mentioned light irradiation area is planar. Thereby, irradiation can be performed in the form of a sheet on which a plurality of organic EL elements are formed, and throughput can be improved.
  • the patterning apparatus of the present invention preferably includes a pattern forming body mounting table on which the organic electroluminescence element is mounted.
  • the pattern forming body mounting table is not particularly limited as long as it can mount an organic electroluminescence element and does not impair the effects of the present invention, and can adsorb and fix an organic EL sheet. It is preferable.
  • an acrylic ester, methacrylic ester, polybutylene terephthalate, polycarbonate (abbreviation: PC), polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), or the like is used as the substrate of the organic EL element, organic The EL sheet is easily deformed, such as curling.
  • the material of a to-be-patterned body mounting base is not specifically limited. However, when the pattern forming body mounting table has a water channel 44b, which will be described later, the pattern forming body mounting table is a cooling table. Therefore, the material is preferably a light metal with high thermal conductivity. Aluminum can be used.
  • the to-be-patterned body mounting table has a cooling function. Thereby, it is possible to suppress the occurrence of thermal deformation in the mask, and in turn, it is possible to prevent the light irradiation pattern from being shifted and the heat-sensitive organic layer from being damaged by heat and degrading the performance.
  • the cooling function is not particularly limited as long as it can cool the mask, and specific examples include a water cooling method and blowing a gas such as air onto the mask.
  • the patterning apparatus according to the present invention includes a water channel inside the pattern forming body mounting table as a water-cooling cooling function, and introduces cooling water from one of the pattern forming body mounting tables, thereby forming the pattern forming It is preferable to provide a plurality of water channels that allow the cooling water to flow in one direction through the water channel in the body mounting table and to be discharged to the other.
  • the material of the pattern forming body mounting table is preferably one having high thermal conductivity. For example, aluminum can be used.
  • FIG. 8 shows a specific example of the water channel provided inside the pattern forming body mounting table.
  • a plurality of water channels 44b through which cooling water supplied from the water pipe 44a flows are formed in one direction from one side of the pattern forming body mounting table to the other inside the pattern forming body mounting table.
  • Cooling water flows in one direction through this water channel, and cools the heat generated in the mask and the organic EL element by ultraviolet irradiation.
  • the water that has absorbed heat at the pattern forming body mounting table is discharged from the water channel 44c and sent to the chiller unit 45, where heat is exchanged inside the chiller unit 45, and the cooling water whose temperature has been lowered is supplied to the pattern forming body mounting table. Will be supplied again.
  • the cooling water circulates inside the chiller unit and the pattern forming body mounting table.
  • a plurality of chiller units may be used according to the cooling capacity of the chiller.
  • the “chiller” refers to a device that circulates a heat medium and keeps the target part at a constant temperature.
  • the water temperature introduced to the pattern forming body mounting table is preferably 30 ° C. or less as long as the organic EL element and the mask are not condensed. 10 to 20 ° C. is more preferable.
  • the cooling water flowing through the water channel 44b is one-way, the cooling water that has absorbed heat and has risen in temperature can be discharged to the outside of the pattern forming body mounting table at the shortest distance. This is preferable because the cooling effect is higher than when reciprocating in the mounting table.
  • the patterning apparatus preferably includes a gas flow generation unit that blows gas onto the mask.
  • the gas flow generation unit 40 is arranged at a position facing the upper surface of the mask 14 such that a gas such as air is blown in parallel to the mask 14 and toward the center of the mask 14 through the gap WD between the mask 14 and the cover 39. ing.
  • the gas blown by the gas flow generator is not particularly limited as long as it can cool the mask and does not impair the effects of the present invention.
  • air, nitrogen gas, etc. Can be suitably used.
  • the gas flow generating unit 40 Since the gas flow generating unit 40 is disposed at a position facing the upper surface of the mask 14, the gas flow 41 can be blown in parallel with the mask 14, and as a result, the blown gas flow 41 travels on the mask 14 without unevenness and the center of the mask. It is possible to join at the part.
  • spraying in parallel means spraying at an angle within ⁇ 2 ° with respect to the plane of the mask 14.
  • the gas blown to the mask merges at the center of the mask 14. By joining at the center, the mask 14 can be cooled without unevenness. For this reason, it is preferable that the gas flow generation part 40 is arrange
  • the gap 42 between the cover 39 and the gas flow generating unit 40 is not particularly limited as long as the gas is efficiently blown onto the mask, but is preferably within a range of 10 to 200 mm. More preferably, it is in the range of 50 to 100 mm.
  • the length of the gas flow generating part is preferably the same as or larger than the width of the cover on the side to be sprayed.
  • the pair of gas flow generation units 40 is disposed at a symmetrical position with respect to the central portion of the mask 14.
  • the gas flow generation unit 40 includes a slit-shaped or nozzle-shaped sprayed portion. It is more preferable to have a slit-shaped spraying part. Furthermore, it is more preferable that the slit-like spraying part is one that blows gas in a line shape and cools the mask surface. This is because the mask can be cooled uniformly when the gas blown out is in a line shape.
  • a nozzle provided with a nozzle-like spraying part can be used instead of the slit-like spraying part.
  • the number of nozzles should be large, and the number of nozzles may be one at intervals of 5 to 20 mm. preferable.
  • the size of the nozzle diameter can be adjusted as appropriate.
  • a commercial product can be used as the gas flow generating part provided with the slit-like spraying part used for the spraying part.
  • a layered airflow generator 750 type manufactured by Sanwa Enterprise, a blower knife air nozzle manufactured by Spraying System Japan, or the like can be used.
  • the air volume blown from the pair of blowing parts is the same.
  • the air volume can be 1000 to 4000 L / min.
  • the gas flow generator is preferably connected to an air compressor. According to the irradiation light quantity of an ultraviolet-ray, it can adjust to a desired air volume and a wind speed suitably.
  • a known air compressor can be used.
  • the gas to be blown is temperature-adjusted. If necessary, the cooling effect can be enhanced by using a gas whose temperature is adjusted to about 5 to 15 ° C., for example.
  • having such a gas flow generation unit can efficiently cool the organic EL sheet and the mask by blowing gas on the mask, and has high irradiance. Since the influence of the heat accompanying a case can be reduced suitably, it is preferable.
  • the cover has a function of preventing a reduction in the amount of ultraviolet light emitted from the light source unit and irradiating the mask with a uniform amount of light. Therefore, it is preferable that the inner surface is covered with a reflective material. Since the reflective material is resistant to heat and durable, a metal material can be used. For example, aluminum is preferably used because it is lightweight.
  • the height and the bottom area are not particularly limited, and the size of the organic EL sheet that irradiates ultraviolet rays is not limited. It can be set accordingly.
  • the bottom surface of the cover is preferably larger than the entire area where the pattern is formed in the organic EL sheet.
  • a plurality of organic EL elements (for example, 100 organic EL elements in a total of 10 vertical columns and 10 horizontal rows) may be arranged to form one pattern.
  • the plurality of organic EL elements form different patterns, and operate as an organic EL panel that displays one pattern as a whole.
  • the height of the cover can be adjusted as appropriate based on the amount of ultraviolet light and unevenness in the amount of irradiation light. For example, it can be about 0.5 to 5 m.
  • the light irradiation area of the organic EL sheet is divided into a plurality of light irradiation areas and sequentially irradiated with pulsed light, and then the same region is repeatedly irradiated with pulsed light. Irradiation is repeated until the integrated dose is reached. Therefore, it is preferable to control the light irradiation area so as to go around.
  • FIG. 9 is an overall configuration diagram (X-axis direction perspective view) of an example of the patterning apparatus of the present invention (first form of the patterning apparatus).
  • FIG. 10 is an overall configuration diagram (Y-axis direction perspective view) of an example of the patterning apparatus of the present invention (first mode of the patterning apparatus).
  • the pattern forming body mounting table 43 moves in the X-axis direction along the linear guide 64.
  • the screw shaft 66 is rotated by the motor 67, and the rotational movement is converted into the straight movement by the ball screw 65 attached to the bottom surface of the pattern forming body mounting table 43.
  • a reference position is determined by a position sensor (not shown), and the amount of movement is controlled by the number of rotations of the motor 67 therefrom.
  • the light irradiation unit 32 is moved in the Y-axis direction by the linear guide 68.
  • the linear guide 68 of the light irradiation unit is installed on a base on which a support is placed.
  • the operation unit 52 has a built-in memory, and stores light irradiation conditions such as irradiance per light irradiation at each position, light irradiation time, number of times of light irradiation, coordinates of each light irradiation position, and movement order. ing.
  • a desired light irradiation condition is selected by the operation unit 52, and the control unit 53 controls the following mechanisms according to the condition.
  • the control unit 53 includes a mask alignment control unit 54, a movement mechanism control unit 55, a light source control unit 56, and a gas flow control unit 57.
  • the light source control unit 56 controls the irradiance, light irradiation time, number of times of light irradiation, and the like of the light source unit.
  • the movement mechanism control unit 55 controls the positions of the pattern forming body mounting table 43 and the light irradiation unit 32 via the motor 67 and the motor 61.
  • the mask alignment control unit 54 controls the mask alignment mechanism unit 69 in a state where the pattern forming body mounting table 43 is in the retracted position, and the organic EL sheet 11 and the predetermined position on the pattern forming body mounting table 43.
  • the mask 14 is installed.
  • the gas flow control unit 57 controls on / off of the operation of the gas flow generation unit 40.
  • FIG. 11 shows an operation flow of an example of a patterning method according to the present invention (using the first embodiment of the patterning apparatus and the organic EL sheet 11 and the mask 14 shown in FIG. 1 and having four light irradiation areas).
  • FIG. When the power supply 51 of the patterning apparatus is turned on, the operation of the chiller unit 58 is started, and the cooling water continues to circulate in the pattern forming body mounting table 43.
  • step S101 light irradiation conditions are selected. Light irradiation conditions are selected using a touch panel (not shown) of the operation unit 52. Further, the ID number of the organic EL sheet 11 is input.
  • step S102 the process proceeds to step S102.
  • step S ⁇ b> 102 the organic EL sheet 11 is placed on the pattern forming body placement table 43.
  • the pattern forming body mounting table 43 is in a position retracted from the light irradiation unit 32, and the organic EL sheet 11 is mounted and collected at this position.
  • a suction start button is pressed on a touch panel (not shown) of the operation unit 52, and the organic EL sheet 11 is sucked and fixed by a suction hole (not shown) provided on the pattern forming body mounting base 43.
  • step S103 mask alignment is performed, and the mask 14 is placed at a predetermined position.
  • the support body of the mask alignment mechanism unit 69 that supports the mask frame 202 on which the mask 14 is mounted is lowered, and the mask 14 is in close contact with the organic EL sheet 11. Stop just before.
  • a plurality of mask alignment cameras (not shown) move right above each mask alignment mark 16, and the center of the mask alignment mark 16 comes to the center of the cross-shaped organic EL sheet alignment mark 13.
  • X, Y, and ⁇ are adjusted by the mask alignment mechanism 69.
  • the camera is retracted, the mask frame 202 is further lowered, and the mask 14 is brought into close contact with the organic EL sheet 11.
  • step S104 circular step light irradiation is performed.
  • the pattern forming body mounting table 43 moves to the light irradiation position.
  • the movement mechanism control unit 55 moves the pattern forming body mounting table 43 through the ball screw 65 so as to be a predetermined place in the light irradiation area P1.
  • the gas flow control unit 57 operates the gas flow generation unit 40 to start air cooling.
  • the movement mechanism control unit 55 moves the light irradiation unit 32 through the ball screw 63 so as to be a predetermined place in the light irradiation area P1.
  • the light source control unit 56 operates the light source unit to perform predetermined one-pulse irradiation.
  • the movement mechanism control unit 55 moves the pattern forming body mounting table 43 through the ball screw 65 so as to be a predetermined place in the light irradiation area P2.
  • the light source control unit 56 operates the light source unit to perform predetermined one-pulse irradiation.
  • the movement mechanism control unit 55 moves the light irradiation unit 32 through the ball screw 63 so as to be a predetermined place in the light irradiation area P3.
  • the light source control unit 56 operates the light source unit to perform predetermined one-pulse irradiation.
  • the movement mechanism control unit 55 moves the pattern forming body mounting table 43 through the ball screw 65 so as to be a predetermined place in the light irradiation area P4.
  • the light source control unit 56 operates the light source unit to perform predetermined one-pulse irradiation.
  • the controller 53 determines whether or not a predetermined number of times of light irradiation has been performed. If the predetermined number of times of light irradiation has not been performed, the light irradiation area P1 is moved and light irradiation is repeated. When it is determined that the predetermined number of times of light irradiation has been performed, the process proceeds to the next step S105.
  • step S105 the gas flow control unit 57 stops the operation of the gas flow generation unit 40 and ends the air cooling.
  • the process proceeds to step S106.
  • step S106 the pattern forming body mounting table 43 moves to the retracted position.
  • step S107 the mask 14 is separated from the organic EL sheet (mask withdrawal).
  • step S108 the adsorption of the pattern forming body mounting table 43 is completed, and the organic EL sheet is collected.
  • the step movement of the irradiating light can be performed immediately by controlling the light emission of the plurality of light sources (LEDs) 35 by the light source controller 56. Therefore, the tact time can be shortened by the time required for the step movement as compared with the first embodiment. Other processes can be performed in the same manner as in the second embodiment.
  • the organic EL device includes one or a plurality of organic functional layers between at least a pair of electrodes.
  • the organic functional layer in the present invention refers to a layer containing an organic compound. Examples thereof include a hole injection layer, a hole transport layer, a light emitting layer (including a blue light emitting layer, a green light emitting layer, and a red light emitting layer), an electron transport layer, and an electron injection layer.
  • the organic EL element according to the present invention can take various configurations, and an example is shown in FIG. In FIG. 12, the aspect ratio is not accurate for explanation.
  • the organic EL element 12 is provided on a substrate 113, and is configured by using a first electrode 71 (transparent electrode), an organic material, and the like in order from the substrate 113 side.
  • the functional layer group 73 and the second electrode 75a (counter electrode) are stacked in this order.
  • An extraction electrode 116 is provided at the end of the first electrode 71 (consisting of the base layer 71a and the electrode layer 71b).
  • the first electrode 71 and an external power source (not shown) are electrically connected via the extraction electrode 116.
  • the organic EL element 12 shows a configuration example in which generated light (emitted light h) is extracted from at least the substrate 113 side. That is, the case where the first electrode 71 is a transparent electrode and the second electrode 75a is a non-transparent electrode is shown.
  • the layer structure constituting the organic EL element 12 to be applied is not limited, and may be a general layer structure.
  • the first electrode 71 functions as an anode (anode) and the second electrode 75a functions as a cathode (cathode).
  • the organic functional layer group 73 has a structure in which the hole injection layer 73a / hole transport layer 73b / light emitting layer 73c / electron transport layer 73d / electron injection are sequentially arranged from the first electrode 71 side which is an anode.
  • stacked the layer 73e is illustrated, it is essential to have the light emitting layer 73c containing a luminescent compound at least among these.
  • the hole injection layer 73a and the hole transport layer 73b may be provided as a hole transport injection layer.
  • the electron transport layer 73d and the electron injection layer 73e may be provided as an electron transport injection layer.
  • the organic functional layer group 73 may be laminated with a hole blocking layer, an electron blocking layer, and the like in necessary portions in addition to these constituent layers.
  • the light emitting layer 73c may have a structure in which each color light emitting layer that generates light emitted in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting intermediate layer.
  • the intermediate layer may function as a hole blocking layer and an electron blocking layer.
  • the second electrode 75a serving as the cathode may also have a laminated structure as necessary. In such a configuration, only a portion where the organic functional layer group 73 is sandwiched between the first electrode 71 and the second electrode 75 a becomes a light emitting region in the organic EL element 12.
  • the auxiliary electrode 115 may be provided in contact with the electrode layer 71 b of the first electrode 71 for the purpose of reducing the resistance of the first electrode 71.
  • the organic EL element 12 having the above configuration is sealed with a sealing member 117 on the substrate 113 for the purpose of preventing deterioration of the organic functional layer group 73 configured using an organic material or the like due to harmful gas. It has been stopped.
  • This sealing member 117 is fixed to the substrate 113 side via an adhesive 119.
  • the extraction electrode 116 of the first electrode 71 and the terminal portion of the second electrode 75a are exposed from the sealing member 117 while being insulated from each other by the organic functional layer group 73 on the substrate 113. Is provided.
  • the patterning apparatus of the present invention can be suitably used in a method for manufacturing an organic electroluminescent element that manufactures an organic electroluminescent element in which a light emitting pattern is formed.
  • the present invention can be suitably employed in a method for manufacturing an organic electroluminescence element, wherein the edge portion of the light emission pattern has a luminance distribution within a range of 10 to 300 ⁇ m.
  • Such an organic EL element having a luminance distribution with an edge portion of the light emission pattern within a range of 10 to 300 ⁇ m can be manufactured by patterning the organic EL element using the patterning device of the present invention. it can.
  • the edge part of the light emission pattern refers to the side of the light emission pattern formed by the light shielding part in the mask.
  • is a collimation half angle
  • t is an air conversion length from the light shielding film to the organic layer
  • t ts / n. Due to the irradiance distribution in the vicinity of the edge portion E of the light shielding film, the edge portion of the light emission pattern of the organic EL element irradiated with light is also inclined such that the luminance decreases as it goes from the light emitting portion to the non-light emitting portion, for example.
  • the luminance distribution has. Since the width of the inclination determines the resolution of the light emission pattern, it is preferable to design the apparatus with a collimation half angle at which a desired resolution can be obtained.
  • the resolution can be increased as the base material of the organic EL element is thinner and the collimation half angle of the irradiation light is smaller.
  • the collimation half angle is reduced, the irradiance cannot be increased.
  • an irradiance of at least 1 W / cm 2 is preferable, and the collimation half angle is made as small as possible with this irradiance.
  • the collimation half angle can be reduced to 23 °.
  • the tact time is prioritized and the increase of the collimation half angle is allowed
  • the collimation half angle ⁇ that can secure 4 W / cm 2 is 45 ° and the substrate thickness is 500 ⁇ m
  • the above ⁇ is 294 ⁇ m
  • the half pitch is 0 .3mm is the resolution limit.
  • the slope of the luminance distribution at the edge is preferably 10 to 300 ⁇ m.
  • the collimation half angle ⁇ is 45 ° and the thickness of the substrate is 130 ⁇ m, ⁇ is 76 ⁇ m, and it is considered that the half pitch 0.1 mm can be sufficiently resolved.
  • an organic EL element having a luminance distribution within a range of 10 to 300 ⁇ m is manufactured by patterning the organic EL element using the patterning apparatus of the present invention. I think you can.
  • the luminance distribution can be measured with a known luminance meter.
  • the luminance distribution can be measured using CA-2000 (manufactured by Konica Minolta), which is a two-dimensional color luminance meter, but is not limited thereto.
  • each of the evaporation crucibles is filled with a hole injection material, a hole transport material, a host compound and a dopant for the light emitting layer, an electron transport material, and an electron injection material in an optimum amount for device fabrication.
  • the evaporation crucible containing the hole injection material is energized and heated to deposit the hole injection material on the substrate to provide a hole injection layer.
  • the evaporation crucible containing the hole transport material is energized and heated to deposit the hole transport material on the hole injection layer, thereby providing a hole transport layer.
  • the deposition crucible containing the host compound and dopant of the light emitting layer is energized and heated, and the host compound and dopant of the light emitting layer are co-deposited on the hole transport layer to provide a light emitting layer.
  • the deposition crucible containing the hole blocking material is energized and heated to deposit the hole blocking material on the light emitting layer, thereby providing a hole blocking layer.
  • the deposition crucible containing the electron transport material is energized and heated to deposit the electron transport material on the hole blocking layer, thereby providing an electron transport layer.
  • the deposition crucible containing the electron injection material is energized and heated to deposit the electron injection material on the electron transport layer to provide an electron injection layer.
  • an organic functional layer can be formed.
  • an organic EL element can be produced. Such an organic EL element is cut into a predetermined size during patterning. The patterning of the organic EL element can be performed as described above. Moreover, the manufacturing method of an organic EL element is not limited to the said method, A well-known method can be used.
  • FIG. 5 shows an example in which the viscoelastic body is in contact with the fixing means on two surfaces as an example of the mask holding mechanism, but is not particularly limited as long as the viscoelastic body can be fixed.
  • the first surface the surface opposite to the viscoelastic mask
  • FIG. 5 all the viscoelastic bodies are fixed by the fixing means, but at least one of the pair of viscoelastic bodies arranged to face each other may be fixed by the fixing means.
  • the fixing means may have a mask detachment preventing function. That is, by making the viscoelastic body higher than the mask and extending the upper surface of the fixing means for fixing the viscoelastic body to the mask side, the fixing means can have a function of preventing the mask from coming off.
  • an aspect in which one side of each side of the mask is positioned and fixed as a fixing pin may be used. Even with such a mask holding mechanism, the same effect as the mask holding mechanism according to the present invention can be obtained. A similar effect can be obtained with a mechanism in which a viscous material having an area (for example, a viscoelastic body (rubber) thin plate) is provided in a portion in contact with the mask and a constant pressure is applied to the member with a hook elastic body via a rigid body. be able to.
  • a viscous material having an area for example, a viscoelastic body (rubber) thin plate
  • the present invention is not limited to this, and continuous light may be irradiated.
  • segments a light irradiation area and irradiates light sequentially with respect to the divided light irradiation area was demonstrated, this invention is not limited to this, A light irradiation area is not divided
  • the patterning apparatus has been described as having a cover, the patterning apparatus may not have a cover.
  • TDAH 1,6-diaminohexane
  • the coating solution obtained above was formed on the PET substrate with a spin coater so that the thickness after modification was 250 nm, left for 2 minutes, and then heat-treated for 1 minute on an 80 ° C. hot plate. And a polysilazane coating film was formed.
  • the substrate was gradually cooled to 25 ° C., and the coating surface was subjected to modification treatment by irradiation with vacuum ultraviolet rays in a vacuum ultraviolet irradiation apparatus.
  • a vacuum ultraviolet irradiation apparatus As a light source of the vacuum ultraviolet irradiation device, an Xe excimer lamp having a double tube structure for irradiating vacuum ultraviolet rays of 172 nm was used.
  • a UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a resin substrate so as to have a dry layer thickness of 2 ⁇ m, dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Then, curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 .
  • the substrate has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 mL / m 2 ⁇ 24 h ⁇ atm or less, and a water vapor permeability of 1 ⁇ 10 ⁇ 4 g / m. it was confirmed that the following gas-barrier substrate 2 ⁇ 24h.
  • a nitrogen-containing compound N-1 represented by the following structural formula was formed in a thickness of 25 nm in a vacuum deposition apparatus, and then silver was formed to a thickness of 10 nm as an anode using a film-forming mask. The film was formed.
  • CuPc copper phthalocyanine
  • N, N′-Di (1-naphthyl) -N, N′-diphenylbenzidine ( ⁇ -NPD) green as a hole transport material 4,4'-Bis (N-carbazolyl) -1,1'-biphenyl (CBP) as the host compound of the light emitting layer
  • Ir (ppy) 3 the dopant of the green light emitting layer
  • tris (8-hydroxyquinolinato) aluminum (Alq 3 ) as an electron transport material
  • LiF as an electron injection material
  • the deposition crucible containing CuPc was energized and heated, and CuPc was deposited on the silver electrode side of the resin substrate at a deposition rate of 0.1 nm / second, A hole injection layer having a layer thickness of 15 nm was provided.
  • the deposition crucible containing ⁇ -NPD is energized and heated, and ⁇ -NPD is deposited on the hole injection layer at a deposition rate of 0.1 nm / second to provide a hole transport layer having a thickness of 25 nm. It was.
  • the evaporation crucible containing 5% by mass of Ir (ppy) 3 and CBP was energized and heated, and Ir (ppy) 3 and CBP were added to the hole transport layer at a total deposition rate of 0.1 nm / second. Co-evaporated on top, a green light emitting layer with a layer thickness of 10 nm was provided.
  • the deposition crucible containing BAlq was energized and heated, and BAlq was deposited on the green light emitting layer at a deposition rate of 0.1 nm / second to provide a hole blocking layer having a layer thickness of 15 nm.
  • the crucible for vapor deposition containing Alq 3 was energized and heated, and Alq 3 was vapor-deposited on the hole blocking layer at a vapor deposition rate of 0.1 nm / second to provide an electron transport layer having a layer thickness of 30 nm.
  • the deposition crucible containing LiF was energized and heated, LiF was deposited on the electron transport layer at a deposition rate of 0.1 nm / second, and an electron injection layer having a thickness of 1 nm was provided. In this way, an organic functional layer was formed.
  • an organic EL element 101 having a size of 6 cm ⁇ 15 cm was produced.
  • an organic EL sheet in which organic EL elements 101 are arranged in 7 rows ⁇ 5 rows was used.
  • the size of the sheet is 70 cm ⁇ 100 cm.
  • ⁇ Preparation of patterned organic EL panel 101 [UV irradiation]
  • the organic EL element 101 was patterned by using the patterning apparatus shown in FIG. The patterning conditions are shown below.
  • the collimation half angle was shaped into a predetermined collimation half angle by the lens array. Further, the lens array was adjusted so that the irradiance was within a range of ⁇ 10% with respect to the average value of the irradiance in the light irradiation area.
  • the collimation half angle and irradiance were measured as follows.
  • the pattern forming body mounting table is moved to the retracted position, and the pinhole is disposed at the same height (hereinafter referred to as the irradiation surface) as the surface on which the organic EL sheet of the pattern forming body mounting table is mounted, instead of the CCD camera.
  • a UV photosensitive paper (Fuji Film UV scale) was placed 10 mm below the pinhole. Next, ultraviolet light was irradiated from the light irradiation part to the pinhole at an irradiance of 2 W / cm 2 for 10 minutes, and the UV photosensitive paper was exposed by the light passing through the pinhole. The radius of the area discolored by light exposure was measured, and the collimation half angle was calculated. As a result of carrying out this measurement at the center and four corners of the light irradiation area, the collimation half angle was 41 to 45 °.
  • a quartz glass substrate having a thickness of 5 mm and a size of 81.3 cm ⁇ 137.9 cm, a line and space with a half pitch of 0.3 mm in each light emitting area of the organic EL element 101 (white (transparent) every 0.3 mm)
  • a glass mask was attached to the mask frame and placed on the pattern forming body mounting table, and then the organic EL sheet was placed at a predetermined position on the pattern forming body mounting table with the light emitting surface facing up.
  • patterning was performed by irradiating the organic EL sheet with light in an environment at room temperature of 25 ° C.
  • the organic EL sheet is taken out every 5 minutes of integrated irradiation time, and a current is supplied by applying a probe to the electrode of the organic EL element 101 arranged in the center of the sheet, so that the luminance of the light emitting part is 700 cd / m 2.
  • the luminance of the light emitting part and the non-light emitting part was measured.
  • the luminance was measured using a luminance meter CA-2000. This measurement was performed until the total accumulated irradiation time reached 60 minutes.
  • Light source UV-LED with a wavelength of 385 nm
  • Irradiance 4W / cm 2 (collimation half angle: 45 °)
  • Light irradiation conditions 20 cycles of intermittent irradiation with a period of irradiation time of 15 seconds and a turn-off time of 15 seconds (duty ratio 50%) were performed (total 600 seconds). Total irradiation time is 5 minutes.
  • the spraying part was sprayed with the same air volume from both short side directions to the center direction of the mask using a slit-like layered gas flow generating part.
  • Slit position of spraying part 3mm above glass
  • Angle of spray part of gas flow generation part parallel to mask (0 °)
  • a gap between the gas flow generation part and the cover side face 72 mm, and a pair of gas flow generation parts were attached at positions facing the short side of the cover.
  • a patterned organic EL panel 103 was produced in the same manner except that the irradiance was lowered from 4 W / cm 2 to 1 W / cm 2 in the production of the organic EL panel 101.
  • a luminance ratio “(luminance of the light emitting portion) / (luminance of the non-light emitting portion)” is calculated from the luminance of the light emitting portion and the luminance of the non-light emitting portion measured every 5 minutes of the integrated irradiation time, The characteristics of the luminance ratio with respect to the integrated irradiation time are graphed. The results are shown in FIG.
  • an organic EL panel can be produced with an irradiance of 1 W / cm 2 and an integrated irradiation time of 40 minutes.
  • patterning can be performed at a high speed of 10 minutes with an integrated irradiation time of 10 minutes if the irradiance is 4 W / cm 2 and high irradiance.
  • the patterning time of an organic electroluminescent element can be shortened significantly.
  • the present invention is suitable for providing a patterning apparatus and a method for manufacturing an organic electroluminescent element that can significantly reduce the patterning time of the organic electroluminescent element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明の課題は、有機エレクトロルミネッセンス素子のパターニング時間を大幅に短縮できるパターニング装置を提供することである。当該パターニング装置は、有機エレクトロルミネッセンス素子にマスクを介して光を照射し発光パターンを形成するパターニング装置であって、波長が特定の範囲内の光を1W/cm以上の放射照度で照射する光照射部を備え、光照射エリア内における前記波長の範囲内の光の放射照度が、当該光照射エリア内における前記放射照度の平均値に対し±10%の範囲内であり、前記光照射エリア内における前記波長の範囲内の光のコリメーション半角が、45°以下であることを特徴とする。

Description

パターニング装置及び有機エレクトロルミネッセンス素子の製造方法
 本発明は、パターニング装置及び有機エレクトロルミネッセンス素子の製造方法に関する。より詳しくは、本発明は、有機エレクトロルミネッセンス素子のパターニング時間を大幅に短縮できるパターニング装置等に関する。
 従来、有機エレクトロルミネッセンス(以下、「有機EL」ともいう。)素子に紫外線(UV)を照射すると照射された領域の発光効率が低下し、パターニングができることが知られている(例えば、特許文献1参照。)。この現象には相反則不軌特性があり、同じ積算光量でも照射パワー密度(放射照度)が高い方が、反応が高速になることが知られている。
 したがって、有機EL素子にパターニングを行う場合、高い放射照度にした方がパターニング時間を大幅に短縮でき、この結果、タクトタイムを短縮できるため生産性を向上できる。
 ところで、マスクパターンを正確に有機EL素子に形成するためには、照射光ができるだけ平行光に近いことが望ましい。したがって、略平行光にて高い放射照度の光照射装置が望まれるが、高出力光源であるランプやLEDを用いた場合、面発光光源であるため照射光を略平行光(コリメーション半角2°程度)にするにはビーム整形光学部品を多数要するとともに、光線ケラレが多く発生してしまい、特許文献2に示すように放射照度を高めることが困難である。一方、特許文献3には6W/cmと非常に高い放射照度が記載されているが、コリメーション半角を制御していないためコリメーション半角はLED放射角の80°程度と推測され、パターニングには使えないという問題があった。
 また、特許文献4にはコリメーション半角を14°にし、放射照度0.6W/cmまで高めた実施例が記載されているが、有機EL素子のパターニングには放射照度がまだ不十分である。特許文献4には更なる高放射照度化の手法が記載されていない。
国際公開第2014/175135号 特開2014-134655号公報 特開2014-65211号公報 特開2015-114633号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、有機エレクトロルミネッセンス素子のパターニング時間を大幅に短縮できるパターニング装置及び有機エレクトロルミネッセンス素子の製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、コリメーション半角を45°まで許容すれば4W/cm以上の高い放射照度が達成でき、この結果、有機エレクトロルミネッセンス素子のパターニング時間を大幅に短縮できるパターニング装置及び有機エレクトロルミネッセンス素子の製造方法を提供できることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.有機エレクトロルミネッセンス素子にマスクを介して光を照射し発光パターンを形成するパターニング装置であって、
 波長が100~410nmの範囲内の光を1W/cm以上の放射照度で照射する光照射部を備え、
 光照射エリア内における前記波長の範囲内の光の放射照度が、当該光照射エリア内における前記放射照度の平均値に対し±10%の範囲内であり、
 前記光照射エリア内における前記波長の範囲内の光のコリメーション半角が、45°以下であることを特徴とするパターニング装置。
 2.前記有機エレクトロルミネッセンス素子を載置する被パターン形成体載置台を備え、
 前記被パターン形成体載置台が、冷却機能を有することを特徴とする第1項に記載のパターニング装置。
 3.前記被パターン形成体載置台が、前記冷却機能として、
 冷却水を前記被パターン形成体載置台の一方から導入し、前記被パターン形成体載置台内を一方向に前記冷却水を流して他方に排出する複数の水路を備えることを特徴とする第2項に記載のパターニング装置。
 4.弾性体による弾性力により、前記マスクを保持するマスク保持機構を備えることを特徴とする第1項から第3項までのいずれか一項に記載のパターニング装置。
 5.気体を前記マスクに吹き付ける気体流発生部を備えることを特徴とする第1項から第4項までのいずれか一項に記載のパターニング装置。
 6.第1項から第5項までのいずれか一項に記載のパターニング装置により、発光パターンを形成した有機エレクトロルミネッセンス素子を製造する有機エレクトロルミネッセンス素子の製造方法。
 7.前記発光パターンのエッジ部が、10~300μmの範囲内で輝度分布を有することを特徴とする第6項に記載の有機エレクトロルミネッセンス素子の製造方法。
 本発明の上記手段により、有機エレクトロルミネッセンス素子のパターニング時間を大幅に短縮できるパターニング装置及び有機エレクトロルミネッセンス素子の製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように考えている。
 本発明者が、メタルハライドランプをUV光源とした光照射器にて、放射照度100mW/cmでパターニング実験を行ったところ、発光部と非発光部の輝度比の値を200とするための積算照射時間は、約12時間と非常に時間がかかってしまう結果であった。一方、波長385nmのUV-LEDを光源とした光照射器にて放射照度2W/cmにて照射した場合には、積算照射時間は30分で済み、さらに4W/cmでは10分と大幅に短縮できた。また、目標輝度比を100に抑えた場合には放射照度1W/cmでも40分と1時間以内で済むことが分かった。
 一般に、マスクパターンを正確に有機EL素子に形成するためには、照射光ができるだけ平行光に近いことが望ましいが、放射照度を高めつつ、平行光とすることは困難である。
 ここで、有機EL素子の発光パターンは視覚に訴えるものであり、半導体などのようにサブミクロンの解像度は要求されない。そこで、本発明者は、照射光を平行光からずらし、コリメーション半角を30°まで許容すれば2W/cm以上の高い放射照度を達成させつつ、視覚的に十分な解像度の発光パターンを形成できると考えた。さらに、鋭意検討の結果、コリメーション半角を45°まで許容すれば4W/cm以上の高い放射照度が達成できることが分かった。なお、コリメーション半角45°での有機EL素子のパターニング解像度はラインアンドスペースのハーフピッチで100μmまで可能なことを実験で確認しており、視覚的には十分な解像度が得られる。
有機ELシートの模式図 マスクの模式図 光照射エリアの一例の模式図 本発明のパターニング装置が有する光照射部の一例の透視図 本発明のパターニング装置が有する光照射部の他の一例の透視図 マスク保持機構とマスクとを光照射部側から見た概略図 複合放物面集光器のような集光ミラーの一例を示す概略図 棒状シリンドリカルレンズの配置の一例を示す断面概略図 棒状シリンドリカルレンズの配置の一例を示す断面概略図 被パターン形成体載置台の冷却機能の一例を示す概略図 本発明のパターニング装置の一例の全体構成図(X軸方向透視図) 本発明のパターニング装置の一例の全体構成図(Y軸方向透視図) 本発明のパターニング方法の一例の操作フロー図 有機EL素子の一例の断面図 マスク遮光膜のエッジ部近辺での放射照度分布を示す説明図 マスク遮光膜のエッジ部近辺での放射照度分布を示すグラフ 実施例に係る有機EL素子の輝度比の積算照射時間に対する特性を示すグラフ
 本発明のパターニング装置は、有機エレクトロルミネッセンス素子にマスクを介して光を照射し発光パターンを形成するパターニング装置であって、波長が100~410nmの範囲内の光を1W/cm以上の放射照度で照射する光照射部を備え、光照射エリア内における前記波長の範囲内の光の放射照度が、当該光照射エリア内における前記放射照度の平均値に対し±10%の範囲内であり、前記光照射エリア内における前記波長の範囲内の光のコリメーション半角が、45°以下であることを特徴とする。この特徴は各請求項に係る発明に共通又は対応する技術的特徴である。これにより、本発明は、有機エレクトロルミネッセンス素子のパターニング時間を大幅に短縮できるという効果を得られる。
 本発明の実施態様としては、前記有機エレクトロルミネッセンス素子を載置する被パターン形成体載置台を備え、前記被パターン形成体載置台が、冷却機能を有することが好ましい。これにより、高い放射照度とした場合に伴う熱の影響を低減できる。
 本発明においては、前記被パターン形成体載置台が、前記冷却機能として、冷却水を前記被パターン形成体載置台の一方から導入し、前記被パターン形成体載置台内を一方向に前記冷却水を流して他方に排出する複数の水路を備えることが好ましい。これにより、高い放射照度とした場合に伴う熱の影響を低減できる。
 本発明においては、弾性体による弾性力により、前記マスクを保持するマスク保持機構を備えることが好ましい。これにより、高い放射照度とした場合に伴う熱の影響を低減できる。
 本発明においては、気体を前記マスクに吹き付ける気体流発生部を備えることが好ましい。これにより、高い放射照度とした場合に伴う熱の影響を低減できる。
 本発明のパターニング装置は、発光パターンを形成した有機エレクトロルミネッセンス素子を製造する有機エレクトロルミネッセンス素子の製造方法に好適に採用できる。中でも、前記発光パターンのエッジ部が、10~300μmの範囲内で輝度分布を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法に好適に採用できる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 ≪パターニング装置の概要≫
 本発明のパターニング装置は、有機エレクトロルミネッセンス素子にマスクを介して光を照射し発光パターンを形成するパターニング装置であって、波長が100~410nmの範囲内の光を1W/cm以上の放射照度で照射する光照射部を備え、光照射エリア内における前記波長の範囲内の光の放射照度が、当該光照射エリア内における前記放射照度の平均値に対し±10%の範囲内であり、前記光照射エリア内における前記波長の範囲内の光のコリメーション半角が、45°以下であることを特徴とする。
 パターニング装置は、その光照射エリアによって、後述の第1の形態及び第2の形態が考えられるが、本発明のパターニング装置はこれに限定されない。
 図1Aは、有機ELシートの模式図である。有機ELシート11には複数の有機EL素子12が形成されており、四隅に有機ELシート用アライメントマーク13が形成されている。このアライメントマークは有機EL素子の製造において電極や有機層を成膜する際の成膜用マスクのアライメントで使用されるものである。
 図1Bは、マスクの模式図である。マスク14には、各有機EL素子12に対応した位置に所定の光照射パターン15(図の例では文字A)が形成され、有機ELシート11のアライメントマーク13の位置に対応したマスク用アライメントマーク16が形成されている。図で黒塗りした部分が遮光膜で紫外線を遮光する。したがって、有機EL素子12には文字A以外の発光エリアに紫外線光が照射され、発光しないことになり、有機EL素子12としては文字Aのみが発光する。マスクの基材としては線膨張係数の小さい石英ガラスや耐熱ガラス(例えば、ショット社製テンパックス フロート(登録商標))が好ましく、遮光膜は紫外線吸収率の低いクロム膜や酸化クロム膜が望ましい。
 なお、パターニングが終了した後に、有機ELシート11は有機EL素子12ごとに切断される。切断された各個別の有機EL素子は、それぞれ個別に表示装置等に装填されるために用いられる。
 図2は、光照射エリアを表した模式図である。
 図の点線部が複数の光照射エリアで、図2の場合は4個の光照射エリア(P1~P4)に区分されている場合を例示している。
 この4個の光照射エリアを、1パルス光照射で周回して光照射する場合を例示する。まず、光照射エリアP1で1パルス光照射後、次いで光照射エリアP2にて1パルス光照射する。続いて光照射エリアP3及びP4についても各々1パルス光照射する。その後、光照射エリアP1について再度1パルス光照射する、といったように、1パルス光照射を順次繰り返す。このように周回して光を照射することで、光照射エリアP1を再度光照射するまでに待ち時間を設けることができ、この結果、この待ち時間で光照射エリアP1が冷却されるため、パターニングの際におけるマスクや有機ELシートでの熱蓄積を抑えることができる。
 この周回光照射方式の場合、分割される光照射エリアの個数に特に制限はないが、タクトタイムを短くする観点から、9個以下であることが好ましく、4個以下であることが好ましい。更に好ましくは2個に分割されることである。
 光照射エリアの周回パターンとしては、例えば、(光照射エリアP1→光照射エリアP2→光照射エリアP1→光照射エリアP2)と繰り返されるケースが挙げられるが、少なくとも一つの光照射エリアで再度光照射が行われれば、いずれの光照射パターンであっても良い。
 例えば、(光照射エリアP1→光照射エリアP2→光照射エリアP1)のように追加の光照射が行われない光照射エリアがあってもよい。
 また(光照射エリアP1→光照射エリアP2→光照射エリアP3→光照射エリアP4→光照射エリアP3→光照射エリアP2→光照射エリアP1→光照射エリアP4)のように、2周目の光照射の順番が1周目の光照射の順番と異なっていても良い。
 なお、有機層の紫外線吸収率がシート面内で分布を持つ場合には、各ポジションで照度や1パルス光の照射時間を変えても良い。
 <パターニング装置の第1の形態>
 本発明のパターニング装置としては、複数の有機EL素子が備えられた有機ELシートが載置される被パターン形成体載置台と、前記有機ELシートの複数の光照射エリアに光照射をする少なくとも1個の光源を備えた光照射部と、前記光照射部の位置と前記被パターン形成体載置台との相対位置を変化させるステップ移動部と、前記複数の光照射エリアでの積算光量が、それぞれの光照射エリアで所定量となるように光照射部を制御する制御部を備え、前記ステップ移動部は、前記複数の光照射エリアのうち、少なくとも一つの光照射エリア(A)でパルス光の照射を行った後に、前記光照射エリア(A)以外の光照射エリアのうちの少なくとも一つの光照射エリア(B)でパルス光の照射を行う位置に光照射部又は被パターン形成体載置台を移動させ、前記光照射エリア(B)でパルス光の照射を行った後に、光照射エリア(A)に再度パルス光の照射を行う位置に光照射部又は被パターン形成体載置台を移動させるステップ移動部である有機EL素子のパターニング装置であることが好ましい。
 図3は、本発明のパターニング装置の一例(第1の形態)の透視図である。
 パターニング装置31は光源部300、カバー39、気体流発生部40で構成される光照射部32、前記光照射部32からの照射光38をパターン化して有機ELシート11に光照射するためのマスク14及び被パターン形成体載置台43から成る。
 光源部300は紫外線を発光する光源35(例えば、波長365nmや385nmのUV-LED)と光源35を2次元状(平面状)に配置した光源基板34から構成されており、光源基板34から光源35へ駆動電流を供給する。光源部300は、さらに光源35で発生した熱を外部に逃がす放熱板33を備えており、光源35の発光効率の低下を防止する。放熱板33の内部に冷却管を備え、冷却水を循環させ光源35を水冷することがより好ましい。光源部300から出射した発散光はレンズアレイ37で所定の広がり角の光束に整形された照射光38とされる。レンズアレイ37はレンズアレイ支持体36により光源部300に固定される。照射光38は内面が反射面となっているカバー39で閉じ込められ光量の低下を防ぎ、かつ均一な光量でマスク14を介して有機ELシート11に対し光を照射し発光パターンを形成する。
 光源35から出射される光は、タクトタイム低減の観点から、光照射による有機機能層の失活反応速度が速い紫外線であることが好ましい。また、出射する光はパルス光であることが好ましく、タクトタイムの低減及び有機ELシートの正確なパターニングを行う観点から、1回の光照射ステップで行われるパルス光照射は、1パルス光の照射であることが好ましい。必要に応じ複数のパルス光の照射の間に、消灯時間を入れたマルチパルス光の照射にしてもよい。
 光照射エリア周辺部の光量を確保するためには、カバー39下端とマスク14の間隙42はできるだけ狭い方が良く、5mm程度が望ましい。この間隔であれば、気体流発生部40により、マスク14に層状の気体を一様に吹き付けることができる。
 光源35(LED)は、後述の光源制御部により点灯、消灯や点灯時の照射出力、照射時間が制御されパルス光の照射を行う。
 有機ELシート11は、被パターン形成体載置台43に載置され、マスク14が有機ELシート11と所定の相対位置に調整され、シートの上に載置される。有機ELシート11は、吸着固定されることが好ましい。
 図3に示す被パターン形成体載置台43は、後述の冷却機能として、内部に水路44bがはり巡らされており、紫外線照射によりマスク14や有機ELシートで発生した熱を冷却する。
 気体流発生部40からは気体が吹き出し、マスク14の表面を冷却する。
 図3のパターニング装置31の場合には、光照射部32が、有機ELシート11の最初の光照射エリアP1をパルス光照射した後、光照射部32及び被パターン形成体載置台43がステップ移動し、次の光照射エリアP2をパルス光照射する。このようにして全光照射エリアが照射された後、再度光照射エリアP1が照射される。
 このようなパターニング装置31により、マスク14の熱による変形や、有機ELシート11の熱による性能(例えば、色バランス)の劣化を防止でき、正確なパターニングが行えるため好ましい。また、パターニングにかかるタイムタクトを短くすることができ、生産性をより向上できる。
 <パターニング装置の第2の形態>
 本発明のパターニング装置としては、複数の有機EL素子が備えられた有機ELシートを載置する被パターン形成体載置台と、前記有機ELシートの複数の光照射エリアに光照射をする複数の光源と、前記複数の光源を制御する制御部を備える有機ELシートのパターニング装置であって、前記複数の光源の位置が固定されており、前記複数の光照射エリアは、前記複数の光源のいずれかに対応付けられており、前記制御部は、複数の光源を制御して少なくとも一つの光照射エリア(A)でパルス光の照射を行った後に、前記光照射エリア(A)以外の光照射エリアのうちの少なくとも一つの光照射エリア(B)でパルス光の照射を行い、前記光照射エリア(B)でパルス光の照射を行った後に、光照射エリア(A)に再度パルス光の照射を行わせ、複数の光照射エリアでの積算光量が、それぞれの光照射エリアで所定量となるように光源を制御することを特徴とする有機EL素子のパターニング装置であることが好ましい。
 図4は、本発明のパターニング装置における光照射部の他の一例(第二の形態)の透視図である。
 第一の形態における光源数よりも多い、複数の光源35(LED)が2次元状に配置され、光照射部32全体から出射される光の照射エリアは有機ELシート11中の有機EL素子12が配置されている領域全面をカバーできるエリアとなっている。即ち、光源35を全て点灯させた場合には、図2における光照射エリアP1、P2、P3及P4の領域を全てカバーする光照射エリアとなっている。光源35はグループごとに制御可能となっており、最初の光照射ステップで、第1のグループのLED光源のみが点灯され、図2におけるP1の光照射エリアを照射する照射光38が発光される。この後に、次の光照射ステップで、図2におけるP2の光照射エリアを照射する照射光38が発光される。このようにグループごとに点灯させて周回光照射を行うことにより、パターニング装置の第1の形態における光照射部の移動時間を無くすことができ、タクトタイムを低減できる。
 なお、図4に示す例では、1台の光照射部32内の光源35を順次点灯させるが、前述のパターニング装置の第1の形態における光照射部32を複数(例えば4台)配置し、各光照射エリア(P1~P4)の光照射に応じて順次各光照射部32を発光させてもよい。
 次に、パターニング装置の各構成部について説明する。
 [マスク]
 マスクは、有機EL素子に照射する光量を変える役割を有する。
 マスクは、一例として、ガラス基板と遮光膜との2層構成(図示略)となっており、遮光膜がマスクフレーム202側となるように、マスク保持機構200に装着される。
 紫外線の透過光量を変えることができる公知の材料を用いて、ガラス基板上にネガ状のパターンを有するマスクを作製することができるが、特に、線膨張率の低い石英基板に紫外線吸収率が比較的低いクロム遮光膜をパターン付与したものが、熱変形を抑制できる点で好ましい。このようなマスクを用い、有機EL素子に紫外線照射することにより、発光パターンを有する有機EL素子を作製することができる。
 なお、ここでいう「パターン」とは、有機EL素子により表示される図案(図の柄や模様)、文字、画像等をいう。「パターニング」とは、これらのパターン表示機能を持たせることをいう。
 また、「発光パターン」とは、有機EL素子が発光する際、所定の図案(図の柄や模様)、文字、画像等に基づいて、発光面の位置により発光強度(輝度)を変えて光を発光させるためにあらかじめ当該有機EL素子に形成(付与)される所定の図案(図の柄や模様)、文字、画像等を表示させる機能を有する発生源をいう。
 本発明においては、有機ELシートが、冷却機能を有する被パターン形成体載置台に載置され、マスクが有機EL素子と所定の相対位置に位置決めされて、素子の上に密着して載置されることが好ましい。これは、光が照射されることで発熱源となるマスク遮光膜の冷却効果を高めることができるためであり、具体的には、マスク遮光膜を有機EL素子に密着させることが好ましい。
 (ガラス基板)
 ガラス基板としては、素材として、特に限定されることがなく、例えば、光学用や基板用に用いられる公知のガラス素材を用いることができる。具体的には、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、結晶化ガラス等のガラスセラミック、リン酸系ガラス又はランタン系ガラス等を挙げることができる。
 これらの中では、熱膨張率の低いものが好ましい。石英ガラスや耐熱ガラス(テンパクッスなど)を、好ましく用いることができる。マスクの厚さは特に制限はないが、3~10mmのものを用いることができる。
 <マスク保持機構>
 本発明のパターニング装置は、弾性体による弾性力により、前記マスクを保持するマスク保持機構を備えることが好ましい。これにより、マスクが照射光により膨張しても、その膨張による歪みを弾性体が吸収するため、マスクが割れることを防止できる。
 図5は、マスク保持機構とマスクとを光照射部側から見た概略図である。
 図5に示すように、本発明に係るマスク保持機構200は、中央に開口部を有する、四角形状のマスクフレーム202の各辺上に設けられ、対向して配置された弾性体204と、弾性体204を固定する固定手段206と、を備えて構成されている。
 弾性体204は、マスクフレーム202上に載置され、マスク14と面接触することによりマスク14を側方から押圧して固定する。
 固定手段206は、マスクフレーム202に固定されている。
 弾性体204は、マスク14と接触している面とは反対側の面と、弾性体204の上面とで固定手段206に当接して固定されている。
 マスク14は、上述したように、各弾性体204に接触するようにしてマスクフレーム202上に配置される。
 弾性体204は、マスク14と面接触して固定することが好ましい。このような弾性体204の形状は特に限定されず、例えば、光照射によりマスクが膨張した場合に、当該マスクを点接触又は、面接触により押圧・固定するような球状の粘弾性体であってもよい。弾性体によって固定することにより、接触部を起点として、マスクにひび割れが発生することを防止できる。
 また、本発明に係るマスク保持機構200は、マスク14を所定の圧力で保持することができることから、マスクフレーム202の任意の辺を回動軸として、可動式のマスク保持機構とすることができる。可動式とすることにより、後述するパターニング装置に適用した際、マスクを旋回させて有機EL素子から退避させることができ、パターニングする有機EL素子等の搬入及び搬出を容易にすることができる。
 弾性体204(及び固定手段206)は、マスクフレーム202の各辺に二対以上対向して配置されていることが好ましい。弾性体204の設置数は、マスク14の大きさ、すなわち、マスクフレーム202の各辺の長さによって適宜調整することができる。
 本発明に係るマスク保持機構200は、上述したように可動式とすることができることから、マスクフレーム202の対向する1組の辺上に、少なくとも一対のマスク外れ防止規制板208を対向して配置させることが好ましい。このとき、回動軸は、マスクフレーム202のいずれかの一辺となる。
 (マスクフレーム)
 本発明に係るマスクフレームの材質としては、従来公知のものを使用することができる。例えば、アルミニウムを用いることができる。
 (弾性体)
 本発明に係るマスク保持機構においては、弾性体を構成する材料は特に限定されないが、粘弾性体であることが好ましく、具体的には、例えば、フッ素ゴム、クロロブレンゴム、ニトリルゴム、エチレン・プロピレンゴム、シリコーンゴム、ブチルゴム、ウレタンゴム等のゴムが挙げられる。中でも、紫外線に対する耐久性が高いことから、フッ素ゴムであることが好ましい。
 粘弾性体の硬度は、A50~A80の範囲内であることが好ましい。粘弾性体の硬度がA50以上であれば、マスクの熱膨張を効果的に防止することができ、A80以下であればマスク保持機構を可動式とした際のマスクの自重によるズレを防止することができる。なお、本発明において、粘弾性体の硬度は、JIS K 6253に準拠して測定される値である。
 粘弾性体とマスクとの接触面積は、104.5mm以上であることが好ましく、これにより、マスクを安定して固定することができる。
 また、当該接触部における粘弾性体のマスクに対する圧力は、430000±56000N/mの範囲内であることが好ましい。圧力が当該範囲内であれば、マスクの熱膨張や位置ズレを防止することができる。
 また、マスクの平面方向のズレ量は、50μm以下であることが好ましい。
 (固定手段)
 固定手段は、ネジ等によりマスクフレームに固定されている。
 固定手段の材質は特に制限されないが、例えば、アルミニウムなどを用いることができる。
 [光照射部]
 光照射部は、波長が100~410nmの範囲内の光(以下、「紫外線」又は「照射光」ともいう。)を1W/cm以上の放射照度で照射する。
 光照射部には、紫外線を発光する光源が取り付けられている。光源としては、所望の紫外線光量を発光する光源であれば、特に制限はない。例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等から発せられる100~410nmの範囲、好ましくは200~410nmの範囲の波長領域の紫外線を用いることができる。中でも、波長が350~410nmのLEDを複数備えていることが特に好ましい。これは、波長が350~410nmの光は、有機EL素子の発光効率低下の感度が高い紫外線帯域の波長の光であるため、タクトタイムをより短縮できるからである。
 なお、パターニングを行うための積算照射量としては、有機EL素子の層構成、膜厚、サイズ等にもよるが、200~5000J/cmの積算光量で照射することが、生産性が高く、正確なパターニングが行える観点から好ましい。また、1パルスの紫外線照射時間は、1~300秒の範囲内であることが好ましい。
 光照射部について、具体例を挙げて更に説明する。
 光照射部としては、例えば、光源として、波長385nmのUV-LEDを使用し、これらを2次元状に配置し、LEDから出射した発散光をレンズアレイで所定のコリメーション半角となるように整形することで、レンズアレイの各レンズから出射した光が照射面で重なり合い、この結果、面状の広い照射面積にでき、かつ、一様な照度分布とすることができる。
 なお、LEDは不図示のコントローラにより点灯、消灯や点灯時の照射出力、照射時間が制御され、パルス光を照射するものであることが好ましい。マルチパルス光の場合には、1パルス光を照射してから次のパルス光を照射するまでの消灯時間も制御するものが好ましい。
 [放射照度]
 光照射部は、波長が100~410nmの範囲内の光を1W/cm以上の放射照度で照射するが、高放射照度で高速パターニングを行うためには、放射照度は2W/cm以上が好ましく、4W/cm以上がより好ましい。さらに光照射エリア5000cm以上でかつ、放射照度4W/cmが、パターニングのタクトタイムの大幅な短縮と取り数を増大させることが可能となり、この結果、生産性を著しく向上できる点で好ましい。
 本発明において、光照射エリア内における前記波長が100~410nmの範囲内の光の放射照度が、当該光照射エリア(実際に光を照射する所望の領域)内における前記放射照度の平均値に対し±10%の範囲内である。
 <放射照度の分布>
 本発明においては、光照射エリア内における前記波長の範囲内の光の放射照度(以下、単に「放射照度」ともいう。)が、当該光照射エリア内における放射照度の平均値に対し±10%の範囲内である。
 (放射照度の分布の測定方法)
 放射照度は、公知の測定器で測定することができ、例えば、波長範囲が300~410nmの場合、紫外線積算光量計「C9536-02」とセンサヘッド「H9958-02」(浜松ホトニクス株式会社製)を使用して、光照射エリアの縦、横に1~10mmの範囲内の間隔ずつで測定するなどして、測定できる。
 上述のようにして測定された、光照射エリア内における放射照度の分布から、光照射エリア内の本発明に係る波長の範囲内の光の放射照度の平均を計算することができる。
 <コリメーション半角>
 本発明において、前記光照射エリア内における前記波長が100~410nmの範囲内の光のコリメーション半角が、45°以下である。なお、1W/cm以上の放射照度を実現するためには、23°以上のコリメーション半角を有する光を含むことが好ましい。
 コリメーション半角とは、図3に示す、マスクに対する垂線Rと照射光Lとがなす角θのうち、最大のものをいう。コリメーション半角は、光源部から出射した発散光をレンズなどで整形することで調整できる。
 (レンズ)
 コリメーション半角を調整するための、レンズとしては、図3のようなレンズアレイ37を用いることができるが、これに限定されず、例えば、レンズアレイの代わりに、例えば、図6に示す複合放物面集光器のような集光ミラー37aを用いてもよい。複合放物面集光器であれば、部品コストを抑えることができるため好ましい。また、その他図7A及び図7Bに示すような棒状シリンドリカルレンズ37b若しくはロッドレンズをLEDアレイの各列に配置し、続いて直交する方向に棒状シリンドリカルレンズやロッドレンズを配置して2次元方向のコリメーション角整形を行ってもよい。なお、図7A及び図7Bは棒状シリンドリカルレンズの配置の一例を示す概略図であり、図7AはX方向に対し直交する断面を示す概略図であり、図7BはY方向に対し直交する断面を示す概略図である。このようにすれば、光軸調整を各々一方向だけ行えばよく、調整工数を抑制できるため好ましい。
 (コリメーション半角の測定方法)
 コリメーション半角の測定方法としては、特に限定されず、公知の方法を使用できる。
 具体的な測定方法の例を以下に示す。
 まず、被パターン形成体載置台を光照射部から退避させ、ピンホールを被パターン形成体載置台の有機ELシートを載置する面と同じ高さに配置し、照射光を前記ピンホールに照射する。次に、前記ピンホールを通り抜けた光束をCCDカメラで観測し、その光束の半径rを計測する。ピンホールとCCD素子との間隔をDとしたとき、コリメーション半角はtan-1(r/D)として算出することができる。なお、前記ピンホールの径はφ0.5mm以下が望ましい。
 [光照射エリア]
 光照射エリアとは、本発明に係る被パターン形成体(有機ELシート)において、実際に光を照射する所望の領域をいう。
 光照射エリアの面積は、特に限定されないが、5000cm以上であることが好ましい。この理由は次のとおりである。
 ロール・to・ロール方式で有機EL素子を製造する場合、一般的にロールの幅は1m程度ある。パターニングする際は、これをロール巻き方向に600mm程度の長さにカットして、複数の有機EL素子を平面状に備えるシート状にして、これら複数の有機EL素子に対し、まとめて光を照射することが好ましい。例えば、x方向のサイズが100cmでありy方向のサイズが60cmのサイズの有機ELシートに対して、複数の有機EL素子が内側90cm×54cmの領域に配置される。光照射エリアを30cm×18cm(=540cm)とすれば、x方向に3ステップ、y方向に3ステップの合計9ステップと10ステップ以内で一つの有機ELシートに光を照射できる。このように大面積の光照射エリアとすることにより有機ELシートの状態での光照射が可能となり、複数の有機EL素子を一度にパターニングでき、スループットを向上できる。有機ELシートの全面を一括で光照射する場合には、90cm×54cm=4860cm以上の光照射エリアが必要であることから、5000cm以上の光照射エリアであることが好ましい。
 このような大面積の光照射エリアは、例えば、LEDの数を増やし、光源部の発光面積を拡大すれば実現可能であるが、この場合、本発明のパターニング装置は、冷却機能を併せて備えていることが好ましい。これにより、1回の照射総光量が非常に高くなったとしても、マスクの遮光膜の発熱を抑えることができる。
 なお、上述の光照射エリアは面状であることが好ましい。これにより、複数の有機EL素子が形成されたシート状にて照射が可能となり、スループットを向上できる。
 [被パターン形成体載置台]
 本発明のパターニング装置は、有機エレクトロルミネッセンス素子を載置する被パターン形成体載置台を備えることが好ましい。
 被パターン形成体載置台は、有機エレクトロルミネッセンス素子を載置できるものであり、かつ、本発明の効果を阻害しないものであればよく、特に限定されないが、有機ELシートを吸着固定できるものであることが好ましい。一般に、有機EL素子の基板としてアクリル酸エステル、メタクリル酸エステル、ポリブチレンテレフタレート、ポリカーボネート(略称:PC)、ポリエチレンテレフタレート(略称:PET)やポリエチレンナフタレート(略称:PEN)などを用いた場合、有機ELシートはカールするなど変形しやすいが、有機ELシートを吸着固定できる被パターン形成体載置台であれば、シート全面を吸着することにより、平面性よく被パターン形成体載置台に固定でき、パターニングの光照射ボケを防止できる。
 なお、被パターン形成体載置台の材質は、特に限定されない。ただし、被パターン形成体載置台が後述の水路44bを有する場合、被パターン形成体載置台は冷却台となるため、その材質は軽量で熱伝導率の高い金属が好ましく、具体的には、例えば、アルミニウムが使用できる。
 なお、複数の有機EL素子が備えられた有機EL素子シートに光を照射する場合には、被パターン形成体載置台が大型となり、かつ冷却水も流れるため質量が増してしまう。このため、被パターン形成体載置台をX、Y、ψ(XY平面における回転角)調整してマスクとの位置決めを行うと被パターン形成体載置台の移動機構への負荷が大きくなってしまう。そのため、マスクとシートのアライメントはマスクが載置されたマスクフレームをX、Y、ψ調整して行うことが好ましい。
 <冷却機能>
 有機EL素子のパターニングを高速で行うために2W/cm以上の非常に高い放射照度で光を照射した場合、マスクの遮光膜(クロムの薄膜など)が紫外線を吸収し温度が上昇する。このため、被パターン形成体載置台が、冷却機能を有することが好ましい。これにより、マスクに熱変形が生じることを抑制でき、ひいては、光照射パターンのずれ発生や熱に弱い有機層が熱ダメージを受け性能が劣化することを防止できる。
 冷却機能としては、マスクを冷却できるものであればよく、特に限定されず、具体的には、例えば、水冷方式や、空気などの気体をマスクに吹き付けることなどが挙げられる。中でも、本発明のパターニング装置は、水冷方式の冷却機能として、前記被パターン形成体載置台の内部に水路を備え、冷却水を前記被パターン形成体載置台の一方から導入し、前記被パターン形成体載置台内の水路の中を一方向に前記冷却水を流して他方に排出する複数の水路を備えることが好ましい。被パターン形成体載置台の材質は熱伝導率の高いものが好ましい。例えば、アルミニウムなどを用いることができる。
 図8に、被パターン形成体載置台内部に備えられた水路の具体的な一例を示す。図8の例では、被パターン形成体載置台内部には、水管44aから供給される冷却水が流れる複数の水路44bが、被パターン形成体載置台の一方から他方に向けて一方向に貫通形成されている。この水路を一方向に冷却水が流れ、紫外線照射によりマスクや有機EL素子で発生した熱を冷却する。被パターン形成体載置台で熱を吸収した水は水路44cから排出されてチラーユニット45に送られ、チラーユニット45内部にて熱交換され、水温を下げた冷却水が被パターン形成体載置台に再び供給される。このように図8の例では、冷却水はチラーユニットと被パターン形成体載置台内部を循環する。チラーユニットは、チラーの冷却能力に応じて複数台用いてもよい。ここで「チラー」とは、熱媒体を循環させて対象部を一定の温度に保つ装置をいう。
 なお、装置作動中は常時冷却機能を動作させておくことが好ましい。
 また、被パターン形成体載置台に導入される水温は有機EL素子やマスクが結露しない範囲で30℃以下が好ましい。10~20℃がより好ましい。
 図8に示すように、水路44bを流れる冷却水を一方通行とすれば、熱を吸収し温度上昇した冷却水を最短距離で被パターン形成体載置台の外部に排出でき、被パターン形成体載置台内で往復させた場合に比べ冷却効果が高いため好ましい。
 [気体流発生部]
 本発明に係るパターニング装置は、気体を前記マスクに吹き付ける気体流発生部を備えることが好ましい。
 気体流発生部40は、マスク14上面の対向する位置に、マスク14とカバー39との間隙WDを通して、空気などの気体がマスク14と平行に、かつマスク14の中央方向に吹き付けられるよう配置されている。
 なお、本発明において、気体流発生部が吹き付ける気体は、マスクを冷却できるものであり、かつ、本発明の効果発現を阻害しないものであれば特に限定されず、例えば、空気や、窒素ガスなどを好適に使用できる。
 気体流発生部40はマスク14上面の対向する位置に配置されることで、マスク14と平行に気体を吹き付けることができ、この結果、吹き付けられる気体流41はムラなくマスク14上を進みマスク中央部で合流することができる。ここで、平行に吹き付けるとは、マスク14の平面に対し±2°以内の角度で吹き付けることをいう。
 マスクに吹き付けられた気体は、マスク14の中央部で合流する。中央で合流することで、マスク14をムラなく冷却することができる。このため気体流発生部40は、マスク14上面の対向する位置に平行に配置されることが好ましい。
 カバー39と気体流発生部40との間隙42は、気体が効率よくマスクに吹き付けられれば特に制約はないが10~200mmの範囲内であることが好ましい。より好ましくは50~100mmの範囲内である。また、気体流発生部の長さは、吹き付ける側のカバーの幅と同じか、それより大きいほうが好ましい。
 また、一対の気体流発生部40は、マスク14の中央部に対して対称の位置に配置されることが好ましい。
 (吹き付け部)
 カバー39内部の空気循環を行い、効率よくマスクやカバーを冷却するためには、気体流発生部40が、スリット状又はノズル状の吹き付け部を備えたものであることが好ましい。スリット状の吹き付け部を備えたものであることが、より好ましい。さらには、スリット状の吹き付け部は、ライン状に気体を吹き出し、マスク表面を冷却するものであることがより好ましい。吹きだされる気体が、ライン状であると、マスクを一様に冷却できるためである。
 また、スリット状の吹き付け部の代わりに、ノズル状の吹き付け部を備えたものも使用できるが、その場合ノズルの数は多いほうが良く、ノズルの数は5~20mmの間隔で1個あることが好ましい。ノズル径の大きさは、適宜調整することができる。
 吹き付け部に用いるスリット状の吹き付け部を備えた気体流発生部は市販品のものを使用することができる。例えば、サンワエンタープライズ社製の、層状空気流発生装置750型やスプレーイングシステムジャパン社製のブロアナイフエアーノズルなどを用いることができる。
 一対の吹き付け部から吹き付けられる風量は同じであることが好ましい。風量としては1000~4000L/minであることができる。気体流発生部は、エアコンプレッサーに接続されていることが好ましい。紫外線の照射光量に応じて、適宜所望の風量、風速に調節することができる。エアコンプレッサーは公知のものを使用できる。
 また、吹き付けられる気体が、温度調整されたものであることが好ましい。必要に応じて、例えば、5~15℃程度に温度調整した気体を用いることで冷却効果を上げることができる。
 なお、上述の被パターン形成体載置台の冷却機能とともに、このような気体流発生部を有することが、マスクに気体を吹き付けることにより有機ELシートとマスクを効率よく冷却でき、高い放射照度とした場合に伴う熱の影響を好適に低減できるため好ましい。
 [カバー]
 カバーは、光源部から照射された紫外線の光量の低下を防ぎ、かつ均一な光量でマスクに照射させる機能を有している。そのために、内面が反射材料で覆われていることが好ましい。反射材料は、熱に対して耐性があり、耐久性もあることから、金属材料を用いることができる。例えば、軽量でもあることから、アルミニウムを好ましく使用できる。
 カバーは、その上部に光源部が取り付けられ、その下端にマスクとの間隙を有していれば、その高さや、底面積は、特に制限がなく、紫外線を照射する有機ELシートの大きさに応じて設定することができる。カバーの底面は、有機ELシートにおいてパターンが形成されるエリア全体より大きいことが好ましい。
 本発明によれば、寸法精度の高いパターニングが可能であることから、同一のパターンを有する複数の有機ELパネルを1回の紫外線照射で作製することで、生産性を高めることもできる。
 なお、パターンを形成させる場合には、複数の有機EL素子(例えば縦10列、横10列の全体で100個の有機EL素子)で一つのパターンを形成させるように配列させてもよい。その場合は、複数の有機EL素子がそれぞれ異なるパターンを形成し、全体で一つのパターンを表示する有機ELパネルとして作動する。
 カバーの高さは、紫外線の光量、照射光量のムラなどから、適宜調整できる。例えば、0.5~5m程度にすることができる。
 <周回光照射機構>
 本発明では、有機ELシートの光照射エリアを複数の光照射エリアに区分して順次パルス光の照射を行ったのち、再度同じ領域にパルス光の照射を繰り返し、それぞれの光照射エリアで所定の積算照射量となるまで照射を繰り返す。したがって、光照射エリアを周回するよう制御するものであることが好ましい。
 以下、図9及び、図10に基づいて、パターニング装置の第1の形態の場合の、周回光照射機構の例について説明する。
 図9は、本発明のパターニング装置の一例(パターニング装置の第1の形態)の全体構成図(X軸方向透視図)である。
 図10は、本発明のパターニング装置の一例(パターニング装置の第1の形態)の全体構成図(Y軸方向透視図)である。
 被パターン形成体載置台43はリニアガイド64に沿ってX軸方向に移動する。
 移動はモーター67によりネジ軸66を回転させ、被パターン形成体載置台43の底面に取り付けられたボールネジ65にて回転運動を直進運動に変換させ、移動させる。
 不図示の位置センサにより基準位置が決まり、そこからモーター67の回転数により移動量を制御する。
 光照射部32も同様にリニアガイド68によってY軸方向に移動する。光照射部のリニアガイド68は支柱載置されたベース上に設置されている。
 操作部52にはメモリが内蔵されており、各ポジションにおける光照射1回当たりの放射照度、光照射時間、光照射回数や、各光照射ポジションの座標や移動順序などの光照射条件が記憶されている。
 操作部52にて所望の光照射条件を選定し、その条件に従って制御部53が、下記の諸機構を制御する。制御部53には、マスクアライメント制御部54、移動機構制御部55、光源制御部56及び気体流制御部57が備えられている。
 光源制御部56は、光源部の放射照度、光照射時間、光照射回数などを制御する。移動機構制御部55は、モーター67及びモーター61を介して、被パターン形成体載置台43及び光照射部32の位置を制御する。マスクアライメント制御部54は、被パターン形成体載置台43が退避位置にある状態で、マスクアライメント機構部69を制御して、被パターン形成体載置台43上の所定の位置に有機ELシート11とマスク14を設置させる。
 気体流制御部57は、気体流発生部40の作動のオン/オフを制御する。
 <パターニングプロセス>
 図11は、本発明に係るパターニング方法の一例(パターニング装置の第1の形態と図1に示す有機ELシート11及びマスク14を使用し、光照射エリアが4個の場合)の操作の流れを示すフロー図である。
 パターニング装置の電源51が投入されると、チラーユニット58の動作が開始され、被パターン形成体載置台43の中を冷却水が循環し続ける。
 最初にステップS101において、光照射条件の選定が行われる。操作部52の図示しないタッチパネルにて光照射条件を選定する。また有機ELシート11のID番号を入力する。次いでステップS102に進む。
 ステップS102では、有機ELシート11が被パターン形成体載置台43に載置される。この時点では被パターン形成体載置台43は、光照射部32から退避した位置にあり、この位置で有機ELシート11の載置、回収を行う。載置後、操作部52の図示しないタッチパネルにて吸着開始ボタンを押し、有機ELシート11を、被パターン形成体載置台43に設けられた図示しない吸着穴で吸着固定する。次いでステップS103に進む。
 ステップS103では、マスクアライメントが行われ、マスク14が所定の位置に設置される。操作部52の図示しないタッチパネルにて光照射開始ボタンを押すと、マスク14を搭載したマスクフレーム202を支持するマスクアライメント機構部69の支持体が下降し、マスク14が有機ELシート11に密着する寸前で停止する。次いで、不図示のマスクアライメント用の複数のカメラが各マスク用アライメントマーク16の真上に移動し、マスク用アライメントマーク16の中心が、相対する十字の有機ELシート用アライメントマーク13の中心に来るように、マスクアライメント機構部69によりX、Y、ψ調整される。マスクアライメント終了後、カメラが退避して、マスクフレーム202がさらに下降し、マスク14を有機ELシート11に密着させる。次いでステップS104に進む。
 ステップS104では、周回ステップ光照射が行われる。
 周回ステップ光照射が、開始されると、まず被パターン形成体載置台43が光照射位置に移動する。
 移動機構制御部55が、ボールネジ65を介して被パターン形成体載置台43を、光照射エリアP1の所定場所になるように移動させる。
 気体流制御部57が、気体流発生部40を稼働させ空冷を開始させる。
 移動機構制御部55が、ボールネジ63を介して光照射部32を、光照射エリアP1の所定場所になるように移動させる。
 光源制御部56が、光源部を稼働させ所定の1パルス照射を行わせる。
 移動機構制御部55が、ボールネジ65を介して被パターン形成体載置台43を、光照射エリアP2の所定場所になるように移動させる。
 光源制御部56が、光源部を稼働させ所定の1パルス照射を行わせる。
 移動機構制御部55が、ボールネジ63を介して光照射部32を、光照射エリアP3の所定場所になるように移動させる。
 光源制御部56が、光源部を稼働させ所定の1パルス照射を行わせる。
 移動機構制御部55が、ボールネジ65を介して被パターン形成体載置台43を、光照射エリアP4の所定場所になるように移動させる。
 光源制御部56が、光源部を稼働させ所定の1パルス照射を行わせる。
 制御部53が、所定の回数の光照射が行われたかどうかの判定を行う。所定回数の光照射が行われていなければ、光照射エリアP1に移動を行い、光照射を繰り返す。
 所定回数の光照射が行われたと判定された場合は、次のステップS105に進む。
 ステップS105では、気体流制御部57が、気体流発生部40の稼働を止め空冷を終了させる。次いでステップS106に進む。
 ステップS106では、被パターン形成体載置台43が退避位置に移動する。次いでステップS107に進む。
 ステップS107では、マスク14が有機ELシートから離される(マスク退避)。次いでステップS108に進む。
 ステップS108では、被パターン形成体載置台43の吸着が終了され有機ELシートの回収が行われる。
 パターニング装置の第2の形態の場合は、周回光照射のステップ移動を、複数の光源(LED)35の発光を光源制御部56で制御するにことより即座に行うことができる。
 したがって、第1の形態に比べ、ステップ移動の時間分タクトタイムの短縮が可能となる。その他のプロセスは、前記第2の形態の場合と同様にして行うことができる。
 [有機エレクトロルミネッセンス素子]
 本発明に係る有機EL素子は、少なくとも一対の電極間に一つ又は複数の有機機能層を備えている。本発明における有機機能層とは、有機化合物を含有する層をいう。例えば、正孔注入層、正孔輸送層、発光層(青色発光層、緑色発光層、赤色発光層を含む)電子輸送層、電子注入層を挙げることができる。
 本発明に係る有機EL素子は、種々の構成を採り得るが、一例を図12に示す。なお図12は説明のため縦横比は正確ではない。
 図12に示すとおり、本発明に係る有機EL素子12は、基板113上に設けられており、基板113側から順に、第1電極71(透明電極)、有機材料等を用いて構成された有機機能層群73、及び第2電極75a(対向電極)をこの順に積層して構成されている。第1電極71(下地層71aと電極層71bからなる。)の端部には、取り出し電極116が設けられている。第1電極71と外部電源(不図示)とは、取り出し電極116を介して、電気的に接続される。有機EL素子12は、発生させた光(発光光h)を、少なくとも基板113側から取り出す構成例を示している。すなわち、第1電極71が透明電極で、第2電極75aが非透明電極のケースを示してある。
 また、適用する有機EL素子12を構成する層構造は限定されることはなく、一般的な層構造であって良い。ここでは、第1電極71がアノード(陽極)として機能し、第2電極75aがカソード(陰極)として機能する例を示してある。図12では、一例として、有機機能層群73の構成としては、アノードである第1電極71側から順に正孔注入層73a/正孔輸送層73b/発光層73c/電子輸送層73d/電子注入層73eを積層した構成を例示してあるが、このうち、少なくとも発光性化合物を含有する発光層73cを有することが必須である。正孔注入層73a及び正孔輸送層73bは、正孔輸送注入層として設けても良い。同様に、電子輸送層73d及び電子注入層73eは、電子輸送注入層として設けても良い。
 また、有機機能層群73は、これらの各構成層の他にも、正孔阻止層や電子阻止層等を、必要に応じて必要な箇所に積層されていても良い。さらに、発光層73cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させた構造としても良い。中間層は、正孔阻止層、電子阻止層として機能しても良い。さらに、カソードである第2電極75aも、必要に応じ積層構造であっても良い。このような構成において、第1電極71と第2電極75aとで有機機能層群73が挟持された部分のみが、有機EL素子12における発光領域となる。
 また、以上のような層構成においては、第1電極71の低抵抗化を図ることを目的として、第1電極71の電極層71bに接して補助電極115が設けられていても良い。
 以上のような構成の有機EL素子12は、有機材料等を用いて構成された有機機能層群73の有害ガス等による劣化を防止することを目的として、基板113上に封止部材117で封止されている。この封止部材117は、接着剤119を介して、基板113側に固定されている。ただし、第1電極71の取り出し電極116及び第2電極75aの端子部分は、基板113上において、有機機能層群73によって互いに絶縁性を保った状態で、封止部材117から露出させた状態で設けられている。
 なお、有機EL素子を構成する各層に用いられている材料は、公知のものを用いることができる。
 ≪有機エレクトロルミネッセンス素子の製造方法≫
 本発明のパターニング装置は、発光パターンを形成した有機エレクトロルミネッセンス素子を製造する有機エレクトロルミネッセンス素子の製造方法に好適に採用できる。中でも、発光パターンのエッジ部が、10~300μmの範囲内で輝度分布を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法に好適に採用できる。
 このような、発光パターンのエッジ部が、10~300μmの範囲内で輝度分布を有する有機EL素子は、上記本発明のパターニング装置を使用して有機EL素子のパターニングすることで、製造することができる。
 ここで、発光パターンのエッジ部とは、マスクにおける遮光部で形成された発光パターンの辺を指す。
 なお、本発明のパターニング装置を用いるような、非平行光で光を照射する場合、図13Aに示すようにマスク入射角が0°でない斜光線はマスクの遮光膜の下側に潜り込む。この場合、遮光膜Cのエッジ部E近辺では放射照度が0にはならず、図13Bに示すように傾斜を持った放射照度分布となる。この潜り込み量δはt×tan(θ)となる。ここで、θはコリメーション半角、tは遮光膜から有機層までの空気換算長で、有機EL素子の基材の厚さをts、屈折率をnとした場合、t=ts/nとなる。この遮光膜のエッジ部E近辺の放射照度分布により、光を照射した有機EL素子の発光パターンのエッジ部も、例えば、発光部から非発光部へと向かうにしたがって輝度が低下するような傾斜を有する輝度分布になる。この傾斜の幅が発光パターンの解像度を決めるので、所望の解像度が得られるコリメーション半角で装置を設計することが好ましい。
 一般に、有機EL素子の基材の厚さが薄く、照射光のコリメーション半角が小さいほど解像度を高めることができる。
 しかし、コリメーション半角を小さくすると放射照度を上げることができなくなってしまう。
 これについて、本発明者らは、下記のように考えている。
 有機EL素子の相反則不軌特性を利用して、パターニングのための光の照射時間を短縮するには、最低でも1W/cmの放射照度が好ましく、この放射照度でコリメーション半角をできるだけ小さくなるように設計した結果、コリメーション半角は23°まで小さくできることが分かった。このコリメーション半角で、有機EL素子の基材厚を例えば25μm(n=1.7)まで薄型化した場合には、上記δは6μmとなり、かなりの解像度を確保できる。一方、タクトタイム優先とし、コリメーション半角の増大を許容した場合、例えば4W/cmを確保できるコリメーション半角θは45°で基材厚さ500μmの場合には、上記δが294μmとなり、ハーフピッチ0.3mmが解像限界となる。ハーフピッチ0.3mm程度の解像度であれば、視感に訴える大抵の発光パターンは再現できるので、エッジ部の輝度分布の傾斜幅は10~300μmが好ましい。なお、コリメーション半角θが45°で基材の厚さを130μmとした場合には、上記δは76μmとなり、ハーフピッチ0.1mmを十分解像できると考える。また、このような理由から、本発明のパターニング装置を使用して有機EL素子のパターニングすることで、発光パターンのエッジ部が、10~300μmの範囲内で輝度分布を有する有機EL素子を製造することができると考える。
 (輝度分布の測定)
 輝度分布は、公知の輝度計で計測することができ、例えば、2次元色彩輝度計であるCA-2000(コニカミノルタ社製)を用いて測定できるが、これに限定されない。
 (有機エレクトロルミネッセンス素子の製造方法の具体例)
 以下に本発明に係る有機エレクトロルミネッセンス素子の製造方法について、具体例を述べる。
 まず、基板上に、成膜用マスクを使用して陽極を成膜する。
 次に、蒸着用るつぼの各々に、正孔注入材料、正孔輸送材料、発光層のホスト化合物及びドーパント、電子輸送材料、電子注入材料を各々素子作製に最適の量を充填する。
 次いで、減圧した後、正孔注入材料の入った前記蒸着用るつぼに通電して加熱し、正孔注入材料を基板に蒸着し正孔注入層を設ける。
 次いで、正孔輸送材料の入った前記蒸着用るつぼに通電して加熱し、正孔輸送材料を正孔注入層上に蒸着し、正孔輸送層を設ける。
 次いで、発光層のホスト化合物及びドーパントの入った前記蒸着用るつぼに通電して加熱し、発光層のホスト化合物及びドーパントを正孔輸送層上に共蒸着し、発光層を設ける。
 次いで、正孔阻止材料の入った前記蒸着用るつぼに通電して加熱し、正孔阻止材料を発光層上に蒸着し、正孔阻止層を設ける。
 次いで、電子輸送材料の入った前記蒸着用るつぼに通電して加熱し、電子輸送材料を正孔阻止層上に蒸着し、電子輸送層を設ける。
 更に、電子注入材料の入った前記蒸着用るつぼに通電して加熱し、電子注入材料を電子輸送層上に蒸着し、電子注入層を設ける。このようにして有機機能層を形成できる。
 最後に、アルミニウムなどを電子注入層上に蒸着し、陰極を設ける。この後、前記蒸着面側をエポキシ樹脂などの封止部材で覆い、更に、アルミニウム箔で覆って保護膜を形成した後、硬化させる。なお、ここまでの操作は全て、素子を大気に接触させることなく、窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)内で行われることが好ましい。
 このようにして有機EL素子を作製できる。
 このような有機EL素子は、パターニングに際し、所定の大きさにカットする。なお、有機EL素子についてのパターニングは、上述したとおりに行うことができる。
 また、有機EL素子の製造方法は、上記方法に限定されず、公知の方法を使用することができる。
 なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、図5では、マスク保持機構の一例として、粘弾性体が固定手段と2面で当接した例を示しているが、粘弾性体を固定することができれば特にこれに限定されず、例えば、1面(粘弾性のマスクとは反対側の面)で当接して固定するようにしてもよい。また、図5では、全ての粘弾性体は固定手段により固定されているが、対向して配置されている一対の粘弾性体のうち、少なくとも一方が固定手段により固定されていればよい。
 また、マスク外れ防止規制板を粘弾性体及び固定手段と別途設けた例を示したが、固定手段にマスク外れ防止機能を持たせてもよい。すなわち、粘弾性体をマスクよりも高くなるようにし、当該粘弾性体を固定する固定手段の上面をマスク側に延在させることにより、固定手段にマスク外れ防止機能を持たせることができる。
 さらに、マスク保持機構のその他の態様として、マスクの各辺のうち一辺を固定ピンとして、位置決め配置され固定する態様であってもよい。このような態様のマスク保持機構であっても、本発明に係るマスク保持機構と同様の効果を得ることができる。
 また、マスクと接触する部分に面積のある粘性物(例えば、粘弾性体(ゴム)薄板)を設け、その部材を、剛体を介してフック弾性体で一定圧力を加える機構でも同様の効果を得ることができる。
 また、例えば、上記パターニング装置による光照射の例として、パルス光を用いる例を説明したが、本発明はこれに限定されず、連続的な光を照射することとしてもよい。また、光照射エリアを分割し、分割された光照射エリアに対して順次光を照射する例を説明したが、本発明はこれに限定されず、光照射エリアを分割せず、光照射部内の光源を一括点灯させることでパターニングを行ってもよい。
 また、例えば、上記パターニング装置は、カバーを有するものとして説明したが、カバーを有していないパターニング装置であってもよい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 [有機EL素子の作製]
 <基板の作製>
 〈ガスバリアーフィルムの作製〉
 厚さ75μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET Q83;分光光度計にて測定した、波長385nmにおける紫外線の透過率84%、分光光度計(日立ハイテクノロジーズ社製U-3300使用)を基材として用いて、ポリシラザン塗膜を形成した後、下記の方法にしたがって、真空紫外線照射処理を施して厚さ250nmのガスバリアー層を形成し、これを4回繰り返し、総厚さ1000nmのガスバリアー層を有するガスバリアーフィルムを作製した。
 (ポリシラザン含有塗布液の調製)
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。
 上記で得られた塗布液を、スピンコーターにて上記PET基材上に改質後の厚さが250nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、ポリシラザン塗膜を形成した。
 乾燥後、基材を25℃まで徐冷し、真空紫外線照射装置内で、塗布面に真空紫外線照射による改質処理を行った。真空紫外線照射装置の光源としては、172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプを用いた。
 (改質処理装置)
 株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、光波長172nm、ランプ封入ガス Xe
 (改質処理条件)
 エキシマ光強度 3J/cm(172nm)
 ステージ加熱温度 100℃
 照射装置内の酸素濃度 1000ppm
 次に、基材のガスバリアー層を形成した側の面とは反対側の面に厚さ2μmのクリアハードコート層を以下のようにして形成した。
 JSR株式会社製、UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥層厚が2μmになるように樹脂基材に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。
 当該基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m・24h・atm以下、水蒸気透過度が、1×10-4g/m・24h以下のガスバリアー性基板であることを確認した。
 《有機EL素子101の作製》
 上記基板上に、真空蒸着装置内で、下記構造式で表される含窒素化合物N-1を25nmの厚さで成膜後、成膜用マスクを使用して陽極として銀を10nmの厚さで成膜した。
 更に、蒸着用るつぼの各々に、正孔注入材料としてCuPc(銅フタロシアニン)、正孔輸送材料としてN,N′-Di(1-naphthyl)-N,N′-diphenylbenzidine(α-NPD)、緑色発光層のホスト化合物として4,4′-Bis(N-carbazolyl)-1,1′-biphenyl(CBP)、緑色発光層のドーパントとしてIr(ppy)、正孔阻止材料としてアルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(BAlq)、電子輸送材料としてtris(8-hydroxyquinolinato)aluminium(Alq)、電子注入材料としてLiFを各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製抵抗加熱用材料で作製されたものを用いた。
 含窒素化合物N-1、CuPc、α-NPD、CBP、Ir(ppy)、BAlq、Alqの各構造式を、それぞれ、以下に示す。
Figure JPOXMLDOC01-appb-C000001
 次いで、真空度4×10-4Paまで減圧した後、CuPcの入った前記蒸着用るつぼに通電して加熱し、CuPcを蒸着速度0.1nm/秒で樹脂基板の銀電極側に蒸着し、層厚15nmの正孔注入層を設けた。
 次いで、α-NPDの入った前記蒸着用るつぼに通電して加熱し、α-NPDを蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ25nmの正孔輸送層を設けた。
 次いで、5質量%のIr(ppy)とCBPの入った前記蒸着用るつぼに通電して加熱し、Ir(ppy)とCBPとを合計の蒸着速度0.1nm/秒で正孔輸送層上に共蒸着し、層厚10nmの緑色発光層を設けた。
 次いで、BAlqの入った前記蒸着用るつぼに通電して加熱し、BAlqを蒸着速度0.1nm/秒で緑色発光層上に蒸着し、層厚15nmの正孔阻止層を設けた。
 次いで、Alqの入った前記蒸着用るつぼに通電して加熱し、Alqを蒸着速度0.1nm/秒で正孔阻止層上に蒸着し、層厚30nmの電子輸送層を設けた。
 更に、LiFの入った前記蒸着用るつぼに通電して加熱し、LiFを蒸着速度0.1nm/秒で電子輸送層上に蒸着し、層厚1nmの電子注入層を設けた。このようにして有機機能層を形成した。
 最後に、アルミニウムを電子注入層上に蒸着し、層厚110nmの陰極を設けた。そして、前記蒸着面側を厚さ200μmのエポキシ樹脂で覆って封止部材とし、更に、厚さ12μmのアルミニウム箔で覆って保護膜とした後、硬化させた。ここまでの操作は全て、素子を大気に接触させることなく、窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)内で行った。
 このようにしてサイズが6cm×15cmの有機EL素子101を作製した。パターニングに際し、有機EL素子101が7列×5列に配列形成された有機ELシートを用いた。シートのサイズは70cm×100cmである。
 《パターニングされた有機ELパネル101の作製》
 [紫外線照射]
 図4に示したパターニング装置を用いて、有機EL素子101をパターニングして有機ELパネル101を作製した。パターニングの条件を以下に示す。
 なお、コリメーション半角は、レンズアレイで所定のコリメーション半角に整形した。また、上記レンズアレイを調整し、放射照度は、光照射エリア内における放射照度の平均値に対し±10%の範囲内となるようにした。
 なお、コリメーション半角及び放射照度の測定は下記のようにして行った。
 (コリメーション半角の測定)
 被パターン形成体載置台を退避位置に移動させ、ピンホールを被パターン形成体載置台の有機ELシートを載置する面と同じ高さ(以下、照射面という)に配置し、CCDカメラの代わりにUV感光紙(富士フイルム製UVスケール)をピンホールから10mm下側に設置した。次いで放射照度2W/cmにて10分間紫外線を光照射部からピンホールに照射し、ピンホールを通り抜けた光によりUV感光紙を感光させた。感光により変色した領域の半径を測長し、コリメーション半角を算出した。この測定を光照射エリアの中央と四隅の5か所で実施した結果、コリメーション半角は41~45°であった。
 (放射照度の測定)
 被パターン形成体載置台を退避位置に移動させ、光照射部の真下に電動XYステージを設置し、浜松ホトニクス製の紫外線積算光量計のセンサヘッドH9958-02のヘッド面高さが照射面と同じ高さになるようにXYステージに設置した。次いで、放射照度0.1W/cmにて光照射したまま、XYステージを10mmピッチで移動させ、光照射エリア内の放射照度分布を測定した。平均値に対して最大106%、最小93%と±10%以内の範囲内であることを確認した。
 〈マスク〉
 厚さ5mm、81.3cm×137.9cmの大きさの石英ガラス基板に、有機EL素子101の各々の発光エリアにハーフピッチ0.3mmのラインアンドスペース(0.3mm毎に白(透明)と黒が交互する長さ2mmの線状のパターン)を縦、横、斜め45°に配した解像度チェック用パターンと輝度比評価用に直径10mmの透明部パターンをクロムの薄膜で形成したガラスマスクを用いた。
 ガラスマスクをマスクフレームに取付け、被パターン形成体載置台に設置し、次いで、有機ELシートを、発光面を上にして被パターン形成体載置台の所定の位置に設置した。
 以下の条件でそれぞれ、室温温度25℃の環境下、有機ELシートに光照射してパターニングを実施した。積算照射時間5分ごとに有機ELシートを取り出し、シート中央部に配置されている有機EL素子101の電極にプローブを当て電流を供給し、発光部の輝度が700cd/mとなるように発光させ、発光部と非発光部の輝度を測定した。輝度の測定は輝度計CA-2000を用いた。この測定を積算照射時間の合計が60分となるまで実施した。
 〈カバー〉
 寸法:W1155mm×D784.5mm×H2500mm
 材質:アルミ製内壁の反射板(厚さ1.5mm)/空気層(厚さ5mm)/アルミ製外壁(厚さ7.5mm)のアルミニウムサンドイッチ構造を有するカバーを用いた。
 カバーとマスクの間隙:5.0mm
 〈光照射部〉
 光源:波長385nmのUV-LED
 放射照度:4W/cm(コリメーション半角:45°)
 光照射条件:1周期の照射時間15秒、消灯時間15秒(デューティ比50%)の間欠照射を20サイクル行った(計600秒)。積算照射時間は5分。
 〈気体流発生部〉
 吹き付け部がスリット状の層状気体流発生部を用いて、両短辺方向からマスクの中央方向に、同じ風量で吹き付けた。
 吹き付け部のスリット位置:ガラス上面3mm
 気体流発生部の吹き付け部の角度:マスクに対して平行(0°)
 気体流発生部とカバー側面の間隙:72mmとして、カバーの短辺に対向する位置に、一対の気体流発生部を取り付けた。
 吹き付ける空気(気体)の温度:25℃
 圧縮空気圧力:0.3MPa
 空気消費量:1500L/min
 《パターニングされた有機ELパネル102の作製》
 有機ELパネル101の作製において、放射照度を4W/cmから2W/cmに下げたほかは、有機ELパネル101の作製と同様にしてパターニングと輝度測定を実施し、有機ELパネル102を作製した。
 《パターニングされた有機ELパネル103の作製》
 有機ELパネル101の作製において、放射照度を4W/cmから1W/cmに下げたほかは、同様にしてパターニングされた有機ELパネル103を作製した。
 <輝度比の評価>
 有機ELパネル101~103について、積算照射時間5分ごとに測定した発光部の輝度と非発光部の輝度から輝度比「(発光部の輝度)/(非発光部の輝度)」を算出し、積算照射時間に対する輝度比の特性をグラフにした。結果を図14に示す。
 図14より、目標輝度比100のアプリケーションに対しては、放射照度1W/cmで積算照射時間40分にて有機ELパネルを作製できる。また、目標輝度比200の高コントラストが要求されるアプリケーションに対しては、放射照度4W/cmと高放射照度にすれば、積算照射時間10分と高速でパターニングができる。
 以上、本発明のパターニング装置によれば、有機エレクトロルミネッセンス素子のパターニング時間を大幅に短縮できることが示された。
 以上のように、本発明は、有機エレクトロルミネッセンス素子のパターニング時間を大幅に短縮できるパターニング装置及び有機エレクトロルミネッセンス素子の製造方法を提供することに適している。
 11 有機ELシート
 14 マスク
 31 パターニング装置
 32 光照射部
 33 放熱板
 34 光源基板
 35 光源(LED)
 36 レンズアレイ支持体
 37 レンズアレイ
 38 照射光
 39 カバー
 40 気体流発生部
 41 気体流
 42 間隙
 43 被パターン形成体載置台
 44a 水管
 44b 水路
 44c 水路
 45 チラーユニット
 51 電源
 52 操作部
 53 制御部
 54 マスクアライメント制御部
 55 移動機構制御部
 56 光源制御部
 57 気体流制御部
 58 チラーユニット
 61 モーター
 63 ボールネジ
 64 リニアガイド
 65 ボールネジ
 66 ネジ軸
 67 モーター
 68 リニアガイド
 69 マスクアライメント機構部
 71 第1電極
 71a 下地層
 71b 電極層
 73 有機機能層群
 73a 正孔注入層
 73b 正孔輸送層
 73c 発光層
 73d 電子輸送層
 73e 電子注入層
 75a 第2電極
 113 基板
 115 補助電極
 116 取り出し電極116
 117 封止部材
 119 接着剤
 200 マスク保持機構
 202 マスクフレーム
 204 弾性体
 206 固定手段
 208 マスク外れ防止規制板
 300 光源部

Claims (7)

  1.  有機エレクトロルミネッセンス素子にマスクを介して光を照射し発光パターンを形成するパターニング装置であって、
     波長が100~410nmの範囲内の光を1W/cm以上の放射照度で照射する光照射部を備え、
     光照射エリア内における前記波長の範囲内の光の放射照度が、当該光照射エリア内における前記放射照度の平均値に対し±10%の範囲内であり、
     前記光照射エリア内における前記波長の範囲内の光のコリメーション半角が、45°以下であることを特徴とするパターニング装置。
  2.  前記有機エレクトロルミネッセンス素子を載置する被パターン形成体載置台を備え、
     前記被パターン形成体載置台が、冷却機能を有することを特徴とする請求項1に記載のパターニング装置。
  3.  前記被パターン形成体載置台が、前記冷却機能として、
     冷却水を前記被パターン形成体載置台の一方から導入し、前記被パターン形成体載置台内を一方向に前記冷却水を流して他方に排出する複数の水路を備えることを特徴とする請求項2に記載のパターニング装置。
  4.  弾性体による弾性力により、前記マスクを保持するマスク保持機構を備えることを特徴とする請求項1から請求項3までのいずれか一項に記載のパターニング装置。
  5.  気体を前記マスクに吹き付ける気体流発生部を備えることを特徴とする請求項1から請求項4までのいずれか一項に記載のパターニング装置。
  6.  請求項1から請求項5までのいずれか一項に記載のパターニング装置により、発光パターンを形成した有機エレクトロルミネッセンス素子を製造する有機エレクトロルミネッセンス素子の製造方法。
  7.  前記発光パターンのエッジ部が、10~300μmの範囲内で輝度分布を有することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子の製造方法。
PCT/JP2016/085369 2016-03-18 2016-11-29 パターニング装置及び有機エレクトロルミネッセンス素子の製造方法 WO2017158943A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505246A JPWO2017158943A1 (ja) 2016-03-18 2016-11-29 パターニング装置及び有機エレクトロルミネッセンス素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054630 2016-03-18
JP2016054630 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017158943A1 true WO2017158943A1 (ja) 2017-09-21

Family

ID=59850210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085369 WO2017158943A1 (ja) 2016-03-18 2016-11-29 パターニング装置及び有機エレクトロルミネッセンス素子の製造方法

Country Status (2)

Country Link
JP (1) JPWO2017158943A1 (ja)
WO (1) WO2017158943A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073696A1 (ja) * 2017-10-10 2019-04-18 ウシオ電機株式会社 光照射装置、及び、画像形成装置
WO2022161733A1 (en) * 2021-02-01 2022-08-04 Esko-Graphics Imaging Gmbh Printing plate exposure method and apparatus with reduced thermal polymerization
WO2022181288A1 (ja) 2021-02-26 2022-09-01 富士フイルム株式会社 紫外線感知部材、紫外線感知キット
WO2022202362A1 (ja) 2021-03-22 2022-09-29 富士フイルム株式会社 検査具、検査方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140935A (ja) * 2003-11-05 2005-06-02 Hitachi High-Tech Electronics Engineering Co Ltd 露光方法、露光装置、及び基板製造方法
JP2008103409A (ja) * 2006-10-17 2008-05-01 Fujitsu Hitachi Plasma Display Ltd 露光装置
JP2008170775A (ja) * 2007-01-12 2008-07-24 San Ei Giken Inc 露光装置
JP2009535779A (ja) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド 発光パターンを有する有機発光素子、その製造方法および装置
JP2012032666A (ja) * 2010-07-30 2012-02-16 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2013502063A (ja) * 2009-08-11 2013-01-17 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング マスクの大きさを一定に維持するための方法および装置
WO2013179977A1 (ja) * 2012-05-29 2013-12-05 株式会社ニコン 照明装置、処理装置、及びデバイス製造方法
JP2014025959A (ja) * 2012-07-24 2014-02-06 Nsk Technology Co Ltd 密着露光装置のマスク保持機構
WO2014175135A1 (ja) * 2013-04-26 2014-10-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子のパターン形成方法
WO2016151902A1 (ja) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 パターニング装置及びそれを用いた有機エレクトロルミネッセンス素子のパターニング方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140935A (ja) * 2003-11-05 2005-06-02 Hitachi High-Tech Electronics Engineering Co Ltd 露光方法、露光装置、及び基板製造方法
JP2009535779A (ja) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド 発光パターンを有する有機発光素子、その製造方法および装置
JP2008103409A (ja) * 2006-10-17 2008-05-01 Fujitsu Hitachi Plasma Display Ltd 露光装置
JP2008170775A (ja) * 2007-01-12 2008-07-24 San Ei Giken Inc 露光装置
JP2013502063A (ja) * 2009-08-11 2013-01-17 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング マスクの大きさを一定に維持するための方法および装置
JP2012032666A (ja) * 2010-07-30 2012-02-16 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
WO2013179977A1 (ja) * 2012-05-29 2013-12-05 株式会社ニコン 照明装置、処理装置、及びデバイス製造方法
JP2014025959A (ja) * 2012-07-24 2014-02-06 Nsk Technology Co Ltd 密着露光装置のマスク保持機構
WO2014175135A1 (ja) * 2013-04-26 2014-10-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子のパターン形成方法
WO2016151902A1 (ja) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 パターニング装置及びそれを用いた有機エレクトロルミネッセンス素子のパターニング方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073696A1 (ja) * 2017-10-10 2019-04-18 ウシオ電機株式会社 光照射装置、及び、画像形成装置
JP2019069556A (ja) * 2017-10-10 2019-05-09 ウシオ電機株式会社 光照射装置、及び、画像形成装置
CN111183034A (zh) * 2017-10-10 2020-05-19 优志旺电机株式会社 光照射装置以及图像形成装置
US11117394B2 (en) 2017-10-10 2021-09-14 Ushio Denki Kabushiki Kaisha Light irradiation device and image forming device
CN111183034B (zh) * 2017-10-10 2022-01-18 优志旺电机株式会社 光照射装置以及图像形成装置
WO2022161733A1 (en) * 2021-02-01 2022-08-04 Esko-Graphics Imaging Gmbh Printing plate exposure method and apparatus with reduced thermal polymerization
WO2022181288A1 (ja) 2021-02-26 2022-09-01 富士フイルム株式会社 紫外線感知部材、紫外線感知キット
WO2022202362A1 (ja) 2021-03-22 2022-09-29 富士フイルム株式会社 検査具、検査方法

Also Published As

Publication number Publication date
JPWO2017158943A1 (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2017158943A1 (ja) パターニング装置及び有機エレクトロルミネッセンス素子の製造方法
JP5190253B2 (ja) 混合層の作製方法、発光装置の作製方法
TWI405731B (zh) 密封玻璃封裝之方法及裝置
JP5003826B2 (ja) ドナー基板、パターニング方法およびデバイスの製造方法
TW201422056A (zh) 雷射轉印方法及使用彼之雷射轉印設備
JP6694558B2 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP4398358B2 (ja) レーザ熱転写装置
US20080188156A1 (en) Method for Structuring a Light Emitting Device
JP2014189878A (ja) 蒸着装置
US10886128B2 (en) Method and apparatus for manufacturing vapor deposition mask
JP6692003B2 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP6674591B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
WO2016151902A1 (ja) パターニング装置及びそれを用いた有機エレクトロルミネッセンス素子のパターニング方法
US20220320435A1 (en) Systems, devices, and methods for drying material deposited on substrates for electronic device manufacturing
JP2004265752A (ja) 色変換フィルターの製造方法
WO2017158929A1 (ja) 有機エレクトロルミネッセンス素子のパターニング方法及びパターニング装置
US8699002B2 (en) Laser irradiation device and method of manufacturing organic light emitting diode display device using the same
JP2003096557A (ja) 有機el素子の製造装置および有機el素子の製造方法
WO2017158934A1 (ja) 発光パターン形成用マスク及び有機エレクトロルミネッセンス素子の製造方法
JP2011113936A (ja) 光熱変換シート及び有機電界発光装置の製造方法
WO2017158936A1 (ja) 有機エレクトロルミネッセンス素子のパターニング方法及びパターニング装置
WO2017158931A1 (ja) 有機エレクトロルミネッセンス素子の発光パターン形成方法
WO2017158946A1 (ja) 有機エレクトロルミネッセンス素子のパターニング方法及びパターニング装置
WO2017158937A1 (ja) 被パターン形成体の製造方法
JP2004179108A (ja) 有機el装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894560

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894560

Country of ref document: EP

Kind code of ref document: A1