WO2017157215A1 - 柔性电子器件及其制造方法 - Google Patents

柔性电子器件及其制造方法 Download PDF

Info

Publication number
WO2017157215A1
WO2017157215A1 PCT/CN2017/076100 CN2017076100W WO2017157215A1 WO 2017157215 A1 WO2017157215 A1 WO 2017157215A1 CN 2017076100 W CN2017076100 W CN 2017076100W WO 2017157215 A1 WO2017157215 A1 WO 2017157215A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
electronic device
wire structure
flexible substrate
flexible electronic
Prior art date
Application number
PCT/CN2017/076100
Other languages
English (en)
French (fr)
Inventor
单奇
胡坤
林立
蔡世星
刘胜芳
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Priority to KR1020187017222A priority Critical patent/KR102078546B1/ko
Priority to JP2018526687A priority patent/JP6858774B2/ja
Priority to US15/778,481 priority patent/US11119536B2/en
Priority to EP17765757.4A priority patent/EP3367438A4/en
Publication of WO2017157215A1 publication Critical patent/WO2017157215A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of flexible electronic technologies, and in particular, to a flexible electronic device and a method of fabricating the same.
  • Flexible Electronics technology is an electronic technology built on a flexible substrate. Due to its unique flexibility and ductility, it has broad application prospects in information, energy, medical, and defense fields. Flexible electronic devices fabricated using flexible electronic technology are lightweight, bendable or crimpable into any shape, such as flexible printed circuit boards, flexible chips, and flexible displays.
  • Existing flexible electronic devices generally include a flexible substrate and a device layer fabricated on the flexible substrate, the device layer including a semiconductor structure and a wire structure, the semiconductor structure functions as a switch, and the wire structure is used to Electrically connected to other devices.
  • the wire structure is used to Electrically connected to other devices.
  • a part of the wire structure extends in a direction parallel to the channel direction of the semiconductor structure.
  • FIG. 1 is a schematic structural diagram of a prior art flexible electronic device.
  • the existing flexible electronic device 100 includes a flexible substrate 110 and a device layer formed on the flexible substrate 110.
  • the device layer includes a semiconductor structure 120 and a wire structure 130 matched with the semiconductor structure 120.
  • the extending direction of the wire structure 130 is parallel to the channel direction of the semiconductor structure 120 (shown by a double-headed arrow in the broken line).
  • FIG. 2 is a structural diagram of a prior art flexible electronic device when subjected to stress.
  • the semiconductor structure 120 is subjected to the trench.
  • the tensile force in the track direction and the contraction force perpendicular to the direction of the tensile force the semiconductor structure 120 is deformed by the two forces, causing a change in current flowing through the semiconductor structure 120, and at the same time, due to the wire
  • the extending direction of the structure 130 is the same as the stress direction. After being stretched, the wire structure 130 becomes thinner and longer, and is easily broken.
  • the structure of the semiconductor structure 120 and the wire structure 130 changes when the existing flexible electronic product 10 is subjected to stress, resulting in deterioration of electrical properties and tamper resistance of the device layer 100.
  • the present invention provides a flexible electronic device including: a flexible substrate and a device layer formed on the flexible substrate;
  • the device layer includes an interconnected semiconductor structure and a first wire structure, the first wire structure extending in a direction consistent with a channel direction of the semiconductor structure;
  • the extending direction of the first wire structure forms an angle of less than 90° with the stretching direction of the flexible substrate.
  • an angle formed by the extending direction of the first wire structure and the stretching direction of the flexible substrate ranges between 40° and 70°.
  • the device layer further includes a second wire structure, the second wire structure is disposed at an edge of the flexible substrate, and the extending direction of the second wire structure is The edge lines of the flexible substrate are parallel.
  • the second wire structure is provided with a plurality of through holes, the through holes are in the shape of a parallelogram, and the parallelogram has the flexible base The diagonal direction of the plate is uniform.
  • the flexible electronic device is a flexible flat panel display device
  • the flexible flat panel display device has a plurality of pixel units
  • the boundary line pattern of the pixel unit is a parallelogram
  • the parallelogram has a diagonal line that coincides with the stretching direction of the flexible substrate.
  • the angle formed by the four sides of the parallelogram and the diagonal of the parallelogram ranges between 40° and 70°.
  • the flexible electronic device is a flexible liquid crystal display.
  • the flexible electronic device is a flexible organic light emitting display.
  • the present invention also provides a method of manufacturing a flexible electronic device, the method of manufacturing the flexible electronic device comprising:
  • a semiconductor structure and a wire structure are respectively formed on the flexible substrate, and a channel direction of the semiconductor structure is consistent with an extending direction of the wire structure, and forms an angle of less than 90° with a stretching direction of the flexible substrate.
  • the present invention also provides a method of manufacturing a flexible electronic device, the method of manufacturing the flexible electronic device comprising:
  • the pixel unit has a semiconductor structure, a channel direction of the semiconductor structure and an extension of the first wire structure
  • the directions are uniform and form an angle of less than 90° with the stretching direction of the flexible substrate
  • the second wire structure is disposed at an edge of the flexible substrate, and the second wire structure is The extending direction is parallel to an edge line of the flexible substrate, and the second wire structure is formed with a plurality of through holes, the through hole having a shape of a parallelogram, a diagonal of the parallelogram and the flexible substrate
  • the stretching direction is the same.
  • the semiconductor structure and the first wire structure are minimized by stress, thereby ensuring Electrical properties and tamper resistance of the flexible electronic device.
  • FIG. 1 is a schematic structural view of a prior art flexible electronic device
  • FIG. 2 is a schematic structural view of a prior art flexible electronic device when subjected to stress
  • FIG. 3 is a schematic structural view of a flexible electronic device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic view showing the structure of a flexible electronic device according to an embodiment of the present invention when subjected to stress.
  • FIG. 5 is a schematic structural view of a flexible electronic device according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural view of a second wire structure according to Embodiment 2 of the present invention.
  • the flexible electronic device 200 includes: a flexible substrate 210 and a device layer formed on the flexible substrate 210; the device layer includes interconnected semiconductor structures 220 and first The wire structure 230, the extending direction of the first wire structure 230 is consistent with the channel direction of the semiconductor structure 220; the extending direction of the first wire structure 230 forms less than 90° with the stretching direction of the flexible substrate 210 The angle of the.
  • the semiconductor structure in the embodiment of the present invention is a thin film transistor structure, and specifically includes a gate, a drain (not shown), and a channel.
  • the device layer includes an interconnected semiconductor structure 220 and a first conductive structure 230, the semiconductor structure 220 functions as a switch, and the conductive structure 230 is matched with the semiconductor structure 220.
  • the channel direction of the semiconductor structure 220 (indicated by a double-headed arrow in the dashed line) and the direction in which the first wire structure 230 extends are parallel to each other.
  • the extending direction of the first wire structure 230 is not parallel or perpendicular to the extending direction of the edge line L of the flexible substrate 210, that is, the extending direction of the first wire structure 210 and the flexible substrate 210
  • the stretching direction (the direction in which the edge line L extends) forms an angle of 90 or less.
  • an angle formed by the extending direction of the first wire structure 230 and the stretching direction of the flexible substrate 210 is between 40° and 70°, for example, the extending direction of the first wire structure 230.
  • FIG. 4 is a structural diagram of a flexible electronic device according to an embodiment of the present invention when subjected to stress.
  • the flexible electronic device 200 when the flexible electronic device 200 is bent by force, due to the channel direction of the semiconductor structure 220 (shown by a double-headed arrow in a broken line) and the extending direction of the first wire structure 230 and the flexible substrate 210
  • the direction of the force (shown by the hollow arrow) is inconsistent, that is, the extending direction of the first wire structure 230 is at an angle to the direction of the force receiving of the flexible substrate 210. Therefore, by comparing FIGS.
  • the semiconductor structure 220 and the first wire structure 230 only rotate at an angle ⁇ (from the unstressed home position l 1 corresponding to FIG. 3 to the stress effect). And the resulting new position l 2 ) without deformation.
  • the absence of deformation means that the semiconductor structure 220 and the first wire structure 230 are subjected to the least stress at this time, and the electrical properties and the tamper resistance of the flexible electronic device 200 are optimal.
  • the channel direction of the semiconductor structure and the extending direction of the wire structure are both coincident with the direction of the force of the flexible substrate (ie, forming an angle of 0°).
  • the channel direction of the semiconductor structure 220 and the extending direction of the first wire structure 230 do not coincide with the force direction of the flexible substrate 210 to form a certain angle.
  • the existing flexible electronic device 100 and the flexible electronic device 200 provided in this embodiment are respectively subjected to a tensile test using the same stress, and the experimental proves that the flexible electronic device 200 provided by the present embodiment is compared with the existing flexible electronic device 100.
  • the maximum stress is relatively small, and the distribution of the maximum stress is very small.
  • the semiconductor structure 220 and the first wire structure 230 in the flexible electronic device 200 provided by the embodiment are less stressed, and the stress does not substantially cause the electrical performance and the anti-cracking performance of the flexible electronic device 200. influences. Therefore, the flexible electronic device 200 has better electrical properties and tamper resistance than the existing flexible electronic device 100.
  • the embodiment further provides a method of manufacturing a flexible electronic device.
  • the method of manufacturing the flexible electronic device includes:
  • Step 1 providing a flexible substrate 210
  • Step 2 forming a semiconductor structure 220 and a first wire structure 230 on the flexible substrate 210, the channel direction of the semiconductor structure 220 is consistent with the extending direction of the first wire structure 230, and the flexible substrate
  • the stretching direction of 210 i.e., the direction in which the edge line L extends
  • a flexible substrate 210 is provided, which is generally a transparent plastic substrate.
  • a semiconductor structure 220 and a first wire structure 230 are formed on the flexible substrate 210, respectively.
  • the semiconductor structure 220 and the first wire structure 230 are both formed by a patterning process.
  • the longitudinal direction of the semiconductor film pattern produced by the patterning process ie, the channel direction
  • the extending direction of the wire film pattern are parallel to each other, and form a 60 with the stretching direction of the flexible substrate 210 (shown by a hollow arrow in FIG. 4). ° Angle.
  • the device layer of the flexible electronic device 200 includes a semiconductor structure 220 and a first wire structure 230, the channel direction of the semiconductor structure 220 and the extending direction of the first wire structure 230, And an angle of less than 90° with respect to the stretching direction of the flexible substrate 210.
  • the flexible electronic device 300 includes: a flexible substrate 310 and a device layer 330 formed on the flexible substrate 310; the device layer 330 includes interconnected semiconductor structures (not shown) And a first wire structure (not shown), the extending direction of the first wire structure is consistent with a channel direction of the semiconductor structure; the extending direction of the first wire structure and the pulling of the flexible substrate 310 The direction of extension forms an angle of less than 90°.
  • the device layer 330 includes a plurality of pixel units 30 and a first wire structure, the plurality of pixel units 30 are arranged in an array, and each of the pixel units 30 has a switching function.
  • a semiconductor structure (not shown) is coupled to the semiconductor structure for electrical connection with other devices.
  • the extending direction of the first wire structure coincides with the channel direction of the semiconductor structure.
  • the extending direction of the first wire structure is neither parallel nor perpendicular to the edge line of the flexible substrate 310, that is, the extending direction of the first wire structure is neither perpendicular to the stretching direction of the flexible substrate 310 nor Parallel, but with an angle of less than 90°.
  • the flexible substrate 310 is stretched, the first wire structure and the semiconductor structure are less stressed, and the semiconductor structure and the first wire structure are only rotated at a certain angle without being deformed.
  • the boundary line pattern of the pixel unit 30 is a parallelogram, and the parallel A diagonal line of the quadrilateral coincides with the stretching direction of the flexible substrate 310 (shown by a double-headed arrow in the broken line).
  • the four sides of the parallelogram form an angle with the diagonal thereof ranging between 40° and 70°.
  • the angle formed by the four sides of the parallelogram and the diagonal thereof are both 60°.
  • the device layer 330 further includes a second wire structure (not shown), the second wire structure is disposed at an edge of the flexible substrate 310, and the extending direction of the second wire structure and the flexible substrate The edge lines of 310 are parallel.
  • the second wire structure is provided with a plurality of through holes 40 , and the plurality of through holes 40 are evenly arranged along the extending direction of the second wire structure, the through holes.
  • the shape of 40 is a parallelogram, and the diagonal of the parallelogram coincides with the stretching direction of the flexible substrate 310 (indicated by a double-headed arrow in the broken line).
  • the extending direction of the second wire structure must be parallel or perpendicular to the stretching direction of the flexible substrate 310, a parallelogram through hole is provided in the extending direction of the second wire structure, which can effectively prevent externally applied stress from being concentrated. On the wire, the tamper resistance of the second wire structure is improved.
  • the four sides of the parallelogram form an angle with the diagonal thereof ranging between 40° and 70°.
  • the angle formed by the four sides of the parallelogram and the diagonal thereof are both 60°.
  • the flexible electronic device 300 is a flexible flat panel display device. It should be understood by those skilled in the art that the present invention is not particularly limited to the type of the flexible flat panel display device, and may be a flexible liquid crystal display (LCD) or a flexible organic light emitting display (OLED) or other type of flexible flat panel display device. .
  • LCD liquid crystal display
  • OLED organic light emitting display
  • the embodiment further provides a method of manufacturing a flexible electronic device.
  • the method of manufacturing the flexible electronic device includes:
  • Step 1 providing a flexible substrate 310
  • Step 2 forming a plurality of pixel units 30 and a first wire structure on the flexible substrate 310, the pixel unit 30 having a semiconductor structure, a channel direction of the semiconductor structure and an extending direction of the first wire structure It is uniform and forms an angle of less than 90° with the stretching direction of the flexible substrate 310.
  • a flexible substrate 310 is provided, which is typically a transparent plastic substrate.
  • a plurality of pixel units 30 arranged in an array and a first wire structure are respectively formed on the flexible substrate 310, and the pixel unit 30 has a semiconductor structure.
  • the semiconductor structure and the first wire structure 230 are both formed by a patterning process, and the long side direction (ie, the channel direction) of the semiconductor film pattern formed by the patterning process and the extending direction of the wire film pattern are parallel to each other, and the flexibility
  • the stretching direction of the substrate 310 forms an angle of 60°.
  • the method further includes forming a second wire structure on the flexible substrate 310 by using a patterning process, the second wire structure being disposed at an edge of the flexible substrate, a second wire structure extending in a direction parallel to an edge line of the flexible substrate, the second wire structure having a plurality of through holes, the through hole having a shape of a parallelogram, a diagonal of the parallelogram and a The stretching direction of the flexible substrate is uniform.
  • the flexible electronic device 300 is formed, the device layer of the flexible electronic device 300 includes a semiconductor structure, a first wire structure and a second wire structure, and the channel direction of the semiconductor structure is consistent with the extending direction of the first wire structure And an angle of less than 90° with respect to the stretching direction of the flexible substrate 310, the extending direction of the second wire structure is parallel or perpendicular to the stretching direction of the flexible substrate 310, and the second wire structure is A parallelogram through hole having a reduced stress effect is provided.
  • the semiconductor junction is adjusted by adjusting a channel direction of the semiconductor structure and an extending direction of the first wire structure.
  • the structure and the first wire structure are minimally affected by stress, thereby ensuring electrical properties and tamper resistance of the flexible electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

提供了一种柔性电子器件及其制造方法,其中,所述柔性电子器件(200)包括:一柔性基板(210)以及形成于所述柔性基板(210)上的器件层;所述器件层包括相互连接的半导体结构(220)和导线结构(230),所述导线结构(230)的延伸方向与所述半导体结构(220)的沟道方向一致;所述第一导线结构(230)的延伸方向与所述柔性基板(210)的拉伸方向形成小于90°的夹角。提供的柔性电子器件(200)及其制造方法中,通过调整半导体结构(220)的沟道方向和第一导线结构(230)的延伸方向,使得所述半导体结构(220)和第一导线结构(230)受应力影响最小,从而保证所述柔性电子器件(200)的电性能以及抗揉性能。

Description

柔性电子器件及其制造方法 技术领域
本发明涉及柔性电子技术领域,特别涉及一种柔性电子器件及其制造方法。
背景技术
柔性电子(Flexible Electronics)技术是一种建立在柔性基板之上的电子技术,由于其独特的柔性和延展性,在信息、能源、医疗、国防等领域具有广泛的应用前景。采用柔性电子技术制作的柔性电子器件具有轻薄、能够弯曲或卷曲成任意形状的特性,例如柔性印刷电路板、柔性芯片和柔性显示器等。
现有的柔性电子器件通常包括一柔性基板以及制作于所述柔性基板之上的器件层,所述器件层包括半导体结构和导线结构,所述半导体结构起到开关作用,所述导线结构用以与其他的器件电性连接。其中,部分导线结构为了与所述半导体结构配套,其延伸方向与所述半导体结构的沟道方向平行。
请参考图1,其为现有技术的柔性电子器件的结构示意图。如图1所示,现有的柔性电子器件100包括柔性基板110以及形成于所述柔性基板110上的器件层,所述器件层包括半导体结构120以及与所述半导体结构120配套的导线结构130,所述导线结构130的延伸方向与所述半导体结构120的沟道方向(虚线双向箭头所示)平行。
当所述柔性电子器件100处于弯曲状态时,所述柔性基板110和器件层都会受到应力影响。请参考图2,其为现有技术的柔性电子器件在受到应力时的结构示意图。如图2所示,所述柔性电子器件100所受应力方向与所述半导体结构120的沟道方向平行时,所述半导体结构120会受到沿沟 道方向的拉力以及垂直于所述拉力方向的收缩力,所述半导体结构120在这两种力的作用下发生形变,导致流经所述半导体结构120的电流出现变化,同时,由于所述导线结构130的延伸方向与应力方向相同,经过拉伸后,所述导线结构130会变细变长,非常容易断裂。
由上述可知,现有的柔性电子产品10受到应力作用时半导体结构120和导线结构130的结构会发生变化,导致器件层100的电性能和抗揉性能变差。
发明内容
本发明的目的在于提供一种柔性电子器件及其制造方法,以解决现有的柔性电子器件受应力影响导致电子器件的电性能和抗揉性能下降的问题。
为解决上述技术问题,本发明提供一种柔性电子器件,所述柔性电子器件包括:一柔性基板以及形成于所述柔性基板上的器件层;
所述器件层包括相互连接的半导体结构和第一导线结构,所述第一导线结构的延伸方向与所述半导体结构的沟道方向一致;
所述第一导线结构的延伸方向与所述柔性基板的拉伸方向形成小于90°的夹角。
可选的,在所述的柔性电子器件中,所述第一导线结构的延伸方向与所述柔性基板的拉伸方向所形成的夹角范围在40°~70°之间。
可选的,在所述的柔性电子器件中,所述器件层还包括第二导线结构,所述第二导线结构设置于所述柔性基板的边缘,且所述第二导线结构的延伸方向与所述柔性基板的边缘线平行。
可选的,在所述的柔性电子器件中,所述第二导线结构上设置有多个通孔,所述通孔的形状为平行四边形,所述平行四边形具有与所述柔性基 板的拉伸方向一致的对角线。
可选的,在所述的柔性电子器件中,所述柔性电子器件为柔性平板显示器件,所述柔性平板显示器件具有多个像素单元,所述像素单元的边界线图形为平行四边形,所述平行四边形具有与所述柔性基板的拉伸方向一致的对角线。
可选的,在所述的柔性电子器件中,所述平行四边形的四条边与所述平行四边形的所述对角线所形成的夹角范围在40°~70°之间。
可选的,在所述的柔性电子器件中,所述柔性电子器件为柔性液晶显示器。
可选的,在所述的柔性电子器件中,所述柔性电子器件为柔性有机发光显示器。
相应的,本发明还提供一种柔性电子器件的制造方法,所述柔性电子器件的制造方法包括:
提供一柔性基板;以及
在所述柔性基板上分别形成半导体结构和导线结构,所述半导体结构的沟道方向与所述导线结构的延伸方向一致,并与所述柔性基板的拉伸方向形成小于90°的夹角。
相应的,本发明还提供一种柔性电子器件的制造方法,所述柔性电子器件的制造方法包括:
提供一柔性基板;以及
在所述柔性基板上分别形成多个像素单元、第一导线结构和第二导线结构;其中,所述像素单元具有半导体结构,所述半导体结构的沟道方向与所述第一导线结构的延伸方向一致,并与所述柔性基板的拉伸方向形成小于90°的夹角;
所述第二导线结构设置于所述柔性基板的边缘,所述第二导线结构的 延伸方向与所述柔性基板的边缘线平行,所述第二导线结构上形成有多个通孔,所述通孔的形状为平行四边形,所述平行四边形的对角线与所述柔性基板的拉伸方向一致。
在本发明实施例提供的柔性电子器件及其制造方法中,通过调整半导体结构的沟道方向和第一导线结构的延伸方向,使得所述半导体结构和第一导线结构受应力影响最小,从而保证所述柔性电子器件的电性能以及抗揉性能。
附图说明
图1是现有技术的柔性电子器件的结构示意图;
图2是现有技术的柔性电子器件在受到应力时的结构示意图;
图3是本发明实施例一的柔性电子器件的结构示意图;
图4是本发明实施例的柔性电子器件在受到应力时的结构示意图。
图5是本发明实施例二的柔性电子器件的结构示意图;
图6是本发明实施例二的第二导线结构的结构示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的柔性电子器件及其制造方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
【实施例一】
请参考图3,其为本发明实施例的柔性电子器件的结构示意图。如图3所示,所述柔性电子器件200包括:一柔性基板210以及形成于所述柔性基板210上的器件层;所述器件层包括相互连接的半导体结构220和第一 导线结构230,所述第一导线结构230的延伸方向与所述半导体结构220的沟道方向一致;所述第一导线结构230的延伸方向与所述柔性基板210的拉伸方向形成小于90°的夹角。本发明实施例中的半导体结构为薄膜晶体管结构,具体包括栅极、漏极(图中未示出)、沟道。
具体的,在所述柔性电子器件200中,器件层包括相互连接的半导体结构220和第一导线结构230,所述半导体结构220起到开关作用,所述导线结构230与所述半导体结构220配套,用以与其他的器件实现电性连接。如图3所示,所述半导体结构220的沟道方向(虚线双向箭头所示)与所述第一导线结构230的延伸方向相互平行。
同时,所述第一导线结构230的延伸方向与所述柔性基板210的边缘线L的延伸方向既不平行也不垂直,即所述第一导线结构210的延伸方向与所述柔性基板210的拉伸方向(同所述边缘线L的延伸方向)形成90°以下的夹角。
优选的,所述第一导线结构230的延伸方向与所述柔性基板210的拉伸方向所形成的夹角范围在40°到70°之间,例如,所述第一导线结构230的延伸方向与所述柔性基板210的拉伸方向形成45°夹角、50°夹角、55°夹角、60°夹角或65°夹角。
请参考图4,其为本发明实施例的柔性电子器件在受到应力时的结构示意图。如图4所示,所述柔性电子器件200受力弯曲时,由于所述半导体结构220的沟道方向(虚线双向箭头所示)和第一导线结构230的延伸方向与所述柔性基板210的受力方向(空心箭头所示)不一致,即所述第一导线结构230的延伸方向与所述柔性基板210的受力方向存在一夹角。因此,通过比对图3和图4可发现,所述半导体结构220和第一导线结构230仅发生θ角的转动(从对应于图3的未受应力的原位置l1旋转到受应力作用而导致的新位置l2)而不发生形变。不发生形变意味着此时所述半导体结 构220和第一导线结构230所受的应力最小,所述柔性电子器件200的电性能以及抗揉性能最佳。
现有的柔性电子器件100中,其半导体结构的沟道方向和导线结构的延伸方向均与其柔性基板的受力方向一致(即形成0°夹角)。而本实施例中,所述半导体结构220的沟道方向和第一导线结构230的延伸方向与所述柔性基板210的受力方向不一致,形成一定的夹角。
采用相同的应力对现有的柔性电子器件100和本实施例提供的柔性电子器件200分别进行拉伸实验,实验证明与现有的柔性电子器件100相比,本实施例提供的柔性电子器件200所受的最大应力比较小,而且最大应力的分布区域非常小。
由此可见,本实施例提供的柔性电子器件200中半导体结构220和第一导线结构230所受应力较小,应力作用基本上不会对所述柔性电子器件200的电性能和抗揉性能造成影响。因此,与现有的柔性电子器件100相比,所述柔性电子器件200具有更佳的电性能以及抗揉性能。
相应的,本实施例还提供了一种柔性电子器件的制造方法。请继续参考图3,所述柔性电子器件的制造方法包括:
步骤一:提供一柔性基板210;
步骤二:在所述柔性基板210上分别形成半导体结构220和第一导线结构230,所述半导体结构220的沟道方向与所述第一导线结构230的延伸方向一致,并与所述柔性基板210的拉伸方向(即边缘线L的延伸方向)形成小于90°的夹角。
具体的,首先,提供一柔性基板210,所述柔性基板210通常为透明塑料基板。
接着,在所述柔性基板210上分别形成半导体结构220和第一导线结构230。所述半导体结构220和第一导线结构230均采用图形化工艺形成, 图形化工艺制作的半导体薄膜图形中长边方向(即沟道方向)和导线薄膜图形的延伸方向相互平行,且与所述柔性基板210的拉伸方向(图4中空心箭头所示)形成60°夹角。
至此,形成所述柔性电子器件200,所述柔性电子器件200的器件层包括半导体结构220和第一导线结构230,所述半导体结构220的沟道方向和第一导线结构230的延伸方向一致,且与所述柔性基板210的拉伸方向呈小于90°的夹角。
【实施例二】
请参考图5,其为本发明实施例二的柔性电子器件的结构示意图。如图5所示,所述柔性电子器件300包括:一柔性基板310以及形成于所述柔性基板310上的器件层330;所述器件层330包括相互连接的半导体结构(图中未示出)和第一导线结构(图中未示出),所述第一导线结构的延伸方向与所述半导体结构的沟道方向一致;所述第一导线结构的延伸方向与所述柔性基板310的拉伸方向形成小于90°的夹角。
具体的,在所述柔性电子器件300中,器件层330包括多个像素单元30和第一导线结构,所述多个像素单元30呈阵列排列,每个像素单元30均具有起到开关作用的半导体结构(图中未示出),所述第一导线结构与所述半导体结构配套,用以与其他的器件实现电性连接。所述第一导线结构的延伸方向与所述半导体结构的沟道方向一致。
所述第一导线结构的延伸方向与所述柔性基板310的边缘线既不平行也不垂直,即所述第一导线结构的延伸方向与所述柔性基板310的拉伸方向既不垂直也不平行,而是具有小于90°的夹角。由此,在所述柔性基板310被拉伸时,所述第一导线结构和半导体结构受到应力较小,一定角度上所述半导体结构和第一导线结构仅发生转动而不发生形变。
本实施例中,所述像素单元30的边界线图形为平行四边形,所述平行 四边形的一条对角线与所述柔性基板310的拉伸方向(虚线双向箭头所示)一致。
优选的,所述平行四边形的四条边与其对角线所形成的夹角范围在40°~70°之间。本实施例中,所述平行四边形的四条边与其对角线所形成的夹角均为60°夹角。
所述器件层330还包括第二导线结构(图中未示出),所述第二导线结构设置于所述柔性基板310的边缘,且所述第二导线结构的延伸方向与所述柔性基板310的边缘线平行。
请结合参考图5和图6,所述第二导线结构上设置有多个通孔40,所述多个通孔40沿着所述第二导线结构的延伸方向均匀排布,所述通孔40的形状为平行四边形,所述平行四边形的对角线与所述柔性基板310的拉伸方向(虚线双向箭头所示)一致。
由于所述第二导线结构的延伸方向必须与所述柔性基板310的拉伸方向平行或垂直,在所述第二导线结构的延伸方向设置平行四边形通孔,能够有效防止外部施加的应力集中到导线上,提高所述第二导线结构的抗揉性能。
优选的,所述平行四边形的四条边与其对角线所形成的夹角范围在40°~70°之间。本实施例中,所述平行四边形的四条边与其对角线所形成的夹角均为60°夹角。
本实施例中,所述柔性电子器件300为柔性平板显示器件。本领域技术人员应该知道,本发明对于所述柔性平板显示器件的类型没有特别的限制,可以是柔性液晶显示器(LCD),也可以是柔性有机发光显示器(OLED)或其他类型的柔性平板显示器件。
相应的,本实施例还提供了一种柔性电子器件的制造方法。请继续参考图3,所述柔性电子器件的制造方法包括:
步骤一:提供一柔性基板310;
步骤二:在所述柔性基板310上分别形成多个像素单元30和第一导线结构,所述像素单元30具有半导体结构,所述半导体结构的沟道方向与所述第一导线结构的延伸方向一致,并与所述柔性基板310的拉伸方向形成小于90°的夹角。
具体的,首先,提供一柔性基板310,所述柔性基板310通常为透明塑料基板。
接着,在所述柔性基板310上分别形成多个呈阵列排列的像素单元30和第一导线结构,所述像素单元30具有半导体结构。所述半导体结构和第一导线结构230均采用图形化工艺形成,图形化工艺制作的半导体薄膜图形中长边方向(即沟道方向)和导线薄膜图形的延伸方向相互平行,且与所述柔性基板310的拉伸方向形成60°夹角。
在所述柔性基板310上形成器件层的过程中,还包括采用图形化工艺在所述柔性基板310上形成第二导线结构,所述第二导线结构设置于所述柔性基板的边缘,所述第二导线结构的延伸方向与所述柔性基板的边缘线平行,所述第二导线结构上具有多个通孔,所述通孔的形状为平行四边形,所述平行四边形的对角线与所述柔性基板的拉伸方向一致。
至此,形成所述柔性电子器件300,所述柔性电子器件300的器件层包括半导体结构、第一导线结构和第二导线结构,所述半导体结构的沟道方向和第一导线结构的延伸方向一致,且与所述柔性基板310的拉伸方向呈小于90°的夹角,所述第二导线结构的延伸方向与所述柔性基板310的拉伸方向平行或垂直,所述第二导线结构上设置有降低应力影响的平行四边形通孔。
综上,在本发明实施例提供的柔性电子器件及其制造方法中,通过调整半导体结构的沟道方向和第一导线结构的延伸方向,使得所述半导体结 构和第一导线结构受应力影响最小,从而保证所述柔性电子器件的电性能以及抗揉性能。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (10)

  1. 一种柔性电子器件,其特征在于,包括:一柔性基板以及形成于所述柔性基板上的器件层;
    所述器件层包括相互连接的半导体结构和第一导线结构,所述第一导线结构的延伸方向与所述半导体结构的沟道方向一致;
    所述第一导线结构的延伸方向与所述柔性基板的拉伸方向形成小于90°的夹角。
  2. 如权利要求1所述的柔性电子器件,其特征在于,所述第一导线结构的延伸方向与所述柔性基板的拉伸方向所形成的夹角范围在40°~70°之间。
  3. 如权利要求1所述的柔性电子器件,其特征在于,所述器件层还包括第二导线结构,所述第二导线结构设置于所述柔性基板的边缘,且所述第二导线结构的延伸方向与所述柔性基板的边缘线平行。
  4. 如权利要求3所述的柔性电子器件,其特征在于,所述第二导线结构上设置有多个通孔,所述通孔的形状为平行四边形,所述平行四边形具有与所述柔性基板的拉伸方向一致的对角线。
  5. 如权利要求1所述的柔性电子器件,其特征在于,所述柔性电子器件为柔性平板显示器件,所述柔性平板显示器件具有多个像素单元,所述像素单元的边界线图形为平行四边形,所述平行四边形具有与所述柔性基板的拉伸方向一致的对角线。
  6. 如权利要求4或5所述的柔性电子器件,其特征在于,所述平行四边形的四条边与所述平行四边形的所述对角线所形成的夹角范围在40°~70°之间。
  7. 如权利要求5所述的柔性电子器件,其特征在于,所述柔性电子器 件为柔性液晶显示器。
  8. 如权利要求5所述的柔性电子器件,其特征在于,所述柔性电子器件为柔性有机发光显示器。
  9. 一种柔性电子器件的制造方法,其特征在于,包括:
    提供一柔性基板;以及
    在所述柔性基板上分别形成半导体结构和第一导线结构,所述半导体结构的沟道方向与所述第一导线结构的延伸方向一致,并与所述柔性基板的拉伸方向形成小于90°的夹角。
  10. 一种柔性电子器件的制造方法,其特征在于,包括:
    提供一柔性基板;以及
    在所述柔性基板上分别形成多个像素单元、第一导线结构和第二导线结构;其中,所述像素单元具有半导体结构,所述半导体结构的沟道方向与所述第一导线结构的延伸方向一致,并与所述柔性基板的拉伸方向形成小于90°的夹角;
    所述第二导线结构设置于所述柔性基板的边缘,所述第二导线结构的延伸方向与所述柔性基板的边缘线平行,所述第二导线结构上形成有多个通孔,所述通孔的形状为平行四边形,所述平行四边形的对角线与所述柔性基板的拉伸方向一致。
PCT/CN2017/076100 2016-03-16 2017-03-09 柔性电子器件及其制造方法 WO2017157215A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187017222A KR102078546B1 (ko) 2016-03-16 2017-03-09 플렉서블 전자 장치 및 이를 위한 제조 방법
JP2018526687A JP6858774B2 (ja) 2016-03-16 2017-03-09 フレキシブルエレクトロニクス機器及びそのための製造方法
US15/778,481 US11119536B2 (en) 2016-03-16 2017-03-09 Flexible electronic device and manufacturing method therefor
EP17765757.4A EP3367438A4 (en) 2016-03-16 2017-03-09 Flexible electronic device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610150011.7 2016-03-16
CN201610150011.7A CN107204342B (zh) 2016-03-16 2016-03-16 柔性电子器件及其制造方法

Publications (1)

Publication Number Publication Date
WO2017157215A1 true WO2017157215A1 (zh) 2017-09-21

Family

ID=59850095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076100 WO2017157215A1 (zh) 2016-03-16 2017-03-09 柔性电子器件及其制造方法

Country Status (7)

Country Link
US (1) US11119536B2 (zh)
EP (1) EP3367438A4 (zh)
JP (1) JP6858774B2 (zh)
KR (1) KR102078546B1 (zh)
CN (1) CN107204342B (zh)
TW (1) TWI649014B (zh)
WO (1) WO2017157215A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073248B2 (en) 2014-09-28 2021-07-27 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED bulb lamp
US11690148B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament and LED light bulb
US11421827B2 (en) 2015-06-19 2022-08-23 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US11686436B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and light bulb using LED filament
US11525547B2 (en) 2014-09-28 2022-12-13 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11543083B2 (en) 2014-09-28 2023-01-03 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US11085591B2 (en) 2014-09-28 2021-08-10 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
CN108831308A (zh) * 2018-06-27 2018-11-16 上海天马有机发光显示技术有限公司 一种可折叠显示面板及可折叠显示装置
CN111968518B (zh) * 2020-08-31 2022-03-08 上海天马微电子有限公司 可拉伸显示面板及其制作方法、可拉伸显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578586A (zh) * 2003-07-24 2005-02-09 日本电气株式会社 柔性衬底和电子设备
CN1901206A (zh) * 2005-07-20 2007-01-24 三星Sdi株式会社 有机发光显示设备
JP2007073800A (ja) * 2005-09-08 2007-03-22 Seiko Epson Corp 半導体装置
CN102169960A (zh) * 2011-03-16 2011-08-31 华中科技大学 一种柔性电子器件薄膜晶体管的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990389B2 (ja) 2003-07-24 2007-10-10 Necアクセステクニカ株式会社 フレキシブル基板および電子装置
JP4197716B2 (ja) 2006-10-03 2008-12-17 株式会社東芝 立体映像表示装置
JP5240827B2 (ja) * 2008-04-15 2013-07-17 Necカシオモバイルコミュニケーションズ株式会社 フレキシブル配線基板、及び電子機器
KR101685019B1 (ko) 2011-01-04 2016-12-12 삼성디스플레이 주식회사 유기발광표시장치
CN102412157B (zh) 2011-04-29 2014-04-30 上海华力微电子有限公司 用于提高半导体器件性能的附加空置有源区填充方法
KR101796812B1 (ko) 2013-02-15 2017-11-10 엘지디스플레이 주식회사 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치 제조 방법
KR102144432B1 (ko) * 2013-11-06 2020-08-13 엘지디스플레이 주식회사 플렉서블 표시 장치 및 커브드 표시 장치
KR102170265B1 (ko) 2014-04-17 2020-10-26 삼성디스플레이 주식회사 표시 장치
CN104091891A (zh) * 2014-06-03 2014-10-08 京东方科技集团股份有限公司 柔性基板及其制造方法、显示装置
KR102234317B1 (ko) 2014-06-10 2021-03-31 삼성디스플레이 주식회사 접이 영역을 구비한 가요성 표시 장치
JP6474232B2 (ja) * 2014-11-05 2019-02-27 株式会社ジャパンディスプレイ 表示装置
US9706607B2 (en) * 2014-12-10 2017-07-11 Lg Display Co., Ltd. Flexible display device with multiple types of micro-coating layers
KR102369368B1 (ko) * 2015-09-30 2022-03-02 엘지디스플레이 주식회사 영상 처리 회로 및 그를 가지는 표시 장치
US10756310B2 (en) * 2017-09-29 2020-08-25 Sharp Kabushiki Kaisha Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578586A (zh) * 2003-07-24 2005-02-09 日本电气株式会社 柔性衬底和电子设备
CN1901206A (zh) * 2005-07-20 2007-01-24 三星Sdi株式会社 有机发光显示设备
JP2007073800A (ja) * 2005-09-08 2007-03-22 Seiko Epson Corp 半導体装置
CN102169960A (zh) * 2011-03-16 2011-08-31 华中科技大学 一种柔性电子器件薄膜晶体管的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367438A4 *

Also Published As

Publication number Publication date
CN107204342A (zh) 2017-09-26
KR20180086445A (ko) 2018-07-31
JP2019503581A (ja) 2019-02-07
TWI649014B (zh) 2019-01-21
EP3367438A4 (en) 2018-10-10
EP3367438A1 (en) 2018-08-29
US20180341291A1 (en) 2018-11-29
TW201737768A (zh) 2017-10-16
CN107204342B (zh) 2019-08-23
JP6858774B2 (ja) 2021-04-14
KR102078546B1 (ko) 2020-02-18
US11119536B2 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2017157215A1 (zh) 柔性电子器件及其制造方法
US20210057659A1 (en) Array substrate, stretchable display device, and method for manufacturing array substrate
US11302763B2 (en) Flexible OLED display panel and manufacturing method thereof
US11723239B2 (en) Display device
US10429979B2 (en) Touch film, touch panel and touch display device
CN109755412B (zh) 一种柔性基板、制作方法、柔性显示装置和电子器件
US11437579B2 (en) Stretchable electronic device and method of fabricating the same
CN109192878A (zh) 柔性oled显示面板
US10763450B2 (en) Display substrate, method for manufacturing display substrate, display panel, and display device
WO2021143846A1 (zh) 阵列基板、显示面板及显示装置
WO2020124799A1 (zh) 柔性 oled 显示面板以及显示装置
US20190187844A1 (en) Oled touch display panel and manufacturing method thereof
TW202019255A (zh) 可撓式陣列基板及其製造方法
US11698667B2 (en) Display panel and flexible display device
JP2021520060A (ja) アモルファス金属薄膜トランジスタ
US11251399B2 (en) Display substrate, display apparatus, method of fabricating display substrate
CN110571241B (zh) 阵列基板及其制作方法
US20180308942A1 (en) Manufacturing method of electrode layer of tft substrate and manufacturing method of flexible tft substrate
CN109801888A (zh) 第一电子元件及包含第一电子元件的显示设备
KR20180074171A (ko) 플렉서블 기판과 이를 포함하는 플렉서블 표시장치 및 그 제조 방법
WO2020124745A1 (zh) 一种显示屏组件及电子装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526687

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15778481

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017765757

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187017222

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017222

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE