WO2017150502A1 - 薄膜トランジスタ基板及び表示パネル - Google Patents

薄膜トランジスタ基板及び表示パネル Download PDF

Info

Publication number
WO2017150502A1
WO2017150502A1 PCT/JP2017/007681 JP2017007681W WO2017150502A1 WO 2017150502 A1 WO2017150502 A1 WO 2017150502A1 JP 2017007681 W JP2017007681 W JP 2017007681W WO 2017150502 A1 WO2017150502 A1 WO 2017150502A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
film
transparent electrode
source
thin film
Prior art date
Application number
PCT/JP2017/007681
Other languages
English (en)
French (fr)
Inventor
岡田 訓明
誠一 内田
上田 直樹
佐々木 貴啓
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/081,502 priority Critical patent/US20190081076A1/en
Priority to CN201780014801.5A priority patent/CN108780619A/zh
Publication of WO2017150502A1 publication Critical patent/WO2017150502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to a thin film transistor substrate and a display panel.
  • the source portion extends from the source line made of the source metal toward the thin film transistor. Since this source portion is made of the same source metal as that of the source line, it becomes a light shielding region in the pixel and causes a reduction in the aperture ratio, which is a limitation in achieving high definition.
  • the present invention has been completed based on the above-described circumstances, and an object thereof is to improve the aperture ratio.
  • the thin film transistor substrate of the present invention includes a wiring, a thin film transistor having a plurality of electrodes, a wiring connecting portion that is at least partially configured of any of the plurality of electrodes, and is connected to the wiring and made of a light-transmitting conductive material. .
  • a signal transmitted through the wiring is supplied to an electrode constituted by a part of the wiring connection portion among the plurality of electrodes constituting the thin film transistor via the wiring connection portion connected to the wiring.
  • the wiring connection portion is made of a light-transmitting conductive material, the amount of transmitted light is increased and the aperture ratio is high compared to the case where the wiring connection portion is made of a light-shielding material such as a metal material. This is suitable for achieving high definition.
  • the wiring connection portion is made of the first transparent electrode film or the second transparent electrode film that is a light-transmitting conductive material, the aperture ratio can be sufficiently increased.
  • the first transparent electrode or the second transparent electrode and the wiring connection portion can be formed by patterning the first transparent electrode film or the second transparent electrode film. Thereby, the manufacturing cost can be reduced.
  • the thin film transistor includes a channel portion made of a semiconductor film, a plurality of the electrodes, a source electrode that is at least a part of the wiring connection portion and is connected to one end side of the channel portion, and the channel A drain electrode connected to the other end side of the part, and the drain electrode is the same as the wiring connection part of the first transparent electrode film and the second transparent electrode film Consists of.
  • the drain electrode is made of the first transparent electrode film or the second transparent electrode film, which is a translucent conductive material, compared to the case where the drain electrode material is a light-shielding material such as a metal material. , The amount of transmitted light increases, and the aperture ratio becomes higher.
  • the first transparent electrode film or the second transparent electrode film may be patterned to form a drain electrode in addition to the first transparent electrode or the second transparent electrode and the wiring connection portion. It can. Thereby, the manufacturing cost can be further reduced.
  • the thin film transistor has a channel portion made of an oxide semiconductor film, and a plurality of the electrodes, a source electrode that is at least a part of the wiring connection portion and is connected to one end side of the channel portion, A drain electrode connected to the other end of the channel portion, and the drain electrode is formed of a low-resistance region formed by partially reducing the resistance of the oxide semiconductor film.
  • the drain electrode is made of a low resistance region in which the resistance of the oxide semiconductor film, which is a light-transmitting conductive material, is partially reduced. Compared to the case of using a material, the amount of transmitted light increases, and the aperture ratio can be further increased.
  • a drain electrode in addition to the channel portion, a drain electrode can also be formed by patterning the oxide semiconductor film. Thereby, the manufacturing cost can be further reduced. Furthermore, since the drain electrode is made of the low resistance region of the oxide semiconductor film and the source electrode is made of the first transparent electrode film or the second transparent electrode film, the drain electrode and the source electrode are supposed to be the same. Compared to the case of the transparent electrode film, the distance secured between the drain electrode and the source electrode can be made shorter. Accordingly, since the channel portion can be shortened, the characteristics of the thin film transistor can be improved.
  • the first transparent electrode is a pixel electrode partially overlapping with the wiring connection portion
  • the second transparent electrode forms a capacitance with the pixel electrode.
  • the storage electrode is an auxiliary capacitance electrode that holds a potential charged in the pixel electrode
  • the wiring connection portion is formed of the second transparent electrode film.
  • the wiring connection portion is made of the same second transparent electrode film as the auxiliary capacitance electrode, it is possible to adopt an arrangement configuration in which the pixel electrode made of the first transparent electrode film is superimposed on the wiring connection portion. Thereby, since the formation range of the pixel electrode is widened, the aperture ratio can be further increased.
  • the thin film transistor includes a channel portion made of an oxide semiconductor film, and a plurality of the electrodes, a source electrode that is at least part of the wiring connection portion and is connected to one end side of the channel portion, And a drain electrode connected to the other end side of the channel portion, and the wiring connection portion is formed from a low resistance region formed by partially reducing the resistance of the oxide semiconductor film.
  • the wiring connection portion includes the low resistance region in which the resistance of the oxide semiconductor film, which is a light-transmitting conductive material, is partially reduced, the aperture ratio can be sufficiently increased.
  • a channel portion and a wiring connection portion can be formed by patterning the oxide semiconductor film. Thereby, the manufacturing cost can be reduced.
  • a second transparent electrode capable of forming a capacitance or an electric field with the first transparent electrode, and the drain electrode is composed of the first transparent electrode film or the second transparent electrode film.
  • the drain electrode is made of the first transparent electrode film or the second transparent electrode film, which is a translucent conductive material, the light is light compared with a case where the drain electrode is made of a light shielding material such as a metal material. The amount of transmitted light increases, and the aperture ratio becomes higher.
  • the first transparent electrode or the second transparent electrode and the drain electrode can be formed by patterning the first transparent electrode film or the second transparent electrode film.
  • the manufacturing cost can be further reduced.
  • the drain electrode is made of the first transparent electrode film or the second transparent electrode film and the source electrode is made of the low resistance region of the oxide semiconductor film
  • the drain electrode and the source electrode are supposed to be the same. Compared to the case of the transparent electrode film, the distance secured between the drain electrode and the source electrode can be made shorter. Accordingly, since the channel portion can be shortened, the characteristics of the thin film transistor can be improved.
  • the drain electrode includes a low resistance region formed by partially reducing the resistance of the oxide semiconductor film.
  • both the drain electrode and the source electrode of the wiring connection part are made of the low resistance region of the oxide semiconductor film, the drain electrode and the source electrode are made of the same transparent electrode film. Compared to the case, it is possible to adopt a design in which the distance secured between the drain electrode and the source electrode is shorter. Accordingly, since the channel portion can be shortened, the characteristics of the thin film transistor can be improved.
  • the thin film transistor includes a channel portion made of a semiconductor film, and includes a plurality of the electrodes, a source electrode that is at least a part of the wiring connection portion and connected to one end side of the channel portion, and the channel And a drain electrode connected to the other end of the portion, and is an insulating film disposed on the upper layer side of the semiconductor film, at a position overlapping the source electrode and the drain electrode Insulating films each having an opening are formed.
  • the source electrode and the drain electrode are configured by the transparent electrode film disposed on the upper layer side of the insulating film, the source electrode and the drain electrode have two openings formed in the insulating film. Each is connected to a channel portion made of a semiconductor film through the portion.
  • the semiconductor film is an oxide semiconductor film and the source electrode and the drain electrode are formed of a low resistance region in which the resistance of the oxide semiconductor film is partially reduced, the insulating film If the resistance of the oxide semiconductor film is reduced through the two openings formed, a source electrode and a drain electrode connected to the channel portion can be formed.
  • the length of the channel portion is defined by the distance between the two openings in the insulating film, the length of the channel portion is less likely to vary, thereby stably exhibiting the characteristics of the thin film transistor. be able to.
  • a pixel having the thin film transistor comprising at least a plurality of pixels arranged side by side along the extending direction of the wiring connection portion from the wiring toward the thin film transistor,
  • the opening overlapping with the source electrode is formed to extend in a range straddling between the adjacent pixels in the extending direction. If the same number of openings are individually formed for a plurality of pixels arranged in the extending direction of the wiring connection portion in the insulating film, it is necessary to design a certain interval between the adjacent openings. Arise. On the other hand, if the opening overlapping the source electrode extends in a range that spans between adjacent pixels in the extending direction of the wiring connection portion, it is not necessary to design the interval as described above.
  • the arrangement pitch of the pixels can be reduced, which is suitable for achieving high definition.
  • a display panel of the present invention includes the above-described thin film transistor substrate and a counter substrate bonded to the thin film transistor substrate. According to the display panel having such a structure, the aperture ratio of the thin film transistor substrate is improved, which is suitable for achieving high definition.
  • the aperture ratio can be improved.
  • FIG. 1 is a schematic plan view showing a connection configuration of a liquid crystal panel, a flexible substrate, and a control circuit board on which a driver according to Embodiment 1 of the present invention is mounted.
  • Schematic cross-sectional view showing a cross-sectional configuration along the long side direction of the liquid crystal display device Schematic cross-sectional view showing the cross-sectional configuration in the display area of the liquid crystal panel.
  • a plan view schematically showing a planar configuration in a display area of an array substrate constituting a liquid crystal panel The enlarged plan view which shows the plane structure in the display area of CF substrate which comprises a liquid crystal panel AA line sectional view of FIG. BB sectional view of FIG. 4 is a cross-sectional view taken along line AA of FIG.
  • 4 showing a state in which the first interlayer insulating film is formed in the first interlayer insulating film forming step in the array substrate manufacturing method.
  • 4 is a cross-sectional view taken along the line BB of FIG. 4 showing a state in which the first interlayer insulating film is formed in the first interlayer insulating film forming step in the array substrate manufacturing method.
  • 4 is a cross-sectional view taken along line AA of FIG. 4 showing a state in which the first interlayer insulating film formed in the first interlayer insulating film forming step in the array substrate manufacturing method is patterned.
  • 4 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 4 showing a state in which the first interlayer insulating film formed in the first interlayer insulating film forming step in the array substrate manufacturing method is patterned.
  • 4 is a cross-sectional view taken along line AA of FIG. 4 showing a state in which the first transparent electrode film formed in the first transparent electrode film forming step in the array substrate manufacturing method is patterned.
  • 4 is a cross-sectional view taken along the line BB of FIG. 4 showing a state in which the first transparent electrode film formed in the first transparent electrode film forming step in the array substrate manufacturing method is patterned.
  • the top view which shows roughly the plane structure in the display area of the array board
  • FIG. 16 The top view which shows roughly the plane structure in the display area of the array board
  • AA line sectional view of FIG. BB sectional view of FIG. 16 is a cross-sectional view taken along the line AA in FIG. 16 showing the case where the length of the channel portion is changed.
  • a plan view schematically showing a planar configuration in a display area of an array substrate constituting a liquid crystal panel AA line sectional view of FIG. BB sectional view of FIG. 21 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 21 showing a state in which the first interlayer insulating film is patterned in the first interlayer insulating film forming step in the array substrate manufacturing method.
  • FIG. 21 is a cross-sectional view taken along line BB of FIG. 21 showing a state in which the first interlayer insulating film is patterned in the first interlayer insulating film forming step in the array substrate manufacturing method.
  • 21 is a cross-sectional view taken along line AA of FIG. 21 showing a state in which the second interlayer insulating film is formed in the second interlayer insulating film forming step in the array substrate manufacturing method.
  • 21 is a cross-sectional view taken along the line BB of FIG.
  • 21 showing a state in which the second interlayer insulating film is formed in the second interlayer insulating film forming step in the array substrate manufacturing method.
  • 21 is a cross-sectional view taken along line AA of FIG. 21, showing a state in which the first transparent electrode film formed in the first transparent electrode film forming step in the array substrate manufacturing method is patterned.
  • 21 is a cross-sectional view taken along the line BB of FIG. 21, showing a state in which the first transparent electrode film formed in the first transparent electrode film forming step in the array substrate manufacturing method is patterned.
  • the top view which shows roughly the plane structure in the display area of the array board
  • the top view which shows roughly the plane structure in the display area of the array board
  • AA line sectional view of FIG. BB sectional view of FIG. The top view which shows schematically the plane structure in the display area of the array board
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side in FIGS. 2 and 7 is the front side, and the lower side is the back side.
  • the liquid crystal display device 10 has a horizontally long rectangular shape as a whole. As shown in FIGS. 1 and 2, a liquid crystal panel (display panel) 11 capable of displaying an image and various input signals to the liquid crystal panel 11. A control circuit board (panel connection board) 12 for supplying light from the outside, a flexible board 13 for electrically connecting the liquid crystal panel 11 and the control circuit board 12, and a backlight as an external light source for supplying light to the liquid crystal panel 11. And a device (lighting device) 14. Further, as shown in FIG. 2, the liquid crystal display device 10 also includes a bezel 15 and a casing 16 for housing and holding the liquid crystal panel 11 and the backlight device 14 assembled to each other. Among these, the bezel 15 has a frame shape so as to surround a display area (active area) AA in which an image is displayed on the liquid crystal panel 11. The casing 16 has a shallow box shape opened toward the front side.
  • the backlight device 14 includes a chassis 14a having a substantially box shape that opens toward the front side (the liquid crystal panel 11 side), and a light source (not shown) disposed in the chassis 14a (for example, a cold cathode tube, LED, organic EL, etc.) and an optical member (not shown) arranged so as to cover the opening of the chassis 14a.
  • the optical member has a function of converting light emitted from the light source into a planar shape.
  • the liquid crystal panel 11 has a vertically long rectangular shape (rectangular shape) as a whole, and is displayed at a position offset toward one end side (the upper side shown in FIG. 1) in the long side direction.
  • An area (active area) AA is arranged, and a driver 21 and a flexible substrate 13 are attached to positions offset toward the other end (the lower side shown in FIG. 1) in the long side direction.
  • An area outside the display area AA in the liquid crystal panel 11 is a non-display area (non-active area) NAA in which no image is displayed.
  • a frame-shaped one-dot chain line that is slightly smaller than the CF substrate 11a represents the outer shape of the display area AA, and an area outside the one-dot chain line is a non-display area NAA.
  • the liquid crystal panel 11 includes a pair of substrates 11a and 11b, and a liquid crystal layer 11c made of a liquid crystal material that is sandwiched between the substrates 11a and 11b and whose optical characteristics change with application of an electric field.
  • the two substrates 11a and 11b are bonded together with a sealing agent (not shown) while maintaining a gap corresponding to the thickness of the liquid crystal layer 11c.
  • the front side (front side) of both substrates 11a and 11b is a CF substrate (counter substrate) 11a
  • the back side (back side) is an array substrate (thin film transistor substrate, active matrix substrate) 11b.
  • Each of the CF substrate 11a and the array substrate 11b is formed by laminating various films on the inner surface side of a substantially transparent (translucent) glass substrate GS.
  • Alignment films 11d and 11e for aligning the liquid crystal material (liquid crystal molecules LC) constituting the liquid crystal layer 11c are formed on the inner surfaces of both the substrates 11a and 11b and facing the liquid crystal layer 11c, respectively.
  • polarizing plates 11f and 11g are attached to the outer surface sides of both the substrates 11a and 11b, respectively.
  • FIGS. A large number of (first transparent electrodes) 18 are provided side by side in a matrix, and around these TFTs 17 and pixel electrodes 18, gate wirings (row control lines, scanning lines) 19 and source wirings (lattice lines) 19 and source wirings ( Column control lines, data lines, and wiring) 20 are disposed so as to surround them.
  • the TFT 17 and the pixel electrode 18 are arranged in a matrix (matrix shape) along the row direction (X-axis direction) and the column direction (Y-axis direction) at the intersection of the gate wiring 19 and the source wiring 20 forming a lattice shape. They are arranged side by side.
  • the gate wiring 19 extends linearly along the X-axis direction
  • the source wiring 20 extends linearly along the Y-axis direction
  • the X-axis direction is the extension direction of the gate wiring 19.
  • the Y-axis direction coincides with the extending direction of the source wiring 20.
  • the color filter 11h which consists of the coloring part of 3 colors which exhibits is provided.
  • a plurality of colored portions constituting the color filter 11h are arranged in a matrix (matrix shape) along the row direction (X-axis direction) and the column direction (Y-axis direction), and each of the colored portions is arranged in the array substrate 11b.
  • the pixel electrodes 18 on the side are arranged so as to overlap with each other in a plan view.
  • the substantially lattice-shaped light-shielding part (black matrix) 11i for preventing color mixing is formed between each coloring part which comprises the color filter 11h.
  • the light shielding portion 11i is arranged so as to overlap with the above-described gate wiring 19 and source wiring 20 in a plan view.
  • the light shielding portion 11i is made of a material having a light shielding property such as titanium (Ti), and preferably has a thickness of, for example, about 200 nm.
  • a solid overcoat film 11j made of synthetic resin is provided so as to overlap the inside.
  • the liquid crystal panel 11 as shown in FIGS.
  • One pixel PX which is a display unit, is configured by a set of three TFTs 17 connected to each other.
  • the pixel PX includes a red pixel RPX having a red colored portion, a green pixel GPX having a green colored portion, and a blue pixel BPX having a blue colored portion.
  • the pixels RPX, GPX, and BPX of each color constitute a pixel group by being repeatedly arranged along the row direction (X-axis direction) on the plate surface of the liquid crystal panel 11, and this pixel group is arranged in the column direction. Many are arranged along the (Y-axis direction).
  • the array substrate 11b includes a first metal film (gate metal film, lower metal film) 22, a gate insulating film 23, and an oxide semiconductor film in order from the lower layer (glass substrate GS) side.
  • second metal film source metal film, upper layer side metal film
  • first interlayer insulating film insulating film, lower layer side insulating film
  • first transparent electrode film lower layer side transparent electrode film
  • second interlayer insulating film 28 interlayer insulating film, upper layer side insulating film
  • second transparent electrode film upper layer side transparent electrode film
  • the first metal film 22 is composed of a two-layered film made of a metal material such as a tungsten (W) layer / tantalum nitride (TaN) layer, for example, and the thickness of the tungsten layer is nitrided to, for example, about 300 nm.
  • the film thickness of the tantalum layer is preferably about 30 nm, for example.
  • the first metal film 22 mainly constitutes the gate wiring 19.
  • the gate insulating film 23 is laminated on the upper layer side of the first metal film 22 as shown in FIGS.
  • the gate insulating film 23 is composed of a laminated film made of an inorganic material such as a silicon oxide (SiO 2 ) layer / silicon nitride (SiN x ) layer, for example, and the thickness of the silicon oxide layer is nitrided to, for example, about 50 nm. The thickness of the silicon layer is preferably about 325 nm, for example.
  • the gate insulating film 23 is interposed between the first metal film 22 (gate wiring 19 and the like) and a second metal film 25 (source wiring 20 and the like) described later to insulate each other.
  • the oxide semiconductor film 24 is laminated on the upper layer side of the gate insulating film 23 as shown in FIGS. 6 and 7, and is made of a thin film using an oxide semiconductor as a material.
  • the thickness of the oxide semiconductor film 24 is preferably about 50 nm, for example.
  • the oxide semiconductor included in the oxide semiconductor film 24 may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion. Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • the oxide semiconductor film 24 may have a stacked structure of two or more layers.
  • the oxide semiconductor film 24 may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer. Alternatively, a plurality of crystalline oxide semiconductor layers having different crystal structures may be included. In addition, a plurality of amorphous oxide semiconductor layers may be included. In the case where the oxide semiconductor film 24 has a two-layer structure including an upper layer and a lower layer, the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer. However, when the difference in energy gap between these layers is relatively small, the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the oxide semiconductor film 24 having a stacked structure of the amorphous oxide semiconductor and each crystalline oxide semiconductor described above are described in, for example, Japanese Patent Application Laid-Open No. 2014-007399. Yes.
  • the entire disclosure of Japanese Patent Application Laid-Open No. 2014-007399 is incorporated herein by reference.
  • the oxide semiconductor film 24 may include at least one metal element of In, Ga, and Zn.
  • the oxide semiconductor film 24 includes, for example, an In—Ga—Zn—O-based semiconductor (eg, indium gallium zinc oxide).
  • Such an oxide semiconductor film 24 can be formed of an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may be either amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • a driving TFT (not shown) (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a TFT (TFT provided in a pixel) 17 are preferably used. .
  • the oxide semiconductor film 24 may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the oxide semiconductor film 24 includes an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, and a Zn—Ti—O semiconductor.
  • Cd—Ge—O semiconductor Cd—Pb—O semiconductor, CdO (cadmium oxide), Mg—Zn—O semiconductor, In—Ga—Sn—O semiconductor, In—Ga—O semiconductor
  • a Zr—In—Zn—O based semiconductor an Hf—In—Zn—O based semiconductor, or the like may be included.
  • the second metal film 25 is stacked on the upper layer side of the oxide semiconductor film 24.
  • the second metal film 25 is composed of a laminated film of three layers made of a metal material such as titanium (Ti) layer / aluminum (Al) layer / titanium layer, for example.
  • the thickness of the aluminum layer is preferably about 200 nm, for example, and the thickness of the upper titanium layer is preferably about 30 nm, for example.
  • the second metal film 25 mainly constitutes the source wiring 20.
  • the first interlayer insulating film 26 is stacked at least on the upper layer side of the second metal film 25.
  • the first interlayer insulating film 26 is preferably made of an inorganic material such as silicon oxide (SiO 2 ), and preferably has a thickness of about 300 nm, for example.
  • the first interlayer insulating film 26 is interposed between the second metal film 25 and the oxide semiconductor film 24 and the first transparent electrode film 27 to insulate each other.
  • the first transparent electrode film 27 is laminated on the upper layer side of the second interlayer insulating film 28 as shown in FIGS.
  • the first transparent electrode film 27 is made of a transparent electrode material such as IZO (Indium Zinc Oxide), for example, and has a thickness of, for example, about 100 nm.
  • the first transparent electrode film 27 mainly constitutes the pixel electrode 18.
  • the second interlayer insulating film 28 is stacked on the upper layer side of the first transparent electrode film 27.
  • the second interlayer insulating film 28 is preferably made of an inorganic material such as silicon nitride (SiN), and preferably has a thickness of, for example, about 100 nm.
  • the second interlayer insulating film 28 is interposed between the first transparent electrode film 27 and the second transparent electrode film 29 to insulate each other.
  • the second transparent electrode film 29 is stacked on the upper layer side of the second interlayer insulating film 28. Similar to the first transparent electrode film 27, the second transparent electrode film 29 is made of a transparent electrode material such as IZO, and has a film thickness of, for example, about 100 nm.
  • the second transparent electrode film 29 is arranged in a solid shape so as to collectively cover the pixels PX on the array substrate 11b, and is a common electrode that is overlapped with the pixel electrode 18 via the second interlayer insulating film 28. (Second transparent electrode) 30 is configured.
  • the liquid crystal panel 11 is a so-called FFS (Fringe Field Switching) mode, and is included in the liquid crystal layer 11 c by controlling the above-described oblique electric field based on the voltage applied to the pixel electrode 18.
  • FFS Frringe Field Switching
  • FIG. 4 the formation range of the slit 30a is illustrated by a relatively thin two-dot chain line in comparison with the source side opening 26a and the drain side opening 26b.
  • the TFT 17 includes three electrodes 17a to 17c and a channel portion 17d. Specifically, the TFT 17 is arranged in such a manner that a gate electrode (electrode) 17a formed of a part of the gate wiring 19 and an upper layer side of the gate electrode 17a are overlapped with the gate electrode 17a through the gate insulating film 23. A channel portion 17d, a source electrode (electrode) 17b disposed on an upper layer side of the channel portion 17d and connected to one end side of the channel portion 17d, and connected to the other end side of the channel portion 17d and the pixel electrode 18. A drain electrode (electrode) 17c.
  • the arrangement direction of the source electrode 17b, the channel portion 17d, and the drain electrode 17c constituting the TFT 17 coincides with the Y-axis direction.
  • the arrangement direction (the extending direction of the channel portion 17d) of the connection portion between the source electrode 17b and the drain electrode 17c in the channel portion 17d constituting the TFT 17 extends along the Y-axis direction. That is, the arrangement direction of the source electrode 17b, the channel portion 17d, and the drain electrode 17c is parallel to the extending direction of the channel portion 17d.
  • the arrangement space of the TFT 17 can be narrowed in the X-axis direction (extending direction of the gate wiring 19), the arrangement pitch of the pixels PX in the X-axis direction can be narrowed, and thus high definition can be achieved. It is suitable for planning.
  • the TFT 17 is disposed in the pixel PX at a substantially central position in the X-axis direction and at a lower end position shown in FIG. 4 in the Y-axis direction.
  • the gate electrode 17a that constitutes the TFT 17 is configured by a portion that is disposed between the two source wirings 20 that define the pixel PX in the gate wiring 19 that is positioned below the pixel PX in FIG. Thus, it does not protrude or dent in the Y-axis direction from both side edges of the gate wiring 19.
  • the channel portion 17d is arranged so as to overlap the gate electrode 17a and to be sandwiched between the source electrode 17b and the drain electrode 17c in the Y-axis direction, and extends along the Y-axis direction.
  • the channel portion 17d is formed by forming the oxide semiconductor film 24 in an island shape for each pixel PX.
  • the etch stop layer is not formed on the channel portion 17d, and the lower surface of the end portion on the channel portion 17d side of the source electrode 17b is in contact with the upper surface of the oxide semiconductor film 24. Has been placed.
  • the source electrode 17b is arranged so that a part thereof overlaps with the gate wiring 19 (gate electrode 17a). More specifically, the source electrode 17 b is eccentrically arranged on the side opposite to the pixel PX side to be connected in the Y-axis direction with respect to the gate wiring 19, and a part on the drain electrode 17 c side is part of the gate wiring 19. Although overlapping with the (gate electrode 17a), most of the Y-axis direction is arranged in such a manner as to protrude toward the pixel PX adjacent to the lower side shown in FIG.
  • the source electrode 17b is a part of the wiring connection portion 31 connected to the source wiring 20, as shown in FIGS.
  • the image signal (data signal) transmitted through the source wiring 20 is supplied to the source electrode 17 b which is a part of the wiring connection portion 31 via the wiring connection portion 31 connected to the source wiring 20.
  • the wiring connection portion 31 is made of the same first transparent electrode film 27 as that of the pixel electrode 18, that is, a translucent conductive material. According to such a configuration, the amount of transmitted light in the pixel PX is increased and the aperture ratio related to the pixel PX is high compared to a case where the material of the wiring connection portion is a light-shielding material such as a metal material. Become. This is suitable for achieving high definition and the like.
  • the pixel electrode 18 and the wiring connection portion 31 can be formed by patterning the first transparent electrode film 27.
  • the manufacturing cost can be reduced.
  • the pixel electrodes 18 made of the same first transparent electrode film 27 as the wiring connection portion 31 are arranged in a non-overlapping manner with the wiring connection portion 31, and two pixel electrodes each defining the formation range of the pixel PX to which the pixel connection PX belongs. As shown in the plane surrounded by the gate wiring 19 and the source wiring 20, they are arranged in a plane so as to fill a vertically long rectangular region.
  • the drain electrode 17c partially overlaps the gate wiring 19 (gate electrode 17a) and is opposed to the source electrode 17b with an interval of the channel portion 17d. It is arranged.
  • the drain electrode 17 c is made of the same first transparent electrode film 27 as that of the wiring connection portion 31. Specifically, the drain electrode 17 c is configured by a part of the pixel electrode 18 made of the first transparent electrode film 27.
  • An image signal (potential) supplied to the source electrode 17b is supplied to the drain electrode 17c via the channel portion 17d as the gate electrode 17a is turned on.
  • the pixel electrode 18 is charged by the image signal supplied to the drain electrode 17c.
  • the drain electrode 17c is composed of the first transparent electrode film 27 that is a light-transmitting conductive material, light in the pixel PX is compared with a case where the drain electrode material is a light-shielding material such as a metal material. The amount of transmitted light increases, and the aperture ratio related to the pixel PX becomes higher.
  • the drain electrode 17c can be formed in addition to the pixel electrode 18 and the wiring connection portion 31 by patterning the first transparent electrode film 27 (see FIGS. 12 and 13). ). Thereby, the manufacturing cost can be further reduced.
  • the source electrode 17 b and the drain electrode 17 c configured as described above are located on the lower layer side of the first transparent electrode film 27 and on the upper layer side of the oxide semiconductor film 24.
  • 26 is connected to a channel portion 17d made of the oxide semiconductor film 24 through two openings (contact holes) 26a and 26b formed in the aperture 26.
  • the two openings 26a and 26b are arranged in the vicinity of one end of the channel portion 17d in the first interlayer insulating film 26, that is, at a position overlapping the wiring connection portion 31 including the source electrode 17b.
  • the length (channel length) L1 of the channel portion 17d is defined by the distance between the source side opening 26a and the drain side opening 26b. That is, in the manufacturing process of the array substrate 11b, the length L1 of the channel portion 17d is determined by the exposure accuracy of the photomask used in the step of patterning the first interlayer insulating film 26 (forming at least two openings 26a and 26b). As a result, the exposure accuracy of the photomask related to other processes is almost independent of the length L1 of the channel portion 17d (see FIGS. 8 and 10). This makes it difficult for the length L1 of the channel portion 17d to vary, so that the characteristics of the TFT 17 can be stably exhibited.
  • FIG. 4 the formation ranges of the source-side opening 26a and the drain-side opening 26b are illustrated by relatively thick dashed lines in comparison with the slit 30a.
  • the source-side opening 26a extends linearly along the X-axis direction and ranges from the source wiring 20 to one end of the channel portion 17d, that is, the wiring
  • the connection portion 31 is formed in a range extending substantially over the entire length excluding both end portions in the length direction, and has a horizontally long rectangular shape when seen in a plan view. Accordingly, the wiring connection portion 31 is stacked so as to be in direct contact with one end of the source wiring 20 and the channel portion 17d through the source side opening 26a, and between the source wiring 20 and the channel portion 17d.
  • the portion to be disposed is laminated so as to be in direct contact with the gate insulating film 23 through the source side opening 26a.
  • the source side opening 26a has a length dimension (dimension in the extending direction) smaller than the arrangement pitch of the pixels PX, and the same number as the number of the pixels PX arranged on the plate surface of the array substrate 11b. It is installed separately for each PX.
  • the drain side opening 26b is disposed at the other end of the channel portion 17d, specifically, a portion overlapping the pixel electrode 18 (pixel electrode overlapping portion), and the pixel electrode overlapping portion.
  • the shape of the planar view is slightly smaller than that. Therefore, the drain electrode 17c is laminated so as to be in direct contact with the pixel electrode overlapping portion of the channel portion 17d through the drain side opening 26ba.
  • the liquid crystal panel 11 according to the present embodiment has the above-described structure, and a manufacturing method thereof will be described next.
  • the liquid crystal panel 11 according to the present embodiment is manufactured by bonding a separately manufactured CF substrate 11a and array substrate 11b.
  • a method for manufacturing the array substrate 11b constituting the liquid crystal panel 11 will be described in detail.
  • the manufacturing method of the array substrate 11b includes a first metal film forming step for forming the first metal film 22 to form the gate wiring 19 and the gate electrode 17a, and a gate insulating film forming step for forming the gate insulating film 23.
  • a first transparent electrode film forming step for forming the source electrode 17b and the drain electrode 17c, a second interlayer insulating film forming step for forming the second interlayer insulating film 28, and a second transparent electrode film 29 are formed.
  • Forms common electrode 30 and the like Comprising at least a
  • the first metal film forming step included in the method of manufacturing the array substrate 11b the first metal film 22 and the photoresist are sequentially formed on the glass substrate GS, and the photoresist is exposed and developed using a photomask. Etching is performed later to form the gate wiring 19 and the gate electrode 17a.
  • the gate insulating film forming step the gate insulating film 23 is formed in a solid shape on the glass substrate GS and the first metal film 22.
  • the oxide semiconductor film 24 and the photoresist are sequentially formed on the gate insulating film 23, and the photoresist is exposed and developed using a photomask, and then etching is performed, whereby the channel portion 17d. Form etc.
  • a second metal film 25 and a photoresist are sequentially formed on the gate insulating film 23 and the oxide semiconductor film 24, and the photoresist is exposed and developed using a photomask and then etched. As a result, the source wiring 20 and the like are formed.
  • a first interlayer insulating film 26 and a photoresist are formed on the gate insulating film 23, the oxide semiconductor film 24, and the second metal film 25 as shown in FIGS.
  • Etching is performed after exposing and developing the photoresist using a photomask, thereby forming the source side opening 26a and the drain side opening 26b as shown in FIGS. Since the distance between the source side opening 26a and the drain side opening 26b formed in the first interlayer insulating film formation step is determined by the exposure accuracy using the same photomask, the channel Variations are less likely to occur in the length L1 of the portion 17d. In this state, the oxide semiconductor film 24 is partially exposed through the source side opening 26a and the drain side opening 26b.
  • a first transparent electrode film 27 and a photoresist are formed on the gate insulating film 23, the oxide semiconductor film 24, the second metal film 25, and the first interlayer insulating film 26, and a photomask is formed.
  • Etching is performed after exposing / developing the photoresist using, thereby forming a pixel electrode 18, a source electrode 17b, a drain electrode 17c, and the like, as shown in FIGS.
  • the source electrode 17b and the drain electrode 17c are connected to the channel portion 17d of the oxide semiconductor film 24 through the source-side opening 26a and the drain-side opening 26b of the first interlayer insulating film 26, respectively.
  • the pixel electrode 18, the source electrode 17b, and the drain electrode 17c are formed in a lump, so that the manufacturing cost can be suitably reduced.
  • the second interlayer insulating film forming step the second interlayer insulating film 28 is formed in a solid shape on the first interlayer insulating film 26 and the first transparent electrode film 27.
  • a second transparent electrode film 29 and a photoresist are formed on the second interlayer insulating film 28, and the photoresist is exposed and developed using a photomask and then etched. As shown in FIGS. 6 and 7, a common electrode 30 and the like are formed.
  • the array substrate (thin film transistor substrate) 11b of this embodiment includes the source wiring (wiring) 20, the TFT (thin film transistor) 17 having the plurality of electrodes 17a, 17b, and 17c, and at least a part of the plurality of electrodes. 17a, 17b, and 17c, connected to the source wiring 20, and provided with a wiring connection portion 31 made of a translucent conductive material.
  • a signal transmitted through the source wiring 20 is transmitted from the wiring connection portion 31 among the plurality of electrodes 17a, 17b, and 17c constituting the TFT 17 via the wiring connection portion 31 connected to the source wiring 20. Supplied to the electrode constituted by a part. Since the wiring connection portion 31 is made of a light-transmitting conductive material, the amount of transmitted light is increased and the aperture ratio is higher than when the wiring connection portion 31 is made of a light-shielding material such as a metal material. Therefore, it is suitable for achieving high definition.
  • the pixel electrode (first transparent electrode) 18 formed of the first transparent electrode film 27 connected to any of the plurality of electrodes 17 a, 17 b, and 17 c in the TFT 17 and the second interlayer with respect to the first transparent electrode film 27.
  • a common electrode (second transparent electrode) 30 formed of a second transparent electrode film 29 overlapping with an insulating film (interlayer insulating film) 28 and capable of forming an electric field between the pixel electrode 18 and wiring.
  • the connection part 31 is made of the first transparent electrode film 27. In this way, since the wiring connection portion 31 is made of the first transparent electrode film 27 that is a translucent conductive material, the aperture ratio can be sufficiently increased.
  • the pixel electrode 18 and the wiring connection portion 31 can be formed by patterning the first transparent electrode film 27. Thereby, the manufacturing cost can be reduced.
  • the TFT 17 has a channel portion 17d made of an oxide semiconductor film (semiconductor film) 24, and at least a part of the wiring connection portion 31 on one end side of the channel portion 17d on the plurality of electrodes 17a, 17b, and 17c. And the drain electrode 17c connected to the other end side of the channel portion 17d.
  • the drain electrode 17c includes the first transparent electrode film 27 and the second transparent electrode. Of the film 29, the first transparent electrode film 27 is the same as the wiring connection portion 31. In this case, since the drain electrode 17c is made of the first transparent electrode film 27, which is a light-transmitting conductive material, light transmission can be achieved as compared with a case where the drain electrode material is a light-shielding material such as a metal material.
  • the drain electrode 17 c can be formed in addition to the pixel electrode 18 and the wiring connection portion 31 by patterning the first transparent electrode film 27. Thereby, the manufacturing cost can be further reduced.
  • the TFT 17 has a channel portion 17d made of the oxide semiconductor film 24, and is connected to the plurality of electrodes 17a, 17b, and 17c at least a part of the wiring connection portion 31 and to one end side of the channel portion 17d.
  • a source electrode 17b and a drain electrode 17c connected to the other end of the channel portion 17d are included, and a first interlayer insulating film (insulating film) disposed on the upper layer side of the oxide semiconductor film 24 is included. ) 26, and a first interlayer insulating film 26 in which a drain side opening 26 b and a source side opening 26 a (opening) are formed at positions overlapping with the source electrode 17 b and the drain electrode 17 c, respectively.
  • the source electrode 17b and the drain electrode 17c are configured by the first transparent electrode film (transparent electrode film) 27 disposed on the upper layer side of the first interlayer insulating film 26.
  • the drain electrode 17c is connected to the channel portion 17d made of the oxide semiconductor film 24 through the two drain side openings 26b and the source side opening 26a formed in the first interlayer insulating film 26, respectively. Since the length L1 of the channel portion 17d is defined by the distance between the two drain side openings 26b and the source side opening 26a in the first interlayer insulating film 26, the length L1 of the channel portion 17d is unlikely to vary. Accordingly, the characteristics of the TFT 17 can be stably exhibited.
  • the liquid crystal panel (display panel) 11 includes the array substrate 11b described above and a CF substrate (counter substrate) 11a bonded to the array substrate 11b. According to the liquid crystal panel 11 having such a configuration, the aperture ratio in the array substrate 11b is improved, which is suitable for achieving high definition.
  • the first interlayer insulating film 126 has the source-side opening 126 a in the X-axis direction (extending direction of the wiring connection portion 131 from the source wiring 120 to the TFT 117). It is formed so as to extend in a range straddling between adjacent pixels PX along. Specifically, the source-side opening 126a extends substantially over the entire length of the display area AA in the X-axis direction, and has a strip shape that crosses all the pixels PX arranged along the X-axis direction.
  • the strip-like source-side openings 126a form a horizontal stripe as a whole by arranging a plurality of them at a constant interval in the Y-axis direction, and the arrangement pitch is the same as the arrangement pitch between the pixels PX in the Y-axis direction.
  • the number of pixels is almost equal and the number of pixels is equal to the number of pixels PX arranged along the Y-axis direction. If the same number of source-side openings are individually formed for the plurality of pixels PX arranged in the X-axis direction in the first interlayer insulating film 126, a certain interval is provided between adjacent source-side openings. Need to design.
  • the source-side opening 126a that overlaps the source electrode 117b extends in a range that spans between adjacent pixels PX in the X-axis direction, it is not necessary to design the spacing as described above.
  • the arrangement pitch in the X-axis direction in the pixel PX can be narrowed, which is suitable for achieving high definition.
  • the first interlayer insulating film 126 is formed so that the source-side opening 126a overlapping the source electrode 117b extends in a range straddling between adjacent pixels PX in the extending direction. If the same number of source-side openings are individually formed for the plurality of pixels PX arranged in the first interlayer insulating film along the extending direction of the wiring connection portion 131, the gap between adjacent source-side openings is determined. Therefore, it is necessary to design a certain interval.
  • the source-side opening 126a that overlaps the source electrode 117b extends in a range that spans between adjacent pixels PX in the extending direction of the wiring connection portion 131, the above-described interval is designed. Therefore, the arrangement pitch of the pixels PX can be narrowed, which is suitable for achieving high definition.
  • the wiring connection portion 231 including the source electrode 217b includes a low resistance region in which the resistance of the oxide semiconductor film 224 is partially reduced as shown in FIGS.
  • the low resistance region of the oxide semiconductor film 224 is a conductor having a certain resistivity (for example, a resistivity of about 1 / 10,000,000 to 1/100 of the resistivity of the channel portion 217d which is a non-low resistance region). It is supposed to function. Note that in FIG. 17 and FIG. 18, the wiring connection portion 231 (the low resistance region in the oxide semiconductor film 224) is illustrated in a shaded manner.
  • the oxide semiconductor film 224 including the low resistance region is substantially transparent and is a light-transmitting conductive material
  • the wiring connection portion 231 is formed by a part of the oxide semiconductor film 224 (low resistance region).
  • the aperture ratio of the pixel PX can be sufficiently increased.
  • the oxide semiconductor film 224 can be patterned to form the channel portion 217d and the wiring connection portion 231 including the source electrode 217b, so that the manufacturing cost can be reduced. .
  • various films stacked on the array substrate 211 b according to the present embodiment are arranged so as to be interposed between the first interlayer insulating film 226 and the first transparent electrode film 227.
  • a third interlayer insulating film 33 is added.
  • the third interlayer insulating film 33 is made of, for example, an inorganic material such as silicon nitride, and preferably has a thickness of, for example, about 100 nm.
  • the wiring connection portion 231 almost entirely overlaps the source-side opening 226 a of the first interlayer insulating film 226.
  • the third interlayer insulating film 33 stacked on the upper layer side of the first interlayer insulating film 226 is in direct contact with the exposed portion of the oxide semiconductor film 224 exposed through the source-side opening 226a of the first interlayer insulating film 226. become.
  • the third interlayer insulating film 33 is made of the same material as the second interlayer insulating film 228, and contains hydrogen in the material. Accordingly, hydrogen contained in the third interlayer insulating film 33 diffuses into the exposed portion of the oxide semiconductor film 224 through the source-side opening 226a of the first interlayer insulating film 226, thereby reducing the resistance of the exposed portion.
  • the exposed portion of the oxide semiconductor film 224 forms a wiring connection portion 231 with almost the entire region being a low resistance region.
  • a third drain side opening 33a is formed in the third interlayer insulating film 33 at a position overlapping the drain side opening 226b.
  • a photoresist is formed on the third interlayer insulating film 33, and the photoresist is exposed and developed using a photomask and then etched. As a result, the third drain side opening 33a is formed.
  • the drain electrode 217c is formed of the same first transparent electrode film 227 as the pixel electrode 218, as shown in FIG.
  • the wiring connection portion 231 including the source electrode 217b as described above is composed of a low resistance region of the oxide semiconductor film 224 different from the first transparent electrode film 227.
  • the gap is secured between the drain electrode 217c and the source electrode 217b. It is possible to adopt a design that shortens the distance. Specifically, as shown in FIG.
  • the length L2 of the channel portion 217d can be made shorter than the length L1 of the channel portion 17d described in the first embodiment. Thereby, the characteristics of the TFT 217 can be improved.
  • the length of the channel portion 217d is defined by the distance between the two openings 226a and 226b in the first interlayer insulating film 226, as in the first embodiment, and therefore the length of the channel portion 217d. Variations are less likely to occur, and the characteristics of the TFT 217 can be stably exhibited.
  • the TFT 217 has the channel portion 217d made of the oxide semiconductor film 224, and at least a part of the wiring connection portion 231 on the plurality of electrodes 217a, 217b, and 217c.
  • a source electrode 217b connected to one end side of the channel portion 217d and a drain electrode 217c connected to the other end side of the channel portion 217d are included, and the wiring connection portion 231 includes an oxide semiconductor film It consists of a low resistance region in which 224 is partially reduced in resistance.
  • the wiring connection portion 231 includes a low resistance region in which the resistance of the oxide semiconductor film 224 that is a light-transmitting conductive material is partially reduced, the aperture ratio can be sufficiently increased. .
  • the channel portion 217d and the wiring connection portion 231 can be formed by patterning the oxide semiconductor film 224. Thereby, the manufacturing cost can be reduced.
  • the pixel electrode 218 formed of the first transparent electrode film 227 is connected to the drain electrode 217c of the TFT 217, and the second transparent electrode film 229 is superimposed on the first transparent electrode film 227 via the second interlayer insulating film 228.
  • the common electrode 230 capable of forming a capacitance or electric field with the pixel electrode 218.
  • the drain electrode 217c is made of the first transparent electrode film 227. In this case, since the drain electrode 217c is composed of the first transparent electrode film 227 that is a light-transmitting conductive material, the amount of transmitted light can be reduced compared to the case where the drain electrode is made of a light-shielding material such as a metal material. Increase, and the aperture ratio becomes higher.
  • the pixel electrode 218 or the common electrode 230 and the drain electrode 217c can be formed by patterning the first transparent electrode film 227. Thereby, the manufacturing cost can be further reduced. Further, since the drain electrode 217c is made of the first transparent electrode film 227 and the source electrode 217b is made of the low resistance region of the oxide semiconductor film 224, the drain electrode and the source electrode are assumed to be the same transparent Compared to the case of using an electrode film, a design can be adopted in which the distance secured between the drain electrode 217c and the source electrode 217b is shorter. Accordingly, the channel portion 217d can be shortened, and the characteristics of the TFT 217 can be improved.
  • the liquid crystal panel 311 uses, for example, a negative nematic liquid crystal material as a liquid crystal material constituting the liquid crystal layer 311c, and an electric field is generated between the substrates 311a and 311b.
  • the liquid crystal molecules LC are aligned substantially perpendicular to the alignment films 311d and 311e that are the surfaces of the substrates 311a and 311b. Therefore, the operation mode of the liquid crystal panel 311 according to this embodiment is a so-called VA mode.
  • FIG. 20 schematically illustrates the alignment in the initial state of the liquid crystal molecules LC included in the liquid crystal layer 311c.
  • the counter electrode 11k is provided on the CF substrate 311a facing the array substrate 311b as shown in FIG. ing.
  • the counter electrode 11k is laminated on the surface of the color filter 311h and the light shielding portion 311i in the CF substrate 311a, and is formed in a solid shape over almost the entire area of the inner surface of the CF substrate 311a.
  • the counter electrode 11k is made of a transparent electrode material such as ITO (Indium Tin Oxide), and preferably has a thickness of, for example, about 100 nm.
  • each pixel electrode 318 is supplied. A potential difference is generated between the two. Then, the alignment state of the liquid crystal molecules LC contained in the liquid crystal layer 311c changes based on the potential difference generated between the counter electrode 11k and each pixel electrode 318, and the polarization state of the transmitted light changes accordingly.
  • the amount of transmitted light 311 is individually controlled for each pixel PX, and a predetermined color image is displayed.
  • the first transparent electrode film 327 includes the auxiliary capacitance electrode 32 superposed on the pixel electrode 318, as shown in FIGS.
  • the transparent electrode film 329 constitutes the pixel electrode 318, respectively. That is, in the present embodiment, the pixel electrode 318 is configured by the second transparent electrode film 329 on the upper layer side with respect to the first transparent electrode film 327.
  • the auxiliary capacitance electrode 32 is for forming a capacitance with the pixel electrode 318 and holding the potential charged in the pixel electrode 318 for a certain period.
  • the auxiliary capacitance electrode 32 extends in almost the entire length of the display area AA in the X-axis direction (extending direction of the wiring connection portion 331), and has a strip shape that traverses all the pixels PX arranged in the X-axis direction. .
  • the strip-shaped auxiliary capacitance electrodes 32 form a horizontal stripe as a whole by arranging a plurality of them at a constant interval in the Y-axis direction (extending direction of the source wiring 320), and the arrangement pitch is about the Y-axis direction.
  • the number of pixels PX is substantially equal to the arrangement pitch between the pixels PX, and the number of pixels arranged is equal to the number of pixels PX arranged along the Y-axis direction.
  • the auxiliary capacitance electrode 32 has a plurality of openings 32a formed in an island shape at a position overlapping with a drain side contact hole CH1 of the pixel PX described later.
  • the various films formed on the array substrate 311b according to the present embodiment include a first interlayer insulating film 326 and a first transparent electrode film as in the third embodiment.
  • a third interlayer insulating film 333 is added so as to be interposed between the first and second layers 327.
  • the third interlayer insulating film 333 is preferably made of an inorganic material such as silicon nitride, and preferably has a thickness of about 200 nm, for example. That is, the third interlayer insulating film 333 is made of the same material as the second interlayer insulating film 328, and contains hydrogen in the material.
  • the first interlayer insulating film 326 preferably has a thickness of, for example, about 200 nm, that is, equal to the thickness of the third interlayer insulating film 333 (thinner than the thickness of the second interlayer insulating film 328). .
  • the drain electrode 317c As shown in FIGS. 21 and 22, the drain electrode 317c according to the present embodiment has a center position in the X-axis direction and the Y-axis direction in the pixel PX from the end of the channel portion 317d opposite to the source electrode 317b side. They are arranged so as to extend linearly along the Y-axis direction until they reach the vicinity. An end portion of the drain electrode 317c opposite to the channel portion 317d side is a connection portion with the pixel electrode 318.
  • the drain electrode 317c is formed of a low resistance region obtained by partially reducing the resistance of the oxide semiconductor film 324.
  • the low resistance region of the oxide semiconductor film 324 is a conductor having a certain resistivity (for example, a resistivity of about 1 / 10,000,000 to 1/100 of the resistivity of the channel portion 317d which is a non-low resistance region). It is supposed to function. Note that in FIG. 22 and FIG. 23, the low-resistance region (including the drain electrode 317 c) in the oxide semiconductor film 324 is illustrated by being shaded. Since the oxide semiconductor film 324 including the low-resistance region is substantially transparent and is a light-transmitting conductive material, the drain electrode 317c is formed by part of the oxide semiconductor film 324 (low-resistance region). The aperture ratio of the pixel PX can be sufficiently increased. In manufacturing the array substrate 311b, the oxide semiconductor film 324 can be patterned to form the channel portion 317d and the drain electrode 317c, so that the manufacturing cost can be reduced.
  • a certain resistivity for example, a resistivity of about 1 / 10,000,000 to 1/100 of the resist
  • the first interlayer insulating film 326 disposed on the upper layer side than the oxide semiconductor film 324 has a formation range in the Y-axis direction in the drain side opening 326b on the source electrode 317b side in the channel portion 317d. From the opposite end to the center position of the pixel PX in the X-axis direction and the Y-axis direction. That is, the drain side opening 326b overlaps with the drain electrode 317c over almost the entire length in the Y-axis direction.
  • the drain-side opening 326b extends over almost the entire length of the display area AA in the X-axis direction, and has a strip shape that traverses all the pixels PX arranged along the X-axis direction.
  • the strip-shaped drain-side openings 326b are formed in a horizontal stripe shape as a whole by arranging a plurality of them at regular intervals in the Y-axis direction. The number of pixels is almost equal and the number of pixels is equal to the number of pixels PX arranged along the Y axis direction.
  • the third interlayer insulating film 333 laminated on the upper layer side of the first interlayer insulating film 326 is directly with respect to the exposed portion of the oxide semiconductor film 324 exposed through the drain side opening 326b of the first interlayer insulating film 326. Will be in touch.
  • the third interlayer insulating film 333 is made of silicon nitride as described above, and contains hydrogen in the material. Accordingly, hydrogen contained in the third interlayer insulating film 333 diffuses into the exposed portion of the oxide semiconductor film 324 through the drain-side opening 326b of the first interlayer insulating film 326, and the resistance of the exposed portion is reduced.
  • the exposed portion of the oxide semiconductor film 324 is almost entirely formed of a low-resistance region to form the drain electrode 317c. Note that the portion of the oxide semiconductor film 324 exposed to the source-side opening 326a of the first interlayer insulating film 326 is similarly reduced in resistance by hydrogen introduced from the third interlayer insulating film 333.
  • the wiring connection portion 331 including the source electrode 317b is composed of the same first transparent electrode film (second transparent electrode film) 327 as the auxiliary capacitance electrode 32 as shown in FIGS.
  • the drain electrode 317c is made of the low resistance region of the oxide semiconductor film 324 and the source electrode 317b is made of the first transparent electrode film 327, the drain electrode and the source electrode are assumed to be the same.
  • the distance secured between the drain electrode 317c and the source electrode 317b is shorter. Accordingly, the channel portion 317d can be shortened, and the characteristics of the TFT 317 can be improved.
  • the wiring connection portion 331 is made of the same first transparent electrode film 327 as the auxiliary capacitance electrode 32, an arrangement configuration in which the pixel electrode 318 made of the second transparent electrode film 329 is superimposed on the wiring connection portion 331 may be adopted.
  • the pixel electrode 318 includes a pixel whose end opposite to the channel portion 317 d side in the Y-axis direction is adjacent to the upper side illustrated in FIG. 21 in the Y-axis direction. It is arranged so as to overlap with part of the source electrode 317b and the gate electrode 317a in PX. Thereby, since the formation range of the pixel electrode 318 becomes wider, the aperture ratio can be further increased.
  • the third interlayer insulating film 333 is laminated on the upper layer side of the first interlayer insulating film 326. As shown in FIGS. 22 and 23, in the insulating film 333, a third drain side opening 333a is formed at a position overlapping the drain side opening 326b in order to connect the pixel electrode 318 to the drain electrode 317c. .
  • the third drain-side opening 333a is arranged near the center position in the X-axis direction and the Y-axis direction of the pixel PX, and the end of the drain electrode 317c opposite to the channel portion 317d side in the Y-axis direction. It is arranged to overlap.
  • the third drain side opening 333a has a rectangular shape when seen in a plan view, and the length of each side is shorter than the width dimension (dimension in the X-axis direction) of the drain electrode 317c.
  • the second interlayer insulating film 328 disposed on the upper layer side of the third interlayer insulating film 333 also has a second drain side opening having substantially the same formation range at a position overlapping the above-described third drain side opening 333a.
  • a portion 28a is formed.
  • the overlapping region of the drain side opening 326b, the second drain side opening 28a, and the third drain side opening 333a constitutes a drain side contact hole CH1 for connecting the pixel electrode 318 to the drain electrode 317c. .
  • the formation range of the drain side contact hole CH1 is defined by the formation range of the second drain side opening 28a and the third drain side opening 333a.
  • the third interlayer insulating film 333 at a position overlapping the source-side opening 326a of the first interlayer insulating film 326, as shown in FIGS. 21 and 23, a formation range substantially the same as the source-side opening 326a.
  • the third source side opening 33b is formed.
  • the source side contact hole CH2 for connecting the wiring connection portion 331 to the channel portion 317d and the source wiring 320 is constituted by the source side opening 326a and the third source side opening 33b.
  • the formation range of the source side opening 326a and the drain side opening 326b is a relatively thick two-dot chain line
  • the formation range of the third drain side opening 333a is a relatively thin one-dot chain line.
  • the second drain side opening 28a is not shown.
  • each pixel PX is formed on the surface of the array substrate 311b as shown in FIG.
  • a concave portion is generated in the vicinity of the center position in the direction and the Y-axis direction.
  • the concave portion enables the liquid crystal molecules LC included in the liquid crystal layer 311c to be radially aligned in the initial state.
  • the pixels are arranged in such an amount that the arrangement space for the recess and the projection becomes unnecessary.
  • the arrangement pitch of PX can be narrowed, which is suitable for further high definition.
  • the liquid crystal panel 311 according to the present embodiment has the above-described structure. Next, a manufacturing method thereof, particularly a manufacturing method of the array substrate 311b will be described.
  • the manufacturing method of the array substrate 311b according to this embodiment includes a third interlayer insulating film forming step of forming and patterning the third interlayer insulating film 333 in addition to the method described in the first embodiment.
  • the third interlayer insulating film forming step is performed between the second metal film forming step and the first transparent electrode film forming step.
  • the first interlayer insulating film 326 is patterned to form the source-side opening 326a and A drain side opening 326b and the like are formed. In this state, a portion of the oxide semiconductor film 324 that overlaps with the source-side opening 326a and the drain-side opening 326b is exposed through the openings 326a and 326b.
  • a third interlayer insulating film 333 is formed over the oxide semiconductor film 324 and the first interlayer insulating film 326 as shown in FIGS.
  • the formed third interlayer insulating film 333 is in direct contact with the exposed portion of the oxide semiconductor film 324 through the source-side opening 326a and the drain-side opening 326b of the first interlayer insulating film 326.
  • the third interlayer insulating film 333 contains hydrogen in the material, the hydrogen diffuses into the exposed portion of the oxide semiconductor film 324 through the source-side opening 326a and the drain-side opening 326b.
  • the resistance of the exposed part is reduced. Accordingly, the exposed portion of the oxide semiconductor film 324 is almost entirely reduced in resistance and constitutes the drain electrode 317c and the like.
  • a photoresist is formed on the third interlayer insulating film 333, and the photoresist is exposed and developed using a photomask, followed by etching to form the third source side opening 33b (FIG. 26 and the alternate long and two short dashes line in FIG. 27).
  • the first transparent electrode film forming step the first transparent electrode film 327 is formed and patterned. At this time, as shown in FIGS. 28 and 29, the wiring connection portion 331 made of the first transparent electrode film 327 is oxidized through the source-side contact hole CH2 (the source-side opening 326a and the third source-side opening 33b).
  • the semiconductor film 324 is connected to the low resistance region on the source electrode 317b side.
  • the auxiliary capacitance electrode 32 is formed with an opening 32a centering on the formation region of the drain side contact hole CH1.
  • the second interlayer insulating film formation step the second interlayer insulating film 328 is formed using the same material as the third interlayer insulating film 33.
  • the second interlayer insulating film 328 is patterned together with the third interlayer insulating film 33 to form the second drain side opening 28a and the third drain side opening 333a. Thereby, the drain side contact hole CH1 is formed.
  • the second transparent electrode film forming step the second transparent electrode film 329 is formed and patterned.
  • the pixel electrode 318 made of the second transparent electrode film 329 has a drain side contact hole CH1 (drain side opening 326b, third drain side opening 333a, and second drain side).
  • the oxide semiconductor film 324 is connected to a drain electrode 317c which is a drain-side low resistance region.
  • the pixel electrode (first transparent electrode film) 329 that is connected to one of the plurality of electrodes 317 a, 317 b, and 317 c in the TFT 317 and includes the second transparent electrode film (first transparent electrode film) 329.
  • an auxiliary capacitance electrode (second transparent electrode) 32, and the wiring connection portion 331 is made of a first transparent electrode film 327.
  • the wiring connection portion 331 is made of the first transparent electrode film 327 made of a translucent conductive material, the aperture ratio can be sufficiently increased.
  • the auxiliary capacitance electrode 32 and the wiring connection portion 331 can be formed by patterning the first transparent electrode film 327. Thereby, the manufacturing cost can be reduced.
  • the TFT 317 includes a channel portion 317d made of the oxide semiconductor film 324, and is connected to a plurality of electrodes 317a, 317b, and 317c at least part of the wiring connection portion 331 and one end side of the channel portion 317d.
  • the source electrode 317b and the drain electrode 317c connected to the other end of the channel portion 317d are included, and the drain electrode 317c is obtained by partially reducing the resistance of the oxide semiconductor film 324. It consists of a low resistance region.
  • the drain electrode 317c includes a low resistance region in which the oxide semiconductor film 324, which is a light-transmitting conductive material, is partially reduced in resistance, the drain electrode material may be a metal material or the like.
  • the drain electrode 317c can be formed in addition to the channel portion 317d by patterning the oxide semiconductor film 324. Thereby, the manufacturing cost can be further reduced. Further, since the drain electrode 317c is made of the low resistance region of the oxide semiconductor film 324 and the source electrode 317b is made of the first transparent electrode film 327, the drain electrode and the source electrode are assumed to be the same transparent. Compared to the case of using an electrode film, it is possible to adopt a design in which the distance secured between the drain electrode 317c and the source electrode 317b is shorter. Accordingly, the channel portion 317d can be shortened, and the characteristics of the TFT 317 can be improved.
  • the first transparent electrode is a pixel electrode 318 that partially overlaps the wiring connection portion 331, whereas the second transparent electrode forms a capacitance with the pixel electrode 318, and the pixel
  • the auxiliary capacitance electrode 32 holds the potential charged in the electrode 318
  • the wiring connection portion 331 is made of the first transparent electrode film 327.
  • an arrangement configuration in which the pixel electrode 318 made of the second transparent electrode film 329 is superimposed on the wiring connection portion 331. can be taken. Accordingly, the formation range of the pixel electrode 318 is widened, so that the aperture ratio can be further increased.
  • a fifth embodiment of the present invention will be described with reference to FIG. 30 or FIG.
  • the range in which the source-side opening 426a and the third source-side opening 433b are formed is changed from the above-described fourth embodiment.
  • movement, and effect as above-mentioned Embodiment 4 is abbreviate
  • the first interlayer insulating film 426 and the third interlayer insulating film 433 are arranged so that the source side opening 426a and the third source side opening 433b are in the X-axis direction (source wiring).
  • the wiring connection portion 431 extends from 420 to the TFT 417 (in the extending direction) so as to extend in a range straddling between adjacent pixels PX.
  • the source-side opening 426a and the third source-side opening 433b extend in almost the entire length of the display area AA in the X-axis direction, and form a band shape that crosses all the pixels PX arranged in the X-axis direction. ing.
  • the strip-like source-side openings 426a and the third source-side openings 433b form a horizontal stripe as a whole by arranging a plurality of them at a constant interval in the Y-axis direction, and the arrangement pitch is about the Y-axis direction.
  • the number of pixels PX is substantially equal to the arrangement pitch between the pixels PX, and the number of pixels arranged is equal to the number of pixels PX arranged along the Y-axis direction. If the same number of source-side openings and third source-side openings are individually formed for the plurality of pixels PX arranged in the X-axis direction in the first interlayer insulating film 426 and the third interlayer insulating film 433.
  • the wiring connection portion 531 is a part of the channel portion 517d, specifically, from the portion on the source wiring 520 side in the X-axis direction in the channel portion 517d. It is formed in a range up to 520. Accordingly, the formation range of the third source-side opening 533b formed in the third interlayer insulating film 533 and constituting the source-side contact hole CH2 is substantially the same as that of the wiring connection portion 531, and among the channel portions 517d, The axial direction is a range from the end on the source wiring 520 side to the source wiring 520.
  • the formation range of the source side opening 526a formed in the first interlayer insulating film 526 is the same as that described in the fifth embodiment, and a part thereof overlaps with the third source side opening 533b. Thus, the source side contact hole CH2 is formed.
  • the wiring connection portion 531 is formed of the same first transparent electrode film 527 as the auxiliary capacitance electrode 532.
  • the auxiliary capacitance electrode 532 is formed as shown in FIGS.
  • the formation range is expanded as compared with the above-described Embodiment 5 so as to overlap with a portion that does not overlap with the wiring connection portion 531 (a portion opposite to the source wiring 520 side in the X-axis direction). ing.
  • the auxiliary capacitance electrodes 532 adjacent to each other in the Y-axis direction are connected by the extended portion 32b.
  • the electrical resistance concerning the auxiliary capacitance electrode 532 becomes small.
  • the auxiliary capacitance electrode 532 and the wiring connection portion 531 are both made of the same first transparent electrode film 527, the occurrence of a short circuit is prevented by being physically separated from each other.
  • the TFT 517 has the channel portion 517d made of the oxide semiconductor film 524, and at least a part of the wiring connection portion 531 to the plurality of electrodes 517a, 517b, 517c.
  • a source electrode 517b connected to one end side of the channel portion 517d and a drain electrode 517c connected to the other end side of the channel portion 517d are included, and arranged on the upper layer side of the oxide semiconductor film 524.
  • the first interlayer insulating film (insulating film) 526 is formed by forming a drain side opening 526b and a source side opening 526a (opening) at positions overlapping with the source electrode 517b and the drain electrode 517c, respectively.
  • One interlayer insulating film 526 is provided.
  • the source electrode 517b and the drain electrode 517c are formed of a low resistance region obtained by partially reducing the resistance of the oxide semiconductor film 524, two drains formed in the first interlayer insulating film 526 are formed.
  • the resistance of the oxide semiconductor film 524 is reduced through the side opening 526b and the source side opening 526a, the source electrode 517b and the drain electrode 517c connected to the channel portion 517d can be formed.
  • the length of the channel portion 517d is defined by the distance between the two drain side openings 526b and the source side opening 526a in the first interlayer insulating film 526, the length of the channel portion 517d is less likely to vary, Accordingly, the characteristics of the TFT 517 can be stably exhibited.
  • FIGS. 7 A seventh embodiment of the present invention will be described with reference to FIGS.
  • movement, and effect as above-mentioned Embodiment 4 is abbreviate
  • the wiring connection portion 631 including the source electrode 617b according to this embodiment is formed of a low resistance region obtained by partially reducing the resistance of the oxide semiconductor film 624, as shown in FIGS.
  • the low resistance region of the oxide semiconductor film 624 functions as a conductor having a certain resistivity, as in the above-described third embodiment.
  • the wiring connection portion 631 (low-resistance region in the oxide semiconductor film 624) is illustrated in a shaded manner. Since the oxide semiconductor film 624 including the low-resistance region is substantially transparent and is a light-transmitting conductive material, the wiring connection portion 631 is formed by part of the oxide semiconductor film 624 (low-resistance region). Thus, the aperture ratio of the pixel PX can be sufficiently increased.
  • the wiring connection portion 631 almost entirely overlaps the source-side opening 626a of the first interlayer insulating film 626.
  • the third interlayer insulating film 633 stacked on the upper layer side of the first interlayer insulating film 626 does not have the third source side opening 33b (see FIG. 23) described in the fourth embodiment,
  • the exposed portion of the oxide semiconductor film 624 exposed through the source-side opening 626a of the first interlayer insulating film 626 is covered and directly in contact with the exposed portion.
  • the third interlayer insulating film 633 is made of silicon nitride as described in the fourth embodiment, and contains hydrogen in the material.
  • the exposed portion of the oxide semiconductor film 624 forms a wiring connection portion 631 with almost the entire region being a low-resistance region.
  • the drain electrode 617c is formed of a low-resistance region in which the resistance of the oxide semiconductor film 624 is partially reduced as shown in FIGS.
  • both the drain electrode 617c and the source electrode 617b are made of the low resistance region of the oxide semiconductor film 624, compared to the case where the drain electrode and the source electrode are made of the same transparent electrode film.
  • it is possible to adopt a design (specifically, the design as shown in FIG. 19 described in Embodiment 3 above) in which the distance secured between the drain electrode 617c and the source electrode 617b is shortened. Accordingly, the channel portion 617d can be shortened, and the characteristics of the TFT 617 can be improved.
  • the TFT 617 can stably exhibit the characteristics.
  • the oxide semiconductor film 624 can be patterned to form the wiring connection portion 631 including the source electrode 617b in addition to the channel portion 617d and the drain electrode 617c. Costs can be reduced.
  • the drain electrode 617c is formed of a low resistance region in which the resistance of the oxide semiconductor film 624 is partially reduced.
  • the drain electrode 617c and the source electrode 617b of the wiring connection portion 631 are both made of the low resistance region of the oxide semiconductor film 624, the drain electrode and the source electrode are assumed to be the same transparent.
  • the source-side opening 726a is in the X-axis direction (the extending direction of the wiring connection portion 731 from the source wiring 720 to the TFT 717). It is formed so as to extend in a range straddling between adjacent pixels PX along. Specifically, the source-side opening 726a extends in almost the entire length of the display area AA in the X-axis direction and has a strip shape that crosses all the pixels PX arranged along the X-axis direction.
  • the strip-like source-side openings 726a form a horizontal stripe as a whole by arranging a plurality of them at regular intervals in the Y-axis direction.
  • the number of pixels is almost equal and the number of pixels is equal to the number of pixels PX arranged along the Y-axis direction. If the same number of source-side openings are individually formed for the plurality of pixels PX arranged in the X-axis direction in the first interlayer insulating film 726, a certain interval is provided between adjacent source-side openings. Need to design. On the other hand, if the source-side opening 726a that overlaps the source electrode 717b extends in a range that spans between adjacent pixels PX in the X-axis direction, it is not necessary to design the interval as described above. The arrangement pitch in the X-axis direction in the pixel PX can be narrowed, which is suitable for achieving high definition.
  • the wiring connection portion 831 is configured by a branch portion that branches off from the source wiring 820 along the X-axis direction.
  • a source electrode 817b overlapping with the gate electrode 817a and the channel portion 817d is formed. That is, the wiring connection portion 831 including the source electrode 817b is formed of the same second metal film 825 as the source wiring 820.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the light transmittance is not limited to 100% or a numerical value approximate thereto, and can transmit light.
  • the light transmittance may be slightly lower than the above.
  • the wiring connection portion (source electrode) and the drain electrode may be composed of the same second transparent electrode film as the common electrode.
  • the drain electrode may be composed of a transparent electrode film different from the transparent electrode film constituting the wiring connection portion (source electrode). Absent.
  • the wiring connection portion (source electrode) is formed of the first transparent electrode film or the second transparent electrode film has been described.
  • the wiring connection portion can be configured by the third transparent electrode film.
  • the drain electrode is made of the first transparent electrode film or the second transparent electrode film.
  • a third electrode is used in addition to the first transparent electrode film and the second transparent electrode film.
  • the drain electrode can be constituted by the third transparent electrode film.
  • the drain electrode is made of a low resistance region of an oxide semiconductor film
  • the wiring connection portion (source electrode) is the first transparent electrode film or the second transparent electrode. It may be a relationship of being made of a film.
  • the wiring connection portion may be configured by the same second transparent electrode film as the pixel electrode.
  • the wiring connection portion can be constituted by the third transparent electrode film.
  • the drain electrode may be composed of the same first transparent electrode film as the common electrode or the same second transparent electrode film as the pixel electrode.
  • the drain electrode in the array substrate provided with the third transparent electrode film in addition to the first transparent electrode film and the second transparent electrode film, the drain electrode can be constituted by the third transparent electrode film.
  • the formation range of the third source-side opening in the third interlayer insulating film can be changed as appropriate.
  • the formation range of the third source-side opening in the third interlayer insulating film may be the same as in the fourth and sixth embodiments.
  • the drain side contact hole is exemplified in the center in the X-axis direction and the Y-axis direction of the pixel. Any one or both of the directions may be arranged eccentrically.
  • silicon nitride is exemplified as the material of the second interlayer insulating film and the third interlayer insulating film.
  • a material other than silicon nitride can be used, and even in that case It is preferable to use a material containing hydrogen.
  • the specific material of the first interlayer insulating film can be changed as appropriate.
  • the specific metal material used for the first metal film and the second metal film can be changed as appropriate.
  • the laminated structure of the first metal film and the second metal film can be changed as appropriate. Specifically, the number of laminated layers can be changed, or a single-layer structure or an alloy structure can be used. Is possible.
  • the specific transparent electrode material used for the first transparent electrode film and the second transparent electrode film can be appropriately changed.
  • a transparent electrode material such as ITO (Indium Tin Oxide) or ZnO (Zinc Oxide) can be used.
  • an array substrate provided with an oxide semiconductor film as a semiconductor film has been exemplified.
  • polysilicon polycrystalline silicon (polycrystalline silicon)
  • CG silicon ContinuousconGrain Silicon
  • amorphous silicon a semiconductor film material.
  • the gate wiring extends linearly along the X-axis direction, and the configuration in which the concave portion or the convex portion is not formed on the side edge is illustrated, but the concave portion is formed on the side edge of the gate wiring. Or some convex parts may be formed. When a convex portion is formed on the side edge of the gate wiring, the convex portion may constitute a part or the entire region of the gate electrode.
  • the array substrate including two transparent electrode films (the first transparent electrode film and the second transparent electrode film) in the VA mode liquid crystal panel is exemplified.
  • the present invention can also be applied to an array substrate having a transparent electrode film as one layer in a panel.
  • the pixel electrode is formed by a single layer of transparent electrode film, while an auxiliary capacitance wiring parallel to the gate wiring is provided by using the first metal film, and a static capacitance is formed between the auxiliary capacitance wiring and the pixel electrode.
  • a capacitance may be formed so that the potential charged in the pixel electrode is held for a certain period.
  • the etch stop layer is not formed on the channel portion, and the lower surface of the end portion on the channel portion side of the source portion is disposed so as to be in contact with the upper surface of the oxide semiconductor film
  • an etch stop type TFT in which an etch stop layer is formed on the upper layer side of the channel portion may be provided.
  • liquid crystal panel whose operation mode is the FFS mode or the VA mode has been illustrated.
  • other liquid crystal panels that have other operation modes such as an IPS (In-Plane Switching) mode are also exemplified.
  • the present invention can also be applied to panels.
  • the COG mounting type liquid crystal panel in which the driver is directly mounted on the array substrate is exemplified.
  • the COF the driver is mounted on the flexible substrate and the flexible substrate is mounted on the array substrate.
  • the present invention can also be applied to a chip-on-film mounting type liquid crystal panel.
  • the liquid crystal panel pixels have been configured in a three-color configuration of red, green, and blue.
  • a four-color configuration is obtained by adding yellow, etc. to red, green, and blue.
  • the present invention can also be applied to a liquid crystal panel including pixels.
  • the liquid crystal panel having a vertically long rectangular shape is illustrated, but the present invention can also be applied to a liquid crystal panel having a horizontally long rectangular shape or a liquid crystal panel having a square shape. In addition, the present invention can be applied to a liquid crystal panel having a circular shape or an elliptical shape.
  • the present invention includes a configuration in which a functional panel such as a touch panel or a parallax barrier panel (switch liquid crystal panel) is attached to the liquid crystal panel described in each embodiment described above.
  • a functional panel such as a touch panel or a parallax barrier panel (switch liquid crystal panel) is attached to the liquid crystal panel described in each embodiment described above.
  • a transmissive liquid crystal display device including a backlight device that is an external light source is illustrated.
  • the present invention is applied to a reflective liquid crystal display device that performs display using external light.
  • the backlight device can be omitted.
  • the present invention can also be applied to a transflective liquid crystal display device.
  • a TFT is used as a switching element of a liquid crystal display device.
  • the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)).
  • TFT thin film diode
  • the present invention can be applied to a liquid crystal display device for monochrome display in addition to a liquid crystal display device for color display.
  • the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified, but other types of display panels (PDP (plasma display panel), organic EL panel, EPD (electrophoretic display panel) ), A display device using a MEMS (Micro Electro Mechanical Systems) display panel or the like) is also applicable.
  • PDP plasma display panel
  • organic EL panel organic EL panel
  • EPD electrotrophoretic display panel
  • MEMS Micro Electro Mechanical Systems
  • Drain electrode (electrode), 17d, 217d, 317d, 517d, 617d ... Channel portion, 18, 218, 318 ... Pixel electrode ( (First transparent electrode), 20, 120, 320, 420, 520, 720... Source wiring (wiring), 24, 224, 324 524, 624 ... oxide semiconductor film (semiconductor film), 26, 126, 226, 326, 426, 526, 626, 726 ... first interlayer insulating film (insulating film), 26a, 126a, 226a, 326a , 426a, 526a, 626a, 726a ... source side opening (opening), 26b, 226b, 326b, 526b, 626b ...
  • drain side opening opening

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

アレイ基板(薄膜トランジスタ基板)(11b)は、ソース配線(配線)(20)と、複数の電極(17a,17b,17c)を有するTFT(薄膜トランジスタ)(17)と、少なくとも一部が複数の電極(17a,17b,17c)のいずれかを構成し、ソース配線(20)に接続され、透光性導電材料からなる配線接続部(31)と、を備える。

Description

薄膜トランジスタ基板及び表示パネル
 本発明は、薄膜トランジスタ基板及び表示パネルに関する。
 従来、液晶表示装置の一例として下記特許文献1に記載されたものが知られている。特許文献1に記載された液晶表示装置に備えられる薄膜トランジスタ基板は、ソース部が、ゲート絶縁膜及び酸化物半導体膜の上層に設けられたソースメタルで形成され、ドレイン部が、酸化物半導体膜のうち、ゲート領域側とは反対側の表面を含む酸化物半導体膜の一部が低抵抗化された低抵抗化領域で構成されている。
特許第5330603号公報
(発明が解決しようとする課題)
 上記した特許文献1に記載された液晶表示装置では、ソース部は、ソースメタルからなるソース線から薄膜トランジスタへ向けて延在している。このソース部は、ソース線と同じソースメタルにより構成されているため、画素においては遮光領域となって開口率を低下させる要因となり、高精細化を図る上での制約となっていた。
 本発明は上記のような事情に基づいて完成されたものであって、開口率を向上させることを目的とする。
(課題を解決するための手段)
 本発明の薄膜トランジスタ基板は、配線と、複数の電極を有する薄膜トランジスタと、少なくとも一部が複数の前記電極のいずれかを構成し、前記配線に接続され、透光性導電材料からなる配線接続部と、を備える。
 このようにすれば、配線を伝送される信号は、配線に接続された配線接続部を介して薄膜トランジスタを構成する複数の電極のうち、配線接続部の一部によって構成される電極に供給される。配線接続部が透光性導電材料からなるので、仮に配線接続部の材料を金属材料などの遮光性材料とした場合に比べると、光の透過光量が増加し、開口率が高いものとなり、もって高精細化などを図る上で好適となる。
 本発明の実施態様として、次の構成が好ましい。
(1)前記薄膜トランジスタにおける複数の前記電極のいずれかに接続されて第1透明電極膜からなる第1透明電極と、前記第1透明電極膜に対して層間絶縁膜を介して重畳する第2透明電極膜からなり前記第1透明電極との間で静電容量または電界を形成可能な第2透明電極と、を備えており、前記配線接続部は、前記第1透明電極膜または前記第2透明電極膜からなる。このようにすれば、配線接続部が透光性導電材料である第1透明電極膜または第2透明電極膜からなるので、開口率を十分に高めることができる。当該薄膜トランジスタ基板の製造に際して、第1透明電極膜または第2透明電極膜をパターニングすることで第1透明電極または第2透明電極と配線接続部とを形成することができる。これにより、製造コストの低下を図ることができる。
(2)前記薄膜トランジスタは、半導体膜からなるチャネル部を有するとともに、複数の前記電極に、前記配線接続部の少なくとも一部であって前記チャネル部の一端側に接続されるソース電極と、前記チャネル部の他端側に接続されるドレイン電極と、が含まれる構成とされており、前記ドレイン電極は、前記第1透明電極膜と前記第2透明電極膜とのうち前記配線接続部と同じものからなる。このようにすれば、ドレイン電極が透光性導電材料である第1透明電極膜または第2透明電極膜からなるので、仮にドレイン電極の材料を金属材料などの遮光性材料とした場合に比べると、光の透過光量が増加し、開口率がより高いものとなる。しかも、当該薄膜トランジスタ基板の製造に際して、第1透明電極膜または第2透明電極膜をパターニングすることで第1透明電極または第2透明電極と配線接続部とに加えてドレイン電極をも形成することができる。これにより、製造コストのさらなる低下を図ることができる。
(3)前記薄膜トランジスタは、酸化物半導体膜からなるチャネル部を有するとともに、複数の前記電極に、前記配線接続部の少なくとも一部であって前記チャネル部の一端側に接続されるソース電極と、前記チャネル部の他端側に接続されるドレイン電極と、が含まれる構成とされており、前記ドレイン電極は、前記酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなる。このようにすれば、ドレイン電極が透光性導電材料である酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなるので、仮にドレイン電極の材料を金属材料などの遮光性材料とした場合に比べると、光の透過光量が増加し、開口率をさらに高めることができる。当該薄膜トランジスタ基板の製造に際して、酸化物半導体膜をパターニングすることでチャネル部に加えてドレイン電極をも形成することができる。これにより、製造コストのさらなる低下を図ることができる。さらには、ドレイン電極が酸化物半導体膜の低抵抗化領域からなり、ソース電極が第1透明電極膜または第2透明電極膜からなるものとされているから、仮にドレイン電極とソース電極とが同一の透明電極膜からなる場合に比べると、ドレイン電極とソース電極との間に確保する距離をより短くなる設計を採ることができる。これにより、チャネル部を短くすることができるから、薄膜トランジスタの特性を向上させることができる。
(4)前記第1透明電極は、その一部が前記配線接続部と重畳する画素電極とされるのに対し、前記第2透明電極は、前記画素電極との間で静電容量を形成し、前記画素電極に充電された電位を保持する補助容量電極とされており、前記配線接続部は、前記第2透明電極膜からなる。このようにすれば、配線接続部が補助容量電極と同じ第2透明電極膜からなるので、第1透明電極膜からなる画素電極を配線接続部に対して重畳する配置構成を採ることができる。これにより、画素電極の形成範囲が広くなるので、開口率をより高めることができる。
(5)前記薄膜トランジスタは、酸化物半導体膜からなるチャネル部を有するとともに、複数の前記電極に、前記配線接続部の少なくとも一部であって前記チャネル部の一端側に接続されるソース電極と、前記チャネル部の他端側に接続されるドレイン電極と、が含まれる構成とされており、前記配線接続部は、前記酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなる。このようにすれば、配線接続部が透光性導電材料である酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなるので、開口率を十分に高めることができる。当該薄膜トランジスタ基板の製造に際して、酸化物半導体膜をパターニングすることでチャネル部と配線接続部とを形成することができる。これにより、製造コストの低下を図ることができる。
(6)前記薄膜トランジスタにおける前記ドレイン電極に接続されて第1透明電極膜からなる第1透明電極と、前記第1透明電極膜に対して層間絶縁膜を介して重畳する第2透明電極膜からなり前記第1透明電極との間で静電容量または電界を形成可能な第2透明電極と、を備えており、前記ドレイン電極は、前記第1透明電極膜または前記第2透明電極膜からなる。このようにすれば、ドレイン電極が透光性導電材料である第1透明電極膜または第2透明電極膜からなるので、仮にドレイン電極を金属材料などの遮光性材料とした場合に比べると、光の透過光量が増加し、開口率がより高いものとなる。しかも、当該薄膜トランジスタ基板の製造に際して、第1透明電極膜または第2透明電極膜をパターニングすることで第1透明電極または第2透明電極とドレイン電極とを形成することができる。これにより、製造コストのさらなる低下を図ることができる。さらには、ドレイン電極が第1透明電極膜または第2透明電極膜からなり、ソース電極が酸化物半導体膜の低抵抗化領域からなるものとされているから、仮にドレイン電極とソース電極とが同一の透明電極膜からなる場合に比べると、ドレイン電極とソース電極との間に確保する距離をより短くなる設計を採ることができる。これにより、チャネル部を短くすることができるから、薄膜トランジスタの特性を向上させることができる。
(7)前記ドレイン電極は、前記酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなる。このようにすれば、ドレイン電極及び配線接続部のソース電極が共に酸化物半導体膜の低抵抗化領域からなるものとされているから、仮にドレイン電極とソース電極とが同一の透明電極膜からなる場合に比べると、ドレイン電極とソース電極との間に確保する距離をより短くなる設計を採ることができる。これにより、チャネル部を短くすることができるから、薄膜トランジスタの特性を向上させることができる。
(8)前記薄膜トランジスタは、半導体膜からなるチャネル部を有するとともに、複数の前記電極に、前記配線接続部の少なくとも一部であって前記チャネル部の一端側に接続されるソース電極と、前記チャネル部の他端側に接続されるドレイン電極と、が含まれる構成とされており、前記半導体膜の上層側に配される絶縁膜であって、前記ソース電極及び前記ドレイン電極と重畳する位置にそれぞれ開口部が形成されてなる絶縁膜が備えられる。このようにすれば、例えば、ソース電極及びドレイン電極が絶縁膜の上層側に配される透明電極膜により構成される場合には、ソース電極及びドレイン電極は、絶縁膜に形成された2つの開口部を通して半導体膜からなるチャネル部にそれぞれ接続される。それ以外にも、例えば、半導体膜が酸化物半導体膜とされ、ソース電極及びドレイン電極が酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなる場合には、絶縁膜に形成された2つの開口部を通して酸化物半導体膜を低抵抗化させるようにすれば、チャネル部に接続されたソース電極及びドレイン電極を形成することが可能とされる。いずれにしても、チャネル部の長さが絶縁膜における2つの開口部の間の距離によって規定されるので、チャネル部の長さにばらつきが生じ難くなり、もって薄膜トランジスタの特性を安定的に発揮させることができる。
(9)前記薄膜トランジスタを有する画素であって、少なくとも前記配線から前記薄膜トランジスタへ向かう前記配線接続部の延在方向に沿って並んで配される複数の画素を備えており、前記絶縁膜は、前記ソース電極と重畳する前記開口部が、前記延在方向について隣り合う前記画素の間を跨ぐ範囲に延在するよう形成されている。仮に、絶縁膜において配線接続部の延在方向に沿って並ぶ複数の画素に対して同数の開口部を個別に形成した場合には、隣り合う開口部の間に一定の間隔を設計する必要が生じる。これに対し、ソース電極と重畳する開口部が、配線接続部の延在方向について隣り合う画素の間を跨ぐ範囲に延在していれば、上記のような間隔を設計する必要がないので、画素の配列ピッチを狭くすることができ、もって高精細化を図る上で好適となる。
 次に、上記課題を解決するために、本発明の表示パネルは、上記記載の薄膜トランジスタ基板と、前記薄膜トランジスタ基板に対して貼り合わせられる対向基板と、を備える。このような構成の表示パネルによれば、薄膜トランジスタ基板における開口率の向上が図られているので、高精細化などを図る上で好適となる。
(発明の効果)
 本発明によれば、開口率を向上させることができる。
本発明の実施形態1に係るドライバを実装した液晶パネルとフレキシブル基板と制御回路基板との接続構成を示す概略平面図 液晶表示装置の長辺方向に沿った断面構成を示す概略断面図 液晶パネルの表示領域における断面構成を示す概略断面図 液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 液晶パネルを構成するCF基板の表示領域における平面構成を示す拡大平面図 図4のA-A線断面図 図4のB-B線断面図 アレイ基板の製造方法における第1層間絶縁膜形成工程にて第1層間絶縁膜を成膜した状態を示す図4のA-A線断面図 アレイ基板の製造方法における第1層間絶縁膜形成工程にて第1層間絶縁膜を成膜した状態を示す図4のB-B線断面図 アレイ基板の製造方法における第1層間絶縁膜形成工程にて成膜された第1層間絶縁膜をパターニングした状態を示す図4のA-A線断面図 アレイ基板の製造方法における第1層間絶縁膜形成工程にて成膜された第1層間絶縁膜をパターニングした状態を示す図4のB-B線断面図 アレイ基板の製造方法における第1透明電極膜形成工程にて成膜された第1透明電極膜をパターニングした状態を示す図4のA-A線断面図 アレイ基板の製造方法における第1透明電極膜形成工程にて成膜された第1透明電極膜をパターニングした状態を示す図4のB-B線断面図 本発明の実施形態2に係る液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 図14のB-B線断面図 本発明の実施形態3に係る液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 図16のA-A線断面図 図16のB-B線断面図 チャネル部の長さを変更した場合を示す図16のA-A線断面図 本発明の実施形態4に係る液晶パネルの表示領域における断面構成を示す概略断面図 液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 図21のA-A線断面図 図21のB-B線断面図 アレイ基板の製造方法における第1層間絶縁膜形成工程にて第1層間絶縁膜をパターニングした状態を示す図21のA-A線断面図 アレイ基板の製造方法における第1層間絶縁膜形成工程にて第1層間絶縁膜をパターニングした状態を示す図21のB-B線断面図 アレイ基板の製造方法における第2層間絶縁膜形成工程にて第2層間絶縁膜を成膜した状態を示す図21のA-A線断面図 アレイ基板の製造方法における第2層間絶縁膜形成工程にて第2層間絶縁膜を成膜した状態を示す図21のB-B線断面図 アレイ基板の製造方法における第1透明電極膜形成工程にて成膜された第1透明電極膜をパターニングした状態を示す図21のA-A線断面図 アレイ基板の製造方法における第1透明電極膜形成工程にて成膜された第1透明電極膜をパターニングした状態を示す図21のB-B線断面図 本発明の実施形態5に係る液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 図30のB-B線断面図 本発明の実施形態6に係る液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 図32のA-A線断面図 図32のB-B線断面図 本発明の実施形態7に係る液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 図35のA-A線断面図 図35のB-B線断面図 本発明の実施形態8に係る液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 図38のB-B線断面図 参考例に係る液晶パネルを構成するアレイ基板の表示領域における平面構成を概略的に示す平面図 図40のA-A線断面図 図40のB-B線断面図
 <実施形態1>
 本発明の実施形態1を図1から図13によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図2及び図7などの上側を表側とし、同図下側を裏側とする。
 液晶表示装置10は、全体として横長の方形状をなしており、図1及び図2に示すように、画像を表示可能な液晶パネル(表示パネル)11と、液晶パネル11に対して各種入力信号を外部から供給する制御回路基板(パネル接続基板)12と、液晶パネル11と制御回路基板12とを電気的に接続するフレキシブル基板13と、液晶パネル11に光を供給する外部光源であるバックライト装置(照明装置)14と、を少なくとも備える。また、液晶表示装置10は、図2に示すように、相互に組み付けた液晶パネル11及びバックライト装置14を収容・保持するためのベゼル15及びケーシング16をも備えている。このうち、ベゼル15は、液晶パネル11において画像が表示される表示領域(アクティブエリア)AAを取り囲む形で枠状をなしている。ケーシング16は、表側に向けて開口した浅い箱型をなしている。
 先にバックライト装置14について簡単に説明する。バックライト装置14は、図2に示すように、表側(液晶パネル11側)に向けて開口した略箱形をなすシャーシ14aと、シャーシ14a内に配された図示しない光源(例えば冷陰極管、LED、有機ELなど)と、シャーシ14aの開口部を覆う形で配される図示しない光学部材と、を少なくとも備える。光学部材は、光源から発せられる光を面状に変換するなどの機能を有する。
 続いて、液晶パネル11について説明する。液晶パネル11は、図1に示すように、全体として縦長な方形状(矩形状)をなしており、その長辺方向における一方の端部側(図1に示す上側)に片寄った位置に表示領域(アクティブエリア)AAが配されるとともに、長辺方向における他方の端部側(図1に示す下側)に片寄った位置にドライバ21及びフレキシブル基板13がそれぞれ取り付けられている。この液晶パネル11において表示領域AA外の領域が、画像が表示されない非表示領域(ノンアクティブエリア)NAAとされる。液晶パネル11における短辺方向が各図面のX軸方向と一致し、長辺方向が各図面のY軸方向と一致している。なお、図1では、CF基板11aよりも一回り小さな枠状の一点鎖線が表示領域AAの外形を表しており、当該一点鎖線よりも外側の領域が非表示領域NAAとなっている。
 液晶パネル11は、図3に示すように、一対の基板11a,11bと、両基板11a,11b間に挟持されて電界印加に伴って光学特性が変化する物質である液晶材料からなる液晶層11cと、を少なくとも備え、両基板11a,11bが液晶層11cの厚さ分のギャップを維持した状態で図示しないシール剤によって貼り合わせられている。両基板11a,11bのうち表側(正面側)がCF基板(対向基板)11aとされ、裏側(背面側)がアレイ基板(薄膜トランジスタ基板、アクティブマトリクス基板)11bとされる。CF基板11a及びアレイ基板11bは、いずれもほぼ透明な(透光性を有する)ガラス基板GSの内面側に各種の膜が積層形成されてなる。両基板11a,11bの内面側にあって液晶層11cに臨む表面には、液晶層11cを構成する液晶材料(液晶分子LC)を配向させるための配向膜11d,11eがそれぞれ形成されている。また、両基板11a,11bの外面側には、それぞれ偏光板11f,11gが貼り付けられている。
 続いて、アレイ基板11b及びCF基板11aにおける表示領域AA内に存在する構成について順次に詳しく説明する。アレイ基板11bの内面側(液晶層11c側、CF基板11aとの対向面側)には、図3及び図4に示すように、スイッチング素子であるTFT(薄膜トランジスタ:Thin Film Transistor)17及び画素電極(第1透明電極)18が多数個ずつマトリクス状に並んで設けられるとともに、これらTFT17及び画素電極18の周りには、格子状をなすゲート配線(行制御線、走査線)19及びソース配線(列制御線、データ線、配線)20が取り囲むようにして配設されている。言い換えると、格子状をなすゲート配線19及びソース配線20の交差部に、TFT17及び画素電極18が行方向(X軸方向)及び列方向(Y軸方向)に沿って行列状(マトリクス状)に複数ずつ並んで配置されている。ゲート配線19は、X軸方向に沿って直線状に延在し、ソース配線20は、Y軸方向に沿って直線状に延在しており、X軸方向がゲート配線19の延在方向と、Y軸方向がソース配線20の延在方向と、それぞれ一致している。TFT17及び画素電極18に係る具体的な構成については、後に詳しく説明する。
 一方、CF基板11aの内面側(液晶層11c側、アレイ基板11bとの対向面側)には、図3及び図5に示すように、赤色(R),緑色(G),青色(B)を呈する3色の着色部からなるカラーフィルタ11hが設けられている。カラーフィルタ11hを構成する各着色部は、行方向(X軸方向)及び列方向(Y軸方向)に沿って行列状(マトリクス状)に並んで複数ずつ配列されており、それぞれがアレイ基板11b側の各画素電極18と平面に視て重畳する配置とされている。カラーフィルタ11hを構成する各着色部間には、混色を防ぐための略格子状の遮光部(ブラックマトリクス)11iが形成されている。遮光部11iは、上記したゲート配線19及びソース配線20と平面に視て重畳する配置とされる。遮光部11iは、例えばチタン(Ti)などの遮光性を有する材料からなり、その膜厚が例えば200nm程度とされるのが好ましい。また、カラーフィルタ11h及び遮光部11iの表面には、合成樹脂製とされてベタ状のオーバーコート膜11jが内側に重なって設けられている。この液晶パネル11においては、図3から図5に示すように、カラーフィルタ11hにおけるR,G,Bの3色の着色部と、各着色部と対向する3つの画素電極18及び各画素電極18に接続される3つのTFT17と、の組によって表示単位である1つの画素PXが構成されている。画素PXは、赤色の着色部を有する赤色画素RPXと、緑色の着色部を有する緑色画素GPXと、青色の着色部を有する青色画素BPXと、からなる。これら各色の画素RPX,GPX,BPXは、液晶パネル11の板面において行方向(X軸方向)に沿って繰り返し並べて配されることで、画素群を構成しており、この画素群が列方向(Y軸方向)に沿って多数並んで配されている。
 アレイ基板11bの内面側には、既知のフォトリソグラフィ法によって各種の膜が積層形成されており、これらの膜について説明する。アレイ基板11bには、図6及び図7に示すように、下層(ガラス基板GS)側から順に第1金属膜(ゲート金属膜、下層側金属膜)22、ゲート絶縁膜23、酸化物半導体膜(半導体膜)24、第2金属膜(ソース金属膜、上層側金属膜)25、第1層間絶縁膜(絶縁膜、下層側絶縁膜)26、第1透明電極膜(下層側透明電極膜)27、第2層間絶縁膜28(層間絶縁膜、上層側絶縁膜)、第2透明電極膜(上層側透明電極膜)29が積層形成されている。なお、図6及び図7では、第2透明電極膜29のさらに上層側に積層される配向膜11eの図示を省略している。
 第1金属膜22は、例えばタングステン(W)層/窒化タンタル(TaN)層などの、金属材料からなる2層の積層膜により構成されており、タングステン層の膜厚を例えば300nm程度に、窒化タンタル層の膜厚を例えば30nm程度にするのが好ましい。第1金属膜22は、主にゲート配線19を構成している。ゲート絶縁膜23は、図6及び図7に示すように、第1金属膜22の上層側に積層される。ゲート絶縁膜23は、例えば酸化珪素(SiO)層/窒化珪素(SiN)層などの、無機材料からなる積層膜により構成されており、酸化珪素層の膜厚を例えば50nm程度に、窒化珪素層の膜厚を例えば325nm程度にするのが好ましい。ゲート絶縁膜23は、第1金属膜22(ゲート配線19など)と後述する第2金属膜25(ソース配線20など)との間に介在して相互を絶縁している。
 酸化物半導体膜24は、図6及び図7に示すように、ゲート絶縁膜23の上層側に積層されるものであり、材料として酸化物半導体を用いた薄膜からなる。酸化物半導体膜24は、その膜厚が例えば50nm程度とされるのが好ましい。酸化物半導体膜24に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。酸化物半導体膜24は、2層以上の積層構造を有していてもよい。酸化物半導体膜24が積層構造を有する場合には、酸化物半導体膜24は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。酸化物半導体膜24が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体膜24の構成などは、例えば特開2014-007399号公報に記載されている。参考のために、特開2014-007399号公報の開示内容の全てを本明細書に援用する。酸化物半導体膜24は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体膜24は、例えば、In-Ga-Zn-O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体膜24は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 なお、結晶質In-Ga-Zn-O系の半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報、特開2014-209727号公報などに開示されている。参考のために、特開2012-134475号公報および特開2014-209727号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、図示しない駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)およびTFT(画素に設けられるTFT)17として好適に用いられる。
 酸化物半導体膜24は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn2O3-SnO2-ZnO;InSnZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体膜24は、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体などを含んでいてもよい。
 第2金属膜25は、図6及び図7に示すように、酸化物半導体膜24の上層側に積層される。第2金属膜25は、例えばチタン(Ti)層/アルミニウム(Al)層/チタン層などの、金属材料からなる3層の積層膜により構成されており、下層側のチタン層の膜厚を例えば100nm程度に、アルミニウム層の膜厚を例えば200nm程度に、上層側のチタン層の膜厚を例えば30nm程度にするのが好ましい。第2金属膜25は、主にソース配線20を構成している。第1層間絶縁膜26は、少なくとも第2金属膜25の上層側に積層される。第1層間絶縁膜26は、例えば酸化珪素(SiO)などの無機材料からなり、その膜厚が例えば300nm程度とされるのが好ましい。第1層間絶縁膜26は、第2金属膜25及び酸化物半導体膜24と第1透明電極膜27との間に介在して相互を絶縁している。
 第1透明電極膜27は、図6及び図7に示すように、第2層間絶縁膜28の上層側に積層される。第1透明電極膜27は、例えばIZO(Indium Zinc Oxide)などの透明電極材料からなり、その膜厚が例えば100nm程度とされる。第1透明電極膜27は、主に画素電極18を構成している。第2層間絶縁膜28は、第1透明電極膜27の上層側に積層される。第2層間絶縁膜28は、例えば窒化珪素(SiN)などの無機材料からなり、その膜厚が例えば100nm程度とされるのが好ましい。第2層間絶縁膜28は、第1透明電極膜27と第2透明電極膜29との間に介在して相互を絶縁している。第2透明電極膜29は、第2層間絶縁膜28の上層側に積層される。第2透明電極膜29は、第1透明電極膜27と同様に、IZOなどの透明電極材料からなり、その膜厚が例えば100nm程度とされる。第2透明電極膜29は、アレイ基板11b上の画素PX群を一括して覆う形でベタ状に配されるとともに、第2層間絶縁膜28を介して画素電極18と重畳配置される共通電極(第2透明電極)30を構成している。ベタ状の共通電極30のうち、各画素PXにおける各画素電極18と重畳する部分には、互いに並行する複数のスリット30aが形成されており、共通電極30におけるスリット30aの端部と画素電極18との間には、画素電極18に付与される電圧に基づいて斜め電界が発生するものとされる。つまり、本実施形態に係る液晶パネル11は、いわゆるFFS(Fringe Field Switching)モードであり、画素電極18に付与される電圧に基づいて上記した斜め電界を制御することで、液晶層11cに含まれる液晶分子の配向状態を制御するものとされる。なお、図4では、スリット30aの形成範囲をソース側開口部26a及びドレイン側開口部26bとの比較において相対的に細い二点鎖線にて図示している。
 TFT17の構成について詳しく説明する。TFT17は、図4及び図6に示すように、3つの電極17a~17cとチャネル部17dとを有している。詳しくは、TFT17は、ゲート配線19の一部からなるゲート電極(電極)17aと、ゲート電極17aに対してゲート絶縁膜23を介して上層側に重畳する形で配されて酸化物半導体膜24からなるチャネル部17dと、チャネル部17dの上層側に配されてチャネル部17dの一端側に接続されるソース電極(電極)17bと、チャネル部17dの他端側と画素電極18とに接続されるドレイン電極(電極)17cと、を有している。TFT17を構成するソース電極17b、チャネル部17d及びドレイン電極17cの並び方向は、Y軸方向と一致している。これに対し、TFT17を構成するチャネル部17dにおけるソース電極17b及びドレイン電極17cとの接続箇所の並び方向(チャネル部17dの延在方向)は、Y軸方向に沿って延在している。つまり、ソース電極17b、チャネル部17d及びドレイン電極17cの並び方向は、チャネル部17dの延在方向に並行している。これにより、X軸方向(ゲート配線19の延在方向)についてTFT17の配置スペースを狭くすることができるので、画素PXのX軸方向についての配列ピッチを狭くすることができ、もって高精細化を図る上で好適となる。
 詳しくは、TFT17は、図4に示すように、画素PXのうち、X軸方向についてほぼ中央位置で且つY軸方向について図4に示す下端位置に配されている。TFT17を構成するゲート電極17aは、画素PXに対して図4に示す下側に位置するゲート配線19のうち、画素PXを画定する2本のソース配線20の間に配される部分によって構成されており、ゲート配線19の両側縁からY軸方向について突出したり凹んだりすることがないものとされる。チャネル部17dは、ゲート電極17aと重畳し且つY軸方向についてソース電極17bとドレイン電極17cとの間に挟み込まれる形で配されており、Y軸方向に沿って延在している。チャネル部17dは、酸化物半導体膜24を各画素PX毎に島状に形成してなるものとされる。なお、本実施形態に係るTFT17では、チャネル部17d上にエッチストップ層が形成されておらず、ソース電極17bのチャネル部17d側の端部下面は、酸化物半導体膜24の上面と接するように配置されている。
 ソース電極17bは、図4及び図6に示すように、その一部がゲート配線19(ゲート電極17a)と重畳する配置とされる。より具体的には、ソース電極17bは、ゲート配線19に対してY軸方向について接続対象である画素PX側とは反対側に偏心配置されており、ドレイン電極17c側の一部がゲート配線19(ゲート電極17a)と重畳するものの、大部分がY軸方向について図4に示す下側に隣り合う画素PX側に突き出す形で配されている。そして、このソース電極17bは、図4及び図7に示すように、ソース配線20に接続された配線接続部31の一部とされている。従って、ソース配線20を伝送される画像信号(データ信号)は、ソース配線20に接続された配線接続部31を介して配線接続部31の一部であるソース電極17bに供給されるようになっている。この配線接続部31は、画素電極18と同じ第1透明電極膜27、つまり透光性導電材料からなる。このような構成によれば、仮に配線接続部の材料を金属材料などの遮光性材料とした場合に比べると、画素PXにおける光の透過光量が増加し、画素PXに係る開口率が高いものとなる。これにより、高精細化などを図る上で好適となる。しかも、アレイ基板11bの製造に際して、第1透明電極膜27をパターニングすることで画素電極18と配線接続部31(ソース電極17b)とを形成することができる。これにより、製造コストの低下を図ることができる。なお、配線接続部31と同じ第1透明電極膜27からなる画素電極18は、配線接続部31とは非重畳の配置とされていて、自身が属する画素PXの形成範囲を規定する2本ずつのゲート配線19及びソース配線20によって囲まれた平面に視て縦長の方形状の領域を満たす形で平面配置されている。
 ドレイン電極17cは、図4及び図6に示すように、その一部がゲート配線19(ゲート電極17a)と重畳するとともに、ソース電極17bに対してチャネル部17d分の間隔を空けて対向状に配されている。そして、このドレイン電極17cは、配線接続部31と同じ第1透明電極膜27からなるものとされる。詳しくは、ドレイン電極17cは、第1透明電極膜27からなる画素電極18の一部により構成されている。ドレイン電極17cには、ソース電極17bに供給された画像信号(電位)が、ゲート電極17aがONされるのに伴ってチャネル部17dを介して供給されるようになっている。ドレイン電極17cに供給された画像信号によって画素電極18が充電される。以上のように、ドレイン電極17cが透光性導電材料である第1透明電極膜27からなるので、仮にドレイン電極の材料を金属材料などの遮光性材料とした場合に比べると、画素PXにおける光の透過光量が増加し、画素PXに係る開口率がより高いものとなる。しかも、アレイ基板11bの製造に際して、第1透明電極膜27をパターニングすることで画素電極18と配線接続部31とに加えてドレイン電極17cをも形成することができる(図12及び図13を参照)。これにより、製造コストのさらなる低下を図ることができる。
 上記のような構成のソース電極17b及びドレイン電極17cは、図6に示すように、第1透明電極膜27の下層側にあって酸化物半導体膜24の上層側に位置する第1層間絶縁膜26に形成された2つの開口部(コンタクトホール)26a,26bを通してそれぞれ酸化物半導体膜24からなるチャネル部17dに接続されている。2つの開口部26a,26bには、第1層間絶縁膜26のうち、チャネル部17dにおける一方の端部付近、つまりソース電極17bを含む配線接続部31と重畳する位置に配されてソース電極17bが通されるソース側開口部26aと、チャネル部17dにおける他方の端部付近、つまりドレイン電極17cと重畳する位置に配されてドレイン電極17cが通されるドレイン側開口部26bと、が含まれる。従って、チャネル部17dの長さ(チャネル長)L1は、ソース側開口部26aとドレイン側開口部26bとの間の距離によって規定されることになる。つまり、アレイ基板11bの製造過程において、第1層間絶縁膜26をパターニングする(少なくとも2つの開口部26a,26bを形成する)工程に用いられるフォトマスクの露光精度によってチャネル部17dの長さL1が定まることになり、他の工程に係るフォトマスクの露光精度などがチャネル部17dの長さL1とはほぼ無関係となる(図8及び図10を参照)。これにより、チャネル部17dの長さL1にばらつきが生じ難くなるので、TFT17の特性を安定的に発揮させることができる。なお、図4では、ソース側開口部26a及びドレイン側開口部26bの形成範囲をそれぞれスリット30aとの比較において相対的に太い一点鎖線にて図示している。
 ソース側開口部26aは、図4及び図7に示すように、X軸方向に沿って直線状に延在し、ソース配線20からチャネル部17dの一方の端部に至るまでの範囲、つまり配線接続部31のうち長さ方向の両端部を除いた概ね全長にわたる範囲に形成され、平面に視て横長の方形状をなしている。従って、配線接続部31は、ソース配線20及びチャネル部17dの一方の端部に対してソース側開口部26aを通してそれぞれ直接接する形で積層されるとともに、ソース配線20とチャネル部17dとの間に配される部分がゲート絶縁膜23に対してソース側開口部26aを通して直接接する形で積層される。また、ソース側開口部26aは、その長さ寸法(延在方向についての寸法)が画素PXの配列ピッチよりも小さく、アレイ基板11bの板面上に並ぶ画素PXの設置数と同数が各画素PX毎に個別に設置されている。ドレイン側開口部26bは、図4及び図6に示すように、チャネル部17dの他方の端部、詳しくは画素電極18と重畳する部分(画素電極重畳部)に配され、その画素電極重畳部よりも一回り小さな平面視方形状をなしている。従って、ドレイン電極17cは、チャネル部17dの画素電極重畳部に対してドレイン側開口部26baを通して直接接する形で積層される。
 本実施形態に係る液晶パネル11は以上のような構造であり、続いてその製造方法について説明する。本実施形態に係る液晶パネル11は、それぞれ別途に製造したCF基板11a及びアレイ基板11bを貼り合わせることで製造されている。以下、液晶パネル11を構成するアレイ基板11bの製造方法について詳しく説明する。
 アレイ基板11bの製造方法は、第1金属膜22を成膜してゲート配線19及びゲート電極17aなどを形成する第1金属膜形成工程と、ゲート絶縁膜23を成膜するゲート絶縁膜形成工程と、酸化物半導体膜24を成膜してチャネル部17dなどを形成する半導体膜形成工程と、第2金属膜25を成膜してソース配線20などを形成する第2金属膜形成工程と、第1層間絶縁膜26を成膜してソース側開口部26a及びドレイン側開口部26bなどを形成する第1層間絶縁膜形成工程と、第1透明電極膜27を成膜して画素電極18、ソース電極17b及びドレイン電極17cなどを形成する第1透明電極膜形成工程と、第2層間絶縁膜28を成膜する第2層間絶縁膜形成工程と、第2透明電極膜29を成膜して共通電極30などを形成する第2透明電極膜形成工程と、を少なくとも備える。
 アレイ基板11bの製造方法に含まれる第1金属膜形成工程では、ガラス基板GS上に第1金属膜22及びフォトレジストを順次に成膜し、フォトマスクを利用してフォトレジストを露光・現像した後にエッチングを行うことで、ゲート配線19及びゲート電極17aなどを形成している。ゲート絶縁膜形成工程では、ガラス基板GS及び第1金属膜22上にゲート絶縁膜23をベタ状に成膜する。半導体膜形成工程では、ゲート絶縁膜23上に酸化物半導体膜24及びフォトレジストを順次に成膜し、フォトマスクを利用してフォトレジストを露光・現像した後にエッチングを行うことで、チャネル部17dなどを形成する。第2金属膜形成工程では、ゲート絶縁膜23及び酸化物半導体膜24上に第2金属膜25及びフォトレジストを順次に成膜し、フォトマスクを利用してフォトレジストを露光・現像した後にエッチングを行うことで、ソース配線20などを形成している。
 第1層間絶縁膜形成工程では、図8及び図9に示すように、ゲート絶縁膜23、酸化物半導体膜24及び第2金属膜25上に第1層間絶縁膜26及びフォトレジストを成膜し、フォトマスクを利用してフォトレジストを露光・現像した後にエッチングを行うことで、図10及び図11に示すように、ソース側開口部26a及びドレイン側開口部26bなど形成している。この第1層間絶縁膜形成工程にて形成されるソース側開口部26aとドレイン側開口部26bとの間の距離は、同一のフォトマスクを用いた露光精度によって定まるものとされているから、チャネル部17dの長さL1にばらつきが生じ難くなっている。この状態では、酸化物半導体膜24は、ソース側開口部26a及びドレイン側開口部26bを通して部分的に露出している。
 第1透明電極膜形成工程では、ゲート絶縁膜23、酸化物半導体膜24、第2金属膜25及び第1層間絶縁膜26上に第1透明電極膜27及びフォトレジストを成膜し、フォトマスクを利用してフォトレジストを露光・現像した後にエッチングを行うことで、図12及び図13に示すように、画素電極18、ソース電極17b及びドレイン電極17cなどを形成している。このとき、ソース電極17b及びドレイン電極17cは、それぞれ第1層間絶縁膜26のソース側開口部26a及びドレイン側開口部26bを通して酸化物半導体膜24のチャネル部17dに対して接続される。この第1透明電極膜形成工程にて、画素電極18、ソース電極17b及びドレイン電極17cが一括して形成されるので、製造コストの低下が好適に図られる。その後、第2層間絶縁膜形成工程では、第1層間絶縁膜26及び第1透明電極膜27上に第2層間絶縁膜28をベタ状に成膜する。第2透明電極膜形成工程では、第2層間絶縁膜28上に第2透明電極膜29及びフォトレジストを成膜し、フォトマスクを利用してフォトレジストを露光・現像した後にエッチングを行うことで、図6及び図7に示すように、共通電極30などを形成している。
 以上説明したように本実施形態のアレイ基板(薄膜トランジスタ基板)11bは、ソース配線(配線)20と、複数の電極17a,17b,17cを有するTFT(薄膜トランジスタ)17と、少なくとも一部が複数の電極17a,17b,17cのいずれかを構成し、ソース配線20に接続され、透光性導電材料からなる配線接続部31と、を備える。
 このようにすれば、ソース配線20を伝送される信号は、ソース配線20に接続された配線接続部31を介してTFT17を構成する複数の電極17a,17b,17cのうち、配線接続部31の一部によって構成される電極に供給される。配線接続部31が透光性導電材料からなるので、仮に配線接続部31の材料を金属材料などの遮光性材料とした場合に比べると、光の透過光量が増加し、開口率が高いものとなり、もって高精細化などを図る上で好適となる。
 また、TFT17における複数の電極17a,17b,17cのいずれかに接続されて第1透明電極膜27からなる画素電極(第1透明電極)18と、第1透明電極膜27に対して第2層間絶縁膜(層間絶縁膜)28を介して重畳する第2透明電極膜29からなり画素電極18との間で電界を形成可能な共通電極(第2透明電極)30と、を備えており、配線接続部31は、第1透明電極膜27からなる。このようにすれば、配線接続部31が透光性導電材料である第1透明電極膜27からなるので、開口率を十分に高めることができる。当該アレイ基板11bの製造に際して、第1透明電極膜27をパターニングすることで画素電極18と配線接続部31とを形成することができる。これにより、製造コストの低下を図ることができる。
 また、TFT17は、酸化物半導体膜(半導体膜)24からなるチャネル部17dを有するとともに、複数の電極17a,17b,17cに、配線接続部31の少なくとも一部であってチャネル部17dの一端側に接続されるソース電極17bと、チャネル部17dの他端側に接続されるドレイン電極17cと、が含まれる構成とされており、ドレイン電極17cは、第1透明電極膜27と第2透明電極膜29とのうち配線接続部31と同じ第1透明電極膜27からなる。このようにすれば、ドレイン電極17cが透光性導電材料である第1透明電極膜27からなるので、仮にドレイン電極の材料を金属材料などの遮光性材料とした場合に比べると、光の透過光量が増加し、開口率がより高いものとなる。しかも、当該アレイ基板11bの製造に際して、第1透明電極膜27をパターニングすることで画素電極18と配線接続部31とに加えてドレイン電極17cをも形成することができる。これにより、製造コストのさらなる低下を図ることができる。
 また、TFT17は、酸化物半導体膜24からなるチャネル部17dを有するとともに、複数の電極17a,17b,17cに、配線接続部31の少なくとも一部であってチャネル部17dの一端側に接続されるソース電極17bと、チャネル部17dの他端側に接続されるドレイン電極17cと、が含まれる構成とされており、酸化物半導体膜24の上層側に配される第1層間絶縁膜(絶縁膜)26であって、ソース電極17b及びドレイン電極17cと重畳する位置にそれぞれドレイン側開口部26b及びソース側開口部26a(開口部)が形成されてなる第1層間絶縁膜26が備えられる。このようにすれば、例えば、ソース電極17b及びドレイン電極17cが第1層間絶縁膜26の上層側に配される第1透明電極膜(透明電極膜)27により構成されるので、ソース電極17b及びドレイン電極17cは、第1層間絶縁膜26に形成された2つのドレイン側開口部26b及びソース側開口部26aを通して酸化物半導体膜24からなるチャネル部17dにそれぞれ接続される。チャネル部17dの長さL1が第1層間絶縁膜26における2つのドレイン側開口部26b及びソース側開口部26aの間の距離によって規定されるので、チャネル部17dの長さL1にばらつきが生じ難くなり、もってTFT17の特性を安定的に発揮させることができる。
 また、本実施形態に係る液晶パネル(表示パネル)11は、上記記載のアレイ基板11bと、アレイ基板11bに対して貼り合わせられるCF基板(対向基板)11aと、を備える。このような構成の液晶パネル11によれば、アレイ基板11bにおける開口率の向上が図られているので、高精細化などを図る上で好適となる。
 <実施形態2>
 本発明の実施形態2を図14または図15によって説明する。この実施形態2では、ソース側開口部126aの形成範囲を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る第1層間絶縁膜126は、図14及び図15に示すように、ソース側開口部126aがX軸方向(ソース配線120からTFT117へ向かう配線接続部131の延在方向)に沿って隣り合う画素PXの間を跨ぐ範囲に延在するよう形成されている。詳しくは、ソース側開口部126aは、X軸方向について表示領域AAのほぼ全長にわたって延在し、X軸方向に沿って並ぶ画素PX群を全て横断する帯状をなしている。この帯状のソース側開口部126aは、Y軸方向について一定の間隔を空けて複数が並ぶことで全体として横縞状をなしており、その配列ピッチがY軸方向についての画素PX間の配列ピッチとほぼ等しくなるとともに設置数がY軸方向に沿って並ぶ画素PXの設置数と等しくなる。仮に、第1層間絶縁膜126においてX軸方向に沿って並ぶ複数の画素PXに対して同数のソース側開口部を個別に形成した場合には、隣り合うソース側開口部の間に一定の間隔を設計する必要が生じる。これに対し、ソース電極117bと重畳するソース側開口部126aが、X軸方向について隣り合う画素PXの間を跨ぐ範囲に延在していれば、上記のような間隔を設計する必要がないので、画素PXにおけるX軸方向についての配列ピッチを狭くすることができ、もって高精細化を図る上で好適となる。
 以上説明したように本実施形態によれば、TFT117を有する画素PXであって、少なくともソース配線120からTFT117へ向かう配線接続部131の延在方向に沿って並んで配される複数の画素PXを備えており、第1層間絶縁膜126は、ソース電極117bと重畳するソース側開口部126aが、延在方向について隣り合う画素PXの間を跨ぐ範囲に延在するよう形成されている。仮に、第1層間絶縁膜において配線接続部131の延在方向に沿って並ぶ複数の画素PXに対して同数のソース側開口部を個別に形成した場合には、隣り合うソース側開口部の間に一定の間隔を設計する必要が生じる。これに対し、ソース電極117bと重畳するソース側開口部126aが、配線接続部131の延在方向について隣り合う画素PXの間を跨ぐ範囲に延在していれば、上記のような間隔を設計する必要がないので、画素PXの配列ピッチを狭くすることができ、もって高精細化を図る上で好適となる。
 <実施形態3>
 本発明の実施形態3を図16から図21によって説明する。この実施形態3では、上記した実施形態1から配線接続部231の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るソース電極217bを含む配線接続部231は、図16から図18に示すように、酸化物半導体膜224を部分的に低抵抗化させてなる低抵抗化領域からなる。酸化物半導体膜224の低抵抗化領域は、一定の抵抗率(例えば非低抵抗化領域であるチャネル部217dの抵抗率の1/10000000000~1/100程度の抵抗率)をもった導電体として機能するものとされる。なお、図17及び図18では、配線接続部231(酸化物半導体膜224における低抵抗化領域)を網掛け状にして図示している。この低抵抗化領域を含む酸化物半導体膜224は、ほぼ透明は透光性導電材料であることから、配線接続部231を酸化物半導体膜224の一部(低抵抗化領域)により構成することで、画素PXの開口率を十分に高めることができる。また、アレイ基板211bの製造に際しては、酸化物半導体膜224をパターニングすることで、チャネル部217dとソース電極217bを含む配線接続部231とを形成することができるので、製造コストの低下が図られる。
 本実施形態に係るアレイ基板211b上に積層形成される各種膜には、図17に示すように、第1層間絶縁膜226と第1透明電極膜227との間に介在する形で配される第3層間絶縁膜33が追加されている。第3層間絶縁膜33は、例えば窒化珪素などの無機材料からなり、その膜厚が例えば100nm程度とされるのが好ましい。配線接続部231は、図17及び図18に示すように、そのほぼ全域が第1層間絶縁膜226のソース側開口部226aと重畳している。第1層間絶縁膜226の上層側に積層される第3層間絶縁膜33は、第1層間絶縁膜226のソース側開口部226aを通して露出する酸化物半導体膜224の露出部分に対して直接接することになる。第3層間絶縁膜33は、第2層間絶縁膜228と同じ材料からなり、材料中に水素を含有するものとされる。従って、第3層間絶縁膜33中に含まれる水素は、第1層間絶縁膜226のソース側開口部226aを通して酸化物半導体膜224の露出部分へと拡散し、同露出部分を低抵抗化させる。これにより、酸化物半導体膜224の露出部分は、そのほぼ全域が低抵抗化領域になって配線接続部231を構成している。また、第3層間絶縁膜33には、第1透明電極膜227からなる画素電極218をドレイン電極217cに接続するため、ドレイン側開口部226bと重畳する位置に第3ドレイン側開口部33aが形成されている。アレイ基板211bの製造工程では、第3層間絶縁膜33を成膜した後に、第3層間絶縁膜33上にフォトレジストを成膜し、フォトマスクを利用してフォトレジストを露光・現像した後にエッチングを行うことで、第3ドレイン側開口部33aを形成する。
 一方、ドレイン電極217cは、上記した実施形態1と同様に、図17に示すように、画素電極218と同じ第1透明電極膜227からなる。これに対し、上記のようにソース電極217bを含む配線接続部231は、第1透明電極膜227とは異なる酸化物半導体膜224の低抵抗化領域からなるものとされているので、上記した実施形態1のようにドレイン電極17cとソース電極17bとが同じ第1透明電極膜27からなる場合(図6及び図7を参照)に比べると、ドレイン電極217cとソース電極217bとの間に確保する距離をより短くなる設計を採ることができる。具体的には、図19に示すように、チャネル部217dの長さL2を、上記した実施形態1に記載したチャネル部17dの長さL1よりも短くすることができる。これにより、TFT217の特性を向上させることができる。しかも、チャネル部217dの長さは、上記した実施形態1と同様に、第1層間絶縁膜226における2つの開口部226a,226bの間の距離によって規定されるので、チャネル部217dの長さにばらつきが生じ難くなり、もってTFT217の特性を安定的に発揮させることができる。
 以上説明したように本実施形態によれば、TFT217は、酸化物半導体膜224からなるチャネル部217dを有するとともに、複数の電極217a,217b,217cに、配線接続部231の少なくとも一部であってチャネル部217dの一端側に接続されるソース電極217bと、チャネル部217dの他端側に接続されるドレイン電極217cと、が含まれる構成とされており、配線接続部231は、酸化物半導体膜224を部分的に低抵抗化させてなる低抵抗化領域からなる。このようにすれば、配線接続部231が透光性導電材料である酸化物半導体膜224を部分的に低抵抗化させてなる低抵抗化領域からなるので、開口率を十分に高めることができる。当該アレイ基板211bの製造に際して、酸化物半導体膜224をパターニングすることでチャネル部217dと配線接続部231とを形成することができる。これにより、製造コストの低下を図ることができる。
 また、TFT217におけるドレイン電極217cに接続されて第1透明電極膜227からなる画素電極218と、第1透明電極膜227に対して第2層間絶縁膜228を介して重畳する第2透明電極膜229からなり画素電極218との間で静電容量または電界を形成可能な共通電極230と、を備えており、ドレイン電極217cは、第1透明電極膜227からなる。このようにすれば、ドレイン電極217cが透光性導電材料である第1透明電極膜227からなるので、仮にドレイン電極を金属材料などの遮光性材料とした場合に比べると、光の透過光量が増加し、開口率がより高いものとなる。しかも、当該アレイ基板211bの製造に際して、第1透明電極膜227をパターニングすることで画素電極218または共通電極230とドレイン電極217cとを形成することができる。これにより、製造コストのさらなる低下を図ることができる。さらには、ドレイン電極217cが第1透明電極膜227からなり、ソース電極217bが酸化物半導体膜224の低抵抗化領域からなるものとされているから、仮にドレイン電極とソース電極とが同一の透明電極膜からなる場合に比べると、ドレイン電極217cとソース電極217bとの間に確保する距離をより短くなる設計を採ることができる。これにより、チャネル部217dを短くすることができるから、TFT217の特性を向上させることができる。
 <実施形態4>
 本発明の実施形態4を図20から図29によって説明する。この実施形態4では、上記した実施形態1から液晶パネル311をVA(Vertical Alignment)モードに変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る液晶パネル311には、図20に示すように、液晶層311cを構成する液晶材料として、例えばネガ型のネマティック液晶材料が用いられており、両基板311a,311b間に電界が付与されていない初期状態(無通電状態)において、液晶分子LCが各基板311a,311bの表面である各配向膜311d,311eに対して概ね垂直に配向する。従って、本実施形態に係る液晶パネル311の動作モードは、いわゆるVAモードとされる。なお、図20では、液晶層311cに含まれる液晶分子LCにおける初期状態での配向を模式的に図示している。
 上記したように本実施形態に係る液晶パネル311は、動作モードがVAモードとされているので、アレイ基板311bと対向するCF基板311aには、図20に示すように、対向電極11kが設けられている。対向電極11kは、CF基板311aにおけるカラーフィルタ311h及び遮光部311iの表面に積層されるとともに、CF基板311aの内面におけるほぼ全域にわたってベタ状に形成されている。対向電極11kは、例えばITO(Indium Tin Oxide)などの透明電極材料からなり、その膜厚が例えば100nm程度とされるのが好ましい。この対向電極11kは、常に一定の基準電位に保たれているので、各TFT317が駆動されるのに伴って各TFT317に接続された各画素電極318に電位が供給されると、各画素電極318との間に電位差が生じるようになっている。そして、対向電極11kと各画素電極318との間に生じる電位差に基づいて液晶層311cに含まれる液晶分子LCの配向状態が変化し、それに伴って透過光の偏光状態が変化し、もって液晶パネル311の透過光量が各画素PX毎に個別に制御されるとともに所定のカラー画像が表示されるようになっている。
 一方、アレイ基板311b上に積層形成される各種膜のうち、第1透明電極膜327は、図20及び図21に示すように、画素電極318と重畳配置される補助容量電極32を、第2透明電極膜329は、画素電極318を、それぞれ構成している。つまり、本実施形態では、画素電極318が第1透明電極膜327に対して上層側の第2透明電極膜329により構成されている。補助容量電極32は、画素電極318との間で静電容量を形成し、画素電極318に充電された電位を一定期間保持するためのものである。補助容量電極32は、X軸方向(配線接続部331の延在方向)について表示領域AAのほぼ全長にわたって延在し、X軸方向に沿って並ぶ画素PX群を全て横断する帯状をなしている。この帯状の補助容量電極32は、Y軸方向(ソース配線320の延在方向)について一定の間隔を空けて複数が並ぶことで全体として横縞状をなしており、その配列ピッチがY軸方向についての画素PX間の配列ピッチとほぼ等しくなるとともに設置数がY軸方向に沿って並ぶ画素PXの設置数と等しくなる。また、補助容量電極32には、後述する画素PXのドレイン側コンタクトホールCH1と重畳する位置に開口部32aが複数島状に形成されている。
 さらには、本実施形態に係るアレイ基板311b上に積層形成される各種膜には、図20に示すように、上記した実施形態3と同様に、第1層間絶縁膜326と第1透明電極膜327との間に介在する形で配される第3層間絶縁膜333が追加されている。第3層間絶縁膜333は、例えば窒化珪素などの無機材料からなり、その膜厚が例えば200nm程度とされるのが好ましい。つまり、第3層間絶縁膜333は、第2層間絶縁膜328と同じ材料からなり、材料中に水素を含有するものとされる。また、第1層間絶縁膜326は、その膜厚が例えば200nm程度、つまり第3層間絶縁膜333の膜厚と同等に(第2層間絶縁膜328の膜厚よりは薄く)されるのが好ましい。
 本実施形態に係るドレイン電極317cは、図21及び図22に示すように、チャネル部317dにおけるソース電極317b側とは反対側の端部から画素PXにおけるX軸方向及びY軸方向についての中央位置付近に至るまでY軸方向に沿って直線状に延在する形で配されている。ドレイン電極317cにおけるチャネル部317d側とは反対側の端部が画素電極318との接続箇所となっている。そして、このドレイン電極317cは、酸化物半導体膜324を部分的に低抵抗化させてなる低抵抗化領域からなる。酸化物半導体膜324の低抵抗化領域は、一定の抵抗率(例えば非低抵抗化領域であるチャネル部317dの抵抗率の1/10000000000~1/100程度の抵抗率)をもった導電体として機能するものとされる。なお、図22及び図23では、酸化物半導体膜324における低抵抗化領域(ドレイン電極317cを含む)を網掛け状にして図示している。この低抵抗化領域を含む酸化物半導体膜324は、ほぼ透明は透光性導電材料であることから、ドレイン電極317cを酸化物半導体膜324の一部(低抵抗化領域)により構成することで、画素PXの開口率を十分に高めることができる。また、アレイ基板311bの製造に際しては、酸化物半導体膜324をパターニングすることで、チャネル部317dとドレイン電極317cとを形成することができるので、製造コストの低下が図られる。
 酸化物半導体膜324よりも上層側に配される第1層間絶縁膜326は、図22に示すように、ドレイン側開口部326bにおけるY軸方向についての形成範囲がチャネル部317dにおけるソース電極317b側とは反対側の端部から画素PXにおけるX軸方向及びY軸方向についての中央位置付近に至るまで、となっている。つまり、ドレイン側開口部326bは、Y軸方向についてほぼ全長にわたってドレイン電極317cと重畳している。ドレイン側開口部326bは、補助容量電極32と同様に、X軸方向について表示領域AAのほぼ全長にわたって延在し、X軸方向に沿って並ぶ画素PX群を全て横断する帯状をなしている。この帯状のドレイン側開口部326bは、Y軸方向について一定の間隔を空けて複数が並ぶことで全体として横縞状をなしており、その配列ピッチがY軸方向についての画素PX間の配列ピッチとほぼ等しくなるとともに設置数がY軸方向に沿って並ぶ画素PXの設置数と等しくなる。一方、第1層間絶縁膜326の上層側に積層される第3層間絶縁膜333は、第1層間絶縁膜326のドレイン側開口部326bを通して露出する酸化物半導体膜324の露出部分に対して直接接することになる。第3層間絶縁膜333は、上記したように窒化珪素からなり、材料中に水素を含有するものとされる。従って、第3層間絶縁膜333中に含まれる水素は、第1層間絶縁膜326のドレイン側開口部326bを通して酸化物半導体膜324の露出部分へと拡散し、同露出部分を低抵抗化させる。これにより、酸化物半導体膜324の露出部分は、そのほぼ全域が低抵抗化領域になってドレイン電極317cを構成している。なお、酸化物半導体膜324のうち、第1層間絶縁膜326のソース側開口部326aに露出する部分に関しても同様に、第3層間絶縁膜333から導入される水素によって低抵抗化されている。
 これに対し、ソース電極317bを含む配線接続部331は、図22及び図23に示すように、補助容量電極32と同じ第1透明電極膜(第2透明電極膜)327からなる。このように、ドレイン電極317cが酸化物半導体膜324の低抵抗化領域からなり、ソース電極317bが第1透明電極膜327からなるものとされているから、仮にドレイン電極とソース電極とが同一の透明電極膜からなる場合に比べると、ドレイン電極317cとソース電極317bとの間に確保する距離をより短くなる設計を採ることができる。これにより、チャネル部317dを短くすることができるから、TFT317の特性を向上させることができる。しかも、配線接続部331が補助容量電極32と同じ第1透明電極膜327からなるので、第2透明電極膜329からなる画素電極318を配線接続部331に対して重畳する配置構成を採ることができる。具体的には、図21及び図22に示すように、画素電極318は、Y軸方向についてチャネル部317d側とは反対側の端部が、Y軸方向について図21に示す上側に隣り合う画素PXにおけるソース電極317b及びゲート電極317aの一部ずつと重畳する配置とされている。これにより、画素電極318の形成範囲がより広いものとなるので、開口率をより高めることができる。
 上記のように、画素電極318が第2透明電極膜329からなるのに対し、第1層間絶縁膜326の上層側に第3層間絶縁膜333が積層される構成であることから、第3層間絶縁膜333には、図22及び図23に示すように、画素電極318をドレイン電極317cに接続するため、ドレイン側開口部326bと重畳する位置に第3ドレイン側開口部333aが形成されている。第3ドレイン側開口部333aは、画素PXにおけるX軸方向及びY軸方向についての中央位置付近に配されており、ドレイン電極317cにおけるY軸方向についてのチャネル部317d側とは反対側の端部と重畳する配置とされる。第3ドレイン側開口部333aは、平面に視て方形状をなしており、各辺部の長さがドレイン電極317cの幅寸法(X軸方向についての寸法)よりも短いものとされる。また、第3層間絶縁膜333よりも上層側に配される第2層間絶縁膜328にも、上記した第3ドレイン側開口部333aと重畳する位置に、ほぼ同じ形成範囲の第2ドレイン側開口部28aが形成されている。そして、ドレイン側開口部326b、第2ドレイン側開口部28a及び第3ドレイン側開口部333aの重畳領域が、画素電極318をドレイン電極317cに接続するためのドレイン側コンタクトホールCH1を構成している。従って、ドレイン側コンタクトホールCH1の形成範囲は、第2ドレイン側開口部28a及び第3ドレイン側開口部333aの形成範囲によって規定されている、と言える。また、第3層間絶縁膜333のうち、第1層間絶縁膜326のソース側開口部326aと重畳する位置には、図21及び図23に示すように、ソース側開口部326aとほぼ同じ形成範囲の第3ソース側開口部33bが形成されている。これらソース側開口部326a及び第3ソース側開口部33bによって、配線接続部331をチャネル部317d及びソース配線320に接続するためのソース側コンタクトホールCH2が構成されている。なお、図21では、ソース側開口部326a及びドレイン側開口部326bの形成範囲を相対的に太い二点鎖線にて、第3ドレイン側開口部333aの形成範囲を相対的に細い一点鎖線にて、それぞれ図示しているが、第2ドレイン側開口部28aについては図示を省略している。
 上記のように、各層間絶縁膜333,326,328にドレイン側コンタクトホールCH1が形成されるのに伴って、アレイ基板311bの表面には、図20に示すように、各画素PXにおけるX軸方向及びY軸方向についての中央位置付近に凹状部分が生じているが、この凹状部分によって液晶層311cに含まれる液晶分子LCを初期状態において放射状に配向させることが可能となる。仮にドレイン側コンタクトホールCH1とは別途に液晶分子LCの配向制御のための凹部または凸部を設けるようにした場合に比べると、そのような凹部や凸部の配置スペースが不要となる分だけ画素PXの配列ピッチを狭くすることができ、もってさらなる高精細化を図る上で好適となる。
 本実施形態に係る液晶パネル311は以上のような構造であり、続いてその製造方法、特にアレイ基板311bの製造方法について説明する。本実施形態に係るアレイ基板311bの製造方法は、上記した実施形態1に記載したものに加えて、第3層間絶縁膜333を成膜してパターニングする第3層間絶縁膜形成工程を備える。第3層間絶縁膜形成工程は、第2金属膜形成工程と第1透明電極膜形成工程との間に行われる。
 アレイ基板311bの製造方法に含まれる第1層間絶縁膜形成工程では、成膜された第1層間絶縁膜326をパターニングすることで、図24及び図25に示すように、ソース側開口部326a及びドレイン側開口部326bなど形成している。この状態では、酸化物半導体膜324のうち、ソース側開口部326a及びドレイン側開口部326bと重畳する部分が各開口部326a,326bを通して露出している。続いて行われる第3層間絶縁膜形成工程では、図26及び図27に示すように、酸化物半導体膜324及び第1層間絶縁膜326上に第3層間絶縁膜333を成膜する。成膜された第3層間絶縁膜333は、第1層間絶縁膜326のソース側開口部326a及びドレイン側開口部326bを通して酸化物半導体膜324の露出部分に対して直接接する。ここで、第3層間絶縁膜333は、材料中に水素を含有していることから、その水素がソース側開口部326a及びドレイン側開口部326bを通して酸化物半導体膜324の露出部分へと拡散し、同露出部分を低抵抗化させる。これにより、酸化物半導体膜324の露出部分は、そのほぼ全域が低抵抗化領域になってドレイン電極317cなどを構成する。その後、第3層間絶縁膜333上にフォトレジストを成膜し、フォトマスクを利用してフォトレジストを露光・現像した後にエッチングを行うことで、第3ソース側開口部33bが形成される(図26及び図27における二点鎖線を参照)。
 第1透明電極膜形成工程では、第1透明電極膜327が成膜・パターニングされる。このとき、第1透明電極膜327からなる配線接続部331は、図28及び図29に示すように、ソース側コンタクトホールCH2(ソース側開口部326a及び第3ソース側開口部33b)を通して酸化物半導体膜324におけるソース電極317b側の低抵抗化領域に対して接続される。また、補助容量電極32には、ドレイン側コンタクトホールCH1の形成領域を中心にして開口部32aが形成されている。第2層間絶縁膜形成工程では、第3層間絶縁膜33と同じ材料で第2層間絶縁膜328が成膜される。第2層間絶縁膜328は、第3層間絶縁膜33と共にパターニングされ、第2ドレイン側開口部28a及び第3ドレイン側開口部333aが形成される。これにより、ドレイン側コンタクトホールCH1が形成される。第2透明電極膜形成工程では、第2透明電極膜329が成膜・パターニングされる。このとき、第2透明電極膜329からなる画素電極318は、図22及び図23に示すように、ドレイン側コンタクトホールCH1(ドレイン側開口部326b、第3ドレイン側開口部333a及び第2ドレイン側開口部28a)を通して酸化物半導体膜324におけるドレイン側の低抵抗化領域であるドレイン電極317cに対して接続される。
 以上説明したように本実施形態によれば、TFT317における複数の電極317a,317b,317cのいずれかに接続されて第2透明電極膜(第1透明電極膜)329からなる画素電極(第1透明電極)318と、第2透明電極膜29に対して第2層間絶縁膜328を介して重畳する第1透明電極膜(第2透明電極膜)327からなり画素電極318との間で静電容量を形成可能な補助容量電極(第2透明電極)32と、を備えており、配線接続部331は、第1透明電極膜327からなる。このようにすれば、配線接続部331が透光性導電材料である第1透明電極膜327からなるので、開口率を十分に高めることができる。当該アレイ基板311bの製造に際して、第1透明電極膜327をパターニングすることで補助容量電極32と配線接続部331とを形成することができる。これにより、製造コストの低下を図ることができる。
 また、TFT317は、酸化物半導体膜324からなるチャネル部317dを有するとともに、複数の電極317a,317b,317cに、配線接続部331の少なくとも一部であってチャネル部317dの一端側に接続されるソース電極317bと、チャネル部317dの他端側に接続されるドレイン電極317cと、が含まれる構成とされており、ドレイン電極317cは、酸化物半導体膜324を部分的に低抵抗化させてなる低抵抗化領域からなる。このようにすれば、ドレイン電極317cが透光性導電材料である酸化物半導体膜324を部分的に低抵抗化させてなる低抵抗化領域からなるので、仮にドレイン電極の材料を金属材料などの遮光性材料とした場合に比べると、光の透過光量が増加し、開口率をさらに高めることができる。当該アレイ基板311bの製造に際して、酸化物半導体膜324をパターニングすることでチャネル部317dに加えてドレイン電極317cをも形成することができる。これにより、製造コストのさらなる低下を図ることができる。さらには、ドレイン電極317cが酸化物半導体膜324の低抵抗化領域からなり、ソース電極317bが第1透明電極膜327からなるものとされているから、仮にドレイン電極とソース電極とが同一の透明電極膜からなる場合に比べると、ドレイン電極317cとソース電極317bとの間に確保する距離をより短くなる設計を採ることができる。これにより、チャネル部317dを短くすることができるから、TFT317の特性を向上させることができる。
 また、第1透明電極は、その一部が配線接続部331と重畳する画素電極318とされるのに対し、第2透明電極は、画素電極318との間で静電容量を形成し、画素電極318に充電された電位を保持する補助容量電極32とされており、配線接続部331は、第1透明電極膜327からなる。このようにすれば、配線接続部331が補助容量電極32と同じ第1透明電極膜327からなるので、第2透明電極膜329からなる画素電極318を配線接続部331に対して重畳する配置構成を採ることができる。これにより、画素電極318の形成範囲が広くなるので、開口率をより高めることができる。
 <実施形態5>
 本発明の実施形態5を図30または図31によって説明する。この実施形態5では、上記した実施形態4からソース側開口部426a及び第3ソース側開口部433bの形成範囲を変更したものを示す。なお、上記した実施形態4と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る第1層間絶縁膜426及び第3層間絶縁膜433は、図30及び図31に示すように、ソース側開口部426a及び第3ソース側開口部433bがX軸方向(ソース配線420からTFT417へ向かう配線接続部431の延在方向)に沿って隣り合う画素PXの間を跨ぐ範囲に延在するよう形成されている。詳しくは、ソース側開口部426a及び第3ソース側開口部433bは、X軸方向について表示領域AAのほぼ全長にわたって延在し、X軸方向に沿って並ぶ画素PX群を全て横断する帯状をなしている。この帯状のソース側開口部426a及び第3ソース側開口部433bは、Y軸方向について一定の間隔を空けて複数が並ぶことで全体として横縞状をなしており、その配列ピッチがY軸方向についての画素PX間の配列ピッチとほぼ等しくなるとともに設置数がY軸方向に沿って並ぶ画素PXの設置数と等しくなる。仮に、第1層間絶縁膜426及び第3層間絶縁膜433においてX軸方向に沿って並ぶ複数の画素PXに対して同数のソース側開口部及び第3ソース側開口部を個別に形成した場合には、隣り合うソース側開口部及び第3ソース側開口部の間に一定の間隔を設計する必要が生じる。これに対し、ソース電極417bと重畳するソース側開口部426a及び第3ソース側開口部433bが、X軸方向について隣り合う画素PXの間を跨ぐ範囲に延在していれば、上記のような間隔を設計する必要がないので、画素PXにおけるX軸方向についての配列ピッチを狭くすることができ、もって高精細化を図る上で好適となる。
 <実施形態6>
 本発明の実施形態6を図32から図34によって説明する。この実施形態6では、上記した実施形態5から配線接続部531、第3ソース側開口部533b及び補助容量電極532の形成範囲を変更したものを示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る配線接続部531は、図32及び図34に示すように、チャネル部517dの一部、具体的にはチャネル部517dのうちX軸方向についてソース配線520側の部分からソース配線520に至るまでの範囲に形成されている。これに伴い、第3層間絶縁膜533に形成されてソース側コンタクトホールCH2を構成する第3ソース側開口部533bの形成範囲についても、配線接続部531とほぼ同じで、チャネル部517dのうちX軸方向についてソース配線520側の端部からソース配線520に至るまでの範囲とされる。なお、第1層間絶縁膜526に形成されるソース側開口部526aの形成範囲は、上記した実施形態5に記載されたものと同様であり、その一部が第3ソース側開口部533bと重畳してソース側コンタクトホールCH2を構成している。
 ところで、配線接続部531は、補助容量電極532と同じ第1透明電極膜527からなる。本実施形態では、配線接続部531が上記のようにチャネル部517dの一部と重畳する形成範囲とされることを利用して、補助容量電極532が、図32及び図33に示すように、チャネル部517dのうち、配線接続部531とは非重畳となる部分(X軸方向についてソース配線520側とは反対側の部分)と重畳するよう、上記した実施形態5よりも形成範囲が拡張されている。そして、補助容量電極532は、Y軸方向について隣り合うもの同士が上記拡張部分32bによって繋がれている。これにより、補助容量電極532に係る電気抵抗が小さなものとなる。なお、補助容量電極532及び配線接続部531は、共に同じ第1透明電極膜527からなるものの、相互に物理的に分離されることで短絡の発生が防がれている。
 以上説明したように本実施形態によれば、TFT517は、酸化物半導体膜524からなるチャネル部517dを有するとともに、複数の電極517a,517b,517cに、配線接続部531の少なくとも一部であってチャネル部517dの一端側に接続されるソース電極517bと、チャネル部517dの他端側に接続されるドレイン電極517cと、が含まれる構成とされており、酸化物半導体膜524の上層側に配される第1層間絶縁膜(絶縁膜)526であって、ソース電極517b及びドレイン電極517cと重畳する位置にそれぞれドレイン側開口部526b及びソース側開口部526a(開口部)が形成されてなる第1層間絶縁膜526が備えられる。このようにすれば、ソース電極517b及びドレイン電極517cが酸化物半導体膜524を部分的に低抵抗化させてなる低抵抗化領域からなるので、第1層間絶縁膜526に形成された2つのドレイン側開口部526b及びソース側開口部526aを通して酸化物半導体膜524を低抵抗化させるようにすれば、チャネル部517dに接続されたソース電極517b及びドレイン電極517cを形成することが可能とされる。チャネル部517dの長さが第1層間絶縁膜526における2つのドレイン側開口部526b及びソース側開口部526aの間の距離によって規定されるので、チャネル部517dの長さにばらつきが生じ難くなり、もってTFT517の特性を安定的に発揮させることができる。
 <実施形態7>
 本発明の実施形態7を図35から図37によって説明する。この実施形態7では、上記した実施形態4から配線接続部631の構成を変更したものを示す。なお、上記した実施形態4と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るソース電極617bを含む配線接続部631は、図35から図37に示すように、酸化物半導体膜624を部分的に低抵抗化させてなる低抵抗化領域からなる。酸化物半導体膜624の低抵抗化領域は、上記した実施形態3に記載したものと同様に、一定の抵抗率をもった導電体として機能する。なお、図36及び図37では、配線接続部631(酸化物半導体膜624における低抵抗化領域)を網掛け状にして図示している。この低抵抗化領域を含む酸化物半導体膜624は、ほぼ透明は透光性導電材料であることから、配線接続部631を酸化物半導体膜624の一部(低抵抗化領域)により構成することで、画素PXの開口率を十分に高めることができる。
 配線接続部631は、図35及び図37に示すように、そのほぼ全域が第1層間絶縁膜626のソース側開口部626aと重畳している。第1層間絶縁膜626の上層側に積層される第3層間絶縁膜633は、上記した実施形態4に記載された第3ソース側開口部33b(図23を参照)を有しておらず、第1層間絶縁膜626のソース側開口部626aを通して露出する酸化物半導体膜624の露出部分を覆うとともに同露出部分と直接接することになる。第3層間絶縁膜633は、上記した実施形態4に記載したように窒化珪素からなり、材料中に水素を含有するものとされる。従って、第3層間絶縁膜633中に含まれる水素は、第1層間絶縁膜626のソース側開口部626aを通して酸化物半導体膜624の露出部分へと拡散し、同露出部分を低抵抗化させる。これにより、酸化物半導体膜624の露出部分は、そのほぼ全域が低抵抗化領域になって配線接続部631を構成している。
 一方、ドレイン電極617cは、上記した実施形態4と同様に、図35及び図36に示すように、酸化物半導体膜624を部分的に低抵抗化させてなる低抵抗化領域からなる。つまり、ドレイン電極617c及びソース電極617bは、共に酸化物半導体膜624の低抵抗化領域からなるものとされているから、仮にドレイン電極とソース電極とが同一の透明電極膜からなる場合に比べると、ドレイン電極617cとソース電極617bとの間に確保する距離をより短くなる設計(具体的には、上記した実施形態3にて説明した図19のような設計)を採ることができる。これにより、チャネル部617dを短くすることができるから、TFT617の特性を向上させることができる。しかも、チャネル部617dの長さは、上記した実施形態1などと同様に、第1層間絶縁膜626における2つの開口部626a,626bの間の距離によって規定されるので、チャネル部617dの長さにばらつきが生じ難くなり、もってTFT617の特性を安定的に発揮させることができる。また、アレイ基板611bの製造に際しては、酸化物半導体膜624をパターニングすることで、チャネル部617d及びドレイン電極617cに加えて、ソース電極617bを含む配線接続部631を形成することができるので、製造コストの低下が図られる。
 以上説明したように本実施形態によれば、ドレイン電極617cは、酸化物半導体膜624を部分的に低抵抗化させてなる低抵抗化領域からなる。このようにすれば、ドレイン電極617c及び配線接続部631のソース電極617bが共に酸化物半導体膜624の低抵抗化領域からなるものとされているから、仮にドレイン電極とソース電極とが同一の透明電極膜からなる場合に比べると、ドレイン電極617cとソース電極617bとの間に確保する距離をより短くなる設計を採ることができる。これにより、チャネル部617dを短くすることができるから、TFT617の特性を向上させることができる。
 <実施形態8>
 本発明の実施形態8を図38または図39によって説明する。この実施形態8では、上記した実施形態7からソース側開口部726aの形成範囲を変更したものを示す。なお、上記した実施形態7と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る第1層間絶縁膜726は、図38及び図39に示すように、ソース側開口部726aがX軸方向(ソース配線720からTFT717へ向かう配線接続部731の延在方向)に沿って隣り合う画素PXの間を跨ぐ範囲に延在するよう形成されている。詳しくは、ソース側開口部726aは、X軸方向について表示領域AAのほぼ全長にわたって延在し、X軸方向に沿って並ぶ画素PX群を全て横断する帯状をなしている。この帯状のソース側開口部726aは、Y軸方向について一定の間隔を空けて複数が並ぶことで全体として横縞状をなしており、その配列ピッチがY軸方向についての画素PX間の配列ピッチとほぼ等しくなるとともに設置数がY軸方向に沿って並ぶ画素PXの設置数と等しくなる。仮に、第1層間絶縁膜726においてX軸方向に沿って並ぶ複数の画素PXに対して同数のソース側開口部を個別に形成した場合には、隣り合うソース側開口部の間に一定の間隔を設計する必要が生じる。これに対し、ソース電極717bと重畳するソース側開口部726aが、X軸方向について隣り合う画素PXの間を跨ぐ範囲に延在していれば、上記のような間隔を設計する必要がないので、画素PXにおけるX軸方向についての配列ピッチを狭くすることができ、もって高精細化を図る上で好適となる。
 <参考例>
 参考例を図40から図42によって説明する。この参考例では、上記した実施形態4から配線接続部831の構成を変更したものを示す。なお、上記した実施形態4と同様の構造、作用及び効果について重複する説明は省略する。
 本参考例に係る配線接続部831は、図40から図42に示すように、ソース配線820からX軸方向に沿って突き出す形で分岐された枝状部により構成されており、その先端部がゲート電極817a及びチャネル部817dと重畳するソース電極817bを構成している。つまり、ソース電極817bを含む配線接続部831は、ソース配線820と同じ第2金属膜825からなるものとされる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態において透光性導電材料として記載した透明電極膜や酸化物半導体膜に関しては、光透過率が100%またはそれに近似する数値に限らず、光を透過するのであれば光透過率が上記より多少低くても構わない。
 (2)上記した実施形態1,2の変形例として、配線接続部(ソース電極)及びドレイン電極が共通電極と同じ第2透明電極膜からなる構成であっても構わない。
 (3)上記した実施形態1,2や上記(1)の変形例として、ドレイン電極が配線接続部(ソース電極)を構成する透明電極膜とは異なる透明電極膜からなる構成であっても構わない。
 (4)上記した実施形態1,2,4~6では、配線接続部(ソース電極)が第1透明電極膜または第2透明電極膜からなる場合を示したが、第1透明電極膜及び第2透明電極膜に加えて第3透明電極膜を備えるアレイ基板においては、第3透明電極膜によって配線接続部を構成することも可能である。
 (5)上記した実施形態1~3では、ドレイン電極が第1透明電極膜または第2透明電極膜からなる場合を示したが、第1透明電極膜及び第2透明電極膜に加えて第3透明電極膜を備えるアレイ基板においては、第3透明電極膜によってドレイン電極を構成することも可能である。
 (6)上記した実施形態3,7,8の変形例として、ドレイン電極が酸化物半導体膜の低抵抗化領域からなり、配線接続部(ソース電極)が第1透明電極膜または第2透明電極膜からなる、という関係であってもよい。
 (7)上記した実施形態4~6の変形例として、配線接続部(ソース電極)が画素電極と同じ第2透明電極膜からなる構成であっても構わない。また、第1透明電極膜及び第2透明電極膜に加えて第3透明電極膜を備えるアレイ基板においては、第3透明電極膜によって配線接続部を構成することも可能である。
 (8)上記した実施形態4~8の変形例として、ドレイン電極が共通電極と同じ第1透明電極膜または画素電極と同じ第2透明電極膜からなる構成であっても構わない。また、第1透明電極膜及び第2透明電極膜に加えて第3透明電極膜を備えるアレイ基板においては、第3透明電極膜によってドレイン電極を構成することも可能である。
 (9)上記した実施形態5の変形例として、第3層間絶縁膜における第3ソース側開口部の形成範囲は適宜に変更可能である。例えば、第3層間絶縁膜における第3ソース側開口部の形成範囲が、上記した実施形態4,6と同様であっても構わない。
 (10)上記した各実施形態では、配線接続部がソース配線に接続されるとともにTFTのソース電極を構成する場合を示したが、それ以外にも例えば配線接続部がゲート配線に接続されるとともにTFTのゲート電極を構成する場合にも本発明は適用可能である。
 (11)上記した実施形態4~8では、ドレイン側コンタクトホールが画素におけるX軸方向及びY軸方向についての中央に配置される場合を例示したが、コンタクトホールが画素においてX軸方向とY軸方向とのいずれか一方、または両方について偏心配置されていても構わない。
 (12)上記した各実施形態以外にも、各層間絶縁膜における各開口部の具体的な形成範囲や配置は、適宜に変更可能である。
 (13)上記した各実施形態では、第2層間絶縁膜や第3層間絶縁膜の材料として窒化珪素を例示したが、窒化珪素以外の材料を用いることも可能であり、その場合であっても水素を含有する材料を用いるのが好ましいものとされる。また、第1層間絶縁膜の具体的な材料に関しても適宜に変更可能である。
 (14)上記した実施形態3,4~8では、第2層間絶縁膜や第3層間絶縁膜の材料中に含有される水素が第1層間絶縁膜のドレイン側開口部やソース側開口部を通して酸化物半導体膜中に拡散されることによって酸化物半導体膜の低抵抗化が促進される場合を例示したが、例えばアレイ基板の製造過程において、第1層間絶縁膜にドレイン側開口部やソース側開口部を形成するパターニングを行った後に、プラズマ処理や真空アニール処理などの低抵抗化処理を行うことで、ドレイン側開口部やソース側開口部を通して酸化物半導体膜の低抵抗化を促進するようにしても構わない。その場合は、第2層間絶縁膜や第3層間絶縁膜の材料として水素を含有しないようなものを用いることが可能となる。
 (15)上記した各実施形態以外にも、第1金属膜及び第2金属膜に用いる具体的な金属材料は適宜に変更可能である。また、第1金属膜及び第2金属膜の積層構造についても適宜に変更可能であり、具体的には積層数を変更したり、また単層構造としたり、さらには合金構造としたりすることも可能である。
 (16)上記した各実施形態以外にも、第1透明電極膜及び第2透明電極膜に用いる具体的な透明電極材料は適宜に変更可能である。具体的には、ITO(Indium Tin Oxide)やZnO(Zinc Oxide)などの透明電極材料を用いることが可能である。
 (17)上記した各実施形態では、半導体膜として酸化物半導体膜を備えたアレイ基板を例示したが、それ以外にも、例えばポリシリコン(多結晶化されたシリコン(多結晶シリコン)の一種であるCGシリコン(Continuous Grain Silicon))やアモルファスシリコンを半導体膜の材料として用いることも可能である。
 (18)上記した各実施形態では、ゲート配線がX軸方向に沿って直線状に延在し、その側縁に凹部や凸部が形成されない構成を例示したが、ゲート配線の側縁に凹部や凸部が多少形成されていても構わない。ゲート配線の側縁に凸部が形成される場合には、その凸部がゲート電極の一部または全域を構成していてもよい。
 (19)上記した各実施形態では、ゲート配線のほぼ全域がCF基板の遮光部と重畳する配置とされた場合を示したが、ゲート配線の一部のみが遮光部と重畳する配置やゲート配線が遮光部とは非重畳となる配置であっても構わない。
 (20)上記した実施形態4~8では、VAモードの液晶パネルにおいて2層の透明電極膜(第1透明電極膜及び第2透明電極膜)を備えるアレイ基板を例示したが、VAモードの液晶パネルにおいて透明電極膜を1層としたアレイ基板にも本発明は適用可能である。その場合は、1層の透明電極膜によって画素電極を構成する一方、第1金属膜を用いてゲート配線に並行する補助容量配線を設けるようにし、その補助容量配線と画素電極との間で静電容量を形成させて画素電極に充電された電位を一定期間保持させるようにすればよい。
 (21)上記した各実施形態では、チャネル部上にエッチストップ層が形成されておらず、ソース部のチャネル部側の端部下面は、酸化物半導体膜の上面と接するように配置される場合を示したが、チャネル部の上層側にエッチストップ層が形成されたエッチストップ型のTFTを備えたものであっても構わない。
 (22)上記した各実施形態では、動作モードがFFSモードやVAモードとされた液晶パネルについて例示したが、それ以外にもIPS(In-Plane Switching)モードなどの他の動作モードとされた液晶パネルについても本発明は適用可能である。
 (23)上記した各実施形態では、ドライバがアレイ基板に直接実装されるCOG実装タイプの液晶パネルを例示したが、ドライバがフレキシブル基板に実装されてそのフレキシブル基板がアレイ基板に実装されるCOF(Chip On Film)実装タイプの液晶パネルにも本発明は適用可能である。
 (24)上記した各実施形態では、液晶パネルの画素が赤色、緑色及び青色の3色構成とされたものを例示したが、赤色、緑色及び青色に、黄色などを加えて4色構成とした画素を備えた液晶パネルにも本発明は適用可能である。
 (25)上記した各実施形態では、縦長な方形状をなす液晶パネルを例示したが、横長な方形状をなす液晶パネルや正方形状をなす液晶パネルにも本発明は適用可能である。それ以外にも、円形状や楕円形状をなす液晶パネルにも本発明は適用可能である。
 (26)上記した各実施形態に記載した液晶パネルに対して、タッチパネルや視差バリアパネル(スイッチ液晶パネル)などの機能性パネルを積層する形で取り付けるようにしたものも本発明に含まれる。
 (27)上記した各実施形態では、外部光源であるバックライト装置を備えた透過型の液晶表示装置を例示したが、本発明は、外光を利用して表示を行う反射型液晶表示装置にも適用可能であり、その場合はバックライト装置を省略することができる。また、半透過型の液晶表示装置にも本発明は適用可能である。
 (28)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、またカラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。
 (29)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネル(PDP(プラズマディスプレイパネル)、有機ELパネル、EPD(電気泳動ディスプレイパネル)、MEMS(Micro Electro Mechanical Systems)表示パネルなど)を用いた表示装置にも本発明は適用可能である。
 11,311...液晶パネル(表示パネル)、11a,311a...CF基板(対向基板)、11b,211b,311b,611b...アレイ基板(薄膜トランジスタ基板)、17,117,217,317,417,517,617,717...TFT(薄膜トランジスタ)、17a,217a,317a,517a...ゲート電極(電極)、17b,117b,217b,317b,417b,517b,617b,717b...ソース電極(電極)、17c,217c,317c,517c,617c...ドレイン電極(電極)、17d,217d,317d,517d,617d...チャネル部、18,218,318...画素電極(第1透明電極)、20,120,320,420,520,720...ソース配線(配線)、24,224,324,524,624...酸化物半導体膜(半導体膜)、26,126,226,326,426,526,626,726...第1層間絶縁膜(絶縁膜)、26a,126a,226a,326a,426a,526a,626a,726a...ソース側開口部(開口部)、26b,226b,326b,526b,626b...ドレイン側開口部(開口部)、27,227,327...第1透明電極膜、28,228...第2層間絶縁膜(層間絶縁膜)、29,229...第2透明電極膜、30,230...共通電極(第2透明電極)、31,131,231,331,431,531,631,731...配線接続部、32,532...補助容量電極(第2透明電極)、33,333,433,533,633...第3層間絶縁膜(絶縁膜)、33a,333a...第3ドレイン側開口部(開口部)、33b,433b,533b...第3ソース側開口部(開口部)、327,527...第1透明電極膜(第2透明電極膜)、329...第2透明電極膜(第1透明電極膜)、PX...画素

Claims (11)

  1.  配線と、
     複数の電極を有する薄膜トランジスタと、
     少なくとも一部が複数の前記電極のいずれかを構成し、前記配線に接続され、透光性導電材料からなる配線接続部と、を備える薄膜トランジスタ基板。
  2.  前記薄膜トランジスタにおける複数の前記電極のいずれかに接続されて第1透明電極膜からなる第1透明電極と、前記第1透明電極膜に対して層間絶縁膜を介して重畳する第2透明電極膜からなり前記第1透明電極との間で静電容量または電界を形成可能な第2透明電極と、を備えており、
     前記配線接続部は、前記第1透明電極膜または前記第2透明電極膜からなる請求項1記載の薄膜トランジスタ基板。
  3.  前記薄膜トランジスタは、半導体膜からなるチャネル部を有するとともに、複数の前記電極に、前記配線接続部の少なくとも一部であって前記チャネル部の一端側に接続されるソース電極と、前記チャネル部の他端側に接続されるドレイン電極と、が含まれる構成とされており、
     前記ドレイン電極は、前記第1透明電極膜と前記第2透明電極膜とのうち前記配線接続部と同じものからなる請求項2記載の薄膜トランジスタ基板。
  4.  前記薄膜トランジスタは、酸化物半導体膜からなるチャネル部を有するとともに、複数の前記電極に、前記配線接続部の少なくとも一部であって前記チャネル部の一端側に接続されるソース電極と、前記チャネル部の他端側に接続されるドレイン電極と、が含まれる構成とされており、
     前記ドレイン電極は、前記酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなる請求項2記載の薄膜トランジスタ基板。
  5.  前記第1透明電極は、その一部が前記配線接続部と重畳する画素電極とされるのに対し、前記第2透明電極は、前記画素電極との間で静電容量を形成し、前記画素電極に充電された電位を保持する補助容量電極とされており、
     前記配線接続部は、前記第2透明電極膜からなる請求項4記載の薄膜トランジスタ基板。
  6.  前記薄膜トランジスタは、酸化物半導体膜からなるチャネル部を有するとともに、複数の前記電極に、前記配線接続部の少なくとも一部であって前記チャネル部の一端側に接続されるソース電極と、前記チャネル部の他端側に接続されるドレイン電極と、が含まれる構成とされており、
     前記配線接続部は、前記酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなる請求項1記載の薄膜トランジスタ基板。
  7.  前記薄膜トランジスタにおける前記ドレイン電極に接続されて第1透明電極膜からなる第1透明電極と、前記第1透明電極膜に対して層間絶縁膜を介して重畳する第2透明電極膜からなり前記第1透明電極との間で静電容量または電界を形成可能な第2透明電極と、を備えており、
     前記ドレイン電極は、前記第1透明電極膜または前記第2透明電極膜からなる請求項6記載の薄膜トランジスタ基板。
  8.  前記ドレイン電極は、前記酸化物半導体膜を部分的に低抵抗化させてなる低抵抗化領域からなる請求項6記載の薄膜トランジスタ基板。
  9.  前記薄膜トランジスタは、半導体膜からなるチャネル部を有するとともに、複数の前記電極に、前記配線接続部の少なくとも一部であって前記チャネル部の一端側に接続されるソース電極と、前記チャネル部の他端側に接続されるドレイン電極と、が含まれる構成とされており、
     前記半導体膜の上層側に配される絶縁膜であって、前記ソース電極及び前記ドレイン電極と重畳する位置にそれぞれ開口部が形成されてなる絶縁膜が備えられる請求項1から請求項8のいずれか1項に記載の薄膜トランジスタ基板。
  10.  前記薄膜トランジスタを有する画素であって、少なくとも前記配線から前記薄膜トランジスタへ向かう前記配線接続部の延在方向に沿って並んで配される複数の画素を備えており、
     前記絶縁膜は、前記ソース電極と重畳する前記開口部が、前記延在方向について隣り合う前記画素の間を跨ぐ範囲に延在するよう形成されている請求項9記載の薄膜トランジスタ基板。
  11.  請求項1から請求項10のいずれか1項に記載の薄膜トランジスタ基板と、前記薄膜トランジスタ基板に対して貼り合わせられる対向基板と、を備える表示パネル。
PCT/JP2017/007681 2016-03-04 2017-02-28 薄膜トランジスタ基板及び表示パネル WO2017150502A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/081,502 US20190081076A1 (en) 2016-03-04 2017-02-28 Thin film transistor substrate and display panel
CN201780014801.5A CN108780619A (zh) 2016-03-04 2017-02-28 薄膜晶体管基板和显示面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016041967 2016-03-04
JP2016-041967 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017150502A1 true WO2017150502A1 (ja) 2017-09-08

Family

ID=59743986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007681 WO2017150502A1 (ja) 2016-03-04 2017-02-28 薄膜トランジスタ基板及び表示パネル

Country Status (3)

Country Link
US (1) US20190081076A1 (ja)
CN (1) CN108780619A (ja)
WO (1) WO2017150502A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11961871B2 (en) * 2018-05-18 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and method for fabricating display device
KR20200066500A (ko) * 2018-11-30 2020-06-10 삼성디스플레이 주식회사 표시장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272427A (ja) * 2008-05-07 2009-11-19 Canon Inc 薄膜トランジスタ及びその製造方法
JP2011154191A (ja) * 2010-01-27 2011-08-11 Panasonic Liquid Crystal Display Co Ltd 液晶表示装置及びその製造方法
WO2012020525A1 (ja) * 2010-08-07 2012-02-16 シャープ株式会社 薄膜トランジスタ基板及びそれを備えた液晶表示装置
JP2012203148A (ja) * 2011-03-24 2012-10-22 Toppan Printing Co Ltd 薄膜トランジスタおよび反射型カラー表示装置
JP2015041489A (ja) * 2013-08-21 2015-03-02 株式会社ジャパンディスプレイ 有機el表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI337754B (en) * 2007-04-20 2011-02-21 Au Optronics Corp Semiconductor structure of display device and method for fabricating the same
JP5491833B2 (ja) * 2008-12-05 2014-05-14 株式会社半導体エネルギー研究所 半導体装置
US9177974B2 (en) * 2009-11-09 2015-11-03 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display panel including the same, and method for manufacturing active matrix substrate with gate insulating film not provided where auxiliary capacitor is provided
JP6219562B2 (ja) * 2012-10-30 2017-10-25 株式会社半導体エネルギー研究所 表示装置及び電子機器
JP6333377B2 (ja) * 2014-07-16 2018-05-30 株式会社Joled トランジスタ、表示装置および電子機器
CN104241299B (zh) * 2014-09-02 2017-02-15 深圳市华星光电技术有限公司 氧化物半导体tft基板的制作方法及结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272427A (ja) * 2008-05-07 2009-11-19 Canon Inc 薄膜トランジスタ及びその製造方法
JP2011154191A (ja) * 2010-01-27 2011-08-11 Panasonic Liquid Crystal Display Co Ltd 液晶表示装置及びその製造方法
WO2012020525A1 (ja) * 2010-08-07 2012-02-16 シャープ株式会社 薄膜トランジスタ基板及びそれを備えた液晶表示装置
JP2012203148A (ja) * 2011-03-24 2012-10-22 Toppan Printing Co Ltd 薄膜トランジスタおよび反射型カラー表示装置
JP2015041489A (ja) * 2013-08-21 2015-03-02 株式会社ジャパンディスプレイ 有機el表示装置

Also Published As

Publication number Publication date
CN108780619A (zh) 2018-11-09
US20190081076A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US9244320B2 (en) Liquid crystal display and manufacturing method thereof
JP5336102B2 (ja) Tft基板
KR101896377B1 (ko) 베젤이 최소화된 액정표시소자
KR100380142B1 (ko) 반사투과형 액정표시장치용 어레이기판
WO2011135908A1 (ja) 回路基板および表示装置
WO2017145939A1 (ja) 薄膜トランジスタ基板及び表示パネル
KR20150078248A (ko) 표시소자
WO2014054569A1 (ja) 半導体装置及び表示装置
JP6656907B2 (ja) 液晶表示装置
US20200124891A1 (en) Active matrix substrate, liquid crystal display panel, and method for manufacturing liquid crystal display panel
JP5011479B2 (ja) 表示装置の製造方法
WO2017150502A1 (ja) 薄膜トランジスタ基板及び表示パネル
US20200185527A1 (en) Thin-film transistor and method of producing thin-film transistor
WO2014054558A1 (ja) 半導体装置及び表示装置
KR20040055688A (ko) 전기 광학 기판의 제조 방법, 전기 광학 장치의 제조방법, 전기 광학 장치
WO2014054563A1 (ja) 半導体装置及び表示装置
WO2016027758A1 (ja) 半導体装置及び液晶表示装置
US20190131459A1 (en) Thin film transistor
KR102269080B1 (ko) 액정 표시 장치 및 그 제조 방법
US7697082B2 (en) Array substrate for liquid crystal panel and liquid crystal panel and manufacturing method thereof
CN115079472A (zh) 电光装置和电子设备
WO2018225645A1 (ja) 液晶表示装置
US20090230395A1 (en) Thin film transistor substrate and method for manufacturing the same
JP3918782B2 (ja) 電気光学基板の製造方法、電気光学装置の製造方法
WO2017145941A1 (ja) 表示パネル用基板の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759968

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP