WO2023090060A1 - 燃料電池触媒用炭素担体および燃料電池用触媒 - Google Patents

燃料電池触媒用炭素担体および燃料電池用触媒 Download PDF

Info

Publication number
WO2023090060A1
WO2023090060A1 PCT/JP2022/039489 JP2022039489W WO2023090060A1 WO 2023090060 A1 WO2023090060 A1 WO 2023090060A1 JP 2022039489 W JP2022039489 W JP 2022039489W WO 2023090060 A1 WO2023090060 A1 WO 2023090060A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon support
carbon
catalyst
fuel cell
platinum
Prior art date
Application number
PCT/JP2022/039489
Other languages
English (en)
French (fr)
Inventor
稔 稲葉
善夫 初代
Original Assignee
東洋炭素株式会社
学校法人同志社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社, 学校法人同志社 filed Critical 東洋炭素株式会社
Priority to CN202280016367.5A priority Critical patent/CN116918109A/zh
Priority to CA3214016A priority patent/CA3214016A1/en
Priority to JP2023521649A priority patent/JP7313024B1/ja
Publication of WO2023090060A1 publication Critical patent/WO2023090060A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon carrier for a fuel cell catalyst and a fuel cell catalyst.
  • a fuel cell generally includes a catalyst metal (for example, platinum (Pt) or an alloy containing platinum) and a carrier that supports the catalyst metal.
  • a catalyst metal for example, platinum (Pt) or an alloy containing platinum
  • a carrier that supports the catalyst metal.
  • a carbon carrier having a large specific surface area is often used.
  • Patent Documents 1 to 3 techniques have been proposed for improving the durability of the carbon support and the catalytic activity of the catalytic metal supported on the carbon support by controlling the crystallinity of the carbon support.
  • JP 2018-12626 WO2017/154359
  • JP 2018-81740 Japanese Patent Publication "JP 2018-81740"
  • An object of one aspect of the present invention is to realize a fuel cell catalyst carbon support and a fuel cell catalyst that are excellent in durability (especially oxidation resistance) and catalytic activity when a catalyst metal is supported.
  • the present inventors have found that a carbon carrier having a specific crystallinity and a BET specific surface area equal to or greater than a specific value has durability (especially oxidation resistance) and performance when a catalyst metal is supported.
  • the inventors have found that a fuel cell catalyst carbon carrier and a fuel cell catalyst having excellent catalytic activity can be realized, and have completed the present invention.
  • the present invention includes the following inventions.
  • one aspect of the present invention provides a carbon support for a fuel cell catalyst and a fuel cell catalyst which are excellent in durability (especially oxidation resistance) and catalytic activity when a catalytic metal is supported. can be provided.
  • 1 is a graph plotting the crystallite size of a catalytic metal against the peak intensity ratio in Examples.
  • Patent Document 1 the crystallinity inside the pores that support the catalyst metal is selectively increased, while the crystallization of other parts is suppressed, thereby suppressing the decrease in the specific surface area and improving the durability. It is intended to achieve both catalytic activity.
  • Patent Document 1 in order to selectively crystallize the inside of the pores, it is necessary to support metal particles having graphitization promoting action inside the pores during heat treatment and remove them after the heat treatment. More specifically, a step of adsorbing, reducing, and depositing a metal complex or the like on the carbon material, followed by baking, to remove the metal component is required, and an additional step is required.
  • the crystallinity of the inside of the pores is increased, the durability is excellent, but aggregation tends to occur when the catalyst metal is supported, which may hinder the efficient use of the catalyst metal. There was room for improvement.
  • a carbon support with moderately developed carbon crystallinity can provide the durability (particularly, oxidation resistance) necessary for a fuel cell catalyst.
  • the carbon support according to one embodiment of the present invention is, for example, an existing carbon support (Ketjen Black EC300J, Vulcan (registered trademark) Compared to XC-72), the oxidation resistance is improved.
  • the upper limit value “26.3°” may be, for example, 26.2°, 26.1°, or 26.0°.
  • the upper limit of the intensity ratio I(P1)/I(P2) is not limited, and is, for example, 10, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3. 7 or 3.2.
  • the size of the catalytic metal (crystallite size ) can be prevented from increasing, and the size of the catalyst metal can be reduced (crystallite size: eg, 2 nm to 4 nm).
  • the catalyst is provided with a carbon support carrying a catalyst metal of small size, the specific surface area of the catalyst metal is increased, so that the catalytic performance can be improved.
  • the carbon support according to one embodiment of the present invention has a BET specific surface area (specific surface area evaluated by the BET method) of 1000 m 2 /g or more, preferably 1100 m 2 /g or more, more preferably 1200 m 2 /g. above, more preferably 1250 m 2 /g or more, more preferably 1300 m 2 /g or more.
  • the upper limit of the BET specific surface area is not limited, and may be, for example, 2000 m 2 /g, 1800 m 2 /g, 1600 m 2 /g, 1500 m 2 /g, or 1400 m 2 /g. From the viewpoint of increasing the durability (especially oxidation resistance) of the carbon carrier, the upper limit of the BET specific surface area is preferably 1500 m 2 /g or less.
  • the above configuration it is possible to efficiently produce a carbon carrier for a fuel cell catalyst that is excellent in durability (especially oxidation resistance) and catalytic activity when a catalyst metal is supported.
  • the reason why the above catalytic activity is excellent is that since the carbon support has a high specific surface area, there are enough places on the carbon support to support the catalyst metal, and the amount of catalyst metal at a practical level (for example, 50 wt of fuel cell catalyst %) can also suppress the enlargement of the catalyst metal.
  • the carbon support according to one embodiment of the present invention preferably has mesopores and/or micropores.
  • pores with an average pore diameter of less than 2.0 nm are called micropores
  • pores with an average pore diameter of 2.0 to 50 nm are called mesopores
  • pores with an average pore diameter of more than 50 nm are called macropores. , these holes are collectively called pores.
  • the carbon carrier according to one embodiment of the present invention preferably has a random pore structure in which the mesopores are arranged irregularly.
  • the “random pore structure” is intended to mean a structure in which mesopores are not regularly arranged, and is different from a structure in which mesopores are regularly arranged.
  • a random pore structure may be formed in the entire carbon support or may be formed in a portion of the carbon support.
  • the carbonaceous walls forming the outline of the mesopores form a three-dimensional network structure.
  • the carbon support preferably has a random pore structure in which the mesopores are arranged irregularly. Since the carbonaceous walls of the carbon support form a three-dimensional network structure and have a random pore structure, a carbon support with higher strength can be realized.
  • the mesopores are open pores, and that at least some of the mesopores form communicating pores that communicate with each other. Since the mesopores are open pores and form continuous pores, water generated as the catalytic reaction progresses does not stay inside the mesopores and is discharged outside the mesopores, so that the catalytic reaction has the advantage that it can proceed smoothly. In addition, since oxygen can pass through the communicating pores, both the catalyst metal supported outside the mesopores and the catalyst metal supported inside the mesopores can sufficiently contribute to the catalytic reaction, resulting in a high Advantageously, catalyst utilization can be achieved. It also has the advantage of reducing the amount of catalytic metal required to achieve the desired catalytic activity.
  • Micropores can stably support catalytic metals.
  • the carbon support according to one embodiment of the present invention has mesopores and micropores, micropores can be formed at positions facing the mesopores.
  • fuel gas or the like is supplied through the communicating pores of the mesopores, and as a result, the supported catalytic metal can sufficiently contribute to the catalytic reaction, and a high catalyst utilization rate can be achieved.
  • the supported catalytic metal can sufficiently contribute to the catalytic reaction, and a high catalyst utilization rate can be achieved.
  • the carbon support according to one embodiment of the present invention has mesopores, and the mesopores preferably have an average pore size of 3.5 nm to 5.0 nm.
  • the average pore diameter of mesopores is more preferably 3.6 nm to 5.0 nm, more preferably 3.7 nm to 5.0 nm, more preferably 3.8 nm to 5.0 nm, more preferably 3.9 nm to 5.0 nm. , more preferably 4.0 nm to 5.0 nm.
  • the upper limit value "5.0 nm" may be, for example, 4.8 nm, 4.6 nm, 4.4 nm, 4.2 nm, or 4.0 nm.
  • the carbon carrier according to one embodiment of the present invention has mesopores, and the volume of the mesopores is preferably 0.73 mL/g carbon carrier or more.
  • the mesopore volume is more preferably 0.80 mL/g carbon support or more, more preferably 0.90 mL/g carbon support or more, more preferably 0.95 mL/g carbon support or more, more preferably 1.0 mL/g. more than a carbon support.
  • the upper limit of the mesopore volume is not limited, for example, 2.0 mL/g carbon carrier, 1.8 mL/g carbon carrier, 1.6 mL/g carbon carrier, 1.4 mL/g carbon carrier, 1.2 mL /g carbon support, or 1.1 mL/g carbon support.
  • the carbon carrier according to one embodiment of the present invention has micropores, and the micropores preferably have an average pore diameter of 0.5 nm to 1.0 nm.
  • the average pore size of the micropores is more preferably 0.6 nm to 0.7 nm.
  • the carbon carrier according to one embodiment of the present invention has micropores, and the volume of the micropores is preferably 0.37 mL/g carbon carrier or more.
  • the volume of the micropores is more preferably 0.38 mL/g carbon support or higher, more preferably 0.39 mL/g carbon support or higher, more preferably 0.40 mL/g carbon support or higher, more preferably 0.41 mL/g. carbon carrier or greater, more preferably 0.42 mL/g carbon carrier or greater, more preferably 0.43 mL/g carbon carrier or greater.
  • the upper limit of the micropore volume is not limited, for example, 1.00 mL/g carbon carrier, 0.90 mL/g carbon carrier, 0.80 mL/g carbon carrier, 0.70 mL/g carbon carrier, 0.60 mL /g carbon support, 0.54 mL/g carbon support, or 0.50 mL/g carbon support.
  • the shape of the carbon support according to one embodiment of the present invention is not limited, and may be powdery, for example.
  • the particle size (D50) of the carbon support is not limited, and may be, for example, 200 nm to 10 ⁇ m, 1 ⁇ m to 8 ⁇ m, 1 ⁇ m to 6 ⁇ m, 1 ⁇ m to 4 ⁇ m, or 2 ⁇ m to 4 ⁇ m. may With this configuration, it is possible to more easily produce a fuel cell catalyst carbon support and a fuel cell catalyst that are excellent in durability (especially oxidation resistance) and catalytic activity when a catalyst metal is supported. .
  • the carbon content in the carbon carrier according to one embodiment of the present invention is not limited, but is preferably 90 wt% or more, more preferably 92 wt% or more, more preferably 94 wt% or more, more preferably 96 wt% or more, more preferably At least 98 wt%, more preferably 100 wt% is carbon.
  • the carbon support according to one embodiment of the present invention preferably consists essentially of carbon.
  • the carbon support is preferably resin-free, in which case oxides (e.g. MgO) and/or sulfates (e.g. MgSO4 ) may be present in small amounts. However, it is preferred that no oxides (eg MgO) and/or sulfates (eg MgSO 4 ) are present.
  • the oxidation initiation temperature of the carbon support is not limited, but from the viewpoint of durability (especially oxidation resistance), a high temperature is preferred. .
  • the oxidation initiation temperature is preferably 610° C. or higher, more preferably 612° C. or higher, more preferably 615° C. or higher, more preferably 617° C. or higher, more preferably 620° C. or higher (or higher than 620° C.), and 622° C. or higher. is more preferable, and 625° C. or higher is more preferable.
  • the upper limit of the oxidation initiation temperature of the carbon support is not limited, and may be, for example, 670°C, 660°C, 650°C, 640°C, or 630°C.
  • the catalyst metal is not limited, and examples include platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum. can be mentioned. Platinum is preferable as the catalyst metal from the viewpoint of improving catalytic activity and improving durability (for example, resistance to poisoning by carbon monoxide, etc.).
  • the shape of the catalyst metal is not limited. Examples of the shape of the catalyst metal include granular, scaly, and layered. From the viewpoint of efficiently producing the fuel cell catalyst according to one embodiment of the present invention, the shape of the catalyst metal is preferably granular.
  • the size (crystallite size) of the catalyst metal is not limited, it is preferably less than 4 nm, more preferably 3.5 nm or less, more preferably 3.3 nm or less, and more preferably 3.0 nm or less. If the catalyst metal has such a small crystallite size, the specific surface area of the catalyst metal becomes large, so that the catalytic performance can be improved.
  • the lower limit of the size of the catalyst metal is not limited, and may be, for example, 1.0 nm or 2.0 nm.
  • the weight ratio of the carbon support and the catalyst metal in the fuel cell catalyst according to one embodiment of the present invention is not limited.
  • the content of the fuel cell catalyst is preferably 40 wt% or more, more preferably 50 wt% or more, more preferably 60 wt% or more, and more preferably is 70 wt % or more of the catalyst metal.
  • the upper limit of the content of the catalytic metal in the fuel cell catalyst is not limited, and may be, for example, 80 wt%, 70 wt%, 60 wt%, or 50 wt% of the fuel cell catalyst. With the fuel cell catalyst according to one embodiment of the present invention, the size of the catalyst metal can be reduced even when the catalyst metal exceeds 50 wt %.
  • the catalyst metal contains platinum, and the platinum has a crystallite size of less than 4 nm or 3.3 nm or less. is preferred.
  • the oxidation initiation temperature of the carbon support is not limited, but from the viewpoint of durability (especially oxidation resistance), a high temperature is preferred. .
  • the oxidation initiation temperature is preferably 610° C. or higher, more preferably 612° C. or higher, more preferably 615° C. or higher, more preferably 617° C. or higher, more preferably 620° C. or higher (or higher than 620° C.), and 622° C. or higher. is more preferable, and 625° C. or higher is more preferable.
  • the upper limit of the oxidation initiation temperature of the carbon support is not limited, and may be, for example, 670°C, 660°C, 650°C, 640°C, or 630°C.
  • the upper limit of the intensity ratio I(P1)/I(P2) is not limited, and is, for example, 10, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3. 7 or 3.2.
  • the carbon support has a BET specific surface area (specific surface area evaluated by the BET method) of 1000 m 2 /g or more, preferably 1100 m 2 /g or more, more preferably 1200 m 2 /g or more, and more preferably 1250 m 2 . /g or more, more preferably 1300 m 2 /g or more.
  • the upper limit of the BET specific surface area is not limited, and may be, for example, 2000 m 2 /g, 1800 m 2 /g, 1600 m 2 /g, 1500 m 2 /g, or 1400 m 2 /g. From the viewpoint of increasing the durability (especially oxidation resistance) of the carbon carrier, the upper limit of the BET specific surface area is preferably 1500 m 2 /g or less.
  • the carbon carrier has mesopores, and the mesopores preferably have an average pore diameter of 3.5 nm to 5.0 nm.
  • the average pore diameter of mesopores is more preferably 3.6 nm to 5.0 nm, more preferably 3.7 nm to 5.0 nm, more preferably 3.8 nm to 5.0 nm, more preferably 3.9 nm to 5.0 nm. , more preferably 4.0 nm to 5.0 nm.
  • the upper limit value "5.0 nm" may be, for example, 4.8 nm, 4.6 nm, 4.4 nm, 4.2 nm, or 4.0 nm.
  • the carbon carrier has mesopores, and the volume of the mesopores is preferably 0.73 mL/g carbon carrier or more.
  • the mesopore volume is more preferably 0.80 mL/g carbon support or more, more preferably 0.90 mL/g carbon support or more, more preferably 0.95 mL/g carbon support or more, more preferably 1.0 mL/g. more than a carbon support.
  • the upper limit of the mesopore volume is not limited, for example, 2.0 mL/g carbon carrier, 1.8 mL/g carbon carrier, 1.6 mL/g carbon carrier, 1.4 mL/g carbon carrier, 1.2 mL /g carbon support, or 1.1 mL/g carbon support.
  • the carbon carrier has micropores, and the volume of the micropores is preferably 0.37 mL/g carbon carrier or more.
  • the volume of the micropores is more preferably 0.38 mL/g carbon support or higher, more preferably 0.39 mL/g carbon support or higher, more preferably 0.40 mL/g carbon support or higher, more preferably 0.41 mL/g. carbon carrier or greater, more preferably 0.42 mL/g carbon carrier or greater, more preferably 0.43 mL/g carbon carrier or greater.
  • the upper limit of the micropore volume is not limited, for example, 1.00 mL/g carbon carrier, 0.90 mL/g carbon carrier, 0.80 mL/g carbon carrier, 0.70 mL/g carbon carrier, 0.60 mL /g carbon support, 0.54 mL/g carbon support, or 0.50 mL/g carbon support.
  • a method for producing a carbon support according to an embodiment of the present invention includes: (1) magnesium citrate, which is a carbon source constituting a carbonaceous wall and also a template source for pores (for example, mesopores and micropores); (2) removing the template (e.g., magnesium oxide) from the fired body to obtain a carbon carrier precursor; and (3) heating the carbon support precursor at a heating rate of 5 to 7° C./min to a final treatment temperature of more than 1600° C. and 1800° C.
  • the carbon support precursor After the carbon support precursor is kept warm, it may be cooled to room temperature and then pulverized with a pulverizer (for example, a dry bead mill) to obtain a carbon support, followed by heat treatment and pulverization.
  • a pulverizer for example, a dry bead mill
  • the firing process, the removal process, and the heat treatment and pulverization processes are described below.
  • a fired body is obtained by firing trimagnesium dicitrate anhydride, which is a carbon source constituting a carbonaceous wall and a template source for pores (for example, mesopores and micropores). It is a process.
  • magnesium citrate anhydride for example, trimagnesium dicitrate anhydride, etc.
  • the portion of magnesium that constitutes the anhydrous magnesium citrate functions as a template source, and the portion of the organic compound that constitutes the anhydrous magnesium citrate functions as the constituent material of the carbonaceous wall.
  • the firing step is preferably performed under an inert atmosphere (for example, under an argon atmosphere or a nitrogen atmosphere) and/or under a reduced pressure of 133 Pa (1 Torr) or less.
  • the firing temperature is preferably 500°C or higher, more preferably 500 to 1500°C, and more preferably 800 to 1000°C.
  • the firing time is preferably 0.5 to 3 hours, more preferably 1 to 3 hours, more preferably 1 to 2 hours.
  • mesopores are formed, and micropores can be formed at positions facing the mesopores.
  • the removal step is a step of removing the template (for example, magnesium oxide) from the fired body obtained in the firing step to obtain a carbon support precursor.
  • the removal step can be performed by immersing the fired body in a removal solution to dissolve and remove the template.
  • inorganic acids eg, hydrochloric acid, sulfuric acid, nitric acid, acetic acid
  • hot water can be used as the removal solution.
  • an inorganic acid as a dilute acid of 4 mol/L or less, or hot water of 80° C. or higher as the removing solution.
  • the use of an inorganic acid has the advantage of speeding up the removal of the template.
  • the carbon support precursor obtained in the removal step is heated at a heating rate of 5 to 7 ° C./min to a final treatment temperature of more than 1600 ° C. and 1800 ° C. or less, and the final treatment is performed.
  • the carbon carrier precursor is kept at a temperature, cooled to room temperature, and pulverized with a pulverizer (for example, a dry bead mill) to obtain a carbon carrier.
  • the heating rate is slow (for example, less than 5°C/min) in the heat treatment and pulverization steps, the total heat treatment time of the carbon support precursor becomes long, and the carbon crystallinity of the obtained carbon support becomes too high.
  • the heating rate is high (for example, more than 7° C./min) in the heat treatment and pulverization steps, the total heat treatment time of the carbon support precursor will be shortened, and the resulting carbon support will have too low carbon crystallinity. .
  • the oxidation start temperature of the obtained carbon support is increased, and the durability (especially, oxidation resistance) of the carbon support. can increase
  • a method for producing a fuel cell catalyst according to an embodiment of the present invention may include (4) a supporting step of supporting a catalyst metal precursor on a carbon carrier and reducing the precursor to obtain a fuel cell catalyst. .
  • the supporting step will be described below.
  • the supporting step is a step of obtaining a fuel cell catalyst by supporting a catalyst metal precursor on a carbon carrier and reducing the precursor.
  • the carbon carrier is the one described above in [3-1. Method for producing carbon carrier for fuel cell catalyst].
  • the supporting step can be carried out, for example, by immersing the carbon support in a solution containing a catalyst metal precursor and a solvent, evaporating and drying the solution from the resulting mixture, and then performing a thermal reduction method.
  • Precursors of the catalyst metal include platinum (II) chloride, platinum (IV) chloride, chloroplatinic (IV) acid, diamminedinitroplatinum (II), dichlorotetraammineplatinum (II), hexahydroxoplatinic acid (IV), Examples include platinum-containing compounds such as potassium tetrachloroplatinate (II) and potassium tetrachloroplatinate (IV). These platinum-containing compounds may be used alone or in combination of two or more.
  • thermal reduction method examples include a method in which the temperature is lowered to room temperature after heat treatment in an inert atmosphere (for example, an argon atmosphere or a nitrogen atmosphere).
  • an inert atmosphere for example, an argon atmosphere or a nitrogen atmosphere.
  • the solvent is not limited, but it should be an aqueous solvent (e.g., ultrapure water, water containing 10 vol% or less of alcohol) from the viewpoint of easily producing a fuel cell catalyst by reducing the number of steps. is preferred. Methanol, ethanol, isopropanol and the like are preferable as the alcohol.
  • An embodiment of the present invention may have the following configuration.
  • ⁇ 2> The carbon support according to ⁇ 1>, wherein the carbon support has an oxidation initiation temperature of 610° C. or higher.
  • ⁇ 3> The carbon support according to ⁇ 1> or ⁇ 2>, wherein the intensity ratio I(P1)/I(P2) is 1.7 or more.
  • ⁇ 4> The carbon support according to any one of ⁇ 1> to ⁇ 3>, wherein the BET specific surface area is 1200 m 2 /g or more.
  • ⁇ 5> The carbon support according to any one of ⁇ 1> to ⁇ 4>, wherein the carbon support has mesopores, and the mesopores have an average pore diameter of 3.5 nm to 5.0 nm.
  • ⁇ 6> The carbon support according to any one of ⁇ 1> to ⁇ 5>, wherein the carbon support has mesopores and the volume of the mesopores is 0.73 mL/g carbon support or more.
  • ⁇ 7> The carbon support according to any one of ⁇ 1> to ⁇ 6>, wherein the carbon support has micropores, and the volume of the micropores is 0.37 mL/g carbon support or more.
  • the catalytic metal contains platinum, and the platinum has a crystallite size of less than 4 nm.
  • the platinum has a crystallite size of 3.3 nm or less.
  • the carbon support has an oxidation initiation temperature of 610° C. or higher.
  • ⁇ 12> The catalyst according to any one of ⁇ 8> to ⁇ 11>, wherein the intensity ratio I(P1)/I(P2) is 1.7 or more.
  • ⁇ 13> The catalyst according to any one of ⁇ 8> to ⁇ 12>, wherein the BET specific surface area is 1200 m 2 /g or more.
  • ⁇ 14> The catalyst according to any one of ⁇ 8> to ⁇ 13>, wherein the carbon support has mesopores, and the mesopores have an average pore diameter of 3.5 nm to 5.0 nm.
  • ⁇ 15> The catalyst according to any one of ⁇ 8> to ⁇ 14>, wherein the carbon support has mesopores, and the volume of the mesopores is 0.73 mL/g carbon support or more.
  • ⁇ 16> The catalyst according to any one of ⁇ 8> to ⁇ 15>, wherein the carbon support has micropores, and the volume of the micropores is 0.37 mL/g carbon support or more.
  • the heat-treated product was allowed to cool to room temperature in a nitrogen atmosphere, and then the heat-treated product was recovered.
  • the heat-treated product was put into 30 wt% sulfuric acid, and the magnesium component was eluted into the 30 wt% sulfuric acid as magnesium sulfate.
  • the heat-treated material remaining in the 30 wt% sulfuric acid was recovered as an acid-treated material.
  • the acid-treated material was washed with pure water. After that, the acid-treated product was dried at 150° C. in an air atmosphere until the moisture content became 6 wt % or less to obtain a dried product.
  • the dry body was subjected to various final heat treatment temperatures (1400-2000° C./min: see Table 1) at various heating rates (2-7° C./min: see Table 1). ) and then kept at the final heat treatment temperature for 1 hour. Then, after cooling to room temperature, it was pulverized with a dry bead mill so that the median diameter (D50) was 2 to 4 ⁇ m, and eight types of carbon carriers (the carbon carriers of Examples 1 to 3 and the carbon carriers of Comparative Examples 1 to 5) were used. carbon support) was obtained.
  • the particle size (D50) of the obtained carbon support was measured using a laser diffraction particle size distribution apparatus LA-950 manufactured by Horiba, Ltd.
  • the particle size (D50) was measured using water as a solvent and PEO (polyethylene oxide) as a dispersant.
  • Table 1 shows the measurement results of the particle size (D50) of the obtained carbon support.
  • Catalyst metal eg, platinum
  • a catalyst metal-carrying carbon carrier eg, platinum-carrying carbon carrier
  • a diamminedinitroplatinum (II) nitric acid solution was used as a platinum precursor.
  • the platinum source corresponding to 0.15 g is diammine dinitroplatinum(II) with a platinum concentration of 100.6 g/L. 1.491 mL of nitric acid solution was prepared.
  • the processed material is transferred to an eggplant-shaped flask, and a device equipped with a fractional distillation function and a vacuum control function (manufactured by BUCHI, Rotavaper R-100, Heating Bath B-100, Interface I-100, VacuumPump V-100 combination) was used to impregnate the treated material.
  • a device equipped with a fractional distillation function and a vacuum control function manufactured by BUCHI, Rotavaper R-100, Heating Bath B-100, Interface I-100, VacuumPump V-100 combination
  • the temperature inside the eggplant-shaped flask immersed in the water bath was kept at 30°C, and the processed material in the eggplant-shaped flask was stirred by rotating the eggplant-shaped flask. Further, by evacuating the inside of the eggplant-shaped flask to a degree of vacuum of 30 Pa, the air present in the pores of the carbon carrier was discharged, and the platinum-containing solution was permeated into the pores.
  • the processed material was taken out from the eggplant-shaped flask and stored in a dryer at 60°C.
  • an alumina boat was filled with the material to be treated. At this time, the processed material was laid out in the alumina boat in a state where the processed material was spread out as much as possible.
  • An alumina boat filled with the material to be treated is placed in a tubular furnace, and the alumina boat filled with the material to be treated is heated to 400° C. in an Ar flow (100 mL/min) at a temperature increase rate of 1° C./min. bottom. After that, the material was heat-treated at 400° C. for 3 hours.
  • the treated material was allowed to cool to room temperature, and eight types of platinum-supported carbon carriers were recovered.
  • Rigaku's SmartLab was used as the X-ray diffraction spectrum measuring device. During the measurement, the scanning speed was set to 8°/min, and the measurement range was set to the 2 ⁇ range of 10° to 80°.
  • the measurement results are shown in Table 2 below.
  • the platinum crystallite size is preferably 4 nm or less, more preferably 3.3 nm or less. .
  • the BET specific surface area, total pore/micropore/mesopore volume, and mesopore diameter were measured by nitrogen gas adsorption measurement.
  • the BET specific surface area and total pore volume were calculated based on the BET (Brunauer-Emmett-Teller) method.
  • the mesopore diameter was calculated based on the BJH (Barrett-Joyner-Halenda) method.
  • the volume of micropores was calculated based on the DA (Dubinin-Astakhov) method.
  • the volume of mesopores was obtained by subtracting the volume of micropores from the volume of all pores.
  • thermogravimetry device 4 mg of carbon support was weighed, and the carbon support was filled in a dedicated pan made of Al 2 O 3 . After that, the pan was placed on the balance of the thermogravimetry apparatus. The pan filled with the carbon support was heated to 900° C. in an air flow (100 mL/min) at a heating rate of 5° C./min.
  • Rigaku's SmartLab was used as the X-ray diffraction spectrum measuring device. During the measurement, the scanning speed was set to 8°/min, and the measurement range was set to the 2 ⁇ range of 10° to 80°.
  • electrochemical effective specific surface area (ECSA, m 2 /g) and the mass activity of platinum (MA, A/g) were measured. It was measured.
  • the platinum-supporting carbon support was subjected to thermogravimetry (TG) in an air atmosphere.
  • thermogravimetry device 4 mg of platinum-supporting carbon support was weighed, and the platinum-supporting carbon support was filled in a dedicated pan made of Al 2 O 3 . After that, the pan was placed on the balance of the thermogravimetry apparatus. The pan filled with platinum-supported carbon support was heated to 600° C. in an air flow (100 mL/min) at a heating rate of 1° C./min.
  • the weight reduction rate based on the difference between the weight of the platinum-supporting carbon support at 100°C and the weight of the platinum-supporting carbon support at 600°C was taken as the amount of carbon present in the platinum-supporting carbon support.
  • the amount of platinum in the platinum-supporting carbon support was obtained by subtracting the amount of carbon calculated above from the weight of the platinum-supporting carbon support at 100°C. Based on the abundance of carbon and the abundance of platinum described above, the ratio of carbon and the ratio of platinum in the platinum-supporting carbon support were calculated.
  • BAS ALS model 700E Nikko Keisoku Motor Speed Controller SC-5, and Rotating Ring-Disk Electrode RRDE-1 were used.
  • a glassy carbon electrode having a diameter of ⁇ 6 mm was used as an electrode for measurement.
  • An ink in which platinum-supporting carbon carriers were dispersed was cast onto the electrode to adjust the amount of platinum on the electrode to 14.1 ⁇ g/cm 2 .
  • the electrode on which the ink was cast was vacuum dried for 1 hour.
  • 10 ⁇ L of ionomer (0.02% by volume Nafion solution) was cast onto the electrode, and then the electrode was left to dry.
  • the electrochemically effective specific surface area was calculated from the data obtained by cyclic voltammetry in the range of 0.05 V to 1.2 V with a potential scanning rate of 50 mV/sec based on the hydrogen generation potential.
  • the electrochemical effective specific surface area was calculated from the amount of electricity associated with desorption of hydrogen observed at 0.05V to 0.4V.
  • the calculation method was referred to "Electrochemistry, 79, No. 2 (2011), pp. 116-121".
  • ECSA [m 2 /g] The measurement results are shown in "ECSA [m 2 /g]" in Table 4 below. As shown in Table 4, it was revealed that the platinum-supported carriers produced using the carbon carriers of Examples 1 to 3 had large ECSA values. ECSA can be considered as the surface area per gram of catalyst that can substantially function as a catalyst. Therefore, a high ECSA value indicates a large surface area that can substantially function as a catalyst.
  • the mass activity (MA) of platinum is data obtained by linear sweep voltammetry in the range of 0.05 V to 1.2 V at a potential scanning rate of 10 mV / sec while rotating the rotating disk electrode at 1600 rpm. calculated from
  • the present invention can be used for fuel cell catalysts and fuel cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

耐久性と、触媒金属を担持させた際の触媒活性とに優れる、燃料電池触媒用炭素担体および燃料電池用触媒を実現する。本発明の一実施形態に係る炭素担体は、CuKα線によるX線回折スペクトルにて、(002)面の回折ピークが少なくとも2θ=22.5~25°、26°および26.5°に観測され、2θ=26°のピークP1と2θ=26.5°のピークP2との強度比I(P1)/I(P2)が1.4以上、BET比表面積が1000m2/g以上である。

Description

燃料電池触媒用炭素担体および燃料電池用触媒
 本発明は、燃料電池触媒用炭素担体および燃料電池用触媒に関する。
 近年、燃料電池は、自動車などの動力源として期待されており、その実用も開始されている。燃料電池は、一般的に、触媒金属(例えば、白金(Pt)、白金を含む合金)と、当該触媒金属を担持する担体とを備えている。当該担体としては、比表面積が大きい炭素担体が多く用いられている。
 これまでに、炭素担体の結晶性を制御することによって、炭素担体の耐久性、および、炭素担体に担持された触媒金属の触媒活性を向上させる技術が提案されている(例えば、特許文献1~3参照)。
日本国公開特許公報「特開2018-12626号公報」 WO2017/154359号公報 日本国公開特許公報「特開2018-81740号公報」
 しかしながら、上述のような従来技術は、依然として、耐久性および触媒活性の観点において、改善の余地がある。
 本発明の一態様は、耐久性(特に、耐酸化性)および触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体および燃料電池用触媒を実現することを目的とする。
 本発明者らは、特定の結晶性を有し、かつBET比表面積が特定の値以上の炭素担体によれば、耐久性(特に、耐酸化性)、および、触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体、および、燃料電池用触媒を実現できることを見出し、本願発明を完成させた。本発明は、以下の発明を包含する。
 CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測され、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上であり、BET比表面積が、1000m/g以上である、燃料電池触媒用炭素担体。
 炭素担体と、触媒金属と、を含み、上記炭素担体は、CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測され、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上であり、BET比表面積が、1000m/g以上である、燃料電池用触媒。
 本発明の一態様によれば、本発明の一態様は、耐久性(特に、耐酸化性)および触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体および燃料電池用触媒を提供することができる。
実施例において、ピーク強度比に対して触媒金属の結晶子サイズをプロットしたグラフである。
 本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態および実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態および実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献等の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
 〔1.燃料電池触媒用炭素担体〕
 本発明の一実施形態に係る燃料電池触媒用炭素担体は、CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測され、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上であり、BET比表面積が、1000m/g以上である。
 上述した特許文献1では、触媒金属を担持する細孔内部の結晶性を選択的に高め、一方で、他の部分の結晶化を抑制することで、比表面積の低下を抑制し、耐久性と触媒活性を両立しようとするものである。しかし、この特許文献1の技術では、細孔内部を選択的に結晶化するために、熱処理時に黒鉛化促進作用を有する金属粒子を細孔内部に担持させ、熱処理後には除去する必要がある。より具体的には、炭素材料に金属錯体等を吸着、還元、析出させた後、焼成し、金属成分を除去する工程が必要となり、追加の工程が必要となる。また、細孔内部の結晶性を高める方向であることから、耐久性には優れるものの、触媒金属担持時に凝集が生じやすくなり、触媒金属の効率的な利用が阻害される可能性があり、この点で改善の余地があった。
 上述した特許文献2では、XRDにおいて、結晶性の低いピーク2θ=22.5°~25°の面積に対する、結晶性がやや向上したピーク2θ=26°の面積割合を小さくし、結晶性を低くすることで、触媒を高分散担持させ、触媒活性を向上させるものであるが、さらに改善できる余地があった。
 上述した特許文献3では、上記特許文献2のように、結晶性の低いピーク2θ=22.5°~25°の面積に対する、結晶性がやや向上したピーク2θ=26°の面積割合が0.06以上という大きな範囲を示したものであり、十分な触媒活性が得られる結晶条件を示しきれておらず、改善の余地があった。
 これに対して、上述のとおり、本発明の一実施形態に係る炭素担体では、CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測される。
 (002)面の回折ピークが2θ=26°および2θ=26.5°に観測されることは、炭素担体を構成する一部の炭素の結晶性が発達していることを示している。また、(002)面の回折ピークが2θ=22.5~25°に観察されることは、炭素担体を構成する炭素において過度に結晶性が発達していない部分を有していることを示している。炭素の結晶性が適度に発達している炭素担体であれば、燃料電池触媒にとって必要な耐久性(特に、耐酸化性)を備えることができる。本発明の一実施形態に係る炭素担体は、例えば既存の炭素担体(Ketjen Black EC300J、Vulcan(登録商標)
 XC-72)と比較して、耐酸化性が向上している。
 「2θ=26°に観測される回折ピーク」は、2θ=26°付近に観測される回折ピークであればよい。「2θ=26°に観測される回折ピーク」は、例えば、2θ=25.5~26.3°、25.6~26.3°、25.7~26.3°、25.8~26.3°、または、25.9~26.3°の範囲内に観測される回折ピークであってもよい。また、上述した各範囲において、上限値「26.3°」は、例えば、26.2°、26.1°、または、26.0°であってもよい。
 「2θ=26.5°に観測される回折ピーク」は、2θ=26.5°付近に観測される回折ピークであればよい。「2θ=26.5°に観測される回折ピーク」は、例えば、2θ=26.1~26.9°、26.1~26.8°、26.1~26.7°、26.1~26.6°、または、26.1~26.5°の範囲内に観測される回折ピークであってもよい。上述した各範囲において、下限値「26.1°」は、例えば、26.2°、26.3°、または、26.4°であってもよい。
 本発明の一実施形態に係る炭素担体では、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)は、1.4以上であり、好ましくは1.5以上、より好ましくは1.7以上、より好ましくは2.0以上、より好ましくは2.2以上、より好ましくは2.5以上である。強度比I(P1)/I(P2)の上限値は、限定されず、例えば、10、9.0、8.0、7.0、6.0、5.0、4.0、3.7または、3.2であってもよい。
 強度比I(P1)/I(P2)が上述した値であれば、炭素担体に触媒金属を担持させる工程において水系の溶媒を用いる担持方法を採用したとしても、触媒金属のサイズ(結晶子サイズ)が大きくなることを防止することができ、触媒金属のサイズを小さくすることができる(結晶子サイズ:例えば2nm~4nm)。そして、サイズが小さい触媒金属を担持した炭素担体を備える触媒であれば、触媒金属の比表面積が大きくなるので、触媒性能を向上させることができる。
 炭素担体を対象としたCuKα線によるX線回折スペクトルにおいて、2θ=26°付近であるとも、2θ=26.5°付近であるとも見做しうる範囲(例えば、2θ=26.1°~26.3°の範囲)に複数のピークが観測された場合、2θが小さい方のピークを2θ=26.0°付近に観測される回折ピークと見做し、2θが大きい方のピークを2θ=26.5°付近に観測される回折ピークと見做す。
 本発明の一実施形態に係る炭素担体は、BET比表面積(BET法によって評価される比表面積)が、1000m/g以上であり、好ましくは1100m/g以上、より好ましくは1200m/g以上、より好ましくは1250m/g以上、より好ましくは1300m/g以上である。BET比表面積の上限値は、限定されず、例えば、2000m/g、1800m/g、1600m/g、1500m/g、または、1400m/gであってもよい。上記炭素担体の耐久性(特に、耐酸化性)を上げる観点からは、BET比表面積の上限値は、1500m/g以下であることが好ましい。
 上記構成によれば、耐久性(特に、耐酸化性)および触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体を効率良く製造することができる。なお、上記の触媒活性に優れる理由は、炭素担体が高比表面積であるために、触媒金属を担持する箇所が炭素担体上に十分にあり、実用レベルの触媒金属量(例えば燃料電池触媒の50wt%)を担持した際にも触媒金属の肥大化が抑制できるため等である。
 本発明の一実施形態に係る炭素担体は、メソ孔、および/または、ミクロ孔を有することが好ましい。なお、本明細書では、平均孔径が2.0nm未満の孔をミクロ孔と呼び、平均孔径が2.0~50nmの孔をメソ孔と呼び、平均孔径が50nmを超えるものをマクロ孔と呼び、これらの孔を総称して細孔と呼ぶ。
 本発明の一実施形態に係る炭素担体は、上記メソ孔が不規則に配置されたランダムな孔構造を有していることが好ましい。なお、「ランダムな孔構造」とは、メソ孔が規則正しく配置されていない構造を意図しており、メソ孔が規則正しく配置された構造とは異なる構造である。ランダムな孔構造は、炭素担体の全体に形成されていてもよいし、炭素担体の一部に形成されていてもよい。
 本発明の一実施形態に係る炭素担体は、上記メソ孔の外郭を構成する炭素質壁が3次元網目構造を形成していることが好ましい。このとき、炭素担体は、上記メソ孔が不規則に配置されたランダムな孔構造を有していることが好ましい。炭素担体の炭素質壁が3次元網目構造を形成するとともにランダムな孔構造を有していることにより、強度のより高い炭素担体を実現することができる。
 メソ孔は、開気孔であって、且つ、少なくとも一部のメソ孔は、互いに連通する連通孔を形成していることが望ましい。メソ孔が開気孔であって且つ連通孔を形成していることにより、触媒反応の進行に伴い発生する水が、メソ孔の内部に留まらずにメソ孔の外部に排出されるため、触媒反応がスムーズに進行し得るという利点がある。また、酸素が連通孔を通過できるため、メソ孔の外部に担持される触媒金属、および、メソ孔の内部に担持される触媒金属の両方が、触媒反応に十分に寄与することができ、高い触媒利用率を達成することができるという利点がある。また、所望の触媒活性を達成するために必要な触媒金属の量を低減させることも可能であるという利点がある。
 ミクロ孔は、安定的に、触媒金属を担持することができる。本発明の一実施形態に係る炭素担体が、メソ孔およびミクロ孔を有する場合、メソ孔に臨む位置にミクロ孔が形成され得る。この場合、メソ孔の連通孔を介して燃料ガス等が供給され、その結果、担持されている触媒金属が、触媒反応に十分に寄与することができ、高い触媒利用率を達成することができるという利点がある。また、所望の触媒活性を達成するために必要な触媒金属の量を低減させることも可能であるという利点がある。
 本発明の一実施形態に係る炭素担体は、メソ孔を有するものであり、当該メソ孔は、平均孔径が3.5nm~5.0nmであることが好ましい。メソ孔の平均孔径は、より好ましくは3.6nm~5.0nm、より好ましくは3.7nm~5.0nm、より好ましくは3.8nm~5.0nm、より好ましくは3.9nm~5.0nm、より好ましくは4.0nm~5.0nmである。上述したメソ孔の平均孔径の各範囲において、上限値「5.0nm」は、例えば、4.8nm、4.6nm、4.4nm、4.2nm、または、4.0nmであってもよい。
 上記構成によれば、耐久性(特に、耐酸化性)および触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体を効率良く製造することができる。
 本発明の一実施形態に係る炭素担体は、メソ孔を有するものであり、当該メソ孔の容積は、0.73mL/g炭素担体以上であることが好ましい。メソ孔の容積は、より好ましくは0.80mL/g炭素担体以上、より好ましくは0.90mL/g炭素担体以上、より好ましくは0.95mL/g炭素担体以上、より好ましくは1.0mL/g炭素担体以上である。メソ孔の容積の上限値は、限定されず、例えば、2.0mL/g炭素担体、1.8mL/g炭素担体、1.6mL/g炭素担体、1.4mL/g炭素担体、1.2mL/g炭素担体、または、1.1mL/g炭素担体であってもよい。
 上記構成によれば、耐久性(特に、耐酸化性)および触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体を効率良く製造することができる。
 本発明の一実施形態に係る炭素担体は、ミクロ孔を有するものであり、当該ミクロ孔は、平均孔径が0.5nm~1.0nmであることが好ましい。ミクロ孔の平均孔径は、より好ましくは0.6nm~0.7nmである。
 上記構成によれば、耐久性(特に、耐酸化性)および触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体を効率良く製造することができる。
 本発明の一実施形態に係る炭素担体は、ミクロ孔を有するものであり、当該ミクロ孔の容積は、0.37mL/g炭素担体以上であることが好ましい。ミクロ孔の容積は、より好ましくは0.38mL/g炭素担体以上、より好ましくは0.39mL/g炭素担体以上、より好ましくは0.40mL/g炭素担体以上、より好ましくは0.41mL/g炭素担体以上、より好ましくは0.42mL/g炭素担体以上、より好ましくは0.43mL/g炭素担体以上である。ミクロ孔の容積の上限値は、限定されず、例えば、1.00mL/g炭素担体、0.90mL/g炭素担体、0.80mL/g炭素担体、0.70mL/g炭素担体、0.60mL/g炭素担体、0.54mL/g炭素担体、または、0.50mL/g炭素担体であってもよい。
 上記構成によれば、耐久性(特に、耐酸化性)および触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体を効率良く製造することができる。
 本発明の一実施形態に係る炭素担体の形状は、限定されず、例えば、粉末状であってもよい。炭素担体の形状が粉末状である場合、当該炭素担体の粒度(D50)は、限定されず、例えば、200nm~10μm、1μm~8μm、1μm~6μm、1μm~4μm、または、2μm~4μmであってもよい。当該構成であれば、耐久性(特に、耐酸化性)および触媒金属を担持させた際の触媒活性に優れる、燃料電池触媒用炭素担体および燃料電池用触媒を、より容易に製造することができる。
 本発明の一実施形態に係る炭素担体における炭素含有量は、限定されないが、好ましくは90wt%以上、より好ましくは92wt%以上、より好ましくは94wt%以上、より好ましくは96wt%以上、より好ましくは98wt%以上、より好ましくは100wt%が炭素である。
 本発明の一実施形態に係る炭素担体は、実質的に炭素のみからなるものであることが好ましい。例えば、炭素担体は、樹脂を含まないものであることが好ましく、この場合、酸化物(例えばMgO)及び/又は硫酸塩(例えばMgSO)が若干量、存在しているものであってもよいが、酸化物(例えばMgO)及び/又は硫酸塩(例えばMgSO)が存在していないことが好ましい。
 上記炭素担体の酸化開始温度(熱重量測定(TG)に基づく酸化反応に対する外挿開始温度)は、限定されないが、耐久性(特に、耐酸化性)の観点から、高い温度であることが好ましい。当該酸化開始温度は、610℃以上が好ましく、612℃以上がより好ましく、615℃以上がより好ましく、617℃以上がより好ましく、620℃以上(または、620℃超)がより好ましく、622℃以上がより好ましく、625℃以上がより好ましい。上記炭素担体の酸化開始温度の上限値は、限定されず、例えば、670℃、660℃、650℃、640℃、または、630℃であってもよい。
 〔2.燃料電池用触媒〕
 本発明の一実施形態に係る燃料電池用触媒は、炭素担体と、触媒金属と、を含み、上記炭素担体は、CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測され、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上であり、BET比表面積が、1000m/g以上である。
 炭素担体については、上記〔1.燃料電池触媒用炭素担体〕欄にて既に説明したので、ここではその詳細な説明を省略する。
 上記触媒金属としては、限定されず、例えば、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブテン、ガリウム、アルミニウムを挙げることができる。触媒活性の向上、耐久性(例えば一酸化炭素等に対する耐被毒性等)の向上の観点から、上記触媒金属としては、白金が好ましい。
 上記触媒金属の形状は限定されない。上記触媒金属の形状としては、例えば、粒状、鱗片状、および、層状を挙げることができる。本発明の一実施形態に係る燃料電池用触媒を効率良く製造するという観点から、上記触媒金属の形状は、粒状が好ましい。
 上記触媒金属の大きさ(結晶子サイズ)は限定されないが、4nm未満が好ましく、3.5nm以下がより好ましく、3.3nm以下がより好ましく、3.0nm以下がより好ましい。このように結晶子サイズが小さい触媒金属であれば、触媒金属の比表面積が大きくなるので、触媒性能を向上させることができる。上記触媒金属の大きさの下限値は、限定されず、例えば、1.0nm、または、2.0nmであってもよい。
 本発明の一実施形態に係る燃料電池用触媒における、炭素担体と触媒金属との重量比は限定されない。本発明の一実施形態に係る燃料電池用触媒を効率良く製造するという観点から、当該燃料電池用触媒の、好ましくは40wt%以上、より好ましくは50wt%以上、より好ましくは60wt%以上、より好ましくは70wt%以上が、触媒金属である。当該燃料電池用触媒における触媒金属の含有量の上限値は、限定されず、例えば、当該燃料電池用触媒の、80wt%、70wt%、60wt%、または、50wt%であってもよい。本発明の一実施形態に係る燃料電池用触媒であれば、触媒金属が50wt%を超えた場合であっても、触媒金属の大きさを小さくすることができる。
 より具体的に、本発明の一実施形態に係る燃料電池用触媒は、触媒金属は、白金を含むものであり、当該白金は、結晶子サイズが4nm未満、または、3.3nm以下であることが好ましい。
 上記炭素担体の酸化開始温度(熱重量測定(TG)に基づく酸化反応に対する外挿開始温度)は、限定されないが、耐久性(特に、耐酸化性)の観点から、高い温度であることが好ましい。当該酸化開始温度は、610℃以上が好ましく、612℃以上がより好ましく、615℃以上がより好ましく、617℃以上がより好ましく、620℃以上(または、620℃超)がより好ましく、622℃以上がより好ましく、625℃以上がより好ましい。上記炭素担体の酸化開始温度の上限値は、限定されず、例えば、670℃、660℃、650℃、640℃、または、630℃であってもよい。
 上記炭素担体では、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)は、1.4以上であり、好ましくは1.5以上、より好ましくは1.7以上、より好ましくは2.0以上、より好ましくは2.2以上、より好ましくは2.5以上である。強度比I(P1)/I(P2)の上限値は、限定されず、例えば、10、9.0、8.0、7.0、6.0、5.0、4.0、3.7または、3.2であってもよい。
 上記炭素担体では、BET比表面積(BET法によって評価される比表面積)が、1000m/g以上であり、好ましくは1100m/g以上、より好ましくは1200m/g以上、より好ましくは1250m/g以上、より好ましくは1300m/g以上である。BET比表面積の上限値は、限定されず、例えば、2000m/g、1800m/g、1600m/g、1500m/g、または、1400m/gであってもよい。上記炭素担体の耐久性(特に、耐酸化性)を上げる観点からは、BET比表面積の上限値は、1500m/g以下であることが好ましい。
 上記炭素担体は、メソ孔を有するものであり、当該メソ孔は、平均孔径が3.5nm~5.0nmであることが好ましい。メソ孔の平均孔径は、より好ましくは3.6nm~5.0nm、より好ましくは3.7nm~5.0nm、より好ましくは3.8nm~5.0nm、より好ましくは3.9nm~5.0nm、より好ましくは4.0nm~5.0nmである。上述したメソ孔の平均孔径の各範囲において、上限値「5.0nm」は、例えば、4.8nm、4.6nm、4.4nm、4.2nm、または、4.0nmであってもよい。
 上記炭素担体は、メソ孔を有するものであり、当該メソ孔の容積は、0.73mL/g炭素担体以上であることが好ましい。メソ孔の容積は、より好ましくは0.80mL/g炭素担体以上、より好ましくは0.90mL/g炭素担体以上、より好ましくは0.95mL/g炭素担体以上、より好ましくは1.0mL/g炭素担体以上である。メソ孔の容積の上限値は、限定されず、例えば、2.0mL/g炭素担体、1.8mL/g炭素担体、1.6mL/g炭素担体、1.4mL/g炭素担体、1.2mL/g炭素担体、または、1.1mL/g炭素担体であってもよい。
 上記炭素担体は、ミクロ孔を有するものであり、当該ミクロ孔の容積は、0.37mL/g炭素担体以上であることが好ましい。ミクロ孔の容積は、より好ましくは0.38mL/g炭素担体以上、より好ましくは0.39mL/g炭素担体以上、より好ましくは0.40mL/g炭素担体以上、より好ましくは0.41mL/g炭素担体以上、より好ましくは0.42mL/g炭素担体以上、より好ましくは0.43mL/g炭素担体以上である。ミクロ孔の容積の上限値は、限定されず、例えば、1.00mL/g炭素担体、0.90mL/g炭素担体、0.80mL/g炭素担体、0.70mL/g炭素担体、0.60mL/g炭素担体、0.54mL/g炭素担体、または、0.50mL/g炭素担体であってもよい。
 〔3.燃料電池触媒用炭素担体、および、燃料電池用触媒の製造方法〕
 〔3-1.燃料電池触媒用炭素担体の製造方法〕
 本発明の一実施形態に係る炭素担体の製造方法は、(1)炭素質壁の構成材料となる炭素源であるとともに、孔(例えば、メソ孔、ミクロ孔)の鋳型源でもあるクエン酸マグネシウムの無水物(例えば、ジクエン酸トリマグネシウム無水物等)を焼成して、焼成体を得る焼成工程、(2)上記焼成体から鋳型(例えば、酸化マグネシウム)を除去して、炭素担体前駆体を得る除去工程、および、(3)上記炭素担体前駆体を、5~7℃/minの昇温速度にて加温して1600℃超1800℃以下の最終処理温度とし、当該最終処理温度にて炭素担体前駆体を保温後、室温まで冷却した後に粉砕機(例えば、乾式ビーズミル)によって粉砕して、炭素担体を得る熱処理および粉砕工程、を含み得る。以下に、焼成工程、除去工程、および、熱処理および粉砕工程について説明する。
 <焼成工程>
 上記焼成工程は、炭素質壁の構成材料となる炭素源であるとともに、孔(例えば、メソ孔、ミクロ孔)の鋳型源でもある、ジクエン酸トリマグネシウム無水物を焼成して、焼成体を得る工程である。
 上記焼成工程では、クエン酸マグネシウムの無水物(例えば、ジクエン酸トリマグネシウム無水物等)を原料として用いる。クエン酸マグネシウムの無水物を構成するマグネシウムの部分が、鋳型源として機能し、クエン酸マグネシウムの無水物を構成する有機化合物に部分が、炭素質壁の構成材料として機能する。
 上記焼成工程は、不活性雰囲気下(例えば、アルゴン雰囲気下、または、窒素雰囲気下)で、および/または、133Pa(1Torr)以下の減圧下で、行うことが好ましい。また、焼成温度は、好ましくは500℃以上であり、より好ましくは500~1500℃であり、より好ましくは800℃~1000℃である。焼成時間は、好ましくは0.5~3時間であり、より好ましくは1~3時間であり、より好ましくは1~2時間である。
 上記焼成工程によって、メソ孔が形成され、且つ、メソ孔に臨む位置にミクロ孔が形成され得る。
 <除去工程>
 上記除去工程は、焼成工程で得られた焼成体から鋳型(例えば、酸化マグネシウム)を除去して、炭素担体前駆体を得る工程である。
 上記除去工程では、焼成体を除去溶液に浸漬させ、鋳型を溶解させて除去することによって、行うことができる。
 上記除去溶液としては、無機酸(例えば、塩酸、硫酸、硝酸、酢酸)、および、熱水を用いることができる。炭素担体の性状の変化を防ぐ観点から、除去溶液としては、無機酸を4mol/L以下の希酸として用いるか、または、80℃以上の熱水を用いることが好ましい。無機酸を用いることにより、鋳型の除去スピードが早くなるという利点がある。
 <熱処理および粉砕工程>
 上記熱処理および粉砕工程は、除去工程で得られた炭素担体前駆体を、5~7℃/minの昇温速度にて加温して1600℃超1800℃以下の最終処理温度とし、当該最終処理温度にて炭素担体前駆体を保温後、室温まで冷却した後に粉砕機(例えば、乾式ビーズミル)によって粉砕して、炭素担体を得る工程である。
 上記熱処理および粉砕工程にて昇温速度が遅い(例えば、5℃/min未満)と、炭素担体前駆体の総熱処理時間が長くなり、得られる炭素担体における炭素の結晶性が高くなりすぎる。一方、上記熱処理および粉砕工程にて昇温速度が速い(例えば、7℃/min超)と、炭素担体前駆体の総熱処理時間が短くなり、得られる炭素担体における炭素の結晶性が低くなりすぎる。上記熱処理および粉砕工程にて「5~7℃/minの昇温速度」を採用することにより、炭素の結晶性を適切に調節することができ、「2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上」を実現することができる。
 上記熱処理および粉砕工程にて「1600℃超1800℃以下の最終処理温度」を採用することにより、得られる炭素担体の酸化開始温度が高くなり、当該炭素担体の耐久性(特に、耐酸化性)を高めることができる。
 〔3-2.燃料電池用触媒の製造方法〕
 本発明の一実施形態に係る燃料電池用触媒の製造方法は、(4)触媒金属の前駆体を炭素担体に担持させて前駆体を還元することで燃料電池用触媒を得る担持工程を含み得る。以下に、担持工程について説明する。
 <担持工程>
 上記担持工程は、触媒金属の前駆体を炭素担体に担持させて前駆体を還元することで燃料電池用触媒を得る工程である。なお、上記炭素担体は、上述した〔3-1.燃料電池触媒用炭素担体の製造方法〕によって作製され得る。
 上記担持工程は、例えば、触媒金属の前駆体および溶媒を含む溶液に炭素担体を浸漬させ、得られる混合物から溶液を気化および乾燥させた後、熱還元法を実施することによって、行われ得る。
 上記触媒金属の前駆体としては、塩化白金(II)、塩化白金(IV)、塩化白金(IV)酸、ジアンミンジニトロ白金(II)、ジクロロテトラアンミン白金(II)、ヘキサヒドロキソ白金酸(IV)、テトラクロロ白金酸(II)カリウム、テトラクロロ白金酸(IV)カリウム等の白金含有化合物が挙げられる。これらの白金含有化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記熱還元法としては、不活性雰囲気下(例えば、アルゴン雰囲気下、または、窒素雰囲気下)で、熱処理後に室温まで降温する方法等がある。
 上記溶媒は、限定されないが、工程数を少なくして簡便に燃料電池用触媒を作製するという観点から、水系の溶媒(例えば、超純水、10vol%以下のアルコールを含んだ水)であることが好ましい。上記アルコールとしては、メタノール、エタノール、イソプロパノール等が好ましい。
 本発明の一実施形態は、以下の様な構成であってもよい。
<1>CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測され、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上であり、BET比表面積が、1000m/g以上である、燃料電池触媒用炭素担体。
<2>上記炭素担体は、酸化開始温度が610℃以上のものである、<1>に記載の炭素担体。
<3>上記強度比I(P1)/I(P2)が、1.7以上である、<1>または<2>に記載の炭素担体。
<4>上記BET比表面積が、1200m/g以上である、<1>~<3>の何れかに記載の炭素担体。
<5>上記炭素担体は、メソ孔を有するものであり、上記メソ孔は、平均孔径が3.5nm~5.0nmである、<1>~<4>の何れかに記載の炭素担体。
<6>上記炭素担体は、メソ孔を有するものであり、上記メソ孔の容積は、0.73mL/g炭素担体以上である、<1>~<5>の何れかに記載の炭素担体。
<7>上記炭素担体は、ミクロ孔を有するものであり、上記ミクロ孔の容積は、0.37mL/g炭素担体以上である、<1>~<6>の何れかに記載の炭素担体。
<8>炭素担体と、触媒金属と、を含み、上記炭素担体は、CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測され、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上であり、BET比表面積が、1000m/g以上である、燃料電池用触媒。
<9>上記触媒金属は、白金を含むものであり、上記白金は、結晶子サイズが4nm未満である、<8>に記載の触媒。
<10>上記白金は、結晶子サイズが3.3nm以下である、<9>に記載の触媒。
<11>上記炭素担体は、酸化開始温度が610℃以上のものである、<8>~<10>の何れかに記載の触媒。
<12>上記強度比I(P1)/I(P2)が、1.7以上である、<8>~<11>の何れかに記載の触媒。
<13>上記BET比表面積が、1200m/g以上である、<8>~<12>の何れかに記載の触媒。
<14>上記炭素担体は、メソ孔を有するものであり、上記メソ孔は、平均孔径が3.5nm~5.0nmである、<8>~<13>の何れかに記載の触媒。
<15>上記炭素担体は、メソ孔を有するものであり、上記メソ孔の容積は、0.73mL/g炭素担体以上である、<8>~<14>の何れかに記載の触媒。
<16>上記炭素担体は、ミクロ孔を有するものであり、上記ミクロ孔の容積は、0.37mL/g炭素担体以上である、<8>~<15>の何れかに記載の触媒。
 <1.炭素担体の作製>
 ジクエン酸トリマグネシウム無水物を、窒素雰囲気下(酸素濃度100ppm以下)、昇温速度5℃/minにて900℃にまで加温し、その後、900℃で1時間保温することで熱処理物を得た。
 その後、熱処理物を窒素雰囲気下にて放冷して室温にまで冷却した後、当該熱処理物を回収した。
 熱処理物内に存在するマグネシウム成分を除去するために、熱処理物を30wt%硫酸中に投入し、マグネシウム成分を硫酸マグネシウムとして30wt%硫酸中に溶出させた。一方、30wt%硫酸中に残った熱処理物を、酸処理物として回収した。
 酸処理物から残渣を取り除くために、純水にて酸処理物を洗浄した。その後、当該酸処理物を150℃、空気雰囲気下にて、水分率が6wt%以下になるまで乾燥させて、乾燥体を得た。
 炭素の結晶性を成長させるために、乾燥体を、様々な昇温速度(2~7℃/min:表1参照)にて、様々な最終熱処理温度(1400~2000℃/min:表1参照)にまで加温し、その後、当該最終熱処理温度にて1時間保温した。その後、室温まで冷却した後に乾式ビーズミルによってメディアン径(D50)が2~4μmになるように粉砕を行い、8種類の炭素担体(実施例1~3の炭素担体、および、比較例1~5の炭素担体)を得た。
 得られた炭素担体の粒度(D50)は、堀場製作所製のレーザー回折型粒度分布装置 LA-950を用いて測定した。なお、溶媒として水を用い、分散剤としてPEO(polyethylene oxide)を用いて、粒度(D50)を測定した。得られた炭素担体の粒度(D50)の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <2.触媒金属を担持する炭素担体の作製>
 上述した<1.炭素担体の作製>にて作製した8種類の炭素担体の各々に触媒金属(例えば、白金)を担持させて、触媒金属担持炭素担体(例えば、白金担持炭素担体)を作製した。
 白金の前駆体として、ジアンミンジニトロ白金(II)硝酸溶液を用いた。
 例えば、50wt%にて白金を担持させた、0.3gの白金担持炭素担体を調製する場合、0.15gに相当する白金源として、白金濃度100.6g/Lであるジアンミンジニトロ白金(II)硝酸溶液を1.491mL準備した。
 上述した<1.炭素担体の作製>にて作製した炭素担体0.15gを秤量し、当該炭素担体を純水100mL中に投入し、攪拌装置を用いて30分間以上撹拌した。純水中に炭素担体が分散していることを目視にて確認した後、当該純水に1.491mLのジアンミンジニトロ白金(II)硝酸溶液を加え、更に1時間攪拌し、処理物を得た。
 攪拌後の処理物をナス型フラスコに移し替え、分留機能、および、真空制御機能を備えた装置(BUCHI製、Rotavaper R-100、Heating Bath B-100、Interface I-100、VacuumPump V-100の組み合わせ)を用いて、処理物に対して含浸処理を行った。
 具体的には、ウォーターバス中に浸したナス型フラスコ内の温度を30℃に保ち、当該ナス型フラスコを回転させることによって、ナス型フラスコ内の処理物を攪拌した。また、ナス型フラスコ内を30Paの真空度にすることによって、炭素担体の細孔内に存在する空気を排出させるとともに、当該細孔内に、白金を含有する溶液を浸透させた。
 30Paの真空度を保つことによって、徐々に、水分を気化させた。2時間後、目視によって炭素担体内に水分が略無くなっていることを確認した。その後、ウォーターバスの温度を80℃に変更し、1時間、ナス型フラスコ内を30Paの真空度に保ち続けた。
 その後、処理物をナス型フラスコから取り出し、当該処理物を60℃の乾燥機内に保管した。
 白金を熱還元するために、アルミナボートに処理物を充填した。この際、できるだけ処理物を広げた状態で、アルミナボート内に処理物を敷き詰めた。
 処理物を充填したアルミナボートを管状炉内に設置し、当該処理物を充填したアルミナボートを、Arフロー中で(100mL/min)、昇温速度1℃/minの条件で400℃まで加温した。その後、3時間、400℃にて保温し、処理物に対して熱処理を施した。
 Arフローの状態で、室温になるまで処理物を放冷し、8種類の白金担持炭素担体を回収した。
 <3.物性の測定>
 <3-1.X線回折スペクトル>
 上述した<1.炭素担体の作製>にて作製した炭素担体を用いて、当該炭素担体のX線回折スペクトルを測定した。
 X線回折スペクトルの測定装置としては、Rigaku製のSmartLabを用いた。測定時には、走査速度を8°/minに設定し、測定範囲を10°~80°の2θの範囲に設定した。
 Igor Pro 6.36Jを用いて、20°~30°の2θの範囲で回折曲線を描き、Multi-peak Fitting2を用いて、26°付近のピークと、26.5°付近のピークとを分離した。分離後のピークのデータに基づいて、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)を算出した。
 ピークフィッティング時に用いた関数は、ベースライン:「Logpoly5」、peak1:「Lorentzian」、peak2:「Lorentizan」を用いた。
 (002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°のそれぞれ観測されることは、測定データを目視にて観察することによって、確認した。
 測定結果を、以下の表2に示す。表2に示すように、実施例1~3の炭素担体では、CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測された。
 図1に、実施例1~3、比較例3について、「ピーク強度比(peak1/peak2)」に対して、後述する表4の「白金結晶子サイズ[nm]」をプロットしたグラフを示す。これらのデータを関数に近似すると、「Y=-1.0592X+5.4186、R=0.6981」となる。
 結晶子サイズが小さい触媒金属であれば、触媒金属の比表面積が大きくなるので、触媒性能を向上させることができるため、白金結晶子サイズは、4nm以下が好ましく、さらには3.3nm以下が好ましい。上述した関数に「Y=4nm」を代入すると、「X≒1.34」と算出される。このことから、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)を1.4以上に制御すれば、白金結晶子サイズを4nm以下の小さなサイズに制御できることが明らかになった。さらに上述した関数に「Y=3.3nm」を代入すると、「X≒2.00」と算出される。このことから、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)を2.0以上に制御すれば、白金結晶子サイズを3.3nm以下の小さなサイズに制御できることが明らかになった。
Figure JPOXMLDOC01-appb-T000002
 <3-2.BET比表面積、全細孔・ミクロ孔・メソ孔の容積、メソ孔の直径>
 上述した<1.炭素担体の作製>にて作製した炭素担体を用いて、BET比表面積、全細孔・ミクロ孔・メソ孔の容積、および、メソ孔の直径を測定した。
 BET比表面積、全細孔・ミクロ孔・メソ孔の容積、および、メソ孔の直径は、窒素ガス吸着測定によって測定した。
 これらの測定装置としては、マイクロトラックベル製のBELMAXを用いた。測定時には、相対圧P/P0が0~0.95の範囲で、吸着等温線を描いた。
 BET(Brunauer-Emmett-Teller)法に基づいて、BET比表面積、および、全細孔の容積を算出した。BJH(Barrett-Joyner-Halenda)法に基づいて、メソ孔の直径を算出した。DA(Dubinin-Astakhov)法に基づいて、ミクロ孔の容積を算出した。メソ孔の容積の値は、全細孔の容積からミクロ孔の容積を引いた値とした。
 測定結果を、以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 <3-3.熱重量測定(TG)に基づく酸化開始温度>
 炭素担体の酸化開始温度が高ければ、当該炭素担体は耐久性(特に、耐酸化性)が高いと評価することができる。そこで、上述した<1.炭素担体の作製>にて作製した炭素担体と酸素との反応温度を確認するために、熱重量測定を行った。
 熱重量測定装置としては、Rigaku製のTG-DTA8122を使用した。炭素担体を4mg秤量し、当該炭素担体をAl製の専用のパンに充填した。その後、当該パンを熱重量測定装置の天秤に設置した。炭素担体を充填したパンを、空気フロー中で(100mL/min)、昇温速度5℃/minの条件で900℃まで加温した。
 測定によって得られたデータから、温度および重量のデータを抽出した。当該データから得られた関数を用いて、外挿開始温度から酸化開始温度を求めた。
 測定結果を、後述する表4の「TG酸化開始温度[℃]」、および、「炭素担体の耐久性」に示す。なお、「炭素担体の耐久性」では、TG酸化開始温度が610℃以上である場合を「○」と評価し、TG酸化開始温度が620℃以上である場合を「◎」と評価し、TG酸化開始温度が610℃未満である場合を「×」と評価した。表4に示すように、実施例1~3の炭素担体は、TG酸化開始温度が高いことから、耐久性(特に、耐酸化性)が高いことが明らかになった。
 また、炭素担体を作製するときの最終熱処理温度が低いと、酸化開始温度が低くなることが明らかになった。
 また、酸化開始温度は、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)に応じて変化しないことが明らかになった。
 <3-4.炭素担体に担持された白金の結晶子サイズ>
 上述した<2.触媒金属を担持する炭素担体の作製>にて作製した白金担持炭素担体を用いて、炭素担体に担持された白金の結晶子サイズを測定した。
 X線回折スペクトルの測定装置としては、Rigaku製のSmartLabを用いた。測定時には、走査速度を8°/minに設定し、測定範囲を10°~80°の2θの範囲に設定した。
 結晶子サイズの算出は、2θ=67°付近に確認される(220)面のピークを用いて、シェラー式(Dhkl=Kλ/(βcosθ)、K=0.9、λ=1.5405Å(CuKα))に基づいて算出した。
 測定結果を、後述する表4の「白金結晶子サイズ[nm]」に示す。表4に示すように、白金を担持する実施例1~3の炭素担体では、担持されている白金の結晶子サイズが小さいことが明らかになった。担持されている白金の結晶子サイズが小さいと、単位質量あたりの白金の表面積が広くなり、その結果、触媒性能が向上する。
 また、担持されている白金の結晶子サイズは、2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)に応じて変化することが明らかになった。
 <3-5.電気化学有効比表面積(ECSA)、および、白金の質量活性(MA)>
 上述した<2.触媒金属を担持する炭素担体の作製>にて作製した白金担持炭素担体を用いて、電気化学有効比表面積(ECSA、m/g)、および、白金の質量活性(MA、A/g)を測定した。
 白金担持炭素担体に含まれる白金の量を算出するために、空気雰囲気下にて、白金担持炭素担体を、熱重量測定(TG)に供した。
 熱重量測定装置としては、Rigaku製のTG-DTA8122を使用した。白金担持炭素担体を4mg秤量し、当該白金担持炭素担体をAl製の専用のパンに充填した。その後、当該パンを熱重量測定装置の天秤に設置した。白金担持炭素担体を充填したパンを、空気フロー中で(100mL/min)、昇温速度1℃/minの条件で600℃まで加温した。
 100℃における白金担持炭素担体の重量と、600℃における白金担持炭素担体の重量との差異に基づく重量の減少率を、白金担持炭素担体中の炭素の存在量とした。一方、100℃における白金担持炭素担体の重量から、上記で算出された炭素の存在量を差し引いた値を、白金担持炭素担体中の白金の存在量とした。上述した炭素の存在量、および、白金の存在量に基づいて、白金担持炭素担体における、炭素の割合、および、白金の割合を算出した。
 電気化学測定装置としては、BAS製のALSモデル700E、日光計測製のMotor Speed Controller SC-5、Rotating Ring-Disk Electrode RRDE-1を用いた。
 測定用の電極としては、Φ6mmのグラッシーカーボン製の電極を用いた。当該電極に対して白金担持炭素担体を分散させたインクをキャストして、電極上における白金量を14.1μg/cmに調節した。
 インクをキャストした電極を、1時間、真空乾燥した。電極上で白金担持炭素担体を固定化するために、当該電極に対してイオノマー(0.02体積%Nafion溶液)を10μLキャストした後、当該電極を放置して乾燥させた。
 電解液としては、0.1M HClOを用いた。
 電気化学有効比表面積は、水素発生電位を基準として、0.05V~1.2Vの範囲を電位走査速度50mV/secの条件にてサイクリックボルタンメトリーにより取得したデータより算出した。
 具体的には、0.05V~0.4Vに観測される水素の脱着に係る電気量から、電気化学有効比表面積を算出した。算出方法については、「Electrochemistry,79,No.2(2011),P116~121」を参考とした。
 測定結果を、後述する表4の「ECSA[m/g]」に示す。表4に示すように、実施例1~3の炭素担体を用いて作製した白金担持担体では、ECSAの値が大きいことが明らかになった。ECSAは、触媒1gあたりの、触媒として実質的に機能し得る表面積と考え得る。それ故に、ECSAの値が大きいことは、触媒として実質的に機能し得る表面積が広いことを示している。
 一方、白金の質量活性(MA)は、回転ディスク電極を1600rpmの条件で回転させながら、0.05V~1.2Vの範囲を電位走査速度10mV/secの条件にてリニアスイープボルタンメトリーにより取得したデータより算出した。
 具体的には、0.4Vおよび0.9Vでの電流値を読み取り、当該電流値から、白金の質量活性を算出した。算出方法については、「Electrochemistry,79,No.2(2011),P116~121」を参考とした。
 測定結果を、後述する表4の「MA[A/g]」に示す。表4に示すように、実施例1~3の炭素担体を用いて作製した白金担持担体では、MAの値が大きいことが明らかになった。MAの値(換言すれば、触媒の表面で還元される酸素の量)は、触媒金属の結晶面、および/または、触媒金属の結晶サイズによって変化する。MAの値が大きいことは、触媒金属の結晶面、および、触媒金属の結晶サイズが好適に制御されていることを示している。
 表4の「触媒性能の総合評価」は、上述した「白金結晶子サイズ[nm]」、「ECSA[m/g]」、および、「MA[A/g]」という3つの評価に基づいた、白金を担持する炭素担体の触媒性能の総合評価である。3つの評価の全てが良好な場合を「○」と評価し、2つ以下の評価が良好な場合を「×」と評価した。表4に示すように、白金を担持する実施例1~3の炭素担体では、3つの評価の全てが良好であった。
Figure JPOXMLDOC01-appb-T000004
 本発明は、燃料電池用触媒、および、燃料電池に利用することができる。

 

Claims (16)

  1.  CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測され、
     2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上であり、
     BET比表面積が、1000m/g以上である、燃料電池触媒用炭素担体。
  2.  上記炭素担体は、酸化開始温度が610℃以上のものである、請求項1に記載の炭素担体。
  3.  上記強度比I(P1)/I(P2)が、1.7以上である、請求項1または2に記載の炭素担体。
  4.  上記BET比表面積が、1200m/g以上である、請求項1または2に記載の炭素担体。
  5.  上記炭素担体は、メソ孔を有するものであり、
     上記メソ孔は、平均孔径が3.5nm~5.0nmである、請求項1または2に記載の炭素担体。
  6.  上記炭素担体は、メソ孔を有するものであり、
     上記メソ孔の容積は、0.73mL/g炭素担体以上である、請求項1または2に記載の炭素担体。
  7.  上記炭素担体は、ミクロ孔を有するものであり、
     上記ミクロ孔の容積は、0.37mL/g炭素担体以上である、請求項1または2に記載の炭素担体。
  8.  炭素担体と、触媒金属と、を含み、
     上記炭素担体は、
      CuKα線によるX線回折スペクトルにおいて、(002)面の回折ピークが少なくとも2θ=22.5~25°、2θ=26°および2θ=26.5°にそれぞれ観測され、
      2θ=26°に観測されるピークP1と2θ=26.5°に観測されるピークP2との強度比I(P1)/I(P2)が、1.4以上であり、
      BET比表面積が、1000m/g以上である、燃料電池用触媒。
  9.  上記触媒金属は、白金を含むものであり、
     上記白金は、結晶子サイズが4nm未満である、請求項8に記載の触媒。
  10.  上記白金は、結晶子サイズが3.3nm以下である、請求項9に記載の触媒。
  11.  上記炭素担体は、酸化開始温度が610℃以上のものである、請求項8または9に記載の触媒。
  12.  上記強度比I(P1)/I(P2)が、1.7以上である、請求項8または9に記載の触媒。
  13.  上記BET比表面積が、1200m/g以上である、請求項8または9に記載の触媒。
  14.  上記炭素担体は、メソ孔を有するものであり、
     上記メソ孔は、平均孔径が3.5nm~5.0nmである、請求項8または9に記載の触媒。
  15.  上記炭素担体は、メソ孔を有するものであり、
     上記メソ孔の容積は、0.73mL/g炭素担体以上である、請求項8または9に記載の触媒。
  16.  上記炭素担体は、ミクロ孔を有するものであり、
     上記ミクロ孔の容積は、0.37mL/g炭素担体以上である、請求項8または9に記載の触媒。

     
PCT/JP2022/039489 2021-11-22 2022-10-24 燃料電池触媒用炭素担体および燃料電池用触媒 WO2023090060A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280016367.5A CN116918109A (zh) 2021-11-22 2022-10-24 燃料电池催化剂用碳载体及燃料电池用催化剂
CA3214016A CA3214016A1 (en) 2021-11-22 2022-10-24 Carbon carrier for fuel cell catalyst and fuel cell catalyst
JP2023521649A JP7313024B1 (ja) 2021-11-22 2022-10-24 燃料電池触媒用炭素担体および燃料電池用触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021189507 2021-11-22
JP2021-189507 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023090060A1 true WO2023090060A1 (ja) 2023-05-25

Family

ID=86396679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039489 WO2023090060A1 (ja) 2021-11-22 2022-10-24 燃料電池触媒用炭素担体および燃料電池用触媒

Country Status (4)

Country Link
JP (1) JP7313024B1 (ja)
CN (1) CN116918109A (ja)
CA (1) CA3214016A1 (ja)
WO (1) WO2023090060A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129597A1 (ja) * 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2017154359A1 (ja) 2016-03-11 2017-09-14 日産自動車株式会社 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
WO2017209244A1 (ja) * 2016-06-02 2017-12-07 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池
JP2018012626A (ja) 2016-07-21 2018-01-25 新日鉄住金化学株式会社 多孔質炭素材料、固体高分子形燃料電池用触媒および固体高分子形燃料電池ならびに多孔質炭素材料の製造方法
JP2018081740A (ja) 2015-03-23 2018-05-24 日産自動車株式会社 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
WO2018182045A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129597A1 (ja) * 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
JP2018081740A (ja) 2015-03-23 2018-05-24 日産自動車株式会社 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
WO2017154359A1 (ja) 2016-03-11 2017-09-14 日産自動車株式会社 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
WO2017209244A1 (ja) * 2016-06-02 2017-12-07 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池
JP2018012626A (ja) 2016-07-21 2018-01-25 新日鉄住金化学株式会社 多孔質炭素材料、固体高分子形燃料電池用触媒および固体高分子形燃料電池ならびに多孔質炭素材料の製造方法
WO2018182045A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMISTRY, vol. 79, no. 2, 2011, pages 116 - 121

Also Published As

Publication number Publication date
CA3214016A1 (en) 2023-05-25
CN116918109A (zh) 2023-10-20
JPWO2023090060A1 (ja) 2023-05-25
JP7313024B1 (ja) 2023-07-24

Similar Documents

Publication Publication Date Title
Ganesan et al. Platinized mesoporous tungsten carbide for electrochemical methanol oxidation
US8541334B2 (en) Catalyst carrier, catalyst and process for producing the same
Shao et al. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction
KR100837396B1 (ko) 담지 촉매, 그 제조방법, 이를 포함하는 캐소드 전극 및상기 캐소드 전극을 포함하는 연료전지
Liang et al. Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells
Monteverde Videla et al. Mesoporous carbons supported non-noble metal Fe–NX electrocatalysts for PEM fuel cell oxygen reduction reaction
US8129306B2 (en) Non-platinum bimetallic polymer electrolyte fuel cell catalysts
Liu et al. Electrochemical activity and durability of platinum nanoparticles supported on ordered mesoporous carbons for oxygen reduction reaction
JP5014146B2 (ja) 炭素担持された白金合金触媒
Arbizzani et al. Cryo-and xerogel carbon supported PtRu for DMFC anodes
JP2012529722A (ja) 燃料電池用電極触媒
US20100210454A1 (en) Nanocomposite catalyst materials comprising conductive support (carbon), transition metal compound, and metal nanoparticles
US20120129686A1 (en) Catalyst for electrochemical reactions
JP2004363056A (ja) 固体高分子型燃料電池用触媒担持電極とその製造方法
Odetola et al. Investigation of TiO2/carbon electrocatalyst supports prepared using glucose as a modifier
JP2008041498A (ja) 固体高分子形燃料電池用触媒担持体の製造方法および固体高分子形燃料電池
WO2023090060A1 (ja) 燃料電池触媒用炭素担体および燃料電池用触媒
Martínez et al. Pd and Pd-Co oxygen reduction nanocatalysts in acidic media
KR20100013146A (ko) 콜로이달-임프린티드 탄소구조체, 그의 제조방법 및 이를이용한 연료전지 전극용 ci 탄소 담지 촉매
Guo et al. Construction and Prospect of Noble Metal‐Based Catalysts for Proton Exchange Membrane Water Electrolyzers
Jin et al. Graphitic mesoporous carbon xerogel as an effective catalyst support for oxygen reduction reaction
Kulesza et al. Reduced-graphene-oxide with traces of iridium or gold as active support for Pt catalyst at low loading during oxygen electroreduction
CN113632266A (zh) 用于制备负载型贵金属-金属合金复合材料的方法和获得的负载型贵金属-金属合金复合材料
EP3978112A1 (en) Supported platinum catalyst, cathode for fuel cell, fuel cell, and method for producing supported platinum catalyst
CN113231641B (zh) 一种炭黑负载高度有序的PtCo金属间化合物及其合成方法以及应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023521649

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016367.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 3214016

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18287183

Country of ref document: US