WO2017154359A1 - 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池 - Google Patents

燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池 Download PDF

Info

Publication number
WO2017154359A1
WO2017154359A1 PCT/JP2017/001607 JP2017001607W WO2017154359A1 WO 2017154359 A1 WO2017154359 A1 WO 2017154359A1 JP 2017001607 W JP2017001607 W JP 2017001607W WO 2017154359 A1 WO2017154359 A1 WO 2017154359A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon powder
fuel cell
carbon
peak
Prior art date
Application number
PCT/JP2017/001607
Other languages
English (en)
French (fr)
Inventor
武彦 奥井
裕行 田中
一樹 在原
徹也 眞塩
大間 敦史
森下 隆広
善夫 初代
Original Assignee
日産自動車株式会社
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59789182&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017154359(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日産自動車株式会社, 東洋炭素株式会社 filed Critical 日産自動車株式会社
Priority to EP17762705.6A priority Critical patent/EP3429003B1/en
Priority to JP2018504029A priority patent/JP6603396B2/ja
Priority to CN201780016662.XA priority patent/CN108780900B/zh
Priority to US16/083,606 priority patent/US10675611B2/en
Priority to KR1020187025811A priority patent/KR102054609B1/ko
Priority to CA3017300A priority patent/CA3017300C/en
Publication of WO2017154359A1 publication Critical patent/WO2017154359A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon powder for a fuel cell, particularly a carbon powder for a fuel cell catalyst, and a catalyst, an electrode catalyst layer, a membrane electrode assembly, and a fuel cell using the carbon powder for a fuel cell.
  • a polymer electrolyte fuel cell (PEFC) using a proton-conducting polymer electrolyte membrane is lower in temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. Operate. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
  • an expensive metal catalyst represented by Pt (platinum) or a Pt alloy is used.
  • a carbon carrier having a large specific surface area or a doped carbon carrier is used in order to highly support and disperse the metal catalyst.
  • conventional carbon carriers have not been able to sufficiently activate the supported platinum while maximizing the characteristics of the carbon material.
  • Patent Document 1 platinum or a platinum alloy is supported on carbon alloy fine particles (carbon base material) having an average particle diameter of 45 ⁇ m or less doped with at least one of a nitrogen atom and a boron atom.
  • a fuel cell electrode catalyst is described. It is described that the carbon alloy fine particles described in Patent Document 1 have an electronically and chemically active edge surface, and thus a platinum-supported catalyst exhibits high activity.
  • Patent Document 1 has not been fully active depending on the application (for example, a fuel cell for vehicles).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a carbon powder for a fuel cell that can exhibit high catalytic activity when a catalytic metal is supported.
  • Another object of the present invention is to provide a catalyst, an electrode catalyst layer, a membrane electrode assembly, and a fuel cell that are excellent in power generation performance and / or durability.
  • FIG. 1 is a polymer electrolyte fuel cell (PEFC); 2 is a solid polymer electrolyte membrane; 3a is an anode catalyst layer; 3c is a cathode catalyst layer; 4a is an anode gas diffusion layer; Cathode gas diffusion layer; 5a anode separator; 5c cathode separator; 6a anode gas channel; 6c cathode gas channel; 7 refrigerant channel; and 10 membrane electrode assembly (MEA) ) Respectively.
  • PEFC polymer electrolyte fuel cell
  • 2 is a solid polymer electrolyte membrane
  • 3a is an anode catalyst layer
  • 3c is a cathode catalyst layer
  • 4a is an anode gas diffusion layer
  • Cathode gas diffusion layer 5a anode separator; 5c cathode separator; 6a anode gas channel; 6c cathode gas channel; 7 refrigerant channel; and 10 membrane electrode assembly (MEA)
  • the carbon powder for fuel cells of the present invention contains carbon as a main component.
  • “mainly composed of carbon” is a concept including both carbon and substantially carbon, and elements other than carbon may be included.
  • substantially composed of carbon means that 98% by weight or more, preferably 99.5% by weight or more (upper limit: less than 100% by weight) of the entire carbon powder is composed of carbon.
  • the carbon powder for fuel cells of the present invention satisfies the following configuration (i): (I) The ratio (B / A) of the area B of the peak 1 to the area A of the peak 0 exceeds 0 and is 0.15 or less. Since the carbon powder for fuel cells satisfying the above configuration (i) has low crystallinity, the catalyst metal can be supported in a highly dispersed manner. Therefore, a catalyst having excellent catalytic activity can be provided by using the carbon powder for fuel cells of the present invention as a carrier.
  • the area of the peak 0 is also simply referred to as “area A”.
  • the area of the peak 1 is also simply referred to as “area B”.
  • the ratio of the area B to the area A is also referred to as “B / A” or “B / A ratio”.
  • Patent Document 1 In the carbon alloy fine particles described in Patent Document 1, the development of X-ray diffraction lines in the basal plane direction of the carbon structure is suppressed, and the ratio of the edge surface perpendicular to the basal plane increases. It is described that as the edge surface increases, the ratio of platinum or a platinum alloy in contact with the edge surface increases to increase the catalytic activity (Patent Document 1, paragraph “0017”). However, depending on the application, it is difficult to say that the activity of the catalyst in which the catalyst metal is supported on the carbon alloy fine particles is sufficient. Further, the edge surface has low oxidation resistance.
  • a catalyst layer including a catalyst using such carbon alloy fine particles as a carrier an electrochemical oxidation reaction (C + 2H 2 O ⁇ CO 2 + 4H + + 4e ⁇ ) that generates carbon dioxide using water present in the layer as an oxidizing agent.
  • This causes corrosion of the carbon support.
  • the carbon corrosion is particularly problematic during repeated start / stop / continuous operation.
  • the catalyst using the carbon alloy fine particles described in Patent Document 1 described above as a carrier is inferior in durability, particularly due to carbon deterioration during start / stop / continuous operation.
  • the carbon powder according to the present invention satisfies the above (i). Since the surface energy of the highly crystalline part is low, the catalytic metal is hardly supported on the highly crystalline carbon powder.
  • the carbon powder according to the present invention has low crystallinity (small B / A ratio). For this reason, since the catalyst metal (for example, platinum) is stably adsorbed on the carbon powder, sintering of the catalyst metal can be suppressed / prevented when the catalyst metal is supported on the carrier powder. Further, the catalyst metal can be supported in a highly dispersed form in the form of small particles on the carbon powder having low crystallinity. For this reason, the catalyst which carried the catalyst metal on such carbon powder increases the specific surface area of the catalyst metal.
  • such a catalyst increases the contact area between the catalytic metal and the reaction gas, and can improve the mass specific activity. Therefore, the catalyst obtained by supporting the catalytic metal on the carbon powder of the present invention can exhibit high activity (for example, mass specific activity). In addition, when crystallinity is low (B / A ratio is small), durability generally decreases.
  • the carbon powder according to the present invention is described in detail below, since it is produced under specific heat treatment conditions, there are few edge surfaces with weak oxidation resistance.
  • the electronic state of the edge (end part) of the graphene molecule tends to be a starting point of carbon corrosion.
  • the carbon powder according to the present invention Since the carbon powder according to the present invention has few edge surfaces with such weak oxidation resistance, it is less susceptible to oxidation reactions that may occur during start / stop / continuous operation (excellent oxidation resistance), and electrochemical corrosion resistance. Excellent in resistance to corrosion. Therefore, the catalyst obtained by supporting the catalytic metal on the carbon powder of the present invention is excellent in durability.
  • the above effect is obtained by the ratio of the peak intensity (D ′ intensity) of the D ′ band measured near 1620 cm ⁇ 1 to the peak intensity (G intensity) of the G band measured near 1580 cm ⁇ 1 by Raman spectroscopy. This is particularly noticeable when R ′ (D ′ / G intensity ratio) is 0.30 or less.
  • the carbon powder for fuel cells of the present invention can exhibit high catalytic activity when a catalytic metal is supported.
  • the carbon powder for fuel cells of the present invention is excellent in durability and can maintain high catalytic activity when a catalytic metal is supported.
  • the carbon powder of the present invention As a carrier, a catalyst having excellent catalytic activity and durability, and an electrochemical device (for example, MEA, capacitor) having high performance and high durability can be provided.
  • the carbon powder for fuel cells of the present invention can be suitably used as a support for a catalyst, particularly a catalyst for a fuel cell. That is, the present invention includes a fuel cell catalyst in which a catalyst metal is supported on the fuel cell carbon powder of the present invention. Further, the carbon powder (support) for fuel cells of the present invention has a small amount of carbon edge. For this reason, according to the fuel cell catalyst of the present invention, it is possible to suppress / prevent performance degradation due to carbon corrosion, that is, to improve durability.
  • the fuel cell catalyst in which the catalyst metal is supported on the carbon powder for the fuel cell of the present invention has low crystallinity, and therefore can exhibit high catalytic activity (can promote the catalytic reaction) by the highly dispersed catalyst metal, In addition, since the amount of carbon edge of the catalyst-supporting carbon is small, it has excellent durability against carbon corrosion and can maintain the activity. For this reason, the membrane electrode assembly and fuel cell which have a catalyst layer using such a catalyst are excellent in power generation performance and durability. Accordingly, the present invention provides a fuel cell electrode catalyst layer containing the catalyst and electrolyte, a fuel cell membrane electrode assembly including the fuel cell electrode catalyst layer, and a fuel cell including the fuel cell membrane electrode assembly. I will provide a.
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • a fuel cell includes a membrane electrode assembly (MEA), an anode (fuel electrode) side separator having a fuel gas passage through which fuel gas flows, and a cathode (oxygen electrode) side separator having an oxidant gas passage through which oxidant gas flows And a pair of separators.
  • MEA membrane electrode assembly
  • anode (fuel electrode) side separator having a fuel gas passage through which fuel gas flows
  • a cathode (oxygen electrode) side separator having an oxidant gas passage through which oxidant gas flows
  • the fuel cell of this embodiment exhibits high power generation performance and is excellent in durability.
  • FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
  • the PEFC 1 first has a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • MEA membrane electrode assembly
  • MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5 a, 5 c) are illustrated so as to be located at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2 or between PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with MEA 10. Thereby, the electrical connection with MEA 10 is ensured.
  • a recess (space between the separator and the MEA generated due to the uneven shape of the separator) seen from the MEA side of the separator (5a, 5c) is used for circulating gas during operation of PEFC 1. Functions as a gas flow path.
  • a fuel gas for example, hydrogen
  • an oxidant gas for example, air
  • the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) is a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • a refrigerant for example, water
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • the separators (5a, 5c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance and durability.
  • the type of the fuel cell is not particularly limited.
  • the polymer electrolyte fuel cell has been described as an example.
  • an alkaline fuel cell and a direct methanol fuel cell are used.
  • a micro fuel cell is used.
  • a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
  • the electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
  • the present invention is characterized by carbon powder having a specific B / A ratio, and other configurations can be applied in the same manner as configurations (materials and members) known in the art, and the technical scope of the present invention Is not limited to the following forms.
  • the carbon powder (carrier) satisfies the following (i): (I) The ratio (B / A) of the area B of the peak 1 to the area A of the peak 0 exceeds 0 and is 0.15 or less.
  • carbon powder has low crystallinity (small B / A ratio).
  • the catalyst metal for example, platinum
  • the catalyst metal is stably adsorbed on the carbon powder, sintering of the catalyst metal can be suppressed / prevented when the catalyst metal is supported on the carrier powder.
  • the catalyst metal can be supported in a highly dispersed form in the form of small particles on the carbon powder having low crystallinity.
  • supported the catalyst metal in such carbon powder has a large specific surface area of a catalyst metal, and can improve mass specific activity. Therefore, the catalyst obtained by supporting the catalytic metal on the carbon powder of the present invention can exhibit high activity (for example, mass specific activity).
  • the B / A ratio is preferably more than 0 and less than 0.06.
  • the area A of the peak 0 is large or the area B of the peak 1 is small means that the crystallinity of carbon is low (the catalyst metal can be supported in a highly dispersed manner). Therefore, by setting the B / A ratio low, the activity of the catalyst when used as a carrier can be effectively improved.
  • X-ray diffraction measurement is performed using carbon powder (sample 2) prepared by heat-treating carbon powder (sample 1) at 1800 ° C. for 1 hour in a nitrogen atmosphere. That is, carbon powder (sample 1) is heat-treated at 1800 ° C. for 1 hour in a nitrogen atmosphere to prepare carbon powder (sample 2).
  • This carbon powder (sample 2) is placed on a silicon non-reflective plate, and an XRD pattern is obtained using an X-ray diffractometer RINT-TTRIII manufactured by Rigaku Corporation.
  • CuK ⁇ rays are used as a radiation source.
  • the carbon powder of the present invention may have any characteristics as long as the above (i) is satisfied.
  • the specific surface area of the carbon powder of the present invention is not particularly limited. Dispersed and supported state of the catalyst metal, thus considering the improved catalytic activity, preferably a BET specific surface area per weight of carbon powder is less than 900m 2 / g, 880m 2 / g or less exceed 610m 2 / g Is more preferable, and 700 to 860 m 2 / g is particularly preferable. If the carbon powder has such a specific surface area, the catalyst metal can be highly dispersed (highly supported) to such an extent that sufficient activity can be achieved.
  • the “BET specific surface area (m 2 / g support)” of the carbon powder is measured by a nitrogen adsorption method. Specifically, after a sample (carbon powder) is placed in a sealed glass cell for adsorption measurement, it is evacuated and subjected to a degassing treatment at 300 ° C. for 2 hours. A nitrogen adsorption isotherm is obtained by measuring at 77 k ( ⁇ 196 ° C.) using nitrogen gas as the adsorption gas.
  • an automatic gas / vapor adsorption measuring device BELSORP-18 manufactured by Nippon Bell Co., Ltd. is used.
  • the carbon powder of the present invention has few edge surfaces with weak oxidation resistance.
  • the amount of the edge is the peak intensity (D ′ intensity) of the D ′ band measured near 1620 cm ⁇ 1 with respect to the peak intensity (G intensity) of the G band measured near 1580 cm ⁇ 1 by Raman spectroscopy.
  • the ratio R ′ (D ′ / G intensity ratio) can be used as an index.
  • a small ratio R ′ (D ′ / G intensity ratio) means that the edge surface is small (the edge amount is small). That is, the carbon powder preferably has a ratio R ′ (D ′ / G intensity ratio) of 0.30 or less.
  • the carbon powder having the above-described configuration has a small amount of edge that is the starting point of electrochemical corrosion.
  • the G band is a peak due to graphite (vibration in the hexagonal lattice of carbon atoms) observed in the vicinity of 1580 cm ⁇ 1 by Raman scattering analysis.
  • the D ′ band is observed as a shoulder of the G band in the vicinity of 1620 cm ⁇ 1 by Raman scattering analysis. This D ′ band appears when the graphite crystal size is small or the edges of the graphene sheet are present due to disorder or defects in the graphite structure.
  • the electronic state of the edge (end part) of the graphene molecule tends to be a starting point of carbon corrosion.
  • a small R ′ value means that the edge amount of carbon (graphene) that is the starting point of electrochemical corrosion existing in the graphite structure is small. For this reason, a catalyst using such a carbon powder having a low R ′ value as a carrier can further improve durability.
  • the R ′ value (D ′ / G intensity ratio) of the carbon powder is more preferably less than 0.25, further preferably 0.24 or less, and 0.22 It is particularly preferred that
  • the lower limit of the R ′ value (D ′ / G intensity ratio) of the carbon powder is preferably as low as possible, it is 0, but usually 0.10 or more is sufficient, and 0.15 or more (and more 0.20 or more) is acceptable.
  • the G band measured in the vicinity of 1580 cm ⁇ 1 by Raman spectroscopy is also simply referred to as “G band”.
  • the D ′ band measured by Raman spectroscopy near 1620 cm ⁇ 1 is also simply referred to as “D ′ band”.
  • the peak intensities of the G band and the D ′ band are also referred to as “G intensity” and “D ′ intensity”, respectively.
  • the ratio of D ′ intensity to G intensity is also simply referred to as “R ′ value” or “D ′ / G intensity ratio”.
  • D band measured at around 1360 cm ⁇ 1 by Raman spectroscopy
  • D intensity The peak intensity of the D band
  • the G band, D 'band and D band, and their peak intensities are well known in the art. For example, see R. Vidano and D. B Fischbach, J. am Am. Ceram. Soc. 61 (1978) 13-17 and G. Katagiri, H. Ishida and A. be able to.
  • the R ′ value is obtained by measuring the Raman spectrum of the carbon material with a micro-Raman spectrometer, the peak intensity in the vicinity of 1620 cm ⁇ 1 called the D ′ band (D ′ intensity), and the 1580 cm called the G band. It is obtained by calculating the relative intensity ratio with the peak intensity (G intensity) in the vicinity of ⁇ 1 , that is, the peak area ratio (D ′ intensity / G intensity). In the following examples, the ratio R (D / G intensity ratio) of the peak intensity (D intensity) of the D band measured in the vicinity of 1360 cm ⁇ 1 with respect to the G intensity is measured.
  • the D band is observed in the vicinity of 1360 cm ⁇ 1 by Raman scattering analysis, and due to disorder or defects in the graphite structure, the orientation of the graphene molecule is high or the graphitization degree (graphitization degree) is high. Appears when high. That is, a large R value means that the degree of graphitization (graphitization degree) of the carbon powder (support) is low.
  • the ratio of the D intensity to the G intensity is also simply referred to as “R value” or “D / G intensity ratio”.
  • the R value in Raman spectrometer, measures the Raman spectrum of the carbon material, and the peak intensity in the vicinity of 1360 cm -1 called the D band (D strength), the peak intensity near 1580 cm -1 called the G band ( It is obtained by calculating a relative intensity ratio with respect to (G intensity), that is, a peak area ratio (D intensity / G intensity). As these peak areas, those obtained by Raman spectroscopic measurement shown below are adopted.
  • the Raman spectrum is measured using a microscopic laser Raman SENTERRA (manufactured by Bruker Optics Co., Ltd.) as a measuring device, at room temperature (25 ° C.), exposure 30 seconds ⁇ total 4 times, under the following conditions.
  • the peak of G band, D 'band, and D band can be determined by the peak fitting by Gaussian distribution.
  • the size of the carbon powder is not particularly limited. From the viewpoint of controlling the ease of loading, the catalyst utilization rate, and the thickness of the electrode catalyst layer within an appropriate range, the average particle diameter (diameter) of the carbon powder is preferably 5 to 2000 nm, more preferably 10 to 200 nm, The thickness is particularly preferably about 20 to 100 nm.
  • the value of “average particle diameter of carbon powder” is observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) and a transmission electron microscope (TEM) unless otherwise specified. The value calculated as the average value of the particle diameter of the particles to be used is adopted. Alternatively, the median diameter obtained by using the laser diffraction method may be adopted as the value of “average particle diameter of carbon powder”. Further, the “particle diameter (diameter)” means the maximum distance among the distances between any two points passing through the center of the particle and on the contour line of the particle.
  • the carbon powder preferably has mesopores.
  • the “mesopore” means a pore having a diameter of 2 to 50 nm.
  • “diameter of mesopore (nm)” means the diameter of a pore measured by a nitrogen adsorption method (DH method).
  • the catalyst metal is supported inside the mesopores, and a part of the catalyst metal may be formed on the surface of the carbon powder.
  • the catalyst in a proportion of preferably 50% by weight or more (upper limit: 100% by weight), more preferably 80% by weight or more (upper limit: 100% by weight) in all catalyst metals. It is preferred that the metal be supported in the mesopores.
  • the catalyst metal is supported in the mesopores can be confirmed by the decrease in the volume of the mesopores before and after the catalyst metal is supported on the catalyst support.
  • the pore volume of the mesopores is not particularly limited, but is preferably 0.9 cm 3 / g carrier (carbon powder) or more. That is, according to a preferred embodiment of the present invention, the carbon powder has mesopores, and the void volume of the mesopores is 0.9 cm 3 / g carrier (carbon powder) or more.
  • the pore volume of the mesopores is more preferably 1.0 to 2.0 cm 3 / g carrier (carbon powder), particularly preferably 1.1 to 1.5 cm 3 / g carrier (carbon powder). is there.
  • pore volume of mesopores means the total volume of mesopores having a diameter of 2 to 50 nm present in the carbon powder (carrier), and the volume per gram of carbon powder (carrier) (cm 3 / g carrier). (Carbon powder)).
  • the “mesopore pore volume (cm 3 / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (DH method).
  • the mesopore diameter and pore volume measurement method by the nitrogen adsorption method (DH method) is, for example, “Science of adsorption” (2nd edition, Seiichi Kondo, Tatsuo Ishikawa, Ikuo Abe, Maruzen Co., Ltd.) “Fuel cell analysis method” (Yoshio Takasu, Yuu Yoshitake, Tatsumi Ishihara, Chemistry), D. Dollion, GR Heal: J. Appl. Chem., 14, 109 (1964) Can be used.
  • the mesopore diameter and pore volume by the nitrogen adsorption method are determined by the method described in D. Dollion, GR Heal: J. Appl. Chem., 14, 109 (1964). It is a measured value.
  • the method for producing the carbon powder of the present invention is not particularly limited.
  • an organic material is mixed with a magnesium compound or an alkaline earth metal compound (step (i));
  • a magnesium compound after heating the mixture obtained in (i) above to produce a carbon material
  • the alkaline earth metal compound is removed (step (ii));
  • the carbon material obtained in the above (ii) is heat treated (step (iii)); and
  • the carbon material is pulverized to reduce the particle size (step (iv)).
  • thermosetting resin in a known method such as JP-A-2006-062954, JP-A-2012-082134, JP-A-2014-122158, and JP-A-2012-218999.
  • the method to be used can be applied in the same manner or appropriately modified.
  • the organic material used as the raw material of the carbon powder is not particularly limited, but a thermosetting resin can be used.
  • thermosetting resin examples include, but are not limited to, a phenol resin, a furan resin, an epoxy resin, and an alkyd resin. Of these, a phenol resin substantially consisting only of carbon atoms, hydrogen atoms and oxygen atoms is preferred. When a phenol resin is used as a raw material for carbon powder, the carbon powder has an appropriate volume of mesopores.
  • the organic material may be mixed with a magnesium compound or an alkaline earth metal compound in any form.
  • the organic material can be mixed in the form of a solid such as powder, pellet, or block, or in the form of a solution or dispersion dissolved or dispersed in an appropriate solvent.
  • the magnesium compound or alkaline earth metal compound mixed with the organic material is not particularly limited as long as it acts as a template during carbonization of the organic material.
  • examples of the alkaline earth metal include calcium, strontium, and barium. Among these, it is preferable to mix a magnesium compound and a calcium compound with an organic material.
  • the magnesium compound or alkaline earth metal compound may be in any form of magnesium or alkaline earth metal.
  • magnesium compounds or alkaline earth metal compounds include magnesium, alkaline earth metal oxides, hydroxides and carbonates, and acetates, oxalates, citrates, acrylates, and the like.
  • organic acid salts such as methacrylate.
  • an oxide is preferable because it can promote the formation of a porous carbide without deteriorating the heat treatment furnace or generating a polluting gas in the firing step of the next step (ii).
  • the magnesium compound and alkaline earth metal compound may be used alone or in the form of a mixture of two or more. Alternatively, the magnesium compound and the alkaline earth metal compound may be used in appropriate combination.
  • the mixed form of the magnesium compound or alkaline earth metal compound is not particularly limited, and examples thereof include powder, pellets, granules, and pastes. Of these, powder and granule are preferable from the viewpoint of uniform mixing with an organic material and making the carbide porous.
  • the size of the magnesium compound or alkaline earth metal compound is not particularly limited.
  • the pore diameter (diameter) of the pores (particularly mesopores) of the carbon material obtained by the next step (ii) can be adjusted by the crystallite size of the magnesium compound or alkaline earth metal compound. That is, when the produced magnesium oxide or alkaline earth metal oxide (crystallite) is eluted with an acid, pores corresponding to the crystallite size of the oxide are produced in the carbon material. For this reason, it is preferable that the average crystallite size is selected according to the desired pore size (particularly mesopores) of the carbon powder. Specifically, the average crystallite size (diameter) is preferably 2 to 50 nm.
  • crystallite refers to the largest group that can be regarded as a single crystal.
  • the “average crystallite size” employs an average of values measured by X-ray diffraction for statistically significant numbers (for example, 300) unless otherwise specified.
  • crystallite size (diameter) means the maximum distance among the distances between any two points passing through the center of the crystallite and on the contour line of the particle.
  • the mixing ratio of the organic material and the magnesium compound or alkaline earth metal compound is not particularly limited.
  • the magnesium compound or the alkaline earth metal compound is preferably mixed at a ratio of 40 to 700 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the organic material. With such a mixing ratio, the carbon material can be made sufficiently porous to produce a carbon material having the desired pore size and pore distribution (and hence the carbon powder of the present invention) more efficiently.
  • Step (ii) In this step, the magnesium compound or alkaline earth metal compound is removed after the mixture obtained in (i) above is heated (fired) to produce a carbon material.
  • the organic material is carbonized and made porous, and a carbon material having a desired pore size and pore distribution is obtained.
  • the heating (firing) conditions of the mixture are not particularly limited, and can be performed in an air atmosphere or in an inert gas atmosphere such as argon gas or nitrogen gas.
  • heating (baking) is performed in an inert gas atmosphere.
  • the mixture is charged into a heating apparatus such as an electric furnace, and the inside is replaced with an inert gas such as argon gas or nitrogen gas, and then heated while blowing a non-oxidizing gas into the apparatus. .
  • the organic material is thermally decomposed (carbonized).
  • carbides and magnesium oxide or alkaline earth metal oxide remain after heating.
  • the heating (firing) conditions are not particularly limited. Specifically, the heating (firing) temperature is preferably 500 to 1500 ° C., more preferably 700 to 1200 ° C.
  • the heating (firing) time is preferably about 0.5 to 5 hours, more preferably about 1 to 2 hours. Under such conditions, the magnesium compound or the alkaline earth metal compound can sufficiently act on the organic material, and the carbonization and the porosity of the organic material can be more effectively promoted. Moreover, the specific surface area of the carbon material can be further increased. Note that magnesium oxide or alkaline earth metal oxide is thermally stable, and hydroxide, carbonate, and organic acid salt are thermally decomposed during heat treatment to be converted into stable oxides. For this reason, the heat treatment can be performed safely without the deterioration of the lining refractory of the heating furnace or the generation of harmful gas causing environmental pollution even in the heat treatment of the next step (iii).
  • the carbon material obtained after this step coexists with magnesium oxide or alkaline earth metal oxide.
  • a carbon material is isolate
  • the acid used in the acid aqueous solution is not particularly limited as long as it elutes magnesium oxide or alkaline earth metal oxide.
  • Specific examples include mineral acids such as sulfuric acid, nitric acid, and hydrochloric acid, and organic acids such as acetic acid and oxalic acid.
  • the concentration of the acid aqueous solution is not particularly limited as long as it can elute magnesium oxide or alkaline earth metal oxide, and can be selected as appropriate.
  • the treated product is preferably filtered and washed with water to remove the acid and then dried. By this step, a carbon material substantially free of impurities is obtained.
  • the heat treatment condition of the carbon material is not particularly limited as long as the condition (i) can be achieved.
  • the heat treatment temperature is preferably less than 2000 ° C., more preferably more than 1300 ° C. and 1900 ° C., and even more preferably 1400 to 1850 ° C. Particularly preferred is 1600 to 1800 ° C.
  • the temperature increase rate in the heat treatment is preferably 100 to 1000 ° C./hour, particularly preferably 300 to 800 ° C./hour.
  • the heat treatment time (holding time at a predetermined heat treatment temperature) is not particularly limited, but is particularly preferably 1 minute or more and 60 minutes or less. Note that the heat treatment is performed in an inert gas atmosphere such as argon gas or nitrogen gas.
  • the carbon material heat-treated in (iii) is pulverized to reduce the particle size.
  • the carbon powder of the present invention in which B / A is reduced to a desired range can be obtained.
  • many of the carbon materials obtained in the above (ii) are composed of a single particle (one grain), not an aggregate of a plurality of fine particles. For this reason, by pulverizing (breaking) and reducing the particle size of the particles by this step, the exposed new surface has low crystallinity. Moreover, the carbon powder which passed through this process has few edge amounts of carbon.
  • the method of pulverization is not particularly limited, and a known method can be appropriately employed.
  • a mortar, ball mill, planetary ball mill, dynamic mill, bead mill, jet mill, hammer mill, disc mill, pin mill and the like can be used.
  • the pulverization conditions are not particularly limited as long as the B / A ratio according to the present invention can be achieved.
  • the condition is such that the size (particle diameter (diameter)) of the carbon material heat-treated in (iii) is as described above.
  • the pulverization temperature is not particularly limited, and is, for example, 10 to 50 ° C., preferably 20 to 40 ° C. (particularly around room temperature (25 ° C.)).
  • the pulverizing atmosphere is not particularly limited, and may be an air atmosphere or an inert atmosphere (for example, a nitrogen atmosphere).
  • the present invention also provides a fuel cell catalyst in which a catalytic metal is supported on the fuel cell carbon powder of the present invention.
  • the catalyst electrolytic metal is supported on the fuel cell carbon powder of the present invention.
  • the catalyst electrolytic metal is composed of the carbon powder (support) and a catalytic metal supported on the carbon powder.
  • Catalyst metal has a function of catalyzing an electrochemical reaction.
  • the catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner.
  • metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
  • the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy.
  • a catalytic metal can exhibit high activity.
  • the catalyst metal is platinum, platinum having a small particle diameter can be dispersed on the surface of the carbon powder (support), so that the platinum surface area per weight can be maintained even if the amount of platinum used is reduced.
  • a catalyst metal contains metal components other than platinum and platinum, since the usage-amount of expensive platinum can be reduced, it is preferable from a viewpoint of cost.
  • the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. In this embodiment, any of them may be used.
  • the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above.
  • the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both.
  • the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst metal are not particularly limited, and the same shape and size as known catalyst components can be adopted.
  • As the shape for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable.
  • the average particle diameter (diameter) of the catalyst metal (catalyst metal particles) is not particularly limited, but is preferably 3 nm or more, more preferably more than 3 nm and not more than 30 nm, particularly preferably more than 3 nm and not more than 10 nm.
  • the catalyst metal is more firmly supported on the carbon powder (for example, in the mesopores of the carbon powder) and more effectively suppresses contact with the electrolyte in the catalyst layer. ⁇ Prevented.
  • elution due to potential change can be prevented, and deterioration in performance over time can be suppressed.
  • the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently.
  • the catalyst metal can be supported on the carbon powder (for example, inside the mesopores of the carbon powder) by a simple method, and the electrolyte coverage of the catalyst metal is reduced. can do.
  • the “average particle diameter of the catalytic metal particles” in the present invention is the crystallite diameter determined from the half-value width of the diffraction peak of the catalytic metal component in X-ray diffraction, or the catalytic metal particles examined by a transmission electron microscope (TEM). It can be measured as the average value of the particle diameters.
  • the content (mg / cm 2 ) of the catalyst metal per unit catalyst coating area is not particularly limited as long as sufficient degree of dispersion of the catalyst on the carrier and power generation performance can be obtained. ⁇ 1 mg / cm 2 .
  • the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less.
  • the use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost.
  • the lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.02 to 0.4 mg / cm 2 .
  • the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
  • inductively coupled plasma emission spectroscopy is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”.
  • ICP inductively coupled plasma emission spectroscopy
  • a person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the slurry composition (catalyst concentration) and coating amount. You can adjust the amount.
  • the amount of the catalyst supported on the carrier (sometimes referred to as the loading ratio) is preferably 10 to 80% by weight, more preferably 20 to 70% by weight, based on the total amount of the catalyst carrier (that is, the carrier and the catalyst). % Is good. If the loading is within the above range, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and catalytic activity per unit weight can be achieved.
  • the structure of the catalyst is not particularly limited as long as the carbon powder satisfies the above (i). That is, the catalyst can have the same structure as the conventional one except that the carbon powder of the present invention is used as a support.
  • the method for producing the catalyst is not particularly limited.
  • a method of increasing the particle size of the catalyst metal by performing a heat treatment after depositing the catalyst metal on the surface of the catalyst carrier is preferable.
  • the heat treatment is performed after the precipitation to increase the particle shape of the catalyst metal.
  • a catalyst metal having a large particle diameter can be supported inside the pores (particularly mesopores) of the catalyst carrier.
  • the present invention includes (a) a step of depositing a catalyst metal on the surface of the catalyst support (precipitation step), and (b) a step of performing a heat treatment after the deposition step to increase the particle size of the catalyst metal (heat treatment). And a process for producing the catalyst of the present invention.
  • this invention is not limited to the following form.
  • (A) Deposition step In this step, a catalyst metal is deposited on the surface of the catalyst carrier.
  • This step is a known method. For example, a method in which the catalyst support is immersed in a catalyst metal precursor solution and then reduced is preferably used.
  • the precursor of the catalyst metal is not particularly limited and is appropriately selected depending on the type of the catalyst metal used.
  • Specific examples include chlorides, nitrates, sulfates, chlorides, acetates and amine compounds of catalyst metals such as platinum. More specifically, platinum chloride (hexachloroplatinic acid hexahydrate), palladium chloride, rhodium chloride, ruthenium chloride, cobalt chloride and other nitrates, palladium nitrate, rhodium nitrate, iridium nitrate and other nitrates, palladium sulfate, sulfuric acid Preferred examples include sulfates such as rhodium, acetates such as rhodium acetate, and ammine compounds such as dinitrodiammineplatinum nitrate and dinitrodiammine palladium.
  • the solvent used for the preparation of the catalyst metal precursor solution is not particularly limited as long as it can dissolve the catalyst metal precursor, and is appropriately selected depending on the type of the catalyst metal precursor used. Specifically, water, an acid, an alkali, an organic solvent, etc. are mentioned.
  • the concentration of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited, but is preferably 0.1 to 50% by weight, more preferably 0.5 to 20% by weight in terms of metal. .
  • the reducing agent examples include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . Note that a gaseous substance at room temperature such as hydrogen can be supplied by bubbling.
  • the amount of the reducing agent is not particularly limited as long as the catalyst metal precursor can be reduced to the catalyst metal, and known amounts can be similarly applied.
  • the deposition conditions are not particularly limited as long as the catalyst metal can be deposited on the catalyst support.
  • the precipitation temperature is preferably near the boiling point of the solvent, more preferably from room temperature to 100 ° C.
  • the deposition time is preferably 1 to 10 hours, more preferably 2 to 8 hours. In addition, you may perform the said precipitation process, stirring and mixing if necessary.
  • the precursor of the catalyst metal is reduced to the catalyst metal, and the catalyst metal is deposited (supported) on the catalyst carrier.
  • the heat treatment conditions are not particularly limited as long as the particle diameter of the catalyst metal can be increased.
  • the heat treatment temperature is preferably 300 to 1200 ° C., more preferably 500 to 1150 ° C., and particularly preferably 700 to 1000 ° C.
  • the heat treatment time is preferably 0.02 to 3 hours, more preferably 0.1 to 2 hours, and particularly preferably 0.2 to 1.5 hours. Note that the heat treatment step may be performed in a hydrogen atmosphere.
  • the catalyst of the present invention can exhibit high catalytic activity, that is, can promote catalytic reaction.
  • the catalyst of the present invention is excellent in durability. Therefore, the catalyst of the present invention can be suitably used for an electrode catalyst layer for a fuel cell. That is, the present invention also provides a fuel cell electrode catalyst layer comprising the electrode catalyst of the present invention and an electrolyte.
  • the electrode catalyst layer for a fuel cell of the present invention can exhibit high performance and durability.
  • the fuel cell electrode catalyst layer of the present invention can be used in the same manner as in the prior art or appropriately modified except that the carbon powder of the present invention is used as a carrier. For this reason, although the preferable form of a catalyst layer is demonstrated below, this invention is not limited to the following form.
  • the catalyst is coated with an electrolyte, but the electrolyte does not enter the mesopores of the catalyst (particularly the support). For this reason, the catalyst metal on the surface of the carrier comes into contact with the electrolyte, but the catalyst metal supported in the mesopores is not in contact with the electrolyte.
  • the catalytic metal in the mesopores forms a three-phase interface between oxygen gas and water in a non-contact state with the electrolyte, thereby ensuring a reaction active area of the catalytic metal.
  • the catalyst of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, but is preferably used in the cathode catalyst layer. As described above, the catalyst of the present invention can effectively use the catalyst by forming a three-phase interface with water without contacting the electrolyte, but water is formed in the cathode catalyst layer. .
  • the electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
  • S-PES sulfonated polyethersulfone
  • S-PEEK ether ketone
  • S-PPP sulfonated polyphenylene
  • the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
  • the catalyst layer of this embodiment preferably has an EW of 1500 g / eq.
  • the following polymer electrolyte is contained, More preferably, it is 1200 g / eq.
  • the following polymer electrolyte is included, and particularly preferably 1100 g / eq.
  • the following polymer electrolytes are included.
  • EW Equivalent Weight
  • the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
  • the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
  • the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
  • the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
  • the polymer electrolyte having the lowest EW is within a range of 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the area.
  • a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary.
  • a thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
  • the thickness of the catalyst layer (dry film thickness) is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
  • the above applies to both the cathode catalyst layer and the anode catalyst layer.
  • the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
  • carbon powder also referred to as “porous support” or “conductive porous support” in this specification
  • a support is prepared. Specifically, as described in the method for producing carbon powder, it may be produced.
  • a catalyst is supported on carbon powder to obtain catalyst powder.
  • the catalyst can be supported on the carbon powder by a known method.
  • known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
  • a catalyst ink containing catalyst powder, polymer electrolyte, and solvent is prepared.
  • the solvent is not particularly limited, and ordinary solvents used for forming the catalyst layer can be used in the same manner. Specifically, water such as tap water, pure water, ion exchange water, distilled water, cyclohexanol, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, etc. And lower alcohols having 1 to 4 carbon atoms, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl acetate alcohol, dimethyl ether, ethylene glycol, and the like may be used as a solvent. These solvents may be used alone or in the form of a mixture of two or more.
  • the amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte.
  • the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
  • additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent
  • these additives may be added to the catalyst ink.
  • the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention.
  • the amount of additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
  • a catalyst ink is applied to the surface of the substrate.
  • the application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
  • a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied.
  • the obtained laminate can be used for the production of the membrane electrode assembly as it is.
  • a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate.
  • PTFE polytetrafluoroethylene
  • the coating layer (film) of the catalyst ink is dried at room temperature to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
  • a fuel cell membrane electrode assembly including the fuel cell electrode catalyst layer and a fuel cell including the fuel cell membrane electrode assembly are provided. That is, the solid polymer electrolyte membrane 2, the cathode catalyst layer 3c disposed on one side of the electrolyte membrane, the anode catalyst layer 3a disposed on the other side of the electrolyte membrane, the electrolyte membrane 2 and the anode There is provided a membrane electrode assembly for a fuel cell having a catalyst layer 3a and a pair of gas diffusion layers (4a, 4c) sandwiching the cathode catalyst layer 3c. In this membrane electrode assembly, at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
  • the cathode catalyst layer may be the catalyst layer of the embodiment described above.
  • the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
  • a fuel cell having the above membrane electrode assembly there is provided a fuel cell having the above membrane electrode assembly. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
  • the present invention is characterized by the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
  • the electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG.
  • the solid polymer electrolyte membrane 2 has a function of selectively transmitting protons generated in the anode catalyst layer 3a during the operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction.
  • the solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
  • the thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte layer is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the gas diffusion layers are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
  • the material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
  • MPL microporous layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
  • a method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used.
  • a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing, and this is dried, and a gas diffusion layer is bonded to the gas diffusion layer, or a microporous layer side (a microporous layer is attached to the gas diffusion layer).
  • two gas diffusion electrodes are prepared by applying a catalyst layer in advance to one side of the base material layer and drying, and hot-gasing the gas diffusion electrodes on both sides of the solid polymer electrolyte membrane.
  • a method of joining with a press can be used. Application and joining conditions such as hot pressing may be appropriately adjusted according to the type of polymer electrolyte (perfluorosulfonic acid type or hydrocarbon type) in the solid polymer electrolyte membrane or the catalyst layer.
  • the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition wall that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a cooling flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the above-mentioned PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and the membrane electrode assembly are excellent in power generation performance and durability.
  • the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
  • Example 1 Carrier A was prepared as follows. Specifically, a phenol resin (solution resin dispersed in a solvent (methanol)) and magnesium oxide powder are mixed at a weight ratio of 3: 7 (in terms of solid content), and then the mixture is heated at 120 ° C. in an air atmosphere. The solvent was removed by heat treatment for 2 hours to obtain a mixed powder. This mixed powder was heat-treated at 900 ° C. for 1 hour in a nitrogen atmosphere. The mixed powder obtained by the heat treatment was put into a dilute sulfuric acid aqueous solution, sufficiently stirred at room temperature (25 ° C.), filtered, further thoroughly washed with water, and dried to produce a carbon material A1.
  • the carbon material A1 was heated to 1800 ° C. in a nitrogen atmosphere and then heat-treated at 1800 ° C. for 1 hour to produce a carbon material A2.
  • Carrier A was produced by pulverizing the carbon material A2 with a disk mill.
  • the median diameter of the obtained carrier A obtained by using the laser diffraction method was about 2 ⁇ m.
  • the ratio (B / A) of the area B of peak 1 to the area A of peak 0 was 0.056.
  • the R value and the R ′ value of the carrier A thus obtained were measured and found to be 0.99 and 0.19, respectively.
  • the pore volume of the mesopores and the BET specific surface area of the carrier A they were 1.15 cm 3 / g and 700 m 2 / g, respectively.
  • Example 2 Carrier B was prepared as follows.
  • a carbon material A1 was produced in the same manner as in Example 1.
  • Carrier B was produced by pulverizing the carbon material B2 with a disk mill.
  • the ratio (B / A) of the area B of peak 1 to the area A of peak 0 was 0.033.
  • the carrier B thus obtained was measured for R and R ′ values of 1.2 and 0.22, respectively.
  • the pore volume of the mesopores and the BET specific surface area of the carrier B they were 1.32 cm 3 / g and 860 m 2 / g, respectively.
  • Example 1 a carrier C was produced in the same manner as in Example 1 except that the carbon material A1 was not subjected to disk milling. That is, the carrier C corresponds to the carbon material A2 in Example 1.
  • the ratio (B / A) of the area B of peak 1 to the area A of peak 0 was 0.171.
  • the carrier C thus obtained was measured for R value and R ′ value, which were 1.12 and 0.25, respectively.
  • R value and R ′ value were 1.12 and 0.25, respectively.
  • Example 3 Using the carrier A prepared in Example 1 above, platinum (Pt) having an average particle size of more than 3 nm and not more than 5 nm as a catalyst metal was loaded so that the loading ratio was 30% by weight to obtain catalyst powder A. . That is, 46 g of carrier A was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by weight and stirred, and then 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier A. The catalyst powder having a loading rate of 30% by weight was obtained by filtration and drying. Thereafter, in a hydrogen atmosphere, the temperature was maintained at 900 ° C. for 1 hour to obtain catalyst powder A.
  • Example 4 catalyst powder B was obtained in the same manner as in Example 3 except that the carrier B prepared in Example 2 was used instead of the carrier A.
  • the durability of carbon oxidation was evaluated according to the following method using RDE. As a result, the number of cycles that could be repeated until the potential of the reduction current became 0.5 V or less was 8000. From the above results, it is considered that the catalyst using the carbon powder of the present invention has a small decrease in electric double layer capacity and can maintain significantly high activity (excellent durability).
  • Experiment 1 Evaluation of durability A three-electrode electrochemical cell was used, and as a potentiostat, an electrochemical system HZ-5000 + HR301 manufactured by Hokuto Denko Corporation was used.
  • An electrode was used in which the dispersed ink was coated and dried to a dry film thickness of 1 ⁇ m. Carbon was used as the counter electrode, and a reversible hydrogen electrode (RHE) was used as the reference electrode.
  • the electrolyte was saturated with O 2 using 0.1M perchloric acid. The measurement was performed at 60 ° C. (liquid temperature).
  • ECA effective catalyst surface area
  • Example 5 A membrane electrode assembly (1) (MEA (1)) was produced as follows.
  • Ketjen black (particle size: 30 to 60 nm) is used as a carrier, and platinum (Pt) with an average particle size of 2.5 nm is supported on the catalyst metal so that the loading ratio is 50% by weight as catalyst metal.
  • Pt platinum
  • the weight ratio of the polymer electrolyte (ionomer) to the carbon support was 0.9. (Mixture 2).
  • a mixed solvent 2 having a mixing weight ratio of water and n-propyl alcohol (NPA) of 50:50 was prepared.
  • This mixed solvent 2 was added to the mixture 2 prepared above so that the solid content (Pt + carbon carrier + ionomer) was 7% by weight to prepare an anode catalyst ink.
  • the anode catalyst layer was formed by spray coating and heat treatment on the electrolyte membrane on the side where the cathode catalyst layer was not formed, as with the cathode catalyst layer. (Laminate 1).
  • MEA (1) membrane electrode assembly (1)
  • Example 6 In Example 5, instead of the catalyst powder A, the same operation as in Example 5 was performed except that the catalyst powder B produced in Example 4 was used, and the membrane electrode assembly (2) (MEA (2)) was made.
  • Example 5 instead of the catalyst powder A, the same operation as in Example 5 was performed except that the catalyst powder C produced in Comparative Example 2 was used, and the membrane electrode assembly (3) (MEA (3)) was made.
  • an electrochemical effective surface area (ECA) is obtained by cyclic voltammetry.
  • hydrogen gas humidified to saturate at the measurement temperature (80 ° C.) is passed through the counter electrode (anode), and this is used as the reference electrode and the counter electrode.
  • the humidified nitrogen gas is circulated through the target electrode (cathode), and immediately before the measurement is started, the target electrode inlet and outlet valves are closed and the nitrogen gas is sealed. In this state, measurement is performed under the following conditions using an electrochemical measuring device (Hokuto Denko Co., Ltd., model number: HZ-5000).
  • the area specific activity per platinum surface area is determined for the target electrode catalyst layer (cathode catalyst layer).
  • hydrogen gas humidified so as to be saturated at the measurement temperature (80 ° C.) is circulated through the counter electrode (anode) and used as a reference electrode and a counter electrode.
  • humidified oxygen gas is circulated through the target electrode (cathode).
  • the gas pressure at both electrodes is 150 kPa_abs.
  • the ORR area specific activity is calculated by measuring the current value when the potential of the target electrode with respect to the counter electrode is 0.9 V, and dividing this by the effective catalyst surface area (ECA).
  • ECA effective catalyst surface area
  • the effective catalyst surface area can be estimated from the ECA and the amount of catalyst metal supported on the target electrode.
  • the mass specific activity per platinum mass is determined.
  • the mass specific activity per platinum mass can be determined from the area specific activity per platinum area determined in the above (measurement of ORR area specific activity) and the ECA which is the platinum area per platinum mass.
  • MEA (1) and (2) using the catalyst powders A and B of the present invention are MEA using the catalyst powder C whose B / A ratio and / or R ′ value is outside the present invention ( It can be seen that the oxygen reduction reaction activity (that is, power generation performance) is superior to 3).
  • PEFC Polymer electrolyte fuel cell
  • 2 Solid polymer electrolyte membrane
  • 3a ... anode catalyst layer
  • 3c ... cathode catalyst layer
  • 4a ... anode gas diffusion layer
  • 4c ... cathode gas diffusion layer
  • 5a ... anode separator
  • 5c ... cathode separator
  • 6a ... anode gas flow path
  • 6c ... cathode gas flow path
  • 7 Refrigerant flow path
  • 10 Membrane electrode assembly (MEA).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Geology (AREA)
  • Optics & Photonics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

【課題】高い性能を有する触媒を提供できる炭素粉末および触媒を提供する。 【解決手段】炭素を主成分とする燃料電池用炭素粉末であって、不活性雰囲気中で1800℃で1時間熱処理した際のXRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0の面積をA、XRD分析によって観測される2θ=26°の位置に存在するピーク1の面積をBとした場合、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)が0を超えて0.15以下である、燃料電池用炭素粉末。

Description

燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
 本発明は、燃料電池用炭素粉末、特に燃料電池触媒用炭素粉末、ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池に関するものである。
 プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池(PEFC)は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。
 このような固体高分子形燃料電池には、一般的に、Pt(白金)やPt合金に代表される高価な金属触媒が用いられている。また、金属触媒を担持する担体としては、上記金属触媒を高担持及び高分散させるために比表面積の大きいカーボン担体やドープされたカーボン担体が使用されている。しかしながら、従来のカーボン担体は、炭素材料の特質を最大に生かしつつ担持された白金の活性を十分図るにはいたっていなかった。
 上記課題を解決するために、例えば、特許文献1には、窒素原子及びホウ素原子の少なくとも一方がドープされた平均粒径45μm以下のカーボンアロイ微粒子(炭素基材)に白金又は白金合金を担持した燃料電池用電極触媒が記載される。特許文献1に記載のカーボンアロイ微粒子は、電子的、化学的に活性のあるエッジ面が増加するため、白金を担持した触媒は高い活性を示すことが記載される。
特開2007-311026号公報
 しかしながら、特許文献1に記載の触媒は、用途(例えば、車両用の燃料電池)によっては十分な活性を示しきれていなかった。
 したがって、本発明は、上記事情を鑑みてなされたものであり、触媒金属担持時に高触媒活性を発揮できる燃料電池用炭素粉末を提供することを目的とする。
 本発明の別の目的は、発電性能および/または耐久性に優れる触媒、電極触媒層、膜電極接合体及び燃料電池を提供することである。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、特定の結晶性を有する燃料電池用炭素粉末を担体として使用することによって、上記課題を解決することを見出し、本発明を完成するに至った。
本発明の一実施形態に係る固体高分子形燃料電池の基本構成を示す概略断面図である。図1中、1は固体高分子形燃料電池(PEFC)を;2は固体高分子電解質膜を;3aはアノード触媒層を;3cはカソード触媒層を;4aはアノードガス拡散層を;4cはカソードガス拡散層を;5aはアノードセパレータを;5cはカソードセパレータを;6aはアノードガス流路を;6cはカソードガス流路を;7は冷媒流路を;および10は膜電極接合体(MEA)を、それぞれ、示す。
 本発明の燃料電池用炭素粉末(本明細書中では、単に「炭素粉末」または「本発明の炭素粉末」とも称する)は、炭素を主成分とする。ここで、「炭素を主成分とする」とは、炭素のみからなる、実質的に炭素からなる、の双方を含む概念であり、炭素以外の元素が含まれていてもよい。「実質的に炭素からなる」とは、炭素粉末全体の98重量%以上、好ましくは全体の99.5重量%以上(上限:100重量%未満)が炭素から構成されることを意味する。
 また、本発明の燃料電池用炭素粉末は、下記構成(i)を満たす:
 (i)ピーク0の面積Aに対するピーク1の面積Bの比(B/A)が0を超えて0.15以下である。上記構成(i)を満たす燃料電池用炭素粉末は、結晶性が低いため、触媒金属を高分散担持できる。ゆえに、本発明の燃料電池用炭素粉末を担体として使用することによって、触媒活性に優れる触媒が提供できる。ここで、面積Aは、不活性雰囲気中で1800℃で1時間熱処理した際のXRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0の面積である。また、面積Bは、不活性雰囲気中で1800℃で1時間熱処理した際のXRD分析によって観測される2θ=26°の位置に存在するピーク1の面積である。
 本明細書において、不活性雰囲気中で1800℃で1時間熱処理した際のXRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0を単に「ピーク0」と、また、当該ピーク0の面積を単に「面積A」とも称する。同様にして、本明細書では、不活性雰囲気中で1800℃で1時間熱処理した際のXRD分析によって観測される2θ=26°の位置に存在するピーク1を単に「ピーク1」と、また、当該ピーク1の面積を単に「面積B」とも称する。また、本明細書では、面積Aに対する面積Bの比を「B/A」または「B/A比」とも称する。
 上記特許文献1に記載のカーボンアロイ微粒子は、炭素構造の基底面方向のX線回折線の発達が抑えられ、基底面とは垂直方向のエッジ面の割合が増加する。このエッジ面の増加に伴い、エッジ面と接触する白金または白金合金の割合が増加して、触媒活性が増加することが記載される(特許文献1 段落「0017」)。しかし、用途によっては、上記カーボンアロイ微粒子に触媒金属を担持した触媒の活性が十分であるとは言い難かった。また、エッジ面は耐酸化性が弱い。このようなカーボンアロイ微粒子を担体とした触媒を含む触媒層では、層中に存在する水を酸化剤として二酸化炭素を生成する電気化学的な酸化反応(C+2HO→CO+4H+4e)により、カーボン担体の腐食が起こる。上記カーボン腐食は、起動停止の繰り返し/連続運転時には特に問題となる。このため、上記特許文献1に記載のカーボンアロイ微粒子を担体として用いた触媒は、耐久性、特に起動停止/連続運転時のカーボン劣化により、耐久性に劣る。
 これに対して、本発明に係る炭素粉末は、上記(i)を満たす。結晶性の高い部位は表面エネルギーが低いため、触媒金属が結晶性の高い炭素粉末には担持されにくい。本発明に係る炭素粉末は、結晶性が低い(B/A比が小さい)。このため、触媒金属(例えば、白金)が炭素粉末に安定して吸着するため、触媒金属を担体粉末に担持する際に、触媒金属のシンタリングを抑制・防止できる。また、結晶性の低い炭素粉末に、触媒金属は小粒子形態で高分散担持できる。このため、このような炭素粉末に触媒金属を担持した触媒は、触媒金属の比表面積が増加する。ゆえに、このような触媒は、触媒金属と反応ガスとの接触面積が増大し、質量比活性を向上できる。ゆえに、本発明の炭素粉末に触媒金属を担持してなる触媒は高い活性(例えば、質量比活性)を発揮できる。なお、結晶性が低い(B/A比が小さい)場合には、一般的に耐久性が低下する。しかしながら、本発明に係る炭素粉末は、下記に詳述するが、特定の熱処理条件で作製されるため、耐酸化性の弱いエッジ面が少ない。ここで、グラフェン分子のエッジ(端部)の電子状態は、グラフェン分子中央部(六員環)と異なり、カーボン腐食の起点となりやすい。本発明に係る炭素粉末は、このような耐酸化性の弱いエッジ面が少ないため、起動停止/連続運転時に生じうる酸化反応を受けにくく(耐酸化性に優れ)、電気化学的な耐腐食性に優れる(腐食しにくい)。ゆえに、本発明の炭素粉末に触媒金属を担持してなる触媒は耐久性に優れる。なお、上記効果は、ラマン分光法によって1580cm-1付近で計測されるGバンドのピーク強度(G強度)に対する、1620cm-1付近で計測されるD’バンドのピーク強度(D’強度)の比R’(D’/G強度比)が0.30以下である際に特に顕著である。
 したがって、本発明の燃料電池用炭素粉末は、触媒金属を担持した場合には高い触媒活性を発揮できる。また、本発明の燃料電池用炭素粉末は、耐久性に優れ、触媒金属を担持した場合に高い触媒活性を維持できる。
 本発明の炭素粉末を担体として使用することによって、触媒活性および耐久性に優れる触媒、さらには高性能および高耐久性を有する電気化学デバイス(例えば、MEA、キャパシタ)が提供できる。このため、本発明の燃料電池用炭素粉末は、触媒、特に燃料電池用触媒の担体として好適に使用できる。すなわち、本発明は、本発明の燃料電池用炭素粉末に触媒金属が担持されてなる燃料電池用触媒を包含する。また、本発明の燃料電池用炭素粉末(担体)は、カーボンエッジ量が少ない。このため、本発明の燃料電池用触媒によれば、カーボン腐食による性能低下を抑制・防止できる、即ち、耐久性を向上できる。本発明の燃料電池用炭素粉末に触媒金属が担持されてなる燃料電池用触媒は、結晶性が低いため、高分散された触媒金属により、高い触媒活性を発揮でき(触媒反応を促進でき)、かつ触媒担持カーボンのカーボンエッジ量が少ないため、カーボン腐食に対する耐久性に優れ、当該活性を維持できる。このため、このような触媒を用いた触媒層を有する膜電極接合体および燃料電池は、発電性能及び耐久性に優れる。したがって、本発明は、上記触媒および電解質を含む、燃料電池用電極触媒層、当該燃料電池用電極触媒層を含む、燃料電池用膜電極接合体、当該燃料電池用膜電極接合体を含む燃料電池を提供する。
 以下、適宜図面を参照しながら、本発明の触媒の一実施形態、並びにこれを使用した触媒層、膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態を図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 また、本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。
 [燃料電池]
 燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード(燃料極)側セパレータ及び酸化剤ガスが流れる酸化剤ガス流路を有するカソード(酸素極)側セパレータからなる一対のセパレータとを有する。本形態の燃料電池は、高い発電性能を発揮し、耐久性に優れる。
 図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC 1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。
 PEFC1において、MEA 10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA 10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC 1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA 10と接触している。これにより、MEA 10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC 1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC 1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
 なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
 上記のような、本発明のMEAを有する燃料電池は、優れた発電性能および耐久性を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
 また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜-電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。
 以下、本形態の燃料電池を構成する部材について簡単に説明する。なお、本発明は、特定のB/A比を有する炭素粉末に特徴があり、それ以外の構成は当該分野において公知の構成(材料、部材)が同様にして適用でき、本発明の技術的範囲は下記の形態のみに制限されない。
 [炭素粉末(担体)]
 炭素粉末(担体)は、下記(i)を満たす:
 (i)ピーク0の面積Aに対するピーク1の面積Bの比(B/A)が0を超えて0.15以下である。ここで、面積Aは、不活性雰囲気中で1800℃で1時間熱処理した際のXRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0の面積である。また、面積Bは、不活性雰囲気中で1800℃で1時間熱処理した際のXRD分析によって観測される2θ=26°の位置に存在するピーク1の面積である。
 すなわち、炭素粉末は結晶性が低い(B/A比が小さい)。このため、触媒金属(例えば、白金)が炭素粉末に安定して吸着するため、触媒金属を担体粉末に担持する際に、触媒金属のシンタリングを抑制・防止できる。また、結晶性の低い炭素粉末に、触媒金属は小粒子形態で高分散担持できる。このため、このような炭素粉末に触媒金属を担持した触媒は、触媒金属の比表面積が大きく、質量比活性を向上できる。ゆえに、本発明の炭素粉末に触媒金属を担持してなる触媒は高い活性(例えば、質量比活性)を発揮できる。一方、B/A比が0.15を超えると、触媒金属を担持する際に、高分散担持することが困難である。このため、炭素粉末に触媒金属を担持した触媒は活性に劣る。触媒活性(例えば、質量比活性)のより向上効果を考慮すると、B/A比は、0を超えて0.06未満であることが好ましい。
 ここで、ピーク0は、XRD分析によって観測される2θ=22.5°~25°の位置に存在するブロードなピークである。ピーク0は、結晶性の低い炭素組織に起因する。また、ピーク1は、XRD分析によって観測される2θ=26°の位置に存在する鋭いピークであり、ピーク2はXRD分析によって観測される2θ=26.5°の位置に存在する鋭いピークである。ピーク1およびピーク2は、炭素の(002)面に由来するピークであり、結晶性の高い炭素組織に起因する。このため、ピーク0の面積Aが大きいまたはピーク1の面積Bが小さいことは、炭素の結晶性が低い(触媒金属を高分散担持できる)ことを意味する。ゆえに、B/A比を低く設定することにより、担体として使用した際の触媒の活性を効果的に向上できる。
 なお、面積AおよびBは、下記方法によって、X線回折装置(XRD)測定により2θ=22.5°~25°の位置に存在するピーク(ピーク0)、2θ=26°の位置に存在するピーク(ピーク1)および2θ=26.5°の位置に存在するピーク(ピーク2)に基づいて求められる。
 [面積AおよびBの測定方法]
 X線回折測定は、炭素粉末(試料1)を窒素雰囲気下で1800℃で1時間、熱処理することによって調製した炭素粉末(試料2)を用いて行われる。すなわち、炭素粉末(試料1)を窒素雰囲気下で1800℃で1時間、熱処理して、炭素粉末(試料2)を調製する。この炭素粉末(試料2)をシリコン無反射板に載せ、株式会社リガク社製X線回折装置RINT-TTRIIIを用いて行い、XRDパターンを得る。なお、X線回折測定では、線源としてCuKα線を用いて行う。
 得られたXRDパターンにおいて、Voigt関数(フォークト関数)でフィッティングを行い、2θ=22.5°~25°、26°及び26.5°の位置にそれぞれ存在するピーク(ピーク0、ピーク1及びピーク2)の各面積を算出する。次に、上記にて算出されたピーク1の面積(B)をピーク0の面積(A)で除して、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)を求める。
 本発明の炭素粉末は、上記(i)を満たす限り、いずれの特性と有していてもよい。例えば、本発明の炭素粉末の比表面積は、特に制限されない。触媒金属の分散担持状態、ゆえに触媒活性のより向上を考慮すると、炭素粉末の重量あたりのBET比表面積が900m/g未満であることが好ましく、610m/gを超えて880m/g以下であることがより好ましく、700~860m/gであることが特に好ましい。このような比表面積を有する炭素粉末であれば、触媒金属を十分な活性を達成できる程度に高分散(高担持)できる。また、このような炭素粉末に触媒金属を担持してなる触媒を用いて電極触媒層を形成する際には、電解質による触媒被覆率が抑えられる。このため、電極触媒層のガス輸送性を確保し、高い活性を維持できる。本明細書において、炭素粉末の「BET比表面積(m/g担体)」は、窒素吸着法により測定される。具体的には、密閉された吸着測定用ガラスセル内に試料(炭素粉末)を配置した後、真空化し、300℃2時間の脱気処理を行う。窒素ガスを吸着ガスとして用い、77k(-196℃)で測定して窒素吸着等温線を求める。当該測定には、日本ベル株式会社製の自動ガス/蒸気吸着量測定装置BELSORP-18を用いる。BET比表面積は、相対圧(P/P0)=0.05~0.20の範囲の測定点より算出する。
 また、本発明の炭素粉末は、耐酸化性の弱いエッジ面が少ない。ここで、エッジの量は、ラマン分光法によって1580cm-1付近で計測されるGバンドのピーク強度(G強度)に対する、1620cm-1付近で計測されるD’バンドのピーク強度(D’強度)の比R’(D’/G強度比)を指標にできる。上記比R’(D’/G強度比)が小さいことはエッジ面が少ない(エッジ量が少ない)ことを意味する。すなわち、炭素粉末は、上記比R’(D’/G強度比)が0.30以下であることが好ましい。上記構成を有する炭素粉末は、電気化学的腐食の起点となるエッジ量が少ない。詳細には、Gバンドは、ラマン散乱分析で1580cm-1付近に観測されるグラファイト(炭素原子の六角格子内振動)に起因するピークである。また、D’バンドは、ラマン散乱分析で1620cm-1付近にGバンドの肩として観察される。このD’バンドは、グラファイト構造の乱れ(disorder)や欠陥に起因し、グラファイトの結晶サイズが小さい場合やグラフェンシートのエッジが多く存在する場合に現れる。グラフェン分子のエッジ(端部)の電子状態は、グラフェン分子中央部(六員環)と異なり、カーボン腐食の起点となりやすい。すなわち、R’値が小さいとは、グラファイト構造中に存在する電気化学的腐食の起点となるカーボン(グラフェン)のエッジ量が少ないことを意味する。このため、このようなR’値の低い炭素粉末を担体として使用してなる触媒は、耐久性をより向上できる。耐久性のより向上を考慮すると、炭素粉末のR’値(D’/G強度比)は、0.25未満であることがより好ましく、0.24以下であることがさらに好ましく、0.22以下であることが特に好ましい。なお、炭素粉末のR’値(D’/G強度比)の下限は、低いほど好ましいため、0であるが、通常、0.10以上であれば十分であり、0.15以上(さらには0.20以上)でも許容できる。
 本明細書では、ラマン分光法によって1580cm-1付近で計測されるGバンドを、単に「Gバンド」とも称する。本明細書では、ラマン分光法によって1620cm-1付近で計測されるD’バンドを、単に「D’バンド」とも称する。また、GバンドおよびD’バンドのピーク強度を、それぞれ、「G強度」および「D’強度」とも称する。さらに、G強度に対するD’強度の比を、単に「R’値」または「D’/G強度比」とも称する。
 本明細書では、ラマン分光法によって1360cm-1付近で計測されるDバンドを、単に「Dバンド」とも称する。また、Dバンドのピーク強度を、「D強度」とも称する。
 ここで、Gバンド、D’バンドおよびDバンド、ならびにこれらのピーク強度は、当該分野においてよく知られている。例えば、R. Vidano and D. B Fischbach, J. Am. Ceram. Soc. 61 (1978) 13-17やG. Katagiri, H. Ishida and A. Ishitani, Carbon 26 (1988) 565-571を参照することができる。
 本明細書では、R’値は、顕微ラマン分光器にて、炭素材料のラマンスペクトルを計測し、D’バンドと呼ばれる1620cm-1付近のピーク強度(D’強度)と、Gバンドと呼ばれる1580cm-1付近のピーク強度(G強度)との相対的強度比、つまりピーク面積比(D’強度/G強度)を算出することにより求められる。また、下記実施例にて、G強度に対する、1360cm-1付近で計測されるDバンドのピーク強度(D強度)の比R(D/G強度比)を測定している。ここで、Dバンドは、ラマン散乱分析で1360cm-1付近に観測され、グラファイト構造の乱れ(disorder)や欠陥に起因し、グラフェン分子の配向性が高い場合やグラファイト化度(黒鉛化度)が高い場合に現れる。すなわち、R値が大きいとは、炭素粉末(担体)のグラファイト化度(黒鉛化度)が低いことを意味する。なお、本明細書において、G強度に対するD強度の比を、単に「R値」または「D/G強度比」とも称する。上記R値は、顕微ラマン分光器にて、炭素材料のラマンスペクトルを計測し、Dバンドと呼ばれる1360cm-1付近のピーク強度(D強度)と、Gバンドと呼ばれる1580cm-1付近のピーク強度(G強度)との相対的強度比、つまりピーク面積比(D強度/G強度)を算出することにより求められる。これらのピーク面積は、下記に示されるラマン分光測定により求められたものを採用する。
 (ラマン分光測定法)
 ラマンスペクトルは、測定装置として、顕微レーザーラマンSENTERRA(ブルカー・オプティクス(株)製)を使用し、室温(25℃)で、露光30秒×積算4回、以下の条件にて測定する。なお、Gバンド、D’バンドおよびDバンドのピークは、ガウス分布によるピークフィッティングによって決定できる。
Figure JPOXMLDOC01-appb-C000001
 炭素粉末の大きさは、特に限定されない。担持の容易さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点からは、炭素粉末の平均粒径(直径)が好ましくは5~2000nm、より好ましくは10~200nm、特に好ましくは20~100nm程度とするのがよい。「炭素粉末の平均粒径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。または、「炭素粉末の平均粒径」の値は、レーザー回折法を用いて得られたメディアン径を採用してもよい。また、「粒子径(直径)」とは、粒子の中心を通りかつ粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
 また、炭素粉末は、メソ孔を有することが好ましい。本明細書において、「メソ孔」は、直径が2~50nmの空孔を意味する。ここで、「メソ孔の直径(nm)」は、窒素吸着法(DH法)により測定される空孔の直径を意味する。当該構成により、炭素粉末(担体)に触媒金属を担持すると、触媒金属の少なくとも一部は、メソ孔の内部に担持される。このように触媒金属を電解質が進入できないメソ孔内部に担持する構成をとることによって、水と触媒金属と反応ガス(例えば、酸素)により三相界面を形成することによって、触媒を有効に利用して触媒活性を向上できる。ここで、触媒金属は、少なくとも一部がメソ孔の内部に担持されていればよく、一部が炭素粉末表面にされていてもよい。しかし、触媒の有効利用率の向上を考慮すると、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の割合の触媒金属がメソ孔内に担持されることが好ましい。
 本明細書において、「触媒金属がメソ孔の内部に担持される」ことは、触媒担体への触媒金属の担持前後のメソ孔の容積の減少によって確認できる。詳細には、炭素粉末(担体)は一定の容積のメソ孔を有しているが、触媒金属がメソ孔に担持されると、メソ孔の空孔容積は減少する。したがって、触媒金属担持前の炭素粉末(担体)のメソ孔の容積と触媒金属担持後の触媒(担体)のメソ孔の容積の差[=(担持前の容積)-(担持後の容積)]が0を超える場合には、「触媒金属がメソ孔の内部に担持される」こととなる。
 炭素粉末がメソ孔を有する場合に、メソ孔の空孔容積は、特に制限されないが、0.9cm/g担体(炭素粉末)以上であることが好ましい。すなわち、本発明の好ましい形態によると、炭素粉末は、メソ孔を有し、該メソ孔の空孔容積は0.9cm/g担体(炭素粉末)以上である。また、メソ孔の空孔容積は、より好ましくは1.0~2.0cm/g担体(炭素粉末)であり、特に好ましくは1.1~1.5cm/g担体(炭素粉末)である。空孔容積が上記したような範囲にあれば、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、触媒反応をより効果的に促進できる。ここで、「メソ孔の空孔容積」は、炭素粉末(担体)に存在する直径2~50nmのメソ孔の総容積を意味し、炭素粉末(担体)1gあたりの容積(cm/g担体(炭素粉末))で表される。「メソ孔の空孔容積(cm/g担体)」は、窒素吸着法(DH法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。なお、窒素吸着法(DH法)によるメソ孔の直径及び空孔容積の測定方法は、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)や「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(DH法)によるメソ孔の直径及び空孔容積は、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964) に記載される方法によって、測定された値である。
 本発明の炭素粉末の製造方法は、特に制限されない。以下、本発明の炭素粉末の製造方法の好ましい形態を説明するが、本発明は下記形態に限定されるものではない。すなわち、(i)有機質材料をマグネシウム化合物またはアルカリ土類金属化合物と混合し(工程(i));(ii)上記(i)で得られた混合物を加熱して炭素材料を製造した後にマグネシウム化合物またはアルカリ土類金属化合物を除去し(工程(ii));(iii)上記(ii)で得られた炭素材料を熱処理し(工程(iii));さらに(iv)上記(iii)で熱処理された炭素材料を粉砕して小粒径化する(工程(iv))。上記工程(i)および(ii)は、特開2006-062954号、特開2012-082134号及び特開2014-122158号、ならびに特開2012-218999号等の公知の方法において熱硬化性樹脂を使用する方法が同様にしてまたは適宜修飾して適用できる。
 (工程(i))
 本工程では、有機質材料をマグネシウム化合物またはアルカリ土類金属化合物と混合して混合物を調製する。
 ここで、炭素粉末の原料となる有機質材料は、特に制限されないが、熱硬化性樹脂が使用できる。
 熱硬化性樹脂としては、以下に制限されないが、フェノール樹脂、フラン樹脂、エポキシ樹脂、アルキド樹脂などが挙げられる。これらのうち、実質的に炭素原子、水素原子及び酸素原子のみから構成されるフェノール樹脂が好ましい。フェノール樹脂を炭素粉末の原料として使用する際には、炭素粉末は適度な容積のメソ孔を有する。
 また、有機質材料は、いずれかの形態でマグネシウム化合物またはアルカリ土類金属化合物と混合してもよい。具体的には、有機質材料を、粉末状、ペレット状、塊状などの固体形状で、または適当な溶剤に溶解若しくは分散させた溶液若しくは分散液の形態で混合できる。
 また、上記有機質材料と混合されるマグネシウム化合物またはアルカリ土類金属化合物は、有機質材料の炭化時に鋳型として作用するものであれば、特に制限されない。具体的には、アルカリ土類金属としては、カルシウム、ストロンチウム、バリウムなどが挙げられる。これらのうち、マグネシウム化合物、カルシウム化合物を有機質材料と混合することが好ましい。
 また、マグネシウム化合物またはアルカリ土類金属化合物は、マグネシウムまたはアルカリ土類金属のいずれの形態であってもよい。具体的には、マグネシウム化合物またはアルカリ土類金属化合物としては、マグネシウムまたはアルカリ土類金属の、酸化物、水酸化物及び炭酸塩、ならびに酢酸塩、シュウ酸塩、クエン酸塩、アクリル酸塩及びメタクリル酸塩等の有機酸塩などが好ましく挙げられる。これらのうち、次工程(ii)の焼成工程で熱処理炉を劣化させたり汚染性ガスを発生したりすることなく、炭化物の多孔質化を促進できるため、酸化物が好ましい。
 上記マグネシウム化合物およびアルカリ土類金属化合物は、それぞれ、単独で使用してもあるいは2種以上の混合物の形態で使用してもよい。または、上記マグネシウム化合物およびアルカリ土類金属化合物を適宜組み合わせて使用してもよい。
 また、マグネシウム化合物またはアルカリ土類金属化合物の混合形態は、特に制限されず、粉末状、ペレット状、顆粒状、ペースト状などが挙げられる。これらのうち、有機質材料との均一混合性、炭化物の多孔質化などの観点から、粉末状、顆粒状が好ましい。
 マグネシウム化合物またはアルカリ土類金属化合物の大きさは特に制限されない。次工程(ii)により得られる炭素材料の細孔(特にメソ孔)の空孔径(直径)は、マグネシウム化合物またはアルカリ土類金属化合の結晶子サイズによって調整されうる。すなわち、生成した酸化マグネシウムまたはアルカリ土類金属の酸化物(結晶子)を酸で溶出すると、上記酸化物の結晶子の大きさに対応した細孔が炭素材料中に生成する。このため、平均結晶子サイズは、炭素粉末の所望の孔(特にメソ孔)の大きさに応じて選択されることが好ましい。具体的には、平均結晶子サイズ(直径)は、好ましくは2~50nmである。このような結晶子サイズであれば、得られる炭素材料(ゆえに、本発明の炭素粉末)の細孔サイズや細孔分布を適切な範囲に調整できる。ここで、「結晶子」は、単結晶とみなせる最大の集まりをいう。また、「平均結晶子サイズ」は、特に言及のない限り、統計学的に有意な数(例えば、300個)についてX線回折によって測定した値の平均を採用する。また、「結晶子サイズ(直径)」とは、結晶子の中心を通りかつ粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
 有機質材料と、マグネシウム化合物またはアルカリ土類金属化合物と、の混合比は特に制限されない。マグネシウム化合物またはアルカリ土類金属化合物を、有機質材料100重量部に対して、40~700重量部、より好ましくは100~300重量部の割合で、混合することが好ましい。このような混合比であれば、炭素材料を十分多孔質化して、所望の細孔サイズ及び細孔分布を有する炭素材料(ゆえに本発明の炭素粉末)をより効率よく製造できる。
 (工程(ii))
 本工程では、上記(i)で得られた混合物を加熱(焼成)して炭素材料を製造した後にマグネシウム化合物またはアルカリ土類金属化合物を除去する。当該工程により、有機質材料が炭化・多孔質化して、所望の細孔サイズおよび細孔分布を有する炭素材料が得られる。なお、上記加熱(焼成)前に、上記(i)で得られた混合物から溶媒を除去するために熱処理してもよい。
 ここで、混合物の加熱(焼成)条件は、特に制限されず、空気雰囲気下でも、あるいはアルゴンガスや窒素ガス等の不活性ガス雰囲気下でも行うことができる。好ましくは、不活性ガス雰囲気下で加熱(焼成)することが好ましい。より具体的には、上記混合物を電気炉などの加熱装置へ装入し、内部をアルゴンガスや窒素ガス等の不活性ガスで置換した後、該装置内へ非酸化性ガスを吹き込みながら加熱する。当該操作により、有機質材料が熱分解(炭化)する。ゆえに、加熱後には、炭化物および酸化マグネシウムまたはアルカリ土類金属酸化物が残る。
 加熱(焼成)条件は特に制限されない。具体的には、加熱(焼成)温度は、好ましくは500~1500℃、より好ましくは700~1200℃である。また、加熱(焼成)時間は、好ましくは0.5~5時間、より好ましくは1~2時間程度である。このような条件であれば、マグネシウム化合物またはアルカリ土類金属化合物が有機質材料に十分有効に作用して、有機質材料の炭化及び多孔質化をより有効に促進できる。また、炭素材料の比表面積をさらに大きくできる。なお、酸化マグネシウムまたはアルカリ土類金属酸化物は熱的に安定であり、また水酸化物や炭酸塩、有機酸塩は、加熱処理中に熱分解して安定な酸化物に変わる。このため、次工程(iii)の熱処理でも加熱炉の内張り耐火物を劣化させたり環境汚染の原因となる有害ガスを生じたりすることもなく、安全に熱処理を行うことができる。
 上述したように、本工程後で得られる炭素材料は、酸化マグネシウムまたはアルカリ土類金属酸化物と共存する。このため、本工程(ii)の生成物を、酸水溶液で処理することによって、炭素材料を分離する。ここで、酸水溶液に使用される酸は、酸化マグネシウムまたはアルカリ土類金属酸化物を溶出するものであれば特に制限されない。具体的には、硫酸、硝酸、塩酸等の鉱酸、酢酸、シュウ酸等の有機酸などが挙げられる。また、酸水溶液の濃度もまた、酸化マグネシウムまたはアルカリ土類金属酸化物を溶出できる濃度であれば特に制限されず、適宜選択できる。また、上記酸水溶液処理後は、処理物を濾過・水洗して酸を除去した後、乾燥することが好ましい。当該工程により、実質的に不純物を含まない炭素材料が得られる。
 (工程(iii))
 本工程では、上記(ii)で得られた炭素材料を熱処理する。
 ここで、炭素材料の熱処理条件は、上記構成(i)を達成できる条件であれば特に制限されない。具体的には、有機質材料が熱硬化性樹脂である際には、熱処理温度は、2000℃未満であることが好ましく、より好ましくは1300℃を超えて1900℃、さらにより好ましくは1400~1850℃、特に好ましくは1600~1800℃である。熱処理における昇温速度は、100~1000℃/時間であることが好ましく、300~800℃/時間であることが特に好ましい。熱処理時間(所定の熱処理温度での保持時間)は、特に制限されないが、1分以上60分以下であることが特に好ましい。なお、熱処理は、アルゴンガスや窒素ガス等の不活性ガス雰囲気下で行う。このような条件であれば、上記構成(i)、または上記構成(i)及びR’値、または上記構成(i)ならびにR’値及びR値を満たす炭素粉末が簡便に得られる。なお、熱処理条件が上記下限を下回る(熱処理条件が緩やかすぎる)場合には、炭素(グラフェン)のエッジ量を十分低減できない可能性がある。逆に、熱処理条件が上記上限を超える(熱処理条件が厳しすぎる)場合には、黒鉛化が進みすぎて、炭素(グラフェン)のBET比表面積が小さくなりすぎる可能性がある。
 (工程(iv))
 本工程では、上記(iii)で熱処理された炭素材料を粉砕して小粒径化する。当該工程によって、B/Aを所望の範囲にまで小さくした本発明の炭素粉末が得られる。詳細には、上記(ii)で得られた炭素材料の多くは、複数の細粒子の凝集体ではなく、単一の粒子(1粒)で構成される。このため、本工程により、粒子を粉砕(破断)・小粒径化することにより、露出する新たな表面は結晶性が低いものとなる。また、本工程を経た炭素粉末は、カーボンのエッジ量も少ない。
 本工程において、粉砕する方法としては、特に制限されず、公知の手法を適宜採用することができる。例えば、乳鉢、ボールミル、遊星ボールミル、ダイナミックミル、ビーズミル、ジェットミル、ハンマーミル、ディスクミル、ピンミルなどを使用できる。
 また、粉砕条件もまた、本発明に係るB/A比が達成できる条件であれば特に制限されない。好ましくは、上記(iii)で熱処理された炭素材料の大きさ(粒子径(直径))が上述したような大きさになるような条件である。なお、粉砕温度は、特に制限されず、例えば、10~50℃、好ましくは20~40℃(特に室温(25℃)付近)である。また、粉砕雰囲気も、特に制限されず、大気雰囲気であってもまたは不活性雰囲気(例えば、窒素雰囲気)であってもよい。
 [触媒(電極触媒)]
 本発明は、本発明の燃料電池用炭素粉末に触媒金属が担持されてなる燃料電池用触媒をも提供する。具体的には、触媒(電極触媒)は、上記炭素粉末(担体)および上記炭素粉末に担持される触媒金属から構成される。
 触媒金属は、電気的化学反応の触媒作用をする機能を有する。アノード触媒層に用いられる触媒金属は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒金属もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。
 これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含むことが好ましく、白金または白金含有合金であることがより好ましい。このような触媒金属は、高い活性を発揮できる。特に触媒金属が白金である場合には、小粒径の白金を炭素粉末(担体)表面に分散できるため、白金使用量を低減しても重量あたりの白金表面積を維持できる。また、触媒金属が白金と白金以外の金属成分を含む場合には、高価な白金の使用量を低減できるため、コストの観点から好ましい。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本形態ではいずれであってもよい。この際、アノード触媒層に用いられる触媒金属およびカソード触媒層に用いられる触媒金属は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード触媒層用およびカソード触媒層用の触媒金属についての説明は、両者について同様の定義である。しかしながら、アノード触媒層およびカソード触媒層の触媒金属は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。
 触媒金属(触媒成分)の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。形状としては、例えば、粒状、鱗片状、層状などのものが使用できるが、好ましくは粒状である。この際、触媒金属(触媒金属粒子)の平均粒径(直径)は、特に制限されないが、3nm以上、より好ましくは3nm超30nm以下、特に好ましくは3nm超10nm以下であることが好ましい。触媒金属の平均粒径が3nm以上であれば、触媒金属が炭素粉末(例えば、炭素粉末のメソ孔内)に比較的強固に担持され、触媒層内で電解質と接触するのをより有効に抑制・防止される。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上できる、すなわち、触媒反応をより効率的に促進できる。一方、触媒金属粒子の平均粒径が30nm以下であれば、炭素粉末(例えば、炭素粉末のメソ孔内部)に触媒金属を簡便な方法で担持することができ、触媒金属の電解質被覆率を低減することができる。なお、本発明における「触媒金属粒子の平均粒径」は、X線回折における触媒金属成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)より調べられる触媒金属粒子の粒子径の平均値として測定されうる。
 本形態において、単位触媒塗布面積当たりの触媒金属の含有量(mg/cm)は、十分な触媒の担体上での分散度、発電性能が得られる限り特に制限されず、例えば、0.01~1mg/cmである。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されず、例えば、0.01mg/cm以上である。より好ましくは、当該白金含有量は0.02~0.4mg/cmである。本形態では、担体の空孔構造を制御することにより、触媒重量あたりの活性を向上させることができるため、高価な触媒の使用量を低減することが可能となる。
 なお、本明細書において、「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」にせしめる方法も当業者であれば容易に行うことができ、スラリーの組成(触媒濃度)と塗布量を制御することで量を調整することができる。
 また、担体における触媒の担持量(担持率とも称する場合がある)は、触媒担持体(つまり、担体および触媒)の全量に対して、好ましくは10~80重量%、より好ましくは20~70重量%とするのがよい。担持量が前記範囲であれば、十分な触媒成分の担体上での分散度、発電性能の向上、経済上での利点、単位重量あたりの触媒活性が達成できるため好ましい。
 なお、炭素粉末が上記(i)を満たすものであれば触媒の構造は特に制限されない。すなわち、触媒は、担体として本発明の炭素粉末を使用する以外は、従来と同様の構造をとりうる。
 また、触媒の製造方法(炭素粉末への触媒金属の担持方法)は、特に制限されない。好ましくは、触媒担体の表面に触媒金属を析出させた後、熱処理を行い、触媒金属の粒径を増大させる方法が好ましい。上記方法は、析出後に熱処理を施して触媒金属の粒形を増大させる。このため、触媒担体の空孔(特にメソ孔)内部に粒子径の大きな触媒金属を担持することができる。すなわち、本発明は、(a)触媒担体の表面に触媒金属を析出させる工程(析出工程)、および(b)前記析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる工程(熱処理工程)を含む本発明の触媒の製造方法をも提供する。以下、上記方法を説明するが、本発明は、下記形態に限定されない。
 以下、上記触媒の製造方法の好ましい形態を説明するが、本発明は下記形態に限定されない。
 (a)析出工程
 本工程では、触媒担体の表面に触媒金属を析出させる。本工程は、既知の方法であり、例えば、触媒金属の前駆体溶液に、触媒担体を浸漬した後、還元する方法が好ましく使用される。
 ここで、触媒金属の前駆体としては、特に制限されず、使用される触媒金属の種類によって適宜選択される。具体的には、上記白金等の触媒金属の塩化物、硝酸塩、硫酸塩、塩化物、酢酸塩およびアミン化合物などが例示できる。より具体的には、塩化白金(ヘキサクロロ白金酸六水和物)、塩化パラジウム、塩化ロジウム、塩化ルテニウム、塩化コバルトなどの塩化物、硝酸パラジウム、硝酸ロジウム、硝酸イリジウムなどの硝酸塩、硫酸パラジウム、硫酸ロジウムなどの硫酸塩、酢酸ロジウムなどの酢酸塩、ジニトロジアンミン白金硝酸、ジニトロジアンミンパラジウムなどのアンミン化合物などが好ましく、例示される。また、触媒金属の前駆体溶液の調製に使用される溶媒は、触媒金属の前駆体を溶解できるものであれば特に制限されず、使用される触媒金属の前駆体の種類によって適宜選択される。具体的には、水、酸、アルカリ、有機溶媒などが挙げられる。触媒金属の前駆体溶液中の触媒金属の前駆体の濃度は、特に制限されないが、金属換算で0.1~50重量%であることが好ましく、より好ましくは0.5~20重量%である。
 還元剤としては、水素、ヒドラジン、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L-アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素等が挙げられる。なお、水素などの常温でガス状の物質は、バブリングで供給することもできる。還元剤の量は、上記触媒金属の前駆体を触媒金属に還元できる量であれば特に制限されず、公知の量を同様にして適用できる。
 析出条件は、触媒金属が触媒担体に析出できる条件であれば特に制限されない。例えば、析出温度は、溶媒の沸点付近の温度、より好ましくは室温~100℃であることが好ましい。また、析出時間は、1~10時間、より好ましくは2~8時間であることが好ましい。なお、上記析出工程は、必要であれば、撹拌・混合しながら行ってもよい。
 これにより、触媒金属の前駆体が触媒金属に還元されて、触媒金属が触媒担体に析出(担持)する。
 (b)熱処理工程
 本工程では、上記(a)析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる。
 熱処理条件は、触媒金属の粒径が増大できる条件であれば特に制限されない。例えば、熱処理温度は、300~1200℃、より好ましくは500~1150℃、特に好ましくは700~1000℃であることが好ましい。また、熱処理時間は、0.02~3時間、より好ましくは0.1~2時間、特に好ましくは0.2~1.5時間であることが好ましい。なお、熱処理工程は、水素雰囲気で行われてもよい。
 これにより、触媒金属は、触媒担体で(特に触媒担体のメソ孔内で)粒径を増大させる。このため、触媒金属粒子は、系外に(触媒担体から)脱離しにくくなる。ゆえに、触媒をより有効に利用できる。
 [触媒層]
 上述したように、本発明の触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。また、本発明の触媒は耐久性に優れる。したがって、本発明の触媒は、燃料電池用の電極触媒層に好適に使用できる。すなわち、本発明は、本発明の電極触媒および電解質を含む、燃料電池用電極触媒層をも提供する。本発明の燃料電池用電極触媒層は、高い性能および耐久性を発揮できる。
 なお、本発明の燃料電池用電極触媒層は、担体として本発明の炭素粉末を使用すること以外は従来と同様にしてあるいは適宜修飾して使用できる。このため、以下には触媒層の好ましい形態を説明するが、本発明は下記形態に限定されない。
 触媒層内では、触媒は電解質で被覆されているが、電解質は、触媒(特に担体)のメソ孔内には侵入しない。このため、担体表面の触媒金属は電解質と接触するが、メソ孔内部に担持された触媒金属は電解質と非接触状態である。メソ孔内の触媒金属が、電解質と非接触状態で酸素ガスと水との三相界面を形成することにより、触媒金属の反応活性面積を確保できる。
 本発明の触媒は、カソード触媒層またはアノード触媒層のいずれに存在してもいてもよいが、カソード触媒層で使用されることが好ましい。上述したように、本発明の触媒は、電解質と接触しなくても、水との三相界面を形成することによって、触媒を有効に利用できるが、カソード触媒層で水が形成するからである。
 電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。
 当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。
 フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
 炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
 プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1100g/eq.以下の高分子電解質を含む。
 一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600g/eq.以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。
 また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。
 さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。
 さらには、燃料電池システムの抵抗値を小さくする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガス及び酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。
 触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
 触媒層の厚さ(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記は、カソード触媒層およびアノード触媒層双方に適用される。しかし、カソード触媒層及びアノード触媒層の厚さは、同じであってもあるいは異なってもよい。
 (触媒層の製造方法)
 以下、触媒層を製造するための好ましい実施形態を記載するが、本発明の技術的範囲は下記の形態のみには限定されない。また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。
 まず、担体としての炭素粉末(本明細書では、「多孔質担体」または「導電性多孔質担体」とも称する)を準備する。具体的には、上記炭素粉末の製造方法で説明したように、作製すればよい。
 次いで、炭素粉末に触媒を担持させて、触媒粉末とする。炭素粉末への触媒の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。
 続いて、触媒粉末、高分子電解質、および溶剤を含む触媒インクを作製する。溶剤としては、特に制限されず、触媒層を形成するのに使用される通常の溶媒が同様にして使用できる。具体的には、水道水、純水、イオン交換水、蒸留水等の水、シクロヘキサノール、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、及びtert-ブタノール等の炭素数1~4の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチルアルコール、ジメチルエーテル、エチレングリコール、などが溶媒として用いられてもよい。これらの溶剤は、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。
 触媒インクを構成する溶剤の量は、電解質を完全に溶解できる量であれば特に制限されない。具体的には、触媒粉末および高分子電解質などを合わせた固形分の濃度が、電極触媒インク中、1~50重量%、より好ましくは5~30重量%程度とするのが好ましい。
 なお、撥水剤、分散剤、増粘剤、造孔剤等の添加剤を使用する場合には、触媒インクにこれらの添加剤を添加すればよい。この際、添加剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されない。例えば、添加剤の添加量は、それぞれ、電極触媒インクの全重量に対して、好ましくは5~20重量%である。
 次に、基材の表面に触媒インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。
 この際、触媒インクを塗布する基材としては、固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)またはガス拡散基材(ガス拡散層)の表面に触媒層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒層を形成した後に基材から触媒層部分を剥離することにより、触媒層を得てもよい。
 最後に、触媒インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温~150℃で、1~60分間、乾燥する。これにより、触媒層が形成される。
 (膜電極接合体/燃料電池)
 本発明のさらなる実施形態によれば、上記燃料電池用電極触媒層を含む、燃料電池用膜電極接合体および当該燃料電池用膜電極接合体を含む燃料電池が提供される。すなわち、固体高分子電解質膜2、前記電解質膜の一方の側に配置されたカソード触媒層3cと、前記電解質膜の他方の側に配置されたアノード触媒層3aと、前記電解質膜2並びに前記アノード触媒層3a及び前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方が上記に記載した実施形態の触媒層である。
 ただし、プロトン伝導性の向上および反応ガス(特にO)の輸送特性(ガス拡散性)の向上の必要性を考慮すると、少なくともカソード触媒層が上記に記載した実施形態の触媒層であることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。
 本発明のさらなる実施形態によれば、上記形態の膜電極接合体を有する燃料電池が提供される。すなわち、本発明の一実施形態は、上記形態の膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池である。
 以下、図1を参照しつつ、上記実施形態の触媒層を用いたPEFC 1の構成要素について説明する。ただし、本発明は触媒層に特徴を有するものである。よって、燃料電池を構成する触媒層以外の部材の具体的な形態については、従来公知の知見を参照しつつ、適宜、改変が施されうる。
 (電解質膜)
 電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC 1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。
 電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切に制御されうる。
 (ガス拡散層)
 ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
 ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
 (膜電極接合体の製造方法)
 膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面)に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
 (セパレータ)
 セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互いに分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
 上述したPEFCや膜電極接合体は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体は発電性能および耐久性に優れる。
 本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 実施例1
 以下により、担体Aを調製した。具体的には、フェノール樹脂(溶媒(メタノール)に分散された溶液樹脂)および酸化マグネシウム粉末を3:7の重量比(固形分換算)で混合した後、この混合物を大気雰囲気中で120℃で2時間熱処理して溶媒を除去し、混合粉末を得た。この混合粉末を窒素雰囲気中で900℃で1時間熱処理した。熱処理により得られた混合粉末を希硫酸水溶液に投入して室温(25℃)で十分に撹拌した後ろ過し、さらに十分に水洗してから、乾燥することによって、炭素材料A1を製造した。
 次に、この炭素材料A1を、窒素雰囲気下で、1800℃にまで加熱した後、1800℃で1時間熱処理して、炭素材料A2を製造した。この炭素材料A2をディスクミル粉砕することによって、担体Aを作製した。得られた担体Aのレーザー回折法を用いて得られたメディアン径は約2μmであった。
 このようにして得られた担体Aについて、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)を測定したところ、0.056であった。なお、2θ=23.92°に観察されるピークをピーク0としてその面積(面積A)を算出した。また、このようにして得られた担体Aについて、R値およびR’値を測定したところ、それぞれ、0.99および0.19であった。さらに、上記担体Aについて、メソ孔の空孔容積およびBET比表面積を測定した結果、それぞれ、1.15cm/gおよび700m/gであった。
 実施例2
 以下により、担体Bを調製した。
 具体的には、実施例1と同様にして、炭素材料A1を製造した。
 次に、この炭素材料A1を、窒素雰囲気下で、1600℃にまで加熱した後、1600℃で1時間熱処理して、炭素材料B2を製造した。この炭素材料B2をディスクミル粉砕することによって、担体Bを作製した。
 このようにして得られた担体Bについて、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)を測定したところ、0.033であった。なお、2θ=23.92°に観察されるピークをピーク0としてその面積(面積A)を算出した。また、このようにして得られた担体Bについて、R値およびR’値を測定したところ、それぞれ、1.2および0.22であった。さらに、上記担体Bについて、メソ孔の空孔容積およびBET比表面積を測定した結果、それぞれ、1.32cm/gおよび860m/gであった。
 比較例1
 実施例1において、炭素材料A1についてディスクミル粉砕を行わなかった以外は、実施例1と同様の方法に従って、担体Cを作製した。すなわち、担体Cは、実施例1における炭素材料A2に相当するものである。
 このようにして得られた担体Cについて、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)を測定したところ、0.171であった。なお、2θ=23.92°に観察されるピークをピーク0としてその面積(面積A)を算出した。また、このようにして得られた担体Cについて、R値およびR’値を測定したところ、それぞれ、1.12および0.25であった。さらに、上記担体Cについて、メソ孔の空孔容積およびBET比表面積を測定した結果、それぞれ、1.20cm/gおよび610m/gであった。
 実施例3
 上記実施例1で作製した担体Aを用い、これに触媒金属として平均粒径3nm超5nm以下の白金(Pt)を担持率が30重量%となるように担持させて、触媒粉末Aを得た。すなわち、白金濃度4.6重量%のジニトロジアンミン白金硝酸溶液1000g(白金含有量:46g)に担体Aを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Aに担持させた。そして、濾過、乾燥することにより、担持率が30重量%の触媒粉末を得た。その後、水素雰囲気において、温度900℃に1時間保持し、触媒粉末Aを得た。
 実施例4
 実施例3において、担体Aの代わりに、上記実施例2で作製した担体Bを使用した以外は、実施例3と同様の操作を行い、触媒粉末Bを得た。
 このようにして得られた触媒粉末Bについて、RDEを用いて下記方法に従って、カーボン酸化の耐久性を評価した。その結果、還元電流の電位が0.5V以下となるまでに繰り返すことができたサイクル数は、8000であった。上記結果から、本発明の炭素粉末を用いた触媒は、電気二重層容量の低下が小さく、有意に高い活性を維持できる(耐久性に優れる)と、考察される。
 実験1:耐久性の評価
 三電極式の電気化学セルを用い、ポテンショスタットとして、北斗電工社製電気化学システムHZ-5000+HR301を用いた。作用極として、グラッシーカーボン回転電極(GC-RDE)(φ(直径)=5mm)を用い、実施例および比較例で作製した各触媒粉末を分散媒としての水と1-プロパノールとの混合溶媒に分散させたインクを乾燥膜厚が1μmとなるようにコーティングして乾燥させた電極を用いた。対極にカーボン、参照電極には可逆水素電極(RHE)を使用した。電解液は、0.1M 過塩素酸を用い、Oで飽和させた。測定は60℃(液温)で行なった。
 触媒有効表面積(ECA)の算出は、サイクリックボルタムメトリ(CV)により実施した。測定実施前に、1.0Vの電位で30秒間、電位走査を実施した。その後、1.0~1.5Vの電位範囲を0.5V/sの電位掃引速度で上昇(1秒)下降(1秒)し、これを1サイクル(2秒/サイクル)とした。この電位サイクルを繰り返すと、電位サイクルの増加とともに、サイクリックボルタムメトリ法で計測される0.6V付近のキノン-ハイドロキノン還元電流のピーク電位が低電位側にシフトする。この還元電流の変化からカーボンの状態を見積もり、還元電流の電位が0.5V以下となるまでに繰り返すことができたサイクル数を耐久性の指標とした。
 比較例2
 実施例3において、担体Aの代わりに、上記比較例1で作製した担体Cを使用した以外は、実施例3と同様の操作を行い、触媒粉末Cを得た。
 実施例5
 以下のようにして、膜電極接合体(1)(MEA(1))を作製した。
 (カソード触媒インクの調製)
 実施例3で作製した触媒粉末Aと、高分子電解質としてのアイオノマ分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とを担体Aに対する高分子電解質(アイオノマ)の重量比が0.9となるよう混合した(混合物1)。別途、水とn-プロピルアルコール(NPA)との混合重量比が60:40の混合溶媒1を調製した。この混合溶媒1を、上記にて調製した混合物1に、固形分率(Pt+カーボン担体+アイオノマ)が7重量%となるよう添加して、カソード触媒インクを調製した。
 (アノード触媒インクの調製)
 担体として、ケッチェンブラック(粒径:30~60nm)を用い、これに触媒金属として平均粒径2.5nmの白金(Pt)を担持率が50重量%となるように担持させて、触媒粉末を得た。この触媒粉末と、高分子電解質としてのアイオノマ分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをカーボン担体に対する高分子電解質(アイオノマ)の重量比が0.9となるよう混合した(混合物2)。別途、水とn-プロピルアルコール(NPA)との混合重量比が50:50の混合溶媒2を調製した。この混合溶媒2を、上記にて調製した混合物2に、固形分率(Pt+カーボン担体+アイオノマ)が7重量%となるよう添加して、アノード触媒インクを調製した。
 (膜電極接合体(1)(MEA(1))の組み立て)
 高分子電解質膜(Dupont社製、NAFION NR211、膜厚:25μm)の両面の周囲にガスケット(帝人Dupont社製、テオネックス、膜厚:25μm(接着層:10μm))を配置した。次いで、高分子電解質膜の片面の露出部に、上記にて調製したカソード触媒インクをスプレー塗布法により、5cm×2cmのサイズに塗布した。スプレー塗布を行うステージを60℃に1分間保つことで触媒インクを乾燥し、カソード触媒層を得た。このときの白金担持量は0.15mg/cmである。次に、上記にて調製したアノード触媒インクを用いて、カソード触媒層と同様に、カソード触媒層が形成されていない側の電解質膜上にスプレー塗布および熱処理を行うことでアノード触媒層を形成した(積層体1)。
 このようにして得られた積層体1の両面をガス拡散層(24BC,SGLカーボン社製)で挟持し、膜電極接合体(1)(MEA(1))を得た。
 実施例6
 実施例5において、触媒粉末Aの代わりに、実施例4で作製した触媒粉末Bを使用する以外は、実施例5と同様の操作を行い、膜電極接合体(2)(MEA(2))を作製した。
 比較例3
 実施例5において、触媒粉末Aの代わりに、比較例2で作製した触媒粉末Cを使用する以外は、実施例5と同様の操作を行い、膜電極接合体(3)(MEA(3))を作製した。
 次に、上記実施例5~6で作製したMEA(1)及び(2)ならびに上記比較例3で作製したMEA(3)について、下記方法に従って、発電性能を評価した。
 実験2:電気化学特性の評価
 上記実施例5~6で作製したMEA(1)及び(2)ならびに上記比較例3で作製したMEA(3)について、下記方法に従って、電気化学的有効表面積(ECA:Electrochemical surface area)および酸化還元反応(ORR:Oxygen reduction reaction)面積比活性、およびORR質量比活性を評価した。結果を下記表1に示す。なお、下記表1において、ピーク0の面積Aに対するピーク1の面積Bの比を「B/A比」と称する。
 (電気化学的有効表面積(ECA:Electrochemical surface area)の測定)
 対象極の触媒層(カソード触媒層)について、サイクリックボルタンメトリーによる電気化学的有効表面積(ECA:Electrochemical surface area)を求める。ここで、対向極(アノード)には、測定温度(80℃)において飽和するよう加湿した水素ガスを流通させ、これを参照極および対極として用いる。対象極(カソード)には、同様に加湿した窒素ガスを流通させておき、測定を開始する直前に、対象極入口および出口のバルブを閉じ、窒素ガスを封入する。この状態で、電気化学測定装置(北斗電工(株)製、型番:HZ-5000)を用いて下記条件にて測定する。
Figure JPOXMLDOC01-appb-C000002
 (ORR面積比活性の測定)
 対象極の触媒層(カソード触媒層)について、白金表面積あたりの面積比活性を求める。ここで、対向極(アノード)には、測定温(80℃)において飽和するよう加湿した水素ガスを流通させ、これを参照極および対極として用いる。対象極(カソード)には、同様に加湿した酸素ガスを流通させておく。両極のガス圧力は、150kPa_abs.とし、対向極に対する対象極の電位が0.9Vを示す時の電流値を計測し、これを触媒有効表面積(ECA)で除することにより、ORR面積比活性を算出する。なお、触媒有効表面積は、ECAと対象極への触媒金属担持量から見積もることができる。
 (ORR質量比活性の見積もり)
 対象極の触媒層(カソード触媒層)について、白金質量あたりの質量比活性を求める。上記(ORR面積比活性の測定)にて求めた白金面積あたりの面積比活性と白金質量あたりの白金面積であるECAから、白金質量あたりの質量比活性を求めることができる。
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、本発明の触媒粉末A、Bを用いたMEA(1)、(2)は、B/A比および/またはR’値が本発明から外れる触媒粉末Cを用いたMEA(3)に比して、酸素還元反応活性(すなわち、発電性能)に優れることがわかる。
  1…固体高分子形燃料電池(PEFC)、
  2…固体高分子電解質膜、
  3a…アノード触媒層、
  3c…カソード触媒層、
  4a…アノードガス拡散層、
  4c…カソードガス拡散層、
  5a…アノードセパレータ、
  5c…カソードセパレータ、
  6a…アノードガス流路、
  6c…カソードガス流路、
  7…冷媒流路、
  10…膜電極接合体(MEA)。

Claims (10)

  1.  炭素を主成分とする燃料電池用炭素粉末であって、
     不活性雰囲気中で1800℃で1時間熱処理した際の、XRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0の面積をA、XRD分析によって観測される2θ=26°の位置に存在するピーク1の面積をBとした場合、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)が0を超えて0.15以下である、燃料電池用炭素粉末。
  2.  メソ孔を有し、該メソ孔の空孔容積は0.9cm/g担体以上である、請求項1に記載の炭素粉末。
  3.  前記ピーク0の面積Aに対するピーク1の面積Bの比(B/A)が、0を超えて0.06未満である、請求項1または2に記載の炭素粉末。
  4.  重量あたりのBET比表面積が900m/g未満である、請求項1~3のいずれか1項に記載の炭素粉末。
  5.  ラマン分光法によって1580cm-1付近で計測されるGバンドのピーク強度(G強度)に対する、1620cm-1付近で計測されるD’バンドのピーク強度(D’強度)の比R’(D’/G強度比)が0.30以下である、請求項1~4のいずれか1項に記載の炭素粉末。
  6.  請求項1~5のいずれか1項に記載の燃料電池用炭素粉末に触媒金属が担持されてなる燃料電池用触媒。
  7.  前記触媒金属は、白金であるまたは白金と白金以外の金属成分を含む、請求項6に記載の燃料電池用触媒。
  8.  請求項6または7に記載の燃料電池用触媒および電解質を含む、燃料電池用電極触媒層。
  9.  請求項8に記載の燃料電池用電極触媒層を含む、燃料電池用膜電極接合体。
  10.  請求項9に記載の燃料電池用膜電極接合体を含む燃料電池。
PCT/JP2017/001607 2016-03-11 2017-01-18 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池 WO2017154359A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17762705.6A EP3429003B1 (en) 2016-03-11 2017-01-18 Carbon powder for fuel cells, catalyst using said carbon powder for fuel cells, electrode catalyst layer, membrane electrode assembly and fuel cell
JP2018504029A JP6603396B2 (ja) 2016-03-11 2017-01-18 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
CN201780016662.XA CN108780900B (zh) 2016-03-11 2017-01-18 燃料电池用碳粉末以及使用该燃料电池用碳粉末的催化剂、电极催化剂层、膜电极接合体及燃料电池
US16/083,606 US10675611B2 (en) 2016-03-11 2017-01-18 Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder for fuel cell
KR1020187025811A KR102054609B1 (ko) 2016-03-11 2017-01-18 연료 전지용 탄소 분말, 그리고 당해 연료 전지용 탄소 분말을 사용하는 촉매, 전극 촉매층, 막 전극 접합체 및 연료 전지
CA3017300A CA3017300C (en) 2016-03-11 2017-01-18 Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016048911 2016-03-11
JP2016-048911 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017154359A1 true WO2017154359A1 (ja) 2017-09-14

Family

ID=59789182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001607 WO2017154359A1 (ja) 2016-03-11 2017-01-18 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池

Country Status (7)

Country Link
US (1) US10675611B2 (ja)
EP (1) EP3429003B1 (ja)
JP (1) JP6603396B2 (ja)
KR (1) KR102054609B1 (ja)
CN (1) CN108780900B (ja)
CA (1) CA3017300C (ja)
WO (1) WO2017154359A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221168A1 (ja) * 2018-05-15 2019-11-21 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
WO2023090060A1 (ja) 2021-11-22 2023-05-25 東洋炭素株式会社 燃料電池触媒用炭素担体および燃料電池用触媒

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151524B2 (ja) * 2019-02-06 2022-10-12 トヨタ自動車株式会社 燃料電池用触媒
KR20220091754A (ko) * 2020-12-24 2022-07-01 현대자동차주식회사 인터메탈릭 촉매 및 이의 제조 방법
KR20220103288A (ko) * 2021-01-15 2022-07-22 현대자동차주식회사 인터메탈릭 촉매 및 이의 제조 방법
CN117886314B (zh) * 2023-12-27 2024-08-30 有研(广东)新材料技术研究院 一种高比表面积石墨化碳载体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290936A (ja) * 2006-04-27 2007-11-08 Hitachi Powdered Metals Co Ltd 改質黒鉛、その改質黒鉛を用いる黒鉛層間化合物及び触媒並びにそれらの製造方法。
JP2011115760A (ja) * 2009-12-07 2011-06-16 Nisshinbo Holdings Inc 触媒担持用担体、触媒担持体、電極及び電池
WO2014129597A1 (ja) * 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2014185498A1 (ja) * 2013-05-16 2014-11-20 トヨタ自動車株式会社 燃料電池用電極およびその製造方法
WO2015045852A1 (ja) * 2013-09-30 2015-04-02 日産自動車株式会社 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
WO2016152506A1 (ja) * 2015-03-23 2016-09-29 日産自動車株式会社 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311026A (ja) 2004-07-05 2007-11-29 Gunma Univ 燃料電池用電極触媒及びその製造方法並びに該触媒を用いた燃料電池
KR100927718B1 (ko) * 2007-11-27 2009-11-18 삼성에스디아이 주식회사 다공성 탄소 구조체, 이의 제조 방법, 및 이를 포함하는 연료 전지용 전극 촉매, 전극, 및 막-전극 어셈블리
US9017837B2 (en) * 2008-02-19 2015-04-28 Cabot Corporation High surface area graphitized carbon and processes for making same
EP2684843A4 (en) * 2011-03-09 2014-09-03 Toyo Tanso Co POROUS CARBON AND METHOD FOR PRODUCING THE SAME
JP5998277B2 (ja) * 2013-04-25 2016-09-28 日産自動車株式会社 燃料電池用触媒、およびこれを含む燃料電池用電極触媒層
CN105098186A (zh) * 2014-11-11 2015-11-25 中国科学院物理研究所 一种热解无定型碳材料及其制备方法和用途
WO2016094551A1 (en) 2014-12-10 2016-06-16 Purdue Research Foundation Methods of making electrodes, electrodes made therefrom, and electrochemical energy storage cells utilizing the electrodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290936A (ja) * 2006-04-27 2007-11-08 Hitachi Powdered Metals Co Ltd 改質黒鉛、その改質黒鉛を用いる黒鉛層間化合物及び触媒並びにそれらの製造方法。
JP2011115760A (ja) * 2009-12-07 2011-06-16 Nisshinbo Holdings Inc 触媒担持用担体、触媒担持体、電極及び電池
WO2014129597A1 (ja) * 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2014185498A1 (ja) * 2013-05-16 2014-11-20 トヨタ自動車株式会社 燃料電池用電極およびその製造方法
WO2015045852A1 (ja) * 2013-09-30 2015-04-02 日産自動車株式会社 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
WO2016152506A1 (ja) * 2015-03-23 2016-09-29 日産自動車株式会社 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3429003A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221168A1 (ja) * 2018-05-15 2019-11-21 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
CN112189274A (zh) * 2018-05-15 2021-01-05 恩亿凯嘉股份有限公司 电极用催化剂、气体扩散电极形成用组合物、气体扩散电极、膜电极组件和燃料电池堆
KR20210006991A (ko) * 2018-05-15 2021-01-19 엔.이. 켐캣 가부시키가이샤 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택
JPWO2019221168A1 (ja) * 2018-05-15 2021-05-27 エヌ・イーケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
US11271219B2 (en) 2018-05-15 2022-03-08 N.E. Chemcat Corporation Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly and fuel cell stack
KR102613427B1 (ko) * 2018-05-15 2023-12-14 엔.이. 켐캣 가부시키가이샤 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택
WO2023090060A1 (ja) 2021-11-22 2023-05-25 東洋炭素株式会社 燃料電池触媒用炭素担体および燃料電池用触媒
KR20240102917A (ko) 2021-11-22 2024-07-03 토요 탄소 가부시키가이샤 연료 전지 촉매용 탄소 담체 및 연료 전지용 촉매

Also Published As

Publication number Publication date
US20190083957A1 (en) 2019-03-21
JPWO2017154359A1 (ja) 2019-01-31
CA3017300A1 (en) 2017-09-14
EP3429003B1 (en) 2021-04-14
KR20180108805A (ko) 2018-10-04
US10675611B2 (en) 2020-06-09
JP6603396B2 (ja) 2019-11-06
KR102054609B1 (ko) 2019-12-10
EP3429003A4 (en) 2019-03-13
CA3017300C (en) 2020-11-10
CN108780900B (zh) 2020-07-07
EP3429003A1 (en) 2019-01-16
CN108780900A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP6461805B2 (ja) 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
JP5998277B2 (ja) 燃料電池用触媒、およびこれを含む燃料電池用電極触媒層
JP6603396B2 (ja) 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
JP6327681B2 (ja) 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池
CA3021498C (en) High activity alloy-based electrode catalyst, and membrane electrode assembly and fuel cell using high activity alloy-based electrode catalyst
JP6276870B2 (ja) 燃料電池用電極触媒層、ならびに当該触媒層を用いる燃料電池用膜電極接合体および燃料電池
JP2007307554A (ja) 担持触媒とその製造方法、これを利用した電極及び燃料電池
JP6575602B2 (ja) 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
JP6323818B2 (ja) 燃料電池用電極触媒、燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池
WO2016152506A1 (ja) 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
JP6554954B2 (ja) 触媒混合物およびその製造方法ならびに当該触媒混合物を用いてなる電極触媒層、膜電極接合体および燃料電池
JP6183120B2 (ja) 燃料電池用膜電極接合体および燃料電池
JP6846210B2 (ja) 電極触媒ならびに当該電極触媒を用いる膜電極接合体および燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504029

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187025811

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025811

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 3017300

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017762705

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017762705

Country of ref document: EP

Effective date: 20181011

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762705

Country of ref document: EP

Kind code of ref document: A1