WO2017154464A1 - 走行位置検出装置、走行位置検出方法 - Google Patents

走行位置検出装置、走行位置検出方法 Download PDF

Info

Publication number
WO2017154464A1
WO2017154464A1 PCT/JP2017/005059 JP2017005059W WO2017154464A1 WO 2017154464 A1 WO2017154464 A1 WO 2017154464A1 JP 2017005059 W JP2017005059 W JP 2017005059W WO 2017154464 A1 WO2017154464 A1 WO 2017154464A1
Authority
WO
WIPO (PCT)
Prior art keywords
road
travel
lane
host vehicle
traveling
Prior art date
Application number
PCT/JP2017/005059
Other languages
English (en)
French (fr)
Inventor
健 式町
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016250222A external-priority patent/JP2017161501A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/082,290 priority Critical patent/US10984551B2/en
Priority to DE112017001175.2T priority patent/DE112017001175T5/de
Publication of WO2017154464A1 publication Critical patent/WO2017154464A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the present disclosure relates to a technique for detecting a traveling position where the host vehicle is traveling on a road in which a lane is partitioned by a lane marking.
  • the vehicle travel position can be used for various driving assistance. For example, it is possible to guide the route to the destination by referring to the map information, or to automatically decelerate before a sudden curve.
  • the detection accuracy of the travel position can be increased to such an extent that it is possible to determine whether the traveling lane is a traveling lane or an overtaking lane, the driver is encouraged to change the lane early, Detailed driving support is also possible.
  • a technique for detecting the traveling position of a vehicle As a technique for detecting the traveling position of a vehicle, a technique for detecting a traveling position by receiving a positioning signal from a GNSS (Global Navigation System) satellite is known. Includes a large error, and it is difficult to determine whether or not the traveling position of the vehicle is on a road. Therefore, in addition to a technique using GNSS, a technique called dead reckoning navigation or a technique called map matching is combined to increase the position accuracy to a practical level.
  • GNSS Global Navigation System
  • dead reckoning refers to detecting a momentary movement distance and movement direction change amount using a sensor mounted on a vehicle, and accumulating them to obtain a relative position from a reference position obtained at a certain time. This is a detection method.
  • map matching is a method for identifying the travel position of the vehicle on the map by comparing the travel route obtained by dead reckoning with the road shape stored in the map information.
  • map matching specifies a traveling position from the shape of a moving route, it cannot always be specified.
  • Patent Document 1 a technique has been proposed in which position accuracy is determined by detecting a lane line on the road from an image photographed by an in-vehicle camera.
  • the position accuracy that can distinguish the running lane is improved. It cannot be secured.
  • one of the objects of the present disclosure is to provide a technology that can determine a traveling position with positional accuracy that can distinguish a traveling lane even when a lane marking cannot be detected for some reason. is there.
  • a travel position detection device and a travel position detection method include route information that represents a route of a road on a map and lane line information that is information about a lane line displayed on the road.
  • lane line information that is information about a lane line displayed on the road.
  • a road image is taken from the own vehicle, and a lane line is extracted.
  • the travel position of the host vehicle including the position in the width direction on the road is determined. decide.
  • the traveling position of the host vehicle on the map that is, The traveling position of the host vehicle including the position in the width direction on the road is estimated.
  • the traveling position can be determined with position accuracy that allows the lane being traveled to be identified. Even when the lane markings cannot be extracted from the road image, the traveling position of the host vehicle on the map can be estimated.
  • the traveling position on the map it is estimated based on the travel speed and travel direction of the host vehicle based on the travel position that has already been obtained. be able to.
  • FIG. 1 is an explanatory diagram showing a host vehicle equipped with a traveling position detection device.
  • FIG. 2 is a block diagram showing a rough internal structure of the traveling position detection device.
  • FIG. 3 is a flowchart showing the first half of the travel position detection process.
  • FIG. 4 is a flowchart showing the latter half of the travel position detection process.
  • FIG. 5 is an explanatory diagram illustrating map information including lane marking information.
  • FIG. 6 is an explanatory diagram illustrating a state in which a lane marking is extracted from a road image.
  • FIG. 7 is an explanatory diagram showing a state in which the position in the width direction on the road is determined based on the lane line extracted from the road image and the lane line information of the map information.
  • FIG. 8 is an explanatory view exemplifying a state in which a travel locus is generated by determining the vehicle position based on the lane line extracted from the road image and the lane line information.
  • FIG. 9 is an explanatory diagram illustrating a state in which a travel locus is estimated based on the travel speed and travel direction of the host vehicle when a lane marking cannot be extracted from the road image.
  • FIG. 10 is an explanatory diagram showing that the running position on the road is not lost even when there is a portion on the road where the lane marking cannot be identified.
  • FIG. 11 is an explanatory diagram showing that the running position on the road is not lost even when there is a range where the lane marking cannot be displayed on the road.
  • FIG. 12 is an explanatory view exemplifying the host vehicle 1 of the first modified example equipped with an in-vehicle camera for photographing a surrounding road.
  • FIG. 13 is an explanatory diagram showing a situation in which the host vehicle of the first modified example determines a travel position by extracting lane markings on a surrounding road.
  • FIG. 14 is a block diagram showing a rough internal structure of the traveling position detection device of the first modified example.
  • FIG. 15 is an explanatory diagram of a case where the road shape changes from a straight line to a curve within the range of the error of the route position.
  • FIG. 12 is an explanatory view exemplifying the host vehicle 1 of the first modified example equipped with an in-vehicle camera for photographing a surrounding road.
  • FIG. 13 is an explanatory diagram showing a situation in which
  • FIG. 16 is an explanatory diagram of a case where the road shape changes from a straight line to a curve within the range of the error of the route position, and the road lane markings are unclear.
  • FIG. 17 is an explanatory diagram showing a case where the road shape within the range of the error of the route position is a straight line.
  • FIG. 18 is an explanatory diagram showing a case where the road shape within the range of the error of the route position is a curve.
  • FIG. 19 is a flowchart showing the first half of the travel position detection process of the second modification.
  • FIG. 20 is a flowchart showing the latter half of the travel position detection process of the second modification.
  • FIG. 21 is a flowchart showing the first half of the travel position detection process of the third modification.
  • FIG. 22 is a flowchart showing the latter half of the travel position detection process of the third modified example.
  • FIG. 23 is a block diagram showing a rough internal structure of the traveling position detection device of the fourth modified example.
  • FIG. 1 shows a rough configuration of the host vehicle 1 on which the traveling position detection device 100 of the present embodiment is mounted. As shown in the figure, a vehicle speed sensor 11, a direction sensor 12, a positioning device 13, an in-vehicle camera 14, a driving support device 200, and the like are mounted on the host vehicle 1 together with the travel position detection device 100.
  • the vehicle speed sensor 11 detects the rotation speed of the tire or axle of the host vehicle 1 and outputs it to the traveling position detection device 100. If the number of rotations per unit time for the tire or axle is known, the vehicle speed of the host vehicle 1 can be obtained.
  • the azimuth sensor 12 is a sensor that outputs data related to the traveling direction of the host vehicle 1, and a gyro sensor, a geomagnetic sensor, or the like can be used.
  • a gyro sensor used as the azimuth sensor 12
  • the amount of change in the traveling direction of the host vehicle 1 is output from the gyro sensor, so that the traveling position detection device 100 accumulates this output, thereby 1 traveling direction can be detected.
  • a geomagnetic sensor is used as the direction sensor 12
  • information on the direction is output with reference to the direction of geomagnetism, so the traveling position detection device 100 detects the traveling direction of the host vehicle 1 based on this output. be able to.
  • the positioning device 13 receives a positioning signal from the positioning satellite 20 and analyzes the received positioning signal, thereby calculating a positioning result including position information, velocity information, and the like.
  • the in-vehicle camera 14 captures an image of a road on which the host vehicle 1 is traveling (hereinafter referred to as a road image) at a constant cycle (for example, 30 msec) and outputs the captured image to the traveling position detection device 100.
  • a road image an image of a road on which the host vehicle 1 is traveling
  • a constant cycle for example, 30 msec
  • the travel position detection device 100 acquires the vehicle speed of the host vehicle 1 based on the output of the vehicle speed sensor 11, acquires the travel direction of the host vehicle 1 based on the output of the azimuth sensor 12, and further receives the position from the positioning device 13. Get information. And the running position of the own vehicle 1 is determined using such information and the map information stored beforehand.
  • the traveling position detection device 100 analyzes the road image acquired by the in-vehicle camera 14 and extracts lane markings that divide the lane of the traveling road. Then, based on the positional relationship between the extracted lane markings and the host vehicle 1, a position in the width direction on the traveling road or a traveling lane is detected. Then, the detected position in the width direction on the road or the traveling lane is output to the driving support device 200. In this way, for example, it is possible to perform detailed driving assistance such as guiding lane changes in advance before turning right or left.
  • the lane marking in this specification is sufficient if it is a line that separates road lanes, and does not necessarily have to be a line that separates lanes and lanes. Therefore, for example, a line that separates a roadside zone and a lane that exist on both sides of a single-lane road, such as a narrow farm road or a one-way alley, also corresponds to a lane marking in this specification.
  • the traveling position detection apparatus 100 of the present embodiment employs the following configuration so as not to hinder driving support even if the lane marking cannot be detected for some reason.
  • FIG. 2 is a block diagram showing a rough internal structure of the traveling position detection apparatus 100 of this embodiment.
  • the travel position detection device 100 of this embodiment includes a travel speed detection unit 101, a travel direction detection unit 102, a positioning result acquisition unit 103, a map information storage unit 104, a route position determination unit 105, and the like.
  • the travel position determination unit 106, the road image acquisition unit 107, the offset position detection unit 108, and the travel lane determination unit 109 are provided.
  • these “parts” focus on the functions provided by the travel position detection device 100 of this embodiment for determining the travel position on the road including the position in the width direction of the road. This is an abstract concept in which the inside of the position detection device 100 is classified for convenience. Therefore, it does not represent that the traveling position detection device 100 is physically separated.
  • these “units” can be realized as a computer program executed by the CPU, can be realized as an electronic circuit including an LSI, or can be realized as a combination thereof.
  • the travel speed detection unit 101 acquires the travel speed based on the tire or axle rotation speed received from the vehicle speed sensor 11 and outputs the travel speed to the route position determination unit 105.
  • the traveling direction detection unit 102 acquires the traveling direction of the host vehicle 1 based on the output of the direction sensor 12, and then outputs the traveling direction to the route position determination unit 105.
  • the traveling direction of the host vehicle 1 can be obtained by accumulating the sensor output when the direction sensor 12 is a gyro sensor, and the sensor output is converted when the direction sensor 12 is a geomagnetic sensor. Can be determined by
  • the positioning result acquisition unit 103 receives the information on the position of the host vehicle 1 calculated by the positioning device 13 based on the positioning signal from the positioning satellite 20 from the positioning device 13 and outputs the information to the route position determination unit 105.
  • the host vehicle 1 travels by referring to the map information stored in the map information storage unit 104. Determine the route position. That is, as described above with reference to FIG. 1, the travel position detection device 100 according to the present embodiment determines the travel position of the host vehicle 1 including the position in the width direction of the road on which the host vehicle 1 is traveling. However, prior to that, the position of the host vehicle 1 on the road that does not include the position in the width direction is determined as the route position.
  • the “route position” refers to a position on a road that does not include a position in the width direction.
  • the “traveling position” refers to a position on the road including a position in the width direction.
  • the road image acquisition unit 107 acquires a road image from the in-vehicle camera 14 and outputs the obtained road image to the offset position detection unit 108.
  • the offset position detection unit 108 extracts a lane line from the road image by analyzing the road image. And the offset position with respect to the lane marking of the own vehicle 1 is detected based on the extraction result of the lane marking.
  • the “offset position” is a distance from the own vehicle 1 to a lane line measured in the width direction of the road.
  • the travel position determination unit 106 acquires map information for the route position from the map information storage unit 104.
  • the map information storage unit 104 includes route information representing the route of the road on the map and lane line information that is information about the lane line displayed on the road. Is stored as map information.
  • the travel position determination unit 106 includes the position of the host vehicle 1 including the position in the width direction on the road based on the lane line information about the route position of the host vehicle 1 and the offset position of the host vehicle 1 with respect to the lane line. After determining the travel position, the determined travel position is output to the driving support device 200.
  • the travel lane determination unit 109 is based on the travel position of the host vehicle 1 determined by the travel position determination unit 106 (that is, the route position and the position in the width direction on the road). And the determined travel lane is output to the driving support device 200.
  • the driving support device 200 is described as outputting the traveling position and the traveling lane of the host vehicle 1, but either one may be output.
  • the traveling position detection apparatus 100 of the present embodiment Since the traveling position detection apparatus 100 of the present embodiment has the above-described configuration, the lane markings on the road disappear, there are places where the lane markings cannot be identified due to snow, etc. Even when the road image cannot be acquired temporarily due to poor connection of the in-vehicle camera 14, the position in the width direction on the road can be determined. Hereinafter, a process in which the traveling position detection device 100 according to the present embodiment determines a position in the width direction on the road will be described.
  • Travel position detection processing 3 and 4 show a flowchart of the travel position detection process executed by the travel position detection device 100.
  • FIG. 3 and 4 show a flowchart of the travel position detection process executed by the travel position detection device 100.
  • the travel speed of the host vehicle 1 is acquired based on the output of the vehicle speed sensor 11, and further the travel direction of the host vehicle 1 is acquired based on the output of the direction sensor 12 (S101).
  • a positioning result including the position information (hereinafter referred to as positioning position) of the host vehicle 1 calculated by the positioning device 13 based on the positioning signal is acquired from the positioning device 13 (S102).
  • the map information stored in the map information storage unit 104 of the present embodiment includes two types of information: route information and lane marking information.
  • the route information is information describing the shape of the road on the map without considering the width of the road, such as the intersection of the road and the length of the road.
  • “route” means the shape of a road on a map that does not consider such a width.
  • the lane marking information is information about the presence or absence of a lane marking displayed on the road, the type of lane marking, the position of the lane marking in the width direction on the road, and the like.
  • the lane markings referred to in the present specification are not limited to the line that separates the lane and the lane, but also include the line that separates the roadside band and the lane.
  • FIG. 5 illustrates the map information stored in the map information storage unit 104 of this embodiment.
  • FIG. 5A conceptually shows route information stored in the map information.
  • the route information represents the shape of the road on the map. Therefore, by reading out the route information, it is possible to acquire information such as the direction of the road, the position of the intersection, the distance to the next intersection, and the route to the destination.
  • the lane line information is also stored in the map information of this embodiment, and more detailed information about the road can be acquired by reading the lane line information.
  • the lane line information includes information such as the presence / absence of a lane line displayed on the road and the position and type of the lane line. Information such as whether it is a line or a double lane can also be acquired.
  • roads with multiple lanes are displayed in black, and roads with single lanes are displayed in white.
  • FIG. 5B conceptually shows lane line information stored for the roads shown in black in FIG. 5A.
  • the road at the position shown in FIG. 5B is a 6-lane road with 3 lanes one way, and the white lane line between the 3 lanes with one line (that is, intermittently drawn).
  • the white lane line is separated by a white solid lane line (ie, a white lane line drawn continuously).
  • FIG. 5 (c) conceptually shows lane marking information about the road displayed in white in FIG. 5 (a).
  • the road at the position shown in FIG. 5C is a single-lane road that is separated from the roadside belt on both sides by a white solid lane marking.
  • the lane line information is read in this way, it is possible to obtain detailed information about the lane line displayed on the road.
  • the position of the host vehicle 1 on the route (hereinafter referred to as a route position) is determined using these ( S104 in FIG. 3).
  • a route position is determined using these ( S104 in FIG. 3).
  • Various well-known methods can be used for determining the route position using the traveling speed, the traveling direction, and the like.
  • the road at the route position is a multi-lane road using the lane marking information of the map information (S105).
  • the running road is a multi-lane road
  • such processing is not necessary. Therefore, when the route position of the host vehicle 1 is determined (S104), it is determined whether or not the road at the route position is a double lane.
  • the road at the route position is a multi-lane road (S105: yes)
  • the road image in front of the host vehicle 1 is acquired.
  • the road image Since the running road is a double lane, the road image should have a lane marking separating the lane and lane. Therefore, a lane line is extracted from the road image (S107).
  • FIG. 6 illustrates a state in which a lane line is extracted from a road image of a road having a plurality of lanes.
  • FIG. 6A shows a road image.
  • the road image includes many objects such as a forward vehicle, a roadside zone, a median strip, and a streetlight.
  • the shape, color, and traveling direction of the host vehicle 1 are also included.
  • the partition line finally extracted in this manner is indicated by a one-dot chain line.
  • a line has been extracted.
  • the two lane markings that divide the three lanes are referred to as DL1 and DL2 from the left side, and the lane markings between the left side roadside zone are denoted as DL3.
  • the dividing line between the right median strip is referred to as DL4.
  • the offset position of the vehicle 1 with respect to the lane line is detected as follows (S109).
  • the offset position of the own vehicle 1 with respect to the lane marking is a distance between the own vehicle 1 and the lane marking measured from the own vehicle 1 in the width direction of the road.
  • FIG. 7 shows a method for detecting the offset position of the vehicle 1 with respect to the lane marking.
  • the road image always includes an image in the same range from the host vehicle 1. . Accordingly, the subject directly in front of the host vehicle 1 is always shown at some position on the same straight line on the road image, and the subject at the same distance on the road ahead of the host vehicle 1 is shown on the road image. , It appears at the same height from the bottom of the screen. If this is utilized, the positional relationship between the lane marking and the host vehicle 1 can be obtained based on the position of the lane marking on the road image.
  • the arrow Pc shown in black in FIG. 7A represents the position of the central axis of the host vehicle 1 on the road image. Further, the position of the lane marking on the road image is detected at a predetermined height from the lower end of the road image.
  • the respective lane markings DL1 to DL4 are detected at a predetermined height from the lower end of the road image.
  • a distance L1 on the road image from the arrow Pc indicating the central axis of the host vehicle 1 to the left point DP1 and a distance L2 from the arrow Pc to the right point DP2 are detected.
  • a distance Ra on the road image from the point DP1 to the point DP3 and a distance Rc from the point DP2 to the point DP4 are detected.
  • the width direction of the road is as follows. The position of the own vehicle 1 can be calculated.
  • the road width on the road image (that is, the distance from the leftmost division line DL3 to the rightmost division line DL4) is Ra + L1 + L2 + Rc.
  • the distance from the leftmost lane line DL3 on the road image to the center of the own vehicle 1 is Ra + L1
  • the distance from the own vehicle 1 to the rightmost lane line DL4 is L2 + Rc.
  • the lane line information stores the width of each lane on the actual road.
  • the widths of the three lanes are stored as Wra, Wrb, and Wrc sequentially from the left side.
  • the actual road width Wr is Wra + Wrb + Wrc.
  • the actual road width Wr corresponds to Ra + L1 + L2 + Rc.
  • the host vehicle 1 on the actual road has a distance LD of K ⁇ (Ra + L1) from the left end of the road. Will be.
  • the distance RD is K ⁇ (L2 + Rc) from the right end of the road.
  • the position of the vehicle 1 in the width direction on the actual road is determined based on the lane marking information (S110).
  • the position on the road when the width of the road is not considered that is, the route position
  • the travel position on the road including the position in the width direction is obtained. It will be decided.
  • the distance from the leftmost marking line DL3 to the own vehicle 1 and the distance from the own vehicle 1 to the rightmost marking line DL4 are detected as offset positions on the road image. explained. And it demonstrated as what calculates
  • the distance L1 from the own vehicle 1 to the left adjacent marking line DL1 and the distance from the own vehicle 1 to the right adjacent marking line DL2 on the road image may be detected as offset positions, respectively.
  • the conversion coefficient K may be obtained by calculating a ratio between the sum of the distances obtained as the offset positions and the actual lane width Wrb.
  • FIG. 8 illustrates a state in which a travel locus on a road is generated.
  • the travel locus generated in the past is indicated by a thick solid line.
  • a position C0 indicated by a black circle in the drawing represents the travel position determined last.
  • the determined new travel position is output to the driving support device 200 (S112).
  • the driving support device 200 can receive the travel position including the position in the width direction of the road, it is possible to perform fine driving support such as guiding lane changes.
  • the traveling position of the host vehicle 1 is determined by the above-described method (that is, the method using the offset position with respect to the lane line). Therefore, it is not possible to generate a travel locus. Therefore, in such a case, a travel locus is generated using the following method.
  • the moving distance and moving direction of the host vehicle 1 are acquired (S114).
  • the moving distance and moving direction acquired here are the moving distance and moving direction from the travel position determined last time. Since the travel speed and travel direction of the host vehicle 1 have already been acquired in S101, and since the elapsed time since the travel position was previously determined is known, the travel distance and travel direction of the host vehicle 1 can be easily determined. Can be sought.
  • the traveling position (that is, the route position and the position in the width direction on the road) is estimated (S115). If the previous travel position is not the position determined in S110 but the position estimated in S115, the current travel position is determined using the travel distance and travel direction from the travel position estimated last time. Can be estimated.
  • FIG. 9 shows a method for estimating a new travel position based on the travel distance and travel direction of the host vehicle 1 from the travel position.
  • the thick solid line shown in FIG. 9A represents the travel locus already obtained, and the position C0 indicated by a black circle at the tip of the travel locus represents the last travel position stored last. Yes.
  • the thick broken line shown in FIG. 9 (b) represents that a new travel position has been estimated based on the travel speed and the travel direction in this way.
  • estimating a new travel position also means estimating a new offset position (here, the distance from both ends of the road). Accordingly, when the lane marking cannot be extracted from the road image, the offset position and the traveling position are determined in the reverse order to the case where the lane marking can be extracted. That is, when the lane line can be extracted from the road image, as described above, the traveling position of the host vehicle 1 is determined using the offset position with respect to the extracted lane line and the lane line information. On the other hand, when the lane line could not be extracted, the travel position on the road is estimated based on the travel speed, travel direction, and map information (that is, route information and lane line information). The offset position is estimated based on the estimated travel position and lane marking information.
  • FIG. 9B broken arrows shown on both sides of the host vehicle 1 indicate that the offset positions from the host vehicle 1 to both sides of the road are estimated.
  • the traveling speed and traveling direction acquired at that time may be stored. If the lane line could not be extracted from the road image, instead of using the travel speed and travel direction at that time, the travel speed and travel direction when the previous travel position was obtained are used to It is good also as estimating the driving
  • a traveling locus can be generated by storing the estimated new traveling position (S111 in FIG. 4).
  • the vehicle 1 when the lane line can be extracted from the road image, the vehicle 1 travels on the road based on the offset position with respect to the extracted lane line. The position can be determined. Even when the lane line cannot be extracted from the road image, the travel position of the host vehicle 1 on the road can be estimated based on the travel speed and travel direction of the host vehicle 1 and the map information.
  • the traveling position of the host vehicle 1 on the road can be determined based on the offset position with respect to the lane line and the lane line information stored in advance.
  • the host vehicle 1 is located at a position moved by the hatched arrow in the figure with reference to the travel position at the position (b) at which the travel position is previously determined.
  • the size and direction of the arrow can be determined based on the traveling speed and traveling direction of the host vehicle 1. If the position of the vehicle 1 estimated in this way and the previously stored map information (that is, route information and lane marking information) are combined, as indicated by the dashed arrow in FIG.
  • the traveling position of the host vehicle 1 can be estimated.
  • the traveling position for the position (d) can be estimated by the same method using the traveling position estimated for the position (c) as a reference. If the travel position of the host vehicle 1 can be estimated in this way, even if the lane marking on the road disappears or is difficult to see, for example, a lane change instruction is given prior to a right or left turn. It is possible to provide detailed driving assistance such as to do.
  • a lane line can be extracted from the road image. Therefore, based on the offset position and lane line information with respect to the extracted lane line, the vehicle 1 travels on the road. The position can be determined.
  • the travel position at the position (a), the position (b), the position (e), and the position (f) is the actual travel position obtained from the road image
  • the position (c) and the position Since the travel position in (d) is only estimated based on the travel speed and the travel direction, an error is included. Therefore, if it is repeated to estimate a new travel position with reference to a travel position that includes an error, there is a concern that progressive errors will accumulate and it will be difficult to estimate the correct travel position.
  • the estimated travel position is used as a reference for a short distance.
  • a large error is not accumulated even if a new travel position is estimated.
  • the correct traveling position can be immediately determined even if the accumulated error is large.
  • the travel position detection device 100 can obtain the travel position on the road even if the lane line cannot be extracted. However, the traveling position of the host vehicle 1 can be obtained.
  • the vehicle in a region where a lane marking is drawn on the road, the vehicle travels while determining the traveling position using the lane marking extracted from the road image. And if it enters into the area where a lane marking does not exist, it will run, estimating the run position of the own vehicle 1 using a run speed, a run direction, and map information. If it carries out like this, as shown with the broken line in the figure, it will also become possible to perform the driving assistance which guides the own vehicle 1 to a suitable charge gate.
  • the host vehicle 1 illustrated in FIG. 12 includes four in-vehicle cameras that capture a road image around the host vehicle 1.
  • the front vehicle-mounted camera 14F mounted in front of the host vehicle 1 images a road in the surrounding area AF on the front side of the host vehicle 1
  • the rear vehicle-mounted camera 14B mounted behind the host vehicle 1 is The road in the surrounding area AB on the rear side of the host vehicle 1 is photographed.
  • the left in-vehicle camera 14L mounted on the left side of the host vehicle 1 captures the road in the left surrounding area AL
  • the right in-vehicle camera 14R mounted on the right side is in the right surrounding area AR. Is shooting the road.
  • the host vehicle 1 shown in FIG. 12 is traveling on the right lane of a road having two lanes.
  • the lane marking DLC at the center of the road and the lane marking DLR at the right end of the road can be extracted.
  • the lane marking DLC can be extracted from the road image of the left in-vehicle camera 14L
  • the lane marking DLR can be extracted from the road image of the right in-vehicle camera 14R.
  • the traveling position on the road can be determined or estimated in the same manner as in the above-described embodiment. it can.
  • a broken lane line (that is, an intermittent lane line) is extracted on the left side of the host vehicle 1, and a solid lane line (that is, continuous) on the right side of the host vehicle 1.
  • a lane line is extracted.
  • the center lane line is a broken lane line
  • the left and right lane lines are solid lane lines (see FIG. 12). If so, the travel position on the road can be determined based on the lane marking information. That is, the left lane line of the host vehicle 1 is a dashed lane line, and the right lane line is a solid lane line. Therefore, according to the lane line information, as shown in FIG. You can determine that you are driving in a lane.
  • the travel position of the host vehicle 1 can be determined by using this distance L2 in combination with the lane marking information. For example, if the road width Wr is obtained from the lane line information, the distance to the lane line DLL at the left end of the road can also be calculated as Wr ⁇ L2.
  • the lane line detected on the left side of the host vehicle 1 is a solid lane line
  • the lane line detected on the right side of the host vehicle 1 is a dashed lane line. In this case, it can be determined that the vehicle is traveling in the left lane as shown in FIG.
  • the traveling position of the host vehicle 1 can be determined.
  • the distance to the lane marking DLR at the right end of the road can also be calculated by Wr ⁇ L1.
  • FIG. 14 shows a rough internal structure of the travel position detecting device 100 of the first modified example that enables such a thing.
  • the travel position detection device 100 of the first modification shown in FIG. 14 is different from the travel position detection device 100 described above with reference to FIG. 2 in place of the travel lane determination unit 109 that determines the travel lane from the travel position.
  • the difference is that a travel lane identifying unit 110 that identifies a travel lane based on lane marking information is provided.
  • the offset position detection unit 108 detects the offset position by extracting the lane line from the road image, and also detects the type of the lane line, and the obtained offset position and The type of lane marking is output to the traveling lane identification unit 110.
  • map information storage unit 104 also stores the types of lane markings as lane marking information.
  • the travel lane identification unit 110 identifies the travel lane in which the host vehicle 1 is traveling based on the received type of lane line and the type of lane line read from the map information storage unit 104, and then a travel position determination unit. 106 and the driving support device 200.
  • the travel position determination unit 106 receives the route position received from the route position determination unit 105, the map information read from the map information storage unit 104, and the offset position received from the offset position detection unit 108. In addition to the above, taking the travel lane received from the travel lane identifying unit 110 into consideration, the travel position on the road is determined and then output to the driving support device 200.
  • the traveling lane in which the own vehicle 1 is traveling is specified by collating the detected type of the lane line with the type of the lane line stored in the lane line information. In this way, if the traveling lane is specified, on the road based on the offset position with respect to the left and right lane markings of the own vehicle 1 detected from the road image and the information on the width of the lane stored in the lane marking information. The traveling position at can be determined.
  • the running position on the road can be determined in this way, the running position on the road can be estimated in the same manner as in the above-described embodiment even if the lane marking cannot be extracted from the road image. It becomes.
  • the type of lane marking is not limited to a broken lane marking or a solid lane marking, but other characteristics such as the color of the lane marking may be stored.
  • information such as characters, figures, paint color of road surface displayed on the road may be stored as lane marking information. And when such information is extracted from a road image, it is good also as specifying the lane in which the own vehicle 1 is drive
  • the travel position, travel direction, positioning result, and map information of the host vehicle 1 are used in combination, thereby including the route position of the host vehicle 1 (that is, including the width direction of the road). It was explained that it can be determined with sufficient accuracy. In fact, when the host vehicle 1 is traveling on a road having a characteristic shape, it is sufficient to match the traveling locus obtained by accumulating the traveling speed and traveling direction of the host vehicle 1 with the shape of the road. The route position can be determined with high accuracy.
  • information about the magnitude of the error included in the determined route position can be obtained from the correction amount when matching the traveling locus of the host vehicle 1 with the shape of the road. For example, if the correction amount when matching the traveling locus of the host vehicle 1 with the shape of the road is sufficiently small, the route position does not actually change greatly even if matching is not performed. In such a case, the route position is determined with sufficient accuracy. Therefore, it can be considered that the error included in the determined route position is small. On the other hand, when the correction amount is large, although the necessary accuracy is managed by matching, the determined route position is considered to contain a potentially large error.
  • the shape of the road since the shape of the road must be characteristic in order to match the traveling locus of the host vehicle 1 with the shape of the road, it cannot always be matched. Therefore, in a situation where a straight line or a gentle curve continues over a long distance, the state of traveling without correction of the position by matching based on the shape continues, and the error is considered to be further increased.
  • the accuracy of the route position may be lowered depending on conditions. Then, in a state where the accuracy of the route position is reduced, the accuracy of the route position may be further reduced if the position of the host vehicle 1 in the width direction of the road is determined based on the lane marking extracted from the road image. is there. This is the case, for example, as follows.
  • FIG. 15 illustrates a case where the host vehicle 1 travels on a road that approaches a curve from a straight line.
  • the travel position of the host vehicle 1 that is, the route
  • a position obtained by adding a position in the width direction on the road is represented by a star, and is distinguished from the actual position of the host vehicle 1. Accordingly, the position where the host vehicle 1 is displayed in the figure represents the position where the host vehicle 1 actually exists. Further, the position in the width direction on the road is determined by extracting the lane marking from the road image as described above.
  • the own vehicle 1 is placed on the curve. It is supposed to be running on the straight part in front of it. Further, as indicated by the white arrows in the figure, from the information of the lane markings present on the left and right sides of the own vehicle 1, the own vehicle 1 exists in the center of the road, and therefore the own vehicle 1 travels. The position is determined at the center position of the road as indicated by a star in the figure.
  • the magnitude of the error included in the route position increases or decreases, but the error happens to be large, and the actual own vehicle 1 is as shown in FIG.
  • the host vehicle 1 is going straight to the middle of the curve and changing the lane to the left lane.
  • FIG. 15B shows a state where the host vehicle 1 has traveled straight from the position shown in FIG. As indicated by the white arrows in the figure, from the information of the lane markings present on the left and right of the host vehicle 1, the host vehicle 1 is traveling at a position closer to the left side of the road. Accordingly, when the travel position of the host vehicle 1 is determined based on this information, the travel position is determined to a position slightly moved to the left as compared with the case of FIG.
  • the host vehicle 1 When the host vehicle 1 further travels straight and reaches the state shown in FIG. 15C, the host vehicle 1 travels at a position that is largely closer to the left side of the road from the information on the lane markings present on the left and right sides of the host vehicle 1. Will be. Therefore, when the traveling position of the host vehicle 1 is determined based on this information, the position is further increased to the left.
  • the traveling position of the own vehicle 1 determined based on the position of the lane marking extracted from the road image although the own vehicle 1 actually travels straight on the road is As indicated by the dashed arrows in the figure, a false detection is made as if the vehicle is slowly turning left. In this way, when a situation occurs in which it is erroneously detected that the vehicle is making a left turn (or a right turn) even though it is actually going straight, the outputs of the vehicle speed sensor 11 and the direction sensor 12 are based on the result. And the error of the path position determined thereafter becomes large.
  • the host vehicle 1 is traveling at a position where the straight portion switches to a curve.
  • the lane marking disappears from the middle of the curve as shown in FIG. 16A, but for the traveling position detection apparatus 100, from the beginning of the curve as shown in FIG. 16B. Same as the disappearing situation.
  • a travel trajectory as indicated by the dashed arrow in the figure is generated. Estimate the travel position.
  • the problem described above does not occur when the host vehicle 1 is traveling on a large curve. That is, even in the example shown in FIG. 18, there is a large difference between the travel position of the host vehicle 1 indicated by the star and the position where the host vehicle 1 is actually traveling. When the lane is changed to the lane, the travel position indicated by the star is also changed to the left lane, and the above-described problem does not occur.
  • the travel position of the host vehicle 1 including the position in the width direction of the road is determined based on the above-described problem, that is, the lane marking extracted from the road image, the accuracy of the route position is further reduced.
  • the problem that there is a case is considered to occur when the traveling position of the host vehicle 1 determined on the map and the position where the host vehicle 1 actually travels are different in the curved shape of the road.
  • the curved shape of the road is a rough classification of the way the road bends, such as straight line or curve, right curve or left curve, large curve or small curve.
  • a straight line or a curve can be determined as a straight line if the road radius of curvature is equal to or greater than a predetermined value, and a curve can be determined otherwise.
  • the right curve and the left curve are continuous, it can be determined as one straight line if the curvature radius of each curve is equal to or greater than a predetermined value.
  • two curves are continuous, if the difference in the radius of curvature of the curves is equal to or greater than a predetermined threshold, they are judged to be a continuous large curve and a small curve. Can do.
  • the curved shape of the road is a rough classification of the manner of curved road.
  • the route position of the host vehicle 1 is determined using the traveling speed, the traveling direction, the positioning result, and the map information of the host vehicle 1, the magnitude of the route position error can also be estimated. it can. Therefore, when there is a portion where the curved shape of the road changes within the range of the error in the route position, the route position is determined by determining the travel position of the host vehicle 1 based on the lane marking extracted from the road image. It is considered that there is a possibility of further reducing the accuracy of.
  • the traveling position detection device 100 of the second modification detects the traveling position of the host vehicle 1 as follows.
  • the travel position detection process of the second modification is different from the travel position detection process of the present embodiment described above with reference to FIGS. 3 and 4 when the road shape changes within the range of the error of the route position. Is greatly different in that the travel position in the width direction of the road is not determined using the information on the lane markings extracted from the road image.
  • the travel speed and travel direction of the host vehicle 1 are acquired based on the outputs of the vehicle speed sensor 11 and the direction sensor 12 as in the above-described embodiment (S151). Subsequently, a positioning result including the positioning position of the host vehicle 1 is acquired from the positioning device 13 (S152). Further, map information around the own vehicle 1 is acquired based on the positioning position of the own vehicle 1 (S153).
  • the route position of the host vehicle 1 on the map is determined based on the traveling speed, traveling direction, positioning result, and map information acquired as described above (S154).
  • the magnitude of the error included in the determined route position is also acquired (S155). That is, the magnitude of the error included in the route position is estimated from the correction amount of the route position generated when the traveling locus obtained by accumulating the traveling speed and traveling direction of the host vehicle 1 is matched with the shape of the road. be able to. Furthermore, the amount of increase in error can also be estimated based on the distance traveled since the last matching. In S155, the magnitude of the error included in the route position is obtained by such a method.
  • the road at the route position is a multi-lane road (S156 in FIG. 19: yes)
  • the route position determined based on the traveling speed, traveling direction, positioning result, and map information of the host vehicle 1 does not know the position in the width direction on the road. Based on the position, the position in the width direction is determined.
  • the host vehicle 1 is based on the lane marking extracted from the road image. If the travel position is determined, there is a possibility that the accuracy of the route position may be further reduced.
  • the traveling position detection process of the second modified example it is determined whether or not the curved shape of the road changes within the range of the route position error (S157).
  • the magnitude of the path position error is acquired in advance in S155. Further, since the map information has already been acquired in S153, it can be easily determined whether or not the curved shape of the road has changed within the range of the route position error.
  • the road at the route position is a straight line, but there is a curve portion within the error range of the route position. Has changed.
  • the curved shape of the road does not change within the range of the route position error.
  • the travel distance and travel direction of the host vehicle 1 are acquired (S163).
  • the travel position (that is, the route position and the position in the width direction on the road) is estimated (S164). That is, when the lane line can be extracted from the road image, the travel position of the host vehicle 1 is determined based on the extracted lane line (S162). When the lane line cannot be extracted, the travel speed and the travel time are determined. The travel position on the road is estimated using the direction (S164).
  • a travel locus is generated by storing the estimated new travel position (S165).
  • the travel position of the host vehicle 1 is determined (S162), or the travel of the host vehicle 1 is performed.
  • the process executed to estimate the position (S164) and generate a travel locus including the position in the width direction on the road (S165) has been described.
  • the road image is acquired, the road image is analyzed, and a series of processes (S158 to S160) for determining whether or not the lane marking has been extracted can be performed without performing the process.
  • the moving distance and moving direction of the vehicle 1 are acquired (S163).
  • a travel position is estimated based on the travel distance and travel direction of the host vehicle 1 (S164), and a travel locus is generated using the estimated travel position (S165).
  • the new travel position determined or estimated as described above is output to the driving support device 200 (S166).
  • the travel lane may be determined from the travel position and the travel lane may be output.
  • the travel position detection process of the second modification described above when the route position error becomes large and the road curve shape changes within the error range, the lane markings extracted from the road image Without using the information, the travel position including the position in the width direction on the road is estimated based on the travel distance and travel direction of the host vehicle 1. For this reason, as described above with reference to FIG. 15 or FIG. 16, it is possible to avoid a situation in which the traveling position of the host vehicle 1 is determined to be an incorrect position.
  • the travel position is determined instead of determining the travel position using the information on the lane markings extracted from the road image.
  • Information indicating that the reliability of the vehicle is decreasing may be output together with the travel position.
  • the travel position detection process of the third modified example is more reliable than the travel position detection process of the second modified example described above with reference to FIGS. 19 and 20 in addition to the travel position in the width direction of the road.
  • the point that determines the degree is also very different.
  • the travel speed and travel direction of the host vehicle 1 are acquired based on the outputs of the vehicle speed sensor 11 and the direction sensor 12 (S171), and the positioning position of the host vehicle 1 is determined from the positioning device 13.
  • a positioning result including is acquired (S172).
  • the map information around the own vehicle 1 is acquired (S173), and the route position on the map of the own vehicle 1 is determined (S174).
  • the magnitude of the error included in the determined route position is also acquired (S175).
  • the route position is a multi-lane road (S176). If the road is not a multi-lane road (S176: no), It is determined that it is not necessary to determine the position, and the route position is output to the driving support device (S188 in FIG. 22).
  • the reliability of the travel position is set to “high” (S178).
  • the reliability of the travel position is set to “low” (S179).
  • a road image around the host vehicle 1 is acquired (S180), and the road image is analyzed to analyze the road image.
  • a line is extracted (S181 in FIG. 22). That is, in the third modified example, even when it is determined that the curved shape of the road changes within the range of the error in the route position (S177: yes), the lane markings in the road image are extracted.
  • the moving distance and moving direction of the host vehicle 1 are acquired (S185), and the position in the width direction of the road is obtained.
  • the traveling position of the vehicle 1 including the vehicle is estimated (S186). Then, using the estimated travel position, a travel locus of the host vehicle 1 is generated on the road (S187).
  • the new traveling position determined or estimated as described above and the reliability of the traveling position set in S178 or S179 are output to the driving support device 200 (S188).
  • the travel lane may be determined from the travel position and the travel lane may be output.
  • the reliability of the traveling position is determined together with the traveling position of the host vehicle 1.
  • Information indicating that it has decreased can also be output to the driving support device 200. For this reason, in the driving assistance apparatus 200, it becomes possible to perform suitable driving assistance by changing the utilization method of the information of the traveling position of the own vehicle 1 according to the reliability.
  • the travel position may be estimated based on the travel distance and travel direction information of the host vehicle 1.
  • FIG. 23 shows a rough internal structure of the traveling position detection device 100 of the fourth modified example.
  • the travel position detection device 100 of the fourth modification shown in the figure is provided with a steering angle acquisition unit 111 and a steering angle estimation unit 112, compared to the travel position detection device 100 of the present embodiment described above with reference to FIG. Are very different.
  • the traveling position detection device 100 according to the fourth modification will be briefly described with a focus on differences from the present embodiment.
  • the same contents as those of the traveling position detection device 100 of the present embodiment are designated by the same reference numerals as those of the present embodiment, and the description thereof is omitted.
  • the traveling position detection device 100 of the fourth modified example is provided with a steering angle acquisition unit 111 and a steering angle estimation unit 112.
  • the steering angle acquisition unit 111 is connected to a steering angle sensor 15 mounted on a steering handle (not shown) of the host vehicle 1, and acquires an actual steering angle of the host vehicle 1 based on an output from the steering angle sensor 15. To do. Further, the acquired steering angle is output to the road image acquisition unit 107.
  • the steering angle estimation unit 112 estimates the steering angle of the host vehicle 1 based on the travel position determined by the travel position determination unit 106. That is, the steering angle of the host vehicle 1 can be estimated by determining the travel locus of the host vehicle 1 from the travel position and determining the curvature of the travel track. Further, the estimated steering angle is output to the road image acquisition unit 107.
  • the road image acquisition unit 107 of the fourth modification also acquires a road image from the in-vehicle camera 14 in the same manner as in the present embodiment described above with reference to FIG. However, the road image acquisition unit 107 of the fourth modification compares the steering angle acquired from the steering angle acquisition unit 111 with the steering angle acquired from the steering angle estimation unit 112 before acquiring the road image. When the difference between the two is smaller than a predetermined threshold, a road image is acquired and output to the offset position detection unit 108.
  • the offset position detection unit 108 does not detect the offset position of the host vehicle 1 with respect to the lane marking.
  • the traveling position detection device 100 when the difference between the steering angle of the host vehicle 1 estimated from the traveling position and the actual steering angle of the host vehicle 1 is greater than a predetermined threshold. Instead, the travel position is estimated based on the travel distance and travel direction information of the host vehicle 1 instead of determining the travel position using the lane marking information extracted from the road image.
  • the actual steering angle of the host vehicle 1 has been described as being acquired using the steering angle sensor 15. However, the traveling direction of the host vehicle 1 obtained from the output of the direction sensor 12 is described. Based on the above, the actual steering angle of the host vehicle 1 may be calculated.
  • the traveling position detection device 100 of the fourth modified example can be realized without newly inputting data of the steering angle sensor 15 to the traveling position detection device 100 of the present embodiment. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

走行位置検出装置を提供する。走行位置検出装置は、道路の経路を表す経路情報と、区画線情報とを含んだ地図情報を記憶している地図情報記憶部(104)と、走行速度と、走行方向と、測位結果とに基づいて、道路の経路上での位置である経路位置を決定する経路位置決定部(105)と、道路画像を解析して区画線を抽出することによって、区画線に対する自車両のオフセット位置を検出するオフセット位置検出部(107)と、経路位置と、オフセット位置と、区画線情報とに基づいて、道路上での走行位置を決定する走行位置決定部(108)と、を備える。走行位置決定部は、オフセット位置が検出されない場合には、走行速度と、走向方向と、既に決定された走行位置とに基づいて、走行位置を推定する。

Description

走行位置検出装置、走行位置検出方法 関連出願の相互参照
 本出願は、2016年3月7日に出願された日本特許出願番号2016-43963号および2016年12月23日に出願された日本特許出願番号2016-250222号に基づくもので、これらの開示をここに参照により援用する。
 本開示は、車線が区画線で区画された道路上で、自車両が走行している走行位置を検出する技術に関する。
 車両の走行位置を精度良く検出することができれば、様々な運転支援に活用することができる。例えば、地図情報を参照して目的地までの経路を案内したり、急なカーブの手前では自動的に減速したりすることができる。
 更に、走行位置の検出精度を、走行中の車線が走行車線または追越車線の何れであるかを判別可能な程度まで高めることができれば、運転者に対して早めの車線変更を促すような、きめ細かな運転支援も可能となる。
 車両の走行位置を検出する技術としては、GNSS(全地球測位システム:Global Navigation Satellite System)衛星からの測位信号を受信することによって走行位置を検出する技術が知られているが、現状では検出結果に大きな誤差が含まれており、車両の走行位置が道路上であるか否かを判別することも困難である。そこで、GNSSを用いた技術に加えて、推測航法と呼ばれる技術や、マップマッチングと呼ばれる技術を組み合わせることによって、実用可能な程度に位置精度を高めることが行われている。
 ここで、推測航法とは、車両に搭載したセンサーを用いて時々刻々の移動距離および移動方向変化量を検出し、それらを累積することによって、ある時点で得られた基準位置からの相対位置を検出する手法である。また、マップマッチングとは、推測航法で得られた移動経路を、地図情報に記憶されている道路形状と照合することによって、地図上での車両の走行位置を特定する手法である。推測航法では、正確な基準位置が分からなければ正確な走行位置も決定することができず、更には、基準位置からの距離が遠くなるほど、走行位置の検出精度が低下する。また、マップマッチングは、移動経路の形状から走行位置を特定するので、いつでも特定できるとは限らない。これらの技術を組み合わせて用いることによって、何とか実用可能な精度を確保していることが現状であり、走行中の車線を判別可能な程度の位置精度を確保することは困難である。
 そこで、車載カメラで撮影した画像の中から道路上の区画線を検出することによって、自車両が走行中の車線を判別可能な位置精度を確保する技術が提案されている(特許文献1)。
JP2010-78387A
 しかし、提案されている技術では、例えば、区画線がかすれていたり、雪などで覆われていたりするなど、何らかの理由で区画線が検出できなくなると、走行中の車線を判別可能な位置精度を確保することができなくなる。
 そこで、本開示の目的の一つは、何らかの理由で区画線が検出できなくなった場合でも、走行中の車線を判別可能な位置精度で走行位置を決定することが可能な技術を提供することにある。
 本開示の一側面の走行位置検出装置および走行位置検出方法は、地図上での道路の経路を表す経路情報と、道路上に表示された区画線についての情報である区画線情報とを含んだ地図情報を記憶しておく。そして、自車両から道路画像を撮影して区画線を抽出し、抽出した区画線の位置と区画線情報とを用いて、道路上での幅方向への位置を含めた自車両の走行位置を決定する。また、道路画像から区画線が抽出できなかった場合には、自車両の走行速度と、走行方向と、先に決定した走行位置とに基づいて、地図上での自車両の走行位置(すなわち、道路上での幅方向への位置を含めた自車両の走行位置)を推定する。
 こうすれば、道路画像から区画線を抽出できた場合は、走行中の車線を判別可能な位置精度で走行位置を決定することができる。また、道路画像から区画線を抽出できなかった場合でも、地図上での自車両の走行位置を推定することができる。地図上での走行位置を推定するに際しては、既に得られた走行位置を基準として、自車両の走行速度および走行方向に基づいて推定するので、走行中の車線を判別可能な位置精度を確保することができる。
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記の詳細な説明から、より明確になる。図面において、
図1は、走行位置検出装置を搭載した自車両を示す説明図である。 図2は、走行位置検出装置の大まかな内部構造を示すブロック図である。 図3は、走行位置検出処理の前半部分を示すフローチャートである。 図4は、走行位置検出処理の後半部分を示すフローチャートである。 図5は、区画線情報を含んだ地図情報を例示した説明図である。 図6は、道路画像から区画線を抽出した様子を例示した説明図である。 図7は、道路画像から抽出した区画線と地図情報の区画線情報とに基づいて、道路上での幅方向への位置を決定する様子を示した説明図である。 図8は、道路画像から抽出した区画線および区画線情報に基づいて自車位置を決定することによって、走行軌跡を生成する様子を例示した説明図である。 図9は、道路画像から区画線が抽出できない場合に、自車両の走行速度および走行方向に基づいて走行軌跡を推定する様子を例示した説明図である。 図10は、道路上に区画線が判別できない部分が存在する場合でも、道路上での走行位置を見失わないことを示す説明図である。 図11は、道路上に区画線を表示できない範囲が存在する場合でも、道路上での走行位置を見失わないことを示す説明図である。 図12は、周囲の道路を撮影する車載カメラを搭載した第1変形例の自車両1を例示した説明図である。 図13は、第1変形例の自車両が周囲の道路上の区画線を抽出することによって、走行位置を決定する様子を示した説明図である。 図14は、第1変形例の走行位置検出装置の大まかな内部構造を示すブロック図である。 図15は、経路位置の誤差の範囲内で道路形状が直線からカーブに変化している場合についての説明図である。 図16は、経路位置の誤差の範囲内で道路形状が直線からカーブに変化しており、且つ、道路の区画線が不鮮明となっている場合についての説明図である。 図17は、経路位置の誤差の範囲内の道路形状が直線の場合を示す説明図である。 図18は、経路位置の誤差の範囲内の道路形状がカーブの場合を示す説明図である。 図19は、第2変形例の走行位置検出処理の前半部分を示すフローチャートである。 図20は、第2変形例の走行位置検出処理の後半部分を示すフローチャートである。 図21は、第3変形例の走行位置検出処理の前半部分を示すフローチャートである。 図22は、第3変形例の走行位置検出処理の後半部分を示すフローチャートである。 図23は、第4変形例の走行位置検出装置の大まかな内部構造を示すブロック図である。
 以下では、実施例について説明する。
 A.装置構成:
 図1には、本実施例の走行位置検出装置100を搭載した自車両1の大まかな構成が示されている。図示されるように、自車両1には、走行位置検出装置100と共に、車速センサー11と、方位センサー12と、測位装置13と、車載カメラ14と、運転支援装置200などが搭載されている。
 車速センサー11は、自車両1のタイヤあるいは車軸の回転数を検出して、走行位置検出装置100に出力する。タイヤあるいは車軸についての単位時間あたりの回転数が分かれば、自車両1の車速を求めることができる。
 方位センサー12は、自車両1の走行方向に関するデータを出力するセンサーであり、ジャイロセンサーや地磁気センサーなどを用いることができる。例えば、ジャイロセンサーを方位センサー12として用いた場合には、自車両1の走行方向の変化量がジャイロセンサーから出力されるので、走行位置検出装置100は、この出力を累積することによって、自車両1の走行方向を検出することができる。また、方位センサー12として地磁気センサーを用いた場合は、地磁気の向きを基準として方位の情報が出力されるので、走行位置検出装置100は、この出力に基づいて自車両1の走行方向を検出することができる。
 測位装置13は、測位衛星20からの測位信号を受信して、受信した測位信号を解析することによって、位置情報や速度情報などを含んだ測位結果を算出する。
 車載カメラ14は、自車両1が走行している道路が写った画像(以下、道路画像)を一定周期(例えば30msec)で撮影して、走行位置検出装置100に出力する。
 走行位置検出装置100は、車速センサー11の出力に基づいて自車両1の車速を取得し、方位センサー12の出力に基づいて自車両1の走行方向を取得し、更に、測位装置13からは位置情報を取得する。そして、これらの情報と、予め記憶している地図情報とを用いて、自車両1の走行位置を決定する。
 更に、走行位置検出装置100は、車載カメラ14で取得した道路画像を解析して、走行中の道路の車線を区切る区画線を抽出する。そして、抽出した区画線と、自車両1との位置関係に基づいて、走行中の道路上での幅方向への位置、あるいは走行車線を検出する。そして、検出した道路上での幅方向への位置、あるいは走行車線を、運転支援装置200に出力する。こうすれば、例えば、右左折前に予め車線変更を案内するなど、きめ細かな運転支援を実行することができる。
 尚、本明細書中での区画線とは、道路の車線を区切る線であれば足り、必ずしも車線と車線とを区切る線である必要は無い。従って、例えば、細い農道や一方通行の路地などのように、単車線の道路の両側に存在する路側帯と車線とを区切る線も、本明細書の区画線に該当する。
 もっとも、路面の区画線が消えかかっていたり、雨や雪の影響で区画線が見えなくなっていたり、更には、車載カメラ14の接続不良など、何らかの理由で区画線が検出できなくなると、道路上の幅方向への位置を決定することができなくなり、運転支援に支障を来す虞が生じる。
 そこで、本実施例の走行位置検出装置100は、何らかの理由で区画線が検出できなくなった場合でも、運転支援に支障を来すことが無いように、以下のような構成を採用している。
 図2には、本実施例の走行位置検出装置100の大まかな内部構造を示すブロック図が示されている。図示されるように本実施例の走行位置検出装置100は、走行速度検出部101と、走行方向検出部102と、測位結果取得部103と、地図情報記憶部104と、経路位置決定部105と、走行位置決定部106と、道路画像取得部107と、オフセット位置検出部108と、走行車線決定部109とを備えている。
 尚、これらの「部」は、本実施例の走行位置検出装置100が、道路上での走行位置を、道路の幅方向への位置も含めて決定するために備える機能に着目して、走行位置検出装置100の内部を便宜的に分類した抽象的な概念である。従って、走行位置検出装置100が物理的に区分されていることを表すものではない。また、これらの「部」は、CPUで実行されるコンピュータープログラムとして実現することもできるし、LSIを含む電子回路として実現することもできるし、更にはこれらの組合せとして実現することもできる。
 走行速度検出部101は、車速センサー11から受け取ったタイヤあるいは車軸の回転数に基づいて走行速度を取得し、経路位置決定部105に出力する。
 走行方向検出部102は、方位センサー12の出力に基づいて自車両1の走行方位を取得した後、走行方向を経路位置決定部105に出力する。前述したように自車両1の走行方向は、方位センサー12がジャイロセンサーの場合はセンサーの出力を累積することによって求めることができ、方位センサー12が地磁気センサーの場合は、センサーの出力を換算することによって求めることができる。
 測位結果取得部103は、測位装置13が測位衛星20からの測位信号に基づいて算出した自車両1位置の情報を測位装置13から受け取って、経路位置決定部105に出力する。
 経路位置決定部105は、以上のようにして走行速度と、走行方向と、測位結果とを受け取ると、地図情報記憶部104に記憶されている地図情報を参照することによって、自車両1が走行している経路位置を決定する。すなわち、図1を用いて前述したように、本実施例の走行位置検出装置100は、自車両1が走行中の道路の幅方向への位置まで含めて自車両1の走行位置を決定することができるが、それに先立って、幅方向への位置を含めない道路上での自車両1の位置を、経路位置として決定する。尚、本明細書で「経路位置」とは、幅方向への位置を含めない道路上での位置を指すものとする。これに対して、「走行位置」とは、幅方向への位置を含めた道路上での位置を指すものとする。
 また、道路画像取得部107は、車載カメラ14から道路画像を取得して、得られた道路画像をオフセット位置検出部108に出力する。
 オフセット位置検出部108は、道路画像を解析することによって、道路画像の中から区画線を抽出する。そして、区画線の抽出結果に基づいて、自車両1の区画線に対するオフセット位置を検出する。ここで、「オフセット位置」とは、自車両1から、道路の幅方向に向かって測った区画線までの距離である。
 走行位置決定部106は、経路位置決定部105から自車両1の経路位置を取得すると、経路位置に対する地図情報を、地図情報記憶部104から取得する。詳細には後述するが、本実施例の地図情報記憶部104には、地図上での道路の経路を表す経路情報と、道路上に表示された区画線についての情報である区画線情報とが、地図情報として記憶されている。そして、走行位置決定部106は、自車両1の経路位置についての区画線情報と、自車両1の区画線に対するオフセット位置とに基づいて、道路上の幅方向の位置を含めた自車両1の走行位置を決定した後、決定した走行位置を運転支援装置200に出力する。
 走行車線決定部109は、走行位置決定部106で決定した自車両1の走行位置(すなわち、経路位置、および道路上での幅方向の位置)に基づいて、自車両1が走行中の走行車線の位置を決定して、決定した走行車線を運転支援装置200に出力する。
 尚、本実施例では、運転支援装置200に対しては、自車両1の走行位置および走行車線を出力するものとして説明するが、何れか一方を出力することとしても良い。
 本実施例の走行位置検出装置100は、以上のような構成を有しているので、道路上の区画線が消えていたり、雪などで区画線が判別できない箇所が存在していたり、更には車載カメラ14の接続不良などで一時的に道路画像を取得できなかった場合でも、道路上での幅方向への位置を決定することができる。以下では、本実施例の走行位置検出装置100が、道路上での幅方向への位置を決定する処理について説明する。
 B.走行位置検出処理:
 図3および4には、走行位置検出装置100によって実行される走行位置検出処理のフローチャートが示されている。
 走行位置検出処理では、先ず、車速センサー11の出力に基づいて自車両1の走行速度を取得し、更に、方位センサー12の出力に基づいて自車両1の走行方向を取得する(S101)。
 次に、測位装置13が測位信号に基づいて算出した自車両1の位置情報(以下、測位位置)を含む測位結果を、測位装置13から取得する(S102)。
 そして、測位結果に含まれる自車両1の測位位置を用いて、自車両1の周辺の地図情報を、地図情報記憶部104から取得する(S103)。本実施例の地図情報記憶部104が記憶している地図情報には、経路情報と、区画線情報の2種類の情報が含まれている。ここで、経路情報とは、道路と道路の交差点や道路の長さなど、道路の幅を考慮せずに地図上での道路の形状を記述した情報である。尚、本明細書で「経路」とは、このような幅を考慮しない地図上での道路の形状を意味するものとする。また、区画線情報とは、道路上に表示された区画線の有無や、区画線の種類、道路上での幅方向への区画線の位置などについての情報である。尚、前述したように、本明細書で言うところの区画線には、車線と車線とを区切る線に限らず、路側帯と車線とを区切る線も含まれる。
 図5には、本実施例の地図情報記憶部104に記憶されている地図情報が例示されている。図5(a)には、地図情報中に記憶された経路情報が概念的に示されている。図示されるように経路情報は、地図上での道路の形状を表している。従って、経路情報を読み出せば、道路の向きや、交差点の位置、次の交差点までの距離、更には、目的地までの道順などの情報を取得することができる。
 また、前述したように、本実施例の地図情報には区画線情報も記憶されており、区画線情報を読み出すことによって、道路についてのより詳細な情報も取得することができる。例えば、区画線情報には、道路上に表示された区画線の有無や、区画線の位置や種類などの情報が含まれているので、道路の区画線情報を読み出すことで、その道路が単車線か複車線かといった情報も取得することができる。図5(a)では、一例として、複車線の道路については黒塗りで表示し、単車線の道路については白抜きして表示してある。
 また、図5(b)には、図5(a)中の黒塗りで表示した道路について記憶されている区画線情報が概念的に示されている。区画線情報によれば、図5(b)に示した位置の道路は、片道3車線の6車線の道路であり、片道の3車線の間は白い破線の区画線(すなわち、断続的に引かれた白い区画線)で区切られており、更に、片道3車線と、反対側の片道3車線との間は、白い実線の区画線(すなわち、連続して引かれた白い区画線)で区切られていることが分かる。
 更に、図5(c)には、図5(a)中の白抜きで表示した道路についての区画線情報が概念的に示されている。この区画線情報によれば、図5(c)に示した位置の道路は、両側に路側帯との間が白い実線の区画線で区切られた単車線の道路であることが分かる。
 このように区画線情報を読み出せば、道路上に表示された区画線についての詳細な情報を得ることができる。
 以上のようにして、自車両1の走行速度や、走行方向、測位結果、地図情報を取得したら、これらを用いて、自車両1の経路上での位置(以下、経路位置)を決定する(図3のS104)。走行速度や走行方向などを用いて経路位置を決定する方法については、周知な種々の方法を用いることができる。
 続いて、地図情報の区画線情報を用いて、経路位置の道路が複車線の道路か否かを判断する(S105)。すなわち、走行中の道路が複車線の道路であれば、道路上での幅方向への位置を考慮した運転支援を行うことが可能なように、幅方向への位置を決定する処理を行う必要が生じるが、単車線の道路の場合には、こうした処理は不要である。そこで、自車両1の経路位置を決定したら(S104)、経路位置の道路が複車線か否かを判断するのである。
 その結果、経路位置の道路が複車線の道路でなかった場合は(S105:no)、幅方向への位置を決定する必要がないと判断し、経路位置を運転支援装置に出力する(図4のS112)。
 そして、運転終了か否かを判断し(S113)、終了でないならば(S113:no)本実施例の走行位置検出処理の先頭に戻って、再び車速センサーおよび方位センサーの出力を取得する(図3のS101)。一方、運転を終了する場合は(S113:yes)、走行位置検出処理を終了する。
 これに対して、経路位置の道路が複車線の道路であった場合は(S105:yes)、自車両1が走行している走行車線を踏まえて運転支援をことが望ましい。そして、走行車線を踏まえた運転支援を行う為には、道路上での幅方向への位置を検出する必要が生じる。そこで、道路上での幅方向への位置を検出するために、車載カメラ14から自車両1の前方の道路画像を取得する(S106)。尚、本実施例では、自車両1の前方の道路画像を取得するものとして説明するが、区画線が写った画像が得られれば良く、従って、自車両1の側方の道路画像を取得しても構わない。
 走行中の道路は複車線なので、道路画像中には車線と車線とを区切る区画線が写っている筈である。そこで、道路画像から区画線を抽出する(S107)。
 図6には、複数の車線を有する道路の道路画像から区画線を抽出する様子が例示されている。図6(a)には道路画像が示されている。この道路画像には、区画線以外にも、前方車両や、路側帯、中央分離帯、街灯など、多くの対象が含まれているが、形状や、色、更には、自車両1の走行方向に沿って連なって形成されている点などの特徴に着目することによって、道路画像の中から区画線が写った部分を抽出することができる。
 こうして道路画像の中から区画線が写った部分を抽出すると、図6(b)に破線で示した画像を得ることができる。こうして得られた区画線は幅を有しているので、中心線を検出することによって、最終的に区画線を抽出する。図6(b)では、こうして最終的に抽出した区画線が一点鎖線で示されている。
 続いて、道路画像中の区画線を抽出できたか否かを判断する(図3のS108)。すなわち、区画線情報には区画線が存在する旨が設定されていても、区画線が消えていたり、見えなくなっていたりする場合もあるので、道路画像中から区画線が抽出できたか否かを判断する。
 図6(b)に示した例では、3つの車線を区切る2本の区画線と、それら3つの車線の左側の路側帯との間の区画線、および右側の中央分離帯との間の区画線が抽出されている。尚、以下では、これら区画線を識別する必要がある場合には、3つの車線を区切る2本の区画線を、左側からDL1,DL2と称し、左側の路側帯との間の区画線をDL3、右側の中央分離帯との間の区画線をDL4と称するものとする。
 その結果、道路画像中の区画線が抽出されていた場合には(図3のS108:yes)、以下のようにして、区画線に対する自車両1のオフセット位置を検出する(S109)。ここで、区画線に対する自車両1のオフセット位置とは、自車両1から道路の幅方向に測った自車両1と区画線との距離である。
 図7には、区画線に対する自車両1のオフセット位置を検出する方法が示されている。
 前述したように、道路画像を撮影する車載カメラ14は自車両1の前方に向けた状態で車体に固定されているから、道路画像には、自車両1から常に同じ範囲の画像が写っている。従って、自車両1の真正面にある被写体は、道路画像上では常に同じ直線上の何処かの位置に写っており、自車両1の前方の道路上で同じ距離にある被写体は、道路画像上では、画面の下端から同じ高さの位置に写っている。このことを利用すれば、道路画像上での区画線の位置に基づいて、区画線と自車両1との位置関係を求めることができる。
 図7(a)中に黒塗りで示した矢印Pcは、道路画像上での自車両1の中心軸の位置を表している。また、道路画像上での区画線の位置は、道路画像の下端から所定高さの位置で検出する。ここでは、図6を用いて前述したように、4本の区画線DL1~DL4が抽出されているから、道路画像の下端から所定高さで、それぞれの区画線DL1~DL4が検出された位置を、それぞれ点DP1~DP4とする。
 そして、自車両1の中心軸を示す矢印Pcから、左側の点DP1までの道路画像上での距離L1と、矢印Pcから右側の点DP2までの距離L2を検出する。更に、点DP1から点DP3までの道路画像上での距離Raと、点DP2から点DP4までの距離Rcとを検出する。
 また、実際の道路上での区画線と区画線との距離の情報は、地図情報の区画線情報に記憶されている。従って、道路画像から求めた距離L1,L2,Ra,Rcと、区画線情報に記憶されている実際の道路上での距離の情報とを用いれば、以下のようにして、道路の幅方向への自車両1の位置を算出することができる。
 先ず、図7(a)に示す様に、道路画像上での道路幅(すなわち、左端の区画線DL3から右端の区画線DL4までの距離)は、Ra+L1+L2+Rcとなる。
 更に、道路画像上での左端の区画線DL3から自車両1の中心までの距離はRa+L1となり、自車両1から右端の区画線DL4までの距離はL2+Rcとなる。
 また、区画線情報には、実際の道路上での各車線の幅が記憶されている。ここでは、3つの車線の幅が、左側から順番に、Wra、Wrb、Wrcと記憶されているものとする。すると、実際の道路幅Wrは、Wra+Wrb+Wrcとなる。そして、道路画像上では、この実際の道路幅Wrが、Ra+L1+L2+Rcに対応する。
 従って、道路画像上で画像の下端から所定高さの位置で求めた距離(すなわち、道路画像上での距離)に、変換係数K(=Wr/(Ra+L1+L2+Rc))を乗算すれば、実際の道路上での距離に換算することができる。
 そして、道路画像上での左端の区画線DL3から自車両1の中心までの距離はRa+L1であるから、実際の道路上で自車両1は、道路の左端からK・(Ra+L1)の距離LDにいることになる。同様に、道路の右端からはK・(L2+Rc)の距離RDにいることになる。
 更に、こうして算出した距離LD,RDと、区画線情報として記憶されている各車線の幅Wa,Wb,Wcとを比較すれば、自車両1が走行している走行車線を決定することも可能となる。
 図3のS109では、道路画像上での左端の区画線DL3から自車両1の中心までの距離(上述した例では、Ra+L1)と、自車両1から右端の区画線DL4までの距離(上述した例では、L2+Rc)とを、それぞれオフセット位置として検出する。
 そして、上述したように、区画線情報に基づいて、実際の道路上での幅方向への自車両1の位置を決定する(S110)。前述したように、道路の幅を考えない場合の道路上の位置(すなわち、経路位置)は、S104で求めているから、結局、S110では、幅方向への位置も含めた道路上の走行位置を決定していることになる。
 尚、以上の説明では、道路画像上で道路の左端の区画線DL3から自車両1までの距離と、自車両1から右端の区画線DL4までの距離とを、それぞれオフセット位置として検出するものとして説明した。そして、オフセット位置として得られた距離の和と、実際の道路幅との比を算出することによって、変換係数Kを求めるものとして説明した。
 しかし、道路画像上で自車両1から左隣の区画線DL1までの距離L1と、自車両1から右隣の区画線DL2までの距離とを、それぞれオフセット位置として検出するものとしてもよい。そして、オフセット位置として得られた距離の和と、実際の車線幅Wrbとの比を算出することによって、変換係数Kを求めることとしてもよい。
 こうして、走行位置を決定したら、道路上で自車両1の走行軌跡を生成する(図4のS111)。
 図8には、道路上での走行軌跡を生成する様子が例示されている。図8(a)には、過去に生成された走行軌跡が、太い実線で示されている。また、図中に黒丸で示した位置C0は、最後に決定された走行位置を表している。
 上述したように、図3のS110では、道路の両端を基準として道路上での新たな走行位置が決定されているから、最後に決定された走行位置と、新たな走行位置とを結ぶことで、図8(b)に示すように、新たな走行軌跡を生成することができる。そこで、図4のS111では、決定した走行位置を記憶することによって、新たな走行軌跡を生成する。
 そして、決定した新たな走行位置を、運転支援装置200に出力する(S112)。こうすれば、運転支援装置200では、道路の幅方向への位置も含めた走行位置を受け取ることができるので、例えば、車線変更をガイドするなどの細かな運転支援を行うことが可能となる。
 尚、ここでは、運転支援装置200に向かって走行位置を出力するものとして説明するが、簡易的には、走行位置の代わりに自車両1が走行中の走行車線を出力しても良い。すなわち、区画線情報には、複数の区画線の間の距離が記憶されているから、道路上での幅方向への位置を含めた走行位置が分かれば、自車両1が走行している走行車線を決定することができるので、走行位置の代わりに走行車線を出力することとしてもよい。
 その後、運転を終了するか否かを判断する(S113)。運転を終了しない場合は(S113:no)、走行位置検出処理の先頭に戻って、再び車速センサーおよび方位センサーの出力を取得した後(図3のS101)、前述した続く一連の処理を開始する。
 これに対して、運転を終了する場合は(S113:yes)、本実施例の走行位置検出処理を終了する。
 以上では、道路画像中で区画線を抽出できた場合(図3のS108:yes)の処理について説明した。
 これに対して、道路画像中で区画線を抽出できなかった場合には(S108:no)、上述した方法(すなわち、区画線に対するオフセット位置を用いる方法)では、自車両1の走行位置を決定することができず、従って、走行軌跡を生成することはできない。そこで、このような場合は、以下のような方法を用いて走行軌跡を生成する。
 先ず、自車両1の移動距離および移動方向を取得する(S114)。ここで取得する移動距離および移動方向とは、前回に決定した走行位置からの移動距離および移動方向である。自車両1の走行速度および走行方向はS101で既に取得されており、更に、前回に走行位置を決定してからの経過時間も分かっているから、自車両1の移動距離および移動方向は容易に求めることができる。
 そして、自車両1の移動距離および移動方向に基づいて、走行位置(すなわち経路位置および道路上での幅方向への位置)を推定する(S115)。尚、前回の走行位置がS110で決定された位置ではなく、S115で推定された位置であった場合には、前回に推定した走行位置からの移動距離および移動方向を用いて、今回の走行位置を推定すればよい。
 図9には、自車両1の走行位置からの移動距離および移動方向に基づいて、新たな走行位置を推定する方法が示されている。
 図9(a)中に示した太い実線は、既に得られている走行軌跡を表しており、走行軌跡の先端に黒丸で示した位置C0は、最後に記憶された前回の走行位置を表している。
 この黒丸の位置C0から、現在の走行位置が、どちらの方向のどれだけ離れた位置に存在するかは分からないが、現在の走行速度および走行方向については分かっている。そこで、黒丸の位置C0からも、その走行速度および走行方向で移動したと仮定すれば、黒丸の位置C0(すなわち、前回の走行位置)から現在の走行位置までの移動距離および移動方向が推定できるので、現在の走行位置を推定することができる。
 図9(b)中に示した太い破線は、このようにして、走行速度および走行方向に基づいて、新たな走行位置が推定されたことを表している。
 そして、新たな走行位置を推定したということは、新たなオフセット位置(ここでは、道路の両端からの距離)を推定したということでもある。従って、道路画像から区画線が抽出できなかった場合には、抽出できた場合とは逆の順序で、オフセット位置および走行位置を決定していることになる。すなわち、道路画像から区画線が抽出できた場合には、前述したように、抽出した区画線に対するオフセット位置と区画線情報とを用いて自車両1の走行位置を決定した。これに対して、区画線が抽出できなかった場合は、走行速度および走行方向と地図情報(すなわち、経路情報および区画線情報)とに基づいて、道路上での走行位置を推定する。そして、推定した走行位置および区画線情報に基づいて、オフセット位置を推定していることになる。
 図9(b)中で、自車両1の両側に示した破線の矢印は、自車両1から道路の両側に対するオフセット位置を推定していることを表している。
 尚、以上の説明では、道路画像から区画線が抽出できなかった場合には、その時点で取得された走行速度および走行方向に基づいて、前回の走行位置からの移動距離および移動方向を取得するものとして説明した(図3のS114参照)。従って、道路画像から区画線が抽出できた場合には、その時点で取得されていた走行速度および走行方向は不要となるので、破棄することができる。
 しかし、道路画像から区画線が抽出できた場合でも、その時点で取得されていた走行速度および走行方向を記憶しておいても良い。そして、道路画像から区画線が抽出できなかった場合には、その時点での走行速度および走行方向を用いる代わりに、前回の走行位置が得られた時の走行速度および走行方向を用いて、現在の走行位置を推定することとしても良い。
 以上のようにして、自車両1の走行位置を推定したら(S115)、推定した新たな走行位置を記憶することによって、走行軌跡を生成することができる(図4のS111)。
 続いて、運転支援装置200に走行位置を出力した後(S112)、運転を終了するか否かを判断する(S113)。
 その結果、運転を継続する場合は(S113:no)、走行位置検出処理の先頭に戻って、再び車速センサーおよび方位センサーの出力を取得する(図3のS101)。これに対して、運転を終了する場合は(S113:yes)、図3および4に示した走行位置検出処理を終了する。
 以上に詳しく説明したように、本実施例の走行位置検出処理は、道路画像から区画線を抽出できた場合は、抽出した区画線に対するオフセット位置に基づいて、道路上での自車両1の走行位置を決定することができる。また、道路画像から区画線を抽出できない場合でも、自車両1の走行速度および走行方向と、地図情報とに基づいて、道路上での自車両1の走行位置を推定することができる。
 例えば、図10に示したように曲がった道路を走行する場合を考える。自車両1が、図10中の位置(a)あるいは位置(b)を走行している場合には、道路画像から区画線を抽出することができる。このため、区画線に対するオフセット位置および、予め記憶しておいた区画線情報に基づいて、自車両1の道路上での走行位置を決定することができる。
 ところが、位置(c)では、道路上の区画線が消えているため、道路画像から区画線を抽出することができない。そこで、先に走行位置を決定した位置(b)での走行位置を基準として、図中に斜線を付した矢印だけ移動した位置に自車両1が居るものと推定する。矢印の大きさおよび方向は、自車両1の走行速度および走行方向に基づいて決定することができる。こうして推定した自車両1の位置と、予め記憶されている地図情報(すなわち経路情報および区画線情報)とを組み合わせれば、図10中に破線の矢印で示したように、位置(c)での自車両1の走行位置を推定することができる。
 また、位置(d)についても道路上の区画線が消えている。そこで、位置(c)について推定した走行位置を基準として、同様の方法によって、位置(d)についての走行位置を推定することができる。そして、このようにして自車両1の走行位置を推定することができれば、道路上の区画線が消えていたり、見え難くなっていたりした場合でも、例えば、右折あるいは左折に先立って車線変更を指示するなどのきめ細かな運転支援を行うことが可能となる。
 その後、位置(e)および位置(f)では、道路画像から区画線を抽出することができるので、抽出した区画線に対するオフセット位置および区画線情報に基づいて、自車両1の道路上での走行位置を決定することができる。
 もちろん、位置(a)、位置(b)、位置(e)、位置(f)での走行位置は、道路画像から得られた実際の走行位置であるのに対して、位置(c)や位置(d)での走行位置は、走行速度や走行方向に基づいて推定されたものに過ぎないので誤差が含まれている。従って、誤差を含んだ走行位置を基準として、新たな走行位置を推定することを繰り返していると、次第の誤差が蓄積されていき、正しい走行位置を推定することが困難になることが懸念される。
 しかし、図10に例示したように、走行位置の推定を開始する前までは、道路画像に基づいて正確な走行位置を決定しているので、暫くの距離であれば、推定した走行位置を基準として新たな走行位置を推定しても大きな誤差が蓄積されることはない。加えて、道路画像から区画線が抽出可能となれば、たとえ蓄積された誤差が大きくなっていたとしても、直ちに正しい走行位置を決定することができる。
 このため、例えば、車載カメラ14が故障した状態で走行するなどのように、区画線が抽出できない状態が長い時間に亘って継続する事態が生じない限り、実際には、十分な精度で、道路上での自車両1の走行位置を決定あるいは推定することが可能となる。
 また、実際の道路には、区画線を表示することができない領域も存在している。例えば、図11に例示したように、高速道路の料金所の手前では、走行車線の数が急に増加するので、もはや区画線を引くことができない。同様に、料金所を通過した箇所でも、走行車線の数が急に減少するので、区画線を引くことができない。
 そして、このように区画線を引くことができない領域では、道路画像から区画線を抽出して自車両1の走行位置を求めることは不可能である。
 しかし、本実施例の走行位置検出装置100は、上述したように、区画線が抽出できなくても道路上での走行位置を求めることができるので、このように区画線が引けないような領域でも、自車両1の走行位置を求めることができる。
 例えば、図11に示したように、道路上に区画線が描かれている領域では、道路画像から抽出した区画線を用いて走行位置を決定しながら走行する。そして、区画線が存在しない領域に入ったら、走行速度および走行方向や地図情報を用いて、自車両1の走行位置を推定しながら走行する。こうすれば、例えば図中に破線で示したように、自車両1を適切な料金ゲートへ誘導するような運転支援を行うことも可能となる。
 C.変形例:
 上述した本実施例の走行位置検出装置100には、幾つかの変形例が存在する。以下では、これらの変形例について、本実施例との相違点を中心として簡単に説明する。尚、変形例についての説明では、本実施例と共通する部分については本実施例と同じ付番を付すことによって、説明を省略する。
 C-1.第1変形例:
 上述した本実施例では、自車両1から前方の道路画像を撮影することによって、自車両1から離れた位置にある区画線を抽出するものとして説明した。しかし、自車両1の周囲の道路画像を撮影して、得られた道路画像から区画線を抽出しても良い。
 例えば、図12に例示した自車両1では、自車両1の周囲の道路画像を撮影する4つの車載カメラを備えている。このうち、自車両1の前方に搭載された前方車載カメラ14Fは、自車両1の前側の周囲領域AFでの道路を撮影しており、自車両1の後方に搭載された後方車載カメラ14Bは、自車両1の後側の周囲領域ABでの道路を撮影している。また、自車両1の左側方に搭載された左方車載カメラ14Lは、左側の周囲領域ALでの道路を撮影し、右側方に搭載された右方車載カメラ14Rは、右側の周囲領域ARでの道路を撮影している。
 このような自車両1では、自車両1の周囲の道路画像が得られるので、自車両1の左右にある区画線は抽出することができるが、その向こう側にある区画線が抽出できるとは限らない。
 例えば、図12に示した自車両1は、2車線ある道路の右側の車線を走行しているが、この場合、前方車載カメラ14Fあるいは後方車載カメラ14Bの何れかの道路画像を解析すれば、道路中央の区画線DLCと、道路の右端の区画線DLRとを抽出することができる。あるいは、左方車載カメラ14Lの道路画像からは区画線DLCを抽出することができ、右方車載カメラ14Rの道路画像からは区画線DLRを抽出することができる。
 これに対して、道路の左端の区画線DLLは何れの道路画像にも写っていないので、道路画像から抽出することはできない。
 しかし、このような場合でも、車線の本数および区画線の種類を区画線情報として記憶しておけば、上述した本実施例と同様にして、道路上での走行位置を決定あるいは推定することができる。
 例えば、図13(a)に示したように、自車両1の左側では破線の区画線(すなわち、断続する区画線)が抽出され、自車両1の右側では実線の区画線(すなわち、連続した区画線)が抽出されていたとする。この場合、区画線情報として、例えば車線の本数が2本であり、中央の区画線は破線の区画線で、左右の区画線は実線の区画線である(図12参照)旨が記憶されていれば、この区画線情報に基づいて、道路上での走行位置を決定することができる。すなわち、自車両1の左側の区画線は破線の区画線であり、右側の区画線は実線の区画線であるから、区画線情報によれば、図13(b)に示すように、右側の車線を走行していると判断できる。
 そして、右側の区画線DLRまでの距離L2は、道路画像から求められているので、この距離L2と区画線情報とを組み合わせて用いることで、自車両1の走行位置を決定することができる。例えば、区画線情報から道路幅Wrを取得すれば、道路の左端の区画線DLLまでの距離も、Wr-L2と算出することができる。
 また、図13(c)に示したように、自車両1の左側で検出された区画線が実線の区画線であり、自車両1の右側で検出された区画線が破線の区画線であった場合は、図13(d)に示すように、左側の車線を走行していると判断できる。
 そして、左側の区画線DLLまでの距離L1は道路画像から求められているので、自車両1の走行位置を決定することができる。例えば、道路の右端の区画線DLRまでの距離も、Wr-L1によって算出することができる。
 図14には、こうしたことを可能とする第1変形例の走行位置検出装置100の大まかな内部構造が示されている。図14に示した第1変形例の走行位置検出装置100は、図2を用いて前述した走行位置検出装置100に対して、走行位置から走行車線を決定する走行車線決定部109の代わりに、区画線情報に基づいて走行車線を特定する走行車線特定部110を備える点が大きく異なっている。
 第1変形例の走行位置検出装置100では、オフセット位置検出部108は道路画像から区画線を抽出してオフセット位置を検出する際に、区画線の種類も検出して、得られたオフセット位置および区画線の種類を走行車線特定部110に出力する。
 また、地図情報記憶部104には、区画線情報として区画線の種類も記憶されている。
 走行車線特定部110は、受け取った区画線の種類と、地図情報記憶部104から読み出した区画線の種類とに基づいて、自車両1が走行中の走行車線を特定した後、走行位置決定部106および運転支援装置200に出力する。
 走行位置決定部106は、前述した本実施例と同様に、経路位置決定部105から受け取った経路位置と、地図情報記憶部104から読み出した地図情報と、オフセット位置検出部108から受け取ったオフセット位置とに加えて、走行車線特定部110から受け取った走行車線も考慮して、道路上での走行位置を決定した後、運転支援装置200に出力する。
 このように、第1変形例では、道路画像から区画線を抽出する際に、区画線の位置に加えて、区画線の種類(例えば、破線の区画線であるか、実線の区画線であるかなど)を検出する。そして、検出した区画線の種類と、区画線情報に記憶されている区画線の種類とを照合することによって、自車両1が走行中の走行車線を特定する。こうして、走行車線を特定しておけば、道路画像から検出した自車両1の左右の区画線に対するオフセット位置と、区画線情報に記憶されている車線の幅についての情報とに基づいて、道路上での走行位置を決定することができる。
 もちろん、こうして道路上での走行位置を決定することができれば、たとえ道路画像から区画線を抽出できない場合でも、前述した本実施例と同様にして、道路上での走行位置を推定することが可能となる。
 また、区画線の種類としては、破線の区画線か、実線の区画線かに限らず、区画線の色など、他の特徴を記憶しておいても良い。
 更には、道路上に表示された文字や、図形、路面の塗装色などの情報も、区画線情報として記憶しておいてもよい。そして、道路画像からこれらの情報が抽出された場合には、これらの情報に基づいて、自車両1が走行中の車線を特定することとしてもよい。
 C-2.第2変形例:
 上述した本実施例および第1変形例では、自車両1の走行速度や、走行方向、測位結果、地図情報を組み合わせて用いることで、自車両1の経路位置(すなわち、道路の幅方向を含めない位置)を十分な精度で決定できるものとして説明した。実際、自車両1が特徴的な形状の道路を走行している場合には、自車両1の走行速度や走行方向を累積して得られる走行軌跡を、道路の形状にマッチングさせることで、十分な精度で経路位置を決定することができる。
 更に、自車両1の走行軌跡を道路の形状にマッチングさせる際の修正量から、決定した経路位置に含まれる誤差の大きさについての情報も得ることができる。例えば、自車両1の走行軌跡を道路の形状にマッチングさせる際の修正量が十分に小さかったとすると、マッチングを行わなくても実際には経路位置は大きく変わらない。このような場合は、十分な精度で経路位置が決定されており、従って、決定した経路位置に含まれる誤差は小さいと考えて良い。逆に、修正量が大きい場合には、マッチングによって何とか必要な精度を確保しているものの、決定した経路位置には、潜在的に大きな誤差が含まれていると考えられる。
 加えて、自車両1の走行軌跡を道路の形状にマッチングさせるためには、道路の形状が特徴的でなければならないので、いつでもマッチングできるわけではない。従って、直線や緩やかなカーブが長距離に亘って継続するような状況では、形状に基づくマッチングによる位置の修正ができないまま走行する状態が継続することとなって、誤差は更に大きくなると考えられる。
 このように、自車両1の走行軌跡を道路の形状にマッチングさせることによって、自車両1の経路位置を決定する技術では、条件によっては、経路位置の精度が低下することがある。そして、経路位置の精度が低下した状態では、道路画像から抽出した区画線に基づいて、道路の幅方向への自車両1の位置を決定すると、経路位置の精度を更に低下させてしまう場合がある。これは、例えば、次のような場合である。
 図15には、自車両1が、直線からカーブに差し掛かる道路を走行する場合が例示されている。尚、ここでは、自車両1の経路位置と、自車両1が実際に存在する位置とが異なっている場合を想定しているから、以下の図面では、自車両1の走行位置(すなわち、経路位置に対して更に、道路上での幅方向への位置を付加した位置)を星印で表し、自車両1の実際の位置と区別することにする。従って、図中で自車両1が表示されている位置は、自車両1が実際に存在する位置を表すものとする。また、道路上での幅方向への位置は、前述したように、道路画像から区画線を抽出することによって決定されている。
 図15(a)に示した例では、自車両1の走行速度や、走行方向、測位結果、地図情報を用いて決定した自車両1の経路位置によれば、自車両1は、カーブに差し掛かる手前の直線部分を走行していることになっている。更に、図中で白抜きの矢印で示したように、自車両1の左右に存在する区画線の情報からは、自車両1は道路の中央に存在しており、従って、自車両1の走行位置は、図中に星印で示したように、道路の中央の位置に決定されている。
 また、上述したように、経路位置に含まれる誤差の大きさは増減するものであるが、たまたま誤差が大きくなっており、実際の自車両1は、図15(a)中に示されるように、直線部分が終わってカーブに差し掛かった所を走行していたとする。そして、このような状況下で、図中で破線の矢印で示したように、自車両1がカーブの途中まで直進して左側の車線に車線変更しようとしている場合を考える。
 図15(b)には、自車両1が、図15(a)に示した位置から直進した状態が示されている。図中で白抜きの矢印で示したように、自車両1の左右に存在する区画線の情報からすると、自車両1は道路の左側に寄った位置を走行していることになる。従って、この情報に基づいて、自車両1の走行位置を決定すると、図15(a)の場合よりも少し左側に移動した位置に決定される。
 自車両1が更に直進して、図15(c)に示した状態になると、自車両1の左右に存在する区画線の情報からは、自車両1は道路の左側に大きく寄った位置を走行していることになる。従って、この情報に基づいて、自車両1の走行位置を決定すると、更に大きく左側に寄った位置に決定される。
 結局、図15に示した例では、自車両1は実際には道路を直進しているにも拘らず、道路画像から抽出した区画線の位置に基づいて決定した自車両1の走行位置は、図中に破線の矢印で示したように、緩やかに左旋回しているかのように誤検出してしまう。このように、実際には直進しているにも拘わらず、左旋回(あるいは右旋回)していると誤検出する事態が生じると、その結果に基づいて車速センサー11や方位センサー12の出力を補正してしまい、その後に決定される経路位置の誤差が大きくなる。
 更に、カーブの途中で区画線が不鮮明になっていると、誤った走行車線を出力してしまう可能性もある。すなわち、図16(a)に例示したように、自車両1が左の車線に移動し終えた後、(実線の矢印で示すように)道路のカーブに合わせて右旋回を始めた付近で、道路の区画線が消えていたとする。
 図3を用いて前述したように、区画線が消えていると道路画像中の区画線を抽出できないから(S108:no)、自車両1の移動距離および移動方向に基づいて、道路上での走行位置を推定しながら走行することになる(S114、S115)。
 ところが、地図上で決定した走行位置によれば、図16(b)に示すように、自車両1は直線部分からカーブに切り換わる位置を走行していることになっている。そして、実際には、図16(a)に示したように区画線はカーブの途中から消えているが、走行位置検出装置100にとっては、図16(b)に示すように、カーブの初めから消えている状況と同じとなる。その結果、図中に星印で示した走行位置から、自車両1の移動距離および移動方向に基づいて、図中に破線の矢印で示すような走行軌跡を生成することによって、道路上での走行位置を推定する。
 図16(a)中に示した実線の矢印と、図16(b)中に示した破線の矢印とを比較すれば明らかなように、走行軌跡は正確な軌跡が生成されている。しかし、図16(b)に示されるように、走行軌跡から走行位置を推測すると、あたかも道路の中央を走行しているかのように誤って推測してしまう。
 図15および図16に示した例では、地図上で決定した走行位置によれば自車両1は直線部分を走行しているにも拘わらず、実際にはカーブを走行していた場合について説明した。しかし、これとは逆に、地図上で決定した走行位置では自車両1はカーブを走行しているが、実際には直線部分を走行している場合にも、全く同様な説明が当て嵌まる。また、図15および図16に示した例では、自車両1が実際に走行している位置が、地図上で決定した走行位置よりも前方であった場合について説明したが、地図上で決定した走行位置よりも後方であった場合にも、全く同様な説明が当て嵌まる。
 これに対して、自車両1が真っ直ぐな道路を走行している場合には、上述した問題は生じない。例えば、図17に示した例では、地図上で決定された自車両1の走行位置と、実際に自車両1が走行している位置とに大きなずれが生じているが、道路は真っ直ぐなので、自車両1が左の車線に車線変更すると、星印で示した走行位置も左の車線に車線変更することになって、上述した問題は生じない。
 また、自車両1が大きなカーブを走行している場合にも、上述した問題は生じない。すなわち、図18に示した例でも、星印で示した自車両1の走行位置と、自車両1が実際に走行している位置とに大きなずれが生じているが、自車両1が左の車線に車線変更すると、星印で示した走行位置も左の車線に車線変更することになって、上述した問題は生じない。
 このことから、上述した問題、すなわち、道路画像から抽出した区画線に基づいて道路の幅方向への位置も含めた自車両1の走行位置を決定すると、経路位置の精度を更に低下させてしまう場合があるという問題は、地図上で決定された自車両1の走行位置と、自車両1が実際に走行している位置とで、道路の曲り形状が異なっている場合に生じると考えられる。
 ここで、道路の曲り形状とは、直線かカーブか、右カーブか左カーブか、大きなカーブか小さなカーブかといったように、道路が曲る態様を大雑把に分類したものである。例えば、直線かカーブかについては、道路の曲率半径が所定値以上であれば直線と判断し、それ以外はカーブと判断することができる。また、右カーブと左カーブとが連続している場合でも、それぞれのカーブの曲率半径が所定値以上の場合は、1つの直線と判断することができる。更には、2つのカーブが連続している場合、それらのカーブの曲率半径の差が所定の閾値以上であった場合に、それらは大きなカーブと小さなカーブとが連続しているものと判断することができる。道路の曲り形状とは、このようにして、道路の曲りの態様を大雑把に分類したものである。
 また、前述したように、自車両1の走行速度や、走行方向、測位結果、地図情報を用いて自車両1の経路位置を決定する際には、経路位置の誤差の大きさも推定することができる。従って、経路位置の誤差の範囲内に、道路の曲り形状が変化する部分が存在している場合には、道路画像から抽出した区画線に基づいて自車両1の走行位置を決定すると、経路位置の精度を更に低下させてしまう可能性が生じると考えられる。
 そこで、第2変形例の走行位置検出装置100は、以下のようにして自車両1の走行位置を検出する。
 図19および図20には、第2変形例の走行位置検出処理のフローチャートが示されている。第2変形例の走行位置検出処理は、図3および図4を用いて前述した本実施例の走行位置検出処理に対して、経路位置の誤差の範囲内で道路形状が変化している場合には、道路画像から抽出した区画線の情報を用いて、道路の幅方向への走行位置を決定しないこととしている点が大きく異なっている。
 第2変形例の走行位置検出処理でも、前述した本実施例と同様に、車速センサー11および方位センサー12の出力に基づいて、自車両1の走行速度および走行方向を取得する(S151)。続いて、測位装置13から、自車両1の測位位置を含む測位結果を取得する(S152)。更に、自車両1の測位位置に基づいて、自車両1の周辺の地図情報を取得する(S153)。
 その後、以上のようにして取得した自車両1の走行速度や、走行方向、測位結果、地図情報に基づいて、自車両1の地図上での経路位置を決定する(S154)。
 また、第2変形例の走行位置検出処理では、経路位置を決定するに際に、決定した経路位置に含まれる誤差の大きさについても取得しておく(S155)。すなわち、自車両1の走行速度や走行方向を累積して得られる走行軌跡を、道路の形状にマッチングさせる際に生じた経路位置の修正量から、経路位置に含まれる誤差の大きさを推定することができる。更に、前回にマッチングしてからの走行距離に基づいて、誤差の増加量も推定することができる。S155では、このような方法で、経路位置に含まれる誤差の大きさを求めておく。
 続いて、地図情報の区画線情報に基づいて、経路位置の道路が複車線の道路か否かを判断する(S156)。その結果、経路位置の道路が複車線の道路でなかった場合は(S156:no)、幅方向への位置を決定する必要がないと判断し、経路位置を運転支援装置に出力する(図20のS166)。
 これに対して、経路位置の道路が複車線の道路であった場合は(図19のS156:yes)、自車両1が走行している走行車線を踏まえて運転支援をことが望ましく、その為には、道路上での幅方向への位置を検出する必要が生じる。もちろん、自車両1の走行速度や、走行方向、測位結果、地図情報に基づいて決定した経路位置では、道路上での幅方向への位置までは分からないので、道路画像から抽出した区画線の位置に基づいて、幅方向への位置を決定することになる。
 しかし、図15~図18を用いて前述したように、経路位置の誤差の範囲内で、道路の曲り形状が変化している場合には、道路画像から抽出した区画線に基づいて自車両1の走行位置を決定すると、経路位置の精度を更に低下させてしまう可能性が生じると考えられる。
 そこで、第2変形例の走行位置検出処理では、経路位置の誤差の範囲内で道路の曲り形状が変化しているか否かを判断する(S157)。経路位置の誤差の大きさは、S155で予め取得されている。また、地図情報も既にS153で取得してあるから、経路位置の誤差の範囲内で道路の曲り形状が変化しているか否かは容易に判断することができる。
 例えば、図15に例示したような場合であれば、経路位置の道路は直線であるのに対して、経路位置の誤差の範囲内にはカーブの部分も存在しているから、道路の曲り形状が変化している。これに対して、例えば、図17あるいは図18に例示したような場合であれば、経路位置の誤差の範囲内では道路の曲り形状が変化していない。
 その結果、経路位置の誤差の範囲内では道路の曲り形状が変化していないと判断した場合は(S157:no)、自車両1の前方あるいは側方の道路画像を取得して(S158)、その道路画像を解析することによって、区画線を抽出する(S159)。
 その後、道路画像中の区画線を抽出できたか否かを判断し(図20のS160)、抽出できていた場合には(S160:yes)、前述した本実施例の走行位置検出処理と同様にして、区画線に対する自車両1のオフセット位置を検出する(S161)。そして、オフセット位置に基づいて、道路の幅方向への位置も含めた自車両1の走行位置を決定した後(S162)、決定した走行位置を用いて、道路上で自車両1の走行軌跡を生成する(S165)。
 これに対して、道路画像中から区画線を抽出できなかった場合は(S160:no)、先ず、自車両1の移動距離および移動方向を取得する(S163)。そして、自車両1の移動距離および移動方向に基づいて、走行位置(すなわち経路位置および道路上での幅方向への位置)を推定する(S164)。すなわち、道路画像から区画線が抽出できた場合には、抽出した区画線に基づいて自車両1の走行位置を決定する(S162)が、区画線が抽出できなかった場合は、走行速度および走行方向を用いて道路上での走行位置を推定する(S164)ことになる。こうして、自車両1の走行位置を推定したら(S164)、推定した新たな走行位置を記憶することによって、走行軌跡を生成する(S165)。
 以上では、経路位置の誤差の範囲内では道路の曲り形状が変化していないと判断した場合(S157:no)に、自車両1の走行位置を決定し(S162)、あるいは自車両1の走行位置を推定して(S164)、道路上での幅方向への位置を含めた走行軌跡を生成する(S165)為に実行される処理について説明した。
 これに対して、経路位置の誤差の範囲内で道路の曲り形状が変化していると判断した場合には(S157:yes)、図15~図18を用いて前述したように、道路画像から抽出した区画線に基づいて自車両1の走行位置を決定すると、経路位置の精度を更に低下させてしまう可能性がある。
 そこで、この場合(S157:yes)には、道路画像を取得して、道路画像を解析し、区画線を抽出できたか否かを判断する一連の処理(S158~S160)を行うことなく、自車両1の移動距離および移動方向を取得する(S163)。そして、自車両1の移動距離および移動方向に基づいて走行位置を推定して(S164)、推定した走行位置を用いて走行軌跡を生成する(S165)。
 その後は、以上のようにして決定あるいは推定した新たな走行位置を、運転支援装置200に出力する(S166)。また、このとき、走行位置から走行車線を決定して、走行車線を出力するようにしてもよい。
 その後、運転を終了するか否かを判断し(S167)、終了しない場合は(S167:no)、走行位置検出処理の先頭に戻って、再び車速センサーおよび方位センサーの出力を取得した後(図19のS151)、前述した続く一連の処理を開始する。
 これに対して、運転を終了する場合は(S167:yes)、第2変形例の走行位置検出処理を終了する。
 以上に説明した第2変形例の走行位置検出処理では、経路位置の誤差が大きくなって、誤差の範囲内で道路の曲り形状が変化するような場合には、道路画像から抽出した区画線の情報を用いずに、自車両1の移動距離および移動方向に基づいて、道路上での幅方向への位置を含めた走行位置を推定する。このため、図15あるいは図16を用いて前述したように、自車両1の走行位置を誤った位置に決定してしまう事態を回避することができる。
 C-3.第3変形例:
 上述した第2変形例では、経路位置の誤差の範囲内で道路の曲り形状が変化するような場合には、道路画像から抽出した区画線の情報を用いて、道路上での幅方向への位置を含めた走行位置を決定する代わりに、自車両1の移動距離および移動方向に基づいて走行位置を推定するものとして説明した。
 しかし、経路位置の誤差の範囲内で道路の曲り形状が変化するような場合でも、道路画像から抽出した区画線の情報を用いて走行位置を決定することとして、その代わりに、決定した走行位置の信頼度が低下している旨の情報を、走行位置とともに出力するようにしてもよい。以下では、このような第3変形例について、第2変形例との相違点を中心として簡単に説明する。
 図21および図22には、第3変形例の走行位置検出処理のフローチャートが示されている。第3変形例の走行位置検出処理は、図19および図20を用いて前述した第2変形例の走行位置検出処理に対して、道路の幅方向への走行位置に加えて、走行位置の信頼度も決定している点が大きく異なっている。
 第3変形例の走行位置検出処理でも、車速センサー11および方位センサー12の出力に基づいて、自車両1の走行速度および走行方向を取得し(S171)、測位装置13から自車両1の測位位置を含む測位結果を取得する(S172)。続いて、自車両1の周辺の地図情報を取得して(S173)、自車両1の地図上での経路位置を決定する(S174)。この際には、決定した経路位置に含まれる誤差の大きさについても取得しておく(S175)。
 その後、地図情報の区画線情報に基づいて、経路位置の道路が複車線の道路か否かを判断し(S176)、複車線の道路でなかった場合は(S176:no)、幅方向への位置を決定する必要がないと判断し、経路位置を運転支援装置に出力する(図22のS188)。
 一方、道路が複車線の道路であった場合は(図21のS176:yes)、経路位置の誤差の範囲内で道路の曲り形状が変化しているか否かを判断する(S177)。
 その結果、経路位置の誤差の範囲内では道路の曲り形状が変化していないと判断した場合は(S177:no)、走行位置の信頼度を「高」に設定する(S178)。これに対して、経路位置の誤差の範囲内では道路の曲り形状が変化していると判断した場合は(S177:yes)、走行位置の信頼度を「低」に設定する(S179)。
 その後は、図3および図4を用いて前述した本実施例の走行位置検出処理と同様に、自車両1の周辺の道路画像を取得して(S180)、その道路画像を解析することによって区画線を抽出する(図22のS181)。すなわち、第3変形例では、経路位置の誤差の範囲内では道路の曲り形状が変化していると判断した場合(S177:yes)でも、道路画像中の区画線を抽出する。
 その後は、道路画像中の区画線を抽出できたか否かを判断し(S182)、抽出できていた場合には(S182:yes)、区画線に対する自車両1のオフセット位置を検出して(S183)、道路の幅方向への位置も含めた自車両1の走行位置を決定する(S184)。そして、決定した走行位置を用いて、道路上で自車両1の走行軌跡を生成する(S187)。
 これに対して、道路画像中の区画線を抽出できていなかった場合には(S182:no)、自車両1の移動距離および移動方向を取得して(S185)、道路の幅方向への位置も含めた自車両1の走行位置を推定する(S186)。そして、推定した走行位置を用いて、道路上で自車両1の走行軌跡を生成する(S187)。
 その後は、以上のようにして決定あるいは推定した新たな走行位置と、S178あるいはS179で設定しておいた走行位置の信頼度を、運転支援装置200に出力する(S188)。また、このとき、走行位置から走行車線を決定して、走行車線を出力するようにしてもよい。
 その後、運転を終了するか否かを判断し(S189)、終了しない場合は(S189:no)、走行位置検出処理の先頭に戻って、再び車速センサーおよび方位センサーの出力を取得した後(図21のS171)、前述した続く一連の処理を開始する。
 これに対して、運転を終了する場合は(S189:yes)、第3変形例の走行位置検出処理を終了する。
 以上に説明した第3変形例の走行位置検出処理では、経路位置の誤差の範囲内で道路の曲り形状が変化するような場合には、自車両1の走行位置とともに、走行位置の信頼度が低下している旨の情報も運転支援装置200に出力することができる。このため、運転支援装置200では、信頼度に応じて、自車両1の走行位置の情報の利用方法を変更することによって、適切な運転支援を行うことが可能となる。
 C-4.第4変形例:
 上述した第2変形例および第3変形例では、経路位置の誤差の範囲内で道路の曲り形状が変化するような場合には、道路画像から抽出した区画線の情報を用いることなく、自車両1の移動距離および移動方向に基づいて走行位置を推定するものとして説明した。
 しかし、図15を用いた説明から明らかなように、道路画像から抽出した区画線の情報を用いて自車両1の走行位置を決定すると、却って、経路位置の精度を低下させてしまう現象が生じる状況では、決定した走行位置が示す自車両1の操舵角と、実際の操舵角との間に、ずれが生じることが分かる。例えば、図15に示した例では、自車両1は実際には直進しているにも拘わらず、区画線の情報を用いて決定した走行位置によれば、自車両1は左旋回していることになる。もちろん、これとは逆に、実際には左旋回(あるいは右旋回)しているにも拘わらず、区画線の情報を用いて決定した走行位置では、自車両1が直進していることも起こり得る。そして、このような状況では、区画線の情報を用いて自車両1の走行位置を決定することで、経路位置の精度を低下させる現象が生じると考えられる。
 そこで、走行位置から推定される自車両1の操舵角と、自車両1の実際の操舵角との差が所定の閾値よりも大きくなった場合には、道路画像から抽出した区画線の情報を用いて走行位置を決定する代わりに、自車両1の移動距離および移動方向の情報に基づいて走行位置を推定するようにしてもよい。
 図23には、このような第4変形例の走行位置検出装置100の大まかな内部構造が示されている。図示した第4変形例の走行位置検出装置100は、図2を用いて前述した本実施例の走行位置検出装置100に対して、操舵角取得部111と、操舵角推定部112とを備える点が大きく異なっている。以下では、本実施例との相違点を中心に、第4変形例の走行位置検出装置100について簡単に説明する。また、説明に際しては、本実施例の走行位置検出装置100と同じ内容については、本実施例と同じ番号を符番することとして、説明を省略する。
 図23に示されるように、第4変形例の走行位置検出装置100には、操舵角取得部111や操舵角推定部112が設けられている。
 操舵角取得部111は、自車両1の図示しないステアリングハンドルに装着された操舵角センサー15に接続されており、操舵角センサー15からの出力に基づいて、自車両1の実際の操舵角を取得する。また、取得した操舵角は、道路画像取得部107に出力する。
 操舵角推定部112は、走行位置決定部106で決定した走行位置に基づいて、自車両1の操舵角を推定する。すなわち、走行位置から自車両1の走行軌跡を求めて、その走行軌跡の曲率を求めれば、自車両1の操舵角を推定することができる。また、推定した操舵角は、道路画像取得部107に出力する。
 第4変形例の道路画像取得部107も、図2を用いて前述した本実施例と同様に、車載カメラ14から道路画像を取得する。但し、第4変形例の道路画像取得部107は、道路画像を取得するに先立って、操舵角取得部111から取得した操舵角と、操舵角推定部112から取得した操舵角とを比較する。そして、両者の差が所定の閾値よりも小さかった場合に、道路画像を取得して、オフセット位置検出部108に出力する。
 これに対して、両者の差が所定の閾値よりも大きかった場合には、道路画像を取得しない。従って、道路画像がオフセット位置検出部108に出力されることはなく、オフセット位置検出部108で、区画線に対する自車両1のオフセット位置が検出されることもない。
 このような第4変形例の走行位置検出装置100では、走行位置から推定される自車両1の操舵角と、自車両1の実際の操舵角との差が所定の閾値よりも大きくなった場合には、道路画像から抽出した区画線の情報を用いて走行位置を決定する代わりに、自車両1の移動距離および移動方向の情報に基づいて走行位置を推定する。
 このため、道路画像から抽出した区画線の情報を用いて自車両1の走行位置を決定することで、経路位置の精度を低下させてしまう事態を回避することが可能となる。
 尚、上述した第4変形例では、自車両1の実際の操舵角は、操舵角センサー15を用いて取得するものとして説明したが、方位センサー12の出力から得られた自車両1の走行方向に基づいて、自車両1の実際の操舵角を算出するようにしてもよい。
 こうすれば、本実施例の走行位置検出装置100に対して、新たに操舵角センサー15のデータを入力しなくても、第4変形例の走行位置検出装置100を実現することが可能となる。
 以上、本実施例および変形例について例示したが、実施例および変形例は、これらに限られるものではない。本開示の技術的思想は、その要旨を逸脱しない範囲において種々の実施形態として具現化できる。
 

 

Claims (6)

  1.  複数の車線が区画線で区画された道路上で、自車両(1)が走行している走行位置を検出する走行位置検出装置(100)であって、
     前記自車両に搭載された車速センサー(11)の出力に基づいて、前記自車両の走行速度を検出する走行速度検出部(101)と、
     前記自車両に搭載された方位センサー(12)の出力に基づいて、前記自車両の走行方向を検出する走行方向検出部(102)と、
     前記自車両に搭載された測位装置(13)が測位信号を受信することによって算出した測位結果を、前記測位装置から取得する測位結果取得部(103)と、
     地図上での前記道路の経路を表す経路情報と、前記道路上に表示された前記区画線についての情報である区画線情報とを含んだ地図情報を記憶している地図情報記憶部(104)と、
     前記走行速度と、前記走行方向と、前記測位結果とに基づいて、前記道路の経路上での位置である経路位置を決定する経路位置決定部(105)と、
     前記自車両が走行している前記道路が写った道路画像を取得する道路画像取得部(106)と、
     前記道路画像を解析して前記区画線を抽出することによって、前記区画線に対する前記自車両のオフセット位置を検出するオフセット位置検出部(107)と、
     前記経路位置と、前記オフセット位置と、前記区画線情報とに基づいて、前記道路上での前記走行位置を決定する走行位置決定部(108)と
     を備え、
     前記走行位置決定部は、前記オフセット位置が検出されない場合には、前記走行速度と、前記走向方向と、既に決定された前記走行位置とに基づいて、前記走行位置を推定する
     走行位置検出装置。
  2.  請求項1に記載の走行位置検出装置であって、
     前記走行位置に基づいて、前記自車両が走行中の走行車線を決定する走行車線決定部(109)を備える
     走行位置検出装置。
  3.  請求項1に記載の走行位置検出装置であって、
     前記地図情報記憶部は、前記区画線情報として、前記区画線の種類についての情報も記憶しており、
     前記オフセット位置検出部は、前記道路画像から前記区画線を抽出して前記オフセット位置を検出する際に、前記区画線の種類も検出しており、
     前記区画線情報として記憶されている前記区画線の種類と、前記道路画像から検出された前記区画線の種類とを照合することによって、前記自車両が走行中の走行車線を決定する走行車線特定部(110)を備える
     走行位置検出装置。
  4.  請求項1ないし請求項3の何れか一項に記載の走行位置検出装置であって、
     前記道路画像取得部は、前記自車両の前記走行方向に向かって撮影された前記道路画像を取得する
     走行位置検出装置。
  5.  請求項1ないし請求項3の何れか一項に記載の走行位置検出装置であって、
     前記道路画像取得部は、前記自車両の左側の前記道路が撮影された前記道路画像と、前記自車両の右側の前記道路が撮影された前記道路画像とを取得しており、
     前記オフセット位置検出部は、前記左側の前記道路画像および前記右側の前記道路画像を解析して前記区画線を抽出することによって、前記オフセット位置を検出する
     走行位置検出装置。
  6.  複数の車線が区画線で区画された道路上で、自車両(1)が走行している走行位置を検出する走行位置検出方法であって、
     前記自車両に搭載された車速センサーの出力に基づいて、前記自車両の走行速度を検出し、前記自車両に搭載された方位センサーの出力に基づいて、前記自車両の走行方向を検出する工程(S101)と、
     前記自車両に搭載された測位装置が測位信号を受信することによって算出した測位結果を、前記測位装置から取得する工程(S102)と、
     地図上での前記道路の経路を表す経路情報と、前記道路上に表示された前記区画線についての情報である区画線情報とを含んだ地図情報を読み出す工程(S103)と、
     前記走行速度と、前記走行方向と、前記測位結果とに基づいて、前記道路の経路上での位置である経路位置を決定する工程(S104)と、
     前記自車両が走行している前記道路が写った道路画像を取得する工程(S106)と、
     前記道路画像を解析して前記区画線を抽出することによって、前記区画線に対する前記自車両のオフセット位置を検出する工程(S109)と、
     前記経路位置と、前記オフセット位置と、前記区画線情報とに基づいて、前記道路上での前記走行位置を決定する工程(S110、S115)と
     を備え、
     前記走行位置を決定する工程は、前記オフセット位置が検出されない場合には、前記走行速度と、前記走向方向と、既に決定された前記走行位置とに基づいて、前記走行位置を推定する
     走行位置検出方法。

     
PCT/JP2017/005059 2016-03-07 2017-02-13 走行位置検出装置、走行位置検出方法 WO2017154464A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/082,290 US10984551B2 (en) 2016-03-07 2017-02-13 Traveling position detection apparatus and traveling position detection method
DE112017001175.2T DE112017001175T5 (de) 2016-03-07 2017-02-13 Vorrichtung und Verfahren zur Erfassung einer Fahrposition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016043963 2016-03-07
JP2016-043963 2016-03-07
JP2016250222A JP2017161501A (ja) 2016-03-07 2016-12-23 走行位置検出装置、走行位置検出方法
JP2016-250222 2016-12-23

Publications (1)

Publication Number Publication Date
WO2017154464A1 true WO2017154464A1 (ja) 2017-09-14

Family

ID=59790369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005059 WO2017154464A1 (ja) 2016-03-07 2017-02-13 走行位置検出装置、走行位置検出方法

Country Status (1)

Country Link
WO (1) WO2017154464A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133490A (zh) * 2017-09-29 2020-05-08 日立汽车系统株式会社 自动驾驶控制装置及方法
CN114194187A (zh) * 2020-08-28 2022-03-18 本田技研工业株式会社 车辆行驶控制装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247300A (ja) * 1997-03-05 1998-09-14 Toyota Motor Corp 走路境界線認識装置
JP2005265494A (ja) * 2004-03-17 2005-09-29 Hitachi Ltd 車両位置推定装置およびこれを用いた運転支援装置
JP2007304965A (ja) * 2006-05-12 2007-11-22 Mitsubishi Electric Corp 画像処理装置
WO2008107944A1 (ja) * 2007-03-01 2008-09-12 Pioneer Corporation 車線逸脱防止装置、車線逸脱防止方法、車線逸脱防止プログラム及び記憶媒体
JP2009140192A (ja) * 2007-12-05 2009-06-25 Zhencheng Hu 道路白線検出方法、道路白線検出プログラムおよび道路白線検出装置
JP2009237901A (ja) * 2008-03-27 2009-10-15 Zenrin Co Ltd 路面標示地図生成方法
JP2013234902A (ja) * 2012-05-08 2013-11-21 Alpine Electronics Inc 走行レーン認識装置および走行レーン認識方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247300A (ja) * 1997-03-05 1998-09-14 Toyota Motor Corp 走路境界線認識装置
JP2005265494A (ja) * 2004-03-17 2005-09-29 Hitachi Ltd 車両位置推定装置およびこれを用いた運転支援装置
JP2007304965A (ja) * 2006-05-12 2007-11-22 Mitsubishi Electric Corp 画像処理装置
WO2008107944A1 (ja) * 2007-03-01 2008-09-12 Pioneer Corporation 車線逸脱防止装置、車線逸脱防止方法、車線逸脱防止プログラム及び記憶媒体
JP2009140192A (ja) * 2007-12-05 2009-06-25 Zhencheng Hu 道路白線検出方法、道路白線検出プログラムおよび道路白線検出装置
JP2009237901A (ja) * 2008-03-27 2009-10-15 Zenrin Co Ltd 路面標示地図生成方法
JP2013234902A (ja) * 2012-05-08 2013-11-21 Alpine Electronics Inc 走行レーン認識装置および走行レーン認識方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133490A (zh) * 2017-09-29 2020-05-08 日立汽车系统株式会社 自动驾驶控制装置及方法
CN111133490B (zh) * 2017-09-29 2022-03-25 日立安斯泰莫株式会社 自动驾驶控制装置及方法
CN114194187A (zh) * 2020-08-28 2022-03-18 本田技研工业株式会社 车辆行驶控制装置
CN114194187B (zh) * 2020-08-28 2023-12-05 本田技研工业株式会社 车辆行驶控制装置

Similar Documents

Publication Publication Date Title
JP2017161501A (ja) 走行位置検出装置、走行位置検出方法
US11263771B2 (en) Determining lane position of a partially obscured target vehicle
JP7461720B2 (ja) 車両位置決定方法及び車両位置決定装置
JP4506790B2 (ja) 道路情報生成装置、道路情報生成方法および道路情報生成プログラム
EP1686538A2 (en) Vehicle position recognizing device and vehicle position recognizing method
KR101919366B1 (ko) 차량 내부 네트워크 및 영상 센서를 이용한 차량 위치 인식 장치 및 그 방법
US8112222B2 (en) Lane determining device, method, and program
JP5747787B2 (ja) 車線認識装置
US9123242B2 (en) Pavement marker recognition device, pavement marker recognition method and pavement marker recognition program
JP5716443B2 (ja) 車線境界検出装置及び車線境界検出方法
US11468691B2 (en) Traveling lane recognition apparatus and traveling lane recognition method
JP2008168811A (ja) 車線認識装置、車両、車線認識方法、及び車線認識プログラム
JP2008164384A (ja) 地物位置認識装置及び地物位置認識方法
JP2020067698A (ja) 区画線検出装置及び区画線検出方法
JP2008165326A (ja) 地物認識装置・自車位置認識装置・ナビゲーション装置・地物認識方法
JP6815963B2 (ja) 車両用外界認識装置
WO2017154464A1 (ja) 走行位置検出装置、走行位置検出方法
JP4731380B2 (ja) 自車位置認識装置及び自車位置認識方法
CN109427212B (zh) 车辆行驶检测方法及车辆行驶检测系统
US10916034B2 (en) Host vehicle position estimation device
JP2022011887A (ja) 走行予定経路設定装置及び走行予定経路設定方法
US11670096B2 (en) Apparatus and method for recognizing driving lane of vehicle
JP4314870B2 (ja) 車線検出装置
JP5549468B2 (ja) 地物位置取得装置、方法およびプログラム
JP2022151005A (ja) 走行道路特定装置、走行道路特定方法及び走行道路特定用コンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762808

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762808

Country of ref document: EP

Kind code of ref document: A1